1
|
Björnson E, Adiels M, Borén J, Packard CJ. Lipoprotein(a) is a highly atherogenic lipoprotein: pathophysiological basis and clinical implications. Curr Opin Cardiol 2024; 39:503-510. [PMID: 39360655 DOI: 10.1097/hco.0000000000001170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
PURPOSE OF REVIEW Lipoprotein(a) has been identified as a causal risk factor for atherosclerotic cardiovascular disease (ASCVD) and aortic valve stenosis. However, as reviewed here, there is ongoing debate as to the key pathogenic features of Lp(a) particles and the degree of Lp(a) atherogenicity relative to low-density lipoprotein (LDL). RECENT FINDINGS Genetic analyses have revealed that Lp(a) on a per-particle basis is markedly (about six-fold) more atherogenic than LDL. Oxidized phospholipids carried on Lp(a) have been found to have substantial pro-inflammatory properties triggering pathways that may contribute to atherogenesis. Whether the strength of association of Lp(a) with ASCVD risk is dependent on inflammatory status is a matter of current debate and is critical to implementing intervention strategies. Contradictory reports continue to appear, but most recent studies in large cohorts indicate that the relationship of Lp(a) to risk is independent of C-reactive protein level. SUMMARY Lp(a) is a highly atherogenic lipoprotein and a viable target for intervention in a significant proportion of the general population. Better understanding the basis of its enhanced atherogenicity is important for risk assessment and interpreting intervention trials.
Collapse
Affiliation(s)
| | - Martin Adiels
- Department of Molecular and Clinical Medicine
- School of Public Health and Community Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Jan Borén
- Department of Molecular and Clinical Medicine
| | - Chris J Packard
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
2
|
Masson W, Barbagelata L, Nogueira JP. Aspirin use in patients with elevated lipoprotein(a): Impact on cardiovascular events and bleeding. Curr Probl Cardiol 2024; 49:102827. [PMID: 39191359 DOI: 10.1016/j.cpcardiol.2024.102827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 08/24/2024] [Indexed: 08/29/2024]
Abstract
The role of aspirin in cardiovascular primary prevention remains controversial. There are physiological reasons to explore its potential benefits in patients with high levels of lipoprotein(a) [Lp(a)], mainly due to its antifibrinolytic properties and interactions with platelets. The primary objective of this systematic review was to evaluate the cardiovascular benefits and bleeding risks associated with aspirin use in patients who have elevated Lp(a) levels but no history of cardiovascular disease. This systematic review was conducted following PRISMA guidelines. We performed a literature search to identify studies assessing the cardiovascular benefits and bleeding risks of aspirin use in patients with elevated Lp(a) levels (or a related genetic variant) who have no history of cardiovascular disease. Five studies (49,871 individuals) were considered for this systematic review. Three studies assessed the impact of aspirin use in relation to genetic variants associated with elevated Lp(a) levels (SNP rs379822), while the remaining two studies directly measured plasma levels of Lp(a). The endpoints evaluated varied among the studies. Overall, the findings consistently show that carriers of the apolipoprotein(a) variant or patients with Lp(a) levels > 50 mg/dL experience a reduction in cardiovascular risk with aspirin use. No significant bleeding issues were observed, although such events were reported in only two studies. This systematic review suggests that aspirin use in patients with elevated Lp(a) levels and no prior cardiovascular history may reduce cardiovascular risk. The available data on bleeding risk is insufficient.
Collapse
Affiliation(s)
- Walter Masson
- Department of Cardiology. Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Leandro Barbagelata
- Department of Cardiology. Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Juan Patricio Nogueira
- Endocrinology, Nutrition and Metabolism Research Center, Faculty of Health Sciences, Universidad Nacional de Formosa, Argentina.
| |
Collapse
|
3
|
Zhou L, Wu Y, Wang J, Wu H, Tan Y, Chen X, Song X, Wang Y, Yang Q. Developing and Validating a Nomogram Model for Predicting Ischemic Stroke Risk. J Pers Med 2024; 14:777. [PMID: 39064031 PMCID: PMC11277803 DOI: 10.3390/jpm14070777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/08/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Background and purpose: Clinically, the ability to identify individuals at risk of ischemic stroke remains limited. This study aimed to develop a nomogram model for predicting the risk of acute ischemic stroke. Methods: In this study, we conducted a retrospective analysis on patients who visited the Department of Neurology, collecting important information including clinical records, demographic characteristics, and complete hematological tests. Participants were randomly divided into training and internal validation sets in a 7:3 ratio. Based on their diagnosis, patients were categorized as having or not having ischemic stroke (ischemic and non-ischemic stroke groups). Subsequently, in the training set, key predictive variables were identified through multivariate logistic regression and least absolute shrinkage and selection operator (LASSO) regression methods, and a nomogram model was constructed accordingly. The model was then evaluated on the internal validation set and an independent external validation set through area under the receiver operating characteristic curve (AUC-ROC) analysis, a Hosmer-Lemeshow goodness-of-fit test, and decision curve analysis (DCA) to verify its predictive efficacy and clinical applicability. Results: Eight predictors were identified: age, smoking status, hypertension, diabetes, atrial fibrillation, stroke history, white blood cell count, and vitamin B12 levels. Based on these factors, a nomogram with high predictive accuracy was constructed. The model demonstrated good predictive performance, with an AUC-ROC of 0.760 (95% confidence interval [CI]: 0.736-0.784). The AUC-ROC values for internal and external validation were 0.768 (95% CI: 0.732-0.804) and 0.732 (95% CI: 0.688-0.777), respectively, proving the model's capability to predict the risk of ischemic stroke effectively. Calibration and DCA confirmed its clinical value. Conclusions: We constructed a nomogram based on eight variables, effectively quantifying the risk of ischemic stroke.
Collapse
Affiliation(s)
- Li Zhou
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Youlin Wu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Department of Neurology, Chongzhou People’s Hospital, Chengdu 611200, China
| | - Jiani Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Haiyun Wu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yongjun Tan
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xia Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Department of Neurology, The Seventh People’s Hospital of Chongqing, Chongqing 400016, China
| | - Xiaosong Song
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Department of Neurology, The Ninth People’s Hospital of Chongqing, Chongqing 400016, China
| | - Yilin Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Qin Yang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
4
|
Li Y, Kronenberg F, Coassin S, Vardarajan B, Reyes-Soffer G. Ancestry specific distribution of LPA Kringle IV-Type-2 genetic variants highlight associations to apo(a) copy number, glucose, and hypertension. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.09.24310176. [PMID: 39040175 PMCID: PMC11261928 DOI: 10.1101/2024.07.09.24310176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Background High Lp(a) levels contribute to atherosclerotic cardiovascular disease and are tightly regulated by the LPA gene . Lp(a) levels have an inverse correlation with LPA Kringle IV Type-2 (KIV-2) copy number (CN). Black (B) and Hispanic (H) individuals exhibit higher levels of Lp(a), and rates of CVD compared to non-Hispanic Whites (NHW). Therefore, we investigated genetic variations in the LPA KIV-2 region across three ancestries and their associations with metabolic risk factors. Methods Using published pipelines, we analyzed a multi-ethnic whole exome dataset comprising 3,817 participants from the Washington Heights and Inwood Columbia Aging Project (WHICAP): 886 [NHW (23%), 1,811 Caribbean (C) H (47%), and 1,120 B individuals (29%). Rare and common variants (alternative allele carrier frequency, CF < 0.01 or > 0.99 and 0.01 < CF < 0.99, respectively) were identified and KIV-2 CN estimated. The associations of variants and CN with history of heart disease, hypertension (HTN), stroke, lipid levels and clinical diagnosis of Alzheimer's disease (AD) was assessed. A small pilot provided in-silico validation of study findings. Results We report 1421 variants in the LPA KIV-2 repeat region, comprising 267 exonic and 1154 intronic variants. 61.4% of the exonic variants have not been previously described. Three novel exonic variants significantly increase the risk of HTN across all ethnic groups: 4785-C/A (frequency = 78%, odds ratio [OR] = 1.45, p = 0.032), 727-T/C (frequency = 96%, OR = 2.11, p = 0.032), and 723-A/G (frequency = 96%, OR = 1.97, p = 0.038). Additionally, six intronic variants showed associations with HTN: 166-G/A, 387-G/C, 402-G/A, 4527-A/T, 4541-G/A, and 4653-A/T. One intronic variant, 412-C/T, was associated with decreased blood glucose levels (frequency = 72%, β = -14.52, p = 0.02).Three of the associations were not affected after adjusting for LPA KIV-2 CN: 412-C/T (β = -14.2, p = 0.03), 166-G/A (OR = 1.41, p = 0.05), and 387-G/C (OR = 1.40, p = 0.05). KIV CN itself was significantly associated with 314 variants and was negatively correlated with plasma total cholesterol levels. Conclusions In three ancestry groups, we identify novel rare and common LPA KIV-2 region variants. We report new associations of variants with HTN and Glucose levels. These results underscore the genetic complexity of the LPA KIV-2 region in influencing cardiovascular and metabolic health, suggesting potential genetic regulation of pathways that can be studied for research and therapeutic interventions.
Collapse
Affiliation(s)
- Yihao Li
- Gertrude H. Sergievsky Center, Dept of Neurology, Columbia University Vagelos College of Physicians and Surgeons, 630 West 168 Street, PH19-306, New York, N.Y.10032
- Columbia University Vagelos College of Physicians and Surgeons, Department of Medicine, Division of Preventive Medicine and Nutrition, P&S 10-501,New York, NY, USA
| | - Florian Kronenberg
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Stefan Coassin
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Badri Vardarajan
- Gertrude H. Sergievsky Center, Dept of Neurology, Columbia University Vagelos College of Physicians and Surgeons, 630 West 168 Street, PH19-306, New York, N.Y.10032
| | - Gissette Reyes-Soffer
- Columbia University Vagelos College of Physicians and Surgeons, Department of Medicine, Division of Preventive Medicine and Nutrition, P&S 10-501,New York, NY, USA
| |
Collapse
|
5
|
Delgado-Lista J, Mostaza JM, Arrobas-Velilla T, Blanco-Vaca F, Masana L, Pedro-Botet J, Perez-Martinez P, Civeira F, Cuende-Melero JI, Gomez-Barrado JJ, Lahoz C, Pintó X, Suarez-Tembra M, Lopez-Miranda J, Guijarro C. Consensus on lipoprotein(a) of the Spanish Society of Arteriosclerosis. Literature review and recommendations for clinical practice. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE ARTERIOSCLEROSIS 2024; 36:243-266. [PMID: 38599943 DOI: 10.1016/j.arteri.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 04/12/2024]
Abstract
The irruption of lipoprotein(a) (Lp(a)) in the study of cardiovascular risk factors is perhaps, together with the discovery and use of proprotein convertase subtilisin/kexin type 9 (iPCSK9) inhibitor drugs, the greatest novelty in the field for decades. Lp(a) concentration (especially very high levels) has an undeniable association with certain cardiovascular complications, such as atherosclerotic vascular disease (AVD) and aortic stenosis. However, there are several current limitations to both establishing epidemiological associations and specific pharmacological treatment. Firstly, the measurement of Lp(a) is highly dependent on the test used, mainly because of the characteristics of the molecule. Secondly, Lp(a) concentration is more than 80% genetically determined, so that, unlike other cardiovascular risk factors, it cannot be regulated by lifestyle changes. Finally, although there are many promising clinical trials with specific drugs to reduce Lp(a), currently only iPCSK9 (limited for use because of its cost) significantly reduces Lp(a). However, and in line with other scientific societies, the SEA considers that, with the aim of increasing knowledge about the contribution of Lp(a) to cardiovascular risk, it is relevant to produce a document containing the current status of the subject, recommendations for the control of global cardiovascular risk in people with elevated Lp(a) and recommendations on the therapeutic approach to patients with elevated Lp(a).
Collapse
Affiliation(s)
- Javier Delgado-Lista
- Unidad de Lípidos y Aterosclerosis, Servicio de Medicina Interna, Hospital Universitario Reina Sofía; Departamento de Ciencias Médicas y Quirúrgicas, Universidad de Córdoba; IMIBIC, Córdoba; CIBER Fisiopatología Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, España.
| | - Jose M Mostaza
- Unidad de Lípidos y Riesgo Vascular, Servicio de Medicina Interna, Hospital Universitario La Paz, Madrid, España
| | - Teresa Arrobas-Velilla
- Sociedad Española de Medicina de Laboratorio (SEQCML), Laboratorio de Bioquímica Clínica, Hospital Universitario Virgen Macarena, Sevilla, España
| | - Francisco Blanco-Vaca
- Departamento de Bioquímica Clínica, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), Barcelona; Departamento de Bioquímica y Biología Molecular, Universitat Autònoma de Barcelona, 08193 Barcelona; CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, España
| | - Luis Masana
- Unidad de Medicina Vascular y Metabolismo, Hospital Universitari Sant Joan, Universitat Rovira i Virgili, IISPV, CIBERDEM, Reus, Tarragona, España
| | - Juan Pedro-Botet
- Unidad de Lípidos y Riesgo Vascular, Servicio de Endocrinología y Nutrición, Hospital del Mar, Barcelona; Departamento de Medicina, Universidad Autónoma de Barcelona, Barcelona, España
| | - Pablo Perez-Martinez
- Unidad de Lípidos y Aterosclerosis, Servicio de Medicina Interna, Hospital Universitario Reina Sofía; Departamento de Ciencias Médicas y Quirúrgicas, Universidad de Córdoba; IMIBIC, Córdoba; CIBER Fisiopatología Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, España
| | - Fernando Civeira
- Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis, Servicio de Medicina Interna, Hospital Universitario Miguel Servet, IIS Aragón, Universidad de Zaragoza, Zaragoza; CIBER Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, España
| | - Jose I Cuende-Melero
- Consulta de Riesgo Vascular, Servicio de Medicina Interna, Complejo Asistencial Universitario de Palencia, Palencia; Departamento de Medicina, Dermatología y Toxicología, Facultad de Medicina, Universidad de Valladolid, Valladolid, España
| | - Jose J Gomez-Barrado
- Unidad de Cuidados Cardiológicos Agudos y Riesgo Cardiovascular, Servicio de Cardiología, Hospital Universitario San Pedro de Alcántara, Cáceres, España
| | - Carlos Lahoz
- Unidad de Lípidos y Arteriosclerosis, Servicio de Medicina Interna, Hospital La Paz-Carlos III, Madrid, España
| | - Xavier Pintó
- Unidad de Lípidos y Riesgo Vascular, Servicio de Medicina Interna, Hospital Universitario de Bellvitge-Idibell-Universidad de Barcelona-CiberObn, España
| | - Manuel Suarez-Tembra
- Unidad de Lípidos y RCV, Servicio de Medicina Interna, Hospital San Rafael, A Coruña, España
| | - Jose Lopez-Miranda
- Unidad de Lípidos y Aterosclerosis, Servicio de Medicina Interna, Hospital Universitario Reina Sofía; Departamento de Ciencias Médicas y Quirúrgicas, Universidad de Córdoba; IMIBIC, Córdoba; CIBER Fisiopatología Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, España.
| | - Carlos Guijarro
- Unidad de Medicina Interna, Hospital Universitario Fundación Alcorcón, Universidad Rey Juan Carlos, Alcorcón, Madrid, España
| |
Collapse
|
6
|
Bhatia HS, Becker RC, Leibundgut G, Patel M, Lacaze P, Tonkin A, Narula J, Tsimikas S. Lipoprotein(a), platelet function and cardiovascular disease. Nat Rev Cardiol 2024; 21:299-311. [PMID: 37938756 PMCID: PMC11216952 DOI: 10.1038/s41569-023-00947-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/10/2023] [Indexed: 11/09/2023]
Abstract
Lipoprotein(a) (Lp(a)) is associated with atherothrombosis through several mechanisms, including putative antifibrinolytic properties. However, genetic association studies have not demonstrated an association between high plasma levels of Lp(a) and the risk of venous thromboembolism, and studies in patients with highly elevated Lp(a) levels have shown that Lp(a) lowering does not modify the clotting properties of plasma ex vivo. Lp(a) can interact with several platelet receptors, providing biological plausibility for a pro-aggregatory effect. Observational clinical studies suggest that elevated plasma Lp(a) concentrations are associated with worse long-term outcomes in patients undergoing revascularization. Furthermore, in these patients, those with elevated plasma Lp(a) levels derive more benefit from prolonged dual antiplatelet therapy than those with normal Lp(a) levels. The ASPREE trial in healthy older individuals treated with aspirin showed a reduction in ischaemic events in those who had a single-nucleotide polymorphism in LPA that is associated with elevated Lp(a) levels in plasma, without an increase in bleeding events. In this Review, we re-examine the role of Lp(a) in the regulation of platelet function and suggest areas of research to define further the clinical relevance to cardiovascular disease of the observed associations between Lp(a) and platelet function.
Collapse
Affiliation(s)
- Harpreet S Bhatia
- Division of Cardiovascular Medicine, Sulpizio Cardiovascular Center, University of California San Diego, La Jolla, CA, USA
| | - Richard C Becker
- Heart, Lung and Vascular Institute, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Gregor Leibundgut
- Division of Cardiology, University Hospital of Basel, Basel, Switzerland
| | - Mitul Patel
- Division of Cardiovascular Medicine, Sulpizio Cardiovascular Center, University of California San Diego, La Jolla, CA, USA
| | - Paul Lacaze
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Andrew Tonkin
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Jagat Narula
- Mount Sinai Heart, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sotirios Tsimikas
- Division of Cardiovascular Medicine, Sulpizio Cardiovascular Center, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
7
|
Nugroho NT, Herten M, Torsello GF, Osada N, Marchiori E, Sielker S, Torsello GB. Association of Genetic Polymorphisms with Abdominal Aortic Aneurysm in the Processes of Apoptosis, Inflammation, and Cholesterol Metabolism. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1844. [PMID: 37893562 PMCID: PMC10608078 DOI: 10.3390/medicina59101844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/26/2023] [Accepted: 10/14/2023] [Indexed: 10/29/2023]
Abstract
Background and Objectives: This study aims to identify the minor allele of the single nucleotide polymorphisms (SNPs) DAB2IP rs7025486, IL6R rs2228145, CDKN2BAS rs10757278, LPA rs3798220, LRP1 rs1466535, and SORT1 rs599839 in order to assess the risk of abdominal aortic aneurysm (AAA) formation and define the linkage among these SNPs. Materials and Methods: A case-control study with AAA patients (AAA group) and non-AAA controls (control group) was carried out in a study population. DNA was isolated from whole blood samples; the SNPs were amplified using PCR and sequenced. Results: In the AAA group of 148 patients, 87.2% of the patients were male, 64.2% had a history of smoking, and 18.2% had relatives with AAA. The mean ± SD of age, BMI, and aneurysmal diameter in the AAA group were 74.8 ± 8.3 years, 27.6 ± 4.6 kg/m2, and 56.2 ± 11.8 mm, respectively. In comparison with 50 non-AAA patients, there was a significantly elevated presence of the SNPs DAB2IP rs7025486[A], CDKN2BAS rs10757278[G], and SORT1 rs599839[G] in the AAA group (p-values 0.040, 0.024, 0.035, respectively), while LPA rs3798220[C] was significantly higher in the control group (p = 0.049). A haplotype investigation showed that the SNPs DAB2IP, CDKN2BAS, and IL6R rs2228145[C] were significantly elevated in the AAA group (p = 0.037, 0.037, and 0.046) with minor allele frequencies (MAF) of 25.5%, 10.6%, and 15.4%, respectively. Only DAB2IP and CDKN2BAS showed significantly higher occurrences of a mutation (p = 0.028 and 0.047). Except for LPA, all SNPs were associated with a large aortic diameter in AAA (p < 0.001). Linkage disequilibrium detection showed that LPA to DAB2IP, to IL6R, to CDKN2BAS, and to LRP1 rs1466535[T] had D' values of 70.9%, 80.4%, 100%, and 100%, respectively. IL6R to LRP1 and to SORT1 had values for the coefficient of determination (r2) of 3.9% and 2.2%, respectively. Conclusions: In the investigated study population, the SNPs CDKN2BAS rs10757278, LPA rs3798220, SORT1 rs599839, DAB2IP rs7025486, and IL6R rs2228145 were associated with the development of abdominal aortic aneurysms. Individuals with risk factors for atherosclerosis and/or a family history of AAA should be evaluated using genetic analysis.
Collapse
Affiliation(s)
- Nyityasmono Tri Nugroho
- Department of Vascular and Endovascular Surgery, University Hospital Münster, 48149 Münster, Germany
- Vascular and Endovascular Division, Department of Surgery, Cipto Mangunkusumo National Hospital, Faculty of Medicine, University of Indonesia, Jakarta 10430, Indonesia
| | - Monika Herten
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Duisburg-Essen, 45147 Essen, Germany
| | | | - Nani Osada
- Department of Vascular and Endovascular Surgery, University Hospital Münster, 48149 Münster, Germany
| | - Elena Marchiori
- Department of Vascular and Endovascular Surgery, University Hospital Münster, 48149 Münster, Germany
| | - Sonja Sielker
- Research Unit Vascular Biology of Oral Structures (VABOS), Department of Cranio-Maxillofacial Surgery, University Hospital Münster, 48149 Münster, Germany
| | - Giovanni B. Torsello
- Institute for Vascular Research, St. Franziskus Hospital, 48145 Münster, Germany;
| |
Collapse
|
8
|
Bhatia HS. Aspirin and lipoprotein(a) in primary prevention. Curr Opin Lipidol 2023; 34:214-220. [PMID: 37527183 PMCID: PMC11216950 DOI: 10.1097/mol.0000000000000891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
PURPOSE OF REVIEW Lipoprotein(a) [Lp(a)] is causally associated with cardiovascular diseases, and elevated levels are highly prevalent. However, there is a lack of available therapies to address Lp(a)-mediated risk. Though aspirin has progressively fallen out of favor for primary prevention, individuals with high Lp(a) may represent a high-risk group that derives a net benefit. RECENT FINDINGS Aspirin has been demonstrated to have a clear benefit in secondary prevention of cardiovascular disease, but recent primary prevention trials have at best demonstrated a small benefit. However, individuals with elevated Lp(a) may be of high risk enough to benefit, particularly given interactions between Lp(a) and the fibrinolytic system / platelets, and the lack of available targeted medical therapies. In secondary analyses of the Women's Health Study (WHS) and the Aspirin in Reducing Events in the Elderly (ASPREE) trial, aspirin use was associated with a significant reduction in cardiovascular events in carriers of genetic polymorphisms associated with elevated Lp(a) levels. Further studies are needed, however, as these studies focused on narrower subsets of the overall population and genetic markers. SUMMARY Individuals with elevated Lp(a) may benefit from aspirin therapy in primary prevention, but further study with plasma Lp(a) levels, broader populations, and randomization of aspirin are needed.
Collapse
Affiliation(s)
- Harpreet S Bhatia
- Division of Cardiovascular Medicine, Department of Medicine, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
9
|
Chiesa G, Zenti MG, Baragetti A, Barbagallo CM, Borghi C, Colivicchi F, Maggioni AP, Noto D, Pirro M, Rivellese AA, Sampietro T, Sbrana F, Arca M, Averna M, Catapano AL. Consensus document on Lipoprotein(a) from the Italian Society for the Study of Atherosclerosis (SISA). Nutr Metab Cardiovasc Dis 2023; 33:1866-1877. [PMID: 37586921 DOI: 10.1016/j.numecd.2023.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 08/18/2023]
Abstract
AIMS In view of the consolidating evidence on the causal role of Lp(a) in cardiovascular disease, the Italian Society for the Study of Atherosclerosis (SISA) has assembled a consensus on Lp(a) genetics and epidemiology, together with recommendations for its measurement and current and emerging therapeutic approaches to reduce its plasma levels. Data on the Italian population are also provided. DATA SYNTHESIS Lp(a) is constituted by one apo(a) molecule and a lipoprotein closely resembling to a low-density lipoprotein (LDL). Its similarity with an LDL, together with its ability to carry oxidized phospholipids are considered the two main features making Lp(a) harmful for cardiovascular health. Plasma Lp(a) concentrations vary over about 1000 folds in humans and are genetically determined, thus they are quite stable in any individual. Mendelian Randomization studies have suggested a causal role of Lp(a) in atherosclerotic cardiovascular disease (ASCVD) and aortic valve stenosis and observational studies indicate a linear direct correlation between cardiovascular disease and Lp(a) plasma levels. Lp(a) measurement is strongly recommended once in a patient's lifetime, particularly in FH subjects, but also as part of the initial lipid screening to assess cardiovascular risk. The apo(a) size polymorphism represents a challenge for Lp(a) measurement in plasma, but new strategies are overcoming these difficulties. A reduction of Lp(a) levels can be currently attained only by plasma apheresis and, moderately, with PCSK9 inhibitor treatment. CONCLUSIONS Awaiting the approval of selective Lp(a)-lowering drugs, an intensive management of the other risk factors for individuals with elevated Lp(a) levels is strongly recommended.
Collapse
Affiliation(s)
- Giulia Chiesa
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università Degli Studi di Milano, Milan, Italy.
| | - Maria Grazia Zenti
- Section of Diabetes and Metabolism, Pederzoli Hospital, Peschiera Del Garda, Verona, Italy.
| | - Andrea Baragetti
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università Degli Studi di Milano, Milan, Italy; IRCCS MultiMedica, Sesto San Giovanni, Milan, Italy
| | - Carlo M Barbagallo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Claudio Borghi
- Department of Cardiovascular Medicine, IRCCS AOU S. Orsola, Bologna, Italy
| | - Furio Colivicchi
- Division of Clinical Cardiology, San Filippo Neri Hospital, Rome, Italy
| | - Aldo P Maggioni
- ANMCO Research Center, Heart Care Foundation, Firenze, Italy
| | - Davide Noto
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Matteo Pirro
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine and Surgery, University of Perugia, Italy
| | - Angela A Rivellese
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Tiziana Sampietro
- Lipoapheresis Unit, Reference Center for Diagnosis and Treatment of Inherited Dyslipidemias, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Francesco Sbrana
- Lipoapheresis Unit, Reference Center for Diagnosis and Treatment of Inherited Dyslipidemias, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Marcello Arca
- Department of Translational and Precision Medicine (DTPM), Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
| | - Maurizio Averna
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy; Institute of Biophysics, National Council of Researches, Palermo, Italy
| | - Alberico L Catapano
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università Degli Studi di Milano, Milan, Italy; IRCCS MultiMedica, Sesto San Giovanni, Milan, Italy
| |
Collapse
|
10
|
Koschinsky ML, Stroes ESG, Kronenberg F. Daring to dream: Targeting lipoprotein(a) as a causal and risk-enhancing factor. Pharmacol Res 2023; 194:106843. [PMID: 37406784 DOI: 10.1016/j.phrs.2023.106843] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/15/2023] [Accepted: 06/27/2023] [Indexed: 07/07/2023]
Abstract
Lipoprotein(a) [Lp(a)], a distinct lipoprotein class, has become a major focus for cardiovascular research. This review is written in light of the recent guideline and consensus statements on Lp(a) and focuses on 1) the causal association between Lp(a) and cardiovascular outcomes, 2) the potential mechanisms by which elevated Lp(a) contributes to cardiovascular diseases, 3) the metabolic insights on the production and clearance of Lp(a) and 4) the current and future therapeutic approaches to lower Lp(a) concentrations. The concentrations of Lp(a) are under strict genetic control. There exists a continuous relationship between the Lp(a) concentrations and risk for various endpoints of atherosclerotic cardiovascular disease (ASCVD). One in five people in the Caucasian population is considered to have increased Lp(a) concentrations; the prevalence of elevated Lp(a) is even higher in black populations. This makes Lp(a) a cardiovascular risk factor of major public health relevance. Besides the association between Lp(a) and myocardial infarction, the relationship with aortic valve stenosis has become a major focus of research during the last decade. Genetic studies provided strong support for a causal association between Lp(a) and cardiovascular outcomes: carriers of genetic variants associated with lifelong increased Lp(a) concentration are significantly more frequent in patients with ASCVD. This has triggered the development of drugs that can specifically lower Lp(a) concentrations: mRNA-targeting therapies such as anti-sense oligonucleotide (ASO) therapies and short interfering RNA (siRNA) therapies have opened new avenues to lower Lp(a) concentrations more than 95%. Ongoing Phase II and III clinical trials of these compounds are discussed in this review.
Collapse
Affiliation(s)
- Marlys L Koschinsky
- Robarts Research Institute, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada; Department of Physiology & Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Erik S G Stroes
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Florian Kronenberg
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
11
|
Zhang Z, Dai W, Zhu W, Rodriguez M, Lund H, Xia Y, Chen Y, Rau M, Schneider EA, Graham MB, Jobe S, Wang D, Cui W, Wen R, Whiteheart SW, Wood JP, Silverstein R, Berger JS, Kreuziger LB, Barrett TJ, Zheng Z. Plasma tissue-type plasminogen activator is associated with lipoprotein(a) and clinical outcomes in hospitalized patients with COVID-19. Res Pract Thromb Haemost 2023; 7:102164. [PMID: 37680312 PMCID: PMC10480648 DOI: 10.1016/j.rpth.2023.102164] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 09/09/2023] Open
Abstract
Background Patients with COVID-19 have a higher risk of thrombosis and thromboembolism, but the underlying mechanism(s) remain to be fully elucidated. In patients with COVID-19, high lipoprotein(a) (Lp(a)) is positively associated with the risk of ischemic heart disease. Lp(a), composed of an apoB-containing particle and apolipoprotein(a) (apo(a)), inhibits the key fibrinolytic enzyme, tissue-type plasminogen activator (tPA). However, whether the higher Lp(a) associates with lower tPA activity, the longitudinal changes of these parameters in hospitalized patients with COVID-19, and their correlation with clinical outcomes are unknown. Objectives To assess if Lp(a) associates with lower tPA activity in COVID-19 patients, and how in COVID-19 populations Lp(a) and tPA change post infection. Methods Endogenous tPA enzymatic activity, tPA or Lp(a) concentration were measured in plasma from hospitalized patients with and without COVID-19. The association between plasma tPA and adverse clinical outcomes was assessed. Results In hospitalized patients with COVID-19, we found lower tPA enzymatic activity and higher plasma Lp(a) than that in non-COVID-19 controls. During hospitalization, Lp(a) increased and tPA activity decreased, which associates with mortality. Among those who survived, Lp(a) decreased and tPA enzymatic activity increased during recovery. In patients with COVID-19, tPA activity is inversely correlated with tPA concentrations, thus, in another larger COVID-19 cohort, we utilized plasma tPA concentration as a surrogate to inversely reflect tPA activity. The tPA concentration was positively associated with death, disease severity, plasma inflammatory, and prothrombotic markers, and with length of hospitalization among those who were discharged. Conclusion High Lp(a) concentration provides a possible explanation for low endogenous tPA enzymatic activity, and poor clinical outcomes in patients with COVID-19.
Collapse
Affiliation(s)
- Ziyu Zhang
- Versiti Blood Research Institute, Milwaukee, Wisconsin, USA
| | - Wen Dai
- Versiti Blood Research Institute, Milwaukee, Wisconsin, USA
| | - Wen Zhu
- Versiti Blood Research Institute, Milwaukee, Wisconsin, USA
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Maya Rodriguez
- Versiti Blood Research Institute, Milwaukee, Wisconsin, USA
- Diversity Summer Health-Related Research Education Program (DSHREP), Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- College of Arts and Sciences, Marquette University, Milwaukee, Wisconsin, USA
| | - Hayley Lund
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Yuhe Xia
- Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Yiliang Chen
- Versiti Blood Research Institute, Milwaukee, Wisconsin, USA
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Mary Rau
- Department of Pathology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Ellen Anje Schneider
- Department of Pathology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Mary Beth Graham
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Shawn Jobe
- Versiti Blood Research Institute, Milwaukee, Wisconsin, USA
- Center for Bleeding and Clotting Disorders, Michigan State University, Lansing, Michigan, USA
| | - Demin Wang
- Versiti Blood Research Institute, Milwaukee, Wisconsin, USA
| | - Weiguo Cui
- Versiti Blood Research Institute, Milwaukee, Wisconsin, USA
| | - Renren Wen
- Versiti Blood Research Institute, Milwaukee, Wisconsin, USA
| | - Sidney W. Whiteheart
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, Kentucky, USA
- Divison of Cardiovascular Medicine, Gill Heart and Vascular Institute, University of Kentucky, Lexington, Lexington, Kentucky, USA
| | - Jeremy P. Wood
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, Kentucky, USA
- Divison of Cardiovascular Medicine, Gill Heart and Vascular Institute, University of Kentucky, Lexington, Lexington, Kentucky, USA
| | - Roy Silverstein
- Versiti Blood Research Institute, Milwaukee, Wisconsin, USA
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Jeffery S. Berger
- Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
- Department of Surgery, New York University Langone Health, New York, New York, USA
| | - Lisa Baumann Kreuziger
- Versiti Blood Research Institute, Milwaukee, Wisconsin, USA
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Tessa J. Barrett
- Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Ze Zheng
- Versiti Blood Research Institute, Milwaukee, Wisconsin, USA
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
12
|
Farina JM, Pereyra M, Mahmoud AK, Chao CJ, Barry T, Halli Demeter SM, Ayoub C, Arsanjani R. Current Management and Future Perspectives in the Treatment of Lp(a) with a Focus on the Prevention of Cardiovascular Diseases. Pharmaceuticals (Basel) 2023; 16:919. [PMID: 37513831 PMCID: PMC10385436 DOI: 10.3390/ph16070919] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/14/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Lipoprotein(a) [Lp(a)] is a lipid molecule with atherogenic, inflammatory, thrombotic, and antifibrinolytic effects, whose concentrations are predominantly genetically determined. The association between Lp(a) and cardiovascular diseases (CVDs) has been well-established in numerous studies, and the ability to measure Lp(a) levels is widely available in the community. As such, there has been increasing interest in Lp(a) as a therapeutic target for the prevention of CVD. The impact of the currently available lipid-modifying agents on Lp(a) is modest and heterogeneous, except for the monoclonal antibody proprotein convertase subtilisin/kexin type 9 inhibitors (PCSK9i), which demonstrated a significant reduction in Lp(a) levels. However, the absolute reduction in Lp(a) to significantly decrease CVD outcomes has not been definitely established, and the magnitude of the effect of PCSK9i seems insufficient to directly reduce the Lp(a)-related CVD risk. Therefore, emerging therapies are being developed that specifically aim to lower Lp(a) levels and the risk of CVD, including RNA interference (RNAi) agents, which have the capacity for temporary and reversible downregulation of gene expression. This review article aims to summarize the effects of Lp(a) on CVD and to evaluate the available evidence on established and emerging therapies targeting Lp(a) levels, focusing on the potential reduction of CVD risk attributable to Lp(a) concentrations.
Collapse
Affiliation(s)
- Juan M Farina
- Department of Cardiovascular Medicine, Mayo Clinic, 5777 E Mayo Blvd, Phoenix, AZ 85054, USA
| | - Milagros Pereyra
- Department of Cardiovascular Medicine, Mayo Clinic, 5777 E Mayo Blvd, Phoenix, AZ 85054, USA
| | - Ahmed K Mahmoud
- Department of Cardiovascular Medicine, Mayo Clinic, 5777 E Mayo Blvd, Phoenix, AZ 85054, USA
| | - Chieh-Ju Chao
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Timothy Barry
- Department of Cardiovascular Medicine, Mayo Clinic, 5777 E Mayo Blvd, Phoenix, AZ 85054, USA
| | - Susan M Halli Demeter
- Department of Cardiovascular Medicine, Mayo Clinic, 5777 E Mayo Blvd, Phoenix, AZ 85054, USA
| | - Chadi Ayoub
- Department of Cardiovascular Medicine, Mayo Clinic, 5777 E Mayo Blvd, Phoenix, AZ 85054, USA
| | - Reza Arsanjani
- Department of Cardiovascular Medicine, Mayo Clinic, 5777 E Mayo Blvd, Phoenix, AZ 85054, USA
| |
Collapse
|
13
|
Bianconi V, Mannarino MR, Ramondino F, Fusaro J, Giglioni F, Braca M, Ricciutelli F, Lombardini R, Paltriccia R, Greco A, Lega IC, Pirro M. Lipoprotein(a) Does Not Predict Thrombotic Events and In-Hospital Outcomes in Patients with COVID-19. J Clin Med 2023; 12:3543. [PMID: 37240653 PMCID: PMC10218794 DOI: 10.3390/jcm12103543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
The prothrombotic and proinflammatory properties of lipoprotein(a) (Lp(a)) have been hypothesized to play a role in the pathogenesis of severe COVID-19; however, the prognostic impact of Lp(a) on the clinical course of COVID-19 remains controversial. This study aimed to investigate whether Lp(a) may be associated with biomarkers of thrombo-inflammation and the occurrence of thrombotic events or adverse clinical outcomes in patients hospitalized for COVID-19. We consecutively enrolled a cohort of patients hospitalized for COVID-19 and collected blood samples for Lp(a) assessment at hospital admission. A prothrombotic state was evaluated through D-dimer levels, whereas a proinflammatory state was evaluated through C-reactive protein (CRP), procalcitonin, and white blood cell (WBC) levels. Thrombotic events were marked by the diagnosis of deep or superficial vein thrombosis (DVT or SVT), pulmonary embolism (PE), stroke, transient ischemic attack (TIA), acute coronary syndrome (ACS), and critical limb ischemia (CLI). The composite clinical end point of intensive care unit (ICU) admission/in-hospital death was used to evaluate adverse clinical outcomes. Among 564 patients (290 (51%) men, mean age of 74 ± 17 years) the median Lp(a) value at hospital admission was 13 (10-27) mg/dL. During hospitalization, 64 (11%) patients were diagnosed with at least one thrombotic event and 83 (15%) patients met the composite clinical end point. Lp(a), as either a continuous or categorical variable, was not associated with D-dimer, CRP, procalcitonin, and WBC levels (p > 0.05 for all correlation analyses). In addition, Lp(a) was not associated with a risk of thrombotic events (p > 0.05 for multi-adjusted odds ratios) nor with a risk of adverse clinical outcomes (p > 0.05 for multi-adjusted hazard ratios). In conclusion, Lp(a) does not influence biomarkers of plasma thrombotic activity and systemic inflammation nor has any impact on thrombotic events and adverse clinical outcomes in patients hospitalized for COVID-19.
Collapse
Affiliation(s)
- Vanessa Bianconi
- Unit of Internal Medicine, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy; (F.R.); (J.F.); (F.G.); (M.B.); (F.R.); (R.L.); (R.P.); (A.G.); (M.P.)
| | - Massimo R. Mannarino
- Women’s College Research Institute, Women’s College Hospital, Toronto, ON M5G 1N8, Canada; (M.R.M.); (I.C.L.)
| | - Federica Ramondino
- Unit of Internal Medicine, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy; (F.R.); (J.F.); (F.G.); (M.B.); (F.R.); (R.L.); (R.P.); (A.G.); (M.P.)
| | - Jessica Fusaro
- Unit of Internal Medicine, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy; (F.R.); (J.F.); (F.G.); (M.B.); (F.R.); (R.L.); (R.P.); (A.G.); (M.P.)
| | - Francesco Giglioni
- Unit of Internal Medicine, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy; (F.R.); (J.F.); (F.G.); (M.B.); (F.R.); (R.L.); (R.P.); (A.G.); (M.P.)
| | - Marco Braca
- Unit of Internal Medicine, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy; (F.R.); (J.F.); (F.G.); (M.B.); (F.R.); (R.L.); (R.P.); (A.G.); (M.P.)
| | - Federica Ricciutelli
- Unit of Internal Medicine, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy; (F.R.); (J.F.); (F.G.); (M.B.); (F.R.); (R.L.); (R.P.); (A.G.); (M.P.)
| | - Rita Lombardini
- Unit of Internal Medicine, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy; (F.R.); (J.F.); (F.G.); (M.B.); (F.R.); (R.L.); (R.P.); (A.G.); (M.P.)
| | - Rita Paltriccia
- Unit of Internal Medicine, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy; (F.R.); (J.F.); (F.G.); (M.B.); (F.R.); (R.L.); (R.P.); (A.G.); (M.P.)
| | - Alessia Greco
- Unit of Internal Medicine, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy; (F.R.); (J.F.); (F.G.); (M.B.); (F.R.); (R.L.); (R.P.); (A.G.); (M.P.)
| | - Iliana C. Lega
- Women’s College Research Institute, Women’s College Hospital, Toronto, ON M5G 1N8, Canada; (M.R.M.); (I.C.L.)
| | - Matteo Pirro
- Unit of Internal Medicine, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy; (F.R.); (J.F.); (F.G.); (M.B.); (F.R.); (R.L.); (R.P.); (A.G.); (M.P.)
| |
Collapse
|
14
|
Hussain Z, Iqbal J, Liu H, Zhou HD. Exploring the role of lipoprotein(a) in cardiovascular diseases and diabetes in Chinese population. Int J Biol Macromol 2023; 233:123586. [PMID: 36758756 DOI: 10.1016/j.ijbiomac.2023.123586] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/31/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023]
Abstract
A high level of lipoprotein (a) in the plasma has been associated with a variety of cardiovascular diseases and is considered to be an independent predictor of some other diseases. Based on recent studies, the concentration levels of Lp(a) in the Chinese population exhibit a distinctive variation from other populations. In the Chinese population, a high level of Lp(a) indicates a higher incidence of revascularization, platelet aggregation, and thrombogenicity following PCI. Increased risk of atherosclerotic cardiovascular disease (ASCVD) in Chinese population has been linked to higher levels of Lp(a), according to studies. More specifically, it has been found that in Chinese populations, higher levels of Lp(a) were linked to an increased risk of coronary heart disease, severe aortic valve stenosis, deep vein thrombosis in patients with spinal cord injuries, central vein thrombosis in patients receiving hemodialysis, and stroke. Furthermore, new and consistent data retrieved from several clinical trials also suggest that Lp (a) might also play an essential role in some other conditions, including metabolic syndrome, type 2 diabetes and cancers. This review explores the clinical and epidemiological relationships among Lp(a), cardiovascular diseases and diabetes in the Chinese population as well as potential Lp(a) underlying mechanisms in these diseases. However, further research is needed to better understand the role of Lp(a) in cardiovascular diseases and especially diabetes in the Chinese population.
Collapse
Affiliation(s)
- Zubair Hussain
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, 450000, Zhengzhou, China; Department of Pathophysiology, Academy of Medical Science, College of Medicine, Zhengzhou University, 450000, Zhengzhou, China; China-US (Henan) Hormel Cancer Institute, 450000, Zhengzhou, China
| | - Junaid Iqbal
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Hongcai Liu
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; Suzhou Institute of Systems Medicine, Suzhou 215123, China
| | - Hou-De Zhou
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China.
| |
Collapse
|
15
|
Li J. Lipoprotein(a) and Atherosclerotic Cardiovascular Diseases: Evidence from Chinese Population. CARDIOLOGY DISCOVERY 2023; 3:40-47. [DOI: 10.1097/cd9.0000000000000059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Cardiovascular disease (CVD) is the leading cause of mortality worldwide. Multiple factors are involved in CVD, and emerging data indicate that lipoprotein(a) (Lp(a)) may be associated with atherosclerotic cardiovascular disease (ASCVD) independent of other traditional risk factors. Lp(a) has been identified as a novel therapeutic target. Previous studies on the influence of Lp(a) in CVD have mainly used in western populations. In this review, the association of plasma Lp(a) concentration with ASCVD was summarized, with regards to epidemiological, population-based observational, and pathological studies in Chinese populations. Lp(a) mutations and copy number variations in Chinese populations are also explored. Finally, the impact of plasma Lp(a) levels on patients with type 2 diabetes mellitus, cancer, and familial hypercholesterolemia are discussed.
Collapse
Affiliation(s)
- Jianjun Li
- Cardiometabolic Center, Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing 100037, China
| |
Collapse
|
16
|
Sachs UJ, Kirsch-Altena A, Müller J. Markers of Hereditary Thrombophilia with Unclear Significance. Hamostaseologie 2022; 42:370-380. [PMID: 36549289 DOI: 10.1055/s-0042-1757562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Thrombophilia leads to an increased risk of venous thromboembolism. Widely accepted risk factors for thrombophilia comprise deficiencies of protein C, protein S, and antithrombin, as well as the factor V "Leiden" mutation, the prothrombin G20210A mutation, dysfibrinogenemia, and, albeit less conclusive, increased levels of factor VIII. Besides these established markers of thrombophilia, risk factors of unclear significance have been described in the literature. These inherited risk factors include deficiencies or loss-of-activity of the activity of ADAMTS13, heparin cofactor II, plasminogen, tissue factor pathway inhibitor (TFPI), thrombomodulin, protein Z (PZ), as well as PZ-dependent protease inhibitor. On the other hand, thrombophilia has been linked to the gain-of-activity, or elevated levels, of α2-antiplasmin, angiotensin-converting enzyme, coagulation factors IX (FIX) and XI (FXI), fibrinogen, homocysteine, lipoprotein(a), plasminogen activator inhibitor-1 (PAI-1), and thrombin-activatable fibrinolysis inhibitor (TAFI). With respect to the molecular interactions that may influence the thrombotic risk, more complex mechanisms have been described for endothelial protein C receptor (EPCR) and factor XIII (FXIII) Val34Leu. With focus on the risk for venous thrombosis, the present review aims to give an overview on the current knowledge on the significance of the aforementioned markers for thrombophilia screening. According to the current knowledge, there appears to be weak evidence for a potential impact of EPCR, FIX, FXI, FXIII Val34Leu, fibrinogen, homocysteine, PAI-1, PZ, TAFI, and TFPI on the thrombotic risk.
Collapse
Affiliation(s)
- Ulrich J Sachs
- Department of Thrombosis and Haemostasis, Giessen University Hospital, Giessen, Germany.,Institute for Clinical Immunology, Transfusion Medicine and Haemostasis, Justus Liebig University, Giessen, Germany
| | - Anette Kirsch-Altena
- Department of Thrombosis and Haemostasis, Giessen University Hospital, Giessen, Germany
| | - Jens Müller
- Institute for Experimental Haematology and Transfusion Medicine, Bonn University Hospital, Bonn, Germany
| |
Collapse
|
17
|
Yanai H, Adachi H, Hakoshima M, Katsuyama H. Atherogenic Lipoproteins for the Statin Residual Cardiovascular Disease Risk. Int J Mol Sci 2022; 23:ijms232113499. [PMID: 36362288 PMCID: PMC9657259 DOI: 10.3390/ijms232113499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022] Open
Abstract
Randomized controlled trials (RCTs) show that decreases in low-density lipoprotein cholesterol (LDL-C) by the use of statins cause a significant reduction in the development of cardiovascular disease (CVD). However, one of our previous studies showed that, among eight RCTs that investigated the effect of statins vs. a placebo on CVD development, 56–79% of patients had residual CVD risk after the trials. In three RCTs that investigated the effect of a high dose vs. a usual dose of statins on CVD development, 78–87% of patients in the high-dose statin arms still had residual CVD risk. The risk of CVD development remains even when statins are used to strongly reduce LDL-C, and this type of risk is now regarded as statin residual CVD risk. Our study shows that elevated triglyceride (TG) levels, reduced high-density lipoprotein cholesterol (HDL-C), and the existence of obesity/insulin resistance and diabetes may be important metabolic factors that determine statin residual CVD risk. Here, we discuss atherogenic lipoproteins that were not investigated in such RCTs, such as lipoprotein (a) (Lp(a)), remnant lipoproteins, malondialdehyde-modified LDL (MDA-LDL), and small-dense LDL (Sd-LDL). Lp(a) is under strong genetic control by apolipoprotein (a), which is an LPA gene locus. Variations in the LPA gene account for 91% of the variability in the plasma concentration of Lp(a). A meta-analysis showed that genetic variations at the LPA locus are associated with CVD events during statin therapy, independent of the extent of LDL lowering, providing support for exploring strategies targeting circulating concentrations of Lp(a) to reduce CVD events in patients receiving statins. Remnant lipoproteins and small-dense LDL are highly associated with high TG levels, low HDL-C, and obesity/insulin resistance. MDA-LDL is a representative form of oxidized LDL and plays important roles in the formation and development of the primary lesions of atherosclerosis. MDA-LDL levels were higher in CVD patients and diabetic patients than in the control subjects. Furthermore, we demonstrated the atherogenic properties of such lipoproteins and their association with CVD as well as therapeutic approaches.
Collapse
Affiliation(s)
- Hidekatsu Yanai
- Correspondence: ; Tel.: +81-473-72-3501; Fax: +81-473-72-1858
| | | | | | | |
Collapse
|
18
|
Abstract
Purpose of Review Over the past decades, genetic and observational evidence has positioned lipoprotein(a) as novel important and independent risk factor for cardiovascular disease (ASCVD) and aortic valve stenosis. Recent Findings As Lp(a) levels are determined genetically, lifestyle interventions have no effect on Lp(a)-mediated ASCVD risk. While traditional low-density lipoprotein cholesterol (LDL-C) can now be effectively lowered in the vast majority of patients, current lipid lowering therapies have no clinically relevant Lp(a) lowering effect. Summary There are multiple Lp(a)-directed therapies in clinical development targeting LPA mRNA that have shown to lower Lp(a) plasma levels for up to 90%: pelacarsen, olpasiran, and SLN360. Pelacarsen is currently investigated in a phase 3 cardiovascular outcome trial expected to finish in 2024, while olpasiran is about to proceed to phase 3 and SLN360’s phase 1 outcomes were recently published. If proven efficacious, Lp(a) will soon become the next pathway to target in ASCVD risk management.
Collapse
|
19
|
Sohn W, Winkle P, Neutel J, Wu Y, Jabari F, Terrio C, Varrieur T, Wang J, Hellawell J. Pharmacokinetics, Pharmacodynamics, and Tolerability of Olpasiran in Healthy Japanese and Non-Japanese Participants: Results from a Phase I, Single-dose, Open-label Study. Clin Ther 2022; 44:1237-1247. [PMID: 35963802 DOI: 10.1016/j.clinthera.2022.07.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/20/2022] [Accepted: 07/16/2022] [Indexed: 11/25/2022]
Abstract
PURPOSE Olpasiran, an N-acetyl galactosamine-conjugated, hepatocyte-targeted, small interfering RNA, is being developed to reduce plasma lipoprotein (Lp)-(a) concentration by directly targeting the LPA gene. This study evaluated the pharmacokinetics, pharmacodynamics, and tolerability of a single SC injection of olpasiran in healthy, Japanese and non-Japanese participants. METHODS In this Phase I, open-label, parallel-design study, Japanese participants were randomized in a 1:1:1:1 ratio to receive a single 3, 9, 75, or 225 mg dose of olpasiran. Non-Japanese participants received a single 75 mg dose of olpasiran. The primary end points were pharmacokinetic parameters, including Cmax, AUCinf, tmax, and t1/2. Tolerability and change in Lp(a) concentration were also assessed. FINDINGS A total of 27 enrolled participants had a mean (SD) age of 48.0 (12.5) years. Olpasiran Cmax and AUCinf were increased in an approximately dose-proportional manner in the Japanese groups. Mean (SD) Cmax values were 242 (121.0) and 144 (71.3) ng/mL, and mean (SD) AUCinf values were 3550 (592.0) and 2620 (917.0) h·ng/mL, in the Japanese and non-Japanese groups, respectively, given 75 mg of olpasiran. Median tmax ranged from 3.0 to 9.0 hours and mean (SD) t1/2 ranged from 4.0 (0.3) to 6.9 (1.6) hours across all groups. The maximal Lp(a) reduction occurred at day 57, with mean (SD) Lp(a) percentage reductions from baseline ranging from 56.0% (21.0%) to 99.0% (0.2%). A reductions in Lp(a) was observed as early as day 4. All adverse events were mild in severity, with no serious or fatal adverse events. No clinically important changes in tolerability-related laboratory analytes or vital signs were observed. IMPLICATIONS In this population of healthy Japanese participants, dose-proportional increases in exposure and reduced Lp(a) in a dose-dependent manner were found with single 3, 9, 75, and 225 mg doses of olpasiran. The magnitude and durability of Lp(a) reductions were similar between the Japanese and non-Japanese groups. Olpasiran was well tolerated, with no clinically important adverse events or laboratory or vital sign abnormalities.
Collapse
Affiliation(s)
| | - Peter Winkle
- CenExel Clinical Research Center, Anaheim, California
| | - Joel Neutel
- Orange County Research Center, Tustin, California
| | - You Wu
- Amgen Inc, Thousand Oaks, California
| | | | | | | | | | | |
Collapse
|
20
|
Pan Y, Cai X, Jing J, Wang S, Meng X, Mei L, Yang Y, Jin A, DongXiao Y, Li S, Li H, Wei T, Wang Y, Wang Y. Differential associations of lipoprotein(a) level with cerebral large artery and small vessel diseases. Stroke Vasc Neurol 2022; 7:svn-2022-001625. [PMID: 35851316 PMCID: PMC9811597 DOI: 10.1136/svn-2022-001625] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 07/05/2022] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND AND PURPOSE Cerebral large artery and small vessel diseases are related to different pathogenetic mechanisms and have different risk factor profile. Lipoprotein(a) (Lp(a)) was shown to promote atherosclerosis but data was limited on its association with cerebral small vessel diseases (cSVD). The objective of this study was to assess the associations of Lp(a) level with the two types of cerebrovascular diseases. METHODS Community-dwelling subjects aged 50-75 years from the baseline survey of The PolyvasculaR Evaluation for Cognitive Impairment and vaScular Events study were included. Lp(a) concentrations was measured and categorised into three groups according to the tertiles. Eligible participants were scanned by a 3.0T MRI scanner and assessed for intracranial atherosclerosis and cSVD burden based on four imaging markers. RESULTS This study included 3059 subjects. The average age of the participants was 61.2±6.7 years, and 53.5% (1636) were female. Compared with the first tertile, subjects with the second and third tertiles of Lp(a) concentrations were associated with an increased odds of presence of intracranial plaque (18.7% vs 15.4%, adj.OR 1.37, 95% CI 1.08 to 1.75; 18.9% vs 15.4%, adj.OR 1.34, 95% CI 1.05 to 1.72). Similar associations were observed for intracranial atherosclerotic burden. Whereas, subjects with the third tertile of Lp(a) level had a decreased odds of presence of cSVD (25.9% vs 31.7%, adj.OR 0.74, 95% CI 0.60 to 0.92) and lower cSVD burden (adj.cOR 0.76, 95% CI 0.62 to 0.94). CONCLUSIONS In this study, Lp(a) concentrations were positively associated with presence and burden of intracranial atherosclerosis, but was inversely associated with cSVD. TRIAL REGISTRATION NUMBER NCT03178448.
Collapse
Affiliation(s)
- Yuesong Pan
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, China
| | - Xueli Cai
- Department of Neurology, Lishui Hospital, Zhejiang University School of Medicine, Lishui, China
| | - Jing Jing
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, China
| | - Suying Wang
- Cerebrovascular Research Lab, Lishui Hospital, Zhejiang University School of Medicine, Lishui, China
| | - Xia Meng
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, China
| | - Lerong Mei
- Cerebrovascular Research Lab, Lishui Hospital, Zhejiang University School of Medicine, Lishui, China
| | - Yingying Yang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, China
| | - Aoming Jin
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, China
| | - Yao DongXiao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, China
| | - Shan Li
- Cerebrovascular Research Lab, Lishui Hospital, Zhejiang University School of Medicine, Lishui, China
| | - Hao Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, China
| | - Tiemin Wei
- Department of Cardiology, Lishui Hospital, Zhejiang University School of Medicine, Lishui, China
| | - Yongjun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Yilong Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| |
Collapse
|
21
|
Boffa MB. Beyond fibrinolysis: The confounding role of Lp(a) in thrombosis. Atherosclerosis 2022; 349:72-81. [DOI: 10.1016/j.atherosclerosis.2022.04.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/24/2022] [Accepted: 04/05/2022] [Indexed: 12/20/2022]
|
22
|
Coassin S, Chemello K, Khantalin I, Forer L, Döttelmayer P, Schönherr S, Grüneis R, Chong-Hong-Fong C, Nativel B, Ramin-Mangata S, Gallo A, Roche M, Muelegger B, Gieger C, Peters A, Zschocke J, Marimoutou C, Meilhac O, Lamina C, Kronenberg F, Blanchard V, Lambert G. Genome-Wide Characterization of a Highly Penetrant Form of Hyperlipoprotein(a)emia Associated With Genetically Elevated Cardiovascular Risk. Circ Genom Precis Med 2022; 15:e003489. [PMID: 35133173 PMCID: PMC9018215 DOI: 10.1161/circgen.121.003489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Lp(a) (lipoprotein [a]) is a highly atherogenic lipoprotein strongly associated with coronary artery disease (CAD). Lp(a) concentrations are chiefly determined genetically. Investigation of large pedigrees with extreme Lp(a) using modern whole-genome approaches may unravel the genetic determinants underpinning this pathological phenotype.
Collapse
Affiliation(s)
- Stefan Coassin
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology (S.C., L.F., P.D., S.S., R.G., C.L., F.K.), Medical University of Innsbruck, Austria
| | - Kevin Chemello
- Université de La Réunion, INSERM UMR 1188 DéTROI, Sainte-Clotilde, France (K.C., I.K., C.C.-H.-F., B.N., S.R.-M., A.G., M.R., O.M., V.B., G.L.)
| | - Ilya Khantalin
- Université de La Réunion, INSERM UMR 1188 DéTROI, Sainte-Clotilde, France (K.C., I.K., C.C.-H.-F., B.N., S.R.-M., A.G., M.R., O.M., V.B., G.L.).,CHU de La Réunion, Service de Chirurgie Cardiaque Vasculaire et Thoracique, Saint-Denis, France (I.K.)
| | - Lukas Forer
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology (S.C., L.F., P.D., S.S., R.G., C.L., F.K.), Medical University of Innsbruck, Austria
| | - Patricia Döttelmayer
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology (S.C., L.F., P.D., S.S., R.G., C.L., F.K.), Medical University of Innsbruck, Austria
| | - Sebastian Schönherr
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology (S.C., L.F., P.D., S.S., R.G., C.L., F.K.), Medical University of Innsbruck, Austria
| | - Rebecca Grüneis
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology (S.C., L.F., P.D., S.S., R.G., C.L., F.K.), Medical University of Innsbruck, Austria
| | - Clément Chong-Hong-Fong
- Université de La Réunion, INSERM UMR 1188 DéTROI, Sainte-Clotilde, France (K.C., I.K., C.C.-H.-F., B.N., S.R.-M., A.G., M.R., O.M., V.B., G.L.)
| | - Brice Nativel
- Université de La Réunion, INSERM UMR 1188 DéTROI, Sainte-Clotilde, France (K.C., I.K., C.C.-H.-F., B.N., S.R.-M., A.G., M.R., O.M., V.B., G.L.)
| | - Stéphane Ramin-Mangata
- Université de La Réunion, INSERM UMR 1188 DéTROI, Sainte-Clotilde, France (K.C., I.K., C.C.-H.-F., B.N., S.R.-M., A.G., M.R., O.M., V.B., G.L.)
| | - Antonio Gallo
- Université de La Réunion, INSERM UMR 1188 DéTROI, Sainte-Clotilde, France (K.C., I.K., C.C.-H.-F., B.N., S.R.-M., A.G., M.R., O.M., V.B., G.L.)
| | - Mathias Roche
- Université de La Réunion, INSERM UMR 1188 DéTROI, Sainte-Clotilde, France (K.C., I.K., C.C.-H.-F., B.N., S.R.-M., A.G., M.R., O.M., V.B., G.L.)
| | - Beatrix Muelegger
- Institute of Human Genetics (B.M., J.S.), Medical University of Innsbruck, Austria
| | - Christian Gieger
- Research Unit of Molecular Epidemiology (C.G.), Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.,Institute of Epidemiology (C.G., A.P.), Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany (C.G., A.P.)
| | - Annette Peters
- Institute of Epidemiology (C.G., A.P.), Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany (C.G., A.P.)
| | - Johannes Zschocke
- Institute of Human Genetics (B.M., J.S.), Medical University of Innsbruck, Austria
| | | | - Olivier Meilhac
- Université de La Réunion, INSERM UMR 1188 DéTROI, Sainte-Clotilde, France (K.C., I.K., C.C.-H.-F., B.N., S.R.-M., A.G., M.R., O.M., V.B., G.L.).,CHU de La Réunion, CIC EC1410, Saint-Pierre, France (C.M., O.M.)
| | - Claudia Lamina
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology (S.C., L.F., P.D., S.S., R.G., C.L., F.K.), Medical University of Innsbruck, Austria
| | - Florian Kronenberg
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology (S.C., L.F., P.D., S.S., R.G., C.L., F.K.), Medical University of Innsbruck, Austria
| | - Valentin Blanchard
- Université de La Réunion, INSERM UMR 1188 DéTROI, Sainte-Clotilde, France (K.C., I.K., C.C.-H.-F., B.N., S.R.-M., A.G., M.R., O.M., V.B., G.L.).,Department of Medicine, Centre for Heart Lung Innovation, Providence Healthcare Research Institute, St Paul's Hospital, University of British Columbia, Vancouver, Canada (V.B.)
| | - Gilles Lambert
- Université de La Réunion, INSERM UMR 1188 DéTROI, Sainte-Clotilde, France (K.C., I.K., C.C.-H.-F., B.N., S.R.-M., A.G., M.R., O.M., V.B., G.L.)
| |
Collapse
|
23
|
Kalyanasundaram A, Elefteriades J. The Genetics of Inheritable Aortic Diseases. CURRENT CARDIOVASCULAR RISK REPORTS 2022. [DOI: 10.1007/s12170-022-00687-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
24
|
Gressenberger P, Posch F, Pechtold M, Gütl K, Muster V, Jud P, Riedl J, Silbernagel G, Kolesnik E, Schmid J, Raggam RB, Brodmann M, Gary T. Lipoprotein(a) and Pulmonary Embolism Severity-A Retrospective Data Analysis. Front Cardiovasc Med 2022; 9:808605. [PMID: 35198612 PMCID: PMC8858967 DOI: 10.3389/fcvm.2022.808605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/06/2022] [Indexed: 11/13/2022] Open
Abstract
AimWe aimed to investigate a correlation between PE severity and Lp(a) levels.MethodsWe performed a retrospective data analysis from our medical records of PE patients admitted to the University Hospital Graz, Austria. Patients with an Lp(a) reading within a 1-year interval before and after PE diagnosis were included. In accordance with the 2019 ESC guidelines for the diagnosis and management of acute PE, severity assessment was carried out classifying patients into four groups: low risk (LR), intermediate low risk (IML), intermediate high risk (IMH) and high risk (HR). The study period of interest was between January 1, 2002 and August 1, 2020.ResultsWe analyzed 811 patients with PE, of whom 323 (40%) had low-risk PE, 343 (42%) had intermediate-low-risk PE, 64 (8%) had intermediate-high-risk PE, and 81 (10%) had high-risk PE, respectively. We did not observe an association between PE severity and Lp(a) concentrations. In detail, median Lp(a) concentrations were 17 mg/dL [25–75th percentile: 10-37] in low-risk PE patients, 16 mg/dL [10–37] in intermediate-low-risk PE patients, 15mg/dL [10–48] in intermediate-high-risk PE patients, and 13mg/dL [10–27] in high-risk PE patients, respectively (Kruskal-Wallis p = 0.658, p for linear trend = 0.358).ConclusionThe current findings suggest no correlation between PE severity and Lp(a) levels.
Collapse
Affiliation(s)
- Paul Gressenberger
- Division of Angiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- *Correspondence: Paul Gressenberger
| | - Florian Posch
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Moritz Pechtold
- Division of Angiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Katharina Gütl
- Division of Angiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Viktoria Muster
- Division of Angiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Philipp Jud
- Division of Angiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Jakob Riedl
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Günther Silbernagel
- Division of Angiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Ewald Kolesnik
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Johannes Schmid
- Division of General Radiology, Department of Radiology, Medical University of Graz, Graz, Austria
| | - Reinhard B. Raggam
- Division of Angiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Marianne Brodmann
- Division of Angiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Thomas Gary
- Division of Angiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| |
Collapse
|
25
|
Cholesterol Lowering Biotechnological Strategies: From Monoclonal Antibodies to Antisense Therapies. A Pre-Clinical Perspective Review. Cardiovasc Drugs Ther 2022; 37:585-598. [PMID: 35022949 DOI: 10.1007/s10557-021-07293-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/10/2021] [Indexed: 12/17/2022]
Abstract
In recent years, the increase in available genetic information and a better understanding of the genetic bases of dyslipidemias has led to the identification of potential new avenues for therapies. Additionally, the development of new technologies has presented the key for developing novel therapeutic strategies targeting not only proteins (e.g., the monoclonal antibodies and vaccines) but also the transcripts (from antisense oligonucleotides (ASOs) to small interfering RNAs) or the genomic sequence (gene therapies). These pharmacological advances have led to successful therapeutic improvements, particularly in the cardiovascular arena because we are now able to treat rare, genetically driven, and previously untreatable conditions (e.g, familial hypertriglyceridemia or hyperchylomicronemia). In this review, the pre-clinical pharmacological development of the major biotechnological cholesterol lowering advances were discussed, describing facts, gaps, potential future steps forward, and therapeutic opportunities.
Collapse
|
26
|
Reyes-Soffer G, Ginsberg HN, Berglund L, Duell PB, Heffron SP, Kamstrup PR, Lloyd-Jones DM, Marcovina SM, Yeang C, Koschinsky ML. Lipoprotein(a): A Genetically Determined, Causal, and Prevalent Risk Factor for Atherosclerotic Cardiovascular Disease: A Scientific Statement From the American Heart Association. Arterioscler Thromb Vasc Biol 2022; 42:e48-e60. [PMID: 34647487 PMCID: PMC9989949 DOI: 10.1161/atv.0000000000000147] [Citation(s) in RCA: 273] [Impact Index Per Article: 91.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
High levels of lipoprotein(a) [Lp(a)], an apoB100-containing lipoprotein, are an independent and causal risk factor for atherosclerotic cardiovascular diseases through mechanisms associated with increased atherogenesis, inflammation, and thrombosis. Lp(a) is predominantly a monogenic cardiovascular risk determinant, with ≈70% to ≥90% of interindividual heterogeneity in levels being genetically determined. The 2 major protein components of Lp(a) particles are apoB100 and apolipoprotein(a). Lp(a) remains a risk factor for cardiovascular disease development even in the setting of effective reduction of plasma low-density lipoprotein cholesterol and apoB100. Despite its demonstrated contribution to atherosclerotic cardiovascular disease burden, we presently lack standardization and harmonization of assays, universal guidelines for diagnosing and providing risk assessment, and targeted treatments to lower Lp(a). There is a clinical need to understand the genetic and biological basis for variation in Lp(a) levels and its relationship to disease in different ancestry groups. This scientific statement capitalizes on the expertise of a diverse basic science and clinical workgroup to highlight the history, biology, pathophysiology, and emerging clinical evidence in the Lp(a) field. Herein, we address key knowledge gaps and future directions required to mitigate the atherosclerotic cardiovascular disease risk attributable to elevated Lp(a) levels.
Collapse
|
27
|
Koren MJ, Moriarty PM, Baum SJ, Neutel J, Hernandez-Illas M, Weintraub HS, Florio M, Kassahun H, Melquist S, Varrieur T, Haldar SM, Sohn W, Wang H, Elliott-Davey M, Rock BM, Pei T, Homann O, Hellawell J, Watts GF. Preclinical development and phase 1 trial of a novel siRNA targeting lipoprotein(a). Nat Med 2022; 28:96-103. [PMID: 35027752 DOI: 10.1038/s41591-021-01634-w] [Citation(s) in RCA: 136] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 11/17/2021] [Indexed: 12/14/2022]
Abstract
Compelling evidence supports a causal role for lipoprotein(a) (Lp(a)) in cardiovascular disease. No pharmacotherapies directly targeting Lp(a) are currently available for clinical use. Here we report the discovery and development of olpasiran, a first-in-class, synthetic, double-stranded, N-acetylgalactosamine-conjugated small interfering RNA (siRNA) designed to directly inhibit LPA messenger RNA translation in hepatocytes and potently reduce plasma Lp(a) concentration. Olpasiran reduced Lp(a) concentrations in transgenic mice and cynomolgus monkeys in a dose-responsive manner, achieving up to over 80% reduction from baseline for 5-8 weeks after administration of a single dose. In a phase 1 dose-escalation trial of olpasiran (ClinicalTrials.gov: NCT03626662 ), the primary outcome was safety and tolerability, and the secondary outcomes were the change in Lp(a) concentrations and olpasiran pharmacokinetic parameters. Participants tolerated single doses of olpasiran well and experienced a 71-97% reduction in Lp(a) concentration with effects persisting for several months after administration of doses of 9 mg or higher. Serum concentrations of olpasiran increased approximately dose proportionally. Collectively, these results validate the approach of using hepatocyte-targeted siRNA to potently lower Lp(a) in individuals with elevated plasma Lp(a) concentration.
Collapse
Affiliation(s)
- Michael J Koren
- Jacksonville Center for Clinical Research, Jacksonville, FL, USA.
| | | | - Seth J Baum
- Excel Medical Clinical Trials, Boca Raton, FL, USA
| | - Joel Neutel
- Orange County Research Center, Tustin, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | - Tao Pei
- Arrowhead Pharmaceuticals, Inc., Madison, WI, USA
| | | | | | - Gerald F Watts
- University of Western Australia and Royal Perth Hospital, Perth WA, Australia
| |
Collapse
|
28
|
Enkhmaa B, Berglund L. Lp(a) and SARS-CoV-2: A conspiracy of two mysteries. J Intern Med 2022; 291:8-10. [PMID: 34713951 PMCID: PMC8662052 DOI: 10.1111/joim.13356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Byambaa Enkhmaa
- Department of Internal Medicine, School of Medicine, University of California-Davis, Davis, California, USA.,The Center for Precision Medicine and Data Sciences, School of Medicine, University of California-Davis, Davis, California, USA
| | - Lars Berglund
- Department of Internal Medicine, School of Medicine, University of California-Davis, Davis, California, USA
| |
Collapse
|
29
|
Nurmohamed NS, Collard D, Reeskamp LF, Kaiser Y, Kroon J, Tromp TR, van den Born BJH, Coppens M, Vlaar APJ, Beudel M, van de Beek D, van Es N, Moriarty PM, Tsimikas S, Stroes ESG. Lipoprotein(a), venous thromboembolism and COVID-19: A pilot study. Atherosclerosis 2021; 341:43-49. [PMID: 34995986 PMCID: PMC8690577 DOI: 10.1016/j.atherosclerosis.2021.12.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 12/10/2021] [Accepted: 12/14/2021] [Indexed: 12/24/2022]
Abstract
Background and aims Thrombosis is a major driver of adverse outcome and mortality in patients with Coronavirus disease 2019 (COVID-19). Hypercoagulability may be related to the cytokine storm associated with COVID-19, which is mainly driven by interleukin (IL)-6. Plasma lipoprotein(a) [Lp(a)] levels increase following IL-6 upregulation and Lp(a) has anti-fibrinolytic properties. This study investigated whether Lp(a) elevation may contribute to the pro-thrombotic state hallmarking COVID-19 patients. Methods Lp(a), IL-6 and C-reactive protein (CRP) levels were measured in 219 hospitalized patients with COVID-19 and analyzed with linear mixed effects model. The baseline biomarkers and increases during admission were related to venous thromboembolism (VTE) incidence and clinical outcomes in a Kaplan-Meier and logistic regression analysis. Results Lp(a) levels increased significantly by a mean of 16.9 mg/dl in patients with COVID-19 during the first 21 days after admission. Serial Lp(a) measurements were available in 146 patients. In the top tertile of Lp(a) increase, 56.2% of COVID-19 patients experienced a VTE event compared to 18.4% in the lowest tertile (RR 3.06, 95% CI 1.61–5.81; p < 0.001). This association remained significant after adjusting for age, sex, IL-6 and CRP increase and number of measurements. Increases in IL-6 and CRP were not associated with VTE. Increase in Lp(a) was strongly correlated with increase in IL-6 (r = 0.44, 95% CI 0.30–0.56, p < 0.001). Conclusions Increases in Lp(a) levels during the acute phase of COVID-19 were strongly associated with VTE incidence. The acute increase in anti-fibrinolytic Lp(a) may tilt the balance to VTE in patients hospitalized for COVID-19.
Collapse
Affiliation(s)
- Nick S Nurmohamed
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Department of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Didier Collard
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Laurens F Reeskamp
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Yannick Kaiser
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Jeffrey Kroon
- Department of Experimental Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Tycho R Tromp
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | | | - Bert-Jan H van den Born
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Michiel Coppens
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Alexander P J Vlaar
- Department of Intensive Care, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Martijn Beudel
- Department of Neurology, Amsterdam Neuroscience Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Diederik van de Beek
- Department of Neurology, Amsterdam Neuroscience Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Nick van Es
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Patrick M Moriarty
- Division of Clinical Pharmacology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Sotirios Tsimikas
- Division of Cardiovascular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Erik S G Stroes
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
30
|
Durlach V, Bonnefont-Rousselot D, Boccara F, Varret M, Di-Filippo Charcosset M, Cariou B, Valero R, Charriere S, Farnier M, Morange PE, Meilhac O, Lambert G, Moulin P, Gillery P, Beliard-Lasserre S, Bruckert E, Carrié A, Ferrières J, Collet X, Chapman MJ, Anglés-Cano E. Lipoprotein(a): Pathophysiology, measurement, indication and treatment in cardiovascular disease. A consensus statement from the Nouvelle Société Francophone d'Athérosclérose (NSFA). Arch Cardiovasc Dis 2021; 114:828-847. [PMID: 34840125 DOI: 10.1016/j.acvd.2021.10.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 10/19/2022]
Abstract
Lipoprotein(a) is an apolipoprotein B100-containing low-density lipoprotein-like particle that is rich in cholesterol, and is associated with a second major protein, apolipoprotein(a). Apolipoprotein(a) possesses structural similarity to plasminogen but lacks fibrinolytic activity. As a consequence of its composite structure, lipoprotein(a) may: (1) elicit a prothrombotic/antifibrinolytic action favouring clot stability; and (2) enhance atherosclerosis progression via its propensity for retention in the arterial intima, with deposition of its cholesterol load at sites of plaque formation. Equally, lipoprotein(a) may induce inflammation and calcification in the aortic leaflet valve interstitium, leading to calcific aortic valve stenosis. Experimental, epidemiological and genetic evidence support the contention that elevated concentrations of lipoprotein(a) are causally related to atherothrombotic risk and equally to calcific aortic valve stenosis. The plasma concentration of lipoprotein(a) is principally determined by genetic factors, is not influenced by dietary habits, remains essentially constant over the lifetime of a given individual and is the most powerful variable for prediction of lipoprotein(a)-associated cardiovascular risk. However, major interindividual variations (up to 1000-fold) are characteristic of lipoprotein(a) concentrations. In this context, lipoprotein(a) assays, although currently insufficiently standardized, are of considerable interest, not only in stratifying cardiovascular risk, but equally in the clinical follow-up of patients treated with novel lipid-lowering therapies targeted at lipoprotein(a) (e.g. antiapolipoprotein(a) antisense oligonucleotides and small interfering ribonucleic acids) that markedly reduce circulating lipoprotein(a) concentrations. We recommend that lipoprotein(a) be measured once in subjects at high cardiovascular risk with premature coronary heart disease, in familial hypercholesterolaemia, in those with a family history of coronary heart disease and in those with recurrent coronary heart disease despite lipid-lowering treatment. Because of its clinical relevance, the cost of lipoprotein(a) testing should be covered by social security and health authorities.
Collapse
Affiliation(s)
- Vincent Durlach
- Champagne-Ardenne University, UMR CNRS 7369 MEDyC & Cardio-Thoracic Department, Reims University Hospital, 51092 Reims, France
| | - Dominique Bonnefont-Rousselot
- Metabolic Biochemistry Department, Hôpital Pitié-Salpêtrière, AP-HP, 75013 Paris, France; Université de Paris, CNRS, INSERM, UTCBS, 75006 Paris, France
| | - Franck Boccara
- Sorbonne University, GRC n(o) 22, C(2)MV, INSERM UMR_S 938, Centre de Recherche Saint-Antoine, IHU ICAN, 75012 Paris, France; Service de Cardiologie, Hôpital Saint-Antoine, AP-HP, 75012 Paris, France
| | - Mathilde Varret
- Laboratory for Vascular Translational Science (LVTS), INSERM U1148, Centre Hospitalier Universitaire Xavier Bichat, 75018 Paris, France; Université de Paris, 75018 Paris, France
| | - Mathilde Di-Filippo Charcosset
- Hospices Civils de Lyon, UF Dyslipidémies, 69677 Bron, France; Laboratoire CarMen, INSERM, INRA, INSA, Université Claude-Bernard Lyon 1, 69495 Pierre-Bénite, France
| | - Bertrand Cariou
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'Institut du Thorax, 44000 Nantes, France
| | - René Valero
- Endocrinology Department, La Conception Hospital, AP-HM, Aix-Marseille University, INSERM, INRAE, C2VN, 13005 Marseille, France
| | - Sybil Charriere
- Hospices Civils de Lyon, INSERM U1060, Laboratoire CarMeN, Université Lyon 1, 69310 Pierre-Bénite, France
| | - Michel Farnier
- PEC2, EA 7460, University of Bourgogne Franche-Comté, 21079 Dijon, France; Department of Cardiology, CHU Dijon Bourgogne, 21000 Dijon, France
| | - Pierre E Morange
- Aix-Marseille University, INSERM, INRAE, C2VN, 13385 Marseille, France
| | - Olivier Meilhac
- INSERM, UMR 1188 DéTROI, Université de La Réunion, 97744 Saint-Denis de La Réunion, Reunion; CHU de La Réunion, CIC-EC 1410, 97448 Saint-Pierre, Reunion
| | - Gilles Lambert
- INSERM, UMR 1188 DéTROI, Université de La Réunion, 97744 Saint-Denis de La Réunion, Reunion; CHU de La Réunion, CIC-EC 1410, 97448 Saint-Pierre, Reunion
| | - Philippe Moulin
- Hospices Civils de Lyon, INSERM U1060, Laboratoire CarMeN, Université Lyon 1, 69310 Pierre-Bénite, France
| | - Philippe Gillery
- Laboratory of Biochemistry-Pharmacology-Toxicology, Reims University Hospital, University of Reims Champagne-Ardenne, UMR CNRS/URCA n(o) 7369, 51092 Reims, France
| | - Sophie Beliard-Lasserre
- Endocrinology Department, La Conception Hospital, AP-HM, Aix-Marseille University, INSERM, INRAE, C2VN, 13005 Marseille, France
| | - Eric Bruckert
- Service d'Endocrinologie-Métabolisme, Hôpital Pitié-Salpêtrière, AP-HP, 75013 Paris, France; IHU ICAN, Sorbonne University, 75013 Paris, France
| | - Alain Carrié
- Sorbonne University, UMR INSERM 1166, IHU ICAN, Laboratory of Endocrine and Oncological Biochemistry, Obesity and Dyslipidaemia Genetic Unit, Hôpital Pitié-Salpêtrière, AP-HP, 75013 Paris, France
| | - Jean Ferrières
- Department of Cardiology and INSERM UMR 1295, Rangueil University Hospital, TSA 50032, 31059 Toulouse, France
| | - Xavier Collet
- INSERM U1048, Institute of Metabolic and Cardiovascular Diseases, Rangueil University Hospital, BP 84225, 31432 Toulouse, France
| | - M John Chapman
- Sorbonne University, Hôpital Pitié-Salpêtrière and National Institute for Health and Medical Research (INSERM), 75013 Paris, France
| | - Eduardo Anglés-Cano
- Université de Paris, INSERM, Innovative Therapies in Haemostasis, 75006 Paris, France.
| |
Collapse
|
31
|
Lipoprotein (a) and Cardiovascular Disease: A Missing Link for Premature Atherosclerotic Heart Disease and/or Residual Risk. J Cardiovasc Pharmacol 2021; 79:e18-e35. [PMID: 34694242 DOI: 10.1097/fjc.0000000000001160] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/30/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT Lipoprotein(a) or lipoprotein "little a" is an under-recognized causal risk factor for cardiovascular (CV) disease (CVD), including coronary atherosclerosis, aortic valvular stenosis, ischemic stroke, heart failure and peripheral arterial disease. Elevated plasma Lp(a) (≥50 mg/dL or ≥100 nmol/L) is commonly encountered in almost 1 in 5 individuals and confers a higher CV risk compared to those with normal Lp(a) levels, although such normal levels have not been generally agreed upon. Elevated Lp(a) is considered a cause of premature and accelerated atherosclerotic CVD. Thus, in patients with a positive family or personal history of premature coronary artery disease (CAD), Lp(a) should be measured. However, elevated Lp(a) may confer increased risk for incident CAD even in the absence of a family history of CAD, and even in those who have guideline-lowered LDL-cholesterol (<70 mg/dl) and continue to have a persisting CV residual risk. Thus, measurement of Lp(a) will have a significant clinical impact on the assessment of atherosclerotic CVD risk, and will assume a more important role in managing patients with CVD with the advent and clinical application of specific Lp(a)-lowering therapies. Conventional therapeutic approaches like lifestyle modification and statin therapy remain ineffective at lowering Lp(a). Newer treatment modalities, such as gene silencing via RNA interference with use of antisense oligonucleotide(s) or small interfering RNA molecules targeting Lp(a) seem very promising. These issues are herein reviewed, accumulated data are scrutinized, meta-analyses and current guidelines are tabulated and Lp(a)-related CVDs and newer therapeutic modalities are pictorially illustrated.
Collapse
|
32
|
Björnsson E, Thorgeirsson G, Helgadóttir A, Thorleifsson G, Sveinbjörnsson G, Kristmundsdóttir S, Jónsson H, Jónasdóttir A, Jónasdóttir Á, Sigurðsson Á, Guðnason T, Ólafsson Í, Sigurðsson EL, Sigurðardóttir Ó, Viðarsson B, Baldvinsson M, Bjarnason R, Danielsen R, Matthíasson SE, Thórarinsson BL, Grétarsdóttir S, Steinthórsdóttir V, Halldórsson BV, Andersen K, Arnar DO, Jónsdóttir I, Guðbjartsson DF, Hólm H, Thorsteinsdóttir U, Sulem P, Stefánsson K. Large-Scale Screening for Monogenic and Clinically Defined Familial Hypercholesterolemia in Iceland. Arterioscler Thromb Vasc Biol 2021; 41:2616-2628. [PMID: 34407635 PMCID: PMC8454500 DOI: 10.1161/atvbaha.120.315904] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 08/02/2021] [Indexed: 01/07/2023]
Abstract
Objective: Familial hypercholesterolemia (FH) is traditionally defined as a monogenic disease characterized by severely elevated LDL-C (low-density lipoprotein cholesterol) levels. In practice, FH is commonly a clinical diagnosis without confirmation of a causative mutation. In this study, we sought to characterize and compare monogenic and clinically defined FH in a large sample of Icelanders. Approach and Results: We whole-genome sequenced 49 962 Icelanders and imputed the identified variants into an overall sample of 166 281 chip-genotyped Icelanders. We identified 20 FH mutations in LDLR, APOB, and PCSK9 with combined prevalence of 1 in 836. Monogenic FH was associated with severely elevated LDL-C levels and increased risk of premature coronary disease, aortic valve stenosis, and high burden of coronary atherosclerosis. We used a modified version of the Dutch Lipid Clinic Network criteria to screen for the clinical FH phenotype among living adult participants (N=79 058). Clinical FH was found in 2.2% of participants, of whom only 5.2% had monogenic FH. Mutation-negative clinical FH has a strong polygenic basis. Both individuals with monogenic FH and individuals with mutation-negative clinical FH were markedly undertreated with cholesterol-lowering medications and only a minority attained an LDL-C target of <2.6 mmol/L (<100 mg/dL; 11.0% and 24.9%, respectively) or <1.8 mmol/L (<70 mg/dL; 0.0% and 5.2%, respectively), as recommended for primary prevention by European Society of Cardiology/European Atherosclerosis Society cholesterol guidelines. Conclusions: Clinically defined FH is a relatively common phenotype that is explained by monogenic FH in only a minority of cases. Both monogenic and clinical FH confer high cardiovascular risk but are markedly undertreated.
Collapse
Affiliation(s)
- Eythór Björnsson
- deCODE genetics/Amgen, Inc, Reykjavík, Iceland (E.B., G. Thorgeirsson, A.H., G. Thorleifsson, G.S., S.K., H.J., Aðalbjörg Jónasdóttir, Áslaug Jónasdóttir, A.S., S.G., V.S., B.V.H., D.O.A., I.J., D.F.G., H.H., U.T., P.S., K.S.)
- Faculty of Medicine, University of Iceland, Reykjavík (E.B., E.L.S., R.B., K.A., D.O.A., I.J., U.T., K.S.)
- Department of Internal Medicine (E.B.), Landspítali-The National University Hospital of Iceland, Reykjavík
| | - Guðmundur Thorgeirsson
- deCODE genetics/Amgen, Inc, Reykjavík, Iceland (E.B., G. Thorgeirsson, A.H., G. Thorleifsson, G.S., S.K., H.J., Aðalbjörg Jónasdóttir, Áslaug Jónasdóttir, A.S., S.G., V.S., B.V.H., D.O.A., I.J., D.F.G., H.H., U.T., P.S., K.S.)
- Division of Cardiology, Department of Internal Medicine (G. Thorgeirsson, R.D., K.A., D.O.A.), Landspítali-The National University Hospital of Iceland, Reykjavík
| | - Anna Helgadóttir
- deCODE genetics/Amgen, Inc, Reykjavík, Iceland (E.B., G. Thorgeirsson, A.H., G. Thorleifsson, G.S., S.K., H.J., Aðalbjörg Jónasdóttir, Áslaug Jónasdóttir, A.S., S.G., V.S., B.V.H., D.O.A., I.J., D.F.G., H.H., U.T., P.S., K.S.)
| | - Guðmar Thorleifsson
- deCODE genetics/Amgen, Inc, Reykjavík, Iceland (E.B., G. Thorgeirsson, A.H., G. Thorleifsson, G.S., S.K., H.J., Aðalbjörg Jónasdóttir, Áslaug Jónasdóttir, A.S., S.G., V.S., B.V.H., D.O.A., I.J., D.F.G., H.H., U.T., P.S., K.S.)
| | - Garðar Sveinbjörnsson
- deCODE genetics/Amgen, Inc, Reykjavík, Iceland (E.B., G. Thorgeirsson, A.H., G. Thorleifsson, G.S., S.K., H.J., Aðalbjörg Jónasdóttir, Áslaug Jónasdóttir, A.S., S.G., V.S., B.V.H., D.O.A., I.J., D.F.G., H.H., U.T., P.S., K.S.)
| | - Snaedís Kristmundsdóttir
- deCODE genetics/Amgen, Inc, Reykjavík, Iceland (E.B., G. Thorgeirsson, A.H., G. Thorleifsson, G.S., S.K., H.J., Aðalbjörg Jónasdóttir, Áslaug Jónasdóttir, A.S., S.G., V.S., B.V.H., D.O.A., I.J., D.F.G., H.H., U.T., P.S., K.S.)
| | - Hákon Jónsson
- deCODE genetics/Amgen, Inc, Reykjavík, Iceland (E.B., G. Thorgeirsson, A.H., G. Thorleifsson, G.S., S.K., H.J., Aðalbjörg Jónasdóttir, Áslaug Jónasdóttir, A.S., S.G., V.S., B.V.H., D.O.A., I.J., D.F.G., H.H., U.T., P.S., K.S.)
| | - Aðalbjörg Jónasdóttir
- deCODE genetics/Amgen, Inc, Reykjavík, Iceland (E.B., G. Thorgeirsson, A.H., G. Thorleifsson, G.S., S.K., H.J., Aðalbjörg Jónasdóttir, Áslaug Jónasdóttir, A.S., S.G., V.S., B.V.H., D.O.A., I.J., D.F.G., H.H., U.T., P.S., K.S.)
| | - Áslaug Jónasdóttir
- deCODE genetics/Amgen, Inc, Reykjavík, Iceland (E.B., G. Thorgeirsson, A.H., G. Thorleifsson, G.S., S.K., H.J., Aðalbjörg Jónasdóttir, Áslaug Jónasdóttir, A.S., S.G., V.S., B.V.H., D.O.A., I.J., D.F.G., H.H., U.T., P.S., K.S.)
| | - Ásgeir Sigurðsson
- deCODE genetics/Amgen, Inc, Reykjavík, Iceland (E.B., G. Thorgeirsson, A.H., G. Thorleifsson, G.S., S.K., H.J., Aðalbjörg Jónasdóttir, Áslaug Jónasdóttir, A.S., S.G., V.S., B.V.H., D.O.A., I.J., D.F.G., H.H., U.T., P.S., K.S.)
| | | | - Ísleifur Ólafsson
- Department of Clinical Biochemistry (I.O.), Landspítali-The National University Hospital of Iceland, Reykjavík
| | - Emil L. Sigurðsson
- Faculty of Medicine, University of Iceland, Reykjavík (E.B., E.L.S., R.B., K.A., D.O.A., I.J., U.T., K.S.)
- Development Centre for the Primary Care, Reykjavík, Iceland (E.L.S.)
| | | | - Brynjar Viðarsson
- Department of Hematology (B.V.), Landspítali-The National University Hospital of Iceland, Reykjavík
- The Laboratory in Mjódd, Reykjavík, Iceland (B.V.)
| | | | - Ragnar Bjarnason
- Faculty of Medicine, University of Iceland, Reykjavík (E.B., E.L.S., R.B., K.A., D.O.A., I.J., U.T., K.S.)
- Children’s Medical Center (R.B.), Landspítali-The National University Hospital of Iceland, Reykjavík
| | - Ragnar Danielsen
- Division of Cardiology, Department of Internal Medicine (G. Thorgeirsson, R.D., K.A., D.O.A.), Landspítali-The National University Hospital of Iceland, Reykjavík
| | | | - Björn L. Thórarinsson
- Department of Neurology (B.L.T.), Landspítali-The National University Hospital of Iceland, Reykjavík
| | - Sólveig Grétarsdóttir
- deCODE genetics/Amgen, Inc, Reykjavík, Iceland (E.B., G. Thorgeirsson, A.H., G. Thorleifsson, G.S., S.K., H.J., Aðalbjörg Jónasdóttir, Áslaug Jónasdóttir, A.S., S.G., V.S., B.V.H., D.O.A., I.J., D.F.G., H.H., U.T., P.S., K.S.)
| | - Valgerður Steinthórsdóttir
- deCODE genetics/Amgen, Inc, Reykjavík, Iceland (E.B., G. Thorgeirsson, A.H., G. Thorleifsson, G.S., S.K., H.J., Aðalbjörg Jónasdóttir, Áslaug Jónasdóttir, A.S., S.G., V.S., B.V.H., D.O.A., I.J., D.F.G., H.H., U.T., P.S., K.S.)
| | - Bjarni V. Halldórsson
- deCODE genetics/Amgen, Inc, Reykjavík, Iceland (E.B., G. Thorgeirsson, A.H., G. Thorleifsson, G.S., S.K., H.J., Aðalbjörg Jónasdóttir, Áslaug Jónasdóttir, A.S., S.G., V.S., B.V.H., D.O.A., I.J., D.F.G., H.H., U.T., P.S., K.S.)
| | - Karl Andersen
- Faculty of Medicine, University of Iceland, Reykjavík (E.B., E.L.S., R.B., K.A., D.O.A., I.J., U.T., K.S.)
- Division of Cardiology, Department of Internal Medicine (G. Thorgeirsson, R.D., K.A., D.O.A.), Landspítali-The National University Hospital of Iceland, Reykjavík
| | - Davíð O. Arnar
- deCODE genetics/Amgen, Inc, Reykjavík, Iceland (E.B., G. Thorgeirsson, A.H., G. Thorleifsson, G.S., S.K., H.J., Aðalbjörg Jónasdóttir, Áslaug Jónasdóttir, A.S., S.G., V.S., B.V.H., D.O.A., I.J., D.F.G., H.H., U.T., P.S., K.S.)
- Faculty of Medicine, University of Iceland, Reykjavík (E.B., E.L.S., R.B., K.A., D.O.A., I.J., U.T., K.S.)
- Division of Cardiology, Department of Internal Medicine (G. Thorgeirsson, R.D., K.A., D.O.A.), Landspítali-The National University Hospital of Iceland, Reykjavík
| | - Ingileif Jónsdóttir
- deCODE genetics/Amgen, Inc, Reykjavík, Iceland (E.B., G. Thorgeirsson, A.H., G. Thorleifsson, G.S., S.K., H.J., Aðalbjörg Jónasdóttir, Áslaug Jónasdóttir, A.S., S.G., V.S., B.V.H., D.O.A., I.J., D.F.G., H.H., U.T., P.S., K.S.)
- Faculty of Medicine, University of Iceland, Reykjavík (E.B., E.L.S., R.B., K.A., D.O.A., I.J., U.T., K.S.)
| | - Daníel F. Guðbjartsson
- deCODE genetics/Amgen, Inc, Reykjavík, Iceland (E.B., G. Thorgeirsson, A.H., G. Thorleifsson, G.S., S.K., H.J., Aðalbjörg Jónasdóttir, Áslaug Jónasdóttir, A.S., S.G., V.S., B.V.H., D.O.A., I.J., D.F.G., H.H., U.T., P.S., K.S.)
- School of Engineering and Natural Sciences, University of Iceland, Reykjavík (D.F.G.)
| | - Hilma Hólm
- deCODE genetics/Amgen, Inc, Reykjavík, Iceland (E.B., G. Thorgeirsson, A.H., G. Thorleifsson, G.S., S.K., H.J., Aðalbjörg Jónasdóttir, Áslaug Jónasdóttir, A.S., S.G., V.S., B.V.H., D.O.A., I.J., D.F.G., H.H., U.T., P.S., K.S.)
| | - Unnur Thorsteinsdóttir
- deCODE genetics/Amgen, Inc, Reykjavík, Iceland (E.B., G. Thorgeirsson, A.H., G. Thorleifsson, G.S., S.K., H.J., Aðalbjörg Jónasdóttir, Áslaug Jónasdóttir, A.S., S.G., V.S., B.V.H., D.O.A., I.J., D.F.G., H.H., U.T., P.S., K.S.)
- Faculty of Medicine, University of Iceland, Reykjavík (E.B., E.L.S., R.B., K.A., D.O.A., I.J., U.T., K.S.)
| | - Patrick Sulem
- deCODE genetics/Amgen, Inc, Reykjavík, Iceland (E.B., G. Thorgeirsson, A.H., G. Thorleifsson, G.S., S.K., H.J., Aðalbjörg Jónasdóttir, Áslaug Jónasdóttir, A.S., S.G., V.S., B.V.H., D.O.A., I.J., D.F.G., H.H., U.T., P.S., K.S.)
| | - Kári Stefánsson
- deCODE genetics/Amgen, Inc, Reykjavík, Iceland (E.B., G. Thorgeirsson, A.H., G. Thorleifsson, G.S., S.K., H.J., Aðalbjörg Jónasdóttir, Áslaug Jónasdóttir, A.S., S.G., V.S., B.V.H., D.O.A., I.J., D.F.G., H.H., U.T., P.S., K.S.)
- Faculty of Medicine, University of Iceland, Reykjavík (E.B., E.L.S., R.B., K.A., D.O.A., I.J., U.T., K.S.)
| |
Collapse
|
33
|
Mikaelsdottir E, Thorleifsson G, Stefansdottir L, Halldorsson G, Sigurdsson JK, Lund SH, Tragante V, Melsted P, Rognvaldsson S, Norland K, Helgadottir A, Magnusson MK, Ragnarsson GB, Kristinsson SY, Reykdal S, Vidarsson B, Gudmundsdottir IJ, Olafsson I, Onundarson PT, Sigurdardottir O, Sigurdsson EL, Grondal G, Geirsson AJ, Geirsson G, Gudmundsson J, Holm H, Saevarsdottir S, Jonsdottir I, Thorgeirsson G, Gudbjartsson DF, Thorsteinsdottir U, Rafnar T, Stefansson K. Genetic variants associated with platelet count are predictive of human disease and physiological markers. Commun Biol 2021; 4:1132. [PMID: 34580418 PMCID: PMC8476563 DOI: 10.1038/s42003-021-02642-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 09/07/2021] [Indexed: 12/13/2022] Open
Abstract
Platelets play an important role in hemostasis and other aspects of vascular biology. We conducted a meta-analysis of platelet count GWAS using data on 536,974 Europeans and identified 577 independent associations. To search for mechanisms through which these variants affect platelets, we applied cis-expression quantitative trait locus, DEPICT and IPA analyses and assessed genetic sharing between platelet count and various traits using polygenic risk scoring. We found genetic sharing between platelet count and counts of other blood cells (except red blood cells), in addition to several other quantitative traits, including markers of cardiovascular, liver and kidney functions, height, and weight. Platelet count polygenic risk score was predictive of myeloproliferative neoplasms, rheumatoid arthritis, ankylosing spondylitis, hypertension, and benign prostate hyperplasia. Taken together, these results advance understanding of diverse aspects of platelet biology and how they affect biological processes in health and disease. Evgenia Mikaelsdottir et al. report a study of variants associated with platelet count among European individuals where they identify 577 associations. They also report a genetic overlap between platelet count and human diseases, including myeloproliferative neoplasms, rheumatoid arthritis, and hypertension, as well as a genetic overlap between platelet count and various physiological markers.
Collapse
Affiliation(s)
| | | | | | | | | | - Sigrun H Lund
- deCODE Genetics/Amgen, Sturlugata 8, 101, Reykjavik, Iceland
| | | | - Pall Melsted
- deCODE Genetics/Amgen, Sturlugata 8, 101, Reykjavik, Iceland.,School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | | | | | | | - Magnus K Magnusson
- deCODE Genetics/Amgen, Sturlugata 8, 101, Reykjavik, Iceland.,Faculty of Medicine, University of Iceland, 101, Reykjavik, Iceland
| | - Gunnar B Ragnarsson
- Department of Oncology, Landspitali-University Hospital, 101, Reykjavik, Iceland
| | - Sigurdur Y Kristinsson
- Faculty of Medicine, University of Iceland, 101, Reykjavik, Iceland.,Department of Hematology, Landspitali-University Hospital, 101, Reykjavik, Iceland
| | - Sigrun Reykdal
- Department of Hematology, Landspitali-University Hospital, 101, Reykjavik, Iceland
| | - Brynjar Vidarsson
- Department of Hematology, Landspitali-University Hospital, 101, Reykjavik, Iceland
| | | | - Isleifur Olafsson
- Department of Clinical Biochemistry, Landspitali-University Hospital, 101, Reykjavik, Iceland
| | - Pall T Onundarson
- Faculty of Medicine, University of Iceland, 101, Reykjavik, Iceland.,Laboratory Hematology, Landspitali-University Hospital, 101, Reykjavik, Iceland
| | - Olof Sigurdardottir
- Department of Clinical Biochemistry, Akureyri Hospital, 600, Akureyri, Iceland
| | | | - Gerdur Grondal
- Department of Rheumatology, Landspitali-University Hospital, 101, Reykjavik, Iceland
| | - Arni J Geirsson
- Department of Rheumatology, Landspitali-University Hospital, 101, Reykjavik, Iceland
| | - Gudmundur Geirsson
- Department of Urology, Landspitali-University Hospital, 101, Reykjavik, Iceland
| | | | - Hilma Holm
- deCODE Genetics/Amgen, Sturlugata 8, 101, Reykjavik, Iceland
| | - Saedis Saevarsdottir
- deCODE Genetics/Amgen, Sturlugata 8, 101, Reykjavik, Iceland.,Faculty of Medicine, University of Iceland, 101, Reykjavik, Iceland.,Department of Rheumatology, Landspitali-University Hospital, 101, Reykjavik, Iceland
| | - Ingileif Jonsdottir
- deCODE Genetics/Amgen, Sturlugata 8, 101, Reykjavik, Iceland.,Faculty of Medicine, University of Iceland, 101, Reykjavik, Iceland
| | - Gudmundur Thorgeirsson
- deCODE Genetics/Amgen, Sturlugata 8, 101, Reykjavik, Iceland.,Department of Cardiology, Landspitali-University Hospital, 101, Reykjavik, Iceland
| | - Daniel F Gudbjartsson
- deCODE Genetics/Amgen, Sturlugata 8, 101, Reykjavik, Iceland.,School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Unnur Thorsteinsdottir
- deCODE Genetics/Amgen, Sturlugata 8, 101, Reykjavik, Iceland.,Faculty of Medicine, University of Iceland, 101, Reykjavik, Iceland
| | - Thorunn Rafnar
- deCODE Genetics/Amgen, Sturlugata 8, 101, Reykjavik, Iceland
| | - Kari Stefansson
- deCODE Genetics/Amgen, Sturlugata 8, 101, Reykjavik, Iceland. .,Faculty of Medicine, University of Iceland, 101, Reykjavik, Iceland.
| |
Collapse
|
34
|
Satterfield BA, Dikilitas O, Safarova MS, Clarke SL, Tcheandjieu C, Zhu X, Bastarache L, Larson EB, Justice AE, Shang N, Rosenthal EA, Shah AS, Namjou-Khales B, Urbina EM, Wei WQ, Feng Q, Jarvik GP, Hebbring SJ, de Andrade M, Manolio TA, Assimes TL, Kullo IJ. Associations of Genetically Predicted Lp(a) (Lipoprotein [a]) Levels With Cardiovascular Traits in Individuals of European and African Ancestry. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2021; 14:e003354. [PMID: 34282949 PMCID: PMC8634549 DOI: 10.1161/circgen.120.003354] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Lp(a) (lipoprotein [a]) levels are higher in individuals of African ancestry (AA) than in individuals of European ancestry (EA). We examined associations of genetically predicted Lp(a) levels with (1) atherosclerotic cardiovascular disease subtypes: coronary heart disease, cerebrovascular disease, peripheral artery disease, and abdominal aortic aneurysm and (2) nonatherosclerotic cardiovascular disease phenotypes, stratified by ancestry. METHODS We performed (1) Mendelian randomization analyses for previously reported cardiovascular associations and (2) Mendelian randomization-phenome-wide association analyses for novel associations. Analyses were stratified by ancestry in electronic Medical Records and Genomics, United Kingdom Biobank, and Million Veteran Program cohorts separately and in a combined cohort of 804 507 EA and 103 580 AA participants. RESULTS In Mendelian randomization analyses using the combined cohort, a 1-SD genetic increase in Lp(a) level was associated with atherosclerotic cardiovascular disease subtypes in EA-odds ratio and 95% CI for coronary heart disease 1.28 (1.16-1.41); cerebrovascular disease 1.14 (1.07-1.21); peripheral artery disease 1.22 (1.11-1.34); abdominal aortic aneurysm 1.28 (1.17-1.40); in AA, the effect estimate was lower than in EA and nonsignificant for coronary heart disease 1.11 (0.99-1.24) and cerebrovascular disease 1.06 (0.99-1.14) but similar for peripheral artery disease 1.16 (1.01-1.33) and abdominal aortic aneurysm 1.34 (1.11-1.62). In EA, a 1-SD genetic increase in Lp(a) level was associated with aortic valve disorders 1.34 (1.10-1.62), mitral valve disorders 1.18 (1.09-1.27), congestive heart failure 1.12 (1.05-1.19), and chronic kidney disease 1.07 (1.01-1.14). In AA, no significant associations were noted for aortic valve disorders 1.08 (0.94-1.25), mitral valve disorders 1.02 (0.89-1.16), congestive heart failure 1.02 (0.95-1.10), or chronic kidney disease 1.05 (0.99-1.12). Mendelian randomization-phenome-wide association analyses identified novel associations in EA with arterial thromboembolic disease, nonaortic aneurysmal disease, atrial fibrillation, cardiac conduction disorders, and hypertension. CONCLUSIONS Many cardiovascular associations of genetically increased Lp(a) that were significant in EA were not significant in AA. Lp(a) was associated with atherosclerotic cardiovascular disease in four major arterial beds in EA but only with peripheral artery disease and abdominal aortic aneurysm in AA. Additionally, novel cardiovascular associations were detected in EA.
Collapse
Affiliation(s)
| | - Ozan Dikilitas
- Dept of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
| | | | - Shoa L. Clarke
- VA Palo Alto Health Care System, Palo Alto
- Division of Cardiovascular Medicine, Dept of Medicine, Stanford Univ School of Medicine, Stanford, CA
| | - Catherine Tcheandjieu
- VA Palo Alto Health Care System, Palo Alto
- Division of Cardiovascular Medicine, Dept of Medicine, Stanford Univ School of Medicine, Stanford, CA
- Dept of Pediatric Cardiology, Stanford Univ School of Medicine, Stanford, CA
| | - Xiang Zhu
- VA Palo Alto Health Care System, Palo Alto
- Dept of Statistics, The Pennsylvania State Univ, University Park, PA
- Huck Institutes of the Life Sciences, The Pennsylvania State Univ, University Park, PA
- Dept of Statistics, Stanford Univ, Stanford, CA
| | - Lisa Bastarache
- Dept of Biomedical Informatics, Vanderbilt Univ, Nashville, TN
| | - Eric B. Larson
- Kaiser Permanente Washington Health Research Institutes, Seattle, WA
| | | | - Ning Shang
- Dept of Biomedical Informatics, Columbia Univ, New York, NY
| | | | - Amy Sanghavi Shah
- Division of Endocrinology, Cincinnati Children’s Hospital Medical Center & Univ of Cincinnati
| | - Bahram Namjou-Khales
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center & Dept of Pediatrics, Univ of Cincinnati, College of Medicine, Cincinnati, OH
| | - Elaine M. Urbina
- Division of Endocrinology, Heart Institute, Cincinnati Children’s Hospital Medical Center & Univ of Cincinnati
| | - Wei-Qi Wei
- Dept of Biomedical Informatics, Vanderbilt Univ, Nashville, TN
| | - QiPing Feng
- Division of Clinical Pharmacology, Dept of Medicine, Vanderbilt Univ Medical Center, Nashville, TN
| | - Gail P. Jarvik
- Division of Medical Genetics, Dept of Medicine, Univ of Washington, Seattle, WA
| | - Scott J. Hebbring
- Center for Precision Medicine, Marshfield Clinic Research Institute, WI
| | - Mariza de Andrade
- Dept of Cardiovascular Medicine, Dept of Health Sciences Research, Mayo Clinic, Rochester, MN
| | - Teri A. Manolio
- Division of Genomic Medicine, National Human Genome Research Institute, Bethesda, MD
| | | | - Iftikhar J. Kullo
- Dept of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
- Dept of Cardiovascular Medicine, Gonda Vascular Center, Mayo Clinic, Rochester, MN
| |
Collapse
|
35
|
Rhainds D, Brodeur MR, Tardif JC. Lipoprotein (a): When to Measure and How to Treat? Curr Atheroscler Rep 2021; 23:51. [PMID: 34235598 DOI: 10.1007/s11883-021-00951-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2021] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW The purpose of this article is to review current evidence for lipoprotein (a) (Lp(a)) as a risk factor for multiple cardiovascular (CV) disease phenotypes, provide a rationale for Lp(a) lowering to reduce CV risk, identify therapies that lower Lp(a) levels that are available clinically and under investigation, and discuss future directions. RECENT FINDINGS Mendelian randomization and epidemiological studies have shown that elevated Lp(a) is an independent and causal risk factor for atherosclerosis and major CV events. Lp(a) is also associated with non-atherosclerotic endpoints such as venous thromboembolism and calcific aortic valve disease. It contributes to residual CV risk in patients receiving standard-of-care LDL-lowering therapy. Plasma Lp(a) levels present a skewed distribution towards higher values and vary widely between individuals and according to ethnic background due to genetic variants in the LPA gene, but remain relatively constant throughout a person's life. Thus, elevated Lp(a) (≥50 mg/dL) is a prevalent condition affecting >20% of the population but is still underdiagnosed. Treatment guidelines have begun to advocate measurement of Lp(a) to identify patients with very high levels that have a family history of premature CVD or elevated Lp(a). Lipoprotein apheresis (LA) efficiently lowers Lp(a) and was recently associated with a reduction of incident CV events. Statins have neutral or detrimental effects on Lp(a), while PCSK9 inhibitors significantly reduce its level by up to 30%. Specific lowering of Lp(a) with antisense oligonucleotides (ASO) shows good safety and strong efficacy with up to 90% reductions. The ongoing CV outcomes study Lp(a)HORIZON will provide a first answer as to whether selective Lp(a) lowering with ASO reduces the risk of major CV events. Given the recently established association between Lp(a) level and CV risk, guidelines now recommend Lp(a) measurement in specific clinical conditions. Accordingly, Lp(a) is a current target for drug development to reduce CV risk in patients with elevated levels, and lowering Lp(a) with ASO represents a promising avenue.
Collapse
Affiliation(s)
- David Rhainds
- Montreal Heart Institute Research Center, 5000 Belanger Street, Montréal, Canada
| | - Mathieu R Brodeur
- Montreal Heart Institute Research Center, 5000 Belanger Street, Montréal, Canada
| | - Jean-Claude Tardif
- Montreal Heart Institute Research Center, 5000 Belanger Street, Montréal, Canada. .,Faculty of Medicine, Université de Montréal, Montréal, Canada.
| |
Collapse
|
36
|
Kamstrup PR. Lipoprotein(a) and Cardiovascular Disease. Clin Chem 2021; 67:154-166. [PMID: 33236085 DOI: 10.1093/clinchem/hvaa247] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/25/2020] [Indexed: 01/07/2023]
Abstract
BACKGROUND High lipoprotein(a) concentrations present in 10%-20% of the population have long been linked to increased risk of ischemic cardiovascular disease. It is unclear whether high concentrations represent an unmet medical need. Lipoprotein(a) is currently not a target for treatment to prevent cardiovascular disease. CONTENT The present review summarizes evidence of causality for high lipoprotein(a) concentrations gained from large genetic epidemiologic studies and discusses measurements of lipoprotein(a) and future treatment options for high values found in an estimated >1 billion individuals worldwide. SUMMARY Evidence from mechanistic, observational, and genetic studies support a causal role of lipoprotein(a) in the development of cardiovascular disease, including coronary heart disease and peripheral arterial disease, as well as aortic valve stenosis, and likely also ischemic stroke. Effect sizes are most pronounced for myocardial infarction, peripheral arterial disease, and aortic valve stenosis where high lipoprotein(a) concentrations predict 2- to 3-fold increases in risk. Lipoprotein(a) measurements should be performed using well-validated assays with traceability to a recognized calibrator to ensure common cut-offs for high concentrations and risk assessment. Randomized cardiovascular outcome trials are needed to provide final evidence of causality and to assess the potential clinical benefit of novel, potent lipoprotein(a) lowering therapies.
Collapse
Affiliation(s)
- Pia R Kamstrup
- Department of Clinical Biochemistry.,The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Denmark
| |
Collapse
|
37
|
Kille A, Nührenberg T, Franke K, Valina CM, Leibundgut G, Tsimikas S, Neumann FJ, Hochholzer W. Association of lipoprotein(a) with intrinsic and on-clopidogrel platelet reactivity. J Thromb Thrombolysis 2021; 53:1-9. [PMID: 34213715 PMCID: PMC8791920 DOI: 10.1007/s11239-021-02515-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/17/2021] [Indexed: 12/01/2022]
Abstract
Lipoprotein(a) [Lp(a)] is an independent, genetically determined, and causal risk factor for cardiovascular disease. Laboratory data have suggested an interaction of Lp(a) with platelet function, potentially caused by its interaction with platelet receptors. So far, the potential association of Lp(a) with platelet activation and reactivity has not been proven in larger clinical cohorts. This study analyzed intrinsic platelet reactivity before loading with clopidogrel 600 mg and on-treatment platelet reactivity tested 24 h following loading in patients undergoing elective coronary angiography. Platelet reactivity was tested by optical aggregometry following stimulation with collagen or adenosine diphosphate as well as by flow cytometry. Lp(a) levels were directly measured in all patients from fresh samples. The present analysis included 1912 patients. Lp(a) levels ranged between 0 and 332 mg/dl. There was a significant association of rising levels of Lp(a) with a higher prevalence of a history of ischemic heart disease (p < 0.001) and more extensive coronary artery disease (p = 0.001). Results for intrinsic (p = 0.80) and on-clopidogrel platelet reactivity (p = 0.81) did not differ between quartiles of Lp(a) levels. Flow cytometry analyses of expression of different platelet surface proteins (CD41, CD62P or PAC-1) confirmed these findings. Correlation analyses of levels of Lp(a) with any of the tested platelet activation markers did not show any correlation. The present data do not support the hypothesis of an interaction of Lp(a) with platelet reactivity.
Collapse
Affiliation(s)
- Alexander Kille
- Department of Cardiology and Angiology II, Medical Center, University of Freiburg, University Heart Center Freiburg-Bad Krozingen, Suedring 15, 79189, Bad Krozingen, Germany.
| | - Thomas Nührenberg
- Department of Cardiology and Angiology II, Medical Center, University of Freiburg, University Heart Center Freiburg-Bad Krozingen, Suedring 15, 79189, Bad Krozingen, Germany
| | - Kilian Franke
- Department of Cardiology and Angiology II, Medical Center, University of Freiburg, University Heart Center Freiburg-Bad Krozingen, Suedring 15, 79189, Bad Krozingen, Germany
| | - Christian M Valina
- Department of Cardiology and Angiology II, Medical Center, University of Freiburg, University Heart Center Freiburg-Bad Krozingen, Suedring 15, 79189, Bad Krozingen, Germany
| | | | - Sotirios Tsimikas
- Sulpizio Cardiovascular Center, Division of Cardiovascular Medicine, University of California San Diego, San Diego, USA
| | - Franz-Josef Neumann
- Department of Cardiology and Angiology II, Medical Center, University of Freiburg, University Heart Center Freiburg-Bad Krozingen, Suedring 15, 79189, Bad Krozingen, Germany
| | - Willibald Hochholzer
- Department of Cardiology and Angiology II, Medical Center, University of Freiburg, University Heart Center Freiburg-Bad Krozingen, Suedring 15, 79189, Bad Krozingen, Germany
| |
Collapse
|
38
|
Lipoprotein(a) levels and atherosclerotic plaque characteristics in the carotid artery: The Plaque at RISK (PARISK) study. Atherosclerosis 2021; 329:22-29. [PMID: 34216874 DOI: 10.1016/j.atherosclerosis.2021.06.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 05/01/2021] [Accepted: 06/03/2021] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND AIMS Lipoprotein(a) is an independent risk factor for cardiovascular disease and recurrent ischemic stroke. Lipoprotein(a) levels are known to be associated with carotid artery stenosis, but the relation of lipoprotein(a) levels to carotid atherosclerotic plaque composition and morphology is less known. We hypothesize that higher lipoprotein(a) levels and lipoprotein(a)-related SNPs are associated with a more vulnerable carotid plaque and that this effect is sex-specific. METHODS In 182 patients of the Plaque At RISK study we determined lipoprotein(a) concentrations, apo(a) KIV-2 repeats and LPA SNPs. Imaging characteristics of carotid atherosclerosis were determined by MDCTA (n = 161) and/or MRI (n = 171). Regressions analyses were used to investigate sex-stratified associations between lipoprotein(a) levels, apo(a) KIV-2 repeats, and LPA SNPs and imaging characteristics. RESULTS Lipoprotein(a) was associated with presence of lipid-rich necrotic core (LRNC) (aOR = 1.07, 95% CI: 1.00; 1.15), thin-or-ruptured fibrous cap (TRFC) (aOR = 1.07, 95% CI: 1.01; 1.14), and degree of stenosis (β = 0.44, 95% CI: 0.00; 0.88). In women, lipoprotein(a) was associated with presence of intraplaque hemorrhage (IPH) (aOR = 1.25, 95% CI: 1.06; 1.61). In men, lipoprotein(a) was associated with degree of stenosis (β = 0.58, 95% CI: 0.04; 1.12). Rs10455872 was significantly associated with increased calcification volume (β = 1.07, 95% CI: 0.25; 1.89) and absence of plaque ulceration (aOR = 0.25, 95% CI: 0.04; 0.93). T3888P was associated with absence of LRNC (aOR = 0.36, 95% CI: 0.16; 0.78) and smaller maximum vessel wall area (β = -10.24, 95%CI: -19.03; -1.44). CONCLUSIONS In patients with symptomatic carotid artery stenosis, increased lipoprotein(a) levels were associated with degree of stenosis, and IPH, LRNC, and TRFC, known as vulnerable plaque characteristics, in the carotid artery. T3888P was associated with lower LRNC prevalence and smaller maximum vessel wall area. Further research in larger study populations is needed to confirm these results.
Collapse
|
39
|
Xia J, Guo C, Liu K, Xie Y, Cao H, Peng W, Sun Y, Liu X, Li B, Zhang L. Association of Lipoprotein (a) variants with risk of cardiovascular disease: a Mendelian randomization study. Lipids Health Dis 2021; 20:57. [PMID: 34074296 PMCID: PMC8170931 DOI: 10.1186/s12944-021-01482-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/17/2021] [Indexed: 11/15/2022] Open
Abstract
Background There is a well-documented empirical relationship between lipoprotein (a) [Lp(a)] and cardiovascular disease (CVD); however, causal evidence, especially from the Chinese population, is lacking. Therefore, this study aims to estimate the causal association between variants in genes affecting Lp(a) concentrations and CVD in people of Han Chinese ethnicity. Methods Two-sample Mendelian randomization analysis was used to assess the causal effect of Lp(a) concentrations on the risk of CVD. Summary statistics for Lp(a) variants were obtained from 1256 individuals in the Cohort Study on Chronic Disease of Communities Natural Population in Beijing, Tianjin and Hebei. Data on associations between single-nucleotide polymorphisms (SNPs) and CVD were obtained from recently published genome-wide association studies. Results Thirteen SNPs associated with Lp(a) levels in the Han Chinese population were used as instrumental variables. Genetically elevated Lp(a) was inversely associated with the risk of atrial fibrillation [odds ratio (OR), 0.94; 95% confidence interval (95%CI), 0.901–0.987; P = 0.012)], the risk of arrhythmia (OR, 0.96; 95%CI, 0.941–0.990; P = 0.005), the left ventricular mass index (OR, 0.97; 95%CI, 0.949–1.000; P = 0.048), and the left ventricular internal dimension in diastole (OR, 0.97; 95%CI, 0.950–0.997; P = 0.028) according to the inverse-variance weighted method. No significant association was observed for congestive heart failure (OR, 0.99; 95% CI, 0.950–1.038; P = 0.766), ischemic stroke (OR, 1.01; 95%CI, 0.981–1.046; P = 0.422), and left ventricular internal dimension in systole (OR, 0.98; 95%CI, 0.960–1.009; P = 0.214). Conclusions This study provided evidence that genetically elevated Lp(a) was inversely associated with atrial fibrillation, arrhythmia, the left ventricular mass index and the left ventricular internal dimension in diastole, but not with congestive heart failure, ischemic stroke, and the left ventricular internal dimension in systole in the Han Chinese population. Further research is needed to identify the mechanism underlying these results and determine whether genetically elevated Lp(a) increases the risk of coronary heart disease or other CVD subtypes. Supplementary Information The online version contains supplementary material available at 10.1186/s12944-021-01482-0.
Collapse
Affiliation(s)
- Juan Xia
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University and Beijing Municipal Key Laboratory of Clinical Epidemiology, No 10 Xitoutiao, You'anmenwai, Fengtai, Beijing, 100069, P. R. China
| | - Chunyue Guo
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University and Beijing Municipal Key Laboratory of Clinical Epidemiology, No 10 Xitoutiao, You'anmenwai, Fengtai, Beijing, 100069, P. R. China
| | - Kuo Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University and Beijing Municipal Key Laboratory of Clinical Epidemiology, No 10 Xitoutiao, You'anmenwai, Fengtai, Beijing, 100069, P. R. China
| | - Yunyi Xie
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University and Beijing Municipal Key Laboratory of Clinical Epidemiology, No 10 Xitoutiao, You'anmenwai, Fengtai, Beijing, 100069, P. R. China
| | - Han Cao
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University and Beijing Municipal Key Laboratory of Clinical Epidemiology, No 10 Xitoutiao, You'anmenwai, Fengtai, Beijing, 100069, P. R. China
| | - Wenjuan Peng
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University and Beijing Municipal Key Laboratory of Clinical Epidemiology, No 10 Xitoutiao, You'anmenwai, Fengtai, Beijing, 100069, P. R. China
| | - Yanyan Sun
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University and Beijing Municipal Key Laboratory of Clinical Epidemiology, No 10 Xitoutiao, You'anmenwai, Fengtai, Beijing, 100069, P. R. China
| | - Xiaohui Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University and Beijing Municipal Key Laboratory of Clinical Epidemiology, No 10 Xitoutiao, You'anmenwai, Fengtai, Beijing, 100069, P. R. China
| | - Bingxiao Li
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University and Beijing Municipal Key Laboratory of Clinical Epidemiology, No 10 Xitoutiao, You'anmenwai, Fengtai, Beijing, 100069, P. R. China
| | - Ling Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University and Beijing Municipal Key Laboratory of Clinical Epidemiology, No 10 Xitoutiao, You'anmenwai, Fengtai, Beijing, 100069, P. R. China.
| |
Collapse
|
40
|
Ding WY, Protty MB, Davies IG, Lip GYH. Relationship between lipoproteins, thrombosis and atrial fibrillation. Cardiovasc Res 2021; 118:716-731. [PMID: 33483737 PMCID: PMC8859639 DOI: 10.1093/cvr/cvab017] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/14/2020] [Accepted: 01/12/2021] [Indexed: 12/19/2022] Open
Abstract
The prothrombotic state in atrial fibrillation (AF) occurs as a result of multifaceted interactions, known as Virchow’s triad of hypercoagulability, structural abnormalities, and blood stasis. More recently, there is emerging evidence that lipoproteins are implicated in this process, beyond their traditional role in atherosclerosis. In this review, we provide an overview of the various lipoproteins and explore the association between lipoproteins and AF, the effects of lipoproteins on haemostasis, and the potential contribution of lipoproteins to thrombogenesis in AF. There are several types of lipoproteins based on size, lipid composition, and apolipoprotein category, namely: chylomicrons, very low-density lipoprotein, low-density lipoprotein (LDL), intermediate-density lipoprotein, and high-density lipoprotein. Each of these lipoproteins may contain numerous lipid species and proteins with a variety of different functions. Furthermore, the lipoprotein particles may be oxidized causing an alteration in their structure and content. Of note, there is a paradoxical inverse relationship between total cholesterol and LDL cholesterol (LDL-C) levels, and incident AF. The mechanism by which this occurs may be related to the stabilizing effect of cholesterol on myocardial membranes, along with its role in inflammation. Overall, specific lipoproteins may interact with haemostatic pathways to promote excess platelet activation and thrombin generation, as well as inhibiting fibrinolysis. In this regard, LDL-C has been shown to be an independent risk factor for thromboembolic events in AF. The complex relationship between lipoproteins, thrombosis and AF warrants further research with an aim to improve our knowledge base and contribute to our overall understanding of lipoprotein-mediated thrombosis.
Collapse
Affiliation(s)
- Wern Yew Ding
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart & Chest Hospital, Liverpool, United Kingdom
| | - Majd B Protty
- Systems Immunity University Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Ian G Davies
- Research Institute of Sport and Exercise Science, Liverpool John Moores University, Liverpool, United Kingdom
| | - Gregory Y H Lip
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart & Chest Hospital, Liverpool, United Kingdom.,Aalborg Thrombosis Research Unit, Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
41
|
Katzmann JL, Gouni-Berthold I, Laufs U. PCSK9 Inhibition: Insights From Clinical Trials and Future Prospects. Front Physiol 2020; 11:595819. [PMID: 33304274 PMCID: PMC7701092 DOI: 10.3389/fphys.2020.595819] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/07/2020] [Indexed: 12/13/2022] Open
Abstract
In 2003, clinical observations led to the discovery of the involvement of proprotein convertase subtilisin/kexin type 9 (PCSK9) in lipid metabolism. Functional studies demonstrated that PCSK9 binds to the low-density lipoprotein (LDL) receptor directing it to its lysosomal degradation. Therefore, carriers of gain-of-function mutations in PCSK9 exhibit decreased expression of LDL receptors on the hepatocyte surface and have higher LDL cholesterol (LDL-C) levels. On the contrary, loss-of-function mutations in PCSK9 are associated with low LDL-C concentrations and significantly reduced lifetime risk of cardiovascular disease. These insights motivated the search for strategies to pharmacologically inhibit PCSK9. In an exemplary rapid development, fully human monoclonal antibodies against PCSK9 were developed and found to effectively reduce LDL-C. Administered subcutaneously every 2-4 weeks, the PCSK9 antibodies evolocumab and alirocumab reduce LDL-C by up to 60% in a broad range of populations either as monotherapy or in addition to statins. Two large cardiovascular outcome trials involving a total of ∼46,000 cardiovascular high-risk patients on guideline-recommended lipid-lowering therapy showed that treatment with evolocumab and alirocumab led to a relative reduction of cardiovascular risk by 15% after 2.2 and 2.8 years of treatment, respectively. These findings expanded the armamentarium of pharmacological approaches to address residual cardiovascular risk associated with LDL-C. Furthermore, the unprecedented low LDL-C concentrations achieved (e.g., 30 mg/dL in the FOURIER study) suggest that the relationship between LDL-C and cardiovascular risk is without a lower threshold, and without associated adverse events during the timeframe of the studies. The side effect profile of PCSK9 antibodies is favorable with few patients exhibiting injection-site reactions. Currently, the access to PCSK9 antibodies is limited by high treatment costs. The development of novel approaches to inhibit PCSK9 such as the use of small interfering RNA to inhibit PCSK9 synthesis seems promising and may soon become available.
Collapse
Affiliation(s)
| | - Ioanna Gouni-Berthold
- Polyclinic for Endocrinology, Diabetes, and Preventive Medicine, University of Cologne, Cologne, Germany
| | - Ulrich Laufs
- Department of Cardiology, University Hospital Leipzig, Leipzig, Germany
| |
Collapse
|
42
|
Teng RL, Wang H, Sun BC, Cai DP, He YM. Interaction between lipoprotein (a) levels and body mass index in first incident acute myocardial infarction. BMC Cardiovasc Disord 2020; 20:350. [PMID: 32723301 PMCID: PMC7389650 DOI: 10.1186/s12872-020-01626-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 07/16/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Possible interaction between Lipoprotein (a) (Lp(a)) and body mass index (BMI) was investigated with regard to the risk of first incident acute myocardial infarction (AMI). METHODS Cross-sectional study of 1522 cases with initial AMI and 1691 controls without coronary artery disease (CAD) were retrospectively analyzed using logistic regression model. Subjects were categorized based on Lp(a) and BMI and compared with regard to occurrence of AMI by calculating odds ratios (ORs) with 95% confidence intervals (CIs). A potential interaction between Lp(a) and BMI was evaluated by the measures of effect modification on both additive (Relative excess risk due to interaction, RERI) and multiplicative scales. RESULTS Compared with reference group (BMI < 24 kg/m2 and in the first quintile of Lp(a)), multivariable-adjusted analysis revealed that ORs(95%CI) of AMI were 2.27(1.46-3.52) for higher BMI alone; 1.79(1.11-2.90), 1.65(1.05-2.60), 1.96(1.20-3.20) and 2.34(1.47-3.71) for higher Lp(a) alone across its quintiles; and 2.86(1.85-4.40), 3.30(2.14-5.11), 4.43(2.76-7.09) and 5.98(3.72-9.60) for both higher BMI and higher Lp(a), greater than the sum of the both risks each. Prominent interaction was found between Lp(a) and BMI on additive scale (RERI = 2.45 (0.36-4.54) at the fifth quintile of Lp(a)) but not on multiplicative scale. CONCLUSIONS This study demonstrates that BMI and Lp(a) levels are important factors affecting the risk of AMI. Significant interaction is found between Lp(a) and BMI in initial AMI on additive scale, indicating that Lp(a) confers greater risk for initial AMI when BMI is elevated. For those whose BMIs are inadequately controlled, Lp(a) lowering may be an option. TRIAL REGISTRATION This clinical study was not registered in a publicly available registry because this study was a retrospective study first started in 2015. Data are available via the correspondent.
Collapse
Affiliation(s)
- Ruo-Ling Teng
- Division of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215006, P.R. China
| | - Heng Wang
- Division of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215006, P.R. China
| | - Bei-Chen Sun
- Division of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215006, P.R. China
| | - Dong-Ping Cai
- Healthcare Center for Shishan Street Community of Suzhou New District, Suzhou, Jiangsu Province, 215011, P.R. China
| | - Yong-Ming He
- Division of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215006, P.R. China.
| |
Collapse
|
43
|
Moriarty PM, Gorby LK, Stroes ES, Kastelein JP, Davidson M, Tsimikas S. Lipoprotein(a) and Its Potential Association with Thrombosis and Inflammation in COVID-19: a Testable Hypothesis. Curr Atheroscler Rep 2020; 22:48. [PMID: 32710255 PMCID: PMC7381416 DOI: 10.1007/s11883-020-00867-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE OF REVIEW The COVID-19 pandemic has infected over > 11 million as of today people worldwide and is associated with significant cardiovascular manifestations, particularly in subjects with preexisting comorbidities and cardiovascular risk factors. Recently, a predisposition for arterial and venous thromboses has been reported in COVID-19 infection. We hypothesize that besides conventional risk factors, subjects with elevated lipoprotein(a) (Lp(a)) may have a particularly high risk of developing cardiovascular complications. RECENT FINDINGS The Lp(a) molecule has the propensity for inhibiting endogenous fibrinolysis through its apolipoprotein(a) component and for enhancing proinflammatory effects such as through its content of oxidized phospholipids. The LPA gene contains an interleukin-6 (IL-6) response element that may induce an acute phase-type increase in Lp(a) levels following a cytokine storm from COVID-19. Thus, subjects with either baseline elevated Lp(a) or those who have an increase following COVID-19 infection, or both, may be at very high risk of developing thromboses. Elevated Lp(a) may also lead to acute destabilization of preexisting but quiescent atherosclerotic plaques, which might induce acute myocardial infarction and stroke. Ongoing studies with IL-6 antagonists may be informative in understanding this relationship, and registries are being initiated to measure Lp(a) in subjects infected with COVID-19. If indeed an association is suggestive of being causal, consideration can be given to systematic testing of Lp(a) and prophylactic systemic anticoagulation in infected inpatients. Therapeutic lipid apheresis and pharmacotherapy for the reduction of Lp(a) levels may minimize thrombogenic potential and proinflammatory effects. We propose studies to test the hypothesis that Lp(a) may contribute to cardiovascular complications of COVID-19.
Collapse
Affiliation(s)
- Patrick M Moriarty
- Division of Clinical Pharmacology, University of Kansas Medical Center, Kansas City, KS, USA.
| | - Lauryn K Gorby
- Division of Clinical Pharmacology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Erik S Stroes
- Department of Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - John P Kastelein
- Department of Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Michael Davidson
- Lipid Clinic, The University of Chicago Pritzker School of Medicine, Chicago, IL, USA
| | - Sotirios Tsimikas
- Division of Cardiovascular Medicine, University of California San Diego, La Jolla, CA, USA.
- Vascular Medicine Program, Sulpizio Cardiovascular Center, University of California San Diego, 9500 Gilman Drive, BSB 1080, La Jolla, CA, 92093-0682, USA.
| |
Collapse
|
44
|
Diet and Lp(a): Does Dietary Change Modify Residual Cardiovascular Risk Conferred by Lp(a)? Nutrients 2020; 12:nu12072024. [PMID: 32646066 PMCID: PMC7400957 DOI: 10.3390/nu12072024] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/01/2020] [Accepted: 07/03/2020] [Indexed: 02/06/2023] Open
Abstract
Lipoprotein(a) [Lp(a)] is an independent, causal, genetically determined risk factor for cardiovascular disease (CVD). We provide an overview of current knowledge on Lp(a) and CVD risk, and the effect of pharmacological agents on Lp(a). Since evidence is accumulating that diet modulates Lp(a), the focus of this paper is on the effect of dietary intervention on Lp(a). We identified seven trials with 15 comparisons of the effect of saturated fat (SFA) replacement on Lp(a). While replacement of SFA with carbohydrate, monounsaturated fat (MUFA), or polyunsaturated fat (PUFA) consistently lowered low-density lipoprotein cholesterol (LDL-C), heterogeneity in the Lp(a) response was observed. In two trials, Lp(a) increased with carbohydrate replacement; one trial showed no effect and another showed Lp(a) lowering. MUFA replacement increased Lp(a) in three trials; three trials showed no effect and one showed lowering. PUFA or PUFA + MUFA inconsistently affected Lp(a) in four trials. Seven trials of diets with differing macronutrient compositions showed similar divergence in the effect on LDL-C and Lp(a). The identified clinical trials show diet modestly affects Lp(a) and often in the opposing direction to LDL-C. Further research is needed to understand how diet affects Lp(a) and its properties, and the lack of concordance between diet-induced LDL-C and Lp(a) changes.
Collapse
|
45
|
Tsimikas S, Karwatowska-Prokopczuk E, Xia S. Lipoprotein(a) Reduction in Persons with Cardiovascular Disease. Reply. N Engl J Med 2020; 382:e65. [PMID: 32433854 DOI: 10.1056/nejmc2004861] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
46
|
Marston NA, Gurmu Y, Melloni GEM, Bonaca M, Gencer B, Sever PS, Pedersen TR, Keech AC, Roselli C, Lubitz SA, Ellinor PT, O'Donoghue ML, Giugliano RP, Ruff CT, Sabatine MS. The Effect of PCSK9 (Proprotein Convertase Subtilisin/Kexin Type 9) Inhibition on the Risk of Venous Thromboembolism. Circulation 2020; 141:1600-1607. [PMID: 32223429 PMCID: PMC7469753 DOI: 10.1161/circulationaha.120.046397] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND The relationship between cholesterol levels and risk of venous thromboembolism (VTE) is uncertain. We set out to determine the effect of PCSK9 (proprotein convertase subtilisin/kexin type 9) inhibition on the risk of VTE, explore potential mechanisms, and examine the efficacy in subgroups with clinically and genetically defined risk. METHODS We performed a post hoc analysis of the FOURIER trial (Further Cardiovascular Outcomes Research With PCSK9 Inhibition in Subjects With Elevated Risk) testing whether evolocumab reduces the risk of VTE events (deep venous thrombosis or pulmonary embolism). Data from FOURIER and ODYSSEY OUTCOMES (Evaluation of Cardiovascular Outcomes After an Acute Coronary Syndrome During Treatment with Alirocumab) were then combined in a meta-analysis to assess the class effect of PCSK9 inhibition on the risk of VTE. We also analyzed baseline lipids in FOURIER to investigate potential mechanisms explaining the reduction in VTE with evolocumab. Last, an exploratory genetic analysis was performed in FOURIER to determine whether a VTE polygenic risk score could identify high-risk patients who would derive the greatest VTE reduction from evolocumab. RESULTS In FOURIER, the hazard ratio (HR) for VTE with evolocumab was 0.71 (95% CI, 0.50-1.00; P=0.05), with no effect in the 1st year (HR, 0.96 [95% CI, 0.57-1.62]) but a 46% reduction (HR, 0.54 [95% CI, 0.33-0.88]; P=0.014) beyond 1 year. A meta-analysis of FOURIER and ODYSSEY OUTCOMES demonstrated a 31% relative risk reduction in VTE with PCSK9 inhibition (HR, 0.69 [95% CI, 0.53-0.90]; P=0.007). There was no relation between baseline low-density lipoprotein cholesterol levels and magnitude of VTE risk reduction. In contrast, in patients with higher baseline lipoprotein(a) (Lp[a]) levels, evolocumab reduced Lp(a) by 33 nmol/L and risk of VTE by 48% (HR, 0.52 [95% CI, 0.30-0.89]; P=0.017), whereas, in patients with lower baseline Lp(a) levels, evolocumab reduced Lp(a) by only 7 nmol/L and had no effect on VTE risk (Pinteraction 0.087 for HR; Pheterogeneity 0.037 for absolute risk reduction). Modeled as a continuous variable, there was a significant interaction between baseline Lp(a) concentration and magnitude of VTE risk reduction (Pinteraction=0.04). A polygenic risk score identified patients who were at >2-fold increased risk for VTE and who derived greater relative (Pinteraction=0.04) and absolute VTE reduction (Pheterogeneity=0.009) in comparison with those without high genetic risk. CONCLUSIONS PCSK9 inhibition significantly reduces the risk of VTE. Lp(a) reduction may be an important mediator of this effect, a finding of particular interest given the ongoing development of potent Lp(a) inhibitors.
Collapse
Affiliation(s)
- Nicholas A Marston
- TIMI Study Group, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (N.A.M., Y.G., G.E.M.M., B.G., M.L.O., R.P.G., C.T.R., M.S.S.)
| | - Yared Gurmu
- TIMI Study Group, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (N.A.M., Y.G., G.E.M.M., B.G., M.L.O., R.P.G., C.T.R., M.S.S.)
| | - Giorgio E M Melloni
- TIMI Study Group, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (N.A.M., Y.G., G.E.M.M., B.G., M.L.O., R.P.G., C.T.R., M.S.S.)
| | - Marc Bonaca
- CPC Clinical Research, Department of Medicine, Cardiovascular Division, University of Colorado School of Medicine, Aurora (M.B.)
| | - Baris Gencer
- TIMI Study Group, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (N.A.M., Y.G., G.E.M.M., B.G., M.L.O., R.P.G., C.T.R., M.S.S.)
| | - Peter S Sever
- National Heart and Lung Institute, Imperial College London, United Kingdom (P.S.S.)
| | - Terje R Pedersen
- Oslo University Hospital, Ulleval and Medical Faculty, University of Oslo, Norway (T.R.P.)
| | - Anthony C Keech
- Sydney Medical School, National Health and Medical Research Council Clinical Trials Centre, University of Sydney, Australia (A.C.K.)
| | - Carolina Roselli
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA (C.R., S.A.L, P.T.E.)
- University Medical Center Groningen, University of Groningen, The Netherlands (C.R.)
| | - Steven A Lubitz
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA (C.R., S.A.L, P.T.E.)
- Cardiovascular Research Center, Massachusetts General Hospital, Boston (S.A.L., P.T.E.)
| | - Patrick T Ellinor
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA (C.R., S.A.L, P.T.E.)
- Cardiovascular Research Center, Massachusetts General Hospital, Boston (S.A.L., P.T.E.)
| | - Michelle L O'Donoghue
- TIMI Study Group, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (N.A.M., Y.G., G.E.M.M., B.G., M.L.O., R.P.G., C.T.R., M.S.S.)
| | - Robert P Giugliano
- TIMI Study Group, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (N.A.M., Y.G., G.E.M.M., B.G., M.L.O., R.P.G., C.T.R., M.S.S.)
| | - Christian T Ruff
- TIMI Study Group, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (N.A.M., Y.G., G.E.M.M., B.G., M.L.O., R.P.G., C.T.R., M.S.S.)
| | - Marc S Sabatine
- TIMI Study Group, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (N.A.M., Y.G., G.E.M.M., B.G., M.L.O., R.P.G., C.T.R., M.S.S.)
| |
Collapse
|
47
|
Jones GT, Marsman J, Bhat B, Phillips VL, Chatterjee A, Rodger EJ, Williams MJA, van Rij AM, McCormick SPA. DNA methylation profiling identifies a high effect genetic variant for lipoprotein(a) levels. Epigenetics 2020; 15:949-958. [PMID: 32237968 DOI: 10.1080/15592294.2020.1739797] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Changes in whole blood DNA methylation levels at several CpG sites have been associated with circulating blood lipids, specifically high-density lipoprotein and triglycerides. This study performs a discovery and validation epigenome-wide association study (EWAS) for circulating lipoprotein(a) [Lp(a)], an independent risk factor for cardiovascular diseases. Whole-blood DNA methylation profiles were assessed in a cohort of 1020 elderly individuals using the Illumina EPIC array and independent validation in 359 elderly males using the Illumina 450 k array. Plasma Lp(a) was measured using an apolipoprotein(a)-size-independent ELISA. Epigenome-wide rank regression analysis identified and validated a single CpG site, cg17028067 located in intron 1 of the LPA gene, that was significantly associated with plasma Lp(a) levels after correction for multiple testing. Genotyping of the site identified a relatively uncommon SNP (rs76735376, MAF <0.02) at the CpG site that largely explained the observed methylation effect. Rs76735376 is an expression quantitative trait loci for the LPA gene and could affect expression by altering enhancer activity. This EWAS for plasma Lp(a) identified a single CpG site within LPA. This association is due to an uncommon, but highly effective genetic variant, which was not in significant linkage disequilibrium with other variants known to influence Lp(a) levels or apo(a) isoform size. This study highlights the utility of CpG site methylation to identify potentially important genetic associations that would not be readily apparent in a comparable size genetic association study.
Collapse
Affiliation(s)
- Gregory T Jones
- Departments of Surgical Sciences, University of Otago , Dunedin, New Zealand
| | - Judith Marsman
- Departments of Surgical Sciences, University of Otago , Dunedin, New Zealand
| | - Basharat Bhat
- Departments of Surgical Sciences, University of Otago , Dunedin, New Zealand
| | - Victoria L Phillips
- Departments of Surgical Sciences, University of Otago , Dunedin, New Zealand
| | | | - Euan J Rodger
- Pathology, University of Otago , Dunedin, New Zealand
| | | | - André M van Rij
- Departments of Surgical Sciences, University of Otago , Dunedin, New Zealand
| | | |
Collapse
|
48
|
Pechlivanis S, Mahabadi AA, Hoffmann P, Nöthen MM, Broecker-Preuss M, Erbel R, Moebus S, Stang A, Jöckel KH. Association between lipoprotein(a) (Lp(a)) levels and Lp(a) genetic variants with coronary artery calcification. BMC MEDICAL GENETICS 2020; 21:62. [PMID: 32220223 PMCID: PMC7099786 DOI: 10.1186/s12881-020-01003-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 03/18/2020] [Indexed: 12/12/2022]
Abstract
Background To examine the association between lipoprotein(a) (Lp(a)) levels, LPA (rs10455872 and rs3798220) and IL1F9 (rs13415097) single nucleotide polymorphisms (SNPs) with coronary artery calcification (CAC), an important predictor for coronary artery disease (CAD). Methods We used data from 3799 (mean age ± SD: 59.0 ± 7.7 years, 47.1% men) Heinz Nixdorf Recall study participants. We applied linear regression models to explore the relation between the log-transformed Lp(a) levels and LPA and IL1F9 SNPs with loge (CAC + 1). The association between the SNPs and log-transformed Lp(a) levels was further assessed using linear regression. The models were adjusted for age and sex (Model 1) and additionally for Lp(a) levels (Model 2). Results We observed a statistically significant association between log-transformed Lp(a) levels and CAC (Model 1: beta per log-unit increase in Lp(a) levels = 0.11; 95% confidence interval [95% CI] [0.04; 0.18], p = 0.002). Furthermore, the LPA SNP rs10455872 showed a statistically significant association with CAC (Model 1: beta per allele = 0.37 [0.14; 0.61], p = 0.002). The association between rs10455872 and CAC was attenuated after adjustment for Lp(a) levels (Model 2: beta per allele = 0.26 [− 0.01; 0.53], p = 0.06). Both LPA SNPs also showed a statistically significant association with Lp(a) levels (Model 1: betars10455872 per allele: 1.56 [1.46; 1.65], p < 0.0001 and betars3798220 per allele: 1.51 [1.33; 1.69], p < 0.0001)). The Mendelian randomization analysis showed that Lp(a) is a causal risk factor for CAC (estimate per log-unit increase in Lp(a) levels (95% CI), p: 0.27 [0.11; 0.44], p = 0.001). The IL1F9 SNP did not show any statistically significant association with Lp(a) levels or with CAC. Conclusions We provide evidence for the association of LPA rs10455872 with higher levels of Lp(a) and CAC in our study. The results of our study suggest that rs10455872, mediated by Lp(a) levels, might play a role in promoting the development of atherosclerosis leading to cardiovascular disease events.
Collapse
Affiliation(s)
- Sonali Pechlivanis
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital of Essen, University Duisburg-Essen, Essen, Germany. .,Institute of Pharmacology and Toxicology, Centre for Biomedical Education and Research, Witten/Herdecke University, Witten, Germany.
| | - Amir A Mahabadi
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital of Essen, University Duisburg-Essen, Essen, Germany
| | - Per Hoffmann
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany.,Division of Medical Genetics, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Markus M Nöthen
- Division of Medical Genetics, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Martina Broecker-Preuss
- Department of Clinical Chemistry and Laboratory Medicine, University Duisburg-Essen, Essen, Germany
| | - Raimund Erbel
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital of Essen, University Duisburg-Essen, Essen, Germany
| | - Susanne Moebus
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital of Essen, University Duisburg-Essen, Essen, Germany.,Centre for Urban Epidemiology, University Hospital Essen, Essen, Germany
| | - Andreas Stang
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital of Essen, University Duisburg-Essen, Essen, Germany.,Centre for Clinic Epidemiology, University Hospital of Essen, Essen, Germany
| | - Karl-Heinz Jöckel
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital of Essen, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
49
|
Abstract
Dissections or ruptures of aortic aneurysms remain a leading cause of death in the developed world, with the majority of deaths being preventable if individuals at risk are identified and properly managed. Genetic variants predispose individuals to these aortic diseases. In the case of thoracic aortic aneurysm and dissections (thoracic aortic disease), genetic data can be used to identify some at-risk individuals and dictate management of the associated vascular disease. For abdominal aortic aneurysms, genetic associations have been identified, which provide insight on the molecular pathogenesis but cannot be used clinically yet to identify individuals at risk for abdominal aortic aneurysms. This compendium will discuss our current understanding of the genetic basis of thoracic aortic disease and abdominal aortic aneurysm disease. Although both diseases share several pathogenic similarities, including proteolytic elastic tissue degeneration and smooth muscle dysfunction, they also have several distinct differences, including population prevalence and modes of inheritance.
Collapse
Affiliation(s)
- Amélie Pinard
- From the Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School; University of Texas Health Science Center at Houston (A.P., D.M.M.)
| | - Gregory T Jones
- Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, New Zealand (G.T.J.)
| | - Dianna M Milewicz
- From the Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School; University of Texas Health Science Center at Houston (A.P., D.M.M.)
| |
Collapse
|
50
|
Gudbjartsson DF, Thorgeirsson G, Sulem P, Helgadottir A, Gylfason A, Saemundsdottir J, Bjornsson E, Norddahl GL, Jonasdottir A, Jonasdottir A, Eggertsson HP, Gretarsdottir S, Thorleifsson G, Indridason OS, Palsson R, Jonasson F, Jonsdottir I, Eyjolfsson GI, Sigurdardottir O, Olafsson I, Danielsen R, Matthiasson SE, Kristmundsdottir S, Halldorsson BV, Hreidarsson AB, Valdimarsson EM, Gudnason T, Benediktsson R, Steinthorsdottir V, Thorsteinsdottir U, Holm H, Stefansson K. Lipoprotein(a) Concentration and Risks of Cardiovascular Disease and Diabetes. J Am Coll Cardiol 2019; 74:2982-2994. [PMID: 31865966 DOI: 10.1016/j.jacc.2019.10.019] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 09/05/2019] [Accepted: 10/06/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Lipoprotein(a) [Lp(a)] is a causal risk factor for cardiovascular diseases that has no established therapy. The attribute of Lp(a) that affects cardiovascular risk is not established. Low levels of Lp(a) have been associated with type 2 diabetes (T2D). OBJECTIVES This study investigated whether cardiovascular risk is conferred by Lp(a) molar concentration or apolipoprotein(a) [apo(a)] size, and whether the relationship between Lp(a) and T2D risk is causal. METHODS This was a case-control study of 143,087 Icelanders with genetic information, including 17,715 with coronary artery disease (CAD) and 8,734 with T2D. This study used measured and genetically imputed Lp(a) molar concentration, kringle IV type 2 (KIV-2) repeats (which determine apo(a) size), and a splice variant in LPA associated with small apo(a) but low Lp(a) molar concentration to disentangle the relationship between Lp(a) and cardiovascular risk. Loss-of-function homozygotes and other subjects genetically predicted to have low Lp(a) levels were evaluated to assess the relationship between Lp(a) and T2D. RESULTS Lp(a) molar concentration was associated dose-dependently with CAD risk, peripheral artery disease, aortic valve stenosis, heart failure, and lifespan. Lp(a) molar concentration fully explained the Lp(a) association with CAD, and there was no residual association with apo(a) size. Homozygous carriers of loss-of-function mutations had little or no Lp(a) and increased the risk of T2D. CONCLUSIONS Molar concentration is the attribute of Lp(a) that affects risk of cardiovascular diseases. Low Lp(a) concentration (bottom 10%) increases T2D risk. Pharmacologic reduction of Lp(a) concentration in the 20% of individuals with the greatest concentration down to the population median is predicted to decrease CAD risk without increasing T2D risk.
Collapse
Affiliation(s)
- Daniel F Gudbjartsson
- deCODE genetics/Amgen, Reykjavik, Iceland; School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Gudmundur Thorgeirsson
- deCODE genetics/Amgen, Reykjavik, Iceland; Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland; Division of Cardiology and Cardiovascular Research Center, Internal Medicine Services, Landspitali, The National University Hospital of Iceland, Reykjavik, Iceland
| | | | | | | | | | - Eythor Bjornsson
- deCODE genetics/Amgen, Reykjavik, Iceland; Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | | | | | | | - Hannes P Eggertsson
- deCODE genetics/Amgen, Reykjavik, Iceland; School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | | | | | - Olafur S Indridason
- Division of Nephrology, Internal Medicine Services, Landspitali, The National University Hospital of Iceland, Reykjavik, Iceland
| | - Runolfur Palsson
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland; Division of Nephrology, Internal Medicine Services, Landspitali, The National University Hospital of Iceland, Reykjavik, Iceland
| | - Fridbert Jonasson
- deCODE genetics/Amgen, Reykjavik, Iceland; Department of Ophthalmology, Landspitali, The National University Hospital of Iceland, Reykjavik, Iceland
| | - Ingileif Jonsdottir
- deCODE genetics/Amgen, Reykjavik, Iceland; Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland; Department of Immunology, Landspitali, The National University Hospital of Iceland
| | | | | | - Isleifur Olafsson
- Department of Clinical Biochemistry, Landspitali, The National University Hospital of Iceland, Reykjavik, Iceland
| | - Ragnar Danielsen
- Division of Cardiology and Cardiovascular Research Center, Internal Medicine Services, Landspitali, The National University Hospital of Iceland, Reykjavik, Iceland
| | | | - Snaedis Kristmundsdottir
- deCODE genetics/Amgen, Reykjavik, Iceland; School of Science and Engineering, Reykjavik University, Reykjavik, Iceland
| | - Bjarni V Halldorsson
- deCODE genetics/Amgen, Reykjavik, Iceland; School of Science and Engineering, Reykjavik University, Reykjavik, Iceland
| | - Astradur B Hreidarsson
- Division of Endocrinology and Metabolic Medicine, Internal Medicine Services, Landspitali, The National University Hospital of Iceland, Reykjavik, Iceland
| | - Einar M Valdimarsson
- Department of Neurology, Landspitali, The National University Hospital of Iceland, Reykjavik, Iceland
| | - Thorarinn Gudnason
- Division of Cardiology and Cardiovascular Research Center, Internal Medicine Services, Landspitali, The National University Hospital of Iceland, Reykjavik, Iceland
| | - Rafn Benediktsson
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland; Division of Endocrinology and Metabolic Medicine, Internal Medicine Services, Landspitali, The National University Hospital of Iceland, Reykjavik, Iceland
| | | | - Unnur Thorsteinsdottir
- deCODE genetics/Amgen, Reykjavik, Iceland; Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Hilma Holm
- deCODE genetics/Amgen, Reykjavik, Iceland
| | - Kari Stefansson
- deCODE genetics/Amgen, Reykjavik, Iceland; Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.
| |
Collapse
|