1
|
Parichatikanond W, Duangrat R, Kurose H, Mangmool S. Regulation of β-Adrenergic Receptors in the Heart: A Review on Emerging Therapeutic Strategies for Heart Failure. Cells 2024; 13:1674. [PMID: 39451192 PMCID: PMC11506672 DOI: 10.3390/cells13201674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/24/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
The prolonged overstimulation of β-adrenergic receptors (β-ARs), a member of the G protein-coupled receptor (GPCR) family, causes abnormalities in the density and functionality of the receptor and contributes to cardiac dysfunctions, leading to the development and progression of heart diseases, especially heart failure (HF). Despite recent advancements in HF therapy, mortality and morbidity rates continue to be high. Treatment with β-AR antagonists (β-blockers) has improved clinical outcomes and reduced overall hospitalization and mortality rates. However, several barriers in the management of HF remain, providing opportunities to develop new strategies that focus on the functions and signal transduction of β-ARs involved in the pathogenesis of HF. As β-AR can signal through multiple pathways influenced by different receptor subtypes, expression levels, and signaling components such as G proteins, G protein-coupled receptor kinases (GRKs), β-arrestins, and downstream effectors, it presents a complex mechanism that could be targeted in HF management. In this narrative review, we focus on the regulation of β-ARs at the receptor, G protein, and effector loci, as well as their signal transductions in the physiology and pathophysiology of the heart. The discovery of potential ligands for β-AR that activate cardioprotective pathways while limiting off-target signaling is promising for the treatment of HF. However, applying findings from preclinical animal models to human patients faces several challenges, including species differences, the genetic variability of β-ARs, and the complexity and heterogeneity of humans. In this review, we also summarize recent updates and future research on the regulation of β-ARs in the molecular basis of HF and highlight potential therapeutic strategies for HF.
Collapse
Affiliation(s)
| | - Ratchanee Duangrat
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand;
| | - Hitoshi Kurose
- Pharmacology for Life Sciences, Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima 770-8505, Japan;
- Pharmacology for Life Sciences, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8505, Japan
| | - Supachoke Mangmool
- Department of Pharmaceutical Care, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
2
|
Fernández-Tocino M, Pun-Garcia A, Gómez M, Clemente-Moragón A, Oliver E, Villena-Gutierrez R, Trigo-Anca S, Díaz-Guerra A, Sanz-Rosa D, Prados B, Del Campo L, Andrés V, Fuster V, de la Pompa JL, Cádiz L, Ibañez B. β3-Adrenergic receptor overexpression in cardiomyocytes preconditions mitochondria to withstand ischemia-reperfusion injury. Basic Res Cardiol 2024; 119:773-794. [PMID: 39134663 PMCID: PMC11461581 DOI: 10.1007/s00395-024-01072-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 07/14/2024] [Accepted: 07/23/2024] [Indexed: 10/09/2024]
Abstract
β3-Adrenergic receptor (β3AR) agonists have been shown to protect against ischemia-reperfusion injury (IRI). Since β3ARs are present both in cardiomyocytes and in endothelial cells, the cellular compartment responsible for this protection has remained unknown. Using transgenic mice constitutively expressing the human β3AR (hβ3AR) in cardiomyocytes or in the endothelium on a genetic background of null endogenous β3AR expression, we show that only cardiomyocyte expression protects against IRI (45 min ischemia followed by reperfusion over 24 h). Infarct size was also limited after ischemia-reperfusion in mice with cardiomyocyte hβ3AR overexpression on top of endogenous β3AR expression. hβ3AR overexpression in these mice reduced IRI-induced cardiac fibrosis and improved long-term left ventricular systolic function. Cardiomyocyte-specific β3AR overexpression resulted in a baseline remodeling of the mitochondrial network, characterized by upregulated mitochondrial biogenesis and a downregulation of mitochondrial quality control (mitophagy), resulting in elevated numbers of small mitochondria with a depressed capacity for the generation of reactive oxygen species but improved capacity for ATP generation. These processes precondition cardiomyocyte mitochondria to be more resistant to IRI. Upon reperfusion, hearts with hβ3AR overexpression display a restoration in the mitochondrial quality control and a rapid activation of antioxidant responses. Strong protection against IRI was also observed in mice infected with an adeno-associated virus (AAV) encoding hβ3AR under a cardiomyocyte-specific promoter. These results confirm the translational potential of increased cardiomyocyte β3AR expression, achieved either naturally through exercise or artificially through gene therapy approaches, to precondition the cardiomyocyte mitochondrial network to withstand future insults.
Collapse
MESH Headings
- Animals
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Receptors, Adrenergic, beta-3/metabolism
- Receptors, Adrenergic, beta-3/genetics
- Mice, Transgenic
- Myocardial Reperfusion Injury/metabolism
- Myocardial Reperfusion Injury/pathology
- Myocardial Reperfusion Injury/prevention & control
- Myocardial Reperfusion Injury/genetics
- Mice
- Humans
- Mitochondria, Heart/metabolism
- Mitochondria, Heart/pathology
- Reactive Oxygen Species/metabolism
- Male
- Disease Models, Animal
Collapse
Affiliation(s)
- Miguel Fernández-Tocino
- Clinical Research Department, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), C/ Melchor Fernandez Almagro 3, 28029, Madrid, Spain
- CIBERCV, Madrid, Spain
| | - Andrés Pun-Garcia
- Clinical Research Department, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), C/ Melchor Fernandez Almagro 3, 28029, Madrid, Spain
- CIBERCV, Madrid, Spain
| | - Mónica Gómez
- Clinical Research Department, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), C/ Melchor Fernandez Almagro 3, 28029, Madrid, Spain
- Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Agustín Clemente-Moragón
- Clinical Research Department, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), C/ Melchor Fernandez Almagro 3, 28029, Madrid, Spain
- CIBERCV, Madrid, Spain
| | - Eduardo Oliver
- Clinical Research Department, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), C/ Melchor Fernandez Almagro 3, 28029, Madrid, Spain
- CIBERCV, Madrid, Spain
- Centro de Investigaciones Biológicas Margarita Salas (CIB), CSIC, Madrid, Spain
| | - Rocío Villena-Gutierrez
- Clinical Research Department, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), C/ Melchor Fernandez Almagro 3, 28029, Madrid, Spain
| | - Sofía Trigo-Anca
- Clinical Research Department, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), C/ Melchor Fernandez Almagro 3, 28029, Madrid, Spain
| | - Anabel Díaz-Guerra
- Clinical Research Department, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), C/ Melchor Fernandez Almagro 3, 28029, Madrid, Spain
- CIBERCV, Madrid, Spain
| | - David Sanz-Rosa
- Clinical Research Department, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), C/ Melchor Fernandez Almagro 3, 28029, Madrid, Spain
- CIBERCV, Madrid, Spain
- Universidad Europea de Madrid (UEM), Madrid, Spain
| | - Belén Prados
- Clinical Research Department, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), C/ Melchor Fernandez Almagro 3, 28029, Madrid, Spain
| | - Lara Del Campo
- Clinical Research Department, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), C/ Melchor Fernandez Almagro 3, 28029, Madrid, Spain
- CIBERCV, Madrid, Spain
- Universidad Complutense Madrid (UCM), Madrid, Spain
| | - Vicente Andrés
- Clinical Research Department, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), C/ Melchor Fernandez Almagro 3, 28029, Madrid, Spain
- CIBERCV, Madrid, Spain
| | - Valentín Fuster
- Clinical Research Department, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), C/ Melchor Fernandez Almagro 3, 28029, Madrid, Spain
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - José Luis de la Pompa
- Clinical Research Department, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), C/ Melchor Fernandez Almagro 3, 28029, Madrid, Spain
- CIBERCV, Madrid, Spain
| | - Laura Cádiz
- Clinical Research Department, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), C/ Melchor Fernandez Almagro 3, 28029, Madrid, Spain
| | - Borja Ibañez
- Clinical Research Department, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), C/ Melchor Fernandez Almagro 3, 28029, Madrid, Spain.
- CIBERCV, Madrid, Spain.
- IIS-Fundación Jiménez Díaz University Hospital, Madrid, Spain.
| |
Collapse
|
3
|
Maslov LN, Naryzhnaya NV, Voronkov NS, Kurbatov BK, Derkachev IA, Ryabov VV, Vyshlov EV, Kolpakov VV, Tomilova EA, Sapozhenkova EV, Singh N, Fu F, Pei J. The role of β-adrenergic receptors in the regulation of cardiac tolerance to ischemia/reperfusion. Why do β-adrenergic receptor agonists and antagonists protect the heart? Fundam Clin Pharmacol 2024; 38:658-673. [PMID: 38423796 DOI: 10.1111/fcp.12988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/28/2023] [Accepted: 01/12/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND Catecholamines and β-adrenergic receptors (β-ARs) play an important role in the regulation of cardiac tolerance to the impact of ischemia and reperfusion. This systematic review analyzed the molecular mechanisms of the cardioprotective activity of β-AR ligands. METHODS We performed an electronic search of topical articles using PubMed databases from 1966 to 2023. We cited original in vitro and in vivo studies and review articles that documented the cardioprotective properties of β-AR agonists and antagonists. RESULTS The infarct-reducing effect of β-AR antagonists did not depend on a decrease in the heart rate. The target for β-blockers is not only cardiomyocytes but also neutrophils. β1-blockers (metoprolol, propranolol, timolol) and the selective β2-AR agonist arformoterol have an infarct-reducing effect in coronary artery occlusion (CAO) in animals. Antagonists of β1- and β2-АR (metoprolol, propranolol, nadolol, carvedilol, bisoprolol, esmolol) are able to prevent reperfusion cardiac injury. All β-AR ligands that reduced infarct size are the selective or nonselective β1-blockers. It was hypothesized that β1-AR blocking promotes an increase in cardiac tolerance to I/R. The activation of β1-AR, β2-AR, and β3-AR can increase cardiac tolerance to I/R. The cardioprotective effect of β-AR agonists is mediated via the activation of kinases and reactive oxygen species production. CONCLUSIONS It is unclear why β-blockers with the similar receptor selectivity have the infarct-sparing effect while other β-blockers with the same selectivity do not affect infarct size. What is the molecular mechanism of the infarct-reducing effect of β-blockers in reperfusion? Why did in early studies β-blockers decrease the mortality rate in patients with acute myocardial infarction (AMI) and without reperfusion and in more recent studies β-blockers had no effect on the mortality rate in patients with AMI and reperfusion? The creation of more effective β-AR ligands depends on the answers to these questions.
Collapse
Affiliation(s)
- Leonid N Maslov
- Cardiology Research Institute, Tomsk National Research Medical Centre, Russian Academy of Sciences, Tomsk, Russia
| | - Natalia V Naryzhnaya
- Cardiology Research Institute, Tomsk National Research Medical Centre, Russian Academy of Sciences, Tomsk, Russia
| | - Nikita S Voronkov
- Cardiology Research Institute, Tomsk National Research Medical Centre, Russian Academy of Sciences, Tomsk, Russia
| | - Boris K Kurbatov
- Cardiology Research Institute, Tomsk National Research Medical Centre, Russian Academy of Sciences, Tomsk, Russia
| | - Ivan A Derkachev
- Cardiology Research Institute, Tomsk National Research Medical Centre, Russian Academy of Sciences, Tomsk, Russia
| | - Vyacheslav V Ryabov
- Cardiology Research Institute, Tomsk National Research Medical Centre, Russian Academy of Sciences, Tomsk, Russia
| | - Evgeny V Vyshlov
- Cardiology Research Institute, Tomsk National Research Medical Centre, Russian Academy of Sciences, Tomsk, Russia
| | | | | | | | - Nirmal Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | - Feng Fu
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Jianming Pei
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
4
|
Ahmed MA, Kamel EO, Abd-Eldayem AM. Role of cAMP/pCREB and GSK-3β/NF-κB p65 signaling pathways in the renoprotective effect of mirabegron against renal ischemia-reperfusion injury in rats. Eur J Pharmacol 2024; 974:176617. [PMID: 38679120 DOI: 10.1016/j.ejphar.2024.176617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/09/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024]
Abstract
Acute kidney injury and other renal disorders are thought to be primarily caused by renal ischemia-reperfusion (RIR). Cyclic adenosine monophosphate (cAMP) has plenty of physiological pleiotropic effects and preserves tissue integrity and functions. This research aimed to examine the potential protective effects of the β3-adrenergic receptors agonist mirabegron in a rat model of RIR and its underlying mechanisms. Male rats enrolled in this work were given an oral dose of 30 mg/kg mirabegron for two days before surgical induction of RIR. Renal levels of kidney injury molecule-1 (KIM-1), monocyte chemoattractant protein-1 (MCP-1), tumor necrosis factor-alpha (TNF-α), Interleukin-10 (IL-10), cAMP, cAMP-responsive element binding protein (pCREB), and glycogen synthase kinase-3 beta (GSK-3β) were assessed along with blood urea nitrogen and serum creatinine. Additionally, caspase-3 and nuclear factor-kappa B (NF-κB) p65 were explored by immunohistochemical analysis. Renal specimens were inspected for histopathological changes. RIR led to renal tissue damage with elevated blood urea nitrogen and serum creatinine levels. The renal KIM-1, MCP-1, TNF-α, and GSK-3β were significantly increased, while IL-10, cAMP, and pCREB levels were reduced. Moreover, upregulation of caspase-3 and NF-κB p65 protein expression was seen in RIR rats. Mirabegron significantly reduced kidney dysfunction, histological abnormalities, inflammation, and apoptosis in the rat renal tissues. Mechanistically, mirabegron mediated these effects via modulation of cAMP/pCREB and GSK-3β/NF-κB p65 signaling pathways. Mirabegron administration could protect renal tissue and maintain renal function against RIR.
Collapse
Affiliation(s)
- Marwa A Ahmed
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Esam O Kamel
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Al-Azhar University, Assiut Branch, Assiut, Egypt
| | - Ahmed M Abd-Eldayem
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt; Department of Pharmacology, Faculty of Medicine, Merit University, Sohag, Egypt.
| |
Collapse
|
5
|
Corbi G, Comegna M, Vinciguerra C, Capasso A, Onorato L, Salucci AM, Rapacciuolo A, Cannavo A. Age and sex mediated effects of estrogen and Β3-adrenergic receptor on cardiovascular pathophysiology. Exp Gerontol 2024; 190:112420. [PMID: 38588751 DOI: 10.1016/j.exger.2024.112420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/29/2024] [Accepted: 04/05/2024] [Indexed: 04/10/2024]
Abstract
Sex differences are consistently identified in determining the prevalence, manifestation, and response to therapies in several systemic disorders, including those affecting the cardiovascular (CV), skeletal muscle, and nervous system. Interestingly, such differences are often more noticeable as we age. For example, premenopausal women experience a lower risk of CV disease than men of the same age. While at an advanced age, with menopause, the risk of cardiovascular diseases and adverse outcomes increases exponentially in women, exceeding that of men. However, this effect appears to be reversed in diseases such as pulmonary hypertension, where women are up to seven times more likely than men to develop an idiopathic form of the disease with symptoms developing ten years earlier than their male counterparts. Explaining this is a complex question. However, several factors and mechanisms have been identified in recent decades, including a role for sex hormones, particularly estrogens and their related receptors. Furthermore, an emerging role in these sex differences has also been suggested for β-adrenergic receptors (βARs), which are essential regulators of mammalian physiology. It has in fact been shown that βARs interact with estrogen receptors (ER), providing further demonstration of their involvement in determining sexual differences. Based on these premises, this review article focused on the β3AR subtype, which shows important activities in adipose tissue but with new and interesting roles in regulating the function of cardiomyocytes and vascular cells. In detail, we examined how β3AR and ER signaling are intertwined and whether there would be sex- and age-dependent specific effects of these receptor systems.
Collapse
Affiliation(s)
- Graziamaria Corbi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Marika Comegna
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy; CEINGE-Advanced Biotechnologies - Franco Salvatore, Naples, Italy
| | - Caterina Vinciguerra
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Alessio Capasso
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Luigi Onorato
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | | | - Antonio Rapacciuolo
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Alessandro Cannavo
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.
| |
Collapse
|
6
|
Kuroshima T, Kawaguchi S, Okada M. Current Perspectives of Mitochondria in Sepsis-Induced Cardiomyopathy. Int J Mol Sci 2024; 25:4710. [PMID: 38731929 PMCID: PMC11083471 DOI: 10.3390/ijms25094710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Sepsis-induced cardiomyopathy (SICM) is one of the leading indicators for poor prognosis associated with sepsis. Despite its reversibility, prognosis varies widely among patients. Mitochondria play a key role in cellular energy production by generating adenosine triphosphate (ATP), which is vital for myocardial energy metabolism. Over recent years, mounting evidence suggests that severe sepsis not only triggers mitochondrial structural abnormalities such as apoptosis, incomplete autophagy, and mitophagy in cardiomyocytes but also compromises their function, leading to ATP depletion. This metabolic disruption is recognized as a significant contributor to SICM, yet effective treatment options remain elusive. Sepsis cannot be effectively treated with inotropic drugs in failing myocardium due to excessive inflammatory factors that blunt β-adrenergic receptors. This review will share the recent knowledge on myocardial cell death in sepsis and its molecular mechanisms, focusing on the role of mitochondria as an important metabolic regulator of SICM, and discuss the potential for developing therapies for sepsis-induced myocardial injury.
Collapse
Affiliation(s)
| | | | - Motoi Okada
- Department of Emergency Medicine, Asahikawa Medical University, Asahikawa 078-8510, Japan; (T.K.); (S.K.)
| |
Collapse
|
7
|
Arrigo E, Comità S, Pagliaro P, Penna C, Mancardi D. Clinical Applications for Gasotransmitters in the Cardiovascular System: Are We There Yet? Int J Mol Sci 2023; 24:12480. [PMID: 37569855 PMCID: PMC10419417 DOI: 10.3390/ijms241512480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/28/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Ischemia is the underlying mechanism in a wide variety of acute and persistent pathologies. As such, understanding the fine intracellular events occurring during (and after) the restriction of blood supply is pivotal to improving the outcomes in clinical settings. Among others, gaseous signaling molecules constitutively produced by mammalian cells (gasotransmitters) have been shown to be of potential interest for clinical treatment of ischemia/reperfusion injury. Nitric oxide (NO and its sibling, HNO), hydrogen sulfide (H2S), and carbon monoxide (CO) have long been proven to be cytoprotective in basic science experiments, and they are now awaiting confirmation with clinical trials. The aim of this work is to review the literature and the clinical trials database to address the state of development of potential therapeutic applications for NO, H2S, and CO and the clinical scenarios where they are more promising.
Collapse
|
8
|
Chuaiphichai S, Chu SM, Carnicer R, Kelly M, Bendall JK, Simon JN, Douglas G, Crabtree MJ, Casadei B, Channon KM. Endothelial cell-specific roles for tetrahydrobiopterin in myocardial function, cardiac hypertrophy, and response to myocardial ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 2023; 324:H430-H442. [PMID: 36735402 PMCID: PMC9988535 DOI: 10.1152/ajpheart.00562.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/15/2022] [Accepted: 12/31/2022] [Indexed: 02/04/2023]
Abstract
The cofactor tetrahydrobiopterin (BH4) is a critical regulator of nitric oxide synthase (NOS) function and redox signaling, with reduced BH4 implicated in multiple cardiovascular disease states. In the myocardium, augmentation of BH4 levels can impact on cardiomyocyte function, preventing hypertrophy and heart failure. However, the specific role of endothelial cell BH4 biosynthesis in the coronary circulation and its role in cardiac function and the response to ischemia has yet to be elucidated. Endothelial cell-specific Gch1 knockout mice were generated by crossing Gch1fl/fl with Tie2cre mice, generating Gch1fl/flTie2cre mice and littermate controls. GTP cyclohydrolase protein and BH4 levels were reduced in heart tissues from Gch1fl/flTie2cre mice, localized to endothelial cells, with normal cardiomyocyte BH4. Deficiency in coronary endothelial cell BH4 led to NOS uncoupling, decreased NO bioactivity, and increased superoxide and hydrogen peroxide productions in the hearts of Gch1fl/flTie2cre mice. Under physiological conditions, loss of endothelial cell-specific BH4 led to mild cardiac hypertrophy in Gch1fl/flTie2cre hearts. Endothelial cell BH4 loss was also associated with increased neuronal NOS protein, loss of endothelial NOS protein, and increased phospholamban phosphorylation at serine-17 in cardiomyocytes. Loss of cardiac endothelial cell BH4 led to coronary vascular dysfunction, reduced functional recovery, and increased myocardial infarct size following ischemia-reperfusion injury. Taken together, these studies reveal a specific role for endothelial cell Gch1/BH4 biosynthesis in cardiac function and the response to cardiac ischemia-reperfusion injury. Targeting endothelial cell Gch1 and BH4 biosynthesis may provide a novel therapeutic target for the prevention and treatment of cardiac dysfunction and ischemia-reperfusion injury.NEW & NOTEWORTHY We demonstrate a critical role for endothelial cell Gch1/BH4 biosynthesis in coronary vascular function and cardiac function. Loss of cardiac endothelial cell BH4 leads to coronary vascular dysfunction, reduced functional recovery, and increased myocardial infarct size following ischemia/reperfusion injury. Targeting endothelial cell Gch1 and BH4 biosynthesis may provide a novel therapeutic target for the prevention and treatment of cardiac dysfunction, ischemia injury, and heart failure.
Collapse
Affiliation(s)
- Surawee Chuaiphichai
- Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Sandy M Chu
- Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Ricardo Carnicer
- Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Matthew Kelly
- Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Jenifer K Bendall
- Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Jillian N Simon
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States
| | - Gillian Douglas
- Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Mark J Crabtree
- Department of Biochemical Sciences, School of Bioscience and Medicine, University of Surrey, Guildford, United Kingdom
| | - Barbara Casadei
- Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Keith M Channon
- Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
9
|
LaPenna KB, Li Z, Doiron JE, Sharp TE, Xia H, Moles K, Koul K, Wang JS, Polhemus DJ, Goodchild TT, Patel RB, Shah SJ, Lefer DJ. Combination Sodium Nitrite and Hydralazine Therapy Attenuates Heart Failure With Preserved Ejection Fraction Severity in a "2-Hit" Murine Model. J Am Heart Assoc 2023; 12:e028480. [PMID: 36752224 PMCID: PMC10111505 DOI: 10.1161/jaha.122.028480] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/04/2023] [Indexed: 02/09/2023]
Abstract
Background Recent studies have suggested that cardiac nitrosative stress mediated by pathological overproduction of nitric oxide (NO) via inducible NO synthase (iNOS) contributes to the pathogenesis of heart failure with preserved ejection fraction (HFpEF). Other studies have suggested that endothelial NO synthase (eNOS) dysfunction and attenuated NO bioavailability contribute to HFpEF morbidity and mortality. We sought to further investigate dysregulated NO signaling and to examine the effects of a NO-based dual therapy (sodium nitrite+hydralazine) following the onset of HFpEF using a "2-hit" murine model. Methods and Results Nine-week-old male C57BL/6 N mice (n=15 per group) were treated concurrently with high-fat diet and N(ω)-nitro-L-arginine methyl ester (L-NAME) (0.5 g/L per day) via drinking water for 10 weeks. At week 5, mice were randomized into either vehicle (normal saline) or combination treatment with sodium nitrite (75 mg/L in the drinking water) and hydralazine (2.0 mg/kg IP, BID). Cardiac structure and function were monitored with echocardiography and invasive hemodynamic measurements. Cardiac mitochondrial respiration, aortic vascular function, and exercise performance were also evaluated. Circulating and myocardial nitrite were measured to determine the bioavailability of NO. Circulating markers of oxidative or nitrosative stress as well as systemic inflammation were also determined. Severe HFpEF was evident by significantly elevated E/E', LVEDP, and Tau in mice treated with L-NAME and HFD, which was associated with impaired NO bioavailability, mitochondrial respiration, aortic vascular function, and exercise capacity. Treatment with sodium nitrite and hydralazine restored NO bioavailability, reduced oxidative and nitrosative stress, preserved endothelial function and mitochondrial respiration, limited the fibrotic response, and improved exercise capacity, ultimately attenuating the severity of "two-hit" HFpEF. Conclusions Our data demonstrate that nitrite, a well-established biomarker of NO bioavailability and a physiological source of NO, is significantly reduced in the heart and circulation in the "2-hit" mouse HFpEF model. Furthermore, sodium nitrite+hydralazine combined therapy significantly attenuated the severity of HFpEF in the "2-hit" cardiometabolic HFpEF. These data suggest that supplementing NO-based therapeutics with a potent antioxidant and vasodilator agent may result in synergistic benefits for the treatment of HFpEF.
Collapse
Affiliation(s)
- Kyle B. LaPenna
- Cardiovascular Center of ExcellenceLouisiana State University Health Sciences CenterNew OrleansLA
- Department of Pharmacology and Experimental TherapeuticsLouisiana State University Health Sciences CenterNew OrleansLA
| | - Zhen Li
- Department of Cardiac SurgerySmidt Heart Institute, Cedars‐Sinai Medical CenterLos AngelesCA
| | - Jake E. Doiron
- Cardiovascular Center of ExcellenceLouisiana State University Health Sciences CenterNew OrleansLA
- Department of Pharmacology and Experimental TherapeuticsLouisiana State University Health Sciences CenterNew OrleansLA
| | - Thomas E. Sharp
- Cardiovascular Center of ExcellenceLouisiana State University Health Sciences CenterNew OrleansLA
- Department of Medicine, Section of CardiologyLouisiana State University Health Sciences CenterNew OrleansLA
| | - Huijing Xia
- Cardiovascular Center of ExcellenceLouisiana State University Health Sciences CenterNew OrleansLA
| | - Karl Moles
- Cardiovascular Center of ExcellenceLouisiana State University Health Sciences CenterNew OrleansLA
| | - Kashyap Koul
- Cardiovascular Center of ExcellenceLouisiana State University Health Sciences CenterNew OrleansLA
| | - John S. Wang
- Cardiovascular Center of ExcellenceLouisiana State University Health Sciences CenterNew OrleansLA
| | | | - Traci T. Goodchild
- Department of Cardiac SurgerySmidt Heart Institute, Cedars‐Sinai Medical CenterLos AngelesCA
| | - Ravi B. Patel
- Division of Cardiology, Department of Medicine and Bluhm Cardiovascular InstituteNorthwestern University Feinberg School of MedicineChicagoIL
| | - Sanjiv J. Shah
- Division of Cardiology, Department of Medicine and Bluhm Cardiovascular InstituteNorthwestern University Feinberg School of MedicineChicagoIL
| | - David J. Lefer
- Department of Cardiac SurgerySmidt Heart Institute, Cedars‐Sinai Medical CenterLos AngelesCA
| |
Collapse
|
10
|
Ferdinandy P, Andreadou I, Baxter GF, Bøtker HE, Davidson SM, Dobrev D, Gersh BJ, Heusch G, Lecour S, Ruiz-Meana M, Zuurbier CJ, Hausenloy DJ, Schulz R. Interaction of Cardiovascular Nonmodifiable Risk Factors, Comorbidities and Comedications With Ischemia/Reperfusion Injury and Cardioprotection by Pharmacological Treatments and Ischemic Conditioning. Pharmacol Rev 2023; 75:159-216. [PMID: 36753049 PMCID: PMC9832381 DOI: 10.1124/pharmrev.121.000348] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 08/07/2022] [Accepted: 09/12/2022] [Indexed: 12/13/2022] Open
Abstract
Preconditioning, postconditioning, and remote conditioning of the myocardium enhance the ability of the heart to withstand a prolonged ischemia/reperfusion insult and the potential to provide novel therapeutic paradigms for cardioprotection. While many signaling pathways leading to endogenous cardioprotection have been elucidated in experimental studies over the past 30 years, no cardioprotective drug is on the market yet for that indication. One likely major reason for this failure to translate cardioprotection into patient benefit is the lack of rigorous and systematic preclinical evaluation of promising cardioprotective therapies prior to their clinical evaluation, since ischemic heart disease in humans is a complex disorder caused by or associated with cardiovascular risk factors and comorbidities. These risk factors and comorbidities induce fundamental alterations in cellular signaling cascades that affect the development of ischemia/reperfusion injury and responses to cardioprotective interventions. Moreover, some of the medications used to treat these comorbidities may impact on cardioprotection by again modifying cellular signaling pathways. The aim of this article is to review the recent evidence that cardiovascular risk factors as well as comorbidities and their medications may modify the response to cardioprotective interventions. We emphasize the critical need for taking into account the presence of cardiovascular risk factors as well as comorbidities and their concomitant medications when designing preclinical studies for the identification and validation of cardioprotective drug targets and clinical studies. This will hopefully maximize the success rate of developing rational approaches to effective cardioprotective therapies for the majority of patients with multiple comorbidities. SIGNIFICANCE STATEMENT: Ischemic heart disease is a major cause of mortality; however, there are still no cardioprotective drugs on the market. Most studies on cardioprotection have been undertaken in animal models of ischemia/reperfusion in the absence of comorbidities; however, ischemic heart disease develops with other systemic disorders (e.g., hypertension, hyperlipidemia, diabetes, atherosclerosis). Here we focus on the preclinical and clinical evidence showing how these comorbidities and their routine medications affect ischemia/reperfusion injury and interfere with cardioprotective strategies.
Collapse
Affiliation(s)
- Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (I.A.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK (G.F.B.); Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark (H.E.B.); The Hatter Cardiovascular Institute, University College London, London, UK (S.M.D.); Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada (D.D.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas (D.D.); Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota (B.J.G.); Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany (G.H.); Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town, Cape Town, South Africa (S.L.); Cardiovascular Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Spain (M.R-M.); Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands (C.J.Z.); Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore (D.J.H.); National Heart Research Institute Singapore, National Heart Centre, Singapore (D.J.H.); Yong Loo Lin School of Medicine, National University Singapore, Singapore (D.J.H.); Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan (D.J.H.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Ioanna Andreadou
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (I.A.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK (G.F.B.); Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark (H.E.B.); The Hatter Cardiovascular Institute, University College London, London, UK (S.M.D.); Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada (D.D.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas (D.D.); Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota (B.J.G.); Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany (G.H.); Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town, Cape Town, South Africa (S.L.); Cardiovascular Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Spain (M.R-M.); Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands (C.J.Z.); Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore (D.J.H.); National Heart Research Institute Singapore, National Heart Centre, Singapore (D.J.H.); Yong Loo Lin School of Medicine, National University Singapore, Singapore (D.J.H.); Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan (D.J.H.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Gary F Baxter
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (I.A.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK (G.F.B.); Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark (H.E.B.); The Hatter Cardiovascular Institute, University College London, London, UK (S.M.D.); Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada (D.D.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas (D.D.); Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota (B.J.G.); Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany (G.H.); Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town, Cape Town, South Africa (S.L.); Cardiovascular Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Spain (M.R-M.); Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands (C.J.Z.); Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore (D.J.H.); National Heart Research Institute Singapore, National Heart Centre, Singapore (D.J.H.); Yong Loo Lin School of Medicine, National University Singapore, Singapore (D.J.H.); Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan (D.J.H.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Hans Erik Bøtker
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (I.A.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK (G.F.B.); Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark (H.E.B.); The Hatter Cardiovascular Institute, University College London, London, UK (S.M.D.); Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada (D.D.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas (D.D.); Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota (B.J.G.); Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany (G.H.); Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town, Cape Town, South Africa (S.L.); Cardiovascular Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Spain (M.R-M.); Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands (C.J.Z.); Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore (D.J.H.); National Heart Research Institute Singapore, National Heart Centre, Singapore (D.J.H.); Yong Loo Lin School of Medicine, National University Singapore, Singapore (D.J.H.); Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan (D.J.H.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Sean M Davidson
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (I.A.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK (G.F.B.); Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark (H.E.B.); The Hatter Cardiovascular Institute, University College London, London, UK (S.M.D.); Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada (D.D.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas (D.D.); Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota (B.J.G.); Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany (G.H.); Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town, Cape Town, South Africa (S.L.); Cardiovascular Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Spain (M.R-M.); Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands (C.J.Z.); Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore (D.J.H.); National Heart Research Institute Singapore, National Heart Centre, Singapore (D.J.H.); Yong Loo Lin School of Medicine, National University Singapore, Singapore (D.J.H.); Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan (D.J.H.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Dobromir Dobrev
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (I.A.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK (G.F.B.); Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark (H.E.B.); The Hatter Cardiovascular Institute, University College London, London, UK (S.M.D.); Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada (D.D.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas (D.D.); Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota (B.J.G.); Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany (G.H.); Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town, Cape Town, South Africa (S.L.); Cardiovascular Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Spain (M.R-M.); Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands (C.J.Z.); Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore (D.J.H.); National Heart Research Institute Singapore, National Heart Centre, Singapore (D.J.H.); Yong Loo Lin School of Medicine, National University Singapore, Singapore (D.J.H.); Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan (D.J.H.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Bernard J Gersh
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (I.A.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK (G.F.B.); Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark (H.E.B.); The Hatter Cardiovascular Institute, University College London, London, UK (S.M.D.); Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada (D.D.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas (D.D.); Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota (B.J.G.); Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany (G.H.); Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town, Cape Town, South Africa (S.L.); Cardiovascular Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Spain (M.R-M.); Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands (C.J.Z.); Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore (D.J.H.); National Heart Research Institute Singapore, National Heart Centre, Singapore (D.J.H.); Yong Loo Lin School of Medicine, National University Singapore, Singapore (D.J.H.); Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan (D.J.H.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Gerd Heusch
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (I.A.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK (G.F.B.); Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark (H.E.B.); The Hatter Cardiovascular Institute, University College London, London, UK (S.M.D.); Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada (D.D.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas (D.D.); Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota (B.J.G.); Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany (G.H.); Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town, Cape Town, South Africa (S.L.); Cardiovascular Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Spain (M.R-M.); Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands (C.J.Z.); Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore (D.J.H.); National Heart Research Institute Singapore, National Heart Centre, Singapore (D.J.H.); Yong Loo Lin School of Medicine, National University Singapore, Singapore (D.J.H.); Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan (D.J.H.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Sandrine Lecour
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (I.A.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK (G.F.B.); Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark (H.E.B.); The Hatter Cardiovascular Institute, University College London, London, UK (S.M.D.); Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada (D.D.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas (D.D.); Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota (B.J.G.); Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany (G.H.); Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town, Cape Town, South Africa (S.L.); Cardiovascular Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Spain (M.R-M.); Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands (C.J.Z.); Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore (D.J.H.); National Heart Research Institute Singapore, National Heart Centre, Singapore (D.J.H.); Yong Loo Lin School of Medicine, National University Singapore, Singapore (D.J.H.); Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan (D.J.H.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Marisol Ruiz-Meana
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (I.A.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK (G.F.B.); Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark (H.E.B.); The Hatter Cardiovascular Institute, University College London, London, UK (S.M.D.); Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada (D.D.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas (D.D.); Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota (B.J.G.); Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany (G.H.); Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town, Cape Town, South Africa (S.L.); Cardiovascular Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Spain (M.R-M.); Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands (C.J.Z.); Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore (D.J.H.); National Heart Research Institute Singapore, National Heart Centre, Singapore (D.J.H.); Yong Loo Lin School of Medicine, National University Singapore, Singapore (D.J.H.); Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan (D.J.H.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Coert J Zuurbier
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (I.A.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK (G.F.B.); Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark (H.E.B.); The Hatter Cardiovascular Institute, University College London, London, UK (S.M.D.); Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada (D.D.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas (D.D.); Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota (B.J.G.); Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany (G.H.); Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town, Cape Town, South Africa (S.L.); Cardiovascular Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Spain (M.R-M.); Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands (C.J.Z.); Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore (D.J.H.); National Heart Research Institute Singapore, National Heart Centre, Singapore (D.J.H.); Yong Loo Lin School of Medicine, National University Singapore, Singapore (D.J.H.); Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan (D.J.H.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Derek J Hausenloy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (I.A.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK (G.F.B.); Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark (H.E.B.); The Hatter Cardiovascular Institute, University College London, London, UK (S.M.D.); Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada (D.D.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas (D.D.); Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota (B.J.G.); Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany (G.H.); Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town, Cape Town, South Africa (S.L.); Cardiovascular Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Spain (M.R-M.); Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands (C.J.Z.); Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore (D.J.H.); National Heart Research Institute Singapore, National Heart Centre, Singapore (D.J.H.); Yong Loo Lin School of Medicine, National University Singapore, Singapore (D.J.H.); Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan (D.J.H.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Rainer Schulz
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (I.A.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK (G.F.B.); Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark (H.E.B.); The Hatter Cardiovascular Institute, University College London, London, UK (S.M.D.); Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada (D.D.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas (D.D.); Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota (B.J.G.); Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany (G.H.); Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town, Cape Town, South Africa (S.L.); Cardiovascular Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Spain (M.R-M.); Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands (C.J.Z.); Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore (D.J.H.); National Heart Research Institute Singapore, National Heart Centre, Singapore (D.J.H.); Yong Loo Lin School of Medicine, National University Singapore, Singapore (D.J.H.); Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan (D.J.H.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| |
Collapse
|
11
|
Pun-García A, Clemente-Moragón A, Villena-Gutierrez R, Gómez M, Sanz-Rosa D, Díaz-Guerra A, Prados B, Medina JP, Montó F, Ivorra MD, Márquez-López C, Cannavo A, Bernal JA, Koch WJ, Fuster V, de la Pompa JL, Oliver E, Ibanez B. Beta-3 adrenergic receptor overexpression reverses aortic stenosis-induced heart failure and restores balanced mitochondrial dynamics. Basic Res Cardiol 2022; 117:62. [PMID: 36445563 PMCID: PMC9708808 DOI: 10.1007/s00395-022-00966-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 10/31/2022] [Accepted: 10/31/2022] [Indexed: 11/30/2022]
Abstract
Aortic stenosis (AS) is associated with left ventricular (LV) hypertrophy and heart failure (HF). There is a lack of therapies able to prevent/revert AS-induced HF. Beta3 adrenergic receptor (β3AR) signaling is beneficial in several forms of HF. Here, we studied the potential beneficial effect of β3AR overexpression on AS-induced HF. Selective β3AR stimulation had a positive inotropic effect. Transgenic mice constitutively overexpressing human β3AR in the heart (c-hβ3tg) were protected from the development of HF in response to induced AS, and against cardiomyocyte mitochondrial dysfunction (fragmented mitochondria with remodeled cristae and metabolic reprogramming featuring altered substrate use). Similar beneficial effects were observed in wild-type mice inoculated with adeno-associated virus (AAV9) inducing cardiac-specific overexpression of human β3AR before AS induction. Moreover, AAV9-hβ3AR injection into wild-type mice at late disease stages, when cardiac hypertrophy and metabolic reprogramming are already advanced, reversed the HF phenotype and restored balanced mitochondrial dynamics, demonstrating the potential of gene-therapy-mediated β3AR overexpression in AS. Mice with cardiac specific ablation of Yme1l (cYKO), characterized by fragmented mitochondria, showed an increased mortality upon AS challenge. AAV9-hβ3AR injection in these mice before AS induction reverted the fragmented mitochondria phenotype and rescued them from death. In conclusion, our results step out that β3AR overexpression might have translational potential as a therapeutic strategy in AS-induced HF.
Collapse
Affiliation(s)
- Andrés Pun-García
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), IIS-Fundación Jiménez Díaz University Hospital, Melchor Fernandez Almagro, 3, 28029, Madrid, Spain
- CIBERCV, Madrid, Spain
| | - Agustín Clemente-Moragón
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), IIS-Fundación Jiménez Díaz University Hospital, Melchor Fernandez Almagro, 3, 28029, Madrid, Spain
- CIBERCV, Madrid, Spain
| | - Rocio Villena-Gutierrez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), IIS-Fundación Jiménez Díaz University Hospital, Melchor Fernandez Almagro, 3, 28029, Madrid, Spain
| | - Monica Gómez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), IIS-Fundación Jiménez Díaz University Hospital, Melchor Fernandez Almagro, 3, 28029, Madrid, Spain
| | - David Sanz-Rosa
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), IIS-Fundación Jiménez Díaz University Hospital, Melchor Fernandez Almagro, 3, 28029, Madrid, Spain
- CIBERCV, Madrid, Spain
- Universidad Europea de Madrid, Madrid, Spain
| | - Anabel Díaz-Guerra
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), IIS-Fundación Jiménez Díaz University Hospital, Melchor Fernandez Almagro, 3, 28029, Madrid, Spain
| | - Belén Prados
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), IIS-Fundación Jiménez Díaz University Hospital, Melchor Fernandez Almagro, 3, 28029, Madrid, Spain
- CIBERCV, Madrid, Spain
- Intercellular Signalling in Cardiovascular Development and Disease Laboratory, CNIC, Madrid, Spain
| | - Juan Pablo Medina
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), IIS-Fundación Jiménez Díaz University Hospital, Melchor Fernandez Almagro, 3, 28029, Madrid, Spain
- Cardiology Department, IIS-Fundación Jiménez Díaz University Hospital, Madrid, Spain
| | - Fermí Montó
- Departamento de Farmacología, Facultad de Farmacia, ERI BIOTECMED, Universitat de València, Burjassot, Spain
| | - Maria Dolores Ivorra
- Departamento de Farmacología, Facultad de Farmacia, ERI BIOTECMED, Universitat de València, Burjassot, Spain
| | - Cristina Márquez-López
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), IIS-Fundación Jiménez Díaz University Hospital, Melchor Fernandez Almagro, 3, 28029, Madrid, Spain
| | - Alessandro Cannavo
- Center for Translational Medicine and Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
- Department of Translational Medical Sciences, Federico II University of Naples, Naples, Italy
| | - Juan A Bernal
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), IIS-Fundación Jiménez Díaz University Hospital, Melchor Fernandez Almagro, 3, 28029, Madrid, Spain
- CIBERCV, Madrid, Spain
| | - Walter J Koch
- Center for Translational Medicine and Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Valentin Fuster
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), IIS-Fundación Jiménez Díaz University Hospital, Melchor Fernandez Almagro, 3, 28029, Madrid, Spain
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - José Luis de la Pompa
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), IIS-Fundación Jiménez Díaz University Hospital, Melchor Fernandez Almagro, 3, 28029, Madrid, Spain
- CIBERCV, Madrid, Spain
- Intercellular Signalling in Cardiovascular Development and Disease Laboratory, CNIC, Madrid, Spain
| | - Eduardo Oliver
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), IIS-Fundación Jiménez Díaz University Hospital, Melchor Fernandez Almagro, 3, 28029, Madrid, Spain
- CIBERCV, Madrid, Spain
- Centro de Investigaciones Biológicas Margarita Salas (CIB), CSIC, Madrid, Spain
| | - Borja Ibanez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), IIS-Fundación Jiménez Díaz University Hospital, Melchor Fernandez Almagro, 3, 28029, Madrid, Spain.
- CIBERCV, Madrid, Spain.
- Cardiology Department, IIS-Fundación Jiménez Díaz University Hospital, Madrid, Spain.
| |
Collapse
|
12
|
Sex/Gender- and Age-Related Differences in β-Adrenergic Receptor Signaling in Cardiovascular Diseases. J Clin Med 2022; 11:jcm11154280. [PMID: 35893368 PMCID: PMC9330499 DOI: 10.3390/jcm11154280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/15/2022] [Accepted: 07/22/2022] [Indexed: 11/17/2022] Open
Abstract
Sex differences in cardiovascular disease (CVD) are often recognized from experimental and clinical studies examining the prevalence, manifestations, and response to therapies. Compared to age-matched men, women tend to have reduced CV risk and a better prognosis in the premenopausal period. However, with menopause, this risk increases exponentially, surpassing that of men. Although several mechanisms have been provided, including sex hormones, an emerging role in these sex differences has been suggested for β-adrenergic receptor (β-AR) signaling. Importantly, β-ARs are the most important G protein-coupled receptors (GPCRs), expressed in almost all the cell types of the CV system, and involved in physiological and pathophysiological processes. Consistent with their role, for decades, βARs have been considered the first targets for rational drug design to fight CVDs. Of note, β-ARs are seemingly associated with different CV outcomes in females compared with males. In addition, even if there is a critical inverse correlation between β-AR responsiveness and aging, it has been reported that gender is crucially involved in this age-related effect. This review will discuss how β-ARs impact the CV risk and response to anti-CVD therapies, also concerning sex and age. Further, we will explore how estrogens impact β-AR signaling in women.
Collapse
|
13
|
Jin Y, Liu G, Yu Q, Ma S, Chang M. Serum Extracellular Vesicles Attenuate Cardiomyocyte Injury Induced by Hypoxic/Reoxygenation by Regulating miR-1229-5p. TOHOKU J EXP MED 2022; 258:35-41. [PMID: 35705319 DOI: 10.1620/tjem.2022.j048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Affiliation(s)
- Yinhao Jin
- Department of Cardiology, The First Affiliated Hospital of Qiqihar Medical College
| | - Guiqing Liu
- Department of Cardiology, The First Affiliated Hospital of Qiqihar Medical College
| | - Qianqian Yu
- Department of Cardiology, The First Affiliated Hospital of Qiqihar Medical College
| | - Shumin Ma
- Department of Cardiology, The First Affiliated Hospital of Qiqihar Medical College
| | - Ming Chang
- Department of Cardiology, The First Affiliated Hospital of Qiqihar Medical College
| |
Collapse
|
14
|
Gul R, Alsalman N, Alfadda AA. Inhibition of eNOS Partially Blunts the Beneficial Effects of Nebivolol on Angiotensin II-Induced Signaling in H9c2 Cardiomyoblasts. Curr Issues Mol Biol 2022; 44:2139-2152. [PMID: 35678673 PMCID: PMC9164031 DOI: 10.3390/cimb44050144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/21/2022] [Accepted: 04/28/2022] [Indexed: 11/26/2022] Open
Abstract
We have recently illustrated that nebivolol can inhibit angiotensin II (Ang II)-mediated signaling in cardiomyoblasts; however, to date, the detailed mechanism for the beneficial effects of nebivolol has not been studied. Here, we investigated whether the inhibition of NO bioavailability by blocking eNOS (endothelial nitric oxide synthase) using L-NG-nitroarginine methyl ester (L-NAME) would attenuate nebivolol-mediated favorable effects on Ang II-evoked signaling in H9c2 cardiomyoblasts. Our data reveal that the nebivolol-mediated antagonistic effects on Ang II-induced oxidative stress were retreated by concurrent pretreatment with L-NAME and nebivolol. Similarly, the expressions of pro-inflammatory markers TNF-α and iNOS stimulated by Ang II were not decreased with the combination of nebivolol plus L-NAME. In contrast, the nebivolol-induced reduction in the Ang II-triggered mTORC1 pathway and the mRNA levels of hypertrophic markers ANP, BNP, and β-MHC were not reversed with the addition of L-NAME to nebivolol. In compliance with these data, the inhibition of eNOS by L-N⁵-(1-Iminoethyl) ornithine (LNIO) and its upstream regulator AMP-activated kinase (AMPK) with compound C in the presence of nebivolol showed effects similar to those of the L-NAME plus nebivolol combination on Ang II-mediated signaling. Pretreatment with either compound C plus nebivolol or LNIO plus nebivolol showed similar effects to those of the L-NAME plus nebivolol combination on Ang II-mediated signaling. In conclusion, our data indicate that the rise in NO bioavailability caused by nebivolol via the stimulation of AMPK/eNOS signaling is key for its anti-inflammatory and antioxidant properties but not for its antihypertrophic response upon Ang II stimulation.
Collapse
Affiliation(s)
- Rukhsana Gul
- Obesity Research Center, College of Medicine, King Saud University, P.O. Box 2925, Riyadh 11461, Saudi Arabia; (N.A.); (A.A.A.)
| | - Nouf Alsalman
- Obesity Research Center, College of Medicine, King Saud University, P.O. Box 2925, Riyadh 11461, Saudi Arabia; (N.A.); (A.A.A.)
| | - Assim A. Alfadda
- Obesity Research Center, College of Medicine, King Saud University, P.O. Box 2925, Riyadh 11461, Saudi Arabia; (N.A.); (A.A.A.)
- Department of Medicine, College of Medicine, King Saud University, P.O. Box 2925, Riyadh 11461, Saudi Arabia
- Strategic Center for Diabetes Research, College of Medicine, King Saud University, P.O. Box 2925, Riyadh 11461, Saudi Arabia
| |
Collapse
|
15
|
Regulation of bFGF-induced effects on rat aortic smooth muscle cells by β3-adrenergic receptors. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2022; 3:100094. [PMID: 35300074 PMCID: PMC8920869 DOI: 10.1016/j.crphar.2022.100094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/21/2022] [Accepted: 02/25/2022] [Indexed: 01/08/2023] Open
Abstract
Background Basic fibroblast growth factor (bFGF)-mediated vascular smooth muscle cell (VSMC) proliferation and migration play an important role in vascular injury-induced neointima formation and subsequent vascular restenosis, a major event that hinders the long-term success of angioplasty. The function of β3-adrenergic receptors (β3-ARs) in vascular injury-induced neointima formation has not yet been defined. Objectives Our current study explored the possible role of β3-ARs in vascular injury-induced neointima formation by testing its effects on bFGF-induced VSMC migration and proliferation. Methods β3-AR expression in rat carotid arteries was examined at 14 days following a balloon catheter-induced injury. The effects of β3-AR activation on bFGF-induced rat aortic smooth muscle cell proliferation, migration, and signaling transduction (including extracellular-signal-regulated kinase/mitogen activated protein kinase, ERK/MAPK and Protein kinase B, AKT) were tested. Results We found that vascular injury induced upregulation of β3-ARs in neointima. Pretreatment of VSMCs with a selective β3-AR agonist, CL316,243 significantly potentiated bFGF-induced cell migration and proliferation, and ERK and AKT phosphorylation. Our results also revealed that suppressing phosphorylation of ERK and AKT blocked bFGF-induced cell migration and that inhibiting AKT phosphorylation reduced bFGF-mediated cell proliferation. Conclusion Our results suggest that activation of β3-ARs potentiates bFGF-mediated effects on VSMCs by enhancing bFGF-mediated ERK and AKT phosphorylation and that β3-ARs may play a role in vascular injury-induced neointima formation. β3-adrenergic receptor (β3-AR) expression was upregulated in the newly formed intima following rat carotid artery injury. Activation of β3-ARs potentiated bFGF-induced VSMC migration and proliferation and phosphorylation of ERK and/or AKT. Inhibition of ERK or AKT pathways decreased bFGF-induced cell migration. Inhibition of AKT pathway decreased bFGF-induced cell proliferation.
Collapse
|
16
|
Kawaguchi S, Okada M. Cardiac Metabolism in Sepsis. Metabolites 2021; 11:metabo11120846. [PMID: 34940604 PMCID: PMC8707959 DOI: 10.3390/metabo11120846] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/02/2021] [Accepted: 12/02/2021] [Indexed: 12/11/2022] Open
Abstract
The mechanism of sepsis-induced cardiac dysfunction is believed to be different from that of myocardial ischemia. In sepsis, chemical mediators, such as endotoxins, cytokines, and nitric oxide, cause metabolic abnormalities, mitochondrial dysfunction, and downregulation of β-adrenergic receptors. These factors inhibit the production of ATP, essential for myocardial energy metabolism, resulting in cardiac dysfunction. This review focuses on the metabolic changes in sepsis, particularly in the heart. In addition to managing inflammation, interventions focusing on metabolism may be a new therapeutic strategy for cardiac dysfunction due to sepsis.
Collapse
Affiliation(s)
- Satoshi Kawaguchi
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Bloomington, IN 46202, USA;
| | - Motoi Okada
- Department of Emergency Medicine, Asahikawa Medical University, Asahikawa 078-8510, Japan
- Correspondence: ; Tel.: +81-166-68-2852
| |
Collapse
|
17
|
Gul R, Alsalman N, Bazighifan A, Alfadda AA. Comparative beneficial effects of nebivolol and nebivolol/valsartan combination against mitochondrial dysfunction in angiotensin II-induced pathology in H9c2 cardiomyoblasts. J Pharm Pharmacol 2021; 73:1520-1529. [PMID: 34453839 DOI: 10.1093/jpp/rgab124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 08/03/2021] [Indexed: 11/14/2022]
Abstract
OBJECTIVES Considering the complementary nature of signalling mechanisms and the therapeutic effects of nebivolol, a β1-adrenoreceptor antagonist, and valsartan, an angiotensin receptor blocker (ARB), here we aimed to investigate whether nebivolol/valsartan combination would complement the cardioprotective effects of nebivolol on angiotensin II (ANG II)-induced pathology in H9c2 cardiomyoblasts. METHODS H9c2 cardiomyoblasts were used to investigate the protective effects of nebivolol and nebivolol and valsartan combination against ANG II-induced pathology. Reactive oxygen species (ROS) generation was determined by 2',7'-dichlorofluorescein diacetate (DCFDA) and MitoSOX Red staining. Real-time PCR and immunoblotting were employed to quantify the changes in mRNA and protein expression levels, respectively. KEY FINDINGS Our data revealed that pretreatment with nebivolol and nebivolol/valsartan combination significantly reduced ANG II-induced oxidative stress and mTORC1 signalling. Concurrently, ANG II-induced activation of inflammatory cytokines and fetal gene expressions were significantly suppressed by nebivolol and nebivolol/valsartan combination. Pretreatment with nebivolol and nebivolol/valsartan combination alleviated ANG II-induced impairment of mitochondrial biogenesis by restoring the gene expression levels of PGC-1α, TFAM, NRF-1 and SIRT3. Our data further show that nebivolol and nebivolol/valsartan combination mediated up-regulation in mitochondrial biogenesis is accompanied by decrease in ANG II-stimulated mitochondrial ROS generation as well as increase in expression of mitochondrial fusion genes MFN2 and OPA1, indicative of improved mitochondrial dynamics. SUMMARY These findings suggest that both nebivolol and nebivolol/valsartan combination exert protective effects on ANG II-induced mitochondrial dysfunction by alleviating its biogenesis and dynamics. Moreover, addition of valsartan to nebivolol do not produce any additive effects compared with nebivolol alone on ANG II-induced cardiac pathology.
Collapse
Affiliation(s)
- Rukhsana Gul
- Obesity Research Center, College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Nouf Alsalman
- Obesity Research Center, College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Arwa Bazighifan
- Obesity Research Center, College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Assim A Alfadda
- Obesity Research Center, College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia.,Department of Medicine, College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia.,Strategic Center for Diabetes Research, College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
18
|
Abstract
Despite the progress of cardiovascular medicine, ischemia-reperfusion injury can contribute to increased mortality and prolonged hospitalization after myocardial infarction. Ischemia-reperfusion injury pathophysiology encompasses many cells including cardiomyocytes, fibroblasts, mesenchymal stromal cells, vascular endothelial and smooth muscle cells, platelets, polymorphonuclear cells, macrophages, and T lymphocytes. However, specific mechanisms for all contributing cells and molecular pathways are still under investigation. What is definitely known is that endothelial dysfunction, immunity activation and inflammatory response are crucial events during ischemia-reperfusion injury while toll-like receptors, inflammasomes, reactive oxygen species, intracellular calcium overload and mitochondrial permeability transition pore opening consist of key molecular mediators. Indicatively, cardiac fibroblasts through inflammasome activation mediate the initial inflammatory response. Cardiac mesenchymal stromal cells can respond to myocardial injury by pro-inflammatory activation. Endothelial cell activation contributes to the impaired vasomotion, inflammation and thrombotic events and together with platelet activation leads to microcirculation dysfunction and polymorphonuclear cells recruitment promoting inflammation. Polymorphonuclear cells and monocytes/macrophages subsets are critically involved in the inflammation process by producing toxic proteolytic enzymes and reactive oxygen species. T cells subsets are also involved in several stages of ischemia-reperfusion injury. In this review, we summarize the specific contribution of each of the above cells and the related molecular pathways in the pathophysiology of ischemia-reperfusion injury.
Collapse
Affiliation(s)
| | | | - Dimitrios Stakos
- Cardiology Department, Democritus University of Thrace, Alexandroupolis, Greece
| |
Collapse
|
19
|
Wang Q, Wang Y, West TM, Liu Y, Reddy GR, Barbagallo F, Xu B, Shi Q, Deng B, Wei W, Xiang YK. Carvedilol induces biased β1 adrenergic receptor-nitric oxide synthase 3-cyclic guanylyl monophosphate signalling to promote cardiac contractility. Cardiovasc Res 2021; 117:2237-2251. [PMID: 32956449 PMCID: PMC8502477 DOI: 10.1093/cvr/cvaa266] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/11/2020] [Accepted: 09/08/2020] [Indexed: 12/19/2022] Open
Abstract
AIMS β-blockers are widely used in therapy for heart failure and hypertension. β-blockers are also known to evoke additional diversified pharmacological and physiological effects in patients. We aim to characterize the underlying molecular signalling and effects on cardiac inotropy induced by β-blockers in animal hearts. METHODS AND RESULTS Wild-type mice fed high-fat diet (HFD) were treated with carvedilol, metoprolol, or vehicle and echocardiogram analysis was performed. Heart tissues were used for biochemical and histological analyses. Cardiomyocytes were isolated from normal and HFD mice and rats for analysis of adrenergic signalling, calcium handling, contraction, and western blot. Biosensors were used to measure β-blocker-induced cyclic guanosine monophosphate (cGMP) signal and protein kinase A activity in myocytes. Acute stimulation of myocytes with carvedilol promotes β1 adrenergic receptor (β1AR)- and protein kinase G (PKG)-dependent inotropic cardiac contractility with minimal increases in calcium amplitude. Carvedilol acts as a biased ligand to promote β1AR coupling to a Gi-PI3K-Akt-nitric oxide synthase 3 (NOS3) cascade and induces robust β1AR-cGMP-PKG signal. Deletion of NOS3 selectively blocks carvedilol, but not isoproterenol-induced β1AR-dependent cGMP signal and inotropic contractility. Moreover, therapy with carvedilol restores inotropic contractility and sensitizes cardiac adrenergic reserves in diabetic mice with minimal impact in calcium signal, as well as reduced cell apoptosis and hypertrophy in diabetic hearts. CONCLUSION These observations present a novel β1AR-NOS3 signalling pathway to promote cardiac inotropy in the heart, indicating that this signalling paradigm may be targeted in therapy of heart diseases with reduced ejection fraction.
Collapse
MESH Headings
- Adrenergic alpha-1 Receptor Antagonists/pharmacology
- Animals
- Cardiotonic Agents/pharmacology
- Carvedilol/pharmacology
- Cells, Cultured
- Cyclic GMP/metabolism
- Cyclic GMP-Dependent Protein Kinases/metabolism
- Disease Models, Animal
- Heart Diseases/drug therapy
- Heart Diseases/enzymology
- Heart Diseases/physiopathology
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Myocardial Contraction/drug effects
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/enzymology
- Nitric Oxide Synthase Type III/genetics
- Nitric Oxide Synthase Type III/metabolism
- Rats
- Receptors, Adrenergic, beta-1/drug effects
- Receptors, Adrenergic, beta-1/metabolism
- Second Messenger Systems
- Mice
Collapse
Affiliation(s)
- Qingtong Wang
- The Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
- Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei 230032, China
- Department of Pharmacology, University of California at Davis, Davis, 95616 CA, USA
| | - Ying Wang
- Department of Pharmacology, University of California at Davis, Davis, 95616 CA, USA
| | - Toni M West
- Department of Pharmacology, University of California at Davis, Davis, 95616 CA, USA
| | - Yongming Liu
- Department of Pharmacology, University of California at Davis, Davis, 95616 CA, USA
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200000, China
| | - Gopireddy R Reddy
- Department of Pharmacology, University of California at Davis, Davis, 95616 CA, USA
| | - Federica Barbagallo
- Department of Pharmacology, University of California at Davis, Davis, 95616 CA, USA
| | - Bing Xu
- Department of Pharmacology, University of California at Davis, Davis, 95616 CA, USA
- VA Northern California Health Care System, Mather, CA 95655, USA
| | - Qian Shi
- Department of Pharmacology, University of California at Davis, Davis, 95616 CA, USA
| | - Bingqing Deng
- Department of Pharmacology, University of California at Davis, Davis, 95616 CA, USA
- Sun-Yet Sen Memorial Hospital, Sun-Yet Sen University, Guangzhou 510120, China
| | - Wei Wei
- The Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
- Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei 230032, China
| | - Yang K Xiang
- Department of Pharmacology, University of California at Davis, Davis, 95616 CA, USA
- VA Northern California Health Care System, Mather, CA 95655, USA
| |
Collapse
|
20
|
Li K, Zhou P, Li S, Zheng S, Wang D. MicroRNA-29b reduces myocardial ischemia-reperfusion injury in rats via down-regulating PTEN and activating the Akt/eNOS signaling pathway. J Thromb Thrombolysis 2021; 53:123-135. [PMID: 34370169 DOI: 10.1007/s11239-021-02535-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/16/2021] [Indexed: 01/20/2023]
Abstract
Reperfusion may cause injuries to the myocardium in ischemia situation, which is called ischemia/reperfusion (I/R) injury. The study aimed to explore the roles of microRNA-29b (miR-29b) in myocardial I/R injury. Myocardial I/R injury rat model was established. Differentially expressed miRNAs between the model rats and the sham-operated rats were analyzed. miR-29b expression in myocardial tissues was measured. Gain-of-function of miR-29b was performed, and then the morphological changes, infarct size, myocardial function, oxidative stress, and the cell apoptosis in myocardial tissues were detected. The target relation between miR-29b and PTEN was detected through bio-information prediction and dual luciferase reporter gene assay. Activation of Akt/eNOS signaling was detected. H9C2 cells were subjected to hypoxia/reoxygenation treatment to perform in vitro experiments. I/R rats presented severe inflammatory infiltration, increased infarct size and cell apoptosis, increased oxidative stress and decreased myocardial function. miR-29b was downregulated in I/R rats, and up-regulation of miR-29b reversed the above changes. miR-29b directly bound to PTEN, and overexpression of miR-29b reduced PTEN expression level and increased the protein levels of p-Akt/Akt and p-eNOS/eNOS. In vivo results were confirmed in in vitro experiments. This study provided evidence that miR-29b could alleviate the myocardial I/R injury in vivo and in vitro by inhibiting PTEN expression and activating the Akt/eNOS signaling pathway.
Collapse
Affiliation(s)
- Kunsheng Li
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, 210008, Jiangsu Province, People's Republic of China
| | - Pengyu Zhou
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 515000, Guangdong Province, People's Republic of China
| | - Shiliang Li
- Department of Cardiac Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, People's Republic of China
| | - Shaoyi Zheng
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 515000, Guangdong Province, People's Republic of China.
| | - Dongjin Wang
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, 210008, Jiangsu Province, People's Republic of China.
| |
Collapse
|
21
|
Perez DM. Targeting Adrenergic Receptors in Metabolic Therapies for Heart Failure. Int J Mol Sci 2021; 22:5783. [PMID: 34071350 PMCID: PMC8198887 DOI: 10.3390/ijms22115783] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/20/2021] [Accepted: 05/22/2021] [Indexed: 12/14/2022] Open
Abstract
The heart has a reduced capacity to generate sufficient energy when failing, resulting in an energy-starved condition with diminished functions. Studies have identified numerous changes in metabolic pathways in the failing heart that result in reduced oxidation of both glucose and fatty acid substrates, defects in mitochondrial functions and oxidative phosphorylation, and inefficient substrate utilization for the ATP that is produced. Recent early-phase clinical studies indicate that inhibitors of fatty acid oxidation and antioxidants that target the mitochondria may improve heart function during failure by increasing compensatory glucose oxidation. Adrenergic receptors (α1 and β) are a key sympathetic nervous system regulator that controls cardiac function. β-AR blockers are an established treatment for heart failure and α1A-AR agonists have potential therapeutic benefit. Besides regulating inotropy and chronotropy, α1- and β-adrenergic receptors also regulate metabolic functions in the heart that underlie many cardiac benefits. This review will highlight recent studies that describe how adrenergic receptor-mediated metabolic pathways may be able to restore cardiac energetics to non-failing levels that may offer promising therapeutic strategies.
Collapse
Affiliation(s)
- Dianne M Perez
- The Lerner Research Institute, The Cleveland Clinic Foundation, 9500 Euclid Ave, Cleveland, OH 44195, USA
| |
Collapse
|
22
|
Michel LYM, Farah C, Balligand JL. The Beta3 Adrenergic Receptor in Healthy and Pathological Cardiovascular Tissues. Cells 2020; 9:cells9122584. [PMID: 33276630 PMCID: PMC7761574 DOI: 10.3390/cells9122584] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 12/15/2022] Open
Abstract
The third isotype of beta-adrenoreceptors (β3-AR) has recently come (back) into focus after the observation of its expression in white and beige human adipocytes and its implication in metabolic regulation. This coincides with the recent development and marketing of agonists at the human receptor with superior specificity. Twenty years ago, however, we and others described the expression of β3-AR in human myocardium and its regulation of contractility and cardiac remodeling. Subsequent work from many laboratories has since expanded the characterization of β3-AR involvement in many aspects of cardiovascular physio(patho)logy, justifying the present effort to update current paradigms under the light of the most recent evidence.
Collapse
Affiliation(s)
- Lauriane Y. M. Michel
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Experimentale et Clinique (IREC), Université Catholique de Louvain, B1.57.04, 57 Avenue Hippocrate, 1200 Brussels, Belgium; (L.Y.M.M.); (C.F.)
| | - Charlotte Farah
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Experimentale et Clinique (IREC), Université Catholique de Louvain, B1.57.04, 57 Avenue Hippocrate, 1200 Brussels, Belgium; (L.Y.M.M.); (C.F.)
| | - Jean-Luc Balligand
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Experimentale et Clinique (IREC), Université Catholique de Louvain, B1.57.04, 57 Avenue Hippocrate, 1200 Brussels, Belgium; (L.Y.M.M.); (C.F.)
- Department of Medicine, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, 10 Avenue Hippocrate, 1200 Brussels, Belgium
- Correspondence: ; Tel.: +32-27645262
| |
Collapse
|
23
|
Erdogan BR, Michel MC, Arioglu-Inan E. Expression and Signaling of β-Adrenoceptor Subtypes in the Diabetic Heart. Cells 2020; 9:cells9122548. [PMID: 33256212 PMCID: PMC7759850 DOI: 10.3390/cells9122548] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 12/18/2022] Open
Abstract
Diabetes is a chronic, endocrine disorder that effects millions of people worldwide. Cardiovascular complications are the major cause of diabetes-related morbidity and mortality. Cardiac β1- and β2-adrenoceptor (AR) stimulation mediates positive inotropy and chronotropy, whereas β3-AR mediates negative inotropic effect. Changes in β-AR responsiveness are thought to be an important factor that contributes to the diabetic cardiac dysfunction. Diabetes related changes in β-AR expression, signaling, and β-AR mediated cardiac function have been studied by several investigators for many years. In the present review, we have screened PubMed database to obtain relevant articles on this topic. Our search has ended up with wide range of different findings about the effect of diabetes on β-AR mediated changes both in molecular and functional level. Considering these inconsistent findings, the effect of diabetes on cardiac β-AR still remains to be clarified.
Collapse
Affiliation(s)
- Betul R. Erdogan
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, 06560 Ankara, Turkey;
- Department of Pharmacology, Faculty of Pharmacy, Izmir Katip Celebi University, 35620 Izmir, Turkey
| | - Martin C. Michel
- Department of Pharmacology, Johannes Gutenberg University, 55131 Mainz, Germany;
| | - Ebru Arioglu-Inan
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, 06560 Ankara, Turkey;
- Correspondence:
| |
Collapse
|
24
|
Neurohormonal Modulation as a Therapeutic Target in Pulmonary Hypertension. Cells 2020; 9:cells9112521. [PMID: 33266371 PMCID: PMC7700466 DOI: 10.3390/cells9112521] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/14/2022] Open
Abstract
The autonomic nervous system (ANS) and renin-angiotensin-aldosterone system (RAAS) are involved in many cardiovascular disorders, including pulmonary hypertension (PH). The current review focuses on the role of the ANS and RAAS activation in PH and updated evidence of potential therapies targeting both systems in this condition, particularly in Groups 1 and 2. State of the art knowledge in preclinical and clinical use of pharmacologic drugs (beta-blockers, beta-three adrenoceptor agonists, or renin-angiotensin-aldosterone signaling drugs) and invasive procedures, such as pulmonary artery denervation, is provided.
Collapse
|
25
|
Kamar SS, Latif NSA, Elrefai MFM, Amin SN. Gastroprotective effects of nebivolol and simvastatin against cold restraint stress-induced gastric ulcer in rats. Anat Cell Biol 2020; 53:301-312. [PMID: 32993280 PMCID: PMC7527116 DOI: 10.5115/acb.20.055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/06/2020] [Accepted: 06/24/2020] [Indexed: 01/08/2023] Open
Abstract
Gastric ulcer is one of the most serious diseases. Nebivolol (Neb), a β1-blocker, exhibits vasodilator and anti-oxidative properties, simvastatin (Sim) antihyperlipidemic drug, exhibits anti-oxidative, anti-inflammatory properties and promote endogenous nitric oxide (NO) production. The aim of this study was to evaluate the gastroprotective effects of Neb and Sim against cold restraint stress (CRS)-induced gastric ulcer in rats. Rats were restrained, and maintained at 4°C for 3 hours. Animals were divided into six groups; control group, CRS group, and four treatment groups received ranitidine (Ran), Neb, Sim and both Neb and Sim. Treatments were given orally on a daily basis for 7 days prior to CRS. The gastroprotective effects of Neb and Sim were assessed biochemically by measuring variations in prostaglandins E2, NO, reduced glutathione and malondialdehyde, and functionally by estimating force of contractions of isolated rat fundus in the studied groups in response to acetylecholine stimulation and morphologically using hematoxylin and eosin staining, periodic acid Schiff's reaction and immunohistochemistry for cyclooxygenase 2 in gastric mucosa. CRS caused significant ulcerogenic effect. Alternatively, pretreatment with Ran, Neb, and Sim significantly corrected biochemical findings, pharmacological and histological studies.
Collapse
Affiliation(s)
- Samaa Samir Kamar
- Department of Histology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | - Mohamed Fathi Mohamed Elrefai
- Department of Basic Medical Sciences, Faculty of Medicine, Hashemite University, Zarqaa, Jordan, Egypt.,Department of Anatomy, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Shaimaa Nasr Amin
- Department of Basic Medical Sciences, Faculty of Medicine, Hashemite University, Zarqaa, Jordan, Egypt.,Department of Medical Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
26
|
Bhanu SP, Pentyala S, Sankar DK. Incidence of hypoplastic posterior communicating artery and fetal posterior cerebral artery in Andhra population of India: a retrospective 3-Tesla magnetic resonance angiographic study. Anat Cell Biol 2020; 53:272-278. [PMID: 32647075 PMCID: PMC7527118 DOI: 10.5115/acb.20.066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/16/2020] [Accepted: 05/21/2020] [Indexed: 11/27/2022] Open
Abstract
The posterior communicating arteries (PCoA) are important component of collateral circulation between the anterior and posterior part of circle of Willis (CW). The hypoplasia or aplasia of PCoA will reflect on prognosis of the neurological diseases. Precise studies of the incidence of hypoplastic PCoA in Andhra Pradesh population of India are hitherto unreported, since the present study was undertaken. Two hundred and thirty one magnetic resonance angiography (MRA) images were analyzed to identify the hypoplasia of PCoA and presence of fetal type of posterior cerebral artery (f-PCA) in patients with different neurological symptoms. All the patients underwent 3.0T MRI exposure. The results were statistically analysed. A total of 63 (27.3%) PCoA hypoplasia and 13 cases with f-PCA (5.6%) cases were identified. The hypoplastic PCoA was noted more in males than females (P<0.05) and right side hypoplasia was common than the left (P<0.04); bilateral hypoplasia of PCoA was seen in 37 cases out of 63 and is significant. The hypoplastic cases of the present study also were associated with variations of anterior cerebral arteries and one case was having vertebral artery hypoplasia. Incidence of PCoA as unilateral or bilateral with other associated anomalies of CW is more prone to develop stroke, migraine and cognitive dysfunction. Knowledge of these variations in the PCoA plays a pivotal role in diagnoses of neurological disorders and in neurovascular surgeries and angiographic point of view.
Collapse
Affiliation(s)
- Sharmila P Bhanu
- Department of of Anatomy, Narayana Medical College, Nellore, Andhra Pradesh, India
| | - Suneetha Pentyala
- Department of of Radiology, Narayana Medical College & General Hospital, Nellore, Andhra Pradesh, India
| | - Devi K Sankar
- Department of of Anatomy, Narayana Medical College, Nellore, Andhra Pradesh, India
| |
Collapse
|
27
|
Tibenska V, Benesova A, Vebr P, Liptakova A, Hejnová L, Elsnicová B, Drahota Z, Hornikova D, Galatík F, Kolar D, Vybiral S, Alánová P, Novotný J, Kolar F, Novakova O, Zurmanova JM. Gradual cold acclimation induces cardioprotection without affecting β-adrenergic receptor-mediated adenylyl cyclase signaling. J Appl Physiol (1985) 2020; 128:1023-1032. [DOI: 10.1152/japplphysiol.00511.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Novel strategies are needed that can stimulate endogenous signaling pathways to protect the heart from myocardial infarction. The present study tested the hypothesis that appropriate regimen of cold acclimation (CA) may provide a promising approach for improving myocardial resistance to ischemia/reperfusion (I/R) injury without negative side effects. We evaluated myocardial I/R injury, mitochondrial swelling, and β-adrenergic receptor (β-AR)-adenylyl cyclase-mediated signaling. Male Wistar rats were exposed to CA (8°C, 8 h/day for a week, followed by 4 wk at 8°C for 24 h/day), while the recovery group (CAR) was kept at 24°C for an additional 2 wk. The myocardial infarction induced by coronary occlusion for 20 min followed by 3-h reperfusion was reduced from 56% in controls to 30% and 23% after CA and CAR, respectively. In line, the rate of mitochondrial swelling at 200 μM Ca2+ was decreased in both groups. Acute administration of metoprolol decreased infarction in control group and did not affect the CA-elicited cardiprotection. Accordingly, neither β1-AR-Gsα-adenylyl cyclase signaling, stimulated with specific ligands, nor p-PKA/PKA ratios were affected after CA or CAR. Importantly, Western blot and immunofluorescence analyses revealed β2- and β3-AR protein enrichment in membranes in both experimental groups. We conclude that gradual cold acclimation results in a persisting increase of myocardial resistance to I/R injury without hypertension and hypertrophy. The cardioprotective phenotype is associated with unaltered adenylyl cyclase signaling and increased mitochondrial resistance to Ca2+-overload. The potential role of upregulated β2/β3-AR pathways remains to be elucidated. NEW & NOTEWORTHY We present a new model of mild gradual cold acclimation increasing tolerance to myocardial ischemia/reperfusion injury without hypertension and hypertrophy. Cardioprotective phenotype is accompanied by unaltered adenylyl cyclase signaling and increased mitochondrial resistance to Ca2+-overload. The potential role of upregulated β2/β3-adrenoreceptor activation is considered. These findings may stimulate the development of novel preventive and therapeutic strategies against myocardial ischemia/reperfusion injury.
Collapse
Affiliation(s)
- V. Tibenska
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - A. Benesova
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - P. Vebr
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - A. Liptakova
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - L. Hejnová
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - B. Elsnicová
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Z. Drahota
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - D. Hornikova
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - F. Galatík
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - D. Kolar
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - S. Vybiral
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - P. Alánová
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - J. Novotný
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - F. Kolar
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - O. Novakova
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - J. M. Zurmanova
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
28
|
Garcia-Lunar I, Blanco I, Fernández-Friera L, Prat-Gonzàlez S, Jordà P, Sánchez J, Pereda D, Pujadas S, Rivas M, Solé-Gonzalez E, Vázquez J, Blázquez Z, García-Picart J, Caravaca P, Escalera N, Garcia-Pavia P, Delgado J, Segovia-Cubero J, Fuster V, Roig E, Barberá JA, Ibanez B, García-Álvarez A. Design of the β3-Adrenergic Agonist Treatment in Chronic Pulmonary Hypertension Secondary to Heart Failure Trial. JACC Basic Transl Sci 2020; 5:317-327. [PMID: 32368692 PMCID: PMC7188870 DOI: 10.1016/j.jacbts.2020.01.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 01/02/2020] [Accepted: 01/02/2020] [Indexed: 12/20/2022]
Abstract
CpcPH is a relatively common complication of chronic HF, is associated with poor survival, and has no specific pharmacological treatment. ß3AR stimulation has shown improvement in pulmonary hemodynamics and RV performance in a translational large animal model mimicking this condition. The SPHERE-HF trial is a Phase II randomized, double-blind clinical trial designed to evaluate the efficacy and safety of mirabegron (oral β3 AR agonist) in patients with CpcPH secondary to HF. The SPHERE-HF trial will include 80 patients treated with mirabegron or placebo for 16 weeks. The main outcome is the change in PVR. Secondary outcomes include changes in RV performance, clinical status, NT-proBNP levels, and additional pulmonary hemodynamic parameters.
Combined pre-and post-capillary hypertension (CpcPH) is a relatively common complication of heart failure (HF) associated with a poor prognosis. Currently, there is no specific therapy approved for this entity. Recently, treatment with beta-3 adrenergic receptor (β3AR) agonists was able to improve pulmonary hemodynamics and right ventricular (RV) performance in a translational, large animal model of chronic PH. The authors present the design of a phase II randomized clinical trial that tests the benefits of mirabegron (a clinically available β3AR agonist) in patients with CpcPH due to HF. The effect of β3AR treatment will be evaluated on pulmonary hemodynamics, as well as clinical, biochemical, and advanced cardiac imaging parameters. (Beta3 Agonist Treatment in Chronic Pulmonary Hypertension Secondary to Heart Failure [SPHERE-HF]; NCT02775539)
Collapse
Key Words
- CCT, cardiac computed tomography
- CMR, cardiac magnetic resonance
- CpcPH, combined pre- and post-capillary pulmonary hypertension
- ECG, electrocardiography
- HF, heart failure
- ITT, intention to treat
- IpcPH, isolated post-capillary pulmonary hypertension
- LHD, left heart disease
- LV, left ventricular
- LVEF, left ventricular ejection fraction
- NT-proBNP, N-terminal prohormone of brain natriuretic peptide
- NYHA, New York Heart Association
- PAP, pulmonary artery pressure
- PH, pulmonary hypertension
- PP, Per protocol
- PVR, pulmonary vascular resistance
- RV, right ventricle
- adrenoreceptors
- cGMP, cyclic guanosine monophosphate
- imaging
- pulmonary hypertension
- treatment
- β3AR, beta-3 adrenoreceptor
Collapse
Affiliation(s)
- Ines Garcia-Lunar
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.,Hospital Universitario Quirónsalud Madrid, UEM, Madrid, Spain
| | - Isabel Blanco
- Department of Pulmonary Medicine, Hospital Clínic-IDIBAPS, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Leticia Fernández-Friera
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.,HM Hospitales-Centro Integral de Enfermedades Cardiovasculares HM-CIEC, Madrid, Spain
| | - Susanna Prat-Gonzàlez
- Institut Clinic Cardiovascular, IDIBAPS, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Paloma Jordà
- Institut Clinic Cardiovascular, IDIBAPS, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Javier Sánchez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Philips Healthcare Iberia, Madrid, Spain
| | - Daniel Pereda
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.,Institut Clinic Cardiovascular, IDIBAPS, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Sandra Pujadas
- Cardiology Department, Hospital Santa Creu i Sant Pau, IIb-Sant Pau, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Mercedes Rivas
- Cardiology Department, Hospital Santa Creu i Sant Pau, IIb-Sant Pau, Universitat Autonoma de Barcelona, Barcelona, Spain
| | | | - Jorge Vázquez
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.,Cardiology Department, University Hospital Puerta de Hierro, University Autonoma de Madrid, Madrid, Spain
| | - Zorba Blázquez
- Cardiology Department, University Hospital 12 de Octubre, Universidad Complutense, Madrid, Spain
| | - Juan García-Picart
- Cardiology Department, Hospital Santa Creu i Sant Pau, IIb-Sant Pau, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Pedro Caravaca
- Cardiology Department, University Hospital 12 de Octubre, Universidad Complutense, Madrid, Spain
| | - Noemí Escalera
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Pablo Garcia-Pavia
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Cardiology Department, University Hospital Puerta de Hierro, University Autonoma de Madrid, Madrid, Spain.,University Francisco de Vitoria (UFV), Pozuelo de Alarcon, Spain
| | - Juan Delgado
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.,Cardiology Department, University Hospital 12 de Octubre, Universidad Complutense, Madrid, Spain
| | - Javier Segovia-Cubero
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.,Cardiology Department, University Hospital Puerta de Hierro, University Autonoma de Madrid, Madrid, Spain
| | - Valentín Fuster
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Eulalia Roig
- Cardiology Department, Hospital Santa Creu i Sant Pau, IIb-Sant Pau, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Joan Albert Barberá
- Department of Pulmonary Medicine, Hospital Clínic-IDIBAPS, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Borja Ibanez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.,IIS-Fundación Jiménez Díaz University Hospital, Madrid, Spain
| | - Ana García-Álvarez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.,Institut Clinic Cardiovascular, IDIBAPS, Hospital Clínic, University of Barcelona, Barcelona, Spain
| |
Collapse
|
29
|
cGMP signalling in cardiomyocyte microdomains. Biochem Soc Trans 2020; 47:1327-1339. [PMID: 31652306 DOI: 10.1042/bst20190225] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/20/2019] [Accepted: 09/24/2019] [Indexed: 02/07/2023]
Abstract
3',5'-Cyclic guanosine monophosphate (cGMP) is one of the major second messengers critically involved in the regulation of cardiac electrophysiology, hypertrophy, and contractility. Recent molecular and cellular studies have significantly advanced our understanding of the cGMP signalling cascade, its local microdomain-specific regulation and its role in protecting the heart from pathological stress. Here, we summarise recent findings on cardiac cGMP microdomain regulation and discuss their potential clinical significance.
Collapse
|
30
|
Salie R, Alsalhin AKH, Marais E, Lochner A. Cardioprotective Effects of Beta3-Adrenergic Receptor (β3-AR) Pre-, Per-, and Post-treatment in Ischemia-Reperfusion. Cardiovasc Drugs Ther 2020; 33:163-177. [PMID: 30729348 DOI: 10.1007/s10557-019-06861-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The β3-AR (beta3-adrenergic receptor) is resistant to short-term agonist-promoted desensitization and delivers a constant intracellular signal, making this receptor a potential target in acute myocardial infarction (AMI). AIM To investigate whether selective modulation of β3-AR prior to or during ischemia and/or reperfusion may be cardioprotective. METHODS Isolated perfused rat hearts were exposed to 35-min regional ischemia (RI) and 60-min reperfusion. The β3-AR agonist (BRL37344, 1 μM) or antagonist (SR59230A, 0.1 μM) was applied: (i) before RI (PreT) or (ii) last 10 min of RI (PerT) or (iii) onset of reperfusion (PostT) or (iv) during both PerT+PostT. Nitric oxide (NO) involvement was assessed, using the NOS inhibitor, L-NAME (50 μM). Endpoints were functional recovery, infarct size (IS), cGMP levels, and Western blot analysis of eNOS, ERKp44/p42, PKB/Akt, and glycogen synthase kinase-3β (GSK-3β). RESULTS Selective treatment with BRL significantly reduced IS. L-NAME abolished BRL-mediated cardioprotection. BRL (PreT) and BRL (PerT) significantly increased cGMP levels (which were reduced by L-NAME) and PKB/Akt phosphorylation. BRL (PostT) produced significantly increased cGMP levels, PKB/Akt, and ERKp44/p42 phosphorylation. BRL (PerT+PostT) caused significant eNOS, PKB/Akt, ERKp44/p42, and GSK-3β phosphorylation. CONCLUSION β3-AR activation by BRL37344 induced significant cardioprotection regardless of the experimental protocol. However, the pattern of intracellular signaling with each BRL treatment differed to some degree and suggests the involvement of cGMP, eNOS, ERK, GSK-3β, and particularly PKB/Akt activation. The data also suggest that clinical application of β3-AR stimulation should preferably be incorporated during late ischemia or/and early reperfusion.
Collapse
Affiliation(s)
- Ruduwaan Salie
- Biomedical Research and Innovation Platform, South African Medical Research Council, Building D, Medicina, Francie van Zijl Drive, Parow Valley, Cape Town, Western Cape, South Africa.
- Faculty of Medicine and Health Sciences, Division of Medical Physiology, University of Stellenbosch, PO Box 19063, Cape Town, South Africa.
| | - Aisha Khlani Hassan Alsalhin
- Faculty of Medicine and Health Sciences, Division of Medical Physiology, University of Stellenbosch, PO Box 19063, Cape Town, South Africa
| | - Erna Marais
- Faculty of Medicine and Health Sciences, Division of Medical Physiology, University of Stellenbosch, PO Box 19063, Cape Town, South Africa
| | - Amanda Lochner
- Faculty of Medicine and Health Sciences, Division of Medical Physiology, University of Stellenbosch, PO Box 19063, Cape Town, South Africa
| |
Collapse
|
31
|
Kawaguchi S, Okada M, Ijiri E, Koga D, Watanabe T, Hayashi K, Kashiwagi Y, Fujita S, Hasebe N. β 3-Adrenergic receptor blockade reduces mortality in endotoxin-induced heart failure by suppressing induced nitric oxide synthase and saving cardiac metabolism. Am J Physiol Heart Circ Physiol 2019; 318:H283-H294. [PMID: 31834837 DOI: 10.1152/ajpheart.00108.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The β3-adrenergic receptor (β3AR) is related to myocardial fatty acid metabolism and its expression has been implicated in heart failure. In this study, we investigated the role of β3AR in sepsis-related myocardial dysfunction using lipopolysaccharide (LPS)-induced endotoxemia as a model of cardiac dysfunction. We placed mice into three treatment groups and treated each with intraperitoneal injections of the β3AR agonist CL316243 (CL group), the β3AR antagonist SR59230A (SR group), or normal saline (NS group). Survival rates were significantly improved in the SR group compared with the other treatment groups. Echocardiography analyses revealed cardiac dysfunction within 6-12 h of LPS injections, but the outcome was significantly better for the SR group. Myocardial ATP was preserved in the SR group but was decreased in the CL-treated mice. Additionally, quantitative PCR analysis revealed that expression levels of genes associated with fatty acid oxidation and glucose metabolism were significantly higher in the SR group. Furthermore, the expression levels of mitochondrial membrane protein complexes were preserved in the SR group. Electron microscope studies showed significant accumulation of lipid droplets in the CL group. Moreover, inducible nitric oxide synthase (iNOS) protein expression and nitric oxide were significantly reduced in the SR group. The in vitro study demonstrated that β3AR has an independent iNOS pathway that does not go through the nuclear factor-κB pathway. These results suggest that blockading β3AR improves impaired energy metabolism in myocardial tissues by suppressing iNOS expression and recovers cardiac function in animals with endotoxin-induced heart failure.NEW & NOTEWORTHY Nitric oxide production through stimulation of β3-adrenergic receptor (β3AR) may improve cardiac function in cases of chronic heart failure. We demonstrated that the blockade of β3AR improved mortality and cardiac function in endotoxin-induced heart failure. We also determined that LPS-induced inducible nitric oxide synthase has a pathway that is independent of nuclear factor-κB, which worsened cardiac metabolism and mortality in the acute phase of sepsis. Treatment with the β3AR antagonist had a favorable effect. Thus, the blockade of β3AR could offer a novel treatment for sepsis-related heart failure.
Collapse
Affiliation(s)
- Satoshi Kawaguchi
- Department of Emergency Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Motoi Okada
- Department of Emergency Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Eriko Ijiri
- Department of Emergency Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Daisuke Koga
- Department of Microscopic Anatomy and Cell Biology, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Tsuyoshi Watanabe
- Department of Microscopic Anatomy and Cell Biology, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Kentaro Hayashi
- Department of Anesthesiology and Critical Care Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Yuta Kashiwagi
- Department of Anesthesiology and Critical Care Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Satoshi Fujita
- Department of Emergency Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Naoyuki Hasebe
- Respiratory and Neurology Division, Department of Internal Medicine, Cardiovascular, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| |
Collapse
|
32
|
Zhang JK, Miao J, Chen ZQ, Duan SZ, Zhang X, Ji WJ, Niu JM, Yuan F, Zhou X, Li YM, Zhang Z. β3-Adrenergic Activation Improves Maternal and Offspring Perinatal Outcomes in Diet-Induced Prepregnancy Obesity in Mice. Obesity (Silver Spring) 2019; 27:1482-1493. [PMID: 31328894 DOI: 10.1002/oby.22561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/20/2019] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Prepregnancy obesity is an epidemic disorder that seriously threatens both maternal and offspring health. This study investigated the effects of β3-adrenergic receptor (β3-AR) activation on the perinatal outcomes in a diet-induced prepregnancy obese (PPO) murine model. METHODS Four-week-old female C57BL/6 mice were fed high-fat diet or chow diet for 16 weeks to yield PPO mice and chow-fed (CF) lean mice, respectively. After successful mating with CF males, the PPO and CF mice were both randomly divided into vehicle control- or CL316,243 (a highly selective β3-AR agonist)-treated groups. On gestational day 7, subcutaneous infusion of CL316,243 or saline vehicle (1 mg/kg/d) was provided using osmotic pumps. The perinatal outcomes, adipose tissue morphology, and metabolic and inflammatory markers were examined. RESULTS Chronic β3-AR agonist infusion induced brown adipose tissue activation and white adipose tissue browning and countered obesity-induced alterations in lipid profiles, insulin resistance, and systemic and local inflammatory states. Moreover, β3-AR activation was associated with improved placental perfusion and offspring outcomes. CONCLUSIONS Our results provide proof-of-principle evidence that pharmacological β3-AR activation may be of therapeutic potential in preventing prepregnancy-obesity-associated adverse maternal and offspring perinatal outcomes.
Collapse
Affiliation(s)
- Jun-Kai Zhang
- Logistics University of the Chinese People's Armed Police Force, Tianjin, China
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Characteristic Medical Center of the Chinese People's Armed Police Forces, Tianjin, China
| | - Jun Miao
- Logistics University of the Chinese People's Armed Police Force, Tianjin, China
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Characteristic Medical Center of the Chinese People's Armed Police Forces, Tianjin, China
| | - Zu-Qin Chen
- Logistics University of the Chinese People's Armed Police Force, Tianjin, China
- Department of MRI, Characteristic Medical Center of the Chinese People's Armed Police Forces, Tianjin, China
| | - Si-Zhang Duan
- Logistics University of the Chinese People's Armed Police Force, Tianjin, China
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Characteristic Medical Center of the Chinese People's Armed Police Forces, Tianjin, China
| | - Xin Zhang
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Characteristic Medical Center of the Chinese People's Armed Police Forces, Tianjin, China
| | - Wen-Jie Ji
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Characteristic Medical Center of the Chinese People's Armed Police Forces, Tianjin, China
| | - Jian-Min Niu
- Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, Guangdong Province, China
| | - Fei Yuan
- Department of MRI, Characteristic Medical Center of the Chinese People's Armed Police Forces, Tianjin, China
| | - Xin Zhou
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Characteristic Medical Center of the Chinese People's Armed Police Forces, Tianjin, China
- Department of Cardiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yu-Ming Li
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Characteristic Medical Center of the Chinese People's Armed Police Forces, Tianjin, China
| | - Zhuoli Zhang
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
33
|
Beta-3 adrenoceptors: A potential therapeutic target for heart disease. Eur J Pharmacol 2019; 858:172468. [DOI: 10.1016/j.ejphar.2019.172468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/12/2019] [Accepted: 06/16/2019] [Indexed: 12/21/2022]
|
34
|
de Oliveira MG, Rojas-Moscoso JA, Bertollotto GM, Candido TZ, Kiguti LRDA, Pupo AS, Antunes E, De Nucci G, Mónica FZ. Mirabegron elicits rat corpus cavernosum relaxation and increases in vivo erectile response. Eur J Pharmacol 2019; 858:172447. [PMID: 31228454 DOI: 10.1016/j.ejphar.2019.172447] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 06/06/2019] [Accepted: 06/12/2019] [Indexed: 12/18/2022]
Abstract
Mirabegron is the first β3-adrenoceptor agonist approved on the market and may offer beneficial pharmacological action in patients with overactive bladder and erectile dysfunction. Here, we further investigate the mechanisms by which mirabegron induces rat corpus cavernosum (CC) relaxation. Adult male Wistar rats were used. The CC were isolated for in vitro functional assays and β-adrenoceptors subtypes mRNA expression evaluation. Animals were treated orally with mirabegron (30 mg/kg, 3 h), tadalafil (10 mg/kg, 3 h) or both for intracavernous pressure (ICP). Intracellular levels of cAMP and cGMP were also determined. The β1-, β2- and β3-adrenoceptors subtypes were expressed in rat CC. Mirabegron produced concentration-dependent CC relaxations that were unaffected by the β1-, β2- or β3-adrenoceptor antagonists atenolol (1 μM), ICI-118,551 (1 μM) and L748,337 (10 μM), respectively. Mirabegron-induced relaxations were not affected by the phosphodiesterase type 4 inhibitor, rolipram, or the adenylyl cyclase selective inhibitor, SQ 22,536. Potassium channel- or calcium influx-blockade are not involved in mirabegron-induced relaxations. In contrast, mirabegron produced rightward shifts in the contractile response induced by the α1-adrenoceptor agonist, phenylephrine. Finally, cavernous nerve stimulation caused frequency-dependent ICP increases, which were significantly increased in rats treated with mirabegron in a similar degree of tadalafil-treated rat, without promoting a significant cAMP or cGMP accumulation. Together, our results demonstrate that mirabegron induced CC relaxation through α1-adrenoceptor blockade. Care should be taken to translate the effect of mirabegron into the clinic, especially when using rat as an animal model of erectile dysfunction.
Collapse
Affiliation(s)
- Mariana G de Oliveira
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Brazil.
| | | | - Gabriela M Bertollotto
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Brazil
| | - Tuany Z Candido
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Brazil
| | - Luiz Ricardo de A Kiguti
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Brazil
| | - André S Pupo
- Department of Pharmacology, Institute of Biosciences, São Paulo State University (UNESP), Brazil
| | - Edson Antunes
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Brazil
| | - Gilberto De Nucci
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Brazil
| | - Fabíola Z Mónica
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Brazil
| |
Collapse
|
35
|
Heusch G. There Is More to β-Blockade Than Just Blockade of β-Receptors: A Case for Cardioprotective Cross-Signaling. J Am Coll Cardiol 2019; 70:193-195. [PMID: 28683967 DOI: 10.1016/j.jacc.2017.05.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 05/09/2017] [Indexed: 11/25/2022]
Affiliation(s)
- Gerd Heusch
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany.
| |
Collapse
|
36
|
Grandoch M, Flögel U, Virtue S, Maier JK, Jelenik T, Kohlmorgen C, Feldmann K, Ostendorf Y, Castañeda TR, Zhou Z, Yamaguchi Y, Nascimento EB, Sunkari VG, Goy C, Kinzig M, Sörgel F, Bollyky PL, Schrauwen P, Al-Hasani H, Roden M, Keipert S, Vidal-Puig A, Jastroch M, Haendeler J, Fischer JW. 4-Methylumbelliferone improves the thermogenic capacity of brown adipose tissue. Nat Metab 2019; 1:546-559. [PMID: 31602424 PMCID: PMC6786893 DOI: 10.1038/s42255-019-0055-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Therapeutic increase of brown adipose tissue (BAT) thermogenesis is of great interest as BAT activation counteracts obesity and insulin resistance. Hyaluronan (HA) is a glycosaminoglycan, found in the extracellular matrix, which is synthesized by HA synthases (Has1/Has2/Has3) from sugar precursors and accumulates in diabetic conditions. Its synthesis can be inhibited by the small molecule 4-methylumbelliferone (4-MU). Here, we show that the inhibition of HA-synthesis by 4-MU or genetic deletion of Has2/Has3 improves BAT`s thermogenic capacity, reduces body weight gain, and improves glucose homeostasis independently from adrenergic stimulation in mice on diabetogenic diet, as shown by a magnetic resonance T2 mapping approach. Inhibition of HA synthesis increases glycolysis, BAT respiration and uncoupling protein 1 expression. In addition, we show that 4-MU increases BAT capacity without inducing chronic stimulation and propose that 4-MU, a clinically approved prescription-free drug, could be repurposed to treat obesity and diabetes.
Collapse
Affiliation(s)
- Maria Grandoch
- Institute of Pharmacology and Clinical Pharmacology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- corresponding author: Dr. Maria Grandoch, Institute of Pharmacology and Clinical Pharmacology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany,
| | - Ulrich Flögel
- Experimental Cardiovascular Imaging, Molecular Cardiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Sam Virtue
- MRC Metabolic Diseases Unit, Metabolic Research Laboratories, University of Cambridge, Cambridge, United Kingdom
| | - Julia K. Maier
- Institute of Pharmacology and Clinical Pharmacology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Tomas Jelenik
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at the Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg, Germany
| | - Christina Kohlmorgen
- Institute of Pharmacology and Clinical Pharmacology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Kathrin Feldmann
- Institute of Pharmacology and Clinical Pharmacology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Yanina Ostendorf
- Institute of Pharmacology and Clinical Pharmacology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Tamara R. Castañeda
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg, Germany
- Institute for Clinical Biochemistry and Pathobiochemistry, Medical Faculty, German Diabetes Center, Leibniz Center for Diabetes Research at the Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Zhou Zhou
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg, Germany
- Institute for Clinical Biochemistry and Pathobiochemistry, Medical Faculty, German Diabetes Center, Leibniz Center for Diabetes Research at the Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Yu Yamaguchi
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Emmani B.M. Nascimento
- Department of Nutrition and Movement Sciences, Maastricht Medical Centre, NUTRIM School of Nutrition and Translational Research in Metabolism, The Netherlands
| | - Vivekananda G. Sunkari
- Division of Infectious Diseases and Geographic Medicine, Dept. of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Christine Goy
- Institute for Clinical Chemistry, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Martina Kinzig
- Institute for Biomedical and Pharmaceutical Research, Nürnberg-Heroldsberg, Germany
| | - Fritz Sörgel
- Institute for Biomedical and Pharmaceutical Research, Nürnberg-Heroldsberg, Germany
| | - Paul L. Bollyky
- Division of Infectious Diseases and Geographic Medicine, Dept. of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Patrick Schrauwen
- Department of Nutrition and Movement Sciences, Maastricht Medical Centre, NUTRIM School of Nutrition and Translational Research in Metabolism, The Netherlands
| | - Hadi Al-Hasani
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg, Germany
- Institute for Clinical Biochemistry and Pathobiochemistry, Medical Faculty, German Diabetes Center, Leibniz Center for Diabetes Research at the Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at the Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg, Germany
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Susanne Keipert
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg, Germany
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München
- Department of Molecular Biosciences, The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Antonio Vidal-Puig
- MRC Metabolic Diseases Unit, Metabolic Research Laboratories, University of Cambridge, Cambridge, United Kingdom
- WT-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Martin Jastroch
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg, Germany
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München
- Department of Molecular Biosciences, The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Judith Haendeler
- Institute for Clinical Chemistry, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- IUF - Leibniz Research Institute for Environmental Medicine, Heisenberg Group - Environmentally-induced Cardiovascular Degeneration, Düsseldorf, Germany
| | - Jens W. Fischer
- Institute of Pharmacology and Clinical Pharmacology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
37
|
Different adaptive NO-dependent Mechanisms in Normal and Hypertensive Conditions. Molecules 2019; 24:molecules24091682. [PMID: 31052164 PMCID: PMC6539476 DOI: 10.3390/molecules24091682] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/23/2019] [Accepted: 04/26/2019] [Indexed: 02/06/2023] Open
Abstract
Myocardial infarction (MI) remains the leading cause of death worldwide. We aimed to investigate the effect of NO deficiency on selective biochemical parameters within discreet myocardial zones after experimentally induced MI. To induce MI, the left descending coronary artery was ligated in two groups of 16-week-old WKY rats. In one group, NO production was inhibited by L-NAME (20 mg/kg/day) administration four weeks prior to ligation. Sham operations were performed on both groups as a control. Seven days after MI, we evaluated levels of nitric oxide synthase (NOS) activity, eNOS, iNOS, NFҡB/p65 and Nrf2 in ischemic, injured and non-ischemic zones of the heart. Levels of circulating TNF-α and IL-6 were evaluated in the plasma. MI led to increased NOS activity in all investigated zones of myocardium as well as circulating levels of TNF-α and IL-6. L-NAME treatment decreased NOS activity in the heart of sham operated animals. eNOS expression was increased in the injured zone and this could be a compensatory mechanism that improves the perfusion of the myocardium and cardiac dysfunction. Conversely, iNOS expression increased in the infarcted zone and may contribute to the inflammatory process and irreversible necrotic changes.
Collapse
|
38
|
Everything You Always Wanted to Know about β 3-AR * (* But Were Afraid to Ask). Cells 2019; 8:cells8040357. [PMID: 30995798 PMCID: PMC6523418 DOI: 10.3390/cells8040357] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/26/2019] [Accepted: 04/12/2019] [Indexed: 12/22/2022] Open
Abstract
The beta-3 adrenergic receptor (β3-AR) is by far the least studied isotype of the beta-adrenergic sub-family. Despite its study being long hampered by the lack of suitable animal and cellular models and inter-species differences, a substantial body of literature on the subject has built up in the last three decades and the physiology of β3-AR is unraveling quickly. As will become evident in this work, β3-AR is emerging as an appealing target for novel pharmacological approaches in several clinical areas involving metabolic, cardiovascular, urinary, and ocular disease. In this review, we will discuss the most recent advances regarding β3-AR signaling and function and summarize how these findings translate, or may do so, into current clinical practice highlighting β3-AR’s great potential as a novel therapeutic target in a wide range of human conditions.
Collapse
|
39
|
Tuncay E, Olgar Y, Durak A, Degirmenci S, Bitirim CV, Turan B. β 3 -adrenergic receptor activation plays an important role in the depressed myocardial contractility via both elevated levels of cellular free Zn 2+ and reactive nitrogen species. J Cell Physiol 2019; 234:13370-13386. [PMID: 30613975 DOI: 10.1002/jcp.28015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 12/11/2018] [Indexed: 12/27/2022]
Abstract
Role of β3 -AR dysregulation, as either cardio-conserving or cardio-disrupting mediator, remains unknown yet. Therefore, we examined the molecular mechanism of β3 -AR activation in depressed myocardial contractility using a specific agonist CL316243 or using β3 -AR overexpressed cardiomyocytes. Since it has been previously shown a possible correlation between increased cellular free Zn2+ ([Zn2+ ]i ) and depressed cardiac contractility, we first demonstrated a relation between β3 -AR activation and increased [Zn2+ ]i , parallel to the significant depolarization in mitochondrial membrane potential in rat ventricular cardiomyocytes. Furthermore, the increased [Zn2+ ]i induced a significant increase in messenger RNA (mRNA) level of β3 -AR in cardiomyocytes. Either β3 -AR activation or its overexpression could increase cellular reactive oxygen species (ROS) and reactive nitrogen species (RNS) levels, in line with significant changes in nitric oxide (NO)-pathway, including increases in the ratios of pNOS3/NOS3 and pGSK-3β/GSK-3β, and PKG expression level in cardiomyocytes. Although β3 -AR activation induced depression in both Na+ - and Ca2+ -currents, the prolonged action potential (AP) seems to be associated with a marked depression in K+ -currents. The β3 -AR activation caused a negative inotropic effect on the mechanical activity of the heart, through affecting the cellular Ca2+ -handling, including its effect on Ca2+ -leakage from sarcoplasmic reticulum (SR). Our cellular level data with β3 -AR agonism were supported with the data on high [Zn2+ ]i and β3 -AR protein-level in metabolic syndrome (MetS)-rat heart. Overall, our present data can emphasize the important deleterious effect of β3 -AR activation in cardiac remodeling under pathological condition, at least, through a cross-link between β3 -AR activation, NO-signaling, and [Zn2+ ]i pathways. Moreover, it is interesting to note that the recovery in ER-stress markers with β3 -AR agonism in hyperglycemic cardiomyocytes is favored. Therefore, how long and to which level the β3 -AR agonism would be friend or become foe remains to be mystery, yet.
Collapse
Affiliation(s)
- Erkan Tuncay
- Department of Biophysics, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Yusuf Olgar
- Department of Biophysics, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Aysegul Durak
- Department of Biophysics, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Sinan Degirmenci
- Department of Biophysics, Ankara University Faculty of Medicine, Ankara, Turkey
| | | | - Belma Turan
- Department of Biophysics, Ankara University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
40
|
Jovanovic P, Spasojevic N, Puskas N, Stefanovic B, Dronjak S. Oxytocin modulates the expression of norepinephrine transporter, β 3-adrenoceptors and muscarinic M 2 receptors in the hearts of socially isolated rats. Peptides 2019; 111:132-141. [PMID: 29969648 DOI: 10.1016/j.peptides.2018.06.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 06/25/2018] [Accepted: 06/26/2018] [Indexed: 10/28/2022]
Abstract
Social stress produces behavioral alterations, and autonomic and cardiac dysfunction in animals. In addition to the well-known roles of oxytocin on birth and maternal bonding, recent evidence shows that this neuropeptide possesses cardio-protective properties. However less is known about its role in the regulation of the autonomic nervous system. The direct influence of oxytocin on the cardiac catecholamine synthesizing enzyme, transport beta-adrenoceptors and muscarinic receptors in animals exposed to chronic social isolation stress has not yet been studied. In this study, we examined the influence of peripheral chronic oxytocin treatment on anxiety-related behavior, the morphology and content of epinephrine and norepinephrine, mRNA and protein levels of tyrosine hydroxylase (TH), norepinephrine transporter (NET) and receptors <beta> 3 (β3-AR) and muscarinic 2 (M2 MR) in the right and left cardiac atrium and ventricle of chronically socially isolated male rats. Our results show that oxytocin treatment exhibits an anxiolytic effect, decreases the heart/body weight ratio and prevents the hypertrophy of cardiomyocytes in the wall of the left ventricle of stressed rats. Epinephrine and TH protein levels were unchanged after prolonged oxytocin treatment. Peripheral oxytocin administration led to the enhancement of gene expression of β3-AR in both atria, NET protein in the left ventricle and gene expression of M2 MR in the right atrium and the left ventricle of chronically socially isolated rats. The study provides evidence that oxytocin treatment in chronically socially isolated animals enhances norepinephrine uptake and expression of cardio-inhibitory receptors in cardiac tissues, which could have a beneficial effect on the cardiovascular system under the increased activity of the sympathoneural system.
Collapse
Affiliation(s)
- Predrag Jovanovic
- Department of Molecular Biology and Endocrinology, Institute of Nuclear Sciences "Vinca", University of Belgrade, Belgrade, Serbia
| | - Natasa Spasojevic
- Department of Molecular Biology and Endocrinology, Institute of Nuclear Sciences "Vinca", University of Belgrade, Belgrade, Serbia
| | - Nela Puskas
- Faculty of Medicine, Institute of Histology and Embryology "Aleksandar Đ. Kostić", University of Belgrade, Višegradska, Belgrade, Serbia
| | - Bojana Stefanovic
- Department of Molecular Biology and Endocrinology, Institute of Nuclear Sciences "Vinca", University of Belgrade, Belgrade, Serbia
| | - Sladjana Dronjak
- Department of Molecular Biology and Endocrinology, Institute of Nuclear Sciences "Vinca", University of Belgrade, Belgrade, Serbia.
| |
Collapse
|
41
|
Wang YY, Li YY, Li L, Yang DL, Zhou K, Li YH. Protective Effects of Shenfu Injection against Myocardial Ischemia–Reperfusion Injury via Activation of eNOS in Rats. Biol Pharm Bull 2018; 41:1406-1413. [DOI: 10.1248/bpb.b18-00212] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yan-yan Wang
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine
- Key Research Laboratory Prescription Compatibility among Components, Tianjin University of Traditional Chinese Medicine
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine
| | - Yan-yan Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine
| | - Lin Li
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine
- Key Research Laboratory Prescription Compatibility among Components, Tianjin University of Traditional Chinese Medicine
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine
| | - Dong-li Yang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine
| | - Kun Zhou
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine
- Key Research Laboratory Prescription Compatibility among Components, Tianjin University of Traditional Chinese Medicine
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine
| | - Yu-hong Li
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine
- Key Research Laboratory Prescription Compatibility among Components, Tianjin University of Traditional Chinese Medicine
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine
| |
Collapse
|
42
|
Qin L, Yang W, Wang YX, Wang ZJ, Li CC, Li M, Liu JY. RETRACTED: MicroRNA-497 promotes proliferation and inhibits apoptosis of cardiomyocytes through the downregulation of Mfn2 in a mouse model of myocardial ischemia-reperfusion injury. Biomed Pharmacother 2018; 105:103-114. [PMID: 29852387 DOI: 10.1016/j.biopha.2018.04.181] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/24/2018] [Accepted: 04/24/2018] [Indexed: 11/29/2022] Open
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/policies/article-withdrawal). This article has been retracted at the request of the Editor-in-Chief. An Expression of Concern for this article was previously published while an investigation was conducted (see related editorial: https://doi.org/10.1016/j.biopha.2022.113812). This retraction notice supersedes the Expression of Concern published earlier. Concern was raised about the reliability of the images shown in Figure 1, and the Western blots in Figures 6C and 8E, which appear to contain similar features to those found in other publications, as detailed here: https://pubpeer.com/publications/5E5DF69C11DAD50FBE63CD4F95990F; and here: https://docs.google.com/spreadsheets/d/1r0MyIYpagBc58BRF9c3luWNlCX8VUvUuPyYYXzxWvgY/edit#gid=262337249. Additional concerns were raised over the provenance of the flow cytometry data in Figure 10C, that appear to contain repeating features. Furthermore, the myocardial infarct images in Figure 5A appear to actually show brain slices. Independent analysis also identified additional suspected image duplications within Figures 3A and 4. The journal requested the corresponding author comment on these concerns and provide the associated raw data. The authors did not respond to this request and therefore the Editor-in-Chief decided to retract the article.
Collapse
Affiliation(s)
- Lei Qin
- Department of Cardiovascular Internal Medicine, Kaifeng Central Hospital, Kaifeng, 475000, PR China
| | - Wen Yang
- Department of Cardiovascular Internal Medicine, Kaifeng Central Hospital, Kaifeng, 475000, PR China
| | - Yao-Xin Wang
- Department of Cardiovascular Internal Medicine, Kaifeng Central Hospital, Kaifeng, 475000, PR China
| | - Zhen-Jun Wang
- Department of Cardiovascular Internal Medicine, Kaifeng Central Hospital, Kaifeng, 475000, PR China
| | - Chen-Chen Li
- Department of Cardiovascular Internal Medicine, Kaifeng Central Hospital, Kaifeng, 475000, PR China
| | - Man Li
- Department of Cardiovascular Internal Medicine, Kaifeng Central Hospital, Kaifeng, 475000, PR China
| | - Jie-Yun Liu
- Department of Cardiovascular Internal Medicine, Kaifeng Central Hospital, Kaifeng, 475000, PR China.
| |
Collapse
|
43
|
Rossello X, Piñero A, Fernández-Jiménez R, Sánchez-González J, Pizarro G, Galán-Arriola C, Lobo-Gonzalez M, Vilchez JP, García-Prieto J, García-Ruiz JM, García-Álvarez A, Sanz-Rosa D, Ibanez B. Mirabegron, a Clinically Approved β3 Adrenergic Receptor Agonist, Does Not Reduce Infarct Size in a Swine Model of Reperfused Myocardial Infarction. J Cardiovasc Transl Res 2018; 11:310-318. [PMID: 30073540 DOI: 10.1007/s12265-018-9819-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/02/2018] [Indexed: 02/06/2023]
Abstract
The administration of the selective β3 adrenergic receptor (β3AR) agonist BRL-37344 protects from myocardial ischemia/reperfusion injury (IRI), although the lack of clinical approval limits its translatability. We tested the cardioprotective effect of mirabegron, the first-in-class β3AR agonist approved for human use. A dose-response study was conducted in 6 pigs to select the highest intravenous dose of mirabegron without significant detrimental hemodynamic effect. Subsequently, closed chest anterior myocardial infarction (45 min ischemia followed by reperfusion) was performed in 26 pigs which randomly received either mirabegron (10 μg/kg) or placebo 5 min before reperfusion. Day-7 cardiac magnetic resonance (CMR) showed no differences in infarct size (35.0 ± 2.0% of left ventricle (LV) vs. 35.9 ± 2.4% in mirabegron and placebo respectively, p = 0.782) or LV ejection fraction (36.3 ± 1.1 vs. 34.6 ± 1.9%, p = 0.430). Consistent results were obtained on day-45 CMR. In conclusion, the intravenous administration of the clinically available selective β3AR agonist mirabegron does not reduce infarct size in a swine model of IRI.
Collapse
Affiliation(s)
- Xavier Rossello
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- CIBER de Enfermedades CardioVasculares (CIBERCV), Madrid, Spain
| | - Antonio Piñero
- CIBER de Enfermedades CardioVasculares (CIBERCV), Madrid, Spain
- Cardiology Department, IIS-Fundación Jiménez Díaz Hospital, Madrid, Spain
| | - Rodrigo Fernández-Jiménez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- CIBER de Enfermedades CardioVasculares (CIBERCV), Madrid, Spain
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | | | - Gonzalo Pizarro
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- CIBER de Enfermedades CardioVasculares (CIBERCV), Madrid, Spain
- Department of Medicine, Faculty of Biomedical and Health Sciences, Universidad Europea, Madrid, Spain
| | - Carlos Galán-Arriola
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- CIBER de Enfermedades CardioVasculares (CIBERCV), Madrid, Spain
| | - Manuel Lobo-Gonzalez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- CIBER de Enfermedades CardioVasculares (CIBERCV), Madrid, Spain
| | - Jean Paul Vilchez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- CIBER de Enfermedades CardioVasculares (CIBERCV), Madrid, Spain
| | - Jaime García-Prieto
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- CIBER de Enfermedades CardioVasculares (CIBERCV), Madrid, Spain
| | - Jose Manuel García-Ruiz
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- CIBER de Enfermedades CardioVasculares (CIBERCV), Madrid, Spain
| | - Ana García-Álvarez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- CIBER de Enfermedades CardioVasculares (CIBERCV), Madrid, Spain
| | - David Sanz-Rosa
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- CIBER de Enfermedades CardioVasculares (CIBERCV), Madrid, Spain
- Department of Medicine, Faculty of Biomedical and Health Sciences, Universidad Europea, Madrid, Spain
| | - Borja Ibanez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.
- CIBER de Enfermedades CardioVasculares (CIBERCV), Madrid, Spain.
- Cardiology Department, IIS-Fundación Jiménez Díaz Hospital, Madrid, Spain.
- Translational Laboratory for Cardiovascular Imaging and Therapy, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro, 3, 28029, Madrid, Spain.
| |
Collapse
|
44
|
Chen K, Sun Y, Diao Y, Zhang T, Dong W. Hydrogen-rich solution attenuates myocardial injury caused by cardiopulmonary bypass in rats via the Janus-activated kinase 2/signal transducer and activator of transcription 3 signaling pathway. Oncol Lett 2018; 16:167-178. [PMID: 29928398 PMCID: PMC6006345 DOI: 10.3892/ol.2018.8639] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 03/14/2018] [Indexed: 12/18/2022] Open
Abstract
The incidence of complications and mortality following open-heart surgery with cardiopulmonary bypass (CPB) is associated with the severity of the myocardial injury that occurs during surgery. Hydrogen-rich solution (HRS) may prevent antioxidant stress and inhibit apoptosis and inflammation. The present study was designed to investigate the effects of HRS on CPB-induced myocardial injury, and to investigate its potential regulation of the Janus-activated kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) pathway. The HRS treatment resulted in the significant upregulation of malonyl dialdehyde (MDA) and myeloperoxidase (MPO), whilesuperoxide dismutase (SOD) levels were significantly downregulated, compared with the Sham group (P<0.05). Additionally, HRS treatment improved myocardial injury, and decreased the expression levels of cardiac troponins, heart-type fatty acid binding protein, interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, MDA and MPO, and increased SOD release in CPB rats (P<0.05). Additionally, in the CPB group without the HRS treatment, the expression levels of B-cell lymphoma (Bcl)-2, JAK2, phospho-JAK2 (p-JAK2), STAT3 and phospho-STAT3 (p-STAT3) were significantly decreased, and Bax was significantly increased, compared with the Sham group (P<0.05). By contrast, compared with the CPB group, the expression levels of B-cell lymphoma 2 (Bcl-2), JAK2, phosphorylated (p)-JAK2, STAT3 and p-STAT3 in the HRS group were significantly increased, and Bcl-2-associated X protein expression was significantly decreased (P<0.05). In JAK2 knockdown experiments using siRNA, HRS treatment following hypoxia/reoxygenation also significantly increased the viability of myocardial cells, decreased the rate of myocardial cell apoptosis, elevated the levels of SOD and suppressed the release of MDA and lactate dehydrogenase in the control siRNA and CPB groups (P<0.05). Furthermore, JAK2 siRNA attenuated these protective effects of HRS (P<0.05 vs. control siRNA, HRS and CPB groups). Additionally, the results demonstrated that the HRS treatment significantly increased the expression levels of p-JAK2, p-STAT3 and Bcl-2 in myocardial cells following hypoxia and decreased Bax expression in the control siRNA and CPB groups (P<0.05). In addition, JAK2 siRNA was determined to attenuate these effects of HRS (P<0.05 vs. control siRNA, HRS and CPB groups). Taken together, these results indicated that HRS may alleviate CPB-induced myocardial injury, inhibit myocardial cell apoptosis and protect myocardial cells through regulation of the JAK2/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Keyan Chen
- Department of Laboratory Animal Science, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Yingjie Sun
- Department of Anesthesiology, General Hospital of Shenyang Military Area Command, Shenyang, Liaoning 110016, P.R. China
| | - Yugang Diao
- Department of Anesthesiology, General Hospital of Shenyang Military Area Command, Shenyang, Liaoning 110016, P.R. China
| | - Tiezheng Zhang
- Department of Anesthesiology, General Hospital of Shenyang Military Area Command, Shenyang, Liaoning 110016, P.R. China
| | - Wanwei Dong
- Department of Laboratory Animal Science, China Medical University, Shenyang, Liaoning 110122, P.R. China
| |
Collapse
|
45
|
Wu QQ, Xiao Y, Duan MX, Yuan Y, Jiang XH, Yang Z, Liao HH, Deng W, Tang QZ. Aucubin protects against pressure overload-induced cardiac remodelling via the β 3 -adrenoceptor-neuronal NOS cascades. Br J Pharmacol 2018; 175:1548-1566. [PMID: 29447430 DOI: 10.1111/bph.14164] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 01/21/2018] [Accepted: 01/30/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND PURPOSE Aucubin, the predominant component of Eucommia ulmoides Oliv., has been shown to have profound effects on oxidative stress. As oxidative stress has previously been demonstrated to contribute to acute and chronic myocardial injury, we tested the effects of aucubin on cardiac remodelling and heart failure. EXPERIMENTAL APPROACH Initially, H9c2 cardiomyocytes and neonatal rat cardiomyocytes pretreated with aucubin (1, 3, 10, 25 and 50 μM) were challenged with phenylephrine. Secondly, the transverse aorta was constricted in C57/B6 and neuronal NOS (nNOS)-knockout mice, then aucubin (1 or 5 mg·kg-1 body weight day-1 ) was injected i.p. for 25 days. Hypertrophy was evaluated by assessing morphological changes, echocardiographic parameters, histological analyses and hypertrophic markers. Oxidative stress was evaluated by examining ROS generation, oxidase activity and NO generation. NOS expression was determined by Western blotting. KEY RESULTS Aucubin effectively suppressed cardiac remodelling; in mice, aucubin substantially inhibited pressure overload-induced cardiac hypertrophy, fibrosis and inflammation, whereas knocking out nNOS abolished these cardioprotective effects of aucubin. Blocking or knocking down the β3 -adrenoceptor abolished the protective effects of aucubin in vitro. Furthermore, aucubin enhanced the protective effects of a β3 -adrenoceptor agonist in vitro by increasing cellular cAMP levels, whereas treatment with an adenylate cyclase (AC) inhibitor abolished the cardioprotective effects of aucubin. CONCLUSIONS AND IMPLICATIONS Aucubin suppresses oxidative stress during cardiac remodelling by increasing the expression of nNOS in a process that requires activation of the β3 -adrenoceptor/AC/cAMP pathway. These findings suggest that aucubin could have potential as a treatment for cardiac remodelling and heart failure.
Collapse
Affiliation(s)
- Qing-Qing Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yang Xiao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Ming-Xia Duan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yuan Yuan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Xiao-Han Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Zheng Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Hai-Han Liao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Wei Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| |
Collapse
|
46
|
Role of the β 3-adrenergic receptor subtype in catecholamine-induced myocardial remodeling. Mol Cell Biochem 2018; 446:149-160. [PMID: 29363058 DOI: 10.1007/s11010-018-3282-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 01/16/2018] [Indexed: 10/18/2022]
Abstract
β3-Adrenoceptors (AR) stimulate cardiac Na+/K+ pump in healthy hearts. β3-ARs are upregulated by persistent sympathetic hyperactivity; however, their effect on Na+/K+ ATPase activity and ventricular function in this condition is still unknown. Here, we investigate preventive effects of additional β3-AR activation (BRL) on Na+/K+ ATPase activity and in vivo hemodynamics in a model of noradrenaline-induced hypertrophy. Rats received NA or NA plus simultaneously administered BRL in vivo infusion for 14 days; their cardiac function was investigated by left ventricular pressure-volume analysis. Moreover, fibrosis and apoptosis were also assessed histologically. NA induced an hypertrophic pattern, as detected by morphological, histological, and biochemical markers. Additional BRL exposure reversed the hypertrophic pattern and restored Na+/K+ ATPase activity. NA treatment increased systolic function and depressed diastolic function (slowed relaxation). Additional BRL treatment reversed most NA-induced hemodynamic changes. NA decreased Na+/K+ pump α2 subunit expression selectively, a change also reversed by additional BRL treatment. Increasing β3-AR stimulation may prevent the consequences of chronic NA exposure on Na+/K+ pump and in vivo hemodynamics. β3-AR agonism may thus represent a new therapeutic strategy for pharmacological modulation of hypertrophy under conditions of chronically enhanced sympathetic activity.
Collapse
|
47
|
Abstract
Cardiac diseases, such as heart failure, remain leading causes of morbidity and mortality worldwide, with myocardial infarction as the most common etiology. HF is characterized by β-adrenergic receptor (βAR) dysregulation that is primarily due to the upregulation of G protein–coupled receptor kinases that leads to overdesensitization of β1 and β2ARs, and this clinically manifests as a loss of inotropic reserve. Interestingly, the “minor” βAR isoform, the β3AR, found in the heart, lacks G protein–coupled receptor kinases recognition sites, and is not subject to desensitization, and as a consequence of this, in human failing myocardium, the levels of this receptor remain unchanged or are even increased. In different preclinical studies, it has been shown that β3ARs can activate different signaling pathways that can protect the heart. The clinical relevance of this is also supported by the effects of β-blockers which are well known for their proangiogenic and cardioprotective effects, and data are emerging showing that these are mediated, at least in part, by enhancement of β3AR activity. In this regard, targeting of β3ARs could represent a novel potential strategy to improve cardiac metabolism, function, and remodeling.
Collapse
|
48
|
Cannavo A, Rengo G, Liccardo D, Pun A, Gao E, George AJ, Gambino G, Rapacciuolo A, Leosco D, Ibanez B, Ferrara N, Paolocci N, Koch WJ. β 1-Blockade Prevents Post-Ischemic Myocardial Decompensation Via β 3AR-Dependent Protective Sphingosine-1 Phosphate Signaling. J Am Coll Cardiol 2017; 70:182-192. [PMID: 28683966 DOI: 10.1016/j.jacc.2017.05.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 05/08/2017] [Accepted: 05/08/2017] [Indexed: 01/08/2023]
Abstract
BACKGROUND Although β-blockers increase survival in patients with heart failure (HF), the mechanisms behind this protection are not fully understood, and not all patients with HF respond favorably to them. We recently showed that, in cardiomyocytes, a reciprocal down-regulation occurs between β1-adrenergic receptors (ARs) and the cardioprotective sphingosine-1-phosphate (S1P) receptor-1 (S1PR1). OBJECTIVES The authors hypothesized that, in addition to salutary actions due to direct β1AR-blockade, agents such as metoprolol (Meto) may improve post-myocardial infarction (MI) structural and functional outcomes via restored S1PR1 signaling, and sought to determine mechanisms accounting for this effect. METHODS We tested the in vitro effects of Meto in HEK293 cells and in ventricular cardiomyocytes isolated from neonatal rats. In vivo, we assessed the effects of Meto in MI wild-type and β3AR knockout mice. RESULTS Here we report that, in vitro, Meto prevents catecholamine-induced down-regulation of S1PR1, a major cardiac protective signaling pathway. In vivo, we show that Meto arrests post-MI HF progression in mice as much as chronic S1P treatment. Importantly, human HF subjects receiving β1AR-blockers display elevated circulating S1P levels, confirming that Meto promotes S1P secretion/signaling. Mechanistically, we found that Meto-induced S1P secretion is β3AR-dependent because Meto infusion in β3AR knockout mice does not elevate circulating S1P levels, nor does it ameliorate post-MI dysfunction, as in wild-type mice. CONCLUSIONS Our study uncovers a previously unrecognized mechanism by which β1-blockers prevent HF progression in patients with ischemia, suggesting that β3AR dysfunction may account for limited/null efficacy in β1AR-blocker-insensitive HF subjects.
Collapse
Affiliation(s)
- Alessandro Cannavo
- Center for Translational Medicine and Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Giuseppe Rengo
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy; Istituti Clinici Scientifici Maugeri SpA Società Benefit, Telese Terme Institute, Telese Terme (BN), Italy.
| | - Daniela Liccardo
- Center for Translational Medicine and Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Andres Pun
- Myocardial Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Ehre Gao
- Center for Translational Medicine and Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Alvin J George
- Center for Translational Medicine and Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Giuseppina Gambino
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
| | - Antonio Rapacciuolo
- Department of Advanced Medical Science, University of Naples Federico II, Naples, Italy
| | - Dario Leosco
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
| | - Borja Ibanez
- Myocardial Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain; IIS-Fundación Jiménez Díaz, Madid, Spain; CIBER de enfermedades cardiovasculares, Madrid, Spain
| | - Nicola Ferrara
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy; Istituti Clinici Scientifici Maugeri SpA Società Benefit, Telese Terme Institute, Telese Terme (BN), Italy
| | - Nazareno Paolocci
- Division of Cardiology, Johns Hopkins University Medical Institutions, Baltimore, Maryland; Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Walter J Koch
- Center for Translational Medicine and Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania.
| |
Collapse
|
49
|
Hermida N, Michel L, Esfahani H, Dubois-Deruy E, Hammond J, Bouzin C, Markl A, Colin H, Steenbergen AV, De Meester C, Beauloye C, Horman S, Yin X, Mayr M, Balligand JL. Cardiac myocyte β3-adrenergic receptors prevent myocardial fibrosis by modulating oxidant stress-dependent paracrine signaling. Eur Heart J 2017; 39:888-898. [DOI: 10.1093/eurheartj/ehx366] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 06/08/2017] [Indexed: 01/08/2023] Open
Affiliation(s)
- Nerea Hermida
- Department of Medicine, Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), Cliniques Universitaires Saint-Luc, Université catholique de Louvain, 52 avenue Mounier, 1200 Brussels, Belgium
| | - Lauriane Michel
- Department of Medicine, Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), Cliniques Universitaires Saint-Luc, Université catholique de Louvain, 52 avenue Mounier, 1200 Brussels, Belgium
| | - Hrag Esfahani
- Department of Medicine, Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), Cliniques Universitaires Saint-Luc, Université catholique de Louvain, 52 avenue Mounier, 1200 Brussels, Belgium
| | - Emilie Dubois-Deruy
- Department of Medicine, Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), Cliniques Universitaires Saint-Luc, Université catholique de Louvain, 52 avenue Mounier, 1200 Brussels, Belgium
| | - Joanna Hammond
- Department of Medicine, Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), Cliniques Universitaires Saint-Luc, Université catholique de Louvain, 52 avenue Mounier, 1200 Brussels, Belgium
| | - Caroline Bouzin
- Department of Medicine, Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), Cliniques Universitaires Saint-Luc, Université catholique de Louvain, 52 avenue Mounier, 1200 Brussels, Belgium
| | - Andreas Markl
- Department of Medicine, Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), Cliniques Universitaires Saint-Luc, Université catholique de Louvain, 52 avenue Mounier, 1200 Brussels, Belgium
| | - Henri Colin
- Department of Medicine, Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), Cliniques Universitaires Saint-Luc, Université catholique de Louvain, 52 avenue Mounier, 1200 Brussels, Belgium
| | - Anne Van Steenbergen
- Division of Cardiology, Pole of Cardiovascular Research, Institut de Recherche Expérimentale et Clinique (IREC), Cliniques Universitaires Saint-Luc, Université catholique de Louvain, 10 Avenue Hippocrate, 1200 Brussels, Belgium
| | - Christophe De Meester
- Division of Cardiology, Pole of Cardiovascular Research, Institut de Recherche Expérimentale et Clinique (IREC), Cliniques Universitaires Saint-Luc, Université catholique de Louvain, 10 Avenue Hippocrate, 1200 Brussels, Belgium
| | - Christophe Beauloye
- Division of Cardiology, Pole of Cardiovascular Research, Institut de Recherche Expérimentale et Clinique (IREC), Cliniques Universitaires Saint-Luc, Université catholique de Louvain, 10 Avenue Hippocrate, 1200 Brussels, Belgium
| | - Sandrine Horman
- Division of Cardiology, Pole of Cardiovascular Research, Institut de Recherche Expérimentale et Clinique (IREC), Cliniques Universitaires Saint-Luc, Université catholique de Louvain, 10 Avenue Hippocrate, 1200 Brussels, Belgium
| | - Xiaoke Yin
- King’s British Heart Foundation Center, King’s College, 125 Coldharbour Lane, SE5 9NU, London, UK
| | - Manuel Mayr
- King’s British Heart Foundation Center, King’s College, 125 Coldharbour Lane, SE5 9NU, London, UK
| | - Jean-Luc Balligand
- Department of Medicine, Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), Cliniques Universitaires Saint-Luc, Université catholique de Louvain, 52 avenue Mounier, 1200 Brussels, Belgium
| |
Collapse
|
50
|
Wang B, Xu M, Li W, Li X, Zheng Q, Niu X. Aerobic exercise protects against pressure overload-induced cardiac dysfunction and hypertrophy via β3-AR-nNOS-NO activation. PLoS One 2017. [PMID: 28622359 PMCID: PMC5473571 DOI: 10.1371/journal.pone.0179648] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Aerobic exercise confers sustainable protection against cardiac hypertrophy and heart failure (HF). Nitric oxide synthase (NOS) and nitric oxide (NO) are known to play an important role in exercise-mediated cardioprotection, but the mechanism of NOS/NO stimulation during exercise remains unclear. The aim of this study is to determine the role of β3-adrenergic receptors (β3-ARs), NOS activation, and NO metabolites (nitrite and nitrosothiols) in the sustained cardioprotective effects of aerobic exercise. An HF model was constructed by transverse aortic constriction (TAC). Animals were treated with either moderate aerobic exercise by swimming for 9 weeks and/or the β3-AR-specific inhibitor SR59230A at 0.1 mg/kg/hour one day after TAC operation. Myocardial fibrosis, myocyte size, plasma catecholamine (CA) level, cardiac function and geometry were assessed using Masson’s trichrome staining, FITC-labeled wheat germ agglutinin staining, enzyme-linked immuno sorbent assay (ELISA) and echocardiography, respectively. Western blot analysis was performed to elucidate the expression of target proteins. The concentration of myocardial NO production was evaluated using the nitrate reductase method. Myocardial oxidative stress was assessed by detecting the concentration of myocardial super oxidative dismutase (SOD), malonyldialdehyde (MDA), and reactive oxygen species (ROS). Aerobic exercise training improved dilated left ventricular function and partially attenuated the degree of cardiac hypertrophy and fibrosis in TAC mice. Moreover, the increased expression of β3-AR, activation of neuronal NOS (nNOS), and production of NO were detected after aerobic exercise training in TAC mice. However, selective inhibition of β3-AR by SR59230A abolished the upregulation and activation of nNOS induced NO production. Furthermore, aerobic exercise training decreased the myocardial ROS and MDA contents and increased myocardial levels of SOD; both effects were partially attenuated by SR59230A. Our study suggested that aerobic exercise training could improve cardiac systolic function and alleviate LV chamber dilation, cardiac fibrosis and hypertrophy in HF mice. The mechanism responsible for the protective effects of aerobic exercise is associated with the activation of the β3-AR-nNOS-NO pathway.
Collapse
Affiliation(s)
- Bin Wang
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| | - Ming Xu
- Department of Physiology, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenju Li
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| | - Xiaoli Li
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| | - Qiangsun Zheng
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
- Department of Cardiology, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- * E-mail: (XN); (QZ)
| | - Xiaolin Niu
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
- * E-mail: (XN); (QZ)
| |
Collapse
|