1
|
Qi B, Xie Z, Shen D, Song Y, Liu S, Wang Q, Zhou J, Ge J. Blocking Na V1.8 regulates atrial fibrillation inducibility and cardiac conduction after myocardial infarction. BMC Cardiovasc Disord 2024; 24:605. [PMID: 39472780 PMCID: PMC11520513 DOI: 10.1186/s12872-024-04261-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 10/14/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND The role of NaV1.8 impacts in atrial fibrillation susceptibility after myocardial infarction remains only partially understood. We studied the effect of blocking NaV1.8 in the cardiac ganglionated plexi (GP) on the atrial fibrillation inducibility and cardiac conduction in the myocardial infarction model. METHODS Eighteen male beagles were randomly enrolled. Left anterior descending coronary artery was ligated to created myocardial infarction model. Four weeks after surgery, NaV1.8 blocker A-803,467 (n = 9) or DMSO (n = 9, control) was injected into the four cardiac major GPs. Sinus rate, ventricular rate during atrial fibrillation, PR interval, atrial effective refractory period, atrial fibrillation duration and the cumulative window of atrial vulnerability were measured before and 60 min after A-803,467 injection. RESULTS Administration of A-803,467 significantly increased sinus rate, shortened PR interval and increased ventricular rate during atrial fibrillation compared to control. A-803,467 also significantly shortened atrial effective refractory period, prolonged atrial fibrillation duration and increased the cumulative window of atrial vulnerability. A-803,467 suppressed the slowing of heart rate response to high-frequency electrical stimulation of the anterior right GP, which was used as the surrogate marker for GP function. Double staining of ChAT and NaV1.8 demonstrated colocalization of ChAT and NaV1.8 in canine GPs. CONCLUSIONS Blocking NaV1.8 in the cardiac GP may modulate atrial fibrillation inducibility and cardiac conduction after myocardial infarction, and the underlying mechanism may be associated with the regulation of the neural activity of the cardiac GP.
Collapse
Affiliation(s)
- Baozhen Qi
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Disease, National Clinical Research Center for Interventional Medicine, Fudan University, Shanghai, 200032, China
- Department of Cardiology, Zhongshan Hospital (Xiamen), Fudan University, 668 Jinhu Road, Xiamen, 361015, China
| | - Zhonglei Xie
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Disease, National Clinical Research Center for Interventional Medicine, Fudan University, Shanghai, 200032, China
| | - Dongli Shen
- Division of Cardiology, Department of Medicine, the Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, Jiangsu, China
| | - Yu Song
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Disease, National Clinical Research Center for Interventional Medicine, Fudan University, Shanghai, 200032, China
| | - Shaowen Liu
- Department of Cardiology, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Qibing Wang
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Disease, National Clinical Research Center for Interventional Medicine, Fudan University, Shanghai, 200032, China.
| | - Jingmin Zhou
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Disease, National Clinical Research Center for Interventional Medicine, Fudan University, Shanghai, 200032, China.
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Disease, National Clinical Research Center for Interventional Medicine, Fudan University, Shanghai, 200032, China
| |
Collapse
|
2
|
Chen Q, Huang JJ, Jiang L, Makota P, Wu MQ, Yang ZP, Liao XW, Peng YM, Chen JQ, Zhang JC. Relationship between left atrial isolated surface area and early-term recurrence in patients with persistent atrial fibrillation after cryoballoon ablation. Eur J Med Res 2024; 29:478. [PMID: 39354546 PMCID: PMC11443768 DOI: 10.1186/s40001-024-02045-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/29/2024] [Indexed: 10/03/2024] Open
Abstract
OBJECTIVE To investigate the effect of pulmonary vein antrum enlargement combined with left atrial roof cryoballoon ablation in patients with persistent atrial fibrillation (PeAF) by analyzing the relationship between left atrial isolation area surface area (ISA) and early postoperative recurrence. METHODS 93 patients with PeAF were classified into recurrence and non-recurrence groups according to the results of the 1-year follow-up. Three-dimensional electroanatomical labeling map was constructed and merged with that of the left atrial pulmonary vein CTA, and the ISA and the left atrial surface area (LASA) were measured and analyzed to determine the relationship between ISA/LASA in relation to early postoperative recurrence. RESULTS 93 patients were included and followed up for 1 year with AF-free recurrence rate of 75.3%. The ISA of the recurrence group was lower than that of the non-recurrence group. Left atrial internal diameter (LAD), left common pulmonary vein, the ISA, the ISA/LASA and early-term recurrence had statistical significance in both groups. The factors that significantly predicted early-term recurrence were left common pulmonary vein and the ISA/LASA. ISA/LASA (HR 0, 95% CI 0-0.005, P = 0.008) and left common pulmonary vein trunk (HR 7.754, 95% CI 2.256-25.651, P = 0.001) were the independent risk factors for early recurrence. ROC curve analysis showed that ISA/LASA predicted the best early recurrence after operation with a cut-off value of 15.2%. CONCLUSION A greater ISA/LASA reduces early recurrence after cryoablation in patients with PeAF. An ISA/LASA of 15.2% may be the best cut-off value for predicting early recurrence after cryoablation for PeAF.
Collapse
Affiliation(s)
- Qian Chen
- Department of Critical Care Medicine Division Four, Fujian Provincial Hospital, Shengli Clinical Medicine College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, No. 134 East Street, Gulou District, Fuzhou, 350000, Fujian, People's Republic of China
| | - Jin-Jin Huang
- Shengli Clinical Medicine College of Fujian Medical University, No. 134 East Street, Gulou District, Fuzhou, 350000, Fujian, People's Republic of China
| | - Ling Jiang
- Department of Cardiology, The First Hospital of Nanping City, Fujian Medical University, No. 317 Zhongshan Road, Nanping, 353000, Fujian, People's Republic of China
| | - Panashe Makota
- Shengli Clinical Medicine College of Fujian Medical University, No. 134 East Street, Gulou District, Fuzhou, 350000, Fujian, People's Republic of China
| | - Mei-Qiong Wu
- Department of Cardiology, Fujian Provincial Hospital, Shengli Clinical Medicine College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, No. 134 East Street, Gulou District, Fuzhou, 350000, Fujian, People's Republic of China
| | - Zhi-Ping Yang
- Department of Cardiology, Fujian Provincial Hospital, Shengli Clinical Medicine College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, No. 134 East Street, Gulou District, Fuzhou, 350000, Fujian, People's Republic of China
| | - Xue-Wen Liao
- Department of Cardiology, Fujian Provincial Hospital, Shengli Clinical Medicine College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, No. 134 East Street, Gulou District, Fuzhou, 350000, Fujian, People's Republic of China
| | - Yi-Ming Peng
- Department of Cardiology, Fujian Provincial Hospital, Shengli Clinical Medicine College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, No. 134 East Street, Gulou District, Fuzhou, 350000, Fujian, People's Republic of China
| | - Jian-Quan Chen
- Department of Cardiology, Fujian Provincial Hospital, Shengli Clinical Medicine College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, No. 134 East Street, Gulou District, Fuzhou, 350000, Fujian, People's Republic of China.
| | - Jian-Cheng Zhang
- Department of Cardiology, Fujian Provincial Hospital, Shengli Clinical Medicine College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, No. 134 East Street, Gulou District, Fuzhou, 350000, Fujian, People's Republic of China.
| |
Collapse
|
3
|
Nakasone K, Tanaka K, Del Monte A, Della Rocca DG, Pannone L, Mouram S, Cespón-Fernández M, Doundoulakis I, Marcon L, Audiat C, Vetta G, Scacciavillani R, Overeinder I, Bala G, Sorgente A, Sieira J, Almorad A, Fukuzawa K, Hirata KI, Brugada P, Sarkozy A, Chierchia GB, de Asmundis C, Ströker E. Distance-dependent neuromodulation effect during thermal ablation for atrial fibrillation. J Cardiovasc Electrophysiol 2024; 35:1997-2005. [PMID: 39135364 DOI: 10.1111/jce.16401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/11/2024] [Accepted: 08/01/2024] [Indexed: 10/11/2024]
Abstract
INTRODUCTION Thermal atrial fibrillation (AF) ablation exerts an additive treatment effect on the cardiac autonomic nervous system (CANS). This effect is mainly reported during ablation of the right superior pulmonary vein (RSPV), modulating the right anterior ganglionated plexus (RAGP), which contains parasympathetic innervation to the sinoatrial node in the epicardial fat pad between RSPV and superior vena cava (SVC). However, a variable response to neuromodulation after ablation is observed, with little to no effect in some patients. Our objective was to assess clinical and anatomic predictors of thermal ablation-induced CANS changes, as assessed via variations in heart rate (HR) postablation. METHODS Consecutive paroxysmal AF patients undergoing first-time PV isolation by the cryoballoon (CB) or radiofrequency balloon (RFB) within a 12-month time frame and with preprocedural cardiac computed tomography (CT), were evaluated. Preablation and 24-h postablation electrocardiograms in sinus rhythm were collected and analyzed to assess HR. Anatomic evaluation by CT included the measurement of the shortest distance between the SVC and RSPV ostium (RSPV-SVC distance). RESULTS A total of 97 patients (CB, n = 50 vs. RFB, n = 47) were included, with similar baseline characteristics between both groups. A significant HR increase postablation (ΔHR ≥ 15 bpm) occurred in a total of 37 patients (38.1%), without difference in number of patients between both thermal ablation technologies (CB, 19 [51%]), RFB, 18 [49%]). Independent predictors for increased HR were RSPV-SVC distance (odds ratio [OR]: 0.49, CI: 0.34-0.71, p value < .001), and age (OR: 0.94, CI: 0.89-0.98, p value = .003). CONCLUSIONS Thermal balloon-based PV isolation influences the CANS through its effect on the RAGP, especially in younger patients and patients with shorter RSPV-SVC distance.
Collapse
Affiliation(s)
- Kazutaka Nakasone
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, Brussels, Belgium
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kaoru Tanaka
- Department of Radiology, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, Brussels, Belgium
| | - Alvise Del Monte
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, Brussels, Belgium
| | - Domenico Giovanni Della Rocca
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, Brussels, Belgium
| | - Luigi Pannone
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, Brussels, Belgium
| | - Sahar Mouram
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, Brussels, Belgium
| | - María Cespón-Fernández
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, Brussels, Belgium
| | - Ioannis Doundoulakis
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, Brussels, Belgium
| | - Lorenzo Marcon
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, Brussels, Belgium
| | - Charles Audiat
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, Brussels, Belgium
| | - Giampaolo Vetta
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, Brussels, Belgium
| | - Roberto Scacciavillani
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, Brussels, Belgium
| | - Ingrid Overeinder
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, Brussels, Belgium
| | - Gezim Bala
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, Brussels, Belgium
| | - Antonio Sorgente
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, Brussels, Belgium
| | - Juan Sieira
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, Brussels, Belgium
| | - Alexandre Almorad
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, Brussels, Belgium
| | - Koji Fukuzawa
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ken-Ichi Hirata
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Pedro Brugada
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, Brussels, Belgium
| | - Andrea Sarkozy
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, Brussels, Belgium
| | - Gian Battista Chierchia
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, Brussels, Belgium
| | - Carlo de Asmundis
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, Brussels, Belgium
| | - Erwin Ströker
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
4
|
Tzeis S, Gerstenfeld EP, Kalman J, Saad EB, Shamloo AS, Andrade JG, Barbhaiya CR, Baykaner T, Boveda S, Calkins H, Chan NY, Chen M, Chen SA, Dagres N, Damiano RJ, De Potter T, Deisenhofer I, Derval N, Di Biase L, Duytschaever M, Dyrda K, Hindricks G, Hocini M, Kim YH, la Meir M, Merino JL, Michaud GF, Natale A, Nault I, Nava S, Nitta T, O'Neill M, Pak HN, Piccini JP, Pürerfellner H, Reichlin T, Saenz LC, Sanders P, Schilling R, Schmidt B, Supple GE, Thomas KL, Tondo C, Verma A, Wan EY. 2024 European Heart Rhythm Association/Heart Rhythm Society/Asia Pacific Heart Rhythm Society/Latin American Heart Rhythm Society expert consensus statement on catheter and surgical ablation of atrial fibrillation. Heart Rhythm 2024; 21:e31-e149. [PMID: 38597857 DOI: 10.1016/j.hrthm.2024.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 04/11/2024]
Abstract
In the last three decades, ablation of atrial fibrillation (AF) has become an evidence-based safe and efficacious treatment for managing the most common cardiac arrhythmia. In 2007, the first joint expert consensus document was issued, guiding healthcare professionals involved in catheter or surgical AF ablation. Mounting research evidence and technological advances have resulted in a rapidly changing landscape in the field of catheter and surgical AF ablation, thus stressing the need for regularly updated versions of this partnership which were issued in 2012 and 2017. Seven years after the last consensus, an updated document was considered necessary to define a contemporary framework for selection and management of patients considered for or undergoing catheter or surgical AF ablation. This consensus is a joint effort from collaborating cardiac electrophysiology societies, namely the European Heart Rhythm Association, the Heart Rhythm Society, the Asia Pacific Heart Rhythm Society, and the Latin American Heart Rhythm Society.
Collapse
Affiliation(s)
- Stylianos Tzeis
- Department of Cardiology, Mitera Hospital, 6, Erythrou Stavrou Str., Marousi, Athens, PC 151 23, Greece.
| | - Edward P Gerstenfeld
- Section of Cardiac Electrophysiology, University of California, San Francisco, CA, USA
| | - Jonathan Kalman
- Department of Cardiology, Royal Melbourne Hospital, Melbourne, Australia; Department of Medicine, University of Melbourne and Baker Research Institute, Melbourne, Australia
| | - Eduardo B Saad
- Electrophysiology and Pacing, Hospital Samaritano Botafogo, Rio de Janeiro, Brazil; Cardiac Arrhythmia Service, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | - Jason G Andrade
- Department of Medicine, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | | | - Tina Baykaner
- Division of Cardiology and Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Serge Boveda
- Heart Rhythm Management Department, Clinique Pasteur, Toulouse, France; Universiteit Brussel (VUB), Brussels, Belgium
| | - Hugh Calkins
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Ngai-Yin Chan
- Department of Medicine and Geriatrics, Princess Margaret Hospital, Hong Kong Special Administrative Region, China
| | - Minglong Chen
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shih-Ann Chen
- Heart Rhythm Center, Taipei Veterans General Hospital, Taipei, and Cardiovascular Center, Taichung Veterans General Hospital, Taichung, Taiwan
| | | | - Ralph J Damiano
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, Barnes-Jewish Hospital, St. Louis, MO, USA
| | | | - Isabel Deisenhofer
- Department of Electrophysiology, German Heart Center Munich, Technical University of Munich (TUM) School of Medicine and Health, Munich, Germany
| | - Nicolas Derval
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Cardiac Electrophysiology and Stimulation Department, Fondation Bordeaux Université and Bordeaux University Hospital (CHU), Pessac-Bordeaux, France
| | - Luigi Di Biase
- Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Katia Dyrda
- Department of Medicine, Montreal Heart Institute, Université de Montréal, Montreal, Canada
| | | | - Meleze Hocini
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Cardiac Electrophysiology and Stimulation Department, Fondation Bordeaux Université and Bordeaux University Hospital (CHU), Pessac-Bordeaux, France
| | - Young-Hoon Kim
- Division of Cardiology, Korea University College of Medicine and Korea University Medical Center, Seoul, Republic of Korea
| | - Mark la Meir
- Cardiac Surgery Department, Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Jose Luis Merino
- La Paz University Hospital, Idipaz, Universidad Autonoma, Madrid, Spain; Hospital Viamed Santa Elena, Madrid, Spain
| | | | - Andrea Natale
- Texas Cardiac Arrhythmia Institute, St. David's Medical Center, Austin, TX, USA; Case Western Reserve University, Cleveland, OH, USA; Interventional Electrophysiology, Scripps Clinic, San Diego, CA, USA; Department of Biomedicine and Prevention, Division of Cardiology, University of Tor Vergata, Rome, Italy
| | - Isabelle Nault
- Institut Universitaire de Cardiologie et de Pneumologie de Quebec (IUCPQ), Quebec, Canada
| | - Santiago Nava
- Departamento de Electrocardiología, Instituto Nacional de Cardiología 'Ignacio Chávez', Ciudad de México, México
| | - Takashi Nitta
- Department of Cardiovascular Surgery, Nippon Medical School, Tokyo, Japan
| | - Mark O'Neill
- Cardiovascular Directorate, St. Thomas' Hospital and King's College, London, UK
| | - Hui-Nam Pak
- Division of Cardiology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | | | | | - Tobias Reichlin
- Department of Cardiology, Inselspital Bern, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Luis Carlos Saenz
- International Arrhythmia Center, Cardioinfantil Foundation, Bogota, Colombia
| | - Prashanthan Sanders
- Centre for Heart Rhythm Disorders, University of Adelaide and Royal Adelaide Hospital, Adelaide, Australia
| | | | - Boris Schmidt
- Cardioangiologisches Centrum Bethanien, Medizinische Klinik III, Agaplesion Markuskrankenhaus, Frankfurt, Germany
| | - Gregory E Supple
- Cardiac Electrophysiology Section, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | - Claudio Tondo
- Department of Clinical Electrophysiology and Cardiac Pacing, Centro Cardiologico Monzino, IRCCS, Milan, Italy; Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Atul Verma
- McGill University Health Centre, McGill University, Montreal, Canada
| | - Elaine Y Wan
- Department of Medicine, Division of Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| |
Collapse
|
5
|
Sarkar A, Ajijola OA. Pathophysiologic Mechanisms in Cardiac Autonomic Nervous System and Arrhythmias. Card Electrophysiol Clin 2024; 16:261-269. [PMID: 39084719 DOI: 10.1016/j.ccep.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
The autonomic nervous system, including the central nervous system and the cardiac plexus, maintains cardiac physiology. In diseased states, autonomic changes through neuronal remodeling generate electrical mechanisms of arrhythmia such as triggered activity or increased automaticity. This article will focus on the pathophysiological mechanisms of arrhythmia to highlight the role of the autonomic nervous system in disease and the related therapeutic interventions.
Collapse
Affiliation(s)
- Abdullah Sarkar
- UCLA Cardiac Arrhythmia Center and Neurocardiology Research program of Excellence, Los Angeles, CA, USA
| | - Olujimi A Ajijola
- UCLA Cardiac Arrhythmia Center and Neurocardiology Research program of Excellence, Los Angeles, CA, USA.
| |
Collapse
|
6
|
Kuwabara Y, Wong B, Mahajan A, Salavatian S. Pharmacologic, Surgical, and Device-Based Cardiac Neuromodulation. Card Electrophysiol Clin 2024; 16:315-324. [PMID: 39084724 DOI: 10.1016/j.ccep.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
The cardiac autonomic nervous system plays a key role in maintaining normal cardiac physiology, and once disrupted, it worsens the cardiac disease states. Neuromodulation therapies have been emerging as new treatment options, and various techniques have been introduced to mitigate autonomic nervous imbalances to help cardiac patients with their disease conditions and symptoms. In this review article, we discuss various neuromodulation techniques used in clinical settings to treat cardiac diseases.
Collapse
Affiliation(s)
- Yuki Kuwabara
- Department of Anesthesiology and Perioperative Medicine of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Benjamin Wong
- Department of Anesthesiology and Perioperative Medicine of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Aman Mahajan
- Department of Anesthesiology and Perioperative Medicine of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Siamak Salavatian
- Department of Anesthesiology and Perioperative Medicine of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA; Department of Medicine, Division of Cardiology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
7
|
Zuhair M, Keene D, Kanagaratnam P, Lim PB. Percutaneous Neuromodulation for Atrial Fibrillation. Card Electrophysiol Clin 2024; 16:281-296. [PMID: 39084721 DOI: 10.1016/j.ccep.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Percutaneous neuromodulation is emerging as a promising therapeutic approach for atrial fibrillation (AF). This article explores techniques such as ganglionated plexi (GP) ablation, and vagus nerve stimulation, pinpointing their potential in modulating AF triggers and maintenance. Noninvasive methods, such as transcutaneous low-level tragus stimulation, offer innovative treatment pathways, with early trials indicating a significant reduction in AF burden. GP ablation may address autonomic triggers, and the potential for GP ablation in neuromodulation is discussed. The article stresses the necessity for more rigorous clinical trials to validate the safety, reproducibility, and efficacy of these neuromodulation techniques in AF treatment.
Collapse
Affiliation(s)
- Mohamed Zuhair
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London W12, UK.
| | - Daniel Keene
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London W12, UK
| | - Prapa Kanagaratnam
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London W12, UK
| | - Phang Boon Lim
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London W12, UK
| |
Collapse
|
8
|
Zarębski Ł, Futyma P. Short-term deceleration capacity: a novel non-invasive indicator of parasympathetic activity in patients undergoing pulmonary vein isolation. J Interv Card Electrophysiol 2024:10.1007/s10840-024-01899-4. [PMID: 39162917 DOI: 10.1007/s10840-024-01899-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/06/2024] [Indexed: 08/21/2024]
Abstract
BACKGROUND Subtypes of atrial fibrillation (AF) can differ, and exact mechanisms in which patients benefit from the pulmonary vein isolation (PVI) remain not fully understood. During PVI, vagal innervation of the heart may also be affected. Thus, non-invasive methods of intraprocedural assessment of such PVI impact are sought. METHODS From 1-minute ECG recordings performed before and after PVI, we investigated short-term deceleration capacity (ST-DC) and short-term heart rate variability (ST-HRV) to determine their potential as indicators of parasympathetic activity before and after ablation. RESULTS In 24 consecutive patients with paroxysmal AF included in the study, there were a significant differences in ST-DC and ST-HRV parameters measured before and after PVI. After 3 months, patients with baseline ST-DC ≥ 7.5 ms were less likely to experience AF recurrence when compared to patients with baseline ST-DC < 7.5 ms (0% vs 31%, p = 0.0496). There were no differences in AF recurrence after 12 months of follow-up (36% vs 38%, p = 0.52). CONCLUSION PVI leads to significant changes in ST-DC and ST-HRV, and these parameters can serve as indicators of vagal denervation after AF ablation. Patients with more prominent baseline ST-DC are less likely to experience AF recurrence during the post-PVI 3-month blanking period.
Collapse
Affiliation(s)
- Łukasz Zarębski
- St. Joseph's Heart Rhythm Center, Anny Jagiellonki 17, 35-623, Rzeszów, Poland.
- University of Rzeszów, Rzeszów, Poland.
| | - Piotr Futyma
- St. Joseph's Heart Rhythm Center, Anny Jagiellonki 17, 35-623, Rzeszów, Poland
- University of Rzeszów, Rzeszów, Poland
| |
Collapse
|
9
|
Tzeis S, Gerstenfeld EP, Kalman J, Saad E, Shamloo AS, Andrade JG, Barbhaiya CR, Baykaner T, Boveda S, Calkins H, Chan NY, Chen M, Chen SA, Dagres N, Damiano RJ, De Potter T, Deisenhofer I, Derval N, Di Biase L, Duytschaever M, Dyrda K, Hindricks G, Hocini M, Kim YH, la Meir M, Merino JL, Michaud GF, Natale A, Nault I, Nava S, Nitta T, O'Neill M, Pak HN, Piccini JP, Pürerfellner H, Reichlin T, Saenz LC, Sanders P, Schilling R, Schmidt B, Supple GE, Thomas KL, Tondo C, Verma A, Wan EY. 2024 European Heart Rhythm Association/Heart Rhythm Society/Asia Pacific Heart Rhythm Society/Latin American Heart Rhythm Society expert consensus statement on catheter and surgical ablation of atrial fibrillation. J Interv Card Electrophysiol 2024; 67:921-1072. [PMID: 38609733 DOI: 10.1007/s10840-024-01771-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
In the last three decades, ablation of atrial fibrillation (AF) has become an evidence-based safe and efficacious treatment for managing the most common cardiac arrhythmia. In 2007, the first joint expert consensus document was issued, guiding healthcare professionals involved in catheter or surgical AF ablation. Mounting research evidence and technological advances have resulted in a rapidly changing landscape in the field of catheter and surgical AF ablation, thus stressing the need for regularly updated versions of this partnership which were issued in 2012 and 2017. Seven years after the last consensus, an updated document was considered necessary to define a contemporary framework for selection and management of patients considered for or undergoing catheter or surgical AF ablation. This consensus is a joint effort from collaborating cardiac electrophysiology societies, namely the European Heart Rhythm Association, the Heart Rhythm Society (HRS), the Asia Pacific HRS, and the Latin American HRS.
Collapse
Affiliation(s)
| | - Edward P Gerstenfeld
- Section of Cardiac Electrophysiology, University of California, San Francisco, CA, USA
| | - Jonathan Kalman
- Department of Cardiology, Royal Melbourne Hospital, Melbourne, Australia
- Department of Medicine, University of Melbourne and Baker Research Institute, Melbourne, Australia
| | - Eduardo Saad
- Electrophysiology and Pacing, Hospital Samaritano Botafogo, Rio de Janeiro, Brazil
- Cardiac Arrhythmia Service, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | - Jason G Andrade
- Department of Medicine, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | | | - Tina Baykaner
- Division of Cardiology and Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Serge Boveda
- Heart Rhythm Management Department, Clinique Pasteur, Toulouse, France
- Universiteit Brussel (VUB), Brussels, Belgium
| | - Hugh Calkins
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Ngai-Yin Chan
- Department of Medicine and Geriatrics, Princess Margaret Hospital, Hong Kong Special Administrative Region, China
| | - Minglong Chen
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shih-Ann Chen
- Heart Rhythm Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Nikolaos Dagres
- Department of Cardiac Electrophysiology, Charité University Berlin, Berlin, Germany
| | - Ralph J Damiano
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, Barnes-Jewish Hospital, St. Louis, MO, USA
| | | | - Isabel Deisenhofer
- Department of Electrophysiology, German Heart Center Munich, Technical University of Munich (TUM) School of Medicine and Health, Munich, Germany
| | - Nicolas Derval
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Cardiac Electrophysiology and Stimulation Department, Fondation Bordeaux Université and Bordeaux University Hospital (CHU), Pessac-Bordeaux, France
| | - Luigi Di Biase
- Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Katia Dyrda
- Department of Cardiology, Montreal Heart Institute, Université de Montréal, Montreal, Canada
| | - Gerhard Hindricks
- Department of Cardiac Electrophysiology, Charité University Berlin, Berlin, Germany
| | - Meleze Hocini
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Cardiac Electrophysiology and Stimulation Department, Fondation Bordeaux Université and Bordeaux University Hospital (CHU), Pessac-Bordeaux, France
| | - Young-Hoon Kim
- Division of Cardiology, Korea University College of Medicine and Korea University Medical Center, Seoul, Republic of Korea
| | - Mark la Meir
- Cardiac Surgery Department, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, Brussels, Belgium
| | - Jose Luis Merino
- La Paz University Hospital, Idipaz, Universidad Autonoma, Madrid, Spain
- Hospital Viamed Santa Elena, Madrid, Spain
| | - Gregory F Michaud
- Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Andrea Natale
- Texas Cardiac Arrhythmia Institute, St. David's Medical Center, Austin, TX, USA
- Case Western Reserve University, Cleveland, OH, USA
- Interventional Electrophysiology, Scripps Clinic, San Diego, CA, USA
- Department of Biomedicine and Prevention, Division of Cardiology, University of Tor Vergata, Rome, Italy
| | - Isabelle Nault
- Institut Universitaire de Cardiologie et de Pneumologie de Quebec (IUCPQ), Quebec, Canada
| | - Santiago Nava
- Departamento de Electrocardiología, Instituto Nacional de Cardiología 'Ignacio Chávez', Ciudad de México, México
| | - Takashi Nitta
- Department of Cardiovascular Surgery, Nippon Medical School, Tokyo, Japan
| | - Mark O'Neill
- Cardiovascular Directorate, St. Thomas' Hospital and King's College, London, UK
| | - Hui-Nam Pak
- Division of Cardiology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | | | | | - Tobias Reichlin
- Department of Cardiology, Inselspital Bern, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Luis Carlos Saenz
- International Arrhythmia Center, Cardioinfantil Foundation, Bogota, Colombia
| | - Prashanthan Sanders
- Centre for Heart Rhythm Disorders, University of Adelaide and Royal Adelaide Hospital, Adelaide, Australia
| | | | - Boris Schmidt
- Cardioangiologisches Centrum Bethanien, Medizinische Klinik III, Agaplesion Markuskrankenhaus, Frankfurt, Germany
| | - Gregory E Supple
- Cardiac Electrophysiology Section, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | - Claudio Tondo
- Department of Clinical Electrophysiology and Cardiac Pacing, Centro Cardiologico Monzino, IRCCS, Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Atul Verma
- McGill University Health Centre, McGill University, Montreal, Canada
| | - Elaine Y Wan
- Department of Medicine, Division of Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| |
Collapse
|
10
|
Gerstenfeld EP, Mansour M, Whang W, Venkateswaran R, Harding JD, Ellis CR, Ellenbogen KA, Osorio J, DeLurgio DB, Daccarett M, Mangrum M, McElderry T, Richards E, Albrecht EM, Schneider CW, Sutton BS, Reddy VY. Autonomic Effects of Pulsed Field vs Thermal Ablation for Treating Atrial Fibrillation: Subanalysis of ADVENT. JACC Clin Electrophysiol 2024; 10:1634-1644. [PMID: 38869507 DOI: 10.1016/j.jacep.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND Autonomic denervation is an ancillary phenomenon during thermal ablation of atrial fibrillation (AF), that may have synergistic effects on symptomatic improvement and long-term freedom from AF. Pulsed field ablation (PFA), a nonthermal ablation modality, was noninferior to thermal ablation in treating AF; however, PFA's relative myocardial selectivity may minimize autonomic effects. OBJECTIVES This study sought to compare heart rate (HR) and heart rate variability (HRV) metrics as markers of autonomic function after ablation using PFA vs thermal ablation. METHODS ADVENT (FARAPULSE ADVENT PIVOTAL Trial PFA System vs SOC Ablation for Paroxysmal Atrial Fibrillation) was a randomized pivotal study comparing PFA (pentaspline catheter) with thermal ablation (radiofrequency [RF] or cryoballoon [CB]) for treating paroxysmal AF. Baseline HR was acquired from a pre-ablation 12-lead electrocardiogram, whereas follow-up HRs, as well as HRV (standard deviation of all normal to normal RR intervals, standard deviation of 5-minute average RR intervals) metrics, were derived from 72-hour Holter monitors at 6 and 12 months. RESULTS This study included 379 paroxysmal AF patients undergoing PFA (n = 194) or thermal ablation (n = 185; n = 102 RF, n = 83 CB) completing 6- and 12-month Holter monitoring. Compared with PFA, thermal patients had significantly greater increases in HR from baseline to 6 months (ΔHR; 10.1 vs 5.9 beats/min; P = 0.02) and 12 months (ΔHR; 8.8 vs 5.2 beats/min; P = 0.03). This increase in HR at 6 and 12 months was similar between CB and RF (P = 0.94 and 0.83, respectively). HRV, both standard deviation of all normal to normal RR intervals and standard deviation of 5-minute average RR intervals, were significantly lower at both 6 and 12 months after thermal ablation compared with PFA (P < 0.01). CONCLUSIONS PFA's effect on the autonomic nervous system was attenuated compared with thermal ablation. Whether this affects long-term freedom from AF or symptomatic bradycardia/pauses after AF ablation requires further study.
Collapse
Affiliation(s)
| | - Moussa Mansour
- Massachusetts General Hospital, Boston, Massachusetts, USA
| | - William Whang
- Helmsley Electrophysiology Center, Mount Sinai Fuster Heart Hospital, New York, New York, USA
| | | | | | | | | | - Jose Osorio
- Grandview Medical Center, Birmingham, Alabama, USA
| | | | | | - Michael Mangrum
- University of Virginia Medical Center, Charlottesville, Virgina, USA
| | - Tom McElderry
- University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | | | | | | - Vivek Y Reddy
- Helmsley Electrophysiology Center, Mount Sinai Fuster Heart Hospital, New York, New York, USA
| |
Collapse
|
11
|
Yokoyama M, Vlachos K, Pambrun T, Derval N, Jaïs P, Duchateau J. Importance of extracardiac vagal stimulation during catheter ablation for vagal atrial fibrillation: What is the hidden trigger? Heart Rhythm 2024:S1547-5271(24)02818-2. [PMID: 38936447 DOI: 10.1016/j.hrthm.2024.06.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/21/2024] [Accepted: 06/22/2024] [Indexed: 06/29/2024]
Affiliation(s)
- Masaaki Yokoyama
- Hôpital Cardiologique du Haut-Lévêque, CHU de Bordeaux, L'Institut de RYthmologie et modélisation Cardiaque (LIRYC), Université de Bordeaux, Bordeaux, France.
| | - Konstantinos Vlachos
- Hôpital Cardiologique du Haut-Lévêque, CHU de Bordeaux, L'Institut de RYthmologie et modélisation Cardiaque (LIRYC), Université de Bordeaux, Bordeaux, France
| | - Thomas Pambrun
- Hôpital Cardiologique du Haut-Lévêque, CHU de Bordeaux, L'Institut de RYthmologie et modélisation Cardiaque (LIRYC), Université de Bordeaux, Bordeaux, France
| | - Nicolas Derval
- Hôpital Cardiologique du Haut-Lévêque, CHU de Bordeaux, L'Institut de RYthmologie et modélisation Cardiaque (LIRYC), Université de Bordeaux, Bordeaux, France
| | - Pierre Jaïs
- Hôpital Cardiologique du Haut-Lévêque, CHU de Bordeaux, L'Institut de RYthmologie et modélisation Cardiaque (LIRYC), Université de Bordeaux, Bordeaux, France
| | - Josselin Duchateau
- Hôpital Cardiologique du Haut-Lévêque, CHU de Bordeaux, L'Institut de RYthmologie et modélisation Cardiaque (LIRYC), Université de Bordeaux, Bordeaux, France
| |
Collapse
|
12
|
Yang Z, Tiemuerniyazi X, Huang S, Song Y, Xu F, Feng W. Partial CArdiac Denervation to Prevent Postoperative Atrial Fibrillation After Coronary Artery Bypass Grafting (pCAD-POAF): Study Protocol for a Randomized Controlled Trial. Am J Cardiol 2024; 221:120-125. [PMID: 38649126 DOI: 10.1016/j.amjcard.2024.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/25/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024]
Abstract
Postoperative atrial fibrillation (POAF) is commonly seen in patients who underwent coronary artery bypass grafting (CABG), increasing the risk of morbidity, mortality, and hospital expenses. This study aimed to evaluate the effect of partial cardiac denervation, which is achieved by cutting off the ligament of Marshall and resecting the fat pad along the Waterston groove, on the prevention of POAF after CABG. Patients planned for CABG at our center were screened for eligibility in this study. A total of 430 patients were randomized into the intervention (partial cardiac denervation) group and control group. Intraoperative high-frequency electrical stimulation and further histologic analysis were performed in a certain number of patients to confirm the existence of ganglia. All patients were continuously monitored for the incidence of POAF through an electrophysiologic device until the sixth day postoperatively, and required to complete a 30-day follow-up (12-lead electrocardiogram and echocardiogram assessment) after discharge. The primary end point is the incidence of POAF, whereas the secondary end points are the cost-effectiveness and safety outcomes. In conclusion, this trial will evaluate whether partial cardiac denervation through cutting off the ligament of Marshall and resecting the fat pad along the Waterston groove can reduce the incidence of POAF after CABG. If this procedure is revealed to be effective and safe, it may provide a potential therapeutic approach to prevent POAF in this group of patients.
Collapse
Affiliation(s)
- Ziang Yang
- Department of Cardiovascular Surgery, Fuwai Hospital; National Center for Cardiovascular Diseases; National Clinical Research Center for Cardiovascular Diseases; Chinese Academy of Medical Sciences; and Peking Union Medical College, Beijing, China
| | - Xieraili Tiemuerniyazi
- Department of Cardiovascular Surgery, Fuwai Hospital; National Center for Cardiovascular Diseases; National Clinical Research Center for Cardiovascular Diseases; Chinese Academy of Medical Sciences; and Peking Union Medical College, Beijing, China
| | - Shengkang Huang
- Department of Cardiovascular Surgery, Fuwai Hospital; National Center for Cardiovascular Diseases; National Clinical Research Center for Cardiovascular Diseases; Chinese Academy of Medical Sciences; and Peking Union Medical College, Beijing, China
| | - Yangwu Song
- Department of Cardiovascular Surgery, Fuwai Hospital; National Center for Cardiovascular Diseases; National Clinical Research Center for Cardiovascular Diseases; Chinese Academy of Medical Sciences; and Peking Union Medical College, Beijing, China
| | - Fei Xu
- Department of Cardiovascular Surgery, Fuwai Hospital; National Center for Cardiovascular Diseases; National Clinical Research Center for Cardiovascular Diseases; Chinese Academy of Medical Sciences; and Peking Union Medical College, Beijing, China.
| | - Wei Feng
- Department of Cardiovascular Surgery, Fuwai Hospital; National Center for Cardiovascular Diseases; National Clinical Research Center for Cardiovascular Diseases; Chinese Academy of Medical Sciences; and Peking Union Medical College, Beijing, China.
| |
Collapse
|
13
|
Kistler PM, Sanders P, Amarena JV, Bain CR, Chia KM, Choo WK, Eslick AT, Hall T, Hopper IK, Kotschet E, Lim HS, Ling LH, Mahajan R, Marasco SF, McGuire MA, McLellan AJ, Pathak RK, Phillips KP, Prabhu S, Stiles MK, Sy RW, Thomas SP, Toy T, Watts TW, Weerasooriya R, Wilsmore BR, Wilson L, Kalman JM. 2023 Cardiac Society of Australia and New Zealand Expert Position Statement on Catheter and Surgical Ablation for Atrial Fibrillation. Heart Lung Circ 2024; 33:828-881. [PMID: 38702234 DOI: 10.1016/j.hlc.2023.12.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 05/06/2024]
Abstract
Catheter ablation for atrial fibrillation (AF) has increased exponentially in many developed countries, including Australia and New Zealand. This Expert Position Statement on Catheter and Surgical Ablation for Atrial Fibrillation from the Cardiac Society of Australia and New Zealand (CSANZ) recognises healthcare factors, expertise and expenditure relevant to the Australian and New Zealand healthcare environments including considerations of potential implications for First Nations Peoples. The statement is cognisant of international advice but tailored to local conditions and populations, and is intended to be used by electrophysiologists, cardiologists and general physicians across all disciplines caring for patients with AF. They are also intended to provide guidance to healthcare facilities seeking to establish or maintain catheter ablation for AF.
Collapse
Affiliation(s)
- Peter M Kistler
- The Alfred Hospital, Melbourne, Vic, Australia; The Baker Heart and Diabetes Research Institute, Melbourne, Vic, Australia; University of Melbourne, Melbourne, Vic, Australia; Monash University, Melbourne, Vic, Australia.
| | - Prash Sanders
- University of Adelaide, Adelaide, SA, Australia; Royal Adelaide Hospital, Adelaide, SA, Australia
| | | | - Chris R Bain
- The Alfred Hospital, Melbourne, Vic, Australia; Monash University, Melbourne, Vic, Australia
| | - Karin M Chia
- Royal North Shore Hospital, Sydney, NSW, Australia
| | - Wai-Kah Choo
- Gold Coast University Hospital, Gold Coast, Qld, Australia; Royal Darwin Hospital, Darwin, NT, Australia
| | - Adam T Eslick
- University of Sydney, Sydney, NSW, Australia; The Canberra Hospital, Canberra, ACT, Australia
| | | | - Ingrid K Hopper
- The Alfred Hospital, Melbourne, Vic, Australia; Monash University, Melbourne, Vic, Australia
| | - Emily Kotschet
- Victorian Heart Hospital, Monash Health, Melbourne, Vic, Australia
| | - Han S Lim
- University of Melbourne, Melbourne, Vic, Australia; Austin Health, Melbourne, Vic, Australia; Northern Health, Melbourne, Vic, Australia
| | - Liang-Han Ling
- The Alfred Hospital, Melbourne, Vic, Australia; The Baker Heart and Diabetes Research Institute, Melbourne, Vic, Australia; University of Melbourne, Melbourne, Vic, Australia
| | - Rajiv Mahajan
- University of Adelaide, Adelaide, SA, Australia; Lyell McEwin Hospital, Adelaide, SA, Australia
| | - Silvana F Marasco
- The Alfred Hospital, Melbourne, Vic, Australia; Monash University, Melbourne, Vic, Australia
| | | | - Alex J McLellan
- University of Melbourne, Melbourne, Vic, Australia; Royal Melbourne Hospital, Melbourne, Vic, Australia; St Vincent's Hospital, Melbourne, Vic, Australia
| | - Rajeev K Pathak
- Australian National University and Canberra Heart Rhythm, Canberra, ACT, Australia
| | - Karen P Phillips
- Brisbane AF Clinic, Greenslopes Private Hospital, Brisbane, Qld, Australia
| | - Sandeep Prabhu
- The Alfred Hospital, Melbourne, Vic, Australia; The Baker Heart and Diabetes Research Institute, Melbourne, Vic, Australia; University of Melbourne, Melbourne, Vic, Australia; Monash University, Melbourne, Vic, Australia
| | - Martin K Stiles
- Waikato Clinical School, University of Auckland, Hamilton, New Zealand
| | - Raymond W Sy
- Royal Prince Alfred Hospital, Sydney, NSW, Australia; Concord Repatriation General Hospital, Sydney, NSW, Australia
| | - Stuart P Thomas
- University of Sydney, Sydney, NSW, Australia; Westmead Hospital, Sydney, NSW, Australia
| | - Tracey Toy
- The Alfred Hospital, Melbourne, Vic, Australia
| | - Troy W Watts
- Royal Melbourne Hospital, Melbourne, Vic, Australia
| | - Rukshen Weerasooriya
- Hollywood Private Hospital, Perth, WA, Australia; University of Western Australia, Perth, WA, Australia
| | | | | | - Jonathan M Kalman
- University of Melbourne, Melbourne, Vic, Australia; Royal Melbourne Hospital, Melbourne, Vic, Australia
| |
Collapse
|
14
|
Del Monte A, Della Rocca DG, Pannone L, Vetta G, Cespón Fernández M, Marcon L, Doundoulakis I, Mouram S, Audiat C, Zeriouh S, Monaco C, Al Housari M, Betancur A, Mené R, Iacopino S, Sorgente A, Bala G, Ströker E, Sieira J, Almorad A, Sarkozy A, Boveda S, de Asmundis C, Chierchia GB. Pulsed field ablation of the right superior pulmonary vein prevents vagal responses via anterior right ganglionated plexus modulation. Heart Rhythm 2024; 21:780-787. [PMID: 38290688 DOI: 10.1016/j.hrthm.2024.01.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/01/2024]
Abstract
BACKGROUND Pulsed field ablation (PFA) is selective for the myocardium. However, vagal responses and reversible effects on ganglionated plexi (GP) are observed during pulmonary vein isolation (PVI). Anterior-right GP ablation has been proven to effectively prevent vagal responses during radiofrequency-based PVI. OBJECTIVE The purpose of this study was to test the hypothesis that PFA-induced transient anterior-right GP modulation when targeting the right superior pulmonary vein (RSPV) before any other pulmonary veins (PVs) may effectively prevent intraprocedural vagal responses. METHODS Eighty consecutive paroxysmal atrial fibrillation patients undergoing PVI with PFA were prospectively included. In the first 40 patients, PVI was performed first targeting the left superior pulmonary vein (LSPV-first group). In the last 40 patients, RSPV was targeted first, followed by left PVs and right inferior PV (RSPV-first group). Heart rate (HR) and extracardiac vagal stimulation (ECVS) were evaluated at baseline, during PVI, and postablation to assess GP modulation. RESULTS Vagal responses occurred in 31 patients (78%) in the LSPV-first group and 5 (13%) in the RSPV-first group (P <.001). Temporary pacing was needed in 14 patients (35%) in the LSPV-first group and 3 (8%) in the RSPV-first group (P = .003). RSPV isolation was associated with similar acute HR increase in the 2 groups (13 ± 11 bpm vs 15 ± 12 bpm; P = .3). No significant residual changes in HR or ECVS response were documented in both groups at the end of the procedure compared to baseline (all P >.05). CONCLUSION PVI with PFA frequently induced vagal responses when initiated from the LSPV. Nevertheless, an RSPV-first approach promoted transient HR increase and reduced vagal response occurrence.
Collapse
Affiliation(s)
- Alvise Del Monte
- Heart Rhythm Management Centre, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Domenico Giovanni Della Rocca
- Heart Rhythm Management Centre, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Luigi Pannone
- Heart Rhythm Management Centre, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Giampaolo Vetta
- Heart Rhythm Management Centre, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - María Cespón Fernández
- Heart Rhythm Management Centre, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Lorenzo Marcon
- Heart Rhythm Management Centre, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Ioannis Doundoulakis
- Heart Rhythm Management Centre, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Sahar Mouram
- Heart Rhythm Management Centre, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Charles Audiat
- Heart Rhythm Management Centre, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Sarah Zeriouh
- Heart Rhythm Management Department, Clinique Pasteur, Toulouse, France
| | - Cinzia Monaco
- Heart Rhythm Management Centre, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Maysam Al Housari
- Heart Rhythm Management Centre, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Andrés Betancur
- Heart Rhythm Management Department, Clinique Pasteur, Toulouse, France
| | - Roberto Mené
- Heart Rhythm Management Department, Clinique Pasteur, Toulouse, France
| | - Saverio Iacopino
- Electrophysiology Unit, GVM Care & Research, Maria Cecilia Hospital, Cotignola, Italy
| | - Antonio Sorgente
- Heart Rhythm Management Centre, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Gezim Bala
- Heart Rhythm Management Centre, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Erwin Ströker
- Heart Rhythm Management Centre, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Juan Sieira
- Heart Rhythm Management Centre, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Alexandre Almorad
- Heart Rhythm Management Centre, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Andrea Sarkozy
- Heart Rhythm Management Centre, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Serge Boveda
- Heart Rhythm Management Department, Clinique Pasteur, Toulouse, France
| | - Carlo de Asmundis
- Heart Rhythm Management Centre, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium.
| | - Gian-Battista Chierchia
- Heart Rhythm Management Centre, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| |
Collapse
|
15
|
Futyma P, Zarębski Ł, Wrzos A, Futyma M, Kułakowski P. Cardioneuroablation of Right Anterior Ganglionated Plexus for Treatment of Vagally Mediated Paroxysmal Atrial Fibrillation. JACC Clin Electrophysiol 2024; 10:1194-1196. [PMID: 38727663 DOI: 10.1016/j.jacep.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 06/28/2024]
Affiliation(s)
- Piotr Futyma
- St. Joseph's Heart Rhythm Center, Rzeszów, Poland; University of Rzeszów, Rzeszów, Poland.
| | - Łukasz Zarębski
- St. Joseph's Heart Rhythm Center, Rzeszów, Poland; University of Rzeszów, Rzeszów, Poland
| | | | | | - Piotr Kułakowski
- St. Joseph's Heart Rhythm Center, Rzeszów, Poland; Grochowski Hospital, Warsaw, Poland
| |
Collapse
|
16
|
Cho MS, Lee JH, Nam GB, Hwang KW, Cha MJ, Kim J, Choi KJ. Comparison between catheter ablation versus permanent pacemaker implantation as an initial treatment for tachycardia-bradycardia syndrome patients: a prospective, randomized trial. BMC Cardiovasc Disord 2024; 24:246. [PMID: 38730404 PMCID: PMC11088091 DOI: 10.1186/s12872-024-03920-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 05/03/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Clinical outcomes after catheter ablation (CA) or pacemaker (PM) implantation for the tachycardia-bradycardia syndrome (TBS) has not been evaluated adequately. We tried to compare the efficacy and safety outcomes of CA and PM implantation as an initial treatment option for TBS in paroxysmal atrial fibrillation (AF) patients. METHODS Sixty-eight patients with paroxysmal AF and TBS (mean 63.7 years, 63.2% male) were randomized, and received CA (n = 35) or PM (n = 33) as initial treatments. The primary outcomes were unexpected emergency room visits or hospitalizations attributed to cardiovascular causes. RESULTS In the intention-to-treatment analysis, the rates of primary outcomes were not significantly different between the two groups at the 2-year follow-up (19.8% vs. 25.9%; hazard ratio (HR) 0.73, 95% confidence interval (CI) 0.25-2.20, P = 0.584), irrespective of whether the results were adjusted for age (HR 1.12, 95% CI 0.34-3.64, P = 0.852). The 2-year rate of recurrent AF was significantly lower in the CA group compared to the PM group (33.9% vs. 56.8%, P = 0.038). Four patients (11.4%) in the CA group finally received PMs after CA owing to recurrent syncope episodes. The rate of major or minor procedure related complications was not significantly different between the two groups. CONCLUSION CA had a similar efficacy and safety profile with that of PM and a higher sinus rhythm maintenance rate. CA could be considered as a preferable initial treatment option over PM implantation in patients with paroxysmal AF and TBS. TRIAL REGISTRATION KCT0000155.
Collapse
Affiliation(s)
- Min Soo Cho
- Department of Cardiology, Heart Institute, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea
| | - Ji Hyun Lee
- Cardiovascular Center, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Gi-Byoung Nam
- Department of Cardiology, Heart Institute, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea.
| | - Ki Won Hwang
- Division of Cardiology, Department of Internal Medicine, Pusan National University Yangsan Hospital, Pusan National University of Medicine, Yangsan, Korea
| | - Myung-Jin Cha
- Department of Cardiology, Heart Institute, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea
| | - Jun Kim
- Department of Cardiology, Heart Institute, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea
| | - Kee-Joon Choi
- Department of Cardiology, Heart Institute, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea
| |
Collapse
|
17
|
Estevez-Laborí F, O'Brien B, González-Suárez A. Difference between endocardial and epicardial application of pulsed fields for targeting Epicardial Ganglia: An in-silico modelling study. Comput Biol Med 2024; 174:108490. [PMID: 38642490 DOI: 10.1016/j.compbiomed.2024.108490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/04/2024] [Accepted: 04/15/2024] [Indexed: 04/22/2024]
Abstract
BACKGROUND Pulsed Field Ablation (PFA) has recently been proposed as a non-thermal energy to treat atrial fibrillation by selective ablation of ganglionated plexi (GP) embedded in epicardial fat. While some of PFA-technologies use an endocardial approach, others use epicardial access with promising pre-clinical results. However, as each technology uses a different and sometimes proprietary pulse application protocol, the comparation between endocardial vs. epicardial approach is almost impossible in experimental terms. For this reason, our study, based on a computational model, allows a direct comparison of electric field distribution and thermal-side effects of both approaches under equal conditions in terms of electrode design, pulse protocol and anatomical characteristics of the tissues involved. METHODS 2D computational models with axial symmetry were built for endocardial and epicardial approaches. Atrial (1.5-2.5 mm) and fat (1-5 mm) thicknesses were varied to simulate a representative sample of what happens during PFA ablation for different applied voltage values (1000, 1500 and 2000 V) and number of pulses (30 and 50). RESULTS The epicardial approach was superior for capturing greater volumes of fat when the applied voltage was increased: 231 mm3/kV with the epicardial approach vs. 182 mm3/kV with the endocardial approach. In relation to collateral damage to the myocardium, the epicardial approach considerably spares the myocardium, unlike what happens with the endocardial approach. Although the epicardial approach caused much more thermal damage in the fat, there is not a significant difference between the approaches in terms of size of thermal damage in the myocardium. CONCLUSIONS Our results suggest that epicardial PFA ablation of GPs is more effective than an endocardial approach. The proximity and directionality of the electric field deposited using an epicardial approach are key to ensuring that higher electric field strengths and increased temperatures are obtained within the epicardial fat, thus contributing to selective ablation of the GPs with minimal myocardial damage.
Collapse
Affiliation(s)
| | | | - Ana González-Suárez
- Translational Medical Device Lab, School of Medicine, University of Galway, Ireland; IBIO, Escuela Superior de Ingeniería, Ciencia y Tecnología, Universidad Internacional de Valencia, Valencia, Spain.
| |
Collapse
|
18
|
Acosta JCZ, Kowlgi GN. Redefining cardiac care: the promising horizon of epicardial pulse field ablation for postoperative atrial fibrillation. J Interv Card Electrophysiol 2024:10.1007/s10840-024-01806-x. [PMID: 38641763 DOI: 10.1007/s10840-024-01806-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 04/05/2024] [Indexed: 04/21/2024]
Affiliation(s)
| | - Gurukripa N Kowlgi
- Department of Cardiovascular Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| |
Collapse
|
19
|
Reddy VY, Anter E, Peichl P, Rackauskas G, Petru J, Funasako M, Koruth JS, Marinskis G, Turagam M, Aidietis A, Kautzner J, Natale A, Neuzil P. First-in-human clinical series of a novel conformable large-lattice pulsed field ablation catheter for pulmonary vein isolation. Europace 2024; 26:euae090. [PMID: 38584468 PMCID: PMC11057205 DOI: 10.1093/europace/euae090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 04/03/2024] [Indexed: 04/09/2024] Open
Abstract
AIMS Pulsed field ablation (PFA) has significant advantages over conventional thermal ablation of atrial fibrillation (AF). This first-in-human, single-arm trial to treat paroxysmal AF (PAF) assessed the efficiency, safety, pulmonary vein isolation (PVI) durability and one-year clinical effectiveness of an 8 Fr, large-lattice, conformable single-shot PFA catheter together with a dedicated electroanatomical mapping system. METHODS AND RESULTS After rendering the PV anatomy, the PFA catheter delivered monopolar, biphasic pulse trains (5-6 s per application; ∼4 applications per PV). Three waveforms were tested: PULSE1, PULSE2, and PULSE3. Follow-up included ECGs, Holters at 6 and 12 months, and symptomatic and scheduled transtelephonic monitoring. The primary and secondary efficacy endpoints were acute PVI and post-blanking atrial arrhythmia recurrence, respectively. Invasive remapping was conducted ∼75 days post-ablation. At three centres, PVI was performed by five operators in 85 patients using PULSE1 (n = 30), PULSE2 (n = 20), and PULSE3 (n = 35). Acute PVI was achieved in 100% of PVs using 3.9 ± 1.4 PFA applications per PV. Overall procedure, transpired ablation, PFA catheter dwell and fluoroscopy times were 56.5 ± 21.6, 10.0 ± 6.0, 19.1 ± 9.3, and 5.7 ± 3.9 min, respectively. No pre-defined primary safety events occurred. Upon remapping, PVI durability was 90% and 99% on a per-vein basis for the total and PULSE3 cohort, respectively. The Kaplan-Meier estimate of one-year freedom from atrial arrhythmias was 81.8% (95% CI 70.2-89.2%) for the total, and 100% (95% CI 80.6-100%) for the PULSE3 cohort. CONCLUSION Pulmonary vein isolation (PVI) utilizing a conformable single-shot PFA catheter to treat PAF was efficient, safe, and effective, with durable lesions demonstrated upon remapping.
Collapse
Affiliation(s)
- Vivek Y Reddy
- Department of Cardiology, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, Box 1030, New York, NY, USA
- Department of Cardiology, Homolka Hospital, Prague, Czech Republic
| | - Elad Anter
- Division of Cardiovascular Medicine, Shamir Medical Center, Be'er Yaakov, Tel Aviv, Israel
| | - Petr Peichl
- Department of Cardiology, Institute for Clinical and Experimental Medicine-IKEM, Prague, Czech Republic
| | | | - Jan Petru
- Department of Cardiology, Homolka Hospital, Prague, Czech Republic
| | | | - Jacob S Koruth
- Department of Cardiology, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, Box 1030, New York, NY, USA
| | | | - Mohit Turagam
- Department of Cardiology, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, Box 1030, New York, NY, USA
| | - Audrius Aidietis
- Department of Cardiology, Vilnius University, Vilnius, Lithuania
| | - Josef Kautzner
- Department of Cardiology, Institute for Clinical and Experimental Medicine-IKEM, Prague, Czech Republic
| | - Andrea Natale
- Texas Cardiac Arrhythmia Institute, St. David’s Medical Center, Austin, TX, USA
- Department of Biomedicine and Prevention, Division of Cardiology, University of Tor Vergata, Rome, Italy
| | - Petr Neuzil
- Department of Cardiology, Homolka Hospital, Prague, Czech Republic
| |
Collapse
|
20
|
Tzeis S, Gerstenfeld EP, Kalman J, Saad EB, Sepehri Shamloo A, Andrade JG, Barbhaiya CR, Baykaner T, Boveda S, Calkins H, Chan NY, Chen M, Chen SA, Dagres N, Damiano RJ, De Potter T, Deisenhofer I, Derval N, Di Biase L, Duytschaever M, Dyrda K, Hindricks G, Hocini M, Kim YH, la Meir M, Merino JL, Michaud GF, Natale A, Nault I, Nava S, Nitta T, O’Neill M, Pak HN, Piccini JP, Pürerfellner H, Reichlin T, Saenz LC, Sanders P, Schilling R, Schmidt B, Supple GE, Thomas KL, Tondo C, Verma A, Wan EY. 2024 European Heart Rhythm Association/Heart Rhythm Society/Asia Pacific Heart Rhythm Society/Latin American Heart Rhythm Society expert consensus statement on catheter and surgical ablation of atrial fibrillation. Europace 2024; 26:euae043. [PMID: 38587017 PMCID: PMC11000153 DOI: 10.1093/europace/euae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 04/09/2024] Open
Abstract
In the last three decades, ablation of atrial fibrillation (AF) has become an evidence-based safe and efficacious treatment for managing the most common cardiac arrhythmia. In 2007, the first joint expert consensus document was issued, guiding healthcare professionals involved in catheter or surgical AF ablation. Mounting research evidence and technological advances have resulted in a rapidly changing landscape in the field of catheter and surgical AF ablation, thus stressing the need for regularly updated versions of this partnership which were issued in 2012 and 2017. Seven years after the last consensus, an updated document was considered necessary to define a contemporary framework for selection and management of patients considered for or undergoing catheter or surgical AF ablation. This consensus is a joint effort from collaborating cardiac electrophysiology societies, namely the European Heart Rhythm Association, the Heart Rhythm Society, the Asia Pacific Heart Rhythm Society, and the Latin American Heart Rhythm Society .
Collapse
Affiliation(s)
- Stylianos Tzeis
- Department of Cardiology, Mitera Hospital, 6, Erythrou Stavrou Str., Marousi, Athens, PC 151 23, Greece
| | - Edward P Gerstenfeld
- Section of Cardiac Electrophysiology, University of California, San Francisco, CA, USA
| | - Jonathan Kalman
- Department of Cardiology, Royal Melbourne Hospital, Melbourne, Australia
- Department of Medicine, University of Melbourne and Baker Research Institute, Melbourne, Australia
| | - Eduardo B Saad
- Electrophysiology and Pacing, Hospital Samaritano Botafogo, Rio de Janeiro, Brazil
- Cardiac Arrhythmia Service, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | - Jason G Andrade
- Department of Medicine, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | | | - Tina Baykaner
- Division of Cardiology and Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Serge Boveda
- Heart Rhythm Management Department, Clinique Pasteur, Toulouse, France
- Universiteit Brussel (VUB), Brussels, Belgium
| | - Hugh Calkins
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Ngai-Yin Chan
- Department of Medicine and Geriatrics, Princess Margaret Hospital, Hong Kong Special Administrative Region, China
| | - Minglong Chen
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shih-Ann Chen
- Heart Rhythm Center, Taipei Veterans General Hospital, Taipei, and Cardiovascular Center, Taichung Veterans General Hospital, Taichung, Taiwan
| | | | - Ralph J Damiano
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, Barnes-Jewish Hospital, St. Louis, MO, USA
| | | | - Isabel Deisenhofer
- Department of Electrophysiology, German Heart Center Munich, Technical University of Munich (TUM) School of Medicine and Health, Munich, Germany
| | - Nicolas Derval
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Cardiac Electrophysiology and Stimulation Department, Fondation Bordeaux Université and Bordeaux University Hospital (CHU), Pessac-Bordeaux, France
| | - Luigi Di Biase
- Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Katia Dyrda
- Department of Medicine, Montreal Heart Institute, Université de Montréal, Montreal, Canada
| | | | - Meleze Hocini
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Cardiac Electrophysiology and Stimulation Department, Fondation Bordeaux Université and Bordeaux University Hospital (CHU), Pessac-Bordeaux, France
| | - Young-Hoon Kim
- Division of Cardiology, Korea University College of Medicine and Korea University Medical Center, Seoul, Republic of Korea
| | - Mark la Meir
- Cardiac Surgery Department, Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Jose Luis Merino
- La Paz University Hospital, Idipaz, Universidad Autonoma, Madrid, Spain
- Hospital Viamed Santa Elena, Madrid, Spain
| | | | - Andrea Natale
- Texas Cardiac Arrhythmia Institute, St. David’s Medical Center, Austin, TX, USA
- Case Western Reserve University, Cleveland, OH, USA
- Interventional Electrophysiology, Scripps Clinic, San Diego, CA, USA
- Department of Biomedicine and Prevention, Division of Cardiology, University of Tor Vergata, Rome, Italy
| | - Isabelle Nault
- Institut Universitaire de Cardiologie et de Pneumologie de Quebec (IUCPQ), Quebec, Canada
| | - Santiago Nava
- Departamento de Electrocardiología, Instituto Nacional de Cardiología ‘Ignacio Chávez’, Ciudad de México, México
| | - Takashi Nitta
- Department of Cardiovascular Surgery, Nippon Medical School, Tokyo, Japan
| | - Mark O’Neill
- Cardiovascular Directorate, St. Thomas’ Hospital and King’s College, London, UK
| | - Hui-Nam Pak
- Division of Cardiology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | | | | | - Tobias Reichlin
- Department of Cardiology, Inselspital Bern, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Luis Carlos Saenz
- International Arrhythmia Center, Cardioinfantil Foundation, Bogota, Colombia
| | - Prashanthan Sanders
- Centre for Heart Rhythm Disorders, University of Adelaide and Royal Adelaide Hospital, Adelaide, Australia
| | | | - Boris Schmidt
- Cardioangiologisches Centrum Bethanien, Medizinische Klinik III, Agaplesion Markuskrankenhaus, Frankfurt, Germany
| | - Gregory E Supple
- Cardiac Electrophysiology Section, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | - Claudio Tondo
- Department of Clinical Electrophysiology and Cardiac Pacing, Centro Cardiologico Monzino, IRCCS, Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Atul Verma
- McGill University Health Centre, McGill University, Montreal, Canada
| | - Elaine Y Wan
- Department of Medicine, Division of Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| |
Collapse
|
21
|
Zarębski Ł, Futyma P, Sethia Y, Futyma M, Kułakowski P. Improvement in Atrioventricular Conduction Using Cardioneuroablation Performed Immediately after Pulmonary Vein Isolation. Healthcare (Basel) 2024; 12:728. [PMID: 38610150 PMCID: PMC11011453 DOI: 10.3390/healthcare12070728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/18/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
In patients with atrial fibrillation (AF) recurrences after pulmonary vein isolation (PVI), concomitant treatment using anti arrhythmic drugs (AADs) can lead to clinical success. However, patients with atrioventricular (AV) block may not be good candidates for concomitant AAD therapy due to the risk of further worsening of conduction abnormalities. Cardioneuroablation (CNA), as an adjunct to PVI, may offer a solution to this problem. We present a case of a 74-year-old male with paroxysmal AF and first degree AV block in whom CNA following PVI led to PR normalization. The presented case describes an example of CNA utilization in patients with AF undergoing PVI who have concomitant problems with AV conduction and shows that CNA can be sometimes useful in older patients with functional AV block.
Collapse
Affiliation(s)
- Łukasz Zarębski
- Medical College, University of Rzeszów, 35-959 Rzeszów, Poland; (Ł.Z.); (Y.S.)
- St. Joseph’s Heart Rhythm Center, 35-623 Rzeszów, Poland; (M.F.); (P.K.)
| | - Piotr Futyma
- Medical College, University of Rzeszów, 35-959 Rzeszów, Poland; (Ł.Z.); (Y.S.)
- St. Joseph’s Heart Rhythm Center, 35-623 Rzeszów, Poland; (M.F.); (P.K.)
| | - Yashvi Sethia
- Medical College, University of Rzeszów, 35-959 Rzeszów, Poland; (Ł.Z.); (Y.S.)
| | - Marian Futyma
- St. Joseph’s Heart Rhythm Center, 35-623 Rzeszów, Poland; (M.F.); (P.K.)
| | - Piotr Kułakowski
- St. Joseph’s Heart Rhythm Center, 35-623 Rzeszów, Poland; (M.F.); (P.K.)
- Department of Cardiology, Postgraduate Medical School, Grochowski Hospital, 04-073 Warsaw, Poland
| |
Collapse
|
22
|
Rajendran PS, Hadaya J, Khalsa SS, Yu C, Chang R, Shivkumar K. The vagus nerve in cardiovascular physiology and pathophysiology: From evolutionary insights to clinical medicine. Semin Cell Dev Biol 2024; 156:190-200. [PMID: 36641366 PMCID: PMC10336178 DOI: 10.1016/j.semcdb.2023.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/01/2023] [Accepted: 01/03/2023] [Indexed: 01/13/2023]
Abstract
The parasympathetic nervous system via the vagus nerve exerts profound influence over the heart. Together with the sympathetic nervous system, the parasympathetic nervous system is responsible for fine-tuned regulation of all aspects of cardiovascular function, including heart rate, rhythm, contractility, and blood pressure. In this review, we highlight vagal efferent and afferent innervation of the heart, with a focus on insights from comparative biology and advances in understanding the molecular and genetic diversity of vagal neurons, as well as interoception, parasympathetic dysfunction in heart disease, and the therapeutic potential of targeting the parasympathetic nervous system in cardiovascular disease.
Collapse
Affiliation(s)
| | - Joseph Hadaya
- University of California, Los Angeles (UCLA) Cardiac Arrhythmia Center and Neurocardiology Research Program of Excellence, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; UCLA Molecular, Cellular, and Integrative Physiology Program, Los Angeles, CA, USA
| | - Sahib S Khalsa
- Laureate Institute for Brain Research, Tulsa, Ok, USA; Oxley College of Health Sciences, University of Tulsa, Tulsa, Ok, USA
| | - Chuyue Yu
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA; Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | - Rui Chang
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA; Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | - Kalyanam Shivkumar
- University of California, Los Angeles (UCLA) Cardiac Arrhythmia Center and Neurocardiology Research Program of Excellence, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; UCLA Molecular, Cellular, and Integrative Physiology Program, Los Angeles, CA, USA.
| |
Collapse
|
23
|
Giannino G, Braia V, Griffith Brookles C, Giacobbe F, D'Ascenzo F, Angelini F, Saglietto A, De Ferrari GM, Dusi V. The Intrinsic Cardiac Nervous System: From Pathophysiology to Therapeutic Implications. BIOLOGY 2024; 13:105. [PMID: 38392323 PMCID: PMC10887082 DOI: 10.3390/biology13020105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/24/2024]
Abstract
The cardiac autonomic nervous system (CANS) plays a pivotal role in cardiac homeostasis as well as in cardiac pathology. The first level of cardiac autonomic control, the intrinsic cardiac nervous system (ICNS), is located within the epicardial fat pads and is physically organized in ganglionated plexi (GPs). The ICNS system does not only contain parasympathetic cardiac efferent neurons, as long believed, but also afferent neurons and local circuit neurons. Thanks to its high degree of connectivity, combined with neuronal plasticity and memory capacity, the ICNS allows for a beat-to-beat control of all cardiac functions and responses as well as integration with extracardiac and higher centers for longer-term cardiovascular reflexes. The present review provides a detailed overview of the current knowledge of the bidirectional connection between the ICNS and the most studied cardiac pathologies/conditions (myocardial infarction, heart failure, arrhythmias and heart transplant) and the potential therapeutic implications. Indeed, GP modulation with efferent activity inhibition, differently achieved, has been studied for atrial fibrillation and functional bradyarrhythmias, while GP modulation with efferent activity stimulation has been evaluated for myocardial infarction, heart failure and ventricular arrhythmias. Electrical therapy has the unique potential to allow for both kinds of ICNS modulation while preserving the anatomical integrity of the system.
Collapse
Affiliation(s)
- Giuseppe Giannino
- Cardiology, Department of Medical Sciences, University of Turin, 10124 Torino, Italy
- Division of Cardiology, Cardiovascular and Thoracic Department, 'Città della Salute e della Scienza' Hospital, 10126 Torino, Italy
| | - Valentina Braia
- Cardiology, Department of Medical Sciences, University of Turin, 10124 Torino, Italy
- Division of Cardiology, Cardiovascular and Thoracic Department, 'Città della Salute e della Scienza' Hospital, 10126 Torino, Italy
| | - Carola Griffith Brookles
- Cardiology, Department of Medical Sciences, University of Turin, 10124 Torino, Italy
- Division of Cardiology, Cardiovascular and Thoracic Department, 'Città della Salute e della Scienza' Hospital, 10126 Torino, Italy
| | - Federico Giacobbe
- Cardiology, Department of Medical Sciences, University of Turin, 10124 Torino, Italy
- Division of Cardiology, Cardiovascular and Thoracic Department, 'Città della Salute e della Scienza' Hospital, 10126 Torino, Italy
| | - Fabrizio D'Ascenzo
- Cardiology, Department of Medical Sciences, University of Turin, 10124 Torino, Italy
- Division of Cardiology, Cardiovascular and Thoracic Department, 'Città della Salute e della Scienza' Hospital, 10126 Torino, Italy
| | - Filippo Angelini
- Division of Cardiology, Cardiovascular and Thoracic Department, 'Città della Salute e della Scienza' Hospital, 10126 Torino, Italy
| | - Andrea Saglietto
- Division of Cardiology, Cardiovascular and Thoracic Department, 'Città della Salute e della Scienza' Hospital, 10126 Torino, Italy
| | - Gaetano Maria De Ferrari
- Cardiology, Department of Medical Sciences, University of Turin, 10124 Torino, Italy
- Division of Cardiology, Cardiovascular and Thoracic Department, 'Città della Salute e della Scienza' Hospital, 10126 Torino, Italy
| | - Veronica Dusi
- Cardiology, Department of Medical Sciences, University of Turin, 10124 Torino, Italy
- Division of Cardiology, Cardiovascular and Thoracic Department, 'Città della Salute e della Scienza' Hospital, 10126 Torino, Italy
| |
Collapse
|
24
|
Rast J, Sohinki D, Warner A. Non-invasive Neuromodulation of Arrhythmias. J Innov Card Rhythm Manag 2024; 15:5757-5766. [PMID: 38444451 PMCID: PMC10911637 DOI: 10.19102/icrm.2024.15022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/28/2023] [Indexed: 03/07/2024] Open
Abstract
Dysfunction of the cardiac autonomic nervous system (CANS) is associated with various cardiac arrhythmias. Subsequently, invasive techniques have successfully targeted the CANS for the treatment of certain arrhythmias, such as sympathetic denervation for ventricular tachycardia storm. Non-invasive strategies capable of modulating the CANS for arrhythmia treatment have begun to gain interest due to their low-risk profile and applicability as an adjuvant therapy. This review provides an evidence-based overview of the currently studied technologies capable of non-invasively modulating CANS for the suppression of atrial fibrillation and ventricular arrhythmias.
Collapse
|
25
|
Joglar JA, Chung MK, Armbruster AL, Benjamin EJ, Chyou JY, Cronin EM, Deswal A, Eckhardt LL, Goldberger ZD, Gopinathannair R, Gorenek B, Hess PL, Hlatky M, Hogan G, Ibeh C, Indik JH, Kido K, Kusumoto F, Link MS, Linta KT, Marcus GM, McCarthy PM, Patel N, Patton KK, Perez MV, Piccini JP, Russo AM, Sanders P, Streur MM, Thomas KL, Times S, Tisdale JE, Valente AM, Van Wagoner DR. 2023 ACC/AHA/ACCP/HRS Guideline for the Diagnosis and Management of Atrial Fibrillation: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2024; 149:e1-e156. [PMID: 38033089 PMCID: PMC11095842 DOI: 10.1161/cir.0000000000001193] [Citation(s) in RCA: 286] [Impact Index Per Article: 286.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
AIM The "2023 ACC/AHA/ACCP/HRS Guideline for the Diagnosis and Management of Atrial Fibrillation" provides recommendations to guide clinicians in the treatment of patients with atrial fibrillation. METHODS A comprehensive literature search was conducted from May 12, 2022, to November 3, 2022, encompassing studies, reviews, and other evidence conducted on human subjects that were published in English from PubMed, EMBASE, the Cochrane Library, the Agency for Healthcare Research and Quality, and other selected databases relevant to this guideline. Additional relevant studies, published through November 2022, during the guideline writing process, were also considered by the writing committee and added to the evidence tables, where appropriate. STRUCTURE Atrial fibrillation is the most sustained common arrhythmia, and its incidence and prevalence are increasing in the United States and globally. Recommendations from the "2014 AHA/ACC/HRS Guideline for the Management of Patients With Atrial Fibrillation" and the "2019 AHA/ACC/HRS Focused Update of the 2014 AHA/ACC/HRS Guideline for the Management of Patients With Atrial Fibrillation" have been updated with new evidence to guide clinicians. In addition, new recommendations addressing atrial fibrillation and thromboembolic risk assessment, anticoagulation, left atrial appendage occlusion, atrial fibrillation catheter or surgical ablation, and risk factor modification and atrial fibrillation prevention have been developed.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Anita Deswal
- ACC/AHA Joint Committee on Clinical Practice Guidelines liaison
| | | | | | | | | | - Paul L Hess
- ACC/AHA Joint Committee on Performance Measures liaison
| | | | | | | | | | - Kazuhiko Kido
- American College of Clinical Pharmacy representative
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Joglar JA, Chung MK, Armbruster AL, Benjamin EJ, Chyou JY, Cronin EM, Deswal A, Eckhardt LL, Goldberger ZD, Gopinathannair R, Gorenek B, Hess PL, Hlatky M, Hogan G, Ibeh C, Indik JH, Kido K, Kusumoto F, Link MS, Linta KT, Marcus GM, McCarthy PM, Patel N, Patton KK, Perez MV, Piccini JP, Russo AM, Sanders P, Streur MM, Thomas KL, Times S, Tisdale JE, Valente AM, Van Wagoner DR. 2023 ACC/AHA/ACCP/HRS Guideline for the Diagnosis and Management of Atrial Fibrillation: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. J Am Coll Cardiol 2024; 83:109-279. [PMID: 38043043 PMCID: PMC11104284 DOI: 10.1016/j.jacc.2023.08.017] [Citation(s) in RCA: 95] [Impact Index Per Article: 95.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/04/2023]
Abstract
AIM The "2023 ACC/AHA/ACCP/HRS Guideline for the Diagnosis and Management of Patients With Atrial Fibrillation" provides recommendations to guide clinicians in the treatment of patients with atrial fibrillation. METHODS A comprehensive literature search was conducted from May 12, 2022, to November 3, 2022, encompassing studies, reviews, and other evidence conducted on human subjects that were published in English from PubMed, EMBASE, the Cochrane Library, the Agency for Healthcare Research and Quality, and other selected databases relevant to this guideline. Additional relevant studies, published through November 2022, during the guideline writing process, were also considered by the writing committee and added to the evidence tables, where appropriate. STRUCTURE Atrial fibrillation is the most sustained common arrhythmia, and its incidence and prevalence are increasing in the United States and globally. Recommendations from the "2014 AHA/ACC/HRS Guideline for the Management of Patients With Atrial Fibrillation" and the "2019 AHA/ACC/HRS Focused Update of the 2014 AHA/ACC/HRS Guideline for the Management of Patients With Atrial Fibrillation" have been updated with new evidence to guide clinicians. In addition, new recommendations addressing atrial fibrillation and thromboembolic risk assessment, anticoagulation, left atrial appendage occlusion, atrial fibrillation catheter or surgical ablation, and risk factor modification and atrial fibrillation prevention have been developed.
Collapse
|
27
|
O’Brien B, Reilly J, Coffey K, González-Suárez A, Buchta P, Buszman PP, Lukasik K, Tri J, van Zyl M, Asirvatham S. Epicardial Pulsed Field Ablation of Ganglionated Plexi: Computational and Pre-Clinical Evaluation of a Bipolar Sub-Xiphoid Catheter for the Treatment of Atrial Fibrillation. Bioengineering (Basel) 2023; 11:18. [PMID: 38247895 PMCID: PMC10813135 DOI: 10.3390/bioengineering11010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/13/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
Epicardial pulsed field ablation (PFA) of ganglionated plexi (GPs) is being explored as a potential treatment for atrial fibrillation. Initial work using open-chest access with a monopolar ablation device has been completed. This study describes the early development work for a device that can be used with subxiphoid access and deliver bipolar ablation pulses. Electric field computational models have been used for the initial guidance on pulse parameters. An in vivo assessment of these ablation parameters has been performed in an open-chest canine study, while subxiphoid access and navigation of the device has been demonstrated in a porcine model. Results from this acute study have demonstrated the promising potential of this approach.
Collapse
Affiliation(s)
- Barry O’Brien
- AtriAN Medical Ltd., Unit 204, Business Innovation Centre, Upper Newcastle, H91 W60E Galway, Ireland
| | - John Reilly
- AtriAN Medical Ltd., Unit 204, Business Innovation Centre, Upper Newcastle, H91 W60E Galway, Ireland
| | - Ken Coffey
- AtriAN Medical Ltd., Unit 204, Business Innovation Centre, Upper Newcastle, H91 W60E Galway, Ireland
| | - Ana González-Suárez
- Translational Medical Device Laboratory, School of Medicine, University of Galway, H91 YR71 Galway, Ireland
- Valencian International University, Valencia, Spain
| | - Piotr Buchta
- 3rd Department of Cardiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland
- Silesian Center for Heart Diseases, 41-800 Zabrze, Poland
- Center for Cardiovascular Research and Development, American Heart of Poland, Kostkowice, Poland
| | - Piotr P. Buszman
- Center for Cardiovascular Research and Development, American Heart of Poland, Kostkowice, Poland
- Andrzej Frycz Modrzewski Kraków University, 30-705 Kraków, Poland
| | - Karolina Lukasik
- Center for Cardiovascular Research and Development, American Heart of Poland, Kostkowice, Poland
| | - Jason Tri
- Mayo Clinic, Rochester, MN 55905, USA
| | - Martin van Zyl
- Royal Jubilee Hospital, University of British Columbia, Victoria, BC, Canada
| | | |
Collapse
|
28
|
Hsu IU, Lin Y, Guo Y, Xu QJ, Shao Y, Wang RL, Yin D, Zhao J, Young LH, Zhao H, Zhang L, Chang RB. Differential developmental blueprints of organ-intrinsic nervous systems. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.12.571306. [PMID: 38168446 PMCID: PMC10759999 DOI: 10.1101/2023.12.12.571306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The organ-intrinsic nervous system is a major interface between visceral organs and the brain, mediating important sensory and regulatory functions in the body-brain axis and serving as critical local processors for organ homeostasis. Molecularly, anatomically, and functionally, organ-intrinsic neurons are highly specialized for their host organs. However, the underlying mechanism that drives this specialization is largely unknown. Here, we describe the differential strategies utilized to achieve organ-specific organization between the enteric nervous system (ENS) 1 and the intrinsic cardiac nervous system (ICNS) 2 , a neuronal network essential for heart performance but poorly characterized. Integrating high-resolution whole-embryo imaging, single-cell genomics, spatial transcriptomics, proteomics, and bioinformatics, we uncover that unlike the ENS which is highly mobile and colonizes the entire gastrointestinal (GI) tract, the ICNS uses a rich set of extracellular matrix (ECM) genes that match with surrounding heart cells and an intermediate dedicated neuronal progenitor state to stabilize itself for a 'beads-on-the-necklace' organization on heart atria. While ICNS- and ENS-precursors are genetically similar, their differentiation paths are influenced by their host-organs, leading to distinct mature neuron types. Co-culturing ENS-precursors with heart cells shifts their identity towards the ICNS and induces the expression of heart-matching ECM genes. Our cross-organ study thus reveals fundamental principles for the maturation and specialization of organ-intrinsic neurons.
Collapse
|
29
|
Bai J, Lo A, Kennelly J, Sharma R, Zhao N, Trew ML, Zhao J. Mechanisms of pulmonary arterial hypertension-induced atrial fibrillation: insights from multi-scale models of the human atria. Interface Focus 2023; 13:20230039. [PMID: 38106916 PMCID: PMC10722211 DOI: 10.1098/rsfs.2023.0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/25/2023] [Indexed: 12/19/2023] Open
Abstract
This study aimed to use multi-scale atrial models to investigate pulmonary arterial hypertension (PAH)-induced atrial fibrillation mechanisms. The results of our computer simulations revealed that, at the single-cell level, PAH-induced remodelling led to a prolonged action potential (AP) (ΔAPD: 49.6 ms in the right atria (RA) versus 41.6 ms in the left atria (LA)) and an increased calcium transient (CaT) (ΔCaT: 7.5 × 10-2 µM in the RA versus 0.9 × 10-3 µM in the LA). Moreover, heterogeneous remodelling increased susceptibility to afterdepolarizations, particularly in the RA. At the tissue level, we observed a significant reduction in conduction velocity (CV) (ΔCV: -0.5 m s-1 in the RA versus -0.05 m s-1 in the LA), leading to a shortened wavelength in the RA, but not in the LA. Additionally, afterdepolarizations in the RA contributed to enhanced repolarization dispersion and facilitated unidirectional conduction block. Furthermore, the increased fibrosis in the RA amplified the likelihood of excitation wave breakdown and the occurrence of sustained re-entries. Our results indicated that the RA is characterized by increased susceptibility to afterdepolarizations, slow conduction, reduced wavelength and upregulated fibrosis. These findings shed light on the underlying factors that may promote atrial fibrillation in patients with PAH.
Collapse
Affiliation(s)
- Jieyun Bai
- Department of Electronic Engineering, College of Information Science and Technology, Jinan University, Guangzhou, People's Republic of China
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Andy Lo
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - James Kennelly
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Roshan Sharma
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Na Zhao
- School of Instrument Science and Engineering, Southeast University, Nanjing, People's Republic of China
| | - Mark L. Trew
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Jichao Zhao
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
30
|
Tan NY, DeSimone CV. Assessing recurrence following pulsed field ablation for atrial fibrillation. J Interv Card Electrophysiol 2023; 66:1961-1963. [PMID: 37247097 DOI: 10.1007/s10840-023-01572-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 05/16/2023] [Indexed: 05/30/2023]
Affiliation(s)
- Nicholas Y Tan
- Department of Cardiovascular Medicine, Mayo Clinic, 200 1St Street SW, Rochester, MN, 55905, USA
| | - Christopher V DeSimone
- Department of Cardiovascular Medicine, Mayo Clinic, 200 1St Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
31
|
Yoshizawa R, Sasaki H, Urushikubo T, Sawa Y, Owada S. Occlusion and catheter ablation using a large-size cryoballoon for various pulmonary veins: a case series. Eur Heart J Case Rep 2023; 7:ytad593. [PMID: 38099074 PMCID: PMC10720691 DOI: 10.1093/ehjcr/ytad593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/15/2023] [Accepted: 11/22/2023] [Indexed: 12/17/2023]
Abstract
Background It is established that pulmonary vein isolation using the POLARx™ (Boston Scientific, Marlborough, MA, USA) cryoballoon is a rapid, safe, and effective approach. The new POLARx™ FIT (Boston Scientific), which is expandable from 28 to 31 mm in diameter, is currently available. However, there is limited evidence available regarding the treatment of atrial fibrillation in this setting. In this article, we report a case series of cryoballoon ablation in patients with atrial fibrillation using POLARx™ FIT. Case summary This case series describes a comparison of obstruction in three patients with pulmonary veins of different shapes and diameters undergoing cryoballoon ablation and pulmonary vein isolation with a 31 mm diameter balloon. Discussion Cryoballoon ablation using the 31 mm mode of POLARx™ FIT has the potential to provide safe and stable pulmonary vein isolation with good occlusion for a variety of pulmonary vein geometries. In this case series, the 31 mm mode of the POLARx™ FIT resulted in better pulmonary vein occlusion than the 28 mm mode in patients with large left atria and large pulmonary veins, including the left common pulmonary vein. This approach may be considered a first-line therapy option of cryoballoon ablation in patients with atrial fibrillation.
Collapse
Affiliation(s)
- Reisuke Yoshizawa
- Division of Cardiology, Department of Internal Medicine, Iwate Medical University School of Medicine, Shiwa, Japan
| | - Hiroki Sasaki
- Division of Cardiology, Department of Internal Medicine, Iwate Medical University School of Medicine, Shiwa, Japan
| | - Takashi Urushikubo
- Division of Cardiology, Department of Internal Medicine, Iwate Medical University School of Medicine, Shiwa, Japan
| | - Yohei Sawa
- Division of Cardiology, Department of Internal Medicine, Iwate Medical University School of Medicine, Shiwa, Japan
| | - Shingen Owada
- Division of Cardiology, Department of Internal Medicine, Iwate Medical University School of Medicine, Shiwa, Japan
| |
Collapse
|
32
|
Mansour M. Letter from the Editor in Chief. J Innov Card Rhythm Manag 2023; 14:A7-A8. [PMID: 38155721 PMCID: PMC10752426 DOI: 10.19102/icrm.2023.14126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2023] Open
|
33
|
Shen J, Liang J, Rejiepu M, Yuan P, Xiang J, Guo Y, Xiaokereti J, Zhang L, Tang B. Identification of a Novel Target Implicated in Chronic Obstructive Sleep Apnea-Related Atrial Fibrillation by Integrative Analysis of Transcriptome and Proteome. J Inflamm Res 2023; 16:5677-5695. [PMID: 38050561 PMCID: PMC10693830 DOI: 10.2147/jir.s438701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/21/2023] [Indexed: 12/06/2023] Open
Abstract
Objective This study aimed to identify a newly identified target involved in atrial fibrillation (AF) linked to chronic obstructive sleep apnea (COSA) through an integrative analysis of transcriptome and proteome. Methods Fifteen beagle canines were randomly assigned to three groups: control (CON), obstructive sleep apnea (OSA), and OSA with superior left ganglionated plexi ablation (OSA+GP). A COSA model was established by intermittently obstructing the endotracheal cannula during exhalation for 12 weeks. Left parasternal thoracotomy through the fourth intercostal space allowed for superior left ganglionated plexi (SLGP) ablation. In vivo open-chest electrophysiological programmed stimulation was performed to assess AF inducibility. Histological, transcriptomic, and proteomic analyses were conducted on atrial samples. Results After 12 weeks, the OSA group exhibited increased AF inducibility and longer AF durations compared to the CON group. Integrated transcriptomic and proteomic analyses identified 2422 differentially expressed genes (DEGs) and 1194 differentially expressed proteins (DEPs) between OSA and CON groups, as well as between OSA+GP and OSA groups (1850 DEGs and 1418 DEPs). The analysis revealed that differentially regulated DEGs were primarily enriched in mitochondrial biological processes in the CON-vs.-OSA and OSA-vs.-GP comparisons. Notably, the key regulatory molecule GSTZ1 was activated in OSA and inhibited by GP ablation. Conclusion These findings suggest that GSTZ1 may play a pivotal role in mitochondrial damage, triggering AF substrate formation, and increasing susceptibility to AF in the context of COSA.
Collapse
Affiliation(s)
- Jun Shen
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
- Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
| | - Junqing Liang
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
- Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
| | - Manzeremu Rejiepu
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
- Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
| | - Ping Yuan
- Department of Cardiology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, People’s Republic of China
| | - Jie Xiang
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
- Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
| | - Yankai Guo
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
- Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
| | - Jiasuoer Xiaokereti
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
- Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
| | - Ling Zhang
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
- Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
| | - Baopeng Tang
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
- Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
| |
Collapse
|
34
|
Wiedmann F, Paasche A, Nietfeld J, Kraft M, Meyer AL, Warnecke G, Karck M, Frey N, Schmidt C. Activation of neurokinin-III receptors modulates human atrial TASK-1 currents. J Mol Cell Cardiol 2023; 184:26-36. [PMID: 37793594 DOI: 10.1016/j.yjmcc.2023.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/26/2023] [Accepted: 09/30/2023] [Indexed: 10/06/2023]
Abstract
RATIONALE The neurokinin-III receptor was recently shown to regulate atrial cardiomyocyte excitability by inhibiting atrial background potassium currents. TASK-1 (hK2P3.1) two-pore-domain potassium channels, which are expressed atrial-specifically in the human heart, contribute significantly to atrial background potassium currents. As TASK-1 channels are regulated by a variety of intracellular signalling cascades, they represent a promising candidate for mediating the electrophysiological effects of the Gq-coupled neurokinin-III receptor. OBJECTIVE To investigate whether TASK-1 channels mediate the neurokinin-III receptor activation induced effects on atrial electrophysiology. METHODS AND RESULTS In Xenopus laevis oocytes, heterologously expressing neurokinin-III receptor and TASK-1, administration of the endogenous neurokinin-III receptor ligands substance P or neurokinin B resulted in a strong TASK-1 current inhibition. This could be reproduced by application of the high affinity neurokinin-III receptor agonist senktide. Moreover, preincubation with the neurokinin-III receptor antagonist osanetant blunted the effect of senktide. Mutagenesis studies employing TASK-1 channel constructs which lack either protein kinase C (PKC) phosphorylation sites or the domain which is regulating the diacyl glycerol (DAG) sensitivity domain of TASK-1 revealed a protein kinase C independent mechanism of TASK-1 current inhibition: upon neurokinin-III receptor activation TASK-1 channels are blocked in a DAG-dependent fashion. Finally, effects of senktide on atrial TASK-1 currents could be reproduced in patch-clamp measurements, performed on isolated human atrial cardiomyocytes. CONCLUSIONS Heterologously expressed human TASK-1 channels are inhibited by neurokinin-III receptor activation in a DAG dependent fashion. Patch-clamp measurements, performed on human atrial cardiomyocytes suggest that the atrial-specific effects of neurokinin-III receptor activation on cardiac excitability are predominantly mediated via TASK-1 currents.
Collapse
Affiliation(s)
- Felix Wiedmann
- Department of Cardiology, University Hospital Heidelberg, Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg /Mannheim, University of Heidelberg, Heidelberg, Germany; HCR, Heidelberg Center for Heart Rhythm Disorders, University Hospital Heidelberg, Heidelberg, Germany
| | - Amelie Paasche
- Department of Cardiology, University Hospital Heidelberg, Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg /Mannheim, University of Heidelberg, Heidelberg, Germany; HCR, Heidelberg Center for Heart Rhythm Disorders, University Hospital Heidelberg, Heidelberg, Germany
| | - Jendrik Nietfeld
- Department of Cardiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Manuel Kraft
- Department of Cardiology, University Hospital Heidelberg, Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg /Mannheim, University of Heidelberg, Heidelberg, Germany; HCR, Heidelberg Center for Heart Rhythm Disorders, University Hospital Heidelberg, Heidelberg, Germany
| | - Anna L Meyer
- Department of Cardiac Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Gregor Warnecke
- Department of Cardiac Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Matthias Karck
- Department of Cardiac Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Norbert Frey
- Department of Cardiology, University Hospital Heidelberg, Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg /Mannheim, University of Heidelberg, Heidelberg, Germany; HCR, Heidelberg Center for Heart Rhythm Disorders, University Hospital Heidelberg, Heidelberg, Germany
| | - Constanze Schmidt
- Department of Cardiology, University Hospital Heidelberg, Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg /Mannheim, University of Heidelberg, Heidelberg, Germany; HCR, Heidelberg Center for Heart Rhythm Disorders, University Hospital Heidelberg, Heidelberg, Germany.
| |
Collapse
|
35
|
Del Monte A, Cespón Fernández M, Vetta G, Della Rocca DG, Pannone L, Mouram S, Sorgente A, Bala G, Ströker E, Sieira J, Almorad A, Sarkozy A, Chierchia GB, de Asmundis C. Quantitative assessment of transient autonomic modulation after single-shot pulmonary vein isolation with pulsed-field ablation. J Cardiovasc Electrophysiol 2023; 34:2393-2397. [PMID: 37792572 DOI: 10.1111/jce.16089] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/14/2023] [Accepted: 09/19/2023] [Indexed: 10/06/2023]
Abstract
INTRODUCTION Pulmonary vein isolation (PVI) with thermal energy is characterized by concomitant ablation of the surrounding ganglionated plexi (GP). Pulsed-field ablation (PFA) selectively targets the myocardium and seems associated with only negligible effects on the autonomic nervous system (ANS). However, little is known about the dynamic effects of PFA on the GP immediately after PVI. This study sought to investigate the degree and acute vagal modulation induced by the FarapulseTM PFA system during PVI compared with single-shot thermal ablation. METHODS A total of 76 patients underwent first-time PVI with either FarapulseTM PFA (PFA group, n = 40) or cryoballoon ablation (thermal ablation group, n = 36) for paroxysmal atrial fibrillation (AF). The effect on the ANS in the two groups was assessed before and after PVI with extracardiac vagal stimulation (ECVS). To capture any transient effects of PFA on the ANS, in a subgroup of PFA patients ECVS was repeated at three predefined timepoints: (1) before PVI (T0); (2) immediately after PVI (T1); and (3) 10 min after the last energy application (T2). RESULTS Despite similar baseline values, the vagal response induced by ECVS after PVI almost disappeared in the thermal ablation group but persisted in the PFA group (thermal group: 840 [706-1090] ms, p < .001 compared to baseline; PFA group: 11 466 [8720-12 293] ms, p = .70 compared to baseline). Intraprocedural vagal reactions (defined as RR increase >50%, transitory asystole, or atrioventricular block) occurred more frequently with PFA than thermal ablation (70% vs. 28%, p = .001). Moreover, heart rate 24 h post-PVI increased more with thermal ablation than with PFA (16.5 ± 9.0 vs. 2.6 ± 6.1 beats/min, p < .001). In the subgroup of PFA patients undergoing repeated ANS modulation assessment (n = 11), ECVS demonstrated that PFA determined a significant acute suppression of the vagal response immediately after PVI (p < .001 compared to baseline), which recovered almost completely within 10 min. CONCLUSION PVI with the FarapulseTM PFA system is associated with only transitory and short-lasting vagal effects on the ANS which recover almost completely within a few minutes after ablation. The impact of this phenomenon on AF outcome needs to be further investigated.
Collapse
Affiliation(s)
- Alvise Del Monte
- Postgraduate Program in Cardiac Electrophysiology and Pacing, Heart Rhythm Management Centre, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - María Cespón Fernández
- Postgraduate Program in Cardiac Electrophysiology and Pacing, Heart Rhythm Management Centre, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Giampaolo Vetta
- Postgraduate Program in Cardiac Electrophysiology and Pacing, Heart Rhythm Management Centre, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Domenico Giovanni Della Rocca
- Postgraduate Program in Cardiac Electrophysiology and Pacing, Heart Rhythm Management Centre, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Luigi Pannone
- Postgraduate Program in Cardiac Electrophysiology and Pacing, Heart Rhythm Management Centre, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Sahar Mouram
- Postgraduate Program in Cardiac Electrophysiology and Pacing, Heart Rhythm Management Centre, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Antonio Sorgente
- Postgraduate Program in Cardiac Electrophysiology and Pacing, Heart Rhythm Management Centre, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Gezim Bala
- Postgraduate Program in Cardiac Electrophysiology and Pacing, Heart Rhythm Management Centre, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Erwin Ströker
- Postgraduate Program in Cardiac Electrophysiology and Pacing, Heart Rhythm Management Centre, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Juan Sieira
- Postgraduate Program in Cardiac Electrophysiology and Pacing, Heart Rhythm Management Centre, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Alexandre Almorad
- Postgraduate Program in Cardiac Electrophysiology and Pacing, Heart Rhythm Management Centre, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Andrea Sarkozy
- Postgraduate Program in Cardiac Electrophysiology and Pacing, Heart Rhythm Management Centre, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Gian-Battista Chierchia
- Postgraduate Program in Cardiac Electrophysiology and Pacing, Heart Rhythm Management Centre, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Carlo de Asmundis
- Postgraduate Program in Cardiac Electrophysiology and Pacing, Heart Rhythm Management Centre, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| |
Collapse
|
36
|
Schipper JH, Steven D, Lüker J, Wörmann J, van den Bruck JH, Filipovic K, Dittrich S, Scheurlen C, Erlhöfer S, Pavel F, Sultan A. Comparison of pulsed field ablation and cryoballoon ablation for pulmonary vein isolation. J Cardiovasc Electrophysiol 2023; 34:2019-2026. [PMID: 37682001 DOI: 10.1111/jce.16056] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/18/2023] [Accepted: 08/28/2023] [Indexed: 09/09/2023]
Abstract
INTRODUCTION Pulmonary vein isolation (PVI) remains the cornerstone in the treatment of atrial fibrillation (AF). PVI using cryoballoon (CB) technology has emerged as a standard procedure in many centers. Recently, pulsed field ablation (PFA) has been introduced and used to achieve PVI. First data show high acute and favorable long-term outcomes. So far, data comparing these new "single shot" devices are sparse. We sought to compare procedural and outcome data for first time PFA users versus CB in patients undergoing de novo PVI. Furthermore, potentially postprocedural discomfort and affection of autonomic ganglia were assessed. METHODS AND RESULTS A retrospective analysis and comparison of all de novo PVIs with PFA and CB was performed. Furthermore, PFA PVI learning curve was evaluated. During follow-up, repeat outpatient visits and Holter electrocardiogram were performed to analyze arrhythmia-free survival. Discomfort analysis was obtained by prescribed analgesic medication within first 48 h after PVI. Potential changes in heart rate (HR) between baseline and at 3-month follow-up were evaluated. A total of 108 patients (54 PFA and 54 CB; PFA; 33 (30%) female) with paroxysmal and persistent AF were analyzed. Type of AF was comparable (Patients suffering from PAF: PFA: 16 (30%), CB: 17 (31%), p = 1.0). In 107 (99%) patients, successful PVI was achieved. Transient phrenic palsy omitted complete PVI in one CB patient. A trend for a shorter overall procedure duration was observed in the PFA group (PFA: 64.5 ± 17.5 min; CB: 73.0 ± 24.8 min; p = 0.07). Excluding LA mapping time (first 14 cases), procedure time was significantly shorter using PFA (PFA: 58.0 ± 12.5 min, CB: 73.0 ± 24.8 min, p = 0.0001). Fluoroscopy time was significantly longer for PFA (PFA: 15.3 ± 4.7 min, CB: 12.3 ± 5.3 min; p = 0.001), but significantly less contrast medium was used (PFA: 12 ± 6 mL; CB: 51 ± 29 mL, p < 0.0001). Subgroup analysis of the PFA group revealed a significant shortening of procedure duration over time (first tertile: 72.7 ± 13.5 min, second tertile: 67.3 ± 21.7 min, third tertile: 53.4 ± 9.8 min, first vs. third tertile p < 0.0001). Two cardiac tamponades occurred in the PFA group (p = 0.495), of which one was most likely related to complex transseptal puncture. In the first 48 h after PVI, the number of prescribed analgesics due to postprocedural pain was equal between both groups (PFA: 7 (13%) patients, CB: 10 (19%) patients, p = 0.598). After a FU of 273 ± 129 days, 35 of 47 patients (74%) after PFA and 36 of 50 patients (72%) after CB PVI were free of any atrial arrhythmia (HR: 0.98, p = 0.88). Only in the PFA group, a significant increase in HR 3 months after PVI was observed (pre-PVI: 61 ± 8 beats/min, post-PVI: 65 ± 9 beats/min, p = 0.008). CONCLUSION The new PFA technology is equally effective and safe as compared to CB for complete PVI with potentially shorter procedure time and significantly less contrast medium. However, AF recurrence rates after PFA PVI seem to be comparable to CB PVI.
Collapse
Affiliation(s)
- Jan-Hendrik Schipper
- Department of Electrophysiology, Heart Center, University of Cologne, Köln, Germany
| | - Daniel Steven
- Department of Electrophysiology, Heart Center, University of Cologne, Köln, Germany
| | - Jakob Lüker
- Department of Electrophysiology, Heart Center, University of Cologne, Köln, Germany
| | - Jonas Wörmann
- Department of Electrophysiology, Heart Center, University of Cologne, Köln, Germany
| | | | - Karlo Filipovic
- Department of Electrophysiology, Heart Center, University of Cologne, Köln, Germany
| | - Sebastian Dittrich
- Department of Electrophysiology, Heart Center, University of Cologne, Köln, Germany
| | - Cornelia Scheurlen
- Department of Electrophysiology, Heart Center, University of Cologne, Köln, Germany
| | - Susanne Erlhöfer
- Department of Electrophysiology, Heart Center, University of Cologne, Köln, Germany
| | - Friederike Pavel
- Department of Electrophysiology, Heart Center, University of Cologne, Köln, Germany
| | - Arian Sultan
- Department of Electrophysiology, Heart Center, University of Cologne, Köln, Germany
| |
Collapse
|
37
|
De Lurgio DB. Selection of patients for hybrid ablation procedure. J Cardiovasc Electrophysiol 2023; 34:2179-2187. [PMID: 37003267 DOI: 10.1111/jce.15901] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 03/07/2023] [Accepted: 03/26/2023] [Indexed: 04/03/2023]
Abstract
Catheter ablation for treatment of symptomatic non-paroxysmal atrial fibrillation remains challenging. Clinical failure and need for continued medical therapy or repeat ablation is common, especially in more advanced forms of atrial fibrillation. Hybrid ablation has emerged as a more effective and safe therapy than endocardial-only ablation particularly for longstanding persistent atrial fibrillation as demonstrated by the randomized controlled CONVERGE trial. Hybrid ablation requires collaboration of electrophysiologists and cardiac surgeons to develop specific workflows. This review describes the Hybrid Convergent approach in the context of available ablation options and offers guidance for workflow development and patient selection.
Collapse
Affiliation(s)
- David B De Lurgio
- Emory St. Joseph's Hospital Suite 300, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
38
|
Tsai W, Hung TC, Kusayama T, Han S, Fishbein MC, Chen LS, Chen PS. Autonomic Modulation of Atrial Fibrillation. JACC Basic Transl Sci 2023; 8:1398-1410. [PMID: 38094692 PMCID: PMC10714180 DOI: 10.1016/j.jacbts.2023.03.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/14/2023] [Accepted: 03/14/2023] [Indexed: 01/13/2024]
Abstract
The autonomic nervous system plays a vital role in cardiac arrhythmias, including atrial fibrillation (AF). Therefore, reducing the sympathetic tone via neuromodulation methods may be helpful in AF control. Myocardial ischemia is associated with increased sympathetic tone and incidence of AF. It is an excellent disease model to understand the neural mechanisms of AF and the effects of neuromodulation. This review summarizes the relationship between autonomic nervous system and AF and reviews methods and mechanisms of neuromodulation. This review proposes that noninvasive or minimally invasive neuromodulation methods will be most useful in the future management of AF.
Collapse
Affiliation(s)
- Wei–Chung Tsai
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tien-Chi Hung
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Takashi Kusayama
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences Kanazawa, Kanazawa, Japan
| | - Seongwook Han
- Department of Cardiology, Keimyung University Dongsan Medical Center, Daegu, Korea
| | - Michael C. Fishbein
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, California, USA
| | - Lan S. Chen
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Peng-Sheng Chen
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
39
|
Zhong Z, Li X, Gao L, Wu X, Ye Y, Zhang X, Zeng Q, Zhou C, Lu X, Wei Y, Ding Y, Chen S, Zhou G, Xu J, Liu S. Long Non-coding RNA Involved in the Pathophysiology of Atrial Fibrillation. Cardiovasc Drugs Ther 2023:10.1007/s10557-023-07491-8. [PMID: 37702834 DOI: 10.1007/s10557-023-07491-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/12/2023] [Indexed: 09/14/2023]
Abstract
BACKGROUND Atrial fibrillation (AF) is a prevalent and chronic cardiovascular disorder associated with various pathophysiological alterations, including atrial electrical and structural remodeling, disrupted calcium handling, autonomic nervous system dysfunction, aberrant energy metabolism, and immune dysregulation. Emerging evidence suggests that long non-coding RNAs (lncRNAs) play a significant role in the pathogenesis of AF. OBJECTIVE This discussion aims to elucidate the involvement of AF-related lncRNAs, with a specific focus on their role as miRNA sponges that modulate crucial signaling pathways, contributing to the progression of AF. We also address current limitations in AF-related lncRNA research and explore potential future directions in this field. Additionally, we summarize feasible strategies and promising delivery systems for targeting lncRNAs in AF therapy. CONCLUSION In conclusion, targeting AF-related lncRNAs holds substantial promise for future investigations and represents a potential therapeutic avenue for managing AF.
Collapse
Affiliation(s)
- Zikan Zhong
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xintao Li
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Longzhe Gao
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyu Wu
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yutong Ye
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyu Zhang
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingye Zeng
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Changzuan Zhou
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaofeng Lu
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yong Wei
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Ding
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Songwen Chen
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Genqing Zhou
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Juan Xu
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Shaowen Liu
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
40
|
Yarkoni M, Rehman WU, Bajwa A, Yarkoni A, Rehman AU. Ganglionated Plexus Ablation Procedures to Treat Vasovagal Syncope. Int J Mol Sci 2023; 24:13264. [PMID: 37686062 PMCID: PMC10487499 DOI: 10.3390/ijms241713264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Vasovagal syncope (VVS) refers to a heterogeneous group of conditions whereby the cardiovascular reflexes normally controlling the circulation are interrupted irregularly in response to a trigger, resulting in vasodilation, bradycardia, or both. VVS affects one-third of the population at least once in their lifetime or by the age of 60, reduces the quality of life, and may cause disability affecting certain routines. It poses a considerable economic burden on society, and, despite its prevalence, there is currently no proven pharmacological treatment for preventing VVS. The novel procedure of ganglionated plexus (GP) ablation has emerged rapidly in the past two decades, and has been proven successful in treating syncope. Several parameters influence the success rate of GP ablation, including specific ablation sites, localization and surgical techniques, method of access, and the integration of other interventions. This review aims to provide an overview of the existing literature on the physiological aspects and clinical effectiveness of GP ablation in the treatment of VVS. Specifically, we explore the association between GPs and VVS and examine the impact of GP ablation procedures as reported in human clinical trials. Our objective is to shed light on the therapeutic significance of GP ablation in eliminating VVS and restoring normal sinus rhythm, particularly among young adults affected by this condition.
Collapse
Affiliation(s)
- Merav Yarkoni
- Heart and Vascular Institute, United Health Services, Johnson City, NY 13790, USA; (W.u.R.); (A.B.); (A.Y.); (A.u.R.)
| | | | | | | | | |
Collapse
|
41
|
Musikantow DR, Reddy VY, Skalsky I, Shaburishvili T, van Zyl M, O'Brien B, Coffey K, Reilly J, Neuzil P, Asirvatham S, de Groot JR. Targeted ablation of epicardial ganglionated plexi during cardiac surgery with pulsed field electroporation (NEURAL AF). J Interv Card Electrophysiol 2023:10.1007/s10840-023-01615-8. [PMID: 37561246 DOI: 10.1007/s10840-023-01615-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/30/2023] [Indexed: 08/11/2023]
Abstract
BACKGROUND Modulation of the cardiac autonomic nervous system (ANS) is a promising adjuvant therapy in the treatment of atrial fibrillation (AF). In pre-clinical models, pulsed field (PF) energy has the advantage of selectively ablating the epicardial ganglionated plexi (GP) that govern the ANS. This study aims to demonstrate the feasibility and safety of epicardial ablation of the GPs with PF during cardiac surgery with a primary efficacy outcome of prolongation of the atrial effective refractory period (AERP). METHODS In a single-arm, prospective analysis, patients with or without a history of AF underwent epicardial GP ablation with PF during coronary artery bypass grafting (CABG). AERP was determined immediately pre- and post- GP ablation to assess cardiac ANS function. Holter monitors were performed to determine rhythm status and heart rate variability (HRV) at baseline and at 1-month post-procedure. RESULTS Of 24 patients, 23 (96%) received the full ablation protocol. No device-related adverse effects were noted. GP ablation resulted in a 20.7 ± 19.9% extension in AERP (P < 0.001). Post-operative AF was observed in 7 (29%) patients. Holter monitoring demonstrated an increase in mean heart rate (74.0 ± 8.7 vs. 80.6 ± 12.3, P = 0.01). There were no significant changes in HRV. There were no study-related complications. CONCLUSIONS This study demonstrates the safety and feasibility of epicardial ablation of the GP using PF to modulate the ANS during cardiac surgery. Large, randomized analyses are necessary to determine whether epicardial PF ablation can offer a meaningful impact on the cardiac ANS and reduce AF. TRIAL REGISTRATION Clinical trial registration: NCT04775264.
Collapse
Affiliation(s)
- Daniel R Musikantow
- Helmsley Electrophysiology Center, Icahn School of Medicine at Mount Sinai, Box 1030, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Vivek Y Reddy
- Helmsley Electrophysiology Center, Icahn School of Medicine at Mount Sinai, Box 1030, One Gustave L. Levy Place, New York, NY, 10029, USA.
- Homolka Hospital, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Yoneda F, Shizuta S, Makiyama T, Masunaga N, Hoshida S, Kimura T. Selective cardioneuroablation of the posteromedial left ganglionated plexus for drug-resistant swallow syncope with functional atrioventricular block. HeartRhythm Case Rep 2023; 9:513-517. [PMID: 37614381 PMCID: PMC10444546 DOI: 10.1016/j.hrcr.2023.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023] Open
Affiliation(s)
- Fumiya Yoneda
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Satoshi Shizuta
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takeru Makiyama
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Nobutaka Masunaga
- Department of Cardiovascular Medicine, Yao Municipal Hospital, Yao, Japan
| | - Shiro Hoshida
- Department of Cardiovascular Medicine, Yao Municipal Hospital, Yao, Japan
| | - Takeshi Kimura
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
43
|
Suzuki N, Inden Y, Yanagisawa S, Shimizu Y, Narita S, Hiramatsu K, Yamauchi R, Watanabe R, Tsurumi N, Shimojo M, Suga K, Tsuji Y, Shibata R, Murohara T. Different time course effect of autonomic nervous modulation after cryoballoon and hotballoon catheter ablations for paroxysmal atrial fibrillation. J Interv Card Electrophysiol 2023:10.1007/s10840-023-01581-1. [PMID: 37354369 DOI: 10.1007/s10840-023-01581-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/25/2023] [Indexed: 06/26/2023]
Abstract
BACKGROUND Few studies have reported on the quantitative evaluation of autonomic nerve modification after balloon ablation. Therefore, this study aimed to evaluate the effects of cryoballoon and hotballoon ablations on the autonomic nervous system (ANS) and their relationship with prognosis. METHODS We included 234 patients who underwent cryoballoon ablation (n = 190) or hotballoon ablation (n = 44) for paroxysmal atrial fibrillation. Heart rate variability (HRV) analysis was performed on all patients using a 3-min electrocardiogram at baseline, 1, 3, 6, and 12 months after ablation. HRV parameters and prognoses were compared between the two balloon systems. RESULTS Ln low-frequency (LF), Ln high-frequency (HF), standard deviation of the R-R intervals (SDNN), and RR intervals significantly decreased after 1 month in both groups, but the changes were more pronounced in the cryoballoon group than in the hotballoon group. In contrast, HRV indices in the hotballoon ablation group decreased gradually and reached their lowest point 3-to-6 months after the procedure, which was later than in the cryoballoon ablation group. The recurrence rate did not differ between the two groups. HRV parameters changed similarly in the cryoballoon group, regardless of recurrence. However, patients with recurrence had significantly higher SDNN and Ln LF at 12 months than those without recurrence in the hotballoon group (41.2 ± 39.3 ms vs. 18.5 ± 12.6 ms, p = 0.006, and 2.2 ± 0.7 ms2 vs. 1.5 ± 0.7 ms2, p = 0.003, respectively). CONCLUSIONS The time course of HRV changes differed between cryoballoon and hotballoon ablations. Hence, the two balloon systems may have distinct effects on the ANS and its role in prognosis.
Collapse
Affiliation(s)
- Noriyuki Suzuki
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, Aichi, 466-8550, Japan
| | - Yasuya Inden
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, Aichi, 466-8550, Japan
| | - Satoshi Yanagisawa
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, Aichi, 466-8550, Japan.
| | - Yuuki Shimizu
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, Aichi, 466-8550, Japan
| | - Shingo Narita
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, Aichi, 466-8550, Japan
| | - Kei Hiramatsu
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, Aichi, 466-8550, Japan
| | - Ryota Yamauchi
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, Aichi, 466-8550, Japan
| | - Ryo Watanabe
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, Aichi, 466-8550, Japan
| | - Naoki Tsurumi
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, Aichi, 466-8550, Japan
| | - Masafumi Shimojo
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, Aichi, 466-8550, Japan
| | - Kazumasa Suga
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, Aichi, 466-8550, Japan
| | - Yukiomi Tsuji
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, Aichi, 466-8550, Japan
| | - Rei Shibata
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, Aichi, 466-8550, Japan
| | - Toyoaki Murohara
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, Aichi, 466-8550, Japan
| |
Collapse
|
44
|
Li L, Po S, Yao Y. Cardioneuroablation for Treating Vasovagal Syncope: Current Status and Future Directions. Arrhythm Electrophysiol Rev 2023; 12:e18. [PMID: 37457436 PMCID: PMC10345939 DOI: 10.15420/aer.2023.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/05/2023] [Indexed: 07/18/2023] Open
Abstract
Syncope is defined by transient and spontaneous loss of consciousness with rapid recovery. Vasovagal syncope (VVS) is the most common form of syncope and is strongly associated with hypervagotonia. There is, however, a lack of effective therapies for VVS. Cardioneuroablation (CNA) is an emerging and promising intervention for VVS with favourable outcomes. CNA has been shown to suppress excessive excitation of vagal activity through ablating the cardiac ganglionated plexi. CNA in the management of VVS requires more structured and comprehensive studies and several issues concerning patient selection, selection of ablation targets, ablation endpoints and the long-term effect of CNA are yet to be determined. This review describes its clinical applications and future directions based on current research data and the authors' own experiences.
Collapse
Affiliation(s)
- Le Li
- Cardiac Arrhythmia Center, Chinese Academy of Medical Sciences, Peking Union Medical College, National Center for Cardiovascular Diseases, Beijing, China
| | - Sunny Po
- University of Oklahoma Health Sciences Center, Oklahoma City, OK, US
| | - Yan Yao
- Cardiac Arrhythmia Center, Chinese Academy of Medical Sciences, Peking Union Medical College, National Center for Cardiovascular Diseases, Beijing, China
| |
Collapse
|
45
|
O’Brien B, Reilly J, Coffey K, González-Suárez A, Quinlan L, van Zyl M. Cardioneuroablation Using Epicardial Pulsed Field Ablation for the Treatment of Atrial Fibrillation. J Cardiovasc Dev Dis 2023; 10:238. [PMID: 37367403 PMCID: PMC10299113 DOI: 10.3390/jcdd10060238] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia affecting millions of people worldwide. The cardiac autonomic nervous system (ANS) is widely recognized as playing a key role in both the initiation and propagation of AF. This paper reviews the background and development of a unique cardioneuroablation technique for the modulation of the cardiac ANS as a potential treatment for AF. The treatment uses pulsed electric field energy to selectively electroporate ANS structures on the epicardial surface of the heart. Insights from in vitro studies and electric field models are presented as well as data from both pre-clinical and early clinical studies.
Collapse
Affiliation(s)
- Barry O’Brien
- AtriAN Medical Ltd., Unit 204, Business Innovation Centre, Upper Newcastle, H91 W60E Galway, Ireland
| | - John Reilly
- AtriAN Medical Ltd., Unit 204, Business Innovation Centre, Upper Newcastle, H91 W60E Galway, Ireland
| | - Ken Coffey
- AtriAN Medical Ltd., Unit 204, Business Innovation Centre, Upper Newcastle, H91 W60E Galway, Ireland
| | - Ana González-Suárez
- School of Engineering, University of Galway, H91 TK33 Galway, Ireland
- Translational Medical Device Lab, University of Galway, H91 YR71 Galway, Ireland
| | - Leo Quinlan
- Physiology and Cellular Physiology Research Laboratory, CURAM SFI Centre for Research in Medical Device, University of Galway, H91 TK33 Galway, Ireland
| | - Martin van Zyl
- Cardiac Electrophysiology, Royal Jubilee Hospital, Victoria, BC V8R 1J8, Canada
| |
Collapse
|
46
|
Fialho GL, Nearing BD, Waks JW, Maher TR, Clarke JR, Shepherd A, D'Avila A, Verrier RL. Reduction in atrial and ventricular electrical heterogeneity following pulmonary vein isolation in patients with atrial fibrillation. J Interv Card Electrophysiol 2023:10.1007/s10840-023-01543-7. [PMID: 37074510 DOI: 10.1007/s10840-023-01543-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/28/2023] [Indexed: 04/20/2023]
Abstract
BACKGROUND Pulmonary vein isolation (PVI) modulates the intrinsic cardiac autonomic nervous system and reduces atrial fibrillation (AF) recurrence. METHODS In this retrospective analysis, we investigated the impact of PVI on ECG interlead P-wave, R-wave, and T-wave heterogeneity (PWH, RWH, TWH) in 45 patients in sinus rhythm undergoing clinically indicated PVI for AF. We measured PWH as a marker of atrial electrical dispersion and AF susceptibility and RWH and TWH as markers of ventricular arrhythmia risk along with standard ECG measures. RESULTS PVI acutely (16 ± 8.9 h) reduced PWH by 20.7% (from 31 ± 1.9 to 25 ± 1.6 µV, p < 0.001) and TWH by 27% (from 111 ± 7.8 to 81 ± 6.5 µV, p < 0.001). RWH was unchanged after PVI (p = 0.068). In a subgroup of 20 patients with longer follow-up (mean = 47 ± 3.7 days after PVI), PWH remained low (25 ± 1.7 µV, p = 0.01), but TWH partially returned to the pre-ablation level (to 93 ± 10.2, p = 0.16). In three individuals with early recurrence of atrial arrhythmia in the first 3 months after ablation, PWH increased acutely by 8.5%, while in patients without early recurrence, PWH decreased acutely by 22.3% (p = 0.048). PWH was superior to other contemporary P-wave metrics including P-wave axis, dispersion, and duration in predicting early AF recurrence. CONCLUSION The rapid time course of decreased PWH and TWH after PVI suggests a beneficial influence likely mediated via ablation of the intrinsic cardiac nervous system. Acute responses of PWH and TWH to PVI suggest a favorable dual effect on atrial and ventricular electrical stability and could be used to track individual patients' electrical heterogeneity profile.
Collapse
Affiliation(s)
- Guilherme L Fialho
- Federal University of Santa Catarina, Florianopolis, Brazil
- Departments of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
| | - Bruce D Nearing
- Departments of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
| | - Jonathan W Waks
- Departments of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
| | - Timothy R Maher
- Departments of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
| | - John-Ross Clarke
- Departments of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
| | - Alyssa Shepherd
- Departments of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
| | - Andre D'Avila
- Departments of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
| | - Richard L Verrier
- Departments of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA.
| |
Collapse
|
47
|
Sinus node dysfunction and atrial fibrillation-Relationships, clinical phenotypes, new mechanisms, and treatment approaches. Ageing Res Rev 2023; 86:101890. [PMID: 36813137 DOI: 10.1016/j.arr.2023.101890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023]
Abstract
Although the anatomical basis of the pathogenesis of sinus node dysfunction (SND) and atrial fibrillation (AF) is located primarily in the left and right atria, increasing evidence suggests a strong correlation between SND and AF, in terms of both clinical presentation and formation mechanisms. However, the exact mechanisms underlying this association are unclear. The relationship between SND and AF may not be causal, but is likely to involve common factors and mechanisms, including ion channel remodeling, gap junction abnormalities, structural remodeling, genetic mutations, neuromodulation abnormalities, the effects of adenosine on cardiomyocytes, oxidative stress, and viral infections. Ion channel remodeling manifests primarily as alterations in the "funny" current (If) and Ca2+ clock associated with cardiomyocyte autoregulation, and gap junction abnormalities are manifested primarily as decreased expression of connexins (Cxs) mediating electrical impulse propagation in cardiomyocytes. Structural remodeling refers primarily to fibrosis and cardiac amyloidosis (CA). Some genetic mutations can also cause arrhythmias, such as SCN5A, HCN4, EMD, and PITX2. The intrinsic cardiac autonomic nervous system (ICANS), a regulator of the heart's physiological functions, triggers arrhythmias.In addition, we discuss arrhythmias caused by viral infections, notably Coronavirus Disease 2019 (COVID-19). Similarly to upstream treatments for atrial cardiomyopathy such as alleviating CA, ganglionated plexus (GP) ablation acts on the common mechanisms between SND and AF, thus achieving a dual therapeutic effect.
Collapse
|
48
|
Musikantow DR, Neuzil P, Petru J, Koruth JS, Kralovec S, Miller MA, Funasako M, Chovanec M, Turagam MK, Whang W, Sediva L, Dukkipati SR, Reddy VY. Pulsed Field Ablation to Treat Atrial Fibrillation: Autonomic Nervous System Effects. JACC Clin Electrophysiol 2023; 9:481-493. [PMID: 36752473 DOI: 10.1016/j.jacep.2022.10.028] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/05/2022] [Accepted: 10/18/2022] [Indexed: 12/02/2022]
Abstract
BACKGROUND During atrial fibrillation ablations using thermal energy, the treatment effect is attributed to not just pulmonary vein isolation (PVI), but also to modulation of the autonomic nervous system by ablation of cardiac ganglionated plexi (GP). OBJECTIVES This study sought to assess the impact of pulsed field ablation (PFA) on the GP in patients undergoing PVI. METHODS In the retrospective phase, heart rate was assessed pre- versus post-PVI using PFA, cryoballoon ablation, or radiofrequency ablation. In the prospective phase, a pentaspline PFA catheter was used in a protocol: 1) pre-PFA, high-frequency stimulation (HFS) identified GP sites by vagal effects; 2) PVI was performed assessing for repetitive vagal effects over each set of PF applications; 3) mapping defined PVI extent to identify those GP in the ablation zone; and 4) repeat HFS at GP sites to assess for persistence of vagal effects. RESULTS Between baseline and 3 months, heart rates in the retrospective radiofrequency ablation (n = 40), cryoballoon (n = 40), and PFA (n = 40) cohorts increased by 8.9 ± 11.4, 11.1 ± 9.4, and -0.1 ± 9.2 beats/min, respectively (P= 0.01 PFA vs radiofrequency ablation; P= 0.01 PFA vs cryoballoon ablation). In the prospective phase, pre-PFA HFS in 20 additional patients identified 65 GP sites. During PFA, vagal effects were noted in 45% of first PF applications, persisting through all applications in 83%. HFS post-PFA reproduced vagal effects in 29 of 38 sites (76%) in low-voltage tissue. CONCLUSIONS PFA has minimal effect on GP. Unlike with thermal ablation, the mechanism by which PFA treats atrial fibrillation is mediated solely by durable PVI.
Collapse
Affiliation(s)
| | | | - Jan Petru
- Homolka Hospital, Prague, Czech Republic
| | - Jacob S Koruth
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | - Marc A Miller
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | | | - Mohit K Turagam
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - William Whang
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | | | - Vivek Y Reddy
- Icahn School of Medicine at Mount Sinai, New York, New York, USA; Homolka Hospital, Prague, Czech Republic.
| |
Collapse
|
49
|
Chakraborty P, Farhat K, Po SS, Armoundas AA, Stavrakis S. Autonomic Nervous System and Cardiac Metabolism: Links Between Autonomic and Metabolic Remodeling in Atrial Fibrillation. JACC Clin Electrophysiol 2023:S2405-500X(23)00117-2. [PMID: 37086229 DOI: 10.1016/j.jacep.2023.02.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/27/2023] [Accepted: 02/16/2023] [Indexed: 04/23/2023]
Abstract
Simultaneous activation of the sympathetic and parasympathetic nervous systems is crucial for the initiation of paroxysmal atrial fibrillation (AF). However, unbalanced activation of the sympathetic system is characteristic of autonomic remodeling in long-standing persistent AF. Moreover, the adrenergic activation-induced metabolic derangements provide a milieu for acute AF and promote the transition from the paroxysmal to the persistent phase of AF. On the other hand, cholinergic activation ameliorates the maladaptive metabolic remodeling in the face of metabolic challenges. Selective inhibition of the sympathetic system and restoration of the balance of the cholinergic system by neuromodulation is emerging as a novel nonpharmacologic strategy for managing AF. This review explores the link between cardiac autonomic and metabolic remodeling and the potential roles of different autonomic modulation strategies on atrial metabolic aberrations in AF.
Collapse
Affiliation(s)
- Praloy Chakraborty
- Cardiovascular Section, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Kassem Farhat
- Cardiovascular Section, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Sunny S Po
- Cardiovascular Section, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Antonis A Armoundas
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA; Broad Institute, Massachusetts Institute of Technology, Boston, Massachusetts, USA
| | - Stavros Stavrakis
- Cardiovascular Section, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA.
| |
Collapse
|
50
|
Coyle C, Koutsoftidis S, Kim MY, Porter B, Keene D, Luther V, Handa B, Kay J, Lim E, Malcolme-Lawes L, Koa-Wing M, Lim PB, Whinnett ZI, Ng FS, Qureshi N, Peters NS, Linton NWF, Drakakis E, Kanagaratnam P. Feasibility of mapping and ablating ectopy-triggering ganglionated plexus reproducibly in persistent atrial fibrillation. J Interv Card Electrophysiol 2023:10.1007/s10840-023-01517-9. [PMID: 36867371 DOI: 10.1007/s10840-023-01517-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/19/2023] [Indexed: 03/04/2023]
Abstract
BACKGROUND Ablation of autonomic ectopy-triggering ganglionated plexuses (ET-GP) has been used to treat paroxysmal atrial fibrillation (AF). It is not known if ET-GP localisation is reproducible between different stimulators or whether ET-GP can be mapped and ablated in persistent AF. We tested the reproducibility of the left atrial ET-GP location using different high-frequency high-output stimulators in AF. In addition, we tested the feasibility of identifying ET-GP locations in persistent atrial fibrillation. METHODS Nine patients undergoing clinically-indicated paroxysmal AF ablation received pacing-synchronised high-frequency stimulation (HFS), delivered in SR during the left atrial refractory period, to compare ET-GP localisation between a custom-built current-controlled stimulator (Tau20) and a voltage-controlled stimulator (Grass S88, SIU5). Two patients with persistent AF underwent cardioversion, left atrial ET-GP mapping with the Tau20 and ablation (Precision™, Tacticath™ [n = 1] or Carto™, SmartTouch™ [n = 1]). Pulmonary vein isolation (PVI) was not performed. Efficacy of ablation at ET-GP sites alone without PVI was assessed at 1 year. RESULTS The mean output to identify ET-GP was 34 mA (n = 5). Reproducibility of response to synchronised HFS was 100% (Tau20 vs Grass S88; [n = 16] [kappa = 1, SE = 0.00, 95% CI 1 to 1)][Tau20 v Tau20; [n = 13] [kappa = 1, SE = 0, 95% CI 1 to 1]). Two patients with persistent AF had 10 and 7 ET-GP sites identified requiring 6 and 3 min of radiofrequency ablation respectively to abolish ET-GP response. Both patients were free from AF for > 365 days without anti-arrhythmics. CONCLUSIONS ET-GP sites are identified at the same location by different stimulators. ET-GP ablation alone was able to prevent AF recurrence in persistent AF, and further studies would be warranted.
Collapse
Affiliation(s)
- Clare Coyle
- NHLI, Imperial College London, London, UK
- Imperial Centre for Cardiac Engineering, Imperial College London, London, UK
- Department of Cardiology, Hammersmith Hospital, Du Cane Road, London, W12 0HS, UK
| | | | - Min-Young Kim
- NHLI, Imperial College London, London, UK
- Imperial Centre for Cardiac Engineering, Imperial College London, London, UK
- Department of Cardiology, Hammersmith Hospital, Du Cane Road, London, W12 0HS, UK
| | - Bradley Porter
- Department of Cardiology, Hammersmith Hospital, Du Cane Road, London, W12 0HS, UK
| | - Daniel Keene
- Department of Cardiology, Hammersmith Hospital, Du Cane Road, London, W12 0HS, UK
| | - Vishal Luther
- Department of Cardiology, Hammersmith Hospital, Du Cane Road, London, W12 0HS, UK
| | - Balvinder Handa
- Department of Cardiology, Hammersmith Hospital, Du Cane Road, London, W12 0HS, UK
| | - Jamie Kay
- NHLI, Imperial College London, London, UK
| | - Elaine Lim
- Department of Cardiology, Hammersmith Hospital, Du Cane Road, London, W12 0HS, UK
| | | | - Michael Koa-Wing
- Department of Cardiology, Hammersmith Hospital, Du Cane Road, London, W12 0HS, UK
| | - Phang Boon Lim
- NHLI, Imperial College London, London, UK
- Imperial Centre for Cardiac Engineering, Imperial College London, London, UK
- Department of Cardiology, Hammersmith Hospital, Du Cane Road, London, W12 0HS, UK
| | - Zachary I Whinnett
- NHLI, Imperial College London, London, UK
- Imperial Centre for Cardiac Engineering, Imperial College London, London, UK
- Department of Cardiology, Hammersmith Hospital, Du Cane Road, London, W12 0HS, UK
| | - Fu Siong Ng
- NHLI, Imperial College London, London, UK
- Imperial Centre for Cardiac Engineering, Imperial College London, London, UK
- Department of Cardiology, Hammersmith Hospital, Du Cane Road, London, W12 0HS, UK
| | - Norman Qureshi
- NHLI, Imperial College London, London, UK
- Imperial Centre for Cardiac Engineering, Imperial College London, London, UK
- Department of Cardiology, Hammersmith Hospital, Du Cane Road, London, W12 0HS, UK
| | - Nicholas S Peters
- NHLI, Imperial College London, London, UK
- Imperial Centre for Cardiac Engineering, Imperial College London, London, UK
- Department of Cardiology, Hammersmith Hospital, Du Cane Road, London, W12 0HS, UK
| | - Nicholas W F Linton
- NHLI, Imperial College London, London, UK
- Imperial Centre for Cardiac Engineering, Imperial College London, London, UK
- Department of Cardiology, Hammersmith Hospital, Du Cane Road, London, W12 0HS, UK
- Department of Bioengineering, Imperial College London, London, UK
| | | | - Prapa Kanagaratnam
- NHLI, Imperial College London, London, UK.
- Imperial Centre for Cardiac Engineering, Imperial College London, London, UK.
- Department of Cardiology, Hammersmith Hospital, Du Cane Road, London, W12 0HS, UK.
| |
Collapse
|