1
|
Noda K, Hattori Y, Nishii T, Horinouchi H, Nakaoku Y, Ogata S, Inagaki Y, Asano R, Yoshimoto T, Nishimura K, Ogo T, Nakaoka Y, Ihara M. Relationship Between RNF213 p.R4810K and Echocardiographic Findings in Patients with Cerebrovascular Diseases: A Multicenter Prospective Cohort Study. J Am Heart Assoc 2025:e036333. [PMID: 39868517 DOI: 10.1161/jaha.124.036333] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/15/2024] [Indexed: 01/28/2025]
Abstract
BACKGROUND RING finger protein 213 (RNF213) p.R4810K is an established risk factor for moyamoya disease and intracranial artery stenosis in East Asian people. Recent evidence suggests its potential association with extracranial cardiovascular diseases, including pulmonary hypertension. We hypothesized that insidious abnormal cardiac functions are detected in RNF213 p.R4810K carriers with cerebrovascular diseases. METHODS AND RESULTS We investigated patients registered in the National Cerebral and Cardiovascular Center Genome Registry between May 2017 and August 2021 who underwent echocardiography. All patients had cerebrovascular diseases. Patients with a medical history of chronic heart or pulmonary diseases were excluded. RNF213 p.R4810K was genotyped in all the patients. Of 2089 patients registered in the registry, 71 carriers and 1241 noncarriers were eligible for our analyses. The carriage of RNF213 p.R4810K emerged as a significant predictor for longer right ventricular outflow tract acceleration time in multivariable linear regression analysis (β=8.33 [95% CI, 0.92-15.74]; P=0.028). Additionally, the carriers showed increased odds of having right ventricular outflow tract acceleration time values ≥150 milliseconds (odds ratio, 2.22 [95% CI, 1.18-4.18]; P=0.014) in multivariable logistic regression analysis. CONCLUSIONS A longer right ventricular outflow tract acceleration time may reflect an increased pulmonary vascular bed induced by abnormal vascular collateral networks and dilation of capillary vessels in peripheral pulmonary arteries in the preclinical stage of RNF213-related pulmonary hypertension. Thus, the right ventricular outflow tract acceleration time marker in RNF213 p.R4810K carriers suggests a biphasic course from the presymptomatic to symptomatic phase. Furthermore, vascular neurologists should carefully examine multiple organs because RNF213-related vasculopathy covers systemic cardiovascular diseases. REGISTRATION URL: https://www.umin.ac.jp; Unique identifier: UMIN000050750.
Collapse
Affiliation(s)
- Kotaro Noda
- Department of Neurology National Cerebral and Cardiovascular Center Suita Japan
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences Tokyo Medical and Dental University Tokyo Japan
| | - Yorito Hattori
- Department of Neurology National Cerebral and Cardiovascular Center Suita Japan
- Department of Preemptive Medicine for Dementia National Cerebral and Cardiovascular Center Suita Japan
| | - Tatsuya Nishii
- Department of Radiology National Cerebral and Cardiovascular Center Suita Japan
| | - Hiroki Horinouchi
- Department of Radiology National Cerebral and Cardiovascular Center Suita Japan
| | - Yuriko Nakaoku
- Department of Preventive Medicine and Epidemiology National Cerebral and Cardiovascular Center Suita Japan
| | - Soshiro Ogata
- Department of Preventive Medicine and Epidemiology National Cerebral and Cardiovascular Center Suita Japan
| | - Yasunobu Inagaki
- Department of Neurology National Cerebral and Cardiovascular Center Suita Japan
| | - Ryotaro Asano
- Division of Pulmonary Circulation, Department of Cardiovascular Medicine National Cerebral and Cardiovascular Center Suita Japan
- Department of Vascular Physiology National Cerebral and Cardiovascular Center Suita Japan
| | - Takeshi Yoshimoto
- Department of Neurology National Cerebral and Cardiovascular Center Suita Japan
| | - Kunihiro Nishimura
- Department of Preventive Medicine and Epidemiology National Cerebral and Cardiovascular Center Suita Japan
| | - Takeshi Ogo
- Division of Pulmonary Circulation, Department of Cardiovascular Medicine National Cerebral and Cardiovascular Center Suita Japan
| | - Yoshikazu Nakaoka
- Department of Vascular Physiology National Cerebral and Cardiovascular Center Suita Japan
| | - Masafumi Ihara
- Department of Neurology National Cerebral and Cardiovascular Center Suita Japan
| |
Collapse
|
2
|
Fu Y, Duan X, Zhou W. Assessing the causality between pulmonary arterial hypertension and cancer: insights from Mendelian randomization. Discov Oncol 2024; 15:821. [PMID: 39708235 DOI: 10.1007/s12672-024-01727-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 12/18/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Previous clinical studies have suggested an increased risk of tumor development in patients with pulmonary arterial hypertension (PAH). However, it remains unclear whether there is a causal relationship between PAH and tumor occurrence. This study investigates the causal link between PAH and cancer from a genetic perspective using Mendelian randomization (MR). METHOD Genome-wide association study (GWAS) summary data for PAH and various common cancer types were obtained from the GWAS Catalog. Single nucleotide polymorphisms (SNPs) significantly associated with PAH at the genome-wide significance threshold (P < 1 × 10-6) were selected as instrumental variables (IVs). Inverse-variance weighted (IVW) was used as the primary method for MR analysis, with sensitivity analyses including tests for heterogeneity and horizontal pleiotropy. RESULTS The results from the IVW analysis indicate that genetically proxied PAH is associated with an increased risk of liver cancer [odd ratio (OR) 1.11, 95% confidence interval (CI) 1.01-1.22, P = 0.025), while showing no significant causal relationship with other common types of tumors (thyroid cancer: OR 0.95, 95% CI 0.86-1.06, P = 0.360; lung cancer: OR 0.95, 95% CI 0.90-1.01, P = 0.129; gastric cancer: OR 0.97, 95% CI 0.93-1.02, P = 0.243; colorectal cancer: OR 1.01, 95% CI 0.98-1.05, P = 0.412). Except for the MR analysis examining the causal effect of PAH on lung cancer (P = 0.049), the remaining MR analyses displayed no significant heterogeneity (P > 0.05). Additionally, the MR-Egger intercept test did not find evidence of horizontal pleiotropy (P > 0.05). CONCLUSION This study highlights that PAH may serve as a potential risk factor for this liver cancer. Future research should aim to elucidate the biological mechanisms at play and explore the potential for early interventions that could mitigate cancer risk in this vulnerable population.
Collapse
Affiliation(s)
- Yang Fu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xinwang Duan
- Department of Rheumatology and Immunology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Wei Zhou
- Department of Rheumatology and Immunology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| |
Collapse
|
3
|
Gonzalez-Hermosillo LM, Cueto-Robledo G, Navarro-Vergara DI, Torres-Rojas MB, García-Cesar M, Pérez-Méndez O, Escobedo G. Molecular Pathophysiology of Chronic Thromboembolic Pulmonary Hypertension: A Clinical Update from a Basic Research Perspective. Adv Respir Med 2024; 92:485-503. [PMID: 39727495 PMCID: PMC11673787 DOI: 10.3390/arm92060044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/19/2024] [Accepted: 11/26/2024] [Indexed: 12/28/2024]
Abstract
Chronic thromboembolic pulmonary hypertension (CTEPH) is a rare but severe condition characterized by persistent obstruction and vascular remodeling in the pulmonary arteries following an acute pulmonary embolism (APE). Although APE is a significant risk factor, up to 25% of CTEPH cases occur without a history of APE or deep vein thrombosis, complicating the understanding of its pathogenesis. Herein, we carried out a narrative review discussing the mechanisms involved in CTEPH development, including fibrotic thrombus formation, pulmonary vascular remodeling, and abnormal angiogenesis, leading to elevated pulmonary vascular resistance and right heart failure. We also outlined how the disease's pathophysiology reveals both proximal and distal pulmonary artery obstruction, contributing to the development of pulmonary hypertension. We depicted the risk factors predicting CTEPH, including thrombotic history, hemostatic disorders, and certain medical conditions. We finally looked at the molecular mechanisms behind the role of endothelial dysfunction, gene expression alterations, and inflammatory processes in CTEPH progression and detection. Despite these insights, there is still a need for improved diagnostic tools, biomarkers, and therapeutic strategies to enhance early detection and management of CTEPH, ultimately aiming to reduce diagnostic delay and improve patient outcomes.
Collapse
Affiliation(s)
- Leslie Marisol Gonzalez-Hermosillo
- Laboratory of Immunometabolism, Research Division, General Hospital of Mexico “Dr. Eduardo Liceaga”, Mexico City 06720, Mexico;
- Cardiorespiratory Emergency Department, Pulmonary Hypertension Clinic, General Hospital of Mexico “Dr. Eduardo Liceaga”, Mexico City 06720, Mexico; (G.C.-R.); (D.I.N.-V.); (M.B.T.-R.); (M.G.-C.)
- Doctorate Program in Biomedical Sciences, Postgraduate Unit, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | - Guillermo Cueto-Robledo
- Cardiorespiratory Emergency Department, Pulmonary Hypertension Clinic, General Hospital of Mexico “Dr. Eduardo Liceaga”, Mexico City 06720, Mexico; (G.C.-R.); (D.I.N.-V.); (M.B.T.-R.); (M.G.-C.)
| | - Dulce Iliana Navarro-Vergara
- Cardiorespiratory Emergency Department, Pulmonary Hypertension Clinic, General Hospital of Mexico “Dr. Eduardo Liceaga”, Mexico City 06720, Mexico; (G.C.-R.); (D.I.N.-V.); (M.B.T.-R.); (M.G.-C.)
| | - Maria Berenice Torres-Rojas
- Cardiorespiratory Emergency Department, Pulmonary Hypertension Clinic, General Hospital of Mexico “Dr. Eduardo Liceaga”, Mexico City 06720, Mexico; (G.C.-R.); (D.I.N.-V.); (M.B.T.-R.); (M.G.-C.)
| | - Marisol García-Cesar
- Cardiorespiratory Emergency Department, Pulmonary Hypertension Clinic, General Hospital of Mexico “Dr. Eduardo Liceaga”, Mexico City 06720, Mexico; (G.C.-R.); (D.I.N.-V.); (M.B.T.-R.); (M.G.-C.)
| | - Oscar Pérez-Méndez
- Tecnológico de Monterrey, School of Engineering and Sciences, Mexico City 14380, Mexico;
- Departamento de Biología Molecular, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico
| | - Galileo Escobedo
- Laboratory of Immunometabolism, Research Division, General Hospital of Mexico “Dr. Eduardo Liceaga”, Mexico City 06720, Mexico;
| |
Collapse
|
4
|
Massaro M, Quarta S, Calabriso N, Carluccio MA, Scoditti E, Mancuso P, De Caterina R, Madonna R. Omega-3 polyunsaturated fatty acids and pulmonary arterial hypertension: Insights and perspectives. Eur J Clin Invest 2024; 54:e14277. [PMID: 38940236 PMCID: PMC11490397 DOI: 10.1111/eci.14277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024]
Abstract
Pulmonary arterial hypertension (PAH) is a rare and progressive disorder that affects the pulmonary vasculature. Although recent developments in pharmacotherapy have extended the life expectancy of PAH patients, their 5-year survival remains unacceptably low, underscoring the need for multitarget and more comprehensive approaches to managing the disease. This should incorporate not only medical, but also lifestyle interventions, including dietary changes and the use of nutraceutical support. Among these strategies, n-3 polyunsaturated fatty acids (n-3 PUFAs) are emerging as promising agents able to counteract the inflammatory component of PAH. In this narrative review, we aim at analysing the preclinical evidence for the impact of n-3 PUFAs on the pathogenesis and the course of PAH. Although evidence for the role of n-3 PUFAs deficiencies in the development and progression of PAH in humans is limited, preclinical studies suggest that these dietary components may influence several aspects of the pathobiology of PAH. Further clinical research should test the efficacy of n-3 PUFAs on top of approved clinical management. These studies will provide evidence on whether n-3 PUFAs can genuinely serve as a valuable tool to enhance the efficacy of pharmacotherapy in the treatment of PAH.
Collapse
Affiliation(s)
- Marika Massaro
- Institute of Clinical Physiology (IFC), National Research Council (CNR), 73100 Lecce, Italy
| | - Stefano Quarta
- Institute of Clinical Physiology (IFC), National Research Council (CNR), 73100 Lecce, Italy
| | - Nadia Calabriso
- Institute of Clinical Physiology (IFC), National Research Council (CNR), 73100 Lecce, Italy
| | | | - Egeria Scoditti
- Institute of Clinical Physiology (IFC), National Research Council (CNR), 73100 Lecce, Italy
| | - Peter Mancuso
- Department of Nutritional Sciences and the Program in Immunology, School of Public Health, University of Michigan, 1415 Washington Hts., Ann Arbor, Michigan 481009
| | | | | |
Collapse
|
5
|
Lu Y, Liang X, Song J, Guan Y, Yang L, Shen R, Niu Y, Guo Z, Zhu N. Niclosamide modulates phenotypic switch and inflammatory responses in human pulmonary arterial smooth muscle cells. Mol Cell Biochem 2024:10.1007/s11010-024-05061-6. [PMID: 38980591 DOI: 10.1007/s11010-024-05061-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 06/29/2024] [Indexed: 07/10/2024]
Abstract
Excessive proliferation and migration of pulmonary arterial smooth muscle cells (PASMCs) represent key steps of pulmonary vascular remodeling, leading to the development of pulmonary arterial hypertension (PAH) and right ventricular failure. Niclosamide (NCL), an FDA-approved anthelmintic, has been shown to regulate cell proliferation, migration, invasion, and apoptosis through a variety of signaling pathways. However, its role on modulating the phenotypic switch and inflammatory responses in PASMCs remains unclear. In this study, cell proliferation assay showed that NCL inhibited PDGF-BB induced proliferation of human PASMCs in a dose-dependent manner. Western blot analysis further confirmed a notable reduction in the expression of cyclin D1 and PCNA proteins. Subsequently, flow cytometry analysis demonstrated that NCL induced an increased percentage of cells in the G1 phase while promoting apoptosis in PASMCs. Moreover, both scratch wound assay and transwell assay confirmed that NCL decreased PDGF-BB-induced migration of PASMCs. Mechanistically, western blot revealed that pretreatment of PASMCs with NCL markedly restored the protein levels of SMA, SM22, and calponin, while reducing phosphorylation of P38/STAT3 signaling in the presence of PDGF-BB. Interestingly, macrophages adhesion assay showed that NCL markedly reduced recruitment of Calcein-AM labeled RAW264.7 by TNFα-stimulated PASMCs. Western blot revealed that NCL suppressed TNFα-induced expression of both of VCAM-1 and ICAM-1 proteins. Furthermore, pretreatment of PASMCs with NCL significantly inhibited NLRP3 inflammasome activity through reducing NLRP3, AIM2, mature interleukin-1β (IL-β), and cleaved Caspase-1 proteins expression. Together, these results suggested versatile effects of NCL on controlling of proliferation, migration, and inflammatory responses in PASMCs through modulating different pathways, indicating that repurposing of NCL may emerge as a highly effective drug for PAH treatment.
Collapse
Affiliation(s)
- Yuwen Lu
- Department of Cardiology, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Xiaogan Liang
- Department of Cardiology, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Jingwen Song
- Department of Cardiology, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Yugen Guan
- Department of Cardiology, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Liang Yang
- Department of Cardiology, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Rongrong Shen
- Department of Cardiology, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Yunpu Niu
- Department of Cardiology, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Zhifu Guo
- Department of Cardiology, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China.
| | - Ni Zhu
- Department of Cardiology, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China.
| |
Collapse
|
6
|
Prabhakar A, Kumar R, Wadhwa M, Ghatpande P, Zhang J, Zhao Z, Lizama CO, Kharbikar BN, Gräf S, Treacy CM, Morrell NW, Graham BB, Lagna G, Hata A. Reversal of pulmonary veno-occlusive disease phenotypes by inhibition of the integrated stress response. NATURE CARDIOVASCULAR RESEARCH 2024; 3:799-818. [PMID: 39196173 PMCID: PMC11409862 DOI: 10.1038/s44161-024-00495-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/29/2024] [Indexed: 08/29/2024]
Abstract
Pulmonary veno-occlusive disease (PVOD) is a rare form of pulmonary hypertension arising from EIF2AK4 gene mutations or mitomycin C (MMC) administration. The lack of effective PVOD therapies is compounded by a limited understanding of the mechanisms driving vascular remodeling in PVOD. Here we show that administration of MMC in rats mediates activation of protein kinase R (PKR) and the integrated stress response (ISR), which leads to the release of the endothelial adhesion molecule vascular endothelial (VE) cadherin (VE-Cad) in complex with RAD51 to the circulation, disruption of endothelial barrier and vascular remodeling. Pharmacological inhibition of PKR or ISR attenuates VE-Cad depletion, elevation of vascular permeability and vascular remodeling instigated by MMC, suggesting potential clinical intervention for PVOD. Finally, the severity of PVOD phenotypes was increased by a heterozygous BMPR2 mutation that truncates the carboxyl tail of the receptor BMPR2, underscoring the role of deregulated bone morphogenetic protein signaling in the development of PVOD.
Collapse
Grants
- R01HL132058 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- MR/K020919/1 Medical Research Council
- R01HL135872 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- RG/19/3/34265 British Heart Foundation (BHF)
- R01HL164581 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL153915 NHLBI NIH HHS
- SP/12/12/29836 British Heart Foundation
- R01HL153915 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- 28IR-0047 Tobacco-Related Disease Research Program (TRDRP)
- R01 HL135872 NHLBI NIH HHS
- 19CDA34730030 American Heart Association (American Heart Association, Inc.)
- R24 HL123767 NHLBI NIH HHS
- P01HL152961 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL164581 NHLBI NIH HHS
- P01 HL152961 NHLBI NIH HHS
- R01 HL132058 NHLBI NIH HHS
Collapse
Affiliation(s)
- Amit Prabhakar
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Rahul Kumar
- Lung Biology Center, Pulmonary and Critical Care Medicine, Zuckerberg San Francisco General Hospital, San Francisco, CA, USA
| | - Meetu Wadhwa
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA
| | - Prajakta Ghatpande
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Jingkun Zhang
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Ziwen Zhao
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Carlos O Lizama
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Bhushan N Kharbikar
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Stefan Gräf
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Carmen M Treacy
- Department of Medicine, University of Cambridge, Cambridge, UK
| | | | - Brian B Graham
- Lung Biology Center, Pulmonary and Critical Care Medicine, Zuckerberg San Francisco General Hospital, San Francisco, CA, USA
| | - Giorgio Lagna
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Akiko Hata
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA.
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
7
|
Herb M. NADPH Oxidase 3: Beyond the Inner Ear. Antioxidants (Basel) 2024; 13:219. [PMID: 38397817 PMCID: PMC10886416 DOI: 10.3390/antiox13020219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Reactive oxygen species (ROS) were formerly known as mere byproducts of metabolism with damaging effects on cellular structures. The discovery and description of NADPH oxidases (Nox) as a whole enzyme family that only produce this harmful group of molecules was surprising. After intensive research, seven Nox isoforms were discovered, described and extensively studied. Among them, the NADPH oxidase 3 is the perhaps most underrated Nox isoform, since it was firstly discovered in the inner ear. This stigma of Nox3 as "being only expressed in the inner ear" was also used by me several times. Therefore, the question arose whether this sentence is still valid or even usable. To this end, this review solely focuses on Nox3 and summarizes its discovery, the structural components, the activating and regulating factors, the expression in cells, tissues and organs, as well as the beneficial and detrimental effects of Nox3-mediated ROS production on body functions. Furthermore, the involvement of Nox3-derived ROS in diseases progression and, accordingly, as a potential target for disease treatment, will be discussed.
Collapse
Affiliation(s)
- Marc Herb
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50935 Cologne, Germany;
- German Centre for Infection Research, Partner Site Bonn-Cologne, 50931 Cologne, Germany
- Cologne Cluster of Excellence on Cellular Stress Responses in Aging-Associated Diseases (CECAD), 50931 Cologne, Germany
| |
Collapse
|
8
|
Alghamdi B, Aljuhani S, Alansari G, BinHumaid NM, Alkahtani A. Heritable Pulmonary Arterial Hypertension in a Patient With Empty Sella Syndrome: A Case Report. Cureus 2024; 16:e54632. [PMID: 38524058 PMCID: PMC10959505 DOI: 10.7759/cureus.54632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2024] [Indexed: 03/26/2024] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive disease with multiple contributing factors. Genetics, epigenetics, hormonal, and immune factors all contribute to the development and progression of the disease. A number of endocrine disorders and metabolic syndromes are being studied for their potential role in the development of PAH. We report to you a case of a 32-year-old female with a rare presentation of a non-BMPR2 mutation heritable PAH complicated with empty sella syndrome and panhypopituitarism.
Collapse
Affiliation(s)
| | - Shahad Aljuhani
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Jeddah, SAU
| | - Ghaday Alansari
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Jeddah, SAU
| | - Nouf M BinHumaid
- Pulmonology, King Faisal Specialist Hospital & Research Centre, Jeddah, SAU
| | - Abdulkareem Alkahtani
- Medical Imaging, King Abdulaziz Medical City, Jeddah, SAU
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Jeddah, SAU
| |
Collapse
|
9
|
Prabhakar A, Kumar R, Wadhwa M, Ghatpande P, Zhang J, Zhao Z, Lizama CO, Kharbikar BN, Gräf S, Treacy CM, Morrell NW, Graham BB, Lagna G, Hata A. Reversal of pulmonary veno-occlusive disease phenotypes by inhibition of the integrated stress response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.27.568924. [PMID: 38076809 PMCID: PMC10705277 DOI: 10.1101/2023.11.27.568924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Pulmonary veno-occlusive disease (PVOD) is a rare form of pulmonary hypertension arising from EIF2AK4 gene mutations or mitomycin C (MMC) administration. The lack of effective PVOD therapies is compounded by a limited understanding of the mechanisms driving the vascular remodeling in PVOD. We show that the administration of MMC in rats mediates the activation of protein kinase R (PKR) and the integrated stress response (ISR), which lead to the release of the endothelial adhesion molecule VE-Cadherin in the complex with Rad51 to the circulation, disruption of endothelial barrier, and vascular remodeling. Pharmacological inhibition of PKR or ISR attenuates the depletion of VE-Cadherin, elevation of vascular permeability, and vascular remodeling instigated by MMC, suggesting potential clinical intervention for PVOD. Finally, the severity of PVOD phenotypes was increased by a heterozygous BMPR2 mutation that truncates the carboxyl tail of BMPR2, underscoring the role of deregulated BMP signal in the development of PVOD.
Collapse
|
10
|
Simmons Beck R, Liang OD, Klinger JR. Light at the ENDothelium-role of Sox17 and Runx1 in endothelial dysfunction and pulmonary arterial hypertension. Front Cardiovasc Med 2023; 10:1274033. [PMID: 38028440 PMCID: PMC10656768 DOI: 10.3389/fcvm.2023.1274033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive disease that is characterized by an obliterative vasculopathy of the distal pulmonary circulation. Despite significant progress in our understanding of the pathophysiology, currently approved medical therapies for PAH act primarily as pulmonary vasodilators and fail to address the underlying processes that lead to the development and progression of the disease. Endothelial dysregulation in response to stress, injury or physiologic stimuli followed by perivascular infiltration of immune cells plays a prominent role in the pulmonary vascular remodeling of PAH. Over the last few decades, our understanding of endothelial cell dysregulation has evolved and brought to light a number of transcription factors that play important roles in vascular homeostasis and angiogenesis. In this review, we examine two such factors, SOX17 and one of its downstream targets, RUNX1 and the emerging data that implicate their roles in the pathogenesis of PAH. We review their discovery and discuss their function in angiogenesis and lung vascular development including their roles in endothelial to hematopoietic transition (EHT) and their ability to drive progenitor stem cells toward an endothelial or myeloid fate. We also summarize the data from studies that link mutations in Sox17 with an increased risk of developing PAH and studies that implicate Sox17 and Runx1 in the pathogenesis of PAH. Finally, we review the results of recent studies from our lab demonstrating the efficacy of preventing and reversing pulmonary hypertension in animal models of PAH by deleting RUNX1 expression in endothelial or myeloid cells or by the use of RUNX1 inhibitors. By investigating PAH through the lens of SOX17 and RUNX1 we hope to shed light on the role of these transcription factors in vascular homeostasis and endothelial dysregulation, their contribution to pulmonary vascular remodeling in PAH, and their potential as novel therapeutic targets for treating this devastating disease.
Collapse
Affiliation(s)
- Robert Simmons Beck
- Division of Pulmonary, Sleep and Critical Care Medicine, Rhode Island Hospital and the Alpert Medical School of Brown University, Providence, RI, United States
| | - Olin D. Liang
- Division of Hematology/Oncology, Rhode Island Hospital and the Alpert Medical School of Brown University, Providence, RI, United States
| | - James R. Klinger
- Division of Pulmonary, Sleep and Critical Care Medicine, Rhode Island Hospital and the Alpert Medical School of Brown University, Providence, RI, United States
| |
Collapse
|
11
|
Schutyser W, Budts W, Verhamme P. Percutaneous embolization of pulmonary arteriovenous malformations in adult patient with Rendu-Osler-Weber: a case report. Eur Heart J Case Rep 2023; 7:ytad533. [PMID: 37954570 PMCID: PMC10639099 DOI: 10.1093/ehjcr/ytad533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 10/15/2023] [Accepted: 10/25/2023] [Indexed: 11/14/2023]
Abstract
Background Hereditary haemorrhagic telangiectasia (HHT), or Rendu-Osler-Weber syndrome, is a rare genetic disorder characterized by the development of telangiectasias and arteriovenous malformations (AVMs) throughout the body. We present a case of percutaneous embolization of pulmonary AVMs in an adult patient. Case summary A 26-year-old male patient with polycythaemia of unknown origin and a family history of secundum atrial septal defect underwent cardiac evaluation which revealed clubbing as a sign of peripheral cyanosis. Transthoracic echocardiography showed no intracardiac shunting, but further imaging revealed pulmonary AVMs in the lower lobe of the left lung. Magnetic resonance imaging of the brain detected vascular-ischaemic lesions, likely due to embolization through the pulmonary malformations. Right heart catheterization and pulmonary angiography confirmed the presence of large AVMs in the left lower pulmonary lobe. Percutaneous closure using Amplatzer devices was performed, followed by temporary anticoagulation therapy. Oxygen saturation improved and follow-up imaging confirmed successful closure of the AVMs. Genetic testing using whole exome sequencing identified a mutation in the ENG gene, confirming the diagnosis of HHT. Discussion Our case highlights the importance of investigating both intra- and extracardiac shunting in patients with clinical features of right-to-left shunting. Arteriovenous malformations can serve as a pathway for paradoxical emboli, potentially leading to ischaemic brain events, and might cause pulmonary arterial hypertension. Screening for arteriovenous malformations in various organs and embolization of significant shunts are essential aspects of managing HHT. Genetic testing aids in confirming the diagnosis and guides family testing.
Collapse
Affiliation(s)
- Wouter Schutyser
- Department of Cardiovascular Diseases, University Hospitals Leuven, Belgium
| | - Werner Budts
- Department of Cardiovascular Diseases, University Hospitals Leuven, Belgium
| | - Peter Verhamme
- Department of Cardiovascular Sciences, University Hospitals Leuven, Belgium
| |
Collapse
|
12
|
Sánchez-Duffhues G, Hiepen C. Human iPSCs as Model Systems for BMP-Related Rare Diseases. Cells 2023; 12:2200. [PMID: 37681932 PMCID: PMC10487005 DOI: 10.3390/cells12172200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/17/2023] [Accepted: 08/23/2023] [Indexed: 09/09/2023] Open
Abstract
Disturbances in bone morphogenetic protein (BMP) signalling contribute to onset and development of a number of rare genetic diseases, including Fibrodysplasia ossificans progressiva (FOP), Pulmonary arterial hypertension (PAH), and Hereditary haemorrhagic telangiectasia (HHT). After decades of animal research to build a solid foundation in understanding the underlying molecular mechanisms, the progressive implementation of iPSC-based patient-derived models will improve drug development by addressing drug efficacy, specificity, and toxicity in a complex humanized environment. We will review the current state of literature on iPSC-derived model systems in this field, with special emphasis on the access to patient source material and the complications that may come with it. Given the essential role of BMPs during embryonic development and stem cell differentiation, gain- or loss-of-function mutations in the BMP signalling pathway may compromise iPSC generation, maintenance, and differentiation procedures. This review highlights the need for careful optimization of the protocols used. Finally, we will discuss recent developments towards complex in vitro culture models aiming to resemble specific tissue microenvironments with multi-faceted cellular inputs, such as cell mechanics and ECM together with organoids, organ-on-chip, and microfluidic technologies.
Collapse
Affiliation(s)
- Gonzalo Sánchez-Duffhues
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC), ISPA-HUCA, Avda. de Roma, s/n, 33011 Oviedo, Spain
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Christian Hiepen
- Department of Engineering and Natural Sciences, Westphalian University of Applied Sciences, August-Schmidt-Ring 10, 45665 Recklinghausen, Germany
| |
Collapse
|
13
|
Coons JC, Empey PE. Pharmacogenomics in the Management of Pulmonary Arterial Hypertension: Current Perspectives. Pharmgenomics Pers Med 2023; 16:729-737. [PMID: 37457231 PMCID: PMC10349598 DOI: 10.2147/pgpm.s361222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rare disease with heterogeneous causes that can lead to right ventricular (RV) failure and death if left untreated. There are currently 10 medications representative of five unique pharmacologic classes that are approved for treatment. These have led to significant improvements in overall clinical outcome. However, substantial variability in dosing requirements and treatment response is evident, leading to suboptimal outcome for many patients. Furthermore, dosing is empiric and iterative and can lead to delays in meeting treatment goals and burdensome adverse effects. Pharmacogenomic (PGx) associations have been reported with certain PAH medications, such as treprostinil and bosentan, and can explain some of the variability in response. Relevant genes associated with treprostinil include CYP2C8, CYP2C9, CAMK2D, and PFAS. CYP2C8 and CYP2C9 are the genes encoding the major metabolizing liver enzymes for treprostinil, and reduced function variants (*2, *3) with CYP2C9 were associated with lower treatment persistence. Additionally, a higher CYP2C9 activity score was associated with a significantly less risk of treatment discontinuation. Other genes of interest that have been explored with treprostinil include CAMK2D, which is associated with right ventricular dysfunction and significantly higher dose requirements. Similarly, PFAS is associated with lower concentrations of cyclic adenosine monophosphate and significantly higher dose requirements. Genes of interest with the endothelin receptor antagonist (ERA) class include GNG2 and CYP2C9. A genetic variant in GNG2 (rs11157866) was linked to a significantly increased rate of clinical improvement with ERAs. The *2 variant with CYP2C9 (encoding for the major metabolizing enzyme for bosentan) was significantly associated with a higher risk for elevations in hepatic aminotransferases and liver injury. In summary, this article reviews the relevant pharmacogenes that have been associated to date with dosing and outcome among patients who received PAH medications.
Collapse
Affiliation(s)
- James C Coons
- Department of Pharmacy and Therapeutics, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
- Department of Pharmacy, UPMC Presbyterian-Shadyside Hospital, Pittsburgh, PA, USA
| | - Philip E Empey
- Department of Pharmacy and Therapeutics, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| |
Collapse
|
14
|
Balistrieri A, Makino A, Yuan JXJ. Pathophysiology and pathogenic mechanisms of pulmonary hypertension: role of membrane receptors, ion channels, and Ca 2+ signaling. Physiol Rev 2023; 103:1827-1897. [PMID: 36422993 PMCID: PMC10110735 DOI: 10.1152/physrev.00030.2021] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/11/2022] [Accepted: 11/19/2022] [Indexed: 11/25/2022] Open
Abstract
The pulmonary circulation is a low-resistance, low-pressure, and high-compliance system that allows the lungs to receive the entire cardiac output. Pulmonary arterial pressure is a function of cardiac output and pulmonary vascular resistance, and pulmonary vascular resistance is inversely proportional to the fourth power of the intraluminal radius of the pulmonary artery. Therefore, a very small decrease of the pulmonary vascular lumen diameter results in a significant increase in pulmonary vascular resistance and pulmonary arterial pressure. Pulmonary arterial hypertension is a fatal and progressive disease with poor prognosis. Regardless of the initial pathogenic triggers, sustained pulmonary vasoconstriction, concentric vascular remodeling, occlusive intimal lesions, in situ thrombosis, and vascular wall stiffening are the major and direct causes for elevated pulmonary vascular resistance in patients with pulmonary arterial hypertension and other forms of precapillary pulmonary hypertension. In this review, we aim to discuss the basic principles and physiological mechanisms involved in the regulation of lung vascular hemodynamics and pulmonary vascular function, the changes in the pulmonary vasculature that contribute to the increased vascular resistance and arterial pressure, and the pathogenic mechanisms involved in the development and progression of pulmonary hypertension. We focus on reviewing the pathogenic roles of membrane receptors, ion channels, and intracellular Ca2+ signaling in pulmonary vascular smooth muscle cells in the development and progression of pulmonary hypertension.
Collapse
Affiliation(s)
- Angela Balistrieri
- Section of Physiology, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
- Harvard University, Cambridge, Massachusetts
| | - Ayako Makino
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, California
| | - Jason X-J Yuan
- Section of Physiology, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
| |
Collapse
|
15
|
Zhao Q, Zhang R, Shi J, Xie H, Zhang L, Li F, Jiang R, Wu W, Luo C, Qiu H, Li H, He J, Yuan P, Liu J, Gong S, Wang L. Imaging Features in BMPR2 Mutation-associated Pulmonary Arterial Hypertension. Radiology 2023; 307:e222488. [PMID: 37191488 DOI: 10.1148/radiol.222488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Background Germline mutation in the BMPR2 gene is common in patients with pulmonary arterial hypertension (PAH). However, its association with imaging findings in these patients is, to the knowledge of the authors, unknown. Purpose To characterize distinctive pulmonary vascular abnormalities at CT and pulmonary artery angiography in patients with and without BMPR2 mutation. Materials and Methods In this retrospective study, chest CT scans, pulmonary artery angiograms, and genetic test data were acquired for patients diagnosed with idiopathic PAH (IPAH) or heritable PAH (HPAH) between January 2010 and December 2021. Perivascular halo, neovascularity, centrilobular ground-glass opacity (GGO), and panlobular GGO were evaluated at CT and graded on a four-point severity scale by four independent readers. Clinical characteristics and imaging features between patients with BMPR2 mutation and noncarriers were analyzed using the Kendall rank-order coefficient and the Kruskal-Wallis test. Results This study included 82 patients with BMPR2 mutation (mean age, 38 years ± 15 [SD]; 34 men; 72 patients with IPAH and 10 patients with HPAH) and 193 patients without the mutation, all with IPAH (mean age, 41 years ± 15; 53 men). A total of 115 patients (42%; 115 of 275) had neovascularity, and 56 patients (20%; 56 of 275) had perivascular halo at CT, and so-called frost crystals were observed on pulmonary artery angiograms in 14 of 53 (26%) patients. Compared with patients without BMPR2 mutation, patients with BMPR2 mutation more frequently showed two distinctive radiographic manifestations, perivascular halo and neovascularity (38% [31 of 82] vs 13% [25 of 193] in perivascular halo [P < .001] and 60% [49 of 82] vs 34% [66 of 193] in neovascularity [P < .001], respectively). "Frost crystals" were more frequent in patients with BMPR2 mutation compared with noncarriers (53% [10 of 19] vs 12% [four of 34]; P < .01). Severe perivascular halo frequently coexisted with severe neovascularity in patients with BMPR2 mutation. Conclusion Patients with PAH with BMPR2 mutation showed distinctive features at CT, specifically perivascular halo and neovascularity. This suggested a link between the genetic, pulmonary, and systemic manifestations that underly the pathogenesis of PAH. © RSNA, 2023 Supplemental material is available for this article.
Collapse
Affiliation(s)
- Qinhua Zhao
- From the Departments of Pulmonary Circulation (Q.Z., R.Z., R.J., W.W., C.L., H.Q., H.L., J.H., P.Y., J.L., S.G., L.W.), Radiology (J.S., F.L.), and Pathology (H.X., L.Z.), Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Rd, Shanghai 200433, China
| | - Rui Zhang
- From the Departments of Pulmonary Circulation (Q.Z., R.Z., R.J., W.W., C.L., H.Q., H.L., J.H., P.Y., J.L., S.G., L.W.), Radiology (J.S., F.L.), and Pathology (H.X., L.Z.), Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Rd, Shanghai 200433, China
| | - Jingyun Shi
- From the Departments of Pulmonary Circulation (Q.Z., R.Z., R.J., W.W., C.L., H.Q., H.L., J.H., P.Y., J.L., S.G., L.W.), Radiology (J.S., F.L.), and Pathology (H.X., L.Z.), Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Rd, Shanghai 200433, China
| | - Huikang Xie
- From the Departments of Pulmonary Circulation (Q.Z., R.Z., R.J., W.W., C.L., H.Q., H.L., J.H., P.Y., J.L., S.G., L.W.), Radiology (J.S., F.L.), and Pathology (H.X., L.Z.), Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Rd, Shanghai 200433, China
| | - Liping Zhang
- From the Departments of Pulmonary Circulation (Q.Z., R.Z., R.J., W.W., C.L., H.Q., H.L., J.H., P.Y., J.L., S.G., L.W.), Radiology (J.S., F.L.), and Pathology (H.X., L.Z.), Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Rd, Shanghai 200433, China
| | - Fei Li
- From the Departments of Pulmonary Circulation (Q.Z., R.Z., R.J., W.W., C.L., H.Q., H.L., J.H., P.Y., J.L., S.G., L.W.), Radiology (J.S., F.L.), and Pathology (H.X., L.Z.), Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Rd, Shanghai 200433, China
| | - Rong Jiang
- From the Departments of Pulmonary Circulation (Q.Z., R.Z., R.J., W.W., C.L., H.Q., H.L., J.H., P.Y., J.L., S.G., L.W.), Radiology (J.S., F.L.), and Pathology (H.X., L.Z.), Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Rd, Shanghai 200433, China
| | - Wenhui Wu
- From the Departments of Pulmonary Circulation (Q.Z., R.Z., R.J., W.W., C.L., H.Q., H.L., J.H., P.Y., J.L., S.G., L.W.), Radiology (J.S., F.L.), and Pathology (H.X., L.Z.), Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Rd, Shanghai 200433, China
| | - Cijun Luo
- From the Departments of Pulmonary Circulation (Q.Z., R.Z., R.J., W.W., C.L., H.Q., H.L., J.H., P.Y., J.L., S.G., L.W.), Radiology (J.S., F.L.), and Pathology (H.X., L.Z.), Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Rd, Shanghai 200433, China
| | - Hongling Qiu
- From the Departments of Pulmonary Circulation (Q.Z., R.Z., R.J., W.W., C.L., H.Q., H.L., J.H., P.Y., J.L., S.G., L.W.), Radiology (J.S., F.L.), and Pathology (H.X., L.Z.), Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Rd, Shanghai 200433, China
| | - Huiting Li
- From the Departments of Pulmonary Circulation (Q.Z., R.Z., R.J., W.W., C.L., H.Q., H.L., J.H., P.Y., J.L., S.G., L.W.), Radiology (J.S., F.L.), and Pathology (H.X., L.Z.), Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Rd, Shanghai 200433, China
| | - Jing He
- From the Departments of Pulmonary Circulation (Q.Z., R.Z., R.J., W.W., C.L., H.Q., H.L., J.H., P.Y., J.L., S.G., L.W.), Radiology (J.S., F.L.), and Pathology (H.X., L.Z.), Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Rd, Shanghai 200433, China
| | - Ping Yuan
- From the Departments of Pulmonary Circulation (Q.Z., R.Z., R.J., W.W., C.L., H.Q., H.L., J.H., P.Y., J.L., S.G., L.W.), Radiology (J.S., F.L.), and Pathology (H.X., L.Z.), Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Rd, Shanghai 200433, China
| | - JinMing Liu
- From the Departments of Pulmonary Circulation (Q.Z., R.Z., R.J., W.W., C.L., H.Q., H.L., J.H., P.Y., J.L., S.G., L.W.), Radiology (J.S., F.L.), and Pathology (H.X., L.Z.), Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Rd, Shanghai 200433, China
| | - Sugang Gong
- From the Departments of Pulmonary Circulation (Q.Z., R.Z., R.J., W.W., C.L., H.Q., H.L., J.H., P.Y., J.L., S.G., L.W.), Radiology (J.S., F.L.), and Pathology (H.X., L.Z.), Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Rd, Shanghai 200433, China
| | - Lan Wang
- From the Departments of Pulmonary Circulation (Q.Z., R.Z., R.J., W.W., C.L., H.Q., H.L., J.H., P.Y., J.L., S.G., L.W.), Radiology (J.S., F.L.), and Pathology (H.X., L.Z.), Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Rd, Shanghai 200433, China
| |
Collapse
|
16
|
Benincasa G, Napoli C, Loscalzo J, Maron BA. Pursuing functional biomarkers in complex disease: Focus on pulmonary arterial hypertension. Am Heart J 2023; 258:96-113. [PMID: 36565787 DOI: 10.1016/j.ahj.2022.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/12/2022] [Accepted: 12/19/2022] [Indexed: 05/11/2023]
Abstract
A major gap in diagnosis, classification, risk stratification, and prediction of therapeutic response exists in pulmonary arterial hypertension (PAH), driven in part by a lack of functional biomarkers that are also disease-specific. In this regard, leveraging big data-omics analyses using innovative approaches that integrate network medicine and machine learning correlated with clinically useful indices or risk stratification scores is an approach well-positioned to advance PAH precision medicine. For example, machine learning applied to a panel of 48 cytokines, chemokines, and growth factors could prognosticate PAH patients with immune-dominant subphenotypes at elevated or low-risk for mortality. Here, we discuss strengths and weaknesses of the most current studies evaluating omics-derived biomarkers in PAH. Progress in this field is offset by studies with small sample size, pervasive limitations in bioinformatics, and lack of standardized methods for data processing and interpretation. Future success in this field, in turn, is likely to hinge on mechanistic validation of data outputs in order to couple functional biomarker data with target-specific therapeutics in clinical practice.
Collapse
Affiliation(s)
- Giuditta Benincasa
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", Naples, Italy.
| | - Claudio Napoli
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Joseph Loscalzo
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA
| | - Bradley A Maron
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA.
| |
Collapse
|
17
|
Yang L, Wan N, Gong F, Wang X, Feng L, Liu G. Transcription factors and potential therapeutic targets for pulmonary hypertension. Front Cell Dev Biol 2023; 11:1132060. [PMID: 37009479 PMCID: PMC10064017 DOI: 10.3389/fcell.2023.1132060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 03/03/2023] [Indexed: 03/19/2023] Open
Abstract
Pulmonary hypertension (PH) is a refractory and fatal disease characterized by excessive pulmonary arterial cell remodeling. Uncontrolled proliferation and hypertrophy of pulmonary arterial smooth muscle cells (PASMCs), dysfunction of pulmonary arterial endothelial cells (PAECs), and abnormal perivascular infiltration of immune cells result in pulmonary arterial remodeling, followed by increased pulmonary vascular resistance and pulmonary pressure. Although various drugs targeting nitric oxide, endothelin-1 and prostacyclin pathways have been used in clinical settings, the mortality of pulmonary hypertension remains high. Multiple molecular abnormalities have been implicated in pulmonary hypertension, changes in numerous transcription factors have been identified as key regulators in pulmonary hypertension, and a role for pulmonary vascular remodeling has been highlighted. This review consolidates evidence linking transcription factors and their molecular mechanisms, from pulmonary vascular intima PAECs, vascular media PASMCs, and pulmonary arterial adventitia fibroblasts to pulmonary inflammatory cells. These findings will improve the understanding of particularly interactions between transcription factor-mediated cellular signaling pathways and identify novel therapies for pulmonary hypertension.
Collapse
Affiliation(s)
- Liu Yang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Naifu Wan
- Department of Vascular & Cardiology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fanpeng Gong
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Xianfeng Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Lei Feng
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Guizhu Liu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
- *Correspondence: Guizhu Liu,
| |
Collapse
|
18
|
Wang L, Moonen JR, Cao A, Isobe S, Li CG, Tojais NF, Taylor S, Marciano DP, Chen PI, Gu M, Li D, Harper RL, El-Bizri N, Kim Y, Stankunas K, Rabinovitch M. Dysregulated Smooth Muscle Cell BMPR2-ARRB2 Axis Causes Pulmonary Hypertension. Circ Res 2023; 132:545-564. [PMID: 36744494 PMCID: PMC10008520 DOI: 10.1161/circresaha.121.320541] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/26/2023] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Mutations in BMPR2 (bone morphogenetic protein receptor 2) are associated with familial and sporadic pulmonary arterial hypertension (PAH). The functional and molecular link between loss of BMPR2 in pulmonary artery smooth muscle cells (PASMC) and PAH pathogenesis warrants further investigation, as most investigations focus on BMPR2 in pulmonary artery endothelial cells. Our goal was to determine whether and how decreased BMPR2 is related to the abnormal phenotype of PASMC in PAH. METHODS SMC-specific Bmpr2-/- mice (BKOSMC) were created and compared to controls in room air, after 3 weeks of hypoxia as a second hit, and following 4 weeks of normoxic recovery. Echocardiography, right ventricular systolic pressure, and right ventricular hypertrophy were assessed as indices of pulmonary hypertension. Proliferation, contractility, gene and protein expression of PASMC from BKOSMC mice, human PASMC with BMPR2 reduced by small interference RNA, and PASMC from PAH patients with a BMPR2 mutation were compared to controls, to investigate the phenotype and underlying mechanism. RESULTS BKOSMC mice showed reduced hypoxia-induced vasoconstriction and persistent pulmonary hypertension following recovery from hypoxia, associated with sustained muscularization of distal pulmonary arteries. PASMC from mutant compared to control mice displayed reduced contractility at baseline and in response to angiotensin II, increased proliferation and apoptosis resistance. Human PASMC with reduced BMPR2 by small interference RNA, and PASMC from PAH patients with a BMPR2 mutation showed a similar phenotype related to upregulation of pERK1/2 (phosphorylated extracellular signal related kinase 1/2)-pP38-pSMAD2/3 mediating elevation in ARRB2 (β-arrestin2), pAKT (phosphorylated protein kinase B) inactivation of GSK3-beta, CTNNB1 (β-catenin) nuclear translocation and reduction in RHOA (Ras homolog family member A) and RAC1 (Ras-related C3 botulinum toxin substrate 1). Decreasing ARRB2 in PASMC with reduced BMPR2 restored normal signaling, reversed impaired contractility and attenuated heightened proliferation and in mice with inducible loss of BMPR2 in SMC, decreasing ARRB2 prevented persistent pulmonary hypertension. CONCLUSIONS Agents that neutralize the elevated ARRB2 resulting from loss of BMPR2 in PASMC could prevent or reverse the aberrant hypocontractile and hyperproliferative phenotype of these cells in PAH.
Collapse
Affiliation(s)
- Lingli Wang
- BASE Initiative, Betty Irene Moore Children’s Heart Center, Lucile Packard Children’s Hospital
- Vera Moulton Wall Center for Pulmonary Vascular Diseases, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pediatrics (Cardiology), Stanford University School of Medicine, Stanford, CA, USA
| | - Jan Renier Moonen
- BASE Initiative, Betty Irene Moore Children’s Heart Center, Lucile Packard Children’s Hospital
- Vera Moulton Wall Center for Pulmonary Vascular Diseases, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pediatrics (Cardiology), Stanford University School of Medicine, Stanford, CA, USA
| | - Aiqin Cao
- BASE Initiative, Betty Irene Moore Children’s Heart Center, Lucile Packard Children’s Hospital
- Vera Moulton Wall Center for Pulmonary Vascular Diseases, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pediatrics (Cardiology), Stanford University School of Medicine, Stanford, CA, USA
| | - Sarasa Isobe
- BASE Initiative, Betty Irene Moore Children’s Heart Center, Lucile Packard Children’s Hospital
- Vera Moulton Wall Center for Pulmonary Vascular Diseases, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pediatrics (Cardiology), Stanford University School of Medicine, Stanford, CA, USA
| | - Caiyun G Li
- Vera Moulton Wall Center for Pulmonary Vascular Diseases, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pediatrics (Cardiology), Stanford University School of Medicine, Stanford, CA, USA
| | - Nancy F Tojais
- Vera Moulton Wall Center for Pulmonary Vascular Diseases, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pediatrics (Cardiology), Stanford University School of Medicine, Stanford, CA, USA
| | - Shalina Taylor
- Vera Moulton Wall Center for Pulmonary Vascular Diseases, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pediatrics (Cardiology), Stanford University School of Medicine, Stanford, CA, USA
| | - David P Marciano
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Pin-I Chen
- Vera Moulton Wall Center for Pulmonary Vascular Diseases, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pediatrics (Cardiology), Stanford University School of Medicine, Stanford, CA, USA
| | - Mingxia Gu
- Vera Moulton Wall Center for Pulmonary Vascular Diseases, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pediatrics (Cardiology), Stanford University School of Medicine, Stanford, CA, USA
| | - Dan Li
- Vera Moulton Wall Center for Pulmonary Vascular Diseases, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pediatrics (Cardiology), Stanford University School of Medicine, Stanford, CA, USA
| | - Rebecca L Harper
- Vera Moulton Wall Center for Pulmonary Vascular Diseases, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pediatrics (Cardiology), Stanford University School of Medicine, Stanford, CA, USA
| | - Nesrine El-Bizri
- Vera Moulton Wall Center for Pulmonary Vascular Diseases, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pediatrics (Cardiology), Stanford University School of Medicine, Stanford, CA, USA
| | - YuMee Kim
- Vera Moulton Wall Center for Pulmonary Vascular Diseases, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pediatrics (Cardiology), Stanford University School of Medicine, Stanford, CA, USA
| | - Kryn Stankunas
- Departments of Pathology and of Developmental Biology, and Howard Hughes Medical Institute; Stanford University School of Medicine, Stanford, CA, USA
| | - Marlene Rabinovitch
- BASE Initiative, Betty Irene Moore Children’s Heart Center, Lucile Packard Children’s Hospital
- Vera Moulton Wall Center for Pulmonary Vascular Diseases, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pediatrics (Cardiology), Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
19
|
Upton PD, Dunmore BJ, Li W, Morrell NW. An emerging class of new therapeutics targeting TGF, Activin, and BMP ligands in pulmonary arterial hypertension. Dev Dyn 2023; 252:327-342. [PMID: 35434863 PMCID: PMC10952790 DOI: 10.1002/dvdy.478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/21/2022] [Accepted: 04/07/2022] [Indexed: 11/10/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is an often fatal condition, the primary pathology of which involves loss of pulmonary vascular perfusion due to progressive aberrant vessel remodeling. The reduced capacity of the pulmonary circulation places increasing strain on the right ventricle of the heart, leading to death by heart failure. Currently, licensed therapies are primarily vasodilators, which have increased the median post-diagnosis life expectancy from 2.8 to 7 years. Although this represents a substantial improvement, the search continues for transformative therapeutics that reverse established disease. The genetics of human PAH heavily implicates reduced endothelial bone morphogenetic protein (BMP) signaling as a causal role for the disease pathobiology. Recent approaches have focused on directly enhancing BMP signaling or removing the inhibitory influence of pathways that repress BMP signaling. In this critical commentary, we review the evidence underpinning the development of two approaches: BMP-based agonists and inhibition of activin/GDF signaling. We also address the key considerations and questions that remain regarding these approaches.
Collapse
Affiliation(s)
- Paul D. Upton
- Department of MedicineUniversity of Cambridge School of Clinical Medicine, Addenbrooke's and Royal Papworth HospitalsCambridgeUK
| | - Benjamin J. Dunmore
- Department of MedicineUniversity of Cambridge School of Clinical Medicine, Addenbrooke's and Royal Papworth HospitalsCambridgeUK
| | - Wei Li
- Department of MedicineUniversity of Cambridge School of Clinical Medicine, Addenbrooke's and Royal Papworth HospitalsCambridgeUK
| | - Nicholas W. Morrell
- Department of MedicineUniversity of Cambridge School of Clinical Medicine, Addenbrooke's and Royal Papworth HospitalsCambridgeUK
| |
Collapse
|
20
|
Jiang Y, Guo Y, Feng X, Yang P, Liu Y, Dai X, Zhao F, Lei D, Li X, Liu Y, Li Y. Iron metabolism disorder regulated by BMP signaling in hypoxic pulmonary hypertension. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166589. [PMID: 36343841 DOI: 10.1016/j.bbadis.2022.166589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 10/22/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUNDS AND AIMS Unexplained iron deficiency is associated with poorer survival in patients with pulmonary hypertension (PH). Bone morphogenetic protein (BMP) signaling and BMP protein type II receptor (BMPR2) expression are important in the pathogenesis of PH. BMP6 in hepatocytes is a central transcriptional regulator of the iron hormone hepcidin that controls systemic iron balance. This study aimed to investigate the effects of BMP signaling on iron metabolism and its implication in hypoxia-induced PH. METHODS AND RESULTS PH was induced in Sprague-Dawley Rats under hypoxia for 4 weeks. Compared with the control group, right ventricular systolic pressure and right ventricle hypertrophy index were both markedly increased, and serum iron level was significantly decreased with iron metabolic disorder in the hypoxia group. In cultured human pulmonary artery endothelial cells (HPAECs), hypoxia increased oxidative stress and apoptosis, which were reversed by supplementation with Fe agent. Meanwhile, iron chelator deferoxamine triggered oxidative stress and apoptosis in HPAECs, and treatment with antioxidant alleviated iron-deficiency-induced apoptosis by reducing reactive oxygen species production. Expression of hepcidin, BMP6 and hypoxia-inducible factor (HIF)-1α were significantly upregulated, while expression of BMPR2 was downregulated in hepatocytes in the hypoxia group, both in vivo and in vitro. Expression of hepcidin and HIF-1α were significantly increased by BMP6, while pretreatment with siRNA-BMPR2 augmented the enhanced expression of hepcidin and HIF-1α induced by BMP6. CONCLUSIONS Iron deficiency promoted oxidative stress and apoptosis in HPAECs in hypoxia-induced PH, and enhanced expression of hepcidin regulated by BMP6/BMPR2 signaling may contribute to iron metabolic disorder.
Collapse
Affiliation(s)
- Yujie Jiang
- Department of Health Management, The Third Xiangya Hospital of Central South University, Changsha, China; Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Yingfan Guo
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Xuexiang Feng
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Pingting Yang
- Department of Health Management, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yi Liu
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Xuejing Dai
- Department of Health Management, The Third Xiangya Hospital of Central South University, Changsha, China; Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Feilong Zhao
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Dongyu Lei
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Xiaohui Li
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Yuan Liu
- Department of Anesthesiology, The Second Xiangya Hospital of Central South University, Changsha, China.
| | - Ying Li
- Department of Health Management, The Third Xiangya Hospital of Central South University, Changsha, China.
| |
Collapse
|
21
|
Abstract
Pulmonary arterial hypertension forms the first and most severe of the 5 categories of pulmonary hypertension. Disease pathogenesis is driven by progressive remodeling of peripheral pulmonary arteries, caused by the excessive proliferation of vascular wall cells, including endothelial cells, smooth muscle cells and fibroblasts, and perivascular inflammation. Compelling evidence from animal models suggests endothelial cell dysfunction is a key initial trigger of pulmonary vascular remodeling, which is characterised by hyperproliferation and early apoptosis followed by enrichment of apoptosis-resistant populations. Dysfunctional pulmonary arterial endothelial cells lose their ability to produce vasodilatory mediators, together leading to augmented pulmonary arterial smooth muscle cell responses, increased pulmonary vascular pressures and right ventricular afterload, and progressive right ventricular hypertrophy and heart failure. It is recognized that a range of abnormal cellular molecular signatures underpin the pathophysiology of pulmonary arterial hypertension and are enhanced by loss-of-function mutations in the BMPR2 gene, the most common genetic cause of pulmonary arterial hypertension and associated with worse disease prognosis. Widespread metabolic abnormalities are observed in the heart, pulmonary vasculature, and systemic tissues, and may underpin heterogeneity in responsivity to treatment. Metabolic abnormalities include hyperglycolytic reprogramming, mitochondrial dysfunction, aberrant polyamine and sphingosine metabolism, reduced insulin sensitivity, and defective iron handling. This review critically discusses published mechanisms linking metabolic abnormalities with dysfunctional BMPR2 (bone morphogenetic protein receptor 2) signaling; hypothesized mechanistic links requiring further validation; and their relevance to pulmonary arterial hypertension pathogenesis and the development of potential therapeutic strategies.
Collapse
Affiliation(s)
- Iona Cuthbertson
- Department of Medicine, University of Cambridge School of Clinical Medicine, Heart and Lung Research Institute, United Kingdom
| | - Nicholas W Morrell
- Department of Medicine, University of Cambridge School of Clinical Medicine, Heart and Lung Research Institute, United Kingdom
| | - Paola Caruso
- Department of Medicine, University of Cambridge School of Clinical Medicine, Heart and Lung Research Institute, United Kingdom
| |
Collapse
|
22
|
Sex- and Gender-Related Aspects in Pulmonary Hypertension. Heart Fail Clin 2023; 19:11-24. [PMID: 36435566 DOI: 10.1016/j.hfc.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
Upton P, Richards S, Bates A, Niederhoffer KY, Morrell NW, Christian S. A rare homozygous missense GDF2 (BMP9) mutation causing PAH in siblings: Does BMP10 status contribute? Am J Med Genet A 2023; 191:228-233. [PMID: 36259599 PMCID: PMC10092753 DOI: 10.1002/ajmg.a.62996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 12/14/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a disease characterized by pathological remodeling of the pulmonary vasculature causing elevated pulmonary artery pressures and ultimately, right ventricular failure from chronic pressure overload. Heterozygous pathogenic GDF2 (encoding bone morphogenetic protein 9 (BMP9)) variants account for some (>1%) adult PAH cases. Only three pediatric PAH cases, harboring homozygous or compound heterozygous variants, are reported to date. Ultra-rare pathogenic GDF2 variants are reported in hereditary hemorrhagic telangiectasia and overlapping disorders characterized by telangiectasias and arteriovenous malformations (AVMs). Here, we present two siblings with PAH homozygous for a GDF2 mutation that impairs BMP9 proprotein processing and reduces growth factor domain availability. We confirm an absence of measurable plasma BMP9 whereas BMP10 levels are detectable and serum-dependent endothelial BMP activity is evident. This contrasts with the absence of activity which we reported in two children with homozygous pathogenic GDF2 nonsense variants, one with PAH and one with pulmonary AVMs, both with telangiectasias, suggesting loss of BMP10 and endothelial BMP activity in the latter may precipitate telangiectasia development. An absence of phenotype in related heterozygous GDF2 variant carriers suggests incomplete penetrance in PAH and AVM-related diseases, indicating that additional somatic and/or genetic modifiers may be necessary for disease precipitation.
Collapse
Affiliation(s)
- Paul Upton
- Department of Medicine, Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
| | - Susan Richards
- Pediatric Pulmonary Hypertension Service, Stollery Children's Hospital, Edmonton, Alberta, Canada
| | - Angela Bates
- Pediatric Pulmonary Hypertension Service, Stollery Children's Hospital, Edmonton, Alberta, Canada.,Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Karen Y Niederhoffer
- Department of Medical Genetics, University of Alberta Hospital, Edmonton, Alberta, Canada
| | - Nicholas W Morrell
- Department of Medicine, Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
| | - Susan Christian
- Pediatric Pulmonary Hypertension Service, Stollery Children's Hospital, Edmonton, Alberta, Canada
| |
Collapse
|
24
|
Devendran A, Kar S, Bailey R, Trivieri MG. The Role of Bone Morphogenetic Protein Receptor Type 2 ( BMPR2) and the Prospects of Utilizing Induced Pluripotent Stem Cells (iPSCs) in Pulmonary Arterial Hypertension Disease Modeling. Cells 2022; 11:3823. [PMID: 36497082 PMCID: PMC9741276 DOI: 10.3390/cells11233823] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/25/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive disease characterized by increased pulmonary vascular resistance (PVR), causing right ventricular hypertrophy and ultimately death from right heart failure. Heterozygous mutations in the bone morphogenetic protein receptor type 2 (BMPR2) are linked to approximately 80% of hereditary, and 20% of idiopathic PAH cases, respectively. While patients carrying a BMPR2 gene mutation are more prone to develop PAH than non-carriers, only 20% will develop the disease, whereas the majority will remain asymptomatic. PAH is characterized by extreme vascular remodeling that causes pulmonary arterial endothelial cell (PAEC) dysfunction, impaired apoptosis, and uncontrolled proliferation of the pulmonary arterial smooth muscle cells (PASMCs). To date, progress in understanding the pathophysiology of PAH has been hampered by limited access to human tissue samples and inadequacy of animal models to accurately mimic the pathogenesis of human disease. Along with the advent of induced pluripotent stem cell (iPSC) technology, there has been an increasing interest in using this tool to develop patient-specific cellular models that precisely replicate the pathogenesis of PAH. In this review, we summarize the currently available approaches in iPSC-based PAH disease modeling and explore how this technology could be harnessed for drug discovery and to widen our understanding of the pathophysiology of PAH.
Collapse
Affiliation(s)
- Anichavezhi Devendran
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sumanta Kar
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rasheed Bailey
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Maria Giovanna Trivieri
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Medicine, Cardiology Unit, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
25
|
Yeo Y, Jeong H, Kim M, Choi Y, Kim KL, Suh W. Crosstalk between BMP signaling and KCNK3 in phenotypic switching of pulmonary vascular smooth muscle cells. BMB Rep 2022; 55:565-570. [PMID: 36016502 PMCID: PMC9712703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/11/2022] [Accepted: 08/12/2022] [Indexed: 12/14/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive and devastating disease whose pathogenesis is associated with a phenotypic switch of pulmonary arterial vascular smooth muscle cells (PASMCs). Bone morphogenetic protein (BMP) signaling and potassium two pore domain channel subfamily K member 3 (KCNK3) play crucial roles in PAH pathogenesis. However, the relationship between BMP signaling and KCNK3 expression in the PASMC phenotypic switching process has not been studied. In this study, we explored the effect of BMPs on KCNK3 expression and the role of KCNK3 in the BMP-mediated PASMC phenotypic switch. Expression levels of BMP receptor 2 (BMPR2) and KCNK3 were downregulated in PASMCs of rats with PAH compared to those in normal controls, implying a possible association between BMP/BMPR2 signaling and KCNK3 expression in the pulmonary vasculature. Treatment with BMP2, BMP4, and BMP7 significantly increased KCNK3 expression in primary human PASMCs (HPASMCs). BMPR2 knockdown and treatment with Smad1/5 signaling inhibitor substantially abrogated the BMP-induced increase in KCNK3 expression, suggesting that KCNK3 expression in HPASMCs is regulated by the canonical BMP-BMPR2-Smad1/5 signaling pathway. Furthermore, KCNK3 knockdown and treatment with a KCNK3 channel blocker completely blocked BMP-mediated anti-proliferation and expression of contractile marker genes in HPAMSCs, suggesting that the expression and functional activity of KCNK3 are required for BMP-mediated acquisition of the quiescent PASMC phenotype. Overall, our findings show a crosstalk between BMP signaling and KCNK3 in regulating the PASMC phenotype, wherein BMPs upregulate KCNK3 expression and KCNK3 then mediates BMP-induced phenotypic switching of PASMCs. Our results indicate that the dysfunction and/or downregulation of BMPR2 and KCNK3 observed in PAH work together to induce aberrant changes in the PASMC phenotype, providing insights into the complex molecular pathogenesis of PAH. [BMB Reports 2022; 55(11): 565-570].
Collapse
Affiliation(s)
- Yeongju Yeo
- Department of Global Innovative Drug, The Graduate School of Chung-Ang University, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Hayoung Jeong
- Department of Global Innovative Drug, The Graduate School of Chung-Ang University, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Minju Kim
- Department of Global Innovative Drug, The Graduate School of Chung-Ang University, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Yanghee Choi
- Department of Global Innovative Drug, The Graduate School of Chung-Ang University, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Koung Li Kim
- Department of Global Innovative Drug, The Graduate School of Chung-Ang University, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Wonhee Suh
- Department of Global Innovative Drug, The Graduate School of Chung-Ang University, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| |
Collapse
|
26
|
Yeo Y, Jeong H, Kim M, Choi Y, Kim KL, Suh W. Crosstalk between BMP signaling and KCNK3 in phenotypic switching of pulmonary vascular smooth muscle cells. BMB Rep 2022; 55:565-570. [PMID: 36016502 PMCID: PMC9712703 DOI: 10.5483/bmbrep.2022.55.11.098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/11/2022] [Accepted: 08/12/2022] [Indexed: 02/18/2024] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive and devastating disease whose pathogenesis is associated with a phenotypic switch of pulmonary arterial vascular smooth muscle cells (PASMCs). Bone morphogenetic protein (BMP) signaling and potassium two pore domain channel subfamily K member 3 (KCNK3) play crucial roles in PAH pathogenesis. However, the relationship between BMP signaling and KCNK3 expression in the PASMC phenotypic switching process has not been studied. In this study, we explored the effect of BMPs on KCNK3 expression and the role of KCNK3 in the BMP-mediated PASMC phenotypic switch. Expression levels of BMP receptor 2 (BMPR2) and KCNK3 were downregulated in PASMCs of rats with PAH compared to those in normal controls, implying a possible association between BMP/BMPR2 signaling and KCNK3 expression in the pulmonary vasculature. Treatment with BMP2, BMP4, and BMP7 significantly increased KCNK3 expression in primary human PASMCs (HPASMCs). BMPR2 knockdown and treatment with Smad1/5 signaling inhibitor substantially abrogated the BMP-induced increase in KCNK3 expression, suggesting that KCNK3 expression in HPASMCs is regulated by the canonical BMP-BMPR2-Smad1/5 signaling pathway. Furthermore, KCNK3 knockdown and treatment with a KCNK3 channel blocker completely blocked BMP-mediated anti-proliferation and expression of contractile marker genes in HPAMSCs, suggesting that the expression and functional activity of KCNK3 are required for BMP-mediated acquisition of the quiescent PASMC phenotype. Overall, our findings show a crosstalk between BMP signaling and KCNK3 in regulating the PASMC phenotype, wherein BMPs upregulate KCNK3 expression and KCNK3 then mediates BMP-induced phenotypic switching of PASMCs. Our results indicate that the dysfunction and/or downregulation of BMPR2 and KCNK3 observed in PAH work together to induce aberrant changes in the PASMC phenotype, providing insights into the complex molecular pathogenesis of PAH. [BMB Reports 2022; 55(11): 565-570].
Collapse
Affiliation(s)
- Yeongju Yeo
- Department of Global Innovative Drug, The Graduate School of Chung-Ang University, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Hayoung Jeong
- Department of Global Innovative Drug, The Graduate School of Chung-Ang University, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Minju Kim
- Department of Global Innovative Drug, The Graduate School of Chung-Ang University, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Yanghee Choi
- Department of Global Innovative Drug, The Graduate School of Chung-Ang University, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Koung Li Kim
- Department of Global Innovative Drug, The Graduate School of Chung-Ang University, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Wonhee Suh
- Department of Global Innovative Drug, The Graduate School of Chung-Ang University, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| |
Collapse
|
27
|
Kyi P, Hendee K, Hunyenyiwa T, Matus K, Mammoto T, Mammoto A. Endothelial senescence mediates hypoxia-induced vascular remodeling by modulating PDGFB expression. Front Med (Lausanne) 2022; 9:908639. [PMID: 36203755 PMCID: PMC9530050 DOI: 10.3389/fmed.2022.908639] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/29/2022] [Indexed: 12/03/2022] Open
Abstract
Uncontrolled accumulation of pulmonary artery smooth muscle cells (PASMCs) to the distal pulmonary arterioles (PAs) is one of the major characteristics of pulmonary hypertension (PH). Cellular senescence contributes to aging and lung diseases associated with PH and links to PH progression. However, the mechanism by which cellular senescence controls vascular remodeling in PH is not fully understood. The levels of senescence marker, p16INK4A and senescence-associated β-galactosidase (SA-β-gal) activity are higher in PA endothelial cells (ECs) isolated from idiopathic pulmonary arterial hypertension (IPAH) patients compared to those from healthy individuals. Hypoxia-induced accumulation of α-smooth muscle actin (αSMA)-positive cells to the PAs is attenuated in p16fl/fl-Cdh5(PAC)-CreERT2 (p16iΔEC) mice after tamoxifen induction. We have reported that endothelial TWIST1 mediates hypoxia-induced vascular remodeling by increasing platelet-derived growth factor (PDGFB) expression. Transcriptomic analyses of IPAH patient lungs or hypoxia-induced mouse lung ECs reveal the alteration of senescence-related gene expression and their interaction with TWIST1. Knockdown of p16INK4A attenuates the expression of PDGFB and TWIST1 in IPAH patient PAECs or hypoxia-treated mouse lungs and suppresses accumulation of αSMA–positive cells to the supplemented ECs in the gel implanted on the mouse lungs. Hypoxia-treated mouse lung EC-derived exosomes stimulate DNA synthesis and migration of PASMCs in vitro and in the gel implanted on the mouse lungs, while p16iΔEC mouse lung EC-derived exosomes inhibit the effects. These results suggest that endothelial senescence modulates TWIST1-PDGFB signaling and controls vascular remodeling in PH.
Collapse
Affiliation(s)
- Priscilla Kyi
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Kathryn Hendee
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Tendai Hunyenyiwa
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Kienna Matus
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Tadanori Mammoto
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
- *Correspondence: Akiko Mammoto
| | - Akiko Mammoto
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
- Tadanori Mammoto
| |
Collapse
|
28
|
Jt S, M H, Wam B, Ac B, Sa N. Adenoviral vectors for cardiovascular gene therapy applications: a clinical and industry perspective. J Mol Med (Berl) 2022; 100:875-901. [PMID: 35606652 PMCID: PMC9126699 DOI: 10.1007/s00109-022-02208-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 04/29/2022] [Accepted: 05/10/2022] [Indexed: 11/29/2022]
Abstract
Abstract Despite the development of novel pharmacological treatments, cardiovascular disease morbidity and mortality remain high indicating an unmet clinical need. Viral gene therapy enables targeted delivery of therapeutic transgenes and represents an attractive platform for tackling acquired and inherited cardiovascular diseases in the future. Current cardiovascular gene therapy trials in humans mainly focus on improving cardiac angiogenesis and function. Encouragingly, local delivery of therapeutic transgenes utilising first-generation human adenovirus serotype (HAd)-5 is safe in the short term and has shown some efficacy in drug refractory angina pectoris and heart failure with reduced ejection fraction. Despite this success, systemic delivery of therapeutic HAd-5 vectors targeting cardiovascular tissues and internal organs is limited by negligible gene transfer to target cells, elimination by the immune system, liver sequestration, off-target effects, and episomal degradation. To circumvent these barriers, cardiovascular gene therapy research has focused on determining the safety and efficacy of rare alternative serotypes and/or genetically engineered adenoviral capsid protein-modified vectors following local or systemic delivery. Pre-clinical studies have identified several vectors including HAd-11, HAd-35, and HAd-20–42-42 as promising platforms for local and systemic targeting of vascular endothelial and smooth muscle cells. In the past, clinical gene therapy trials were often restricted by limited scale-up capabilities of gene therapy medicinal products (GTMPs) and lack of regulatory guidance. However, significant improvement of industrial GTMP scale-up and purification, development of novel producer cell lines, and issuing of GTMP regulatory guidance by national regulatory health agencies have addressed many of these challenges, creating a more robust framework for future adenoviral-based cardiovascular gene therapy. In addition, this has enabled the mass roll out of adenovirus vector-based COVID-19 vaccines. Key messages First-generation HAd-5 vectors are widely used in cardiovascular gene therapy. HAd-5-based gene therapy was shown to lead to cardiac angiogenesis and improved function. Novel HAd vectors may represent promising transgene carriers for systemic delivery. Novel methods allow industrial scale-up of rare/genetically altered Ad serotypes. National regulatory health agencies have issued guidance on GMP for GTMPs.
Collapse
Affiliation(s)
- Schwartze Jt
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK.
| | - Havenga M
- Batavia Biosciences B.V., Bioscience Park Leiden, Zernikedreef 16, 2333, CL, Leiden, The Netherlands
| | - Bakker Wam
- Batavia Biosciences B.V., Bioscience Park Leiden, Zernikedreef 16, 2333, CL, Leiden, The Netherlands
| | - Bradshaw Ac
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Nicklin Sa
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
29
|
Wu XH, Ma JL, Ding D, Ma YJ, Wei YP, Jing ZC. Experimental animal models of pulmonary hypertension: Development and challenges. Animal Model Exp Med 2022; 5:207-216. [PMID: 35333455 PMCID: PMC9240731 DOI: 10.1002/ame2.12220] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/11/2022] [Accepted: 02/20/2022] [Indexed: 12/16/2022] Open
Abstract
Pulmonary hypertension (PH) is clinically divided into 5 major types, characterized by elevation in pulmonary arterial pressure (PAP) and pulmonary vascular resistance (PVR), finally leading to right heart failure and death. The pathogenesis of this arteriopathy remains unclear, leaving it impossible to target pulmonary vascular remodeling and reverse the deterioration of right ventricular (RV) function. Different animal models have been designed to reflect the complex mechanistic origins and pathology of PH, roughly divided into 4 categories according to the modeling methods: non‐invasive models in vivo, invasive models in vivo, gene editing models, and multi‐means joint modeling. Though each model shares some molecular and pathological changes with different classes of human PH, in most cases the molecular etiology of human PH is poorly known. The appropriate use of classic and novel PH animal models is essential for the hunt of molecular targets to reverse severe phenotypes.
Collapse
Affiliation(s)
- Xiao-Han Wu
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie-Ling Ma
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dong Ding
- Medical Science Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yue-Jiao Ma
- Medical Science Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yun-Peng Wei
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhi-Cheng Jing
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
30
|
Walsh LJ, Collins C, Ibrahim H, Kerins DM, Brady AP, O Connor TM. Pulmonary arterial hypertension in hereditary hemorrhagic telangiectasia associated with ACVRL1 mutation: a case report. J Med Case Rep 2022; 16:99. [PMID: 35232468 PMCID: PMC8889686 DOI: 10.1186/s13256-022-03296-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 01/28/2022] [Indexed: 11/11/2022] Open
Abstract
INTRODUCTION Hereditary hemorrhagic telangiectasia is an autosomal dominant condition with an estimated prevalence of 1 in 5000. It is characterized by the presence of abnormalities of vascular structures, and may affect many organ systems, including the lungs, brain, spinal cord, gastrointestinal tract, and liver. A causative mutation is identified in approximately 97% of patients with definite hereditary hemorrhagic telangiectasia in one of three genes including a mutation in endoglin, a mutation in a locus mapped to chromosome 5, and an activin receptor-like kinase-1 (ACVRL1) mutation that is associated with an increased incidence of primary pulmonary hypertension. Pulmonary arterial hypertension is a rare (15-25 cases per million people) but severe vascular disorder. Heritable pulmonary arterial hypertension is associated with several gene mutations, with 75% having a mutation in the bone morphogenetic protein receptor 2 (BMPR2). However, the remaining 25% of patients have other associated genetic mutations including ACVLR1, which is also associated with hereditary hemorrhagic telangiectasia. Pulmonary arterial hypertension is a rare complication in patients with hereditary hemorrhagic telangiectasia (< 1% of the hereditary hemorrhagic telangiectasia population). We describe a case report with this rare occurrence. CASE PRESENTATION A 70-year-old white/caucasian Irish male presented for screening for hereditary hemorrhagic telangiectasia due to a history of recurrent epistaxis (once/week) and a family history suggestive of pulmonary hypertension. Genetic testing confirmed an ACVRL1 mutation, while an echocardiogram and right heart catheterization confirmed pulmonary arterial hypertension. On examination, he had several mucocutaneous telangiectasia across his face. He was commenced on tadalafil and macitentan. However, this led to increased iron deficiency anemia and pedal edema. Selexipag was also added to his drug regime. He continues to require intermittent admissions for diuresis and blood transfusions. CONCLUSION The association of hereditary hemorrhagic telangiectasia and pulmonary arterial hypertension is rare (< 1%). Here we describe a case of hereditary hemorrhagic telangiectasia complicated with pulmonary arterial hypertension as a result of an ACVRL1 mutation. We also describe the clinical challenges of treating these two conditions together, as treatment options for pulmonary arterial hypertension tend to worsen hereditary hemorrhagic telangiectasia symptoms.
Collapse
Affiliation(s)
- L J Walsh
- Department of Respiratory Medicine, Mercy University Hospital, Cork, Ireland
| | - C Collins
- Department of Respiratory Medicine, Mercy University Hospital, Cork, Ireland
| | - H Ibrahim
- Department of Respiratory Medicine, Mercy University Hospital, Cork, Ireland
| | - D M Kerins
- Department of Cardiology, Mercy University Hospital, Cork, Ireland
| | - A P Brady
- Department of Radiology, Mercy University Hospital, Cork, Ireland
| | - T M O Connor
- Department of Respiratory Medicine, Mercy University Hospital, Cork, Ireland.
| |
Collapse
|
31
|
Andre P, Joshi SR, Briscoe SD, Alexander MJ, Li G, Kumar R. Therapeutic Approaches for Treating Pulmonary Arterial Hypertension by Correcting Imbalanced TGF-β Superfamily Signaling. Front Med (Lausanne) 2022; 8:814222. [PMID: 35141256 PMCID: PMC8818880 DOI: 10.3389/fmed.2021.814222] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/15/2021] [Indexed: 12/19/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rare disease characterized by high blood pressure in the pulmonary circulation driven by pathological remodeling of distal pulmonary arteries, leading typically to death by right ventricular failure. Available treatments improve physical activity and slow disease progression, but they act primarily as vasodilators and have limited effects on the biological cause of the disease—the uncontrolled proliferation of vascular endothelial and smooth muscle cells. Imbalanced signaling by the transforming growth factor-β (TGF-β) superfamily contributes extensively to dysregulated vascular cell proliferation in PAH, with overactive pro-proliferative SMAD2/3 signaling occurring alongside deficient anti-proliferative SMAD1/5/8 signaling. We review the TGF-β superfamily mechanisms underlying PAH pathogenesis, superfamily interactions with inflammation and mechanobiological forces, and therapeutic strategies under development that aim to restore SMAD signaling balance in the diseased pulmonary arterial vessels. These strategies could potentially reverse pulmonary arterial remodeling in PAH by targeting causative mechanisms and therefore hold significant promise for the PAH patient population.
Collapse
|
32
|
Research Progress on Pulmonary Arterial Hypertension and the Role of the Angiotensin Converting Enzyme 2-Angiotensin-(1-7)-Mas Axis in Pulmonary Arterial Hypertension. Cardiovasc Drugs Ther 2022; 36:363-370. [PMID: 33394361 PMCID: PMC7779643 DOI: 10.1007/s10557-020-07114-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/13/2020] [Indexed: 01/31/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a progressive disease with a complex aetiology and high mortality. Functional and structural changes in the small pulmonary arteries lead to elevated pulmonary arterial pressure, resulting in right heart failure. The pathobiology of PAH is not fully understood, and novel treatment targets in PAH are desperately needed. The renin-angiotensin system is critical for maintaining homeostasis of the cardiovascular system. The system consists of the angiotensin converting enzyme (ACE)-angiotensin (Ang) II-angiotensin type 1 receptor (AT1R) axis and the ACE2-Ang-(1-7)-Mas receptor axis. The former, the ACE-Ang II-AT1R axis, is involved in vasoconstrictive and hypertensive actions along with cardiac and vascular remodelling. The latter, the ACE2-Ang-(1-7)-Mas axis, generally mediates counterbalancing effects against those mediated by the ACE-Ang II-AT1R axis. Based on established functions, the ACE2-Ang-(1-7)-Mas axis may represent a novel target for the treatment of PAH. This review focuses on recent advances in pulmonary circulation science and the role of the ACE2-Ang-(1-7)-Mas axis in PAH.
Collapse
|
33
|
Li P, Song J, Du H, Lu Y, Dong S, Zhou S, Guo Z, Wu H, Zhao X, Qin Y, Zhu N. MicroRNA-663 prevents monocrotaline-induced pulmonary arterial hypertension by targeting TGF-β1/smad2/3 signaling. J Mol Cell Cardiol 2021; 161:9-22. [PMID: 34339758 DOI: 10.1016/j.yjmcc.2021.07.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 07/01/2021] [Accepted: 07/28/2021] [Indexed: 01/25/2023]
Abstract
OBJECTIVE Pulmonary vascular remodeling due to excessive growth factor production and pulmonary artery smooth muscle cells (PASMCs) proliferation is the hallmark feature of pulmonary arterial hypertension (PAH). Recent studies suggest that miR-663 is a potent modulator for tumorigenesis and atherosclerosis. However, whether miR-663 involves in pulmonary vascular remodeling is still unclear. METHODS AND RESULTS By using quantitative RT-PCR, we found that miR-663 was highly expressed in normal human PASMCs. In contrast, circulating level of miR-663 dramatically reduced in PAH patients. In addition, in situ hybridization showed that expression of miR-663 was decreased in pulmonary vasculature of PAH patients. Furthermore, MTT and cell scratch-wound assay showed that transfection of miR-663 mimics significantly inhibited platelet derived growth factor (PDGF)-induced PASMCs proliferation and migration, while knockdown of miR-663 expression enhanced these effects. Mechanistically, dual-luciferase reporter assay revealed that miR-663 directly targets the 3'UTR of TGF-β1. Moreover, western blots and ELISA results showed that miR-663 decreased PDGF-induced TGF-β1 expression and secretion, which in turn suppressed the downstream smad2/3 phosphorylation and collagen I expression. Finally, intratracheal instillation of adeno-miR-663 efficiently inhibited the development of pulmonary vascular remodeling and right ventricular hypertrophy in monocrotaline (MCT)-induced PAH rat models. CONCLUSION These results indicate that miR-663 is a potential biomarker for PAH. MiR-663 decreases PDGF-BB-induced PASMCs proliferation and prevents pulmonary vascular remodeling and right ventricular hypertrophy in MCT-PAH by targeting TGF-β1/smad2/3 signaling. These findings suggest that miR-663 may represent as an attractive approach for the diagnosis and treatment for PAH.
Collapse
Affiliation(s)
- Pan Li
- Department of Cardiology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Jingwen Song
- Department of Cardiology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - He Du
- Department of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai 200433, China
| | - Yuwen Lu
- Department of Cardiology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Shaohua Dong
- Department of Cardiology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Siwei Zhou
- Department of Cardiology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Zhifu Guo
- Department of Cardiology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Hong Wu
- Department of Cardiology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Xianxian Zhao
- Department of Cardiology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Yongwen Qin
- Department of Cardiology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China.
| | - Ni Zhu
- Department of Cardiology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China.
| |
Collapse
|
34
|
Clonal hematopoiesis with JAK2V617F promotes pulmonary hypertension with ALK1 upregulation in lung neutrophils. Nat Commun 2021; 12:6177. [PMID: 34702814 PMCID: PMC8548396 DOI: 10.1038/s41467-021-26435-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 10/05/2021] [Indexed: 12/17/2022] Open
Abstract
Pulmonary hypertension (PH) is a progressive cardiopulmonary disease characterized by pulmonary arterial remodeling. Clonal somatic mutations including JAK2V617F, the most frequent driver mutation among myeloproliferative neoplasms, have recently been identified in healthy individuals without hematological disorders. Here, we reveal that clonal hematopoiesis with JAK2V617F exacerbates PH and pulmonary arterial remodeling in mice. JAK2V617F-expressing neutrophils specifically accumulate in pulmonary arterial regions, accompanied by increases in neutrophil-derived elastase activity and chemokines in chronic hypoxia-exposed JAK2V617F transgenic (JAK2V617F) mice, as well as recipient mice transplanted with JAK2V617F bone marrow cells. JAK2V617F progressively upregulates Acvrl1 (encoding ALK1) during the differentiation from bone marrow stem/progenitor cells peripherally into mature neutrophils of pulmonary arterial regions. JAK2V617F-mediated STAT3 phosphorylation upregulates ALK1-Smad1/5/8 signaling. ALK1/2 inhibition completely prevents the development of PH in JAK2V617F mice. Finally, our prospective clinical study identified JAK2V617F-positive clonal hematopoiesis is more common in PH patients than in healthy subjects. These findings indicate that clonal hematopoiesis with JAK2V617F causally leads to PH development associated with ALK1 upregulation.
Collapse
|
35
|
Shrivastava S, Kruisselbrink TM, Mohananey A, Thomas BC, Kushwaha SS, Pereira NL. Rare TBX4 Variant Causing Pulmonary Arterial Hypertension With Small Patella Syndrome in an Adult Man. JACC Case Rep 2021; 3:1447-1452. [PMID: 34557690 PMCID: PMC8446047 DOI: 10.1016/j.jaccas.2021.05.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/13/2021] [Accepted: 05/25/2021] [Indexed: 11/18/2022]
Abstract
Small patella syndrome presents with small or absent patellae and may result in pulmonary arterial hypertension, typically in children. A pathogenic canonical splice site variant, c.1021+1G>A in the T-box transcription factor 4 (TBX4) gene, currently not included in commercial gene panel, was detected in an adult with pulmonary arterial hypertension and absent patellae. (Level of Difficulty: Advanced.)
Collapse
Affiliation(s)
- Sanskriti Shrivastava
- Department of Cardiovascular Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Teresa M Kruisselbrink
- Department of Cardiovascular Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Akanksha Mohananey
- Department of Cardiovascular Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Brittany C Thomas
- Department of Cardiovascular Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Sudhir S Kushwaha
- Department of Cardiovascular Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Naveen L Pereira
- Department of Cardiovascular Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| |
Collapse
|
36
|
Chaudhary KR, Deng Y, Yang A, Cober ND, Stewart DJ. Penetrance of Severe Pulmonary Arterial Hypertension in Response to Vascular Endothelial Growth Factor Receptor 2 Blockade in a Genetically Prone Rat Model Is Reduced by Female Sex. J Am Heart Assoc 2021; 10:e019488. [PMID: 34315227 PMCID: PMC8475703 DOI: 10.1161/jaha.120.019488] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/03/2021] [Indexed: 01/29/2023]
Abstract
Background We have previously reported important strain differences in response to SU5416 (SU, a vascular endothelial growth factor receptor 2 inhibitor) in rats and have identified a specific colony of Sprague-Dawley rats that are hyperresponsive (SDHR) to SU alone and develop severe pulmonary arterial hypertension (PAH) with a single injection of SU, even in the absence of hypoxia. Interestingly, SDHR rats exhibit incomplete penetrance of the severe PAH phenotype with an "all-or-none" response to SU alone, which provides a unique opportunity to assess the influence of female sex and sex hormones on susceptibility to PAH after endothelial injury in a genetically prone model. Methods and Results SDHR rats were injected with SU (20 mg/kg SC) and, in the absence of hypoxia, 72% of male but only 27% of female rats developed severe PAH at 7 weeks, which was associated with persistent endothelial cell apoptosis. This sex difference in susceptibility for severe PAH was abolished by ovariectomy. Estradiol replacement, beginning 2 days before SU (prevention), inhibited lung endothelial cell apoptosis and completely abrogated severe PAH phenotype in both male and ovariectomized female rats, while progesterone was only protective in ovariectomized female rats. In contrast, delayed treatment of SDHR rats with established PAH with estradiol or progesterone (initiated at 4 weeks post-SU) failed to reduce lung endothelial cell apoptosis or improve PAH phenotype. Conclusions Female sex hormones markedly reduced susceptibility for the severe PAH phenotype in response to SU alone in a hyperresponsive rat strain by abolishing SU-induced endothelial cell apoptosis, but did not reverse severe PAH in established disease.
Collapse
Affiliation(s)
- Ketul R. Chaudhary
- Department of Physiology and BiophysicsFaculty of MedicineDalhousie UniversityHalifaxNSCanada
| | - Yupu Deng
- Sinclair Centre for Regenerative MedicineOttawa Hospital Research InstituteONCanada
| | - Anli Yang
- Sinclair Centre for Regenerative MedicineOttawa Hospital Research InstituteONCanada
| | - Nicholas D. Cober
- Sinclair Centre for Regenerative MedicineOttawa Hospital Research InstituteONCanada
- Department of Cellular and Molecular MedicineFaculty of MedicineUniversity of OttawaONCanada
| | - Duncan J. Stewart
- Sinclair Centre for Regenerative MedicineOttawa Hospital Research InstituteONCanada
- Department of Cellular and Molecular MedicineFaculty of MedicineUniversity of OttawaONCanada
| |
Collapse
|
37
|
Elliott CG. Genetic Counseling and Testing in Pulmonary Arterial Hypertension. Methodist Debakey Cardiovasc J 2021; 17:101-105. [PMID: 34326929 PMCID: PMC8298110 DOI: 10.14797/zoqm5771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2020] [Indexed: 11/08/2022] Open
Abstract
A subgroup of patients diagnosed with pulmonary arterial hypertension (PAH) carry transmissible pathogenic gene mutations. For many of these patients, the heritable nature of their disease can only be uncovered by genetic testing. Because identification of PAH patients who carry pathogenic gene mutations has important implications for other family members, genetic counseling and testing should be offered to patients diagnosed with idiopathic or familial PAH. This review describes the current state of genetic counseling and testing for patients diagnosed with PAH.
Collapse
Affiliation(s)
- C Gregory Elliott
- Intermountain Medical Center, University of Utah, Salt Lake City, Utah
| |
Collapse
|
38
|
Potus F, Frump AL, Umar S, R. Vanderpool R, Al Ghouleh I, Lai YC. Recent advancements in pulmonary arterial hypertension and right heart failure research: overview of selected abstracts from ATS2020 and emerging COVID-19 research. Pulm Circ 2021; 11:20458940211037274. [PMID: 34434543 PMCID: PMC8381443 DOI: 10.1177/20458940211037274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 07/15/2021] [Indexed: 01/10/2023] Open
Abstract
Each year the American Thoracic Society (ATS) Conference brings together scientists who conduct basic, translational and clinical research to present on the recent advances in the field of respirology. Due to the Coronavirus Disease of 2019 (COVID-19) pandemic, the ATS2020 Conference was held online in a series of virtual meetings. In this review, we focus on the breakthroughs in pulmonary hypertension research. We have selected 11 of the best basic science abstracts which were presented at the ATS2020 Assembly on Pulmonary Circulation mini-symposium "What's New in Pulmonary Arterial Hypertension (PAH) and Right Ventricular (RV) Signaling: Lessons from the Best Abstracts," reflecting the current state of the art and associated challenges in PH. Particular emphasis is placed on understanding the mechanisms underlying RV failure, the regulation of inflammation, and the novel therapeutic targets that emerged from preclinical research. The pathologic interactions between pulmonary hypertension, right ventricular function and COVID-19 are also discussed.
Collapse
Affiliation(s)
- Francois Potus
- Pulmonary Hypertension Research Group, Centre de Recherche de
l'Institut Universitaire de Cardiologie et Pneumologie de Quebec City, Quebec,
Canada
| | - Andrea L. Frump
- Division of Pulmonary, Critical Care, Sleep and Occupational
Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Soban Umar
- Department of Anesthesiology and Perioperative Medicine, Division of
Molecular Medicine, David Geffen School of Medicine at University of California Los
Angeles, Los Angeles, CA, USA
| | - Rebecca R. Vanderpool
- Division of Translational and Regenerative Medicine, University of
Arizona, Tucson, AZ, USA
| | - Imad Al Ghouleh
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, and
Division of Cardiology, Department of Medicine, University of Pittsburgh School of
Medicine, Pittsburgh, PA, USA
| | - Yen-Chun Lai
- Division of Pulmonary, Critical Care, Sleep and Occupational
Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
39
|
Aldalaan AM, Ramzan K, Saleemi SA, Weheba I, Alquait L, Abdelsayed A, Alzubi F, Zaytoun H, Alharbi N, Al-Owain M, Imtiaz F. Genetic basis of pulmonary arterial hypertension: a prospective study from a highly inbred population. Pulm Circ 2021; 11:20458940211032057. [PMID: 34377436 PMCID: PMC8323432 DOI: 10.1177/20458940211032057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/16/2021] [Indexed: 11/16/2022] Open
Abstract
Pulmonary arterial hypertension (PAH), whether idiopathic PAH (IPAH), heritable PAH, or associated with other conditions, is a rare and potentially lethal disease characterized by progressive vascular changes. To date, there is limited data on the genetic basis of PAH in the Arab region, and none from Saudi Arabian patients. This study aims to identify genetic variations and to evaluate the frequency of risk genes associated to PAH, in Saudi Arabian patients. Adult PAH patients, diagnosed with IPAH and pulmonary veno-occlusive disease, of Saudi Arabian origin, were enrolled in this study. Forty-eight patients were subjected to whole-exome sequencing, with screening of 26 genes suggested to be associated with the disease. The median age at diagnosis was 29.5 years of age, with females accounting for 89.5% of our cohort population. Overall, we identified variations in nine genes previously associated with PAH, in 16 patients. Fourteen of these variants have not been described before. Plausible deleterious variants in risk genes were identified in 33.3% (n = 16/48) of our entire cohort and 25% of these cases carried variants in BMPR2 (n = 4/16). Our results highlight the genetic etiology of PAH in Saudi Arabia patients and provides new insights for the genetic diagnosis of familial and IPAH as well as for the identification of the biological pathways of the disease. This will enable the development of new target therapeutic strategies, for a disease with a high rate of morbidity and mortality.
Collapse
Affiliation(s)
- Abdullah M. Aldalaan
- Department of Medicine, King Faisal Specialist Hospital &
Research Center, Riyadh, Saudi Arabia
| | - Khushnooda Ramzan
- Department of Clinical Genomics, Centre of Genomic Medicine,
King Faisal Specialist Hospital & Research Center, Riyadh, Saudi
Arabia
| | - Sarfraz A. Saleemi
- Department of Clinical Genomics, Centre of Genomic Medicine,
King Faisal Specialist Hospital & Research Center, Riyadh, Saudi
Arabia
| | - Ihab Weheba
- Department of Clinical Genomics, Centre of Genomic Medicine,
King Faisal Specialist Hospital & Research Center, Riyadh, Saudi
Arabia
- National Research Centre, Cairo, Egypt
| | - Laila Alquait
- Department of Clinical Genomics, Centre of Genomic Medicine,
King Faisal Specialist Hospital & Research Center, Riyadh, Saudi
Arabia
| | - Abeer Abdelsayed
- Department of Medicine, King Faisal Specialist Hospital &
Research Center, Riyadh, Saudi Arabia
- Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Fatima Alzubi
- Department of Medicine, King Faisal Specialist Hospital &
Research Center, Riyadh, Saudi Arabia
| | - Hamdeia Zaytoun
- Department of Medicine, King Faisal Specialist Hospital &
Research Center, Riyadh, Saudi Arabia
| | - Nadeen Alharbi
- Department of Medicine, King Faisal Specialist Hospital &
Research Center, Riyadh, Saudi Arabia
| | - Mohammed Al-Owain
- Department of Medical Genetics, King Faisal Specialist Hospital
& Research Center, Riyadh, Saudi Arabia
| | - Faiqa Imtiaz
- Department of Clinical Genomics, Centre of Genomic Medicine,
King Faisal Specialist Hospital & Research Center, Riyadh, Saudi
Arabia
| |
Collapse
|
40
|
Yung LM, Yang P, Joshi S, Augur ZM, Kim SSJ, Bocobo GA, Dinter T, Troncone L, Chen PS, McNeil ME, Southwood M, Poli de Frias S, Knopf J, Rosas IO, Sako D, Pearsall RS, Quisel JD, Li G, Kumar R, Yu PB. ACTRIIA-Fc rebalances activin/GDF versus BMP signaling in pulmonary hypertension. Sci Transl Med 2021; 12:12/543/eaaz5660. [PMID: 32404506 DOI: 10.1126/scitranslmed.aaz5660] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 01/22/2020] [Accepted: 04/17/2020] [Indexed: 12/13/2022]
Abstract
Human genetics, biomarker, and animal studies implicate loss of function in bone morphogenetic protein (BMP) signaling and maladaptive transforming growth factor-β (TGFβ) signaling as drivers of pulmonary arterial hypertension (PAH). Although sharing common receptors and effectors with BMP/TGFβ, the function of activin and growth and differentiation factor (GDF) ligands in PAH are less well defined. Increased expression of GDF8, GDF11, and activin A was detected in lung lesions from humans with PAH and experimental rodent models of pulmonary hypertension (PH). ACTRIIA-Fc, a potent GDF8/11 and activin ligand trap, was used to test the roles of these ligands in animal and cellular models of PH. By blocking GDF8/11- and activin-mediated SMAD2/3 activation in vascular cells, ACTRIIA-Fc attenuated proliferation of pulmonary arterial smooth muscle cells and pulmonary microvascular endothelial cells. In several experimental models of PH, prophylactic administration of ACTRIIA-Fc markedly improved hemodynamics, right ventricular (RV) hypertrophy, RV function, and arteriolar remodeling. When administered after the establishment of hemodynamically severe PH in a vasculoproliferative model, ACTRIIA-Fc was more effective than vasodilator in attenuating PH and arteriolar remodeling. Potent antiremodeling effects of ACTRIIA-Fc were associated with inhibition of SMAD2/3 activation and downstream transcriptional activity, inhibition of proliferation, and enhancement of apoptosis in the vascular wall. ACTRIIA-Fc reveals an unexpectedly prominent role of GDF8, GDF11, and activin as drivers of pulmonary vascular disease and represents a therapeutic strategy for restoring the balance between SMAD1/5/9 and SMAD2/3 signaling in PAH.
Collapse
Affiliation(s)
- Lai-Ming Yung
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Peiran Yang
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | - Zachary M Augur
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Stephanie S J Kim
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Geoffrey A Bocobo
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Teresa Dinter
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Luca Troncone
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Po-Sheng Chen
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Department of Internal Medicine, College of Medicine, National Cheng Kung University, Tainan City 704, Taiwan
| | - Megan E McNeil
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Mark Southwood
- Department of Pathology, Royal Papworth Hospital, Cambridge CB2 0AY, UK
| | - Sergio Poli de Frias
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - John Knopf
- Acceleron Pharma Inc., Cambridge, MA 02139, USA
| | - Ivan O Rosas
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Dianne Sako
- Acceleron Pharma Inc., Cambridge, MA 02139, USA
| | | | | | - Gang Li
- Acceleron Pharma Inc., Cambridge, MA 02139, USA
| | | | - Paul B Yu
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
41
|
Santos-Ferreira C, Cardoso D, Paiva B, Baptista R. Pulmonary arterial hypertension unveils itself: a cancer-like progression - a case report. EUROPEAN HEART JOURNAL-CASE REPORTS 2021; 5:ytab149. [PMID: 34109292 PMCID: PMC8183656 DOI: 10.1093/ehjcr/ytab149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 01/13/2021] [Accepted: 04/09/2021] [Indexed: 11/25/2022]
Abstract
Background Pulmonary arterial hypertension (PAH) is a rare disorder with a poor prognosis, characterized by progressive remodelling of the small pulmonary arteries that precede the clinical and haemodynamic manifestations of the disease. Thus, a prompt diagnosis and early intervention are crucial. Case summary A 39-year-old pregnant women presented with persistent severe hypoxaemia after the diagnosis of influenza B and an elective caesarean delivery at 33 weeks. Ten months after, an extensive and inconclusive investigation that included a lung biopsy, despite of a spontaneous improvement in oxygen saturation, clinical deterioration led to further testing, namely genetic screening. It revealed a fast-progressing case of hereditary PAH caused by BMRP2 mutation. Discussion This case highlights the challenges of a timely diagnosis of PAH and the importance of close clinical monitoring of patients at high risk of PAH. In addition, it emphasizes the fast development of severe haemodynamic changes associated with a BMPR2 mutation. The availability of a lung biopsy without signs of pulmonary vascular disease (PVD) and a right heart catheterization with mild pulmonary hypertension at the baseline assessment demonstrates that PVD can progress in a neoplastic-like manner in a matter of months.
Collapse
Affiliation(s)
- Cátia Santos-Ferreira
- Cardiology Department, Centro Hospitalar e Universitário de Coimbra, Praceta Mota Pinto, 3000-075 Coimbra, Portugal
| | - Daniela Cardoso
- Pneumology Unit, Centro Hospitalar e Universitário de Coimbra, Praceta Mota Pinto, 3000-075 Coimbra, Portugal
| | - Benedita Paiva
- Pneumology Unit, Centro Hospitalar e Universitário de Coimbra, Praceta Mota Pinto, 3000-075 Coimbra, Portugal
| | - Rui Baptista
- Cardiology Department, Centro Hospitalar e Universitário de Coimbra, Praceta Mota Pinto, 3000-075 Coimbra, Portugal.,Cardiology Department, Centro Hospitalar Entre Douro e Vouga, R. Dr. Cândido Pinho 5, 4520-211 Santa Maria da Feira, Portugal.,Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| |
Collapse
|
42
|
Park JH, Na JO, Lee JS, Kim YH, Chang HJ. 2020 KSC/KATRD guideline for the diagnosis and treatment of pulmonary hypertension: Executive summary. Tuberc Respir Dis (Seoul) 2021; 85:1-10. [PMID: 34134466 PMCID: PMC8743640 DOI: 10.4046/trd.2021.0022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 06/02/2021] [Indexed: 11/24/2022] Open
Abstract
Pulmonary hypertension (PH) is a condition of increased blood pressure in the pulmonary arteries and is diagnosed with an increased a mean pulmonary artery pressure ≥25 mm Hg. This condition may be associated with multiple clinical situations. Based on pathophysiological mechanisms, clinical presentation, hemodynamic profiles, and treatment strategies, the patients were classified into five clinical groups. Although there have been major advances in the management of PH, it is still associated with significant morbidity and mortality. The diagnosis and treatment of PH have been performed mainly by following European guidelines, even in Korea because the country lacks localized PH guidelines. European treatment guidelines do not reflect the actual status of Korea. Therefore, the European diagnosis and treatment of PH have not been tailored well to suit the needs of Korean patients with PH. To address this issue, we developed this guideline to facilitate the diagnosis and treatment of PH appropriately in Korea, a country where the consensus for the diagnosis and treatment of PH remains insufficient. This is the first edition of the guidelines for the diagnosis and treatment of PH in Korea, and it is primarily based on the ‘2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension.’ with the acceptance and adaptation of recent publications of PH.
Collapse
Affiliation(s)
- Jae-Hyeong Park
- Department of Cardiology in Internal Medicine, Chungnam National University Hospital, Chungnam National University College of Medicine, Daejeon, Korea
| | - Jin Oh Na
- Cardiovascular Center, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jae Seung Lee
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yee Hyung Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kyung Hee University Hospital at Gangdong, Kyung Hee University School of Medicine, Seoul, Korea
| | - Hyuk-Jae Chang
- Division of Cardiology, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Yonsei University Health System, Seoul, South Korea
| |
Collapse
|
43
|
Wu J, Yuan Y, Wang X, Shao DY, Liu LG, He J, Li P. Pulmonary arterial hyper tension in a patient with hereditary hemorrhagic telangiectasia and family gene analysis: A case report. World J Clin Cases 2021; 9:3079-3089. [PMID: 33969094 PMCID: PMC8080754 DOI: 10.12998/wjcc.v9.i13.3079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/15/2021] [Accepted: 02/26/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Hereditary hemorrhagic telangiectasia (HHT) is a rare autosomal dominant genetic disease. Very few patients suffering from HHT present with associated pulmonary arterial hypertension (PAH), which may result in a poor prognosis. Here, we report a case of HHT with PAH. The patient’s clinical manifestations and treatment as well as genetic analysis of family members are reviewed, in order to raise awareness of this multimorbidity.
CASE SUMMARY A 45-year-old Chinese woman was admitted to the hospital to address a complaint of intermittent shortness of breath, which had lasted over the past 2 years. She also had a 30-year history of recurrent epistaxis and 5-year history of anemia. She reported that the shortness of breath had aggravated gradually over the 2 years. Physical examination discovered anemia and detected gallop rhythm in the precordium. Chest computerized tomography and cardiac ultrasound demonstrated PAH and hepatic arteriovenous malformation. The formal clinical diagnosis was HHT combined with PAH. The patient was treated with ambrisentan and her condition improved for a time. She died half a year after the diagnosis. Genetic testing revealed the patient and some family members to carry an activin A receptor-like type 1 mutation (c. 1232G>A, p. Arg411Gln); the family was thus identified as an HHT family.
CONCLUSION We report a novel gene mutation (c. 1232G>A, p. Arg411Gln) in a Chinese HHT patient with PAH.
Collapse
Affiliation(s)
- Jian Wu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Yuan Yuan
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Xin Wang
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Dong-Ying Shao
- Department of Cardiology, Fushun Second Hospital, Fushun 113001, Liaoning Province, China
| | - Li-Guo Liu
- Department of Gastroenterology, Fushun Second Hospital, Fushun 113001, Liaoning Province, China
| | - Jian He
- Department of Ultrasound, Fushun Central Hospital, Fushun 113006, Liaoning Province, China
| | - Peng Li
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| |
Collapse
|
44
|
Bone Morphogenic Protein Signaling and Melanoma. Curr Treat Options Oncol 2021; 22:48. [PMID: 33866453 DOI: 10.1007/s11864-021-00849-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2021] [Indexed: 10/21/2022]
Abstract
OPINION STATEMENT Malignant melanoma is a deadly form of skin cancer caused by neoplastic transformation of melanocytic cells. Despite recent progress in melanoma therapy, by inhibition of activated oncogenes or immunotherapy, survival rate for metastatic melanoma patients remains low. The remarkable phenotypic plasticity of melanoma cells allows for rapid development of invasive properties and metastatic tumors, the main cause of mortality in melanoma patients. Phenotypic and molecular analyses of developing tumors revealed that epithelial-mesenchymal transition (EMT), a cellular and molecular mechanism, controls transition from mature melanocyte to less differentiated melanocyte lineage progenitor cells forming melanoma tumors. This transition is facilitated by persistence of transcriptional regulatory circuit characteristic of embryonic stage in mature melanocytes. Switching of the developmental program of mature melanocyte to EMT is induced by accumulated mutations, especially targeting BRAF, N-RAS, or MEK1/2 signaling pathways, and further promoted by dynamic stimuli from local environment including hypoxia, interactions with extracellular matrix and growth factors or cytokines. Recent reports demonstrate that signaling mediated by transforming growth factor-β (TGF-β) and bone morphogenic proteins (BMPs) play critical roles in inducing EMT by controlling expression of critical transcription factors. BMPs are essential modulators of differentiation, proliferation, apoptosis, invasiveness, and metastases in developing melanoma tumors. They control transcription and epigenetic landscape of melanoma cells. Better understanding of the role of BMPs may lead to new strategies to control EMT processes in melanocyte cell lineage and to achieve clinical benefits for the patients.
Collapse
|
45
|
Fazal S, Bisserier M, Hadri L. Molecular and Genetic Profiling for Precision Medicines in Pulmonary Arterial Hypertension. Cells 2021; 10:638. [PMID: 33805595 PMCID: PMC7999465 DOI: 10.3390/cells10030638] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 12/11/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rare and chronic lung disease characterized by progressive occlusion of the small pulmonary arteries, which is associated with structural and functional alteration of the smooth muscle cells and endothelial cells within the pulmonary vasculature. Excessive vascular remodeling is, in part, responsible for high pulmonary vascular resistance and the mean pulmonary arterial pressure, increasing the transpulmonary gradient and the right ventricular "pressure overload", which may result in right ventricular (RV) dysfunction and failure. Current technological advances in multi-omics approaches, high-throughput sequencing, and computational methods have provided valuable tools in molecular profiling and led to the identification of numerous genetic variants in PAH patients. In this review, we summarized the pathogenesis, classification, and current treatments of the PAH disease. Additionally, we outlined the latest next-generation sequencing technologies and the consequences of common genetic variants underlying PAH susceptibility and disease progression. Finally, we discuss the importance of molecular genetic testing for precision medicine in PAH and the future of genomic medicines, including gene-editing technologies and gene therapies, as emerging alternative approaches to overcome genetic disorders in PAH.
Collapse
Affiliation(s)
| | | | - Lahouaria Hadri
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029, USA; (S.F.); (M.B.)
| |
Collapse
|
46
|
Radchenko GD, Sirenko YM. Prognostic Significance of Systemic Arterial Stiffness Evaluated by Cardio-Ankle Vascular Index in Patients with Idiopathic Pulmonary Hypertension. Vasc Health Risk Manag 2021; 17:77-93. [PMID: 33731998 PMCID: PMC7957228 DOI: 10.2147/vhrm.s294767] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 01/27/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND In a previous study, the cardio-ankle vascular index (CAVI) was increased significantly in idiopathic pulmonary arterial hypertension (IPAH) patients compared to the healthy group and did not much differ from one in systemic hypertensives. In this study the relations between survival and CAVI was evaluated in patients with IPAH. PATIENTS AND METHODS We included 89 patients with new-diagnosed IPAH without concomitant diseases. Standard examinations, including right heart catheterization (RHC) and systemic arterial stiffness evaluation, were performed. All patients were divided according to CAVI value: the group with CAVI ≥ 8 (n = 18) and the group with CAVI < 8 (n = 71). The mean follow-up was 33.8 ± 23.7 months. Kaplan-Meier and Cox regression analysis were performed for the evaluation of our cohort survival and the predictors of death. RESULTS The group with CAVI≥8 was older and more severe compared to the group with CAVI< 8. Patients with CAVI≥8 had significantly reduced end-diastolic (73.79±18.94 vs 87.35±16.69 mL, P<0.009) and end-systolic (25.71±9.56 vs 33.55±10.33 mL, P<0.01) volumes of the left ventricle, the higher right ventricle thickness (0.77±0.12 vs 0.62±0.20 mm, P < 0.006), and the lower TAPSE (13.38±2.15 vs 15.98±4.4 mm, P<0.018). RHC data did not differ significantly between groups, except the higher level of the right atrial pressure in patients with CAVI≥ 8-11.38±7.1 vs 8.76±4.7 mmHg, P<0.08. The estimated overall survival rate was 61.2%. The CAVI≥8 increased the risk of mortality 2.34 times (CI 1.04-5.28, P = 0.041). The estimated Kaplan-Meier survival in the patients with CAVI ≥ 8 was only 46.7 ± 7.18% compared to patients with CAVI < 8 - 65.6 ± 4.2%, P = 0.035. At multifactorial regression analysis, the CAVI reduced but saved its relevance as death predictor - OR = 1.13, CI 1.001-1.871. SUMMARY We suggested the CAVI could be a new independent predictor of death in the IPAH population and could be used to better risk stratify this patient population if CAVI is validated as a marker in a larger multicenter trial.
Collapse
Affiliation(s)
- Ganna D Radchenko
- Department of Symptomatic Hypertension, “National Scientific Center “The M.D. Strazhesko Institute of Cardiology”” of National Academy of Medical Science, Kyiv, Ukraine
| | - Yuriy M Sirenko
- Department of Symptomatic Hypertension, “National Scientific Center “The M.D. Strazhesko Institute of Cardiology”” of National Academy of Medical Science, Kyiv, Ukraine
| |
Collapse
|
47
|
Wang L, Zhao LP, Chen Y, Chang X, Jin F, Liu X. Obesity paradox in pulmonary hypertension due to left ventricular systolic dysfunction. Herz 2021; 46:575-580. [PMID: 33544153 DOI: 10.1007/s00059-021-05023-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/18/2020] [Accepted: 01/11/2021] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Pulmonary hypertension (PH) due to left ventricular systolic dysfunction (PH-HFrEF) is a common heart disease with poor prognosis. In this study, we explored the risk factors for PH-HFrEF and investigated the related factors affecting the prognosis of PH-HFrEF patients. METHODS The study recruited consecutive patients with PH-HFrEF and systolic pulmonary artery pressure (sPAP) of more than 40 mm Hg with left ventricular ejection fraction (LVEF) of less than 45% on echocardiography. Patients with left ventricular systolic dysfunction (HFrEF) but without PH (sPAP < 30 mmHg and LVEF < 45%) were chosen as the control group. Patients were followed up for 18 months, and major adverse cardiac events (MACE) were recorded. RESULTS In total, 93 patients with PH-HFrEF formed the study group and 93 LVEF-matched patients with HFrEF were enrolled as controls. Body mass index (BMI) in PH-HFrEF patients was significantly lower compared with the control group (p < 0.05). Multivariate logistic regression analysis revealed that low BMI was an independent predictor of the presence of PH in patients with HFrEF (p < 0.05). There were 23 (24.7%) MACE in the PH-HFrEF group and 18 (19.4%) MACE in the control group. Cox regression analysis showed that low BMI was an independent predictor of MACE occurrence in the PH-HFrEF group (p < 0.05). CONCLUSION Low BMI appear to be significantly associated with PH occurrence in patients with HFrEF, and is an independent predictor of MACE in patients with PH-HFrEF.
Collapse
Affiliation(s)
- Li Wang
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, No 1055, Sanxiang Road, 215004, Suzhou City, China
- Emergency Department, The Seventh People's Hospital of Suzhou, Suzhou City, China
| | - Liang-Ping Zhao
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, No 1055, Sanxiang Road, 215004, Suzhou City, China.
| | - Yuqi Chen
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, No 1055, Sanxiang Road, 215004, Suzhou City, China
| | - Xiansong Chang
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, No 1055, Sanxiang Road, 215004, Suzhou City, China
- Emergency Department, The Seventh People's Hospital of Suzhou, Suzhou City, China
| | - Fulu Jin
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, No 1055, Sanxiang Road, 215004, Suzhou City, China
| | - Xiang Liu
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, No 1055, Sanxiang Road, 215004, Suzhou City, China
| |
Collapse
|
48
|
Sousa A, Moldovan O, Lebreiro A, Bourbon M, António N, Rato Q, Rodrigues P, Toste A, Gonçalves Rocha M, Oliveira R, Granja S, Cruz C, Almeida J, Martins E. Recommendations for genetic testing in cardiology: Review of major international guidelines. Rev Port Cardiol 2020; 39:597-610. [PMID: 33036867 DOI: 10.1016/j.repc.2020.03.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 02/23/2020] [Accepted: 03/04/2020] [Indexed: 01/08/2023] Open
Abstract
In recent years, the importance of genetic causes of cardiovascular diseases has been increasingly recognized, as the result of significant advances in molecular diagnosis techniques. This growing knowledge has enabled the identification of new phenotypes and the subclassification of clinical syndromes, impacting the therapeutic approach and genetic counseling offered to affected families. This paper describes the state of the art of genetic testing in the main cardiovascular diseases, aiming to provide a useful tool to help cardiologists and other health professionals involved in the care of individuals with hereditary heart diseases and their families.
Collapse
Affiliation(s)
- Alexandra Sousa
- Departamento de Medicina, Faculdade de Medicina, Universidade do Porto, Porto, Portugal; CINTESIS, Cardiocare - Centro de Investigação em Tecnologias e Serviços de Saúde, Porto, Portugal; Serviço de Cardiologia, Hospital de Santa Maria Maior, Barcelos, Portugal.
| | - Oana Moldovan
- Departamento da Criança e da Família, Centro Hospitalar Universitário Lisboa Norte, Lisboa, Portugal
| | - Ana Lebreiro
- Serviço de Cardiologia, Centro Hospitalar Universitário de São João, Porto, Portugal
| | - Mafalda Bourbon
- Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisboa, Portugal
| | - Natália António
- Faculdade de Medicina, Universidade de Coimbra, Coimbra, Portugal; Serviço de Cardiologia, Centro Hospitalar Universitário de Coimbra, Coimbra, Portugal
| | - Quitéria Rato
- Serviço de Cardiologia, Centro Hospitalar de Setúbal, Setúbal, Portugal
| | - Patrícia Rodrigues
- Serviço de Cardiologia, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | | | | | - Renata Oliveira
- Serviço de Genética Humana, Centro Hospitalar Universitário de São João, Porto, Portugal
| | - Sofia Granja
- Serviço de Cardiologia Pediátrica, Centro Hospitalar Universitário de São João, Porto, Portugal
| | - Cristina Cruz
- Departamento de Medicina, Faculdade de Medicina, Universidade do Porto, Porto, Portugal; Serviço de Cardiologia, Centro Hospitalar Universitário de São João, Porto, Portugal
| | - Jorge Almeida
- Serviço de Cirurgia Cardiotorácica, Centro Hospitalar Universitário de São João, Porto, Portugal
| | - Elisabete Martins
- Departamento de Medicina, Faculdade de Medicina, Universidade do Porto, Porto, Portugal; Serviço de Cardiologia, Centro Hospitalar Universitário de São João, Porto, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, Porto, Portugal
| |
Collapse
|
49
|
Recommendations for genetic testing in cardiology: Review of major international guidelines. REVISTA PORTUGUESA DE CARDIOLOGIA (ENGLISH EDITION) 2020. [DOI: 10.1016/j.repce.2020.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
50
|
Mutgan AC, Jandl K, Kwapiszewska G. Endothelial Basement Membrane Components and Their Products, Matrikines: Active Drivers of Pulmonary Hypertension? Cells 2020; 9:cells9092029. [PMID: 32899187 PMCID: PMC7563239 DOI: 10.3390/cells9092029] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/27/2020] [Accepted: 08/29/2020] [Indexed: 12/19/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a vascular disease that is characterized by elevated pulmonary arterial pressure (PAP) due to progressive vascular remodeling. Extracellular matrix (ECM) deposition in pulmonary arteries (PA) is one of the key features of vascular remodeling. Emerging evidence indicates that the basement membrane (BM), a specialized cluster of ECM proteins underlying the endothelium, may be actively involved in the progression of vascular remodeling. The BM and its steady turnover are pivotal for maintaining appropriate vascular functions. However, the pathologically elevated turnover of BM components leads to an increased release of biologically active short fragments, which are called matrikines. Both BM components and their matrikines can interfere with pivotal biological processes, such as survival, proliferation, adhesion, and migration and thus may actively contribute to endothelial dysfunction. Therefore, in this review, we summarize the emerging role of the BM and its matrikines on the vascular endothelium and further discuss its implications on lung vascular remodeling in pulmonary hypertension.
Collapse
Affiliation(s)
- Ayse Ceren Mutgan
- Otto Loewi Research Center, Division of Physiology, Medical University of Graz, 8010 Graz, Austria;
| | - Katharina Jandl
- Ludwig Boltzmann Institute for Lung Vascular Research, 8010 Graz, Austria;
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria
| | - Grazyna Kwapiszewska
- Otto Loewi Research Center, Division of Physiology, Medical University of Graz, 8010 Graz, Austria;
- Ludwig Boltzmann Institute for Lung Vascular Research, 8010 Graz, Austria;
- Correspondence:
| |
Collapse
|