1
|
Li Z, Liu S, Zhang R, Li B. Exploring the mechanism of Danggui Sini Decoction in the treatment of myocardial infarction: A systematic review, network pharmacology, and molecular docking. Medicine (Baltimore) 2024; 103:e40073. [PMID: 39432628 PMCID: PMC11495767 DOI: 10.1097/md.0000000000040073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 09/25/2024] [Indexed: 10/23/2024] Open
Abstract
Myocardial infarction (MI) is one of the leading causes of death worldwide because of its high morbidity and mortality. Traditional Chinese Medicine compounds play a crucial role in preventing cardiovascular diseases. Danggui Sini Decoction (DSD) is widely used clinically for cardiovascular diseases. However, the mechanism, main components, and main targets of DSD in treating MI are still unclear. In this study, we utilized network pharmacology and molecular docking for exploration. MI-related genes were examined using the Genecards database, and the active ingredients of DSD were screened based on System Pharmacology Database and Analysis Platform of Traditional Chinese Medicine by oral bioavailability ≥ 30% and drug-likeness ≥ 0.18. The protein-protein interaction network diagram was generated using the STRING database. The DAVID web platform was used to carry out gene ontology and Kyoto encyclopedia of gene and genome signaling pathway analysis. DSD's screening study revealed 120 primary active ingredients and 561 putative active target genes. The main therapeutic targets were TP53, EGFR, AKT1, IL6, TNF, STAT3, IL1B, CTNNB1, SRC, MYC, JUN, and INS. Gene ontology and Kyoto encyclopedia of gene and genome analyses revealed that DSD treatment of MI mainly involves the positive regulation of the ERK1 and ERK2 cascades, positive regulation of cell proliferation, inflammatory responses, aging, and the MAPK cascade, along with other biological processes. The molecular docking results indicate that DSD drugs may interact with AKT1, EGFR, TP53, and TNF through formononetin, isorhamnetin, β-Sitosterol, and kaempferol, potentially contributing to the treatment of MI. By utilizing a multi-component, multi-pathway, and multi-target mode of action, DSD may have the potential to prevent MI.
Collapse
Affiliation(s)
- Zhenzhen Li
- Guizhou University Medical College, Guiyang, Guizhou, PR China
| | - Shuang Liu
- Guizhou University Medical College, Guiyang, Guizhou, PR China
| | - Rui Zhang
- Guizhou University Medical College, Guiyang, Guizhou, PR China
| | - Bing Li
- Guizhou University Medical College, Guiyang, Guizhou, PR China
| |
Collapse
|
2
|
Xie A, Kang GJ, Kim EJ, Liu H, Feng F, Dudley SC. c-Src Is Responsible for Mitochondria-Mediated Arrhythmic Risk in Ischemic Cardiomyopathy. Circ Arrhythm Electrophysiol 2024; 17:e013054. [PMID: 39212055 PMCID: PMC11477858 DOI: 10.1161/circep.124.013054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Increased mitochondrial Ca2+ uptake has been implicated in the QT prolongation and lethal arrhythmias associated with nonischemic cardiomyopathy. We attempted to define the role of mitochondria in ischemic arrhythmic risk and to identify upstream regulators. METHODS Myocardial infarction (MI) was induced in wild-type FVB/NJ mice by ligation of the left anterior descending coronary artery. Western blot, immunoprecipitation, ECG telemetry, and patch-clamp techniques were used. RESULTS After MI, c-Src (proto-oncogene tyrosine-protein kinase Src) and its active form (phosphorylated Src, p-Src) were increased. The activation of c-Src was associated with increased diastolic Ca2+ sparks, action potential duration prolongation, and arrhythmia in MI mice. c-Src upregulation and arrhythmia could be reversed by treatment of mice with the Src inhibitor PP1 but not with the inactive analogue PP3. Tyrosine phosphorylated mitochondrial Ca2+ uniporter (MCU) was upregulated in the heart tissues of MI mice and patients with ischemic cardiomyopathy. In a heterologous expression system, c-Src could bind MCU and phosphorylate MCU tyrosines. Overexpression of wild-type c-Src significantly increased the mitochondrial Ca2+ transient while overexpression of dominant-negative c-Src significantly decreased the mitochondrial Ca2+ transient. c-Src inhibition by PP1, MCU inhibition by Ru360, or MCU knockdown could reduce the action potential duration, Ca2+ sparks, and arrhythmia after MI. The human heart tissue showed that patients with ischemic cardiomyopathy had significantly increased c-Src active form associated with increased MCU tyrosine phosphorylation and ventricular arrhythmia. CONCLUSIONS MI leads to increased c-Src active form that results in MCU tyrosine phosphorylation, increased mitochondrial Ca2+ uptake, QT prolongation, and arrhythmia, suggesting c-Src or MCU may represent novel antiarrhythmic targets.
Collapse
MESH Headings
- Animals
- src-Family Kinases/metabolism
- Arrhythmias, Cardiac/metabolism
- Arrhythmias, Cardiac/physiopathology
- Arrhythmias, Cardiac/etiology
- Arrhythmias, Cardiac/genetics
- Arrhythmias, Cardiac/enzymology
- Mitochondria, Heart/metabolism
- Mitochondria, Heart/enzymology
- Humans
- Disease Models, Animal
- Mice
- Action Potentials
- Phosphorylation
- Male
- Cardiomyopathies/metabolism
- Cardiomyopathies/genetics
- Cardiomyopathies/physiopathology
- Cardiomyopathies/etiology
- Cardiomyopathies/enzymology
- CSK Tyrosine-Protein Kinase/metabolism
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/enzymology
- Calcium Channels/metabolism
- Calcium Channels/genetics
- Calcium Signaling
- Myocardial Infarction/metabolism
- Myocardial Infarction/complications
- Myocardial Infarction/physiopathology
- Myocardial Infarction/genetics
- Risk Factors
Collapse
Affiliation(s)
- An Xie
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, USA
| | - Gyeoung-Jin Kang
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, USA
| | - Eun Ji Kim
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, USA
| | - Hong Liu
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, USA
| | - Feng Feng
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, USA
| | - Samuel C. Dudley
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, USA
| |
Collapse
|
3
|
Costanzo V, Ratre YK, Andretta E, Acharya R, Bhaskar LVKS, Verma HK. A Comprehensive Review of Cancer Drug-Induced Cardiotoxicity in Blood Cancer Patients: Current Perspectives and Therapeutic Strategies. Curr Treat Options Oncol 2024; 25:465-495. [PMID: 38372853 DOI: 10.1007/s11864-023-01175-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 02/20/2024]
Abstract
OPINION STATEMENT Cardiotoxicity has emerged as a serious outcome catalyzed by various therapeutic targets in the field of cancer treatment, which includes chemotherapy, radiation, and targeted therapies. The growing significance of cancer drug-induced cardiotoxicity (CDIC) and radiation-induced cardiotoxicity (CRIC) necessitates immediate attention. This article intricately unveils how cancer treatments cause cardiotoxicity, which is exacerbated by patient-specific risks. In particular, drugs like anthracyclines, alkylating agents, and tyrosine kinase inhibitors pose a risk, along with factors such as hypertension and diabetes. Mechanistic insights into oxidative stress and topoisomerase-II-B inhibition are crucial, while cardiac biomarkers show early damage. Timely intervention and prompt treatment, especially with specific agents like dexrazoxane and beta-blockers, are pivotal in the proactive management of CDIC.
Collapse
Affiliation(s)
- Vincenzo Costanzo
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | | | - Emanuela Andretta
- Department of Veterinary Medicine and Animal Productions, University of Naples "Federico II", Naples, Italy
| | - Rakesh Acharya
- Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - L V K S Bhaskar
- Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - Henu Kumar Verma
- Department of Immunopathology, Institute of Lungs Health and Immunity, Comprehensive Pneumology Center, Helmholtz Zentrum, Neuherberg, 85764, Munich, Germany.
| |
Collapse
|
4
|
Li J, Ma ZY, Cui YF, Cui YT, Dong XH, Wang YZ, Fu YY, Xue YD, Tong TT, Ding YZ, Zhu YM, Huang HJ, Zhao L, Lv HZ, Xiong LZ, Zhang K, Han YX, Ban T, Huo R. Cardiac-specific deletion of BRG1 ameliorates ventricular arrhythmia in mice with myocardial infarction. Acta Pharmacol Sin 2024; 45:517-530. [PMID: 37880339 PMCID: PMC10834533 DOI: 10.1038/s41401-023-01170-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/14/2023] [Indexed: 10/27/2023] Open
Abstract
Malignant ventricular arrhythmia (VA) after myocardial infarction (MI) is mainly caused by myocardial electrophysiological remodeling. Brahma-related gene 1 (BRG1) is an ATPase catalytic subunit that belongs to a family of chromatin remodeling complexes called Switch/Sucrose Non-Fermentable Chromatin (SWI/SNF). BRG1 has been reported as a molecular chaperone, interacting with various transcription factors or proteins to regulate transcription in cardiac diseases. In this study, we investigated the potential role of BRG1 in ion channel remodeling and VA after ischemic infarction. Myocardial infarction (MI) mice were established by ligating the left anterior descending (LAD) coronary artery, and electrocardiogram (ECG) was monitored. Epicardial conduction of MI mouse heart was characterized in Langendorff-perfused hearts using epicardial optical voltage mapping. Patch-clamping analysis was conducted in single ventricular cardiomyocytes isolated from the mice. We showed that BRG1 expression in the border zone was progressively increased in the first week following MI. Cardiac-specific deletion of BRG1 by tail vein injection of AAV9-BRG1-shRNA significantly ameliorated susceptibility to electrical-induced VA and shortened QTc intervals in MI mice. BRG1 knockdown significantly enhanced conduction velocity (CV) and reversed the prolonged action potential duration in MI mouse heart. Moreover, BRG1 knockdown improved the decreased densities of Na+ current (INa) and transient outward potassium current (Ito), as well as the expression of Nav1.5 and Kv4.3 in the border zone of MI mouse hearts and in hypoxia-treated neonatal mouse ventricular cardiomyocytes. We revealed that MI increased the binding among BRG1, T-cell factor 4 (TCF4) and β-catenin, forming a transcription complex, which suppressed the transcription activity of SCN5A and KCND3, thereby influencing the incidence of VA post-MI.
Collapse
Affiliation(s)
- Jing Li
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Baojian Road, Nangang District, Harbin, 150081, China
| | - Zi-Yue Ma
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Baojian Road, Nangang District, Harbin, 150081, China
| | - Yun-Feng Cui
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Baojian Road, Nangang District, Harbin, 150081, China
| | - Ying-Tao Cui
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Baojian Road, Nangang District, Harbin, 150081, China
| | - Xian-Hui Dong
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Baojian Road, Nangang District, Harbin, 150081, China
| | - Yong-Zhen Wang
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Baojian Road, Nangang District, Harbin, 150081, China
| | - Yu-Yang Fu
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Baojian Road, Nangang District, Harbin, 150081, China
| | - Ya-Dong Xue
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Baojian Road, Nangang District, Harbin, 150081, China
| | - Ting-Ting Tong
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Baojian Road, Nangang District, Harbin, 150081, China
| | - Ying-Zi Ding
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Baojian Road, Nangang District, Harbin, 150081, China
| | - Ya-Mei Zhu
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Baojian Road, Nangang District, Harbin, 150081, China
| | - Hai-Jun Huang
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Baojian Road, Nangang District, Harbin, 150081, China
| | - Ling Zhao
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Baojian Road, Nangang District, Harbin, 150081, China
| | - Hong-Zhao Lv
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Baojian Road, Nangang District, Harbin, 150081, China
| | - Ling-Zhao Xiong
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Baojian Road, Nangang District, Harbin, 150081, China
| | - Kai Zhang
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Baojian Road, Nangang District, Harbin, 150081, China
| | - Yu-Xuan Han
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Baojian Road, Nangang District, Harbin, 150081, China
| | - Tao Ban
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Baojian Road, Nangang District, Harbin, 150081, China.
- Heilongjiang Academy of Medical Sciences, Baojian Road, Nangang District, Harbin, 150081, China.
| | - Rong Huo
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Baojian Road, Nangang District, Harbin, 150081, China.
| |
Collapse
|
5
|
Zheng L, Shi W, Liu B, Duan B, Sorgen P. Evaluation of Tyrosine Kinase Inhibitors Loaded Injectable Hydrogels for Improving Connexin43 Gap Junction Intercellular Communication. ACS APPLIED MATERIALS & INTERFACES 2024; 16:1985-1998. [PMID: 38175743 PMCID: PMC11061860 DOI: 10.1021/acsami.3c10923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Myocardial infarction (MI) is one of the leading causes of death in the developed world, and the loss of cardiomyocytes plays a critical role in the pathogenesis of heart failure. Implicated in this process is a decrease in gap junction intercellular communication due to remodeling of Connexin43 (Cx43). We previously identified that intraperitoneal injection of the Pyk2 inhibitor PF4618433 reduced infarct size, maintained Cx43 at the intercalated disc in left ventricle hypertrophic myocytes, and improved cardiac function in an MI animal model of heart failure. With the emergence of injectable hydrogels as a therapeutic toward the regeneration of cardiac tissue after MI, here, we provide proof of concept that the release of tyrosine kinase inhibitors from hydrogels could have beneficial effects on cardiomyocytes. We developed an injectable hydrogel consisting of thiolated hyaluronic acid and P123-maleimide micelles that can incorporate PF4618433 as well as the Src inhibitor Saracatinib and achieved sustained release (of note, Src activates Pyk2). Using neonatal rat ventricular myocytes in the presence of a phorbol ester, endothelin-1, or phenylephrine to stimulate cardiac hypertrophy, the release of PF4618433 from the hydrogel had the same ability to decrease Cx43 tyrosine phosphorylation and maintain Cx43 localization at the plasma membrane as when directly added to the growth media. Additional beneficial effects included decreases in apoptosis, the hypertrophic marker atrial natriuretic peptide (ANP), and serine kinases upregulated in hypertrophy. Finally, the presence of both PF4618433 and Saracatinib further decreased the level of ANP and apoptosis than each inhibitor alone, suggesting that a combinatorial approach may be most beneficial. These findings provide the groundwork to test if tyrosine kinase inhibitor release from hydrogels will have a beneficial effect in an animal model of MI-induced heart failure.
Collapse
Affiliation(s)
- Li Zheng
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Wen Shi
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Bo Liu
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Bin Duan
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Paul Sorgen
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
6
|
Sun J, Zhang T, Tang C, Fan S, Wang Q, Liu D, Sai N, Ji Q, Guo W, Han W. Activation of Src Kinase Mediates the Disruption of Adherens Junction in the Blood-labyrinth Barrier after Acoustic Trauma. Curr Neurovasc Res 2024; 21:274-285. [PMID: 38918992 DOI: 10.2174/0115672026320884240620070951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/03/2024] [Accepted: 05/05/2024] [Indexed: 06/27/2024]
Abstract
BACKGROUND Adherens junction in the blood-labyrinth barrier is largely unexplored because it is traditionally thought to be less important than the tight junction. Since increasing evidence indicates that it actually functions upstream of tight junction adherens junction may potentially be a better target for ameliorating the leakage of the blood-labyrinth barrier under pathological conditions such as acoustic trauma. AIMS This study was conducted to investigate the pathogenesis of the disruption of adherens junction after acoustic trauma and explore potential therapeutic targets. METHODS Critical targets that regulated the disruption of adherens junction were investigated by techniques such as immunofluorescence and Western blotting in C57BL/6J mice. RESULTS Upregulation of Vascular Endothelial Growth Factor (VEGF) and downregulation of Pigment Epithelium-derived Factor (PEDF) coactivated VEGF-PEDF/VEGF receptor 2 (VEGFR2) signaling pathway in the stria vascularis after noise exposure. Downstream effector Src kinase was then activated to degrade VE-cadherin and dissociate adherens junction, which led to the leakage of the blood-labyrinth barrier. By inhibiting VEGFR2 or Src kinase, VE-cadherin degradation and blood-labyrinth barrier leakage could be attenuated, but Src kinase represented a better target to ameliorate blood-labyrinth barrier leakage as inhibiting it would not interfere with vascular endothelium repair, neurotrophy and pericytes proliferation mediated by upstream VEGFR2. CONCLUSION Src kinase may represent a promising target to relieve noise-induced disruption of adherens junction and hyperpermeability of the blood-labyrinth barrier.
Collapse
Affiliation(s)
- Jianbin Sun
- Medical School of Chinese PLA, Beijing, China
- Senior Department of Otorhinolaryngology Head and Neck Surgery, The 6th Medical Center, Chinese PLA General Hospital, Beijing, China
- State Key Laboratory of Hearing and Balance Science, Beijing, China
- National Clinical Research Center for Otorhinolaryngologic Diseases, Beijing, China
- State Key Lab of Hearing Science, Ministry of Education, Beijing, China
- Beijing Key Lab of Hearing Impairment for Prevention and Treatment, Beijing, China
| | - Tong Zhang
- Medical School of Chinese PLA, Beijing, China
- Senior Department of Otorhinolaryngology Head and Neck Surgery, The 6th Medical Center, Chinese PLA General Hospital, Beijing, China
- State Key Laboratory of Hearing and Balance Science, Beijing, China
- National Clinical Research Center for Otorhinolaryngologic Diseases, Beijing, China
- State Key Lab of Hearing Science, Ministry of Education, Beijing, China
- Beijing Key Lab of Hearing Impairment for Prevention and Treatment, Beijing, China
| | - Chaoying Tang
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Shuhang Fan
- Medical School of Chinese PLA, Beijing, China
- Senior Department of Otorhinolaryngology Head and Neck Surgery, The 6th Medical Center, Chinese PLA General Hospital, Beijing, China
- State Key Laboratory of Hearing and Balance Science, Beijing, China
- National Clinical Research Center for Otorhinolaryngologic Diseases, Beijing, China
- State Key Lab of Hearing Science, Ministry of Education, Beijing, China
- Beijing Key Lab of Hearing Impairment for Prevention and Treatment, Beijing, China
| | - Qin Wang
- Medical School of Chinese PLA, Beijing, China
- Senior Department of Otorhinolaryngology Head and Neck Surgery, The 6th Medical Center, Chinese PLA General Hospital, Beijing, China
- State Key Laboratory of Hearing and Balance Science, Beijing, China
- National Clinical Research Center for Otorhinolaryngologic Diseases, Beijing, China
- State Key Lab of Hearing Science, Ministry of Education, Beijing, China
- Beijing Key Lab of Hearing Impairment for Prevention and Treatment, Beijing, China
| | - Da Liu
- Medical School of Chinese PLA, Beijing, China
- Senior Department of Otorhinolaryngology Head and Neck Surgery, The 6th Medical Center, Chinese PLA General Hospital, Beijing, China
- State Key Laboratory of Hearing and Balance Science, Beijing, China
- National Clinical Research Center for Otorhinolaryngologic Diseases, Beijing, China
- State Key Lab of Hearing Science, Ministry of Education, Beijing, China
- Beijing Key Lab of Hearing Impairment for Prevention and Treatment, Beijing, China
| | - Na Sai
- Medical School of Chinese PLA, Beijing, China
- Senior Department of Otorhinolaryngology Head and Neck Surgery, The 6th Medical Center, Chinese PLA General Hospital, Beijing, China
- State Key Laboratory of Hearing and Balance Science, Beijing, China
- National Clinical Research Center for Otorhinolaryngologic Diseases, Beijing, China
- State Key Lab of Hearing Science, Ministry of Education, Beijing, China
- Beijing Key Lab of Hearing Impairment for Prevention and Treatment, Beijing, China
| | - Qi Ji
- Liaoning Women and Children's Hospital, Shenyang, China
| | - Weiwei Guo
- Medical School of Chinese PLA, Beijing, China
- Senior Department of Otorhinolaryngology Head and Neck Surgery, The 6th Medical Center, Chinese PLA General Hospital, Beijing, China
- State Key Laboratory of Hearing and Balance Science, Beijing, China
- National Clinical Research Center for Otorhinolaryngologic Diseases, Beijing, China
- State Key Lab of Hearing Science, Ministry of Education, Beijing, China
- Beijing Key Lab of Hearing Impairment for Prevention and Treatment, Beijing, China
| | - Weiju Han
- Medical School of Chinese PLA, Beijing, China
- Senior Department of Otorhinolaryngology Head and Neck Surgery, The 6th Medical Center, Chinese PLA General Hospital, Beijing, China
- State Key Laboratory of Hearing and Balance Science, Beijing, China
- National Clinical Research Center for Otorhinolaryngologic Diseases, Beijing, China
- State Key Lab of Hearing Science, Ministry of Education, Beijing, China
- Beijing Key Lab of Hearing Impairment for Prevention and Treatment, Beijing, China
| |
Collapse
|
7
|
Zheng L, Spagnol G, Gandhi DR, Sharma K, Kumar V, Patel KP, Sorgen PL. Inhibition of Pyk2 Improves Cx43 Intercalated Disc Localization, Infarct Size, and Cardiac Function in Rats With Heart Failure. Circ Heart Fail 2023; 16:e010294. [PMID: 37465947 PMCID: PMC10524803 DOI: 10.1161/circheartfailure.122.010294] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 05/12/2023] [Indexed: 07/20/2023]
Abstract
BACKGROUND Heart failure causes changes in Cx43 (Connexin43) regulation that are associated with arrhythmic heart disease. Pyk2 (proline-rich tyrosine kinase 2) is activated in cardiomyopathies and phosphorylates Cx43 to decrease intercellular communication. This study was designed to determine if Pyk2 inhibition improves cardiac function in a myocardial infarction (MI)-induced heart failure model in rats. METHODS MI (ligation of left anterior descending artery) rats were treated with the Pyk2 inhibitor PF4618433. Hemodynamic and structural parameters were monitored in Sham (n=5), MI-vehicle (n=5), and MI-PF4618433 (n=8) groups. Heart tissues were collected after 6 weeks to assess Pyk2 and Cx43 protein level and localization. RESULTS PF4618433 produced no observed adverse effects and inhibited ventricular Pyk2. PF4618433 reduced the MI infarct size from 34% to 17% (P=0.007). PF4618433 improved stroke volume (P=0.031) and cardiac output (P=0.009) in comparison to MI-vehicle with values similar to the Sham group. PF4618433 also led to an increase in the ejection fraction (P=0.002) and fractional shortening (P=0.006) when compared with the MI-vehicle (32% and 35% improvement, respectively) yet were lower in comparison with the Sham group. Pyk2 inhibition decreased Cx43 tyrosine phosphorylation (P=0.043) and maintained Cx43 at the intercalated disc in the distal ventricle 6 weeks post-MI. CONCLUSIONS Unlike other attempts to decrease Cx43 remodeling after MI-induced heart failure, inhibition of Pyk2 activity maintained Cx43 at the intercalated disc. This may have aided in the reduced infarct size (acute time frame) and improved cardiac function (chronic time frame). Additionally, we provide evidence that Pyk2 is activated following MI in human left ventricle, implicating a novel potential target for therapy in patients with heart failure.
Collapse
Affiliation(s)
- Li Zheng
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Gaelle Spagnol
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Devashri R. Gandhi
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Kanika Sharma
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Vikas Kumar
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Kaushik P. Patel
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Paul L. Sorgen
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
8
|
Xie A, Kang GJ, Kim EJ, Feng F, Givens SE, Ogle BM, Dudley SC. Lysosomal Ca 2+ flux modulates automaticity in ventricular cardiomyocytes and correlates with arrhythmic risk. PNAS NEXUS 2023; 2:pgad174. [PMID: 37303713 PMCID: PMC10255768 DOI: 10.1093/pnasnexus/pgad174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 05/16/2023] [Indexed: 06/13/2023]
Abstract
Automaticity involves Ca2+ handling at the cell membrane and sarcoplasmic reticulum (SR). Abnormal or acquired automaticity is thought to initiate ventricular arrhythmias associated with myocardial ischemia. Ca2+ flux from mitochondria can influence automaticity, and lysosomes also release Ca2+. Therefore, we tested whether lysosomal Ca2+ flux could influence automaticity. We studied ventricular human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), hiPSC 3D engineered heart tissues (EHTs), and ventricular cardiomyocytes isolated from infarcted mice. Preventing lysosomal Ca2+ cycling reduced automaticity in hiPSC-CMs. Consistent with a lysosomal role in automaticity, activating the transient receptor potential mucolipin channel (TRPML1) enhanced automaticity, and two channel antagonists reduced spontaneous activity. Activation or inhibition of lysosomal transcription factor EB (TFEB) increased or decreased total lysosomes and automaticity, respectively. In adult ischemic cardiomyocytes and hiPSC 3D EHTs, reducing lysosomal Ca2+ release also inhibited automaticity. Finally, TRPML1 was up-regulated in cardiomyopathic patients with ventricular tachycardia (VT) compared with those without VT. In summary, lysosomal Ca2+ handling modulates abnormal automaticity, and reducing lysosomal Ca2+ release may be a clinical strategy for preventing ventricular arrhythmias.
Collapse
Affiliation(s)
- An Xie
- Department of Medicine, University of Minnesota, 401 East River Parkway, VCRC 1st Floor, Suite 131, Minneapolis, MN 55455, USA
- Lillehei Heart Institute, University of Minnesota, 2231 6th Street SE, Suite 4-156, Minneapolis, MN 55455, USA
| | - Gyeoung-Jin Kang
- Department of Medicine, University of Minnesota, 401 East River Parkway, VCRC 1st Floor, Suite 131, Minneapolis, MN 55455, USA
- Lillehei Heart Institute, University of Minnesota, 2231 6th Street SE, Suite 4-156, Minneapolis, MN 55455, USA
| | - Eun Ji Kim
- Department of Medicine, University of Minnesota, 401 East River Parkway, VCRC 1st Floor, Suite 131, Minneapolis, MN 55455, USA
- Lillehei Heart Institute, University of Minnesota, 2231 6th Street SE, Suite 4-156, Minneapolis, MN 55455, USA
| | - Feng Feng
- Department of Medicine, University of Minnesota, 401 East River Parkway, VCRC 1st Floor, Suite 131, Minneapolis, MN 55455, USA
- Lillehei Heart Institute, University of Minnesota, 2231 6th Street SE, Suite 4-156, Minneapolis, MN 55455, USA
| | - Sophie E Givens
- Department of Biomedical Engineering, Stem Cell Institute, University of Minnesota, McGuire Translational Research Facility, 2001 6th Street SE, Mail Code 2873, Minneapolis, MN 55455, USA
| | - Brenda M Ogle
- Lillehei Heart Institute, University of Minnesota, 2231 6th Street SE, Suite 4-156, Minneapolis, MN 55455, USA
- Department of Biomedical Engineering, Stem Cell Institute, University of Minnesota, McGuire Translational Research Facility, 2001 6th Street SE, Mail Code 2873, Minneapolis, MN 55455, USA
- Department of Pediatrics, Institute for Engineering in Medicine, University of Minnesota, 420 Delaware Street Southeast, 725 Mayo Memorial Building, MMC 94, Minneapolis, MN 55455, USA
| | - Samuel C Dudley
- Department of Medicine, University of Minnesota, 401 East River Parkway, VCRC 1st Floor, Suite 131, Minneapolis, MN 55455, USA
- Lillehei Heart Institute, University of Minnesota, 2231 6th Street SE, Suite 4-156, Minneapolis, MN 55455, USA
| |
Collapse
|
9
|
Liu M, Liu H, Feng F, Krook-Magnuson E, Dudley SC. TRPM7 kinase mediates hypomagnesemia-induced seizure-related death. Sci Rep 2023; 13:7855. [PMID: 37188671 DOI: 10.1038/s41598-023-34789-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 05/08/2023] [Indexed: 05/17/2023] Open
Abstract
Hypomagnesemia (HypoMg) can cause seizures and death, but the mechanism is unknown. Transient receptor potential cation channel subfamily M 7 (TRPM7) is a Mg transporter with both channel and kinase function. In this study, we focused on the kinase role of TRPM7 in HypoMg-induced seizures and death. Wild type C57BL/6J mice and transgenic mice with a global homozygous mutation in the TRPM7 kinase domain (TRPM7K1646R, with no kinase function) were fed with control diet or a HypoMg diet. After 6 weeks of HypoMg diet, mice had significantly decreased serum Mg, elevated brain TRPM7, and a significant rate of death, with females being most susceptible. Deaths were immediately preceded by seizure events. TRPM7K1646R mice showed resistance to seizure-induced death. HypoMg-induced brain inflammation and oxidative stress were suppressed by TRPM7K1646R. Compared to their male counterparts, HypoMg female mice had higher levels of inflammation and oxidative stress in the hippocampus. We concluded that TRPM7 kinase function contributes seizure-induced deaths in HypoMg mice and that inhibiting the kinase reduced inflammation and oxidative stress.
Collapse
Affiliation(s)
- Man Liu
- Cardiovascular Division, Department of Medicine, The Lillehei Heart Institute, University of Minnesota at Twin Cities, 2231 6th Street SE, CCRB 4-141, Minneapolis, MN, 55455, USA
| | - Hong Liu
- Cardiovascular Division, Department of Medicine, The Lillehei Heart Institute, University of Minnesota at Twin Cities, 2231 6th Street SE, CCRB 4-141, Minneapolis, MN, 55455, USA
| | - Feng Feng
- Cardiovascular Division, Department of Medicine, The Lillehei Heart Institute, University of Minnesota at Twin Cities, 2231 6th Street SE, CCRB 4-141, Minneapolis, MN, 55455, USA
| | - Esther Krook-Magnuson
- Department of Neuroscience, University of Minnesota at Twin Cities, Minneapolis, MN, USA
| | - Samuel C Dudley
- Cardiovascular Division, Department of Medicine, The Lillehei Heart Institute, University of Minnesota at Twin Cities, 2231 6th Street SE, CCRB 4-141, Minneapolis, MN, 55455, USA.
| |
Collapse
|
10
|
Leiva O, Bohart I, Ahuja T, Park D. Off-Target Effects of Cancer Therapy on Development of Therapy-Induced Arrhythmia: A Review. Cardiology 2023; 148:324-334. [PMID: 36702116 PMCID: PMC10614257 DOI: 10.1159/000529260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/17/2023] [Indexed: 01/27/2023]
Abstract
BACKGROUND Advances in cancer therapeutics have improved overall survival and prognosis in this patient population; however, this has come at the expense of cardiotoxicity including arrhythmia. SUMMARY Cancer and its therapies are associated with cardiotoxicity via several mechanisms including inflammation, cardiomyopathy, and off-target effects. Among cancer therapies, anthracyclines and tyrosine kinase inhibitors (TKIs) are particularly known for their pro-arrhythmia effects. In addition to cardiomyopathy, anthracyclines may be pro-arrhythmogenic via reactive oxygen species (ROS) generation and altered calcium handling. TKIs may mediate their cardiotoxicity via inhibition of off-target tyrosine kinases. Ibrutinib-mediated inhibition of CSK may be responsible for the increased prevalence of atrial fibrillation. Further investigation is warranted to further elucidate the mechanisms behind arrhythmias in cancer therapies. KEY MESSAGES Arrhythmias are a common cardiotoxicity of cancer therapies. Cancer therapies may induce arrhythmias via off-target effects. Understanding the mechanisms underlying arrhythmogenesis associated with cancer therapies may help design cancer therapies that can avoid these toxicities.
Collapse
Affiliation(s)
- Orly Leiva
- Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine, New York City, New York, USA
| | - Isaac Bohart
- Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine, New York City, New York, USA
| | - Tania Ahuja
- Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine, New York City, New York, USA
| | - David Park
- Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine, New York City, New York, USA
| |
Collapse
|
11
|
Elmadani M, Raatikainen S, Mattila O, Alakoski T, Piuhola J, Åström P, Tenhunen O, Magga J, Kerkelä R. Dasatinib targets c-Src kinase in cardiotoxicity. Toxicol Rep 2023; 10:521-528. [PMID: 37152411 PMCID: PMC10160240 DOI: 10.1016/j.toxrep.2023.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/04/2023] [Accepted: 04/24/2023] [Indexed: 05/09/2023] Open
Abstract
Dasatinib is a multitargeted kinase inhibitor used for treatment of chronic myeloid leukemia and acute lymphoblastic leukemia. Unfortunately, treatment of cancer patients with some kinase inhibitors has been associated with cardiotoxicity. Cancer treatment with dasatinib has been reported to be associated with cardiotoxic side effects such as left ventricular dysfunction, heart failure, pericardial effusion and pulmonary hypertension. Here we aimed to investigate the molecular mechanisms underlying the cardiotoxicity of dasatinib. We found that among the resident cardiac cell types, cardiomyocytes were most sensitive to dasatinib-induced cell death. Exposure of cardiomyocytes to dasatinib attenuated the activity of extracellular signal-regulated kinase (ERK), which is a downstream target of dasatinib target kinase c-Src. Similar to dasatinib, c-Src depletion in cardiomyocytes compromised cardiomyocyte viability. Overexpression of dasatinib-resistant mutant of c-Src rescued the toxicity of dasatinib on cardiomyocytes, whereas forced expression of wild type c-Src did not have protective effect. Collectively, our results show that c-Src is a key target of dasatinib mediating the toxicity of dasatinib to cardiomyocytes. These findings may influence future drug design and suggest closer monitoring of patients treated with agents targeting c-Src for possible adverse cardiac effects.
Collapse
Affiliation(s)
- Manar Elmadani
- Research Unit of Biomedicine and Internal Medicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Sami Raatikainen
- Research Unit of Biomedicine and Internal Medicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Orvokki Mattila
- Research Unit of Biomedicine and Internal Medicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Tarja Alakoski
- Research Unit of Biomedicine and Internal Medicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Jarkko Piuhola
- Division of Cardiology, Oulu University Hospital, Oulu, Finland
| | - Pirjo Åström
- Research Unit of Biomedicine and Internal Medicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Olli Tenhunen
- Research Unit of Biomedicine and Internal Medicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Johanna Magga
- Research Unit of Biomedicine and Internal Medicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Risto Kerkelä
- Research Unit of Biomedicine and Internal Medicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
- Correspondence to: Research Unit of Biomedicine and Internal Medicine, University of Oulu, P.O.BOX 5000, FIN-90014 Oulu, Finland.
| |
Collapse
|
12
|
Wu SJ, He RL, Zhao L, Yu XY, Jiang YN, Guan X, Chen QY, Ren FF, Xie ZY, Wu LP, Li L. Cardiac-Specific Overexpression of Caveolin-1 in Rats With Ischemic Cardiomyopathy Improves Arrhythmogenicity and Cardiac Remodelling. Can J Cardiol 2023; 39:73-86. [PMID: 36240973 DOI: 10.1016/j.cjca.2022.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/16/2022] [Accepted: 10/04/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Ischemic cardiomyopathy (ICM) is associated with electrical and structural remodelling, leading to arrhythmias. Caveolin-1 (Cav1) is a membrane protein involved in the pathogenesis of ischemic injury. Cav1 deficiency has been associated with arrhythmogenicity. The current study aimed to determine how Cav1 overexpression inhibits arrhythmias and cardiac remodelling in ICM. METHODS ICM was modelled using left anterior descending (LAD) artery ligation for 4 weeks. Cardiac-specific Cav1 overexpression in ICM on arrhythmias, excitation-contraction coupling, and cardiac remodelling were investigated using the intramyocardial injection of an adeno-associated virus serotype 9 (AAV-9) system, carrying a specific sequence expressing Cav1 (AAVCav1) under the cardiac troponin T (cTnT) promoter. RESULTS Cav1 overexpression decreased susceptibility to arrhythmias by upregulating gap junction connexin 43 (CX43) and reducing spontaneous irregular proarrhythmogenic Ca2+ waves in ventricular cardiomyocytes. It also alleviated ischemic injury-induced contractility weakness by improving Ca2+ cycling through normalizing Ca2+-handling protein levels and improving Ca2+ homeostasis. Masson stain and immunoblotting revealed that the deposition of excessive fibrosis was attenuated by Cav1 overexpression, inhibiting the transforming growth factor-β (TGF-β)/Smad2 signalling pathway. Coimmunoprecipitation assays demonstrated that the interaction between Cav1 and cSrc modulated CX43 expression and Ca2+-handling protein levels. CONCLUSIONS Cardiac-specific overexpression of Cav1 attenuated ventricular arrhythmia, improved Ca2+ cycling, and attenuated cardiac remodelling. These effects were attributed to modulation of CX43, normalized Ca2+-handling protein levels, improved Ca2+ homeostasis, and attenuated cardiac fibrosis.
Collapse
Affiliation(s)
- Shu-Jie Wu
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Rui-Lin He
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Lin Zhao
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Xiao-Yu Yu
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Yi-Na Jiang
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Xuan Guan
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Qiao-Ying Chen
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Fang-Fang Ren
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Zuo-Yi Xie
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Lian-Pin Wu
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Lei Li
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, China.
| |
Collapse
|
13
|
Xie A, Liu H, Kang GJ, Feng F, Dudley SC. Reduced sarcoplasmic reticulum Ca 2+ pump activity is antiarrhythmic in ischemic cardiomyopathy. Heart Rhythm 2022; 19:2107-2114. [PMID: 36028211 DOI: 10.1016/j.hrthm.2022.08.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/26/2022] [Accepted: 08/16/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND We have described an arrhythmic mechanism seen only in cardiomyopathy that involves increased mitochondrial Ca2+ handling and selective transfer of Ca2+ to the sarcoplasmic reticulum (SR). Modeling suggested that mitochondrial Ca2+ transfer to the SR via type 2a sarco/endoplasmic reticulum Ca2+-ATPase (SERCA2a) is a crucial element of this arrhythmic mechanism. OBJECTIVE We tested the role of SERCA2a in arrhythmias during ischemic cardiomyopathy. METHODS Myocardial infarction (MI) was induced in wild-type (Wt) and SERCA2a heterozygous knockdown (SERCA+/-) mice. RESULTS Compared with Wt MI mice, SERCA2a heterozygous knockdown (SERCA+/-) MI mice had a substantially lower mortality after 3 weeks of MI without a significant change in MI area. Aside from a significant delay of the cytoplasmic Ca2+ transient decay existed in SERCA+/- compared with Wt, SERCA+/- did not affect cardiac systolic and diastolic function at the whole organ or single cell levels either before or after MI. After MI, SERCA+/- mice had reduced SERCA2a expression in the MI border zone compared with Wt MI mice. SERCA+/- mice had significantly decreased corrected QT intervals and less ventricular tachycardia compared with Wt MI mice. SERCA+/- cardiomyocytes from MI mice showed a reduced action potential duration and reduced triggered activity compared with Wt MI cardiomyocytes. Reduction in arrhythmic risk was accompanied by reduced diastolic SR Ca2+ sparks, reduced SR Ca2+ content, reduced oxidized ryanodine receptor, and increased calsequestrin 2 in SERCA+/- MI mice. CONCLUSION SERCA2a knockdown was antiarrhythmic after MI without affecting overall systolic performance. Possible antiarrhythmic mechanisms included reduced SR free Ca2+ and reduced diastolic SR Ca2+ release.
Collapse
Affiliation(s)
- An Xie
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, Minnesota
| | - Hong Liu
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, Minnesota
| | - Gyeoung-Jin Kang
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, Minnesota
| | - Feng Feng
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, Minnesota
| | - Samuel C Dudley
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
14
|
Wei J, Lu X, Bao X, Zhang C, Li J, Ren C, Zhu Z, Ma B, Zhang N, Jin X, Ma B. Aucubin supplementation alleviate diabetes induced-disruption of blood-testis barrier and testicular damage via stabilizing cell junction integrity. Eur J Pharmacol 2022; 938:175430. [PMID: 36460131 DOI: 10.1016/j.ejphar.2022.175430] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022]
Abstract
Disruption of blood-testis barrier (BTB) was a crucial pathological feature of diabetes induced-testicular injury at early phase. Aucubin (AU), a main active component in Eucommiae Cortex, has drawn attention for its benefits against male reproductive system disease. The current study was aimed at investigating the protective role of AU and exploring the underlying mechanism in diabetic model. A murine model of type 2 diabetes mellitus (T2DM) was induced by high-fat diet (HFD) combined with streptozocin (STZ). Testicular weight index and morphology, sperm quality, integrity of BTB and protein levels were analyzed. The underlying mechanism of the protective effect of AU was further explored in Sertoli cells (SCs) cultured with high glucose (HG). Our results showed AU inhibited testicular structural destruction, restored disruption of BTB and improved abnormal spermatogenic function in diabetic mice. Consistent with in vivo results, HG induced decreased transcellular resistance and increased permeability in SCs monolayers, while AU exposure reverses this trend. Meanwhile, reduced expression of Zonula occludin-1(ZO-1) and Connexin43(Cx43) in testicular tissue diabetic mice and HG-induced SCs was prominently reversed via AU treatment. Mechanistic studies suggested a high affinity interaction between AU and c-Src protein was identified based on molecular docking, and the activation of c-Src was significantly inhibited in AU treatment. Furthermore, AU significantly increased the expression of Cx43 and ZO-1 proteins HG-induced SCs, which can be further enhanced in gene-silenced c-Src cells to some extent. Our results suggested that AU ameliorated disruption of BTB and spermatogenesis dysfunction in diabetic mice via inactivating c-Src to stabilize cell junction integrity.
Collapse
Affiliation(s)
- Jingxun Wei
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, People's Republic of China
| | - Xuanzhao Lu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, People's Republic of China
| | - Xiaowen Bao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, People's Republic of China
| | - Chi Zhang
- Nanjing Tech University School of Economics & Management. Nanjing Tech University, Nanjing, 210009, People's Republic of China
| | - Jiaqi Li
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, People's Republic of China
| | - Chaoxing Ren
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, People's Republic of China
| | - Zhiming Zhu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, People's Republic of China
| | - Beiting Ma
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, People's Republic of China
| | - Nan Zhang
- School of Chemical and Molecular Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| | - Xin Jin
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, People's Republic of China
| | - Bo Ma
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
15
|
Liu Y, Dai M, Yang P, Cao L, Lu L. Src-homology domain 2 containing protein tyrosine phosphatase-1 (SHP-1) directly binds to proto-oncogene tyrosine-protein kinase Src (c-Src) and promotes the transcriptional activation of connexin 43 (Cx43). Bioengineered 2022; 13:13534-13543. [PMID: 35659197 PMCID: PMC9276044 DOI: 10.1080/21655979.2022.2079252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The prevalence of atrial fibrillation (AF), which is one of the common arrhythmias in clinics, is increasing sharply and has affected millions of patients, which is expected to triple by 2050. The purpose of the study was to explore the regulatory relationship between Src-homology domain 2 containing protein tyrosine phosphatase-1 (SHP-1) and proto-oncogene tyrosine-protein kinase Src (c-Src) and the regulation of Connexins 43 (Cx43), and its effect on AF was also studied. Mouse atrial myocyte line (HL-1 cell line) was used as the research object. After overexpression of SHP-1, the expressions of p-c-Src, Cx43, and SHP-1 were detected by Western blot and cellular immunofluorescence, respectively. The location and interaction of SHP-1 and c-Src in the cells were detected by immunofluorescence co-localization and co-immunoprecipitation (Co-IP). The regulation of c-Src and Cx43 was detected by DNA pull down, chromatin co-immunoprecipitation (CHIP), and dual-luciferase reporter system. The results revealed that overexpression of SHP-1 could inhibit the phosphorylation and activation of c-Src and increase the expression of Cx43. Moreover, there was a direct binding between SHP-1 and c-Src, and c-Src could bind to the promoter region of Cx43 and inhibit the transcription of Cx43. In conclusion, SHP-1 could bind to c-Src and inhibit the activity of c-Src, thus enhancing the transcriptional activation of Cx43 and improving the function of gap junction.
Collapse
Affiliation(s)
- YiHao Liu
- Department of Cardiovascular Medicine, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Meng Dai
- Department of Palliative Medicine, Chongqing University Cancer Hospital, Chongqing, China
| | - PengHui Yang
- Department of Cardiovascular Medicine, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Li Cao
- Department of Cardiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Lu
- Department of Critical Care Medicine, University-Town Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
16
|
Wei X, Chang ACH, Chang H, Xu S, Xue Y, Zhang Y, Lei M, Chang ACY, Zhang Q. Hypoglycemia-Exacerbated Mitochondrial Connexin 43 Accumulation Aggravates Cardiac Dysfunction in Diabetic Cardiomyopathy. Front Cardiovasc Med 2022; 9:800185. [PMID: 35369285 PMCID: PMC8967291 DOI: 10.3389/fcvm.2022.800185] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/10/2022] [Indexed: 11/29/2022] Open
Abstract
Background Diabetic cardiomyopathy (DCM) is a complex multifaceted disease responsible for elevated heart failure (HF) morbidity and mortality in patients with diabetes mellitus (DM). Patients with DCM exhibit subclinical diastolic dysfunction, progression toward systolic impairment, and abnormal electrophysiology. Hypoglycemia events that occur spontaneously or due to excess insulin administration threaten the lives of patients with DM—with the increased risk of sudden death. However, the molecular underpinnings of this fatal disease remain to be elucidated. Methods and Results Here, we used the established streptozotocin-induced DCM murine model to investigate how hypoglycemia aggravates DCM progression. We confirmed connexin 43 (Cx43) dissociation from cell–cell interaction and accumulation at mitochondrial inner membrane both in the cardiomyocytes of patients with DM and DCM murine. Here, we observed that cardiac diastolic function, induced by chronic hyperglycemia, was further aggravated upon hypoglycemia challenge. Similar contractile defects were recapitulated using neonatal mouse ventricular myocytes (NMVMs) under glucose fluctuation challenges. Using immunoprecipitation mass spectrometry, we identified and validated that hypoglycemia challenge activates the mitogen-activated protein kinase kinase (MAPK kinase) (MEK)/extracellular regulated protein kinase (ERK) and inhibits phosphoinositide 3-kinase (PI3K)/Akt pathways, which results in Cx43 phosphorylation by Src protein and translocation to mitochondria in cardiomyocytes. To determine causality, we overexpressed a mitochondrial targeting Cx43 (mtCx43) using adeno-associated virus serotype 2 (AAV2)/9. At normal blood glucose levels, mtCx43 overexpression recapitulated cardiac diastolic dysfunction as well as aberrant electrophysiology in vivo. Our findings give support for therapeutic targeting of MEK/ERK/Src and PI3K/Akt/Src pathways to prevent mtCx43-driven DCM. Conclusion DCM presents compensatory adaptation of mild mtCx43 accumulation, yet acute hypoglycemia challenges result in further accumulation of mtCx43 through the MEK/ERK/Src and PI3K/Akt/Src pathways. We provide evidence that Cx43 mislocalization is present in hearts of patients with DM hearts, STZ-induced DCM murine model, and glucose fluctuation challenged NMVMs. Mechanistically, we demonstrated that mtCx43 is responsible for inducing aberrant contraction and disrupts electrophysiology in cardiomyocytes and our results support targeting of mtCx43 in treating DCM.
Collapse
Affiliation(s)
- Xing Wei
- Department of Cardiology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Andrew Chia Hao Chang
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haishuang Chang
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shan Xu
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yilin Xue
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanxin Zhang
- Department of Cardiology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming Lei
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Alex Chia Yu Chang
- Department of Cardiology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Alex Chia Yu Chang
| | - Qingyong Zhang
- Department of Cardiology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Qingyong Zhang
| |
Collapse
|
17
|
Liu Z, Liu J, Hu D, Du J, Liu D, Wang X, Zhang J, Hou Y. Activation of Neural Modeling-Related Genes in the Heart of Mice after Gamma Irradiation. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:8522417. [PMID: 35003326 PMCID: PMC8741381 DOI: 10.1155/2021/8522417] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/29/2021] [Accepted: 12/04/2021] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Radiation-induced heart disease (RIHD) is a common sequela of thoracic irradiation. At the same time, nerve remodeling is involved in the progression of heart disease. However, the activation of the nerve remodeling related genes in radiation-induced heart disease is still lacking. METHODS In this study, C57BL/J mice was anesthetized by intraperitoneal injection with pentobarbital sodium (2%, 40 mg/kg), and radiation was delivered using a cobalt-60 (60Co) teletherapy unit (Cirus). When the mice were anesthetized, none of them showed the signs of peritonitis, pain, or discomfort. The mice hearts were exposed to a γ-radiation field of 5 mm × 5 mm. The total dose of γ-radiation was 3 Gy/day for each animal for 5 consecutive days. The mice were executed by severed neck, and its limbs were weak. Quantitative Polymerase Chain Reaction (qPCR) and immunohistochemistry were used to explore the possible mechanism of arrhythmia in patients with RIHD. RESULTS Our results demonstrated that Growth-Associated Protein 43 (GAP43) was increased significantly after radioactive heart injury compared with the control group. Moreover, the protein expression of Tyrosine hydroxylase (TH) and Choline acetyl-transferase (CHAT) was significantly decreased compared with the control group and gradually increased with time rend. The nerve growth factor (NGF) was remarkably increased after radiation-induced heart injury compared with the control group. Immunohistochemistry results indicated that the nerve growth factors GAP43 and NGF were significantly increased after radiation-induced heart injury. CONCLUSIONS Chest radiotherapy could activate the neural modeling related genes in RIHD. This may provide a new treatment plan for the future treatment of heart problems caused by chest radiotherapy.
Collapse
Affiliation(s)
- Zhiyong Liu
- Department of Cardiology, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
- Department of Cardiology, Dezhou People's Hospital, Dezhou, Shandong 253014, China
| | - Jing Liu
- Department of Endocrinology, Dezhou People's Hospital, Dezhou, Shandong 253014, China
| | - Dan Hu
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250012, China
| | - Juanjuan Du
- Department of Cardiology, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Donglu Liu
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Ximin Wang
- Department of Cardiology, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Jiandong Zhang
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250012, China
| | - Yinglong Hou
- Department of Cardiology, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
18
|
Target Characterization of Kaempferol against Myocardial Infarction Using Novel In Silico Docking and DARTS Prediction Strategy. Int J Mol Sci 2021; 22:ijms222312908. [PMID: 34884711 PMCID: PMC8657499 DOI: 10.3390/ijms222312908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 01/05/2023] Open
Abstract
Target identification is a crucial process for advancing natural products and drug leads development, which is often the most challenging and time-consuming step. However, the putative biological targets of natural products obtained from traditional prediction studies are also informatively redundant. Thus, how to precisely identify the target of natural products is still one of the major challenges. Given the shortcomings of current target identification methodologies, herein, a novel in silico docking and DARTS prediction strategy was proposed. Concretely, the possible molecular weight was detected by DARTS method through examining the protected band in SDS-PAGE. Then, the potential targets were obtained from screening and identification through the PharmMapper Server and TargetHunter method. In addition, the candidate target Src was further validated by surface plasmon resonance assay, and the anti-apoptosis effects of kaempferol against myocardial infarction were further confirmed by in vitro and in vivo assays. Collectively, these results demonstrated that the integrated strategy could efficiently characterize the targets, which may shed a new light on target identification of natural products.
Collapse
|
19
|
Ai X, Yan J, Pogwizd SM. Serine-threonine protein phosphatase regulation of Cx43 dephosphorylation in arrhythmogenic disorders. Cell Signal 2021; 86:110070. [PMID: 34217833 PMCID: PMC8963383 DOI: 10.1016/j.cellsig.2021.110070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/11/2021] [Accepted: 06/29/2021] [Indexed: 12/11/2022]
Abstract
Regulation of cell-to-cell communication in the heart by the gap junction protein Connexin43 (Cx43) involves modulation of Cx43 phosphorylation state by protein kinases, and dephosphorylation by protein phosphatases. Dephosphorylation of Cx43 has been associated with impaired intercellular coupling and enhanced arrhythmogenesis in various pathologic states. While there has been extensive study of the protein kinases acting on Cx43, there has been limited studies of the protein phosphatases that may underlie Cx43 dephosphorylation. The focus of this review is to introduce serine-threonine protein phosphatase regulation of Cx43 phosphorylation state and cell-to-cell communication, and its impact on arrhythmogenesis in the setting of chronic heart failure and myocardial ischemia, as well as on atrial fibrillation. We also discuss the therapeutic potential of modulating protein phosphatases to treat arrhythmias in these clinical settings.
Collapse
Affiliation(s)
- Xun Ai
- Department of Physiology & Biophysics, Rush University, Chicago, IL, United States of America
| | - Jiajie Yan
- Department of Physiology & Biophysics, Rush University, Chicago, IL, United States of America
| | - Steven M Pogwizd
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America.
| |
Collapse
|
20
|
Liu M, Liu H, Parthiban P, Kang GJ, Shi G, Feng F, Zhou A, Gu L, Karnopp C, Tolkacheva EG, Dudley SC. Inhibition of the unfolded protein response reduces arrhythmic risk after myocardial infarction. J Clin Invest 2021; 131:e147836. [PMID: 34324437 DOI: 10.1172/jci147836] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 07/28/2021] [Indexed: 11/17/2022] Open
Abstract
Ischemic cardiomyopathy is associated with an increased risk of sudden death, activation of the unfolded protein response (UPR), and reductions in multiple cardiac ion channels. When activated, the protein kinase-like ER kinase (PERK) branch of the UPR reduces protein translation and abundance. We hypothesized that PERK inhibition could prevent ion channel downregulation and reduce arrhythmic risk after myocardial infarct (MI). MI induced by coronary artery ligation resulted in mice exhibited reduced ion channel levels, ventricular tachycardia (VT), and prolonged corrected intervals between the Q and T waves of the ECGs (QTc). Protein levels of major cardiac ion channels were decreased. MI cardiomyocytes showed significantly prolonged action potential duration and decreased maximum upstroke velocity. Cardiac-specific PERK knockout (PERKKO) reduced electrical remodeling in response to MI with shortened QTc intervals, less VT episodes, and higher survival rates (P<0.05 vs. MI). Pharmacological PERK inhibition had similar effects. In conclusion, activated PERK during MI contributed to arrhythmic risk by downregulation of select cardiac ion channels. PERK inhibition prevented these changes and reduced arrhythmic risk. These results suggest that ion channel downregulation during MI is a fundamental arrhythmic mechanism and maintaining ion channel levels is antiarrhythmic.
Collapse
Affiliation(s)
- Man Liu
- Lillehei Heart Institute, University of Minnesota, Minneapolis, United States of America
| | - Hong Liu
- Lillehei Heart Institute, University of Minnesota, Minneapolis, United States of America
| | - Preethy Parthiban
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, United States of America
| | - Gyeoung-Jin Kang
- Lillehei Heart Institute, University of Minnesota, Minneapolis, United States of America
| | - Guangbin Shi
- Department of Medicine, Brown University, Providence, United States of America
| | - Feng Feng
- Lillehei Heart Institute, University of Minnesota, Minneapolis, United States of America
| | - Anyu Zhou
- Department of Medicine, Brown University, Providence, United States of America
| | - Lianzhi Gu
- Lillehei Heart Institute, University of Minnesota, Minneapolis, United States of America
| | - Courtney Karnopp
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, United States of America
| | - Elena G Tolkacheva
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, United States of America
| | - Samuel C Dudley
- Lillehei Heart Institute, University of Minnesota, Minneapolis, United States of America
| |
Collapse
|
21
|
Gupta A, Fei YD, Kim TY, Xie A, Batai K, Greener I, Tang H, Ciftci-Yilmaz S, Juneman E, Indik JH, Shi G, Christensen J, Gupta G, Hillery C, Kansal MM, Parikh DS, Zhou T, Yuan JXJ, Kanthi Y, Bronk P, Koren G, Kittles R, Duarte JD, Garcia JGN, Machado RF, Dudley SC, Choi BR, Desai AA. IL-18 mediates sickle cell cardiomyopathy and ventricular arrhythmias. Blood 2021; 137:1208-1218. [PMID: 33181835 PMCID: PMC7933768 DOI: 10.1182/blood.2020005944] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 10/21/2020] [Indexed: 12/16/2022] Open
Abstract
Previous reports indicate that IL18 is a novel candidate gene for diastolic dysfunction in sickle cell disease (SCD)-related cardiomyopathy. We hypothesize that interleukin-18 (IL-18) mediates the development of cardiomyopathy and ventricular tachycardia (VT) in SCD. Compared with control mice, a humanized mouse model of SCD exhibited increased cardiac fibrosis, prolonged duration of action potential, higher VT inducibility in vivo, higher cardiac NF-κB phosphorylation, and higher circulating IL-18 levels, as well as reduced voltage-gated potassium channel expression, which translates to reduced transient outward potassium current (Ito) in isolated cardiomyocytes. Administering IL-18 to isolated mouse hearts resulted in VT originating from the right ventricle and further reduced Ito in SCD mouse cardiomyocytes. Sustained IL-18 inhibition via IL-18-binding protein resulted in decreased cardiac fibrosis and NF-κB phosphorylation, improved diastolic function, normalized electrical remodeling, and attenuated IL-18-mediated VT in SCD mice. Patients with SCD and either myocardial fibrosis or increased QTc displayed greater IL18 gene expression in peripheral blood mononuclear cells (PBMCs), and QTc was strongly correlated with plasma IL-18 levels. PBMC-derived IL18 gene expression was increased in patients who did not survive compared with those who did. IL-18 is a mediator of sickle cell cardiomyopathy and VT in mice and a novel therapeutic target in patients at risk for sudden death.
Collapse
Affiliation(s)
- Akash Gupta
- Department of Medicine, University of Arizona Health Sciences Center, University of Arizona, Tucson, AZ
| | - Yu-Dong Fei
- Department of Medicine, Indiana University, Indianapolis, IN
- Department of Cardiology, XinHua Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Tae Yun Kim
- Cardiovascular Research Center, Department of Medicine, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, RI
| | - An Xie
- Department of Medicine, University of Minnesota, Minneapolis, MN
| | - Ken Batai
- Department of Surgery, University of Arizona Health Sciences Center, University of Arizona, Tucson, AZ
| | - Ian Greener
- Department of Medicine, University of Illinois Hospitals and Health Sciences System, Chicago, IL
| | - Haiyang Tang
- Department of Medicine, University of Arizona, Tucson, AZ
| | | | - Elizabeth Juneman
- Department of Medicine, University of Arizona Health Sciences Center, University of Arizona, Tucson, AZ
| | - Julia H Indik
- Department of Medicine, University of Arizona Health Sciences Center, University of Arizona, Tucson, AZ
| | - Guanbin Shi
- Cardiovascular Research Center, Department of Medicine, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, RI
| | - Jared Christensen
- Cardiovascular Research Center, Department of Medicine, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, RI
| | - Geetanjali Gupta
- Department of Medicine, University of Arizona Health Sciences Center, University of Arizona, Tucson, AZ
| | - Cheryl Hillery
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA
| | - Mayank M Kansal
- Department of Medicine, University of Illinois Hospitals and Health Sciences System, Chicago, IL
| | - Devang S Parikh
- Department of Medicine, University of Illinois Hospitals and Health Sciences System, Chicago, IL
| | - Tong Zhou
- Department of Physiology and Cell Biology, University of Nevada, Reno, NV
| | - Jason X-J Yuan
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Yogendra Kanthi
- Laboratory of Vascular Thrombosis & Inflammation, National Heart, Lung and Blood Institute, Bethesda, MD
| | - Peter Bronk
- Cardiovascular Research Center, Department of Medicine, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, RI
| | - Gideon Koren
- Cardiovascular Research Center, Department of Medicine, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, RI
| | - Rick Kittles
- Department of Population Science, City of Hope Medical Center, Duarte, CA; and
| | - Julio D Duarte
- Department of Pharmacotherapy and Translational Research, University of Florida, Gainesville, FL
| | - Joe G N Garcia
- Department of Medicine, University of Arizona Health Sciences Center, University of Arizona, Tucson, AZ
| | | | - Samuel C Dudley
- Department of Medicine, University of Minnesota, Minneapolis, MN
| | - Bum-Rak Choi
- Cardiovascular Research Center, Department of Medicine, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, RI
| | - Ankit A Desai
- Department of Medicine, Indiana University, Indianapolis, IN
| |
Collapse
|
22
|
Martins-Marques T, Hausenloy DJ, Sluijter JPG, Leybaert L, Girao H. Intercellular Communication in the Heart: Therapeutic Opportunities for Cardiac Ischemia. Trends Mol Med 2021; 27:248-262. [PMID: 33139169 DOI: 10.1016/j.molmed.2020.10.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/04/2020] [Accepted: 10/07/2020] [Indexed: 12/15/2022]
Abstract
The maintenance of tissue, organ, and organism homeostasis relies on an intricate network of players and mechanisms that assist in the different forms of cell-cell communication. Myocardial infarction, following heart ischemia and reperfusion, is associated with profound changes in key processes of intercellular communication, involving gap junctions, extracellular vesicles, and tunneling nanotubes, some of which have been implicated in communication defects associated with cardiac injury, namely arrhythmogenesis and progression into heart failure. Therefore, intercellular communication players have emerged as attractive powerful therapeutic targets aimed at preserving a fine-tuned crosstalk between the different cardiac cells in order to prevent or repair some of harmful consequences of heart ischemia and reperfusion, re-establishing myocardial function.
Collapse
Affiliation(s)
- Tania Martins-Marques
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal
| | - Derek J Hausenloy
- Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore; National Heart Research Institute Singapore, National Heart Centre, Singapore; Yong Loo Lin School of Medicine, National University Singapore, Singapore; The Hatter Cardiovascular Institute, University College London, London, UK; Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan
| | - Joost P G Sluijter
- Laboratory of Experimental Cardiology, UMC Utrecht Regenerative Medicine Center, Circulatory Health Laboratory, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Luc Leybaert
- Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Henrique Girao
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal.
| |
Collapse
|
23
|
Zhai Y, Yang J, Zhang J, Yang J, Li Q, Zheng T. Src-family Protein Tyrosine Kinases: A promising target for treating Cardiovascular Diseases. Int J Med Sci 2021; 18:1216-1224. [PMID: 33526983 PMCID: PMC7847615 DOI: 10.7150/ijms.49241] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 12/18/2020] [Indexed: 02/07/2023] Open
Abstract
The Src-family protein tyrosine kinases (SFKs), a subfamily of non-receptor tyrosine kinases, are ubiquitously expressed in various cell types. Numerous studies have suggested that SFKs are related to signal transduction in major cardiac physiological and pathological processes, it is the activity of SFKs that is connected with the maintenance of cardiovascular homeostasis. Upon stimulation of various injury factors or stress, the phosphorylation state of SFKs is changed, which has been found to modulate different cardiac pathological conditions, such as hypertension, coronary heart disease, ischemic heart disease, myocardial ischemia-reperfusion injury, arrhythmia and cardiomyopathy via regulating cell growth, differentiation, movement and function, electrophysiologic signals. This review summarizes the basic information about SFKs, updates its role in the different processes underlying the development of multiple cardiovascular diseases (CVDs), and highlights their potential role as disease biomarkers and therapeutic targets, which would help understand the pathophysiology of CVDs and promote the further potential clinical adhibition.
Collapse
Affiliation(s)
- Yuhong Zhai
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yichang 443000, China.,Institute of Cardiovascular Diseases, China Three Gorges University, Yichang 443000, China.,Central Laboratory, Yichang Central People's Hospital, Yichang 443000, China
| | - Jun Yang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yichang 443000, China.,Institute of Cardiovascular Diseases, China Three Gorges University, Yichang 443000, China
| | - Jing Zhang
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang 443000, China.,Central Laboratory, Yichang Central People's Hospital, Yichang 443000, China
| | - Jian Yang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yichang 443000, China
| | - Qi Li
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yichang 443000, China.,Institute of Cardiovascular Diseases, China Three Gorges University, Yichang 443000, China.,Central Laboratory, Yichang Central People's Hospital, Yichang 443000, China
| | - Tao Zheng
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yichang 443000, China.,Institute of Cardiovascular Diseases, China Three Gorges University, Yichang 443000, China.,Central Laboratory, Yichang Central People's Hospital, Yichang 443000, China
| |
Collapse
|
24
|
Zheng L, Trease AJ, Katsurada K, Spagnol G, Li H, Shi W, Duan B, Patel KP, Sorgen PL. Inhibition of Pyk2 and Src activity improves Cx43 gap junction intercellular communication. J Mol Cell Cardiol 2020; 149:27-40. [PMID: 32956670 DOI: 10.1016/j.yjmcc.2020.09.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 11/24/2022]
Abstract
Identification of proteins that interact with Cx43 has been instrumental in the understanding of gap junction (GJ) regulation. An in vitro phosphorylation screen identified that Protein tyrosine kinase 2 beta (Pyk2) phosphorylated purified Cx43CT and this led us to characterize the impact of this phosphorylation on Cx43 function. Mass spectrometry identified Pyk2 phosphorylates Cx43 residues Y247, Y265, Y267, and Y313. Western blot and immunofluorescence staining using HeLaCx43 cells, HEK 293 T cells, and neonatal rat ventricular myocytes (NRVMs) revealed Pyk2 can be activated by Src and active Pyk2 interacts with Cx43 at the plasma membrane. Overexpression of Pyk2 increases Cx43 phosphorylation and knock-down of Pyk2 decreases Cx43 phosphorylation, without affecting the level of active Src. In HeLaCx43 cells treated with PMA to activate Pyk2, a decrease in Cx43 GJ intercellular communication (GJIC) was observed when assayed by dye transfer. Moreover, PMA activation of Pyk2 could be inhibited by the small molecule PF4618433. This partially restored GJIC, and when paired with a Src inhibitor, returned GJIC to the no PMA control-level. The ability of Pyk2 and Src inhibitors to restore Cx43 function in the presence of PMA was also observed in NRVMs. Additionally, an animal model of myocardial infarction induced heart failure showed a higher level of active Pyk2 activity and increased interaction with Cx43 in ventricular myocytes. Src inhibitors have been used to reverse Cx43 remodeling and improve heart function after myocardial infarction; however, they alone could not fully restore proper Cx43 function. Our data suggest that Pyk2 may need to be inhibited, in addition to Src, to further (if not completely) reverse Cx43 remodeling and improve intercellular communication.
Collapse
Affiliation(s)
- Li Zheng
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Andrew J Trease
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Kenichi Katsurada
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Gaelle Spagnol
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Hanjun Li
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Wen Shi
- Division of Cardiology, Department of Internal Medicine/Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Bin Duan
- Division of Cardiology, Department of Internal Medicine/Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Kaushik P Patel
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Paul L Sorgen
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
25
|
Li J, Li B, Bai F, Ma Y, Liu N, Liu Y, Wang Y, Liu Q. Metformin therapy confers cardioprotection against the remodeling of gap junction in tachycardia-induced atrial fibrillation dog model. Life Sci 2020; 254:117759. [PMID: 32389830 DOI: 10.1016/j.lfs.2020.117759] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 04/23/2020] [Accepted: 05/04/2020] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Metformin, introduced in 1957, is widely used as an anti-diabetic drug and has considerable benefits in cardiovascular disease reportedly, dependent or independent on its glucose-lowering effects. Aim of this study was to investigate the effect of metformin on gap junction and the inducibility of AF. METHODS Beagle dogs were subjected to acute or chronic pacing at right atrial appendage by a pacemaker to develop an AF model and electrophysiological parameters were measured. In vitro study, a cell fast pacing model was developed by CardioExcyte 96. We performed Western blot, histology immunohistochemical staining and electron microscopy to detect the effect of metformin. RESULTS In chronic AF model, the inducibility and duration of AF increased obviously after pacing for 6 weeks compared with sham-operated group (Inducibility, 3.33 ± 5.77 vs. 85.33 ± 7.89%, P<0.0001; Duration, 0.8 ± 0.84 vs. 11 ± 2.67 ms, P<0.0001). Effective refractory periods (ERP) decreased at left and right left atrium and atrial appendages compared with sham-operated group (123.95 ± 6.57 vs. 89.96 ± 7.39 ms P<0.0001). Metformin attenuated the pacing-induced increase in EPR (89.96 ± 7.39 vs. 105.83 ± 7.45 ms, P<0.05), AF inducibility and AF duration (Inducibility, 85.33 ± 7.89 vs. 64.17 ± 7.36%, Duration, 11 ± 2.67 vs. 8.62 ± 1.15 ms, P<0.05). The expression of Cx43 shows a significant downregulation(about 38%, P<0.001) after chronic pacing and treating with metformin could alleviate this decrease(P<0.01). However, the effect of metformin in acute pacing model is limited. The immunohistochemical staining of cardiac tissue also shown that there is more lateralized Cx43 under pacing condition (87.67 ± 2.52 vs. 60.8 ± 9.13%, P<0.005). These pacing-induced lateralize Cx43 could be alleviated by the metformin (48.4 ± 8.62 vs. 60.8 ± 9.13%, P<0.05). Additionally, metformin could affect the interactions of ZO-1 with p-Src/Cx43 via decrease the abnormal cAMP level after pacing (84.04 ± 4.58 vs. 69.34 ± 4.5 nmol/L, P<0.001). CONCLUSIONS Metformin could alleviate the vulnerability of AF and attenuate the downregulation of gap junction under pacing condition via AMPK pathway and decreasing the P-Src level.
Collapse
Affiliation(s)
- Jiayi Li
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Biao Li
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Fan Bai
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yinxu Ma
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Na Liu
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yaozhong Liu
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yibo Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiming Liu
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
| |
Collapse
|
26
|
High hydrostatic pressure induces atrial electrical remodeling through angiotensin upregulation mediating FAK/Src pathway activation. J Mol Cell Cardiol 2020; 140:10-21. [PMID: 32006532 DOI: 10.1016/j.yjmcc.2020.01.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 01/15/2020] [Accepted: 01/27/2020] [Indexed: 01/02/2023]
Abstract
Hypertension is an independent risk factor for atrial fibrillation (AF), although its specific mechanisms remain unclear. Previous research has been focused on cyclic stretch, ignoring the role of high hydrostatic pressure. The present study aimed to explore the effect of high hydrostatic pressure stimulation on electrical remodeling in atrial myocytes and its potential signaling pathways. Experiments were performed on left atrial appendages from patients with chronic AF or sinus rhythm, spontaneously hypertensive rats (SHRs) treated with or without valsartan (10 mg/kg/day) and HL-1 cells were exposed to high hydrostatic pressure using a self-developed device. Whole-cell patch-clamp recordings and western blots demonstrated that the amplitudes of ICa,L, Ito, and IKur were reduced in AF patients with corresponding changes in protein expression. Angiotensin protein levels increased and Ang1-7 decreased, while focal adhesion kinase (FAK) and Src kinase were enhanced in atrial tissue from AF patients and SHRs. After rapid atrial pacing, AF inducibility in SHR was significantly higher, accompanied by a decrease in ICa,L, upregulation of Ito and IKur, and a shortened action potential duration. Angiotensin upregulation and FAK/Src activation in SHR were inhibited by angiotensin type 1 receptor inhibitor valsartan, thus, preventing electrical remodeling and reducing AF susceptibility. These results were verified in HL-1 cells treated with high hydrostatic pressure, and demonstrated that electrical remodeling regulated by the FAK-Src pathway could be modulated by valsartan. The present study indicated that high hydrostatic pressure stimulation increases AF susceptibility by activating the renin-angiotensin system and FAK-Src pathway in atrial myocytes.
Collapse
|
27
|
Niu F, Liao K, Hu G, Sil S, Callen S, Guo ML, Yang L, Buch S. Cocaine-induced release of CXCL10 from pericytes regulates monocyte transmigration into the CNS. J Cell Biol 2019; 218:700-721. [PMID: 30626719 PMCID: PMC6363463 DOI: 10.1083/jcb.201712011] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 08/28/2018] [Accepted: 11/08/2018] [Indexed: 12/15/2022] Open
Abstract
Cocaine is known to facilitate the transmigration of inflammatory leukocytes into the brain, an important mechanism underlying neuroinflammation. Pericytes are well-recognized as important constituents of the blood-brain barrier (BBB), playing a key role in maintaining barrier integrity. In the present study, we demonstrate for the first time that exposure of human brain vascular pericytes to cocaine results in enhanced secretion of CXCL10, leading, in turn, to increased monocyte transmigration across the BBB both in vitro and in vivo. This process involved translocation of σ-1 receptor (σ-1R) and interaction of σ-1R with c-Src kinase, leading to activation of the Src-PDGFR-β-NF-κB pathway. These findings imply a novel role for pericytes as a source of CXCL10 in the pericyte-monocyte cross talk in cocaine-mediated neuroinflammation, underpinning their role as active components of the innate immune responses.
Collapse
Affiliation(s)
- Fang Niu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE
| | - Ke Liao
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE
| | - Guoku Hu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE
| | - Susmita Sil
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE
| | - Shannon Callen
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE
| | - Ming-Lei Guo
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE
| | - Lu Yang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE
| |
Collapse
|
28
|
Yu X, He W, Xie J, He B, Luo D, Wang X, Jiang H, Lu Z. Selective ablation of ligament of Marshall inhibits ventricular arrhythmias during acute myocardial infarction: Possible mechanisms. J Cardiovasc Electrophysiol 2018; 30:374-382. [PMID: 30516302 DOI: 10.1111/jce.13802] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/20/2018] [Accepted: 11/27/2018] [Indexed: 11/30/2022]
Affiliation(s)
- Xiaomei Yu
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhan China
- Cardiovascular Research Institute, Wuhan UniversityWuhan China
- Hubei Key Laboratory of CardiologyWuhan China
| | - Wenbo He
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhan China
- Cardiovascular Research Institute, Wuhan UniversityWuhan China
- Hubei Key Laboratory of CardiologyWuhan China
| | - Jing Xie
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhan China
- Cardiovascular Research Institute, Wuhan UniversityWuhan China
- Hubei Key Laboratory of CardiologyWuhan China
| | - Bo He
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhan China
- Cardiovascular Research Institute, Wuhan UniversityWuhan China
- Hubei Key Laboratory of CardiologyWuhan China
| | - Da Luo
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhan China
- Cardiovascular Research Institute, Wuhan UniversityWuhan China
- Hubei Key Laboratory of CardiologyWuhan China
| | - Xiaoying Wang
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhan China
- Cardiovascular Research Institute, Wuhan UniversityWuhan China
- Hubei Key Laboratory of CardiologyWuhan China
| | - Hong Jiang
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhan China
- Cardiovascular Research Institute, Wuhan UniversityWuhan China
- Hubei Key Laboratory of CardiologyWuhan China
| | - Zhibing Lu
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhan China
- Cardiovascular Research Institute, Wuhan UniversityWuhan China
- Hubei Key Laboratory of CardiologyWuhan China
| |
Collapse
|
29
|
Zheng L, Li H, Cannon A, Trease AJ, Spagnol G, Zheng H, Radio S, Patel K, Batra S, Sorgen PL. Phosphorylation of Cx43 residue Y313 by Src contributes to blocking the interaction with Drebrin and disassembling gap junctions. J Mol Cell Cardiol 2018; 126:36-49. [PMID: 30448479 DOI: 10.1016/j.yjmcc.2018.11.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 10/26/2018] [Accepted: 11/13/2018] [Indexed: 01/21/2023]
Abstract
Phosphorylation regulates connexin43 (Cx43) function from assembly/disassembly to coupling at the plaque. Src is a tyrosine kinase known to both phosphorylate Cx43 (residues Y247 and Y265) and affect gap junction intercellular communication. However, the Cx43 carboxyl-terminal (CT) domain contains additional tyrosine residues and proteomic discovery mass spectrometry data identified Y313 as a potential phosphorylation target. Based upon the study of Lin et al. (2001) J. Cell Biol., which still observed tyrosine phosphorylation by Src when using a Cx43 Y247/Y265F mutant, we addressed the possibility of Y313 phosphorylation (pY313) by Src. In vitro Src phosphorylation of purified Cx43CT followed by mass spectroscopy revealed that Src also phosphorylates Y313. This observation was confirmed by repeating the in vitro phosphorylation using different combinations of Cx43CT Y → F mutants and a general anti-pTyr antibody. Next, a phospho-specific antibody was generated to help characterize the importance of pY313. We established an in cyto experimental system by stably expressing Cx43 WT and mutants (Y247F, Y265F, Y313F, Y247/265F, Y247/313F, Y265/313F, or Y247/265/313F) in Cx43-deficient HeLa cells. Cx43 WT and mutants, in the absence of v-Src, localized to the plasma membrane and formed gap junctions. When v-Src was over-expressed, Cx43 WT localized intracellularly, while all of the single and double mutants remained able to form plaques and transfer dye, albeit variable in number and amount, respectively. Complete Src-resistance was only achieved with the Cx43 Y247/265/313F mutant. Furthermore, Cx43 Y265F inhibited the ability of v-Src to phosphorylate Y247 and Y313 as well as phosphorylation at both Y265 and Y313 was necessary to inhibit the Cx43 interaction with Drebrin. Finally, we observed in diseased cardiac tissue, in which Src is active, an increase in intercalated disc and intracellular localized Cx43 pY313.
Collapse
Affiliation(s)
- Li Zheng
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Hanjun Li
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Andrew Cannon
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Andrew J Trease
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Gaelle Spagnol
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Hong Zheng
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Stanley Radio
- Department of Pathology & Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Kaushik Patel
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Surinder Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Paul L Sorgen
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
30
|
Wang L, Schlagal CR, Gao J, Hao Y, Dunn TJ, McGrath EL, Labastida JA, Yu Y, Feng SQ, Liu SY, Wu P. Oligodendrocyte differentiation from human neural stem cells: A novel role for c-Src. Neurochem Int 2018; 120:21-32. [PMID: 30041015 DOI: 10.1016/j.neuint.2018.07.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/28/2018] [Accepted: 07/18/2018] [Indexed: 01/06/2023]
Abstract
Human neural stem cells (hNSCs) can differentiate into an oligodendrocyte lineage to facilitate remyelination in patients. Molecular mechanisms underlying oligodendrocyte fate specification remains unknown, hindering the development of efficient methods to generate oligodendrocytes from hNSCs. We have found that Neurobasal-A medium (NB) is capable of inducing hNSCs to oligodendrocyte progenitor cells (OPCs). We identified several signaling molecules are altered after cultivation in NB medium, including Akt, ERK1/2 and c-Src. While sustained activation of Akt and ERK1/2 during both NB induction and subsequent differentiation was required for OPC differentiation, c-Src phosphorylation was increased temporally during the period of NB induction. Both pharmacological inhibition and RNA interference confirmed that a transient elevation of phospho-c-Src is critical for OPC induction. Furthermore, inactivation of c-Src inhibited phosphorylation of Akt and ERK1/2. In summary, we identified a novel and critical role of c-Src in guiding hNSC differentiation to an oligodendrocyte lineage.
Collapse
Affiliation(s)
- Le Wang
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555, USA; Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Er Rd, Yuexiu Qu, Guangzhou Shi, Guangdong Sheng, China
| | - Caitlin R Schlagal
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555, USA
| | - Junling Gao
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555, USA
| | - Yan Hao
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555, USA; Department of Orthopedics, Tianjin Medical University General Hospital, 154 Anshan Rd, Heping Qu, 300051, China
| | - Tiffany J Dunn
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555, USA
| | - Erica L McGrath
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555, USA
| | - Javier Allende Labastida
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555, USA
| | - Yongjia Yu
- Department of Radiation Oncology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555, USA
| | - Shi-Qing Feng
- Department of Orthopedics, Tianjin Medical University General Hospital, 154 Anshan Rd, Heping Qu, 300051, China
| | - Shao-Yu Liu
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Er Rd, Yuexiu Qu, Guangzhou Shi, Guangdong Sheng, China
| | - Ping Wu
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555, USA.
| |
Collapse
|
31
|
Jiang W, Chen C, Huo J, Lu D, Jiang Z, Geng J, Xu H, Shan Q. Comparison between renal denervation and metoprolol on the susceptibility of ventricular arrhythmias in rats with myocardial infarction. Sci Rep 2018; 8:10206. [PMID: 29976952 PMCID: PMC6033884 DOI: 10.1038/s41598-018-28562-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 06/25/2018] [Indexed: 12/13/2022] Open
Abstract
Ventricular arrhythmias (VAs) are the leading cause of sudden cardiac death in patients with myocardial infarction (MI). We sought to compare effects of renal denervation (RDN) and metoprolol on VAs after MI. Fifty-four male Sprague-Dawley rats underwent ligation of left anterior descending coronary artery to induce MI, while 6 rats served as Control. Metoprolol was given 20 mg/kg/day for 5 weeks after MI surgery. RDN/Sham-RDN procedure was performed at 1 week after MI. At 5 weeks after MI, electrical programmed stimulation (EPS) was performed in all groups for evaluation of VAs. After EPS, heart and kidneys were harvested. Compared with MI group, RDN and metoprolol significantly decreased the incidence of VAs, and RDN is superior to metoprolol. Compared with metoprolol group, Masson staining showed that RDN significantly reduced the myocardial fibrosis. Both RDN and metoprolol decreased the protein expression of connexin43 (Cx43) compared with MI group, while only RDN lighted this decrease remarkably. Immunohistochemical staining of Tyrosine hydroxylase (TH) and growth associated protein 43 (GAP43) revealed that RDN and metoprolol had similar effect on reducing densities of sympathetic nerve in infarction border zone. According to this study, RDN is more effective in reducing VAs than metoprolol in ischemic cardiomyopathy model.
Collapse
Affiliation(s)
- Wanying Jiang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Chu Chen
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Junyu Huo
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Dasheng Lu
- Department of Cardiology, The Second Affiliated Hospital of Wannan Medical College, Wuhu, 241000, China
| | - Zhixin Jiang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Jie Geng
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Hai Xu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Qijun Shan
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
32
|
Abstract
BACKGROUND Downregulated sodium currents in heart failure (HF) have been linked to increased arrhythmic risk. Reduced expression of the messenger RNA (mRNA)-stabilizing protein HuR (also known as ELAVL1) may be responsible for the downregulation of sodium channel gene SCN5A mRNA. OBJECTIVE The purpose of this article was to investigate whether HuR regulates SCN5A mRNA expression and whether manipulation of HuR benefits arrhythmia control in HF. METHODS Quantitative real-time reverse-transcriptase polymerase chain reaction was used to investigate the expression of SCN5A. Optical mapping of the intact heart was adopted to study the effects of HuR on the conduction velocity and action potential upstroke in mice with myocardial infarct and HF after injection of AAV9 viral particles carrying HuR. RESULTS HuR was associated with SCN5A mRNA in cardiomyocytes, and expression of HuR was downregulated in failing hearts. The association of HuR and SCN5A mRNA protected SCN5A mRNA from decay. Injection of AAV9 viral particles carrying HuR increased SCN5A expression in mouse heart tissues after MI. Optical mapping of the intact heart demonstrated that overexpression of HuR improved action potential upstroke and conduction velocity in the infarct border zone, which reduced the risk of reentrant arrhythmia after MI. CONCLUSION Our data indicate that HuR is an important RNA-binding protein in maintaining SCN5A mRNA abundance in cardiomyocytes. Reduced expression of HuR may be at least partially responsible for the downregulation of SCN5A mRNA expression in ischemic HF. Overexpression of HuR may rescue decreased SCN5A expression and reduce arrhythmic risk in HF. Increasing mRNA stability to increase ion channel currents may correct a fundamental defect in HF and represent a new paradigm in antiarrhythmic therapy.
Collapse
|
33
|
Wang G, Bi Y, Liu X, Wei M, Zhang Q. Upregulation of connexin43 by glucose deprivation in H9c2 cells via the extracellular signal‑regulated kinase/mitogen‑activated protein kinase signaling pathway. Mol Med Rep 2017; 17:729-734. [PMID: 29115504 PMCID: PMC5780149 DOI: 10.3892/mmr.2017.7967] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 01/16/2017] [Indexed: 12/23/2022] Open
Abstract
Cardiac connexin43 (Cx43) serves an essential role in maintaining the functional integrity of the heart. The present study investigated the effect of glucose deprivation (GD) on Cx43 protein expression levels in H9c2 cells, and demonstrated that following 2 h GD, Cx43 protein expression levels in H9c2 cells increased by ~68%. In addition, GD activated the extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) signaling pathway, which regulated the expression levels of cardiac Cx43. A MAPK inhibitor and U0126, an ERK inhibitor, abolished the effects of GD on Cx43 expression levels. Under GD, the protein expression levels of Beclin-1, p62 and LC3 were augmented, and were decreased in the presence of ERK inhibitor or siRNA-ERK. In addition, H9c2 cells exposed to GD exhibited marked increase in LDH release and decreased MTT reduction activity, all of which were not significantly reversed by U0126 treatment. Therefore, the ERK/MAPK signaling pathway may be involved in elevating cardiac Cx43 expression levels under GD in H9c2 cells.
Collapse
Affiliation(s)
- Guangyu Wang
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Yaguang Bi
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Xiangdong Liu
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Meng Wei
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Qingyong Zhang
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| |
Collapse
|
34
|
Leybaert L, Lampe PD, Dhein S, Kwak BR, Ferdinandy P, Beyer EC, Laird DW, Naus CC, Green CR, Schulz R. Connexins in Cardiovascular and Neurovascular Health and Disease: Pharmacological Implications. Pharmacol Rev 2017; 69:396-478. [PMID: 28931622 PMCID: PMC5612248 DOI: 10.1124/pr.115.012062] [Citation(s) in RCA: 175] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Connexins are ubiquitous channel forming proteins that assemble as plasma membrane hemichannels and as intercellular gap junction channels that directly connect cells. In the heart, gap junction channels electrically connect myocytes and specialized conductive tissues to coordinate the atrial and ventricular contraction/relaxation cycles and pump function. In blood vessels, these channels facilitate long-distance endothelial cell communication, synchronize smooth muscle cell contraction, and support endothelial-smooth muscle cell communication. In the central nervous system they form cellular syncytia and coordinate neural function. Gap junction channels are normally open and hemichannels are normally closed, but pathologic conditions may restrict gap junction communication and promote hemichannel opening, thereby disturbing a delicate cellular communication balance. Until recently, most connexin-targeting agents exhibited little specificity and several off-target effects. Recent work with peptide-based approaches has demonstrated improved specificity and opened avenues for a more rational approach toward independently modulating the function of gap junctions and hemichannels. We here review the role of connexins and their channels in cardiovascular and neurovascular health and disease, focusing on crucial regulatory aspects and identification of potential targets to modify their function. We conclude that peptide-based investigations have raised several new opportunities for interfering with connexins and their channels that may soon allow preservation of gap junction communication, inhibition of hemichannel opening, and mitigation of inflammatory signaling.
Collapse
Affiliation(s)
- Luc Leybaert
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Paul D Lampe
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Stefan Dhein
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Brenda R Kwak
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Peter Ferdinandy
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Eric C Beyer
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Dale W Laird
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Christian C Naus
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Colin R Green
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Rainer Schulz
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| |
Collapse
|
35
|
Effect of Wenxin Granules on Gap Junction and MiR-1 in Rats with Myocardial Infarction. BIOMED RESEARCH INTERNATIONAL 2017; 2017:3495021. [PMID: 29094045 PMCID: PMC5637836 DOI: 10.1155/2017/3495021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 08/20/2017] [Indexed: 01/09/2023]
Abstract
Myocardial infarction (MI) patients are at high risk of potential lethal arrhythmia. Gap junction and microRNA-1 (miR-1) are both arrhythmia generating conditions. The present study investigated whether Wenxin Granules (Wenxin-Keli, WXKL) could prevent potential lethal arrhythmia by improving gap junctions and miR-1 following MI. Male Sprague-Dawley rats were divided randomly into control, model, metoprolol, low dose WXKL, and high dose WXKL groups. The MI rat model was created by coronary artery ligation. Treatments were administrated intragastrically to the rats for 4 weeks. Conventional transmission electron microscopy was performed to observe the ultrastructure of gap junctions. Quantitative real-time PCR and western blotting were used to detect the expression of miR-1, protein kinase C (PKC), and related proteins. Additionally, a programmatic electrophysiological stimulation test was performed to detect the ventricular fibrillation threshold (VFT). WXKL protected the ultrastructure of the gap junctions and their constituent Cx43 by regulating miR-1 and PKC mediated signal transduction and increased the VFT significantly in the rat MI model. The results suggested that WXKL is an effective alternative medicine to prevent potentially lethal arrhythmia following MI.
Collapse
|
36
|
Yang Y, Yang G, Du H, Dong N, Yu B. Bioinformatics analysis of key genes and signaling pathways associated with myocardial infarction following telomerase activation. Mol Med Rep 2017; 16:2915-2924. [PMID: 28713962 DOI: 10.3892/mmr.2017.6938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 05/03/2017] [Indexed: 11/05/2022] Open
Abstract
The present study aimed to identify key genes and signaling pathways associated with myocardial infarction (MI) following telomerase activation, and investigate the possible underlying molecular mechanisms involved in this process. Array data of GSE62973 was downloaded, including 11 samples from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were analyzed in infarct vs. control, infarct + telomerase vs. control, and infarct + telomerase vs. infarct with the Linear Models for Microarray and RNA‑Seq Data package. Gene Ontology annotation and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis were performed for upregulated and downregulated genes by the Database for Annotation, Visualization and Integrated Discovery. Sub network modules of 3 protein‑protein interaction (PPI) networks were analyzed by Clustering with Overlapping Neighbourhood Expansion, and genes associated with telomerase were analyzed. Proto‑oncogene tyrosine‑protein kinase Src (Src) and proto‑oncogene tyrosine‑protein kinase Fyn (Fyn) were the hub nodes of the greatest degree in the PPI network for the infarct + telomerase vs. control comparison group and infarct + telomerase vs. infarct comparison group, respectively. Olfactory receptor gene family associated genes, including olfactory receptor 10 were significantly enriched in the sub network modules of the 3 comparison groups. In addition, olfactory transduction was a significantly enriched pathway by downregulation of DEGs in the infarct vs. control comparison group, and was additionally a significantly enriched pathway by upregulated DEGs in infarct + telomerase vs. infarct comparison group. Olfactory transduction was a significant pathway enriched by genes associated with telomerase. Telomerase activation may serve an important role in MI, in part, via the regulation of Src, Fyn and olfactory receptor family associated genes.
Collapse
Affiliation(s)
- Yi Yang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Guang Yang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Hongwei Du
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Nana Dong
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Bo Yu
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
37
|
Wang GY, Bi YG, Liu XD, Han JF, Wei M, Zhang QY. Upregulation of connexin 43 and apoptosis‑associated protein expression by high glucose in H9c2 cells was improved by resveratrol via the autophagy signaling pathway. Mol Med Rep 2017; 16:3262-3268. [PMID: 28713934 PMCID: PMC5547968 DOI: 10.3892/mmr.2017.6953] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 05/05/2017] [Indexed: 12/22/2022] Open
Abstract
The expression of connexin43 (Cx43) protein and the apoptotic rate of cardiomyocytes may be regulated by autophagy and associated with diabetic cardiomyopathy. It is possible that the beneficial effect of resveratrol on diabetic cardiomyocytes occurs via the autophagy pathway. However, it remains to be elucidated whether resveratrol treatment may attenuate the hyperglycemia-induced remodeling of Cx43 and apoptosis through the regulation of autophagy. H9c2 cardiac cells were incubated with 5.5 and 25 mM glucose, 25 mM glucose with chloroquine (50 µM), and 25 mM glucose with or without resveratrol (10, 25 µM) for 24 h. H9c2 cells were also incubated with 25 µM resveratrol in the presence of chloroquine (50 µM). Cell viability was determined using an MTT cell survival assay. Cytotoxicity was determined by quantification of the release of lactate dehydrogenase. The expression of Cx43, autophagic maker proteins [Beclin-1, p62 and microtubule-associated protein 1 light chain 3 (LC3)], apoptosis maker proteins (B-cell lymphoma-2 and Bcl-2 associated X protein), AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) were determined using western blotting. Resveratrol treatment led to reduced Cx43 expression levels compared with the 25 mM glucose treatment and significantly reduced the expression of apoptosis-associated proteins in H9c2 cells under hyperglycemic conditions. Autophagy was increased as indicated by the upregulation of Beclin-1 and p62 expression and the reduced LC3-II/LC3-I ratio. AMPK expression was increased, whereas mTOR expression was reduced in the resveratrol treatment groups. Treatment with chloroquine reversed effect of resveratrol. In conclusion, administration resveratrol may protect H9c2 cells against hyperglycemia-induced Cx43 upregulation and apoptosis, which may be mediated through the induction of the autophagy signaling pathway.
Collapse
Affiliation(s)
- Guang-Yu Wang
- Department of Cardiology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, P.R. China
| | - Ya-Guang Bi
- Department of Cardiology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, P.R. China
| | - Xiang-Dong Liu
- Department of Cardiology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, P.R. China
| | - Jun-Feng Han
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, P.R. China
| | - Meng Wei
- Department of Cardiology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, P.R. China
| | - Qing-Yong Zhang
- Department of Cardiology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, P.R. China
| |
Collapse
|
38
|
Yin J, Wang Y, Hu H, Li X, Xue M, Cheng W, Wang Y, Li X, Yang N, Shi Y, Yan S. P2X 7 receptor inhibition attenuated sympathetic nerve sprouting after myocardial infarction via the NLRP3/IL-1β pathway. J Cell Mol Med 2017; 21:2695-2710. [PMID: 28470940 PMCID: PMC5661108 DOI: 10.1111/jcmm.13185] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 02/21/2017] [Indexed: 01/08/2023] Open
Abstract
Mounting evidence supports the hypothesis that inflammation modulates sympathetic sprouting after myocardial infarction (MI). The myeloid P2X7 signal has been shown to activate the nucleotide-binding and oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome, a master regulator of inflammation. We investigated whether P2X7 signal participated in the pathogenesis of sympathetic reinnervation after MI, and whether NLRP3/interleukin-1β (IL-1β) axis is involved in the process. We explored the relationship between P2X7 receptor (P2X7 R) and IL-1β in the heart tissue of lipopolysaccharide (LPS)-primed naive rats. 3'-O-(4-benzoyl) benzoyl adenosine 5'-triphosphate (BzATP), a P2X7 R agonist, induced caspase-1 activation and mature IL-1β release, which was further neutralized by a NLRP3 inhibitor (16673-34-0). MI was induced by coronary artery ligation. Following infarction, a marked increase in P2X7 R was localized within infiltrated macrophages and observed in parallel with an up-regulation of NLRP3 inflammasome levels and the release of IL-1β in the left ventricle. The administration of A-740003 (a P2X7 R antagonist) significantly prevented the NLRP3/IL-1β increase. A-740003 and/or Anakinra (an IL-1 receptor antagonist) significantly reduced macrophage infiltration as well as macrophage-based IL-1β and NGF (nerve growth factor) production and eventually blunted sympathetic hyperinnervation, as assessed by the immunofluorescence of tyrosine hydroxylase (TH) and growth-associated protein 43 (GAP 43). Moreover, the use of Anakinra partly attenuated sympathetic sprouting. This indicated that the effect of P2X7 on neural remodelling was mediated at least partially by IL-1β. The arrhythmia score of programmed electric stimulation was in accordance with the degree of sympathetic hyperinnervation. In vitro studies showed that BzATP up-regulated secretion of nerve growth factor (NGF) in M1 macrophages via IL-1β. Together, these data indicate that P2X7 R contributes to neural and cardiac remodelling, at least partly mediated by NLRP3/IL-1β axis. Therapeutic interventions targeting P2X7 signal may be a novel approach to ameliorate arrhythmia following MI.
Collapse
Affiliation(s)
- Jie Yin
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Yu Wang
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Hesheng Hu
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Xiaolu Li
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Mei Xue
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Wenjuan Cheng
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Ye Wang
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Xinran Li
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Na Yang
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Yugen Shi
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Suhua Yan
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| |
Collapse
|
39
|
Hood AR, Ai X, Pogwizd SM. Regulation of cardiac gap junctions by protein phosphatases. J Mol Cell Cardiol 2017; 107:52-57. [PMID: 28478048 DOI: 10.1016/j.yjmcc.2017.05.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 04/13/2017] [Accepted: 05/02/2017] [Indexed: 01/16/2023]
Abstract
Sufficient connexin-mediated intercellular coupling is critical to maintain gap junctional communication for proper cardiac function. Alterations in connexin phosphorylation state, particularly dephosphorylation of connexin 43 (Cx43), may impact cell coupling and conduction in disease states. Cx43 dephosphorylation may be carried out by protein phosphatase activity. Here, we present an overview of the key phosphatases known to interact with Cx43 or modulators of Cx43, as well as some possible therapeutic targets to regulate phosphatase activity in the heart.
Collapse
Affiliation(s)
- Ashleigh R Hood
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Xun Ai
- Department of Biophysics and Physiology, Rush University, Chicago, IL, United States
| | - Steven M Pogwizd
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, United States; Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States.
| |
Collapse
|
40
|
Bi Y, Wang G, Liu X, Wei M, Zhang Q. Low-after-high glucose down-regulated Cx43 in H9c2 cells by autophagy activation via cross-regulation by the PI3K/Akt/mTOR and MEK/ERK 1/2 signal pathways. Endocrine 2017; 56:336-345. [PMID: 28181145 DOI: 10.1007/s12020-017-1251-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 01/30/2017] [Indexed: 12/19/2022]
Abstract
PURPOSE Hypoglycemia in diabetes is a strong predictor of cardiovascular events. High-glucose have been reported to alter connexin43 expression and to promote autophagy in cardiomyocytes. We investigated whether low-after-high glucose would influence connexin43 expression and autophagy in H9c2 cells. METHODS H9c2 cells were incubated in 33.3 mM glucose for 24 h followed by 2.5 mM glucose for 2, 4, 6, or 12 h with or without chloroquine (autophagy inhibitor), U0126 (MEK1/2 inhibitor) or LY294002 (PI3K inhibitor). Cells incubated in 5.5, 33.3, or 2.5 mM glucose with or without inhibitors and in the presence of mannitol were used as controls. Protein expression was assayed by western blot, apoptosis was assayed by flow cytometry, cell proliferation was determined by MTT assays, and cytotoxicity was assayed by lactate dehydrogenase measurement. RESULTS Cytotoxicity and early apoptosis were increased and cell proliferation was decreased after exposure to low-after-high glucose, and these results were reversed by chloroquine and U0126 but were aggravated by LY294002. Connexin43 expression was downregulated in a time-dependent manner and was accompanied by upregulated expression of LC3-II, Beclin-1, p62, p-Akt, p-mTOR, and p-ERK1/2. Chloroquine suppressed autophagy and reversed the downregulation of connexin43. U0126 inhibited ERK activation and decreased autophagy proteins expression but increased connexin43 expression. LY294002 suppressed p-Akt, activated autophagy, and decreased connexin43 expression. Interestingly, MEK1/2 inhibition also increased p-Akt expression, but inhibition of PI3K led to p-ERK downregulation. CONCLUSION Culturing H9c2 cells under low-after-high glucose downregulated connexin43 by promoting autophagy through a mechanism involving the PI3K/Akt/mTOR and MEK/ERK1/2 signaling pathways.
Collapse
Affiliation(s)
- Yaguang Bi
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Guangyu Wang
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiangdong Liu
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Meng Wei
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Qingyong Zhang
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| |
Collapse
|
41
|
Wang GY, Bi YG, Liu XD, Zhao Y, Han JF, Wei M, Zhang QY. Autophagy was involved in the protective effect of metformin on hyperglycemia-induced cardiomyocyte apoptosis and Connexin43 downregulation in H9c2 cells. Int J Med Sci 2017; 14:698-704. [PMID: 28824303 PMCID: PMC5562122 DOI: 10.7150/ijms.19800] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 04/23/2017] [Indexed: 01/21/2023] Open
Abstract
Background: Increased cardiomyocyte apoptosis under high glucose condition contributes to diabetic cardiomyopathy. Degradation of cardiac Connexin43 (Cx43) has been associated with cardiac dysfunction in diabetic heart. Clinical and experimental studies suggested that metformin (Met) exhibits cardioprotective properties against diabetes. Aim: The aim of this study was to investigate the effect and underlying signaling mechanisms of metformin on apoptosis and Cx43 expression in H9c2 cells presenting with hyperglycemia conditions. Methods: In the present study, H9c2 cardiac cells were incubated with 5.5 mM glucose, 33.3 mM glucose, 33.3 mM glucose with metformin at two dose (100 μM, 1 mM) for 96 hours, and 1 mM metformin with chloroquine (50 μM) in 33.3 mM glucose medium. Cell viability was determined by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) cell survival assay. Cytotoxicity was determined by the release of lactate dehydrogenase (LDH). The expression of Cx43, autophagic maker protein (LAMP-1, Beclin-1, p62 and LC3) and apoptosis maker protein (Bcl-2 and Bax) were determined by western blot. Results: The results showed that high glucose increased apoptosis and decreased Cx43 expression. Interestingly, metformin attenuated hyperglycemia-increased apoptosis and restored Cx43 expression. Moreover, this treatment caused autophagy as well, which indicated by up-regulation of autophagy-related proteins LAMP-1, Beclin-1, p62 and reduction in the ratio of LC3-II/LC3-I. In addition, administration autophagy inhibitor chloroquine (CQ) did not block the effect of metformin on Cx43 expression while increasing Cx43 content, together with an increased apoptosis. Conclusion: Administration metformin can protect the H9c2 cells against hyperglycemia-induced apoptosis and Cx43 down-regulation, in part, mediated through the induction of autophagy pathway.
Collapse
Affiliation(s)
- Guang-Yu Wang
- Affiliation: Department of Cardiology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ya-Guang Bi
- Affiliation: Department of Cardiology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiang-Dong Liu
- Affiliation: Department of Cardiology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Zhao
- Affiliation: Department of Cardiology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jun-Feng Han
- Affiliation: Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Meng Wei
- Affiliation: Department of Cardiology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Qing-Yong Zhang
- Affiliation: Department of Cardiology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
42
|
Meens MJ, Kwak BR, Duffy HS. Role of connexins and pannexins in cardiovascular physiology. Cell Mol Life Sci 2015; 72:2779-92. [PMID: 26091747 PMCID: PMC11113959 DOI: 10.1007/s00018-015-1959-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 06/11/2015] [Indexed: 12/26/2022]
Abstract
Connexins and pannexins form connexons, pannexons and membrane channels, which are critically involved in many aspects of cardiovascular physiology. For that reason, a vast number of studies have addressed the role of connexins and pannexins in the arterial and venous systems as well as in the heart. Moreover, a role for connexins in lymphatics has recently also been suggested. This review provides an overview of the current knowledge regarding the involvement of connexins and pannexins in cardiovascular physiology.
Collapse
Affiliation(s)
- Merlijn J. Meens
- Department of Pathology and Immunology, University of Geneva, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland
- Department of Medical Specializations-Cardiology, University of Geneva, Geneva, Switzerland
| | - Brenda R. Kwak
- Department of Pathology and Immunology, University of Geneva, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland
- Department of Medical Specializations-Cardiology, University of Geneva, Geneva, Switzerland
| | | |
Collapse
|
43
|
Fradley MG, Pinilla-Ibarz J. Arrhythmic complications of tyrosine kinase inhibitors. Future Cardiol 2015; 11:395-9. [DOI: 10.2217/fca.15.42] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Michael G Fradley
- Division of Cardiovascular Medicine, University of South Florida, Morsani College of Medicine, 2 Tampa General Circle, Tampa, FL 33606, USA
| | - Javier Pinilla-Ibarz
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| |
Collapse
|
44
|
Can we protect from malignant arrhythmias by modulation of cardiac cell-to-cell coupling? J Electrocardiol 2015; 48:434-40. [PMID: 25732099 DOI: 10.1016/j.jelectrocard.2015.02.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Indexed: 01/04/2023]
Abstract
Defects in intercellular coupling in the heart play a key role in the initiation and persistence of malignant arrhythmias. Such disorders result from abnormal expression and distribution of connexins, the major constituents of cardiac gap junction channels. The alterations of myocardial connexin are well established as a consistent feature of both human and animal heart disease and aging. Following these facts, the modulation of connexin mediated intercellular coupling is suggested as a new antiarrhythmic approach. This review provides recent data supporting this concept. It can be challenging for the development of new antiarrhythmic drugs. Moreover, findings point out the implication of some endogenous compounds in protection from life-threatening arrhythmias via preservation of myocardial connexin.
Collapse
|
45
|
Li H, Spagnol G, Naslavsky N, Caplan S, Sorgen PL. TC-PTP directly interacts with connexin43 to regulate gap junction intercellular communication. J Cell Sci 2014; 127:3269-79. [PMID: 24849651 DOI: 10.1242/jcs.145193] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Protein kinases have long been reported to regulate connexins; however, little is known about the involvement of phosphatases in the modulation of intercellular communication through gap junctions and the subsequent downstream effects on cellular processes. Here, we identify an interaction between the T-cell protein tyrosine phosphatase (TC-PTP, officially known as PTPN2) and the carboxyl terminus of connexin43 (Cx43, officially known as GJA1). Two cell lines, normal rat kidney (NRK) cells endogenously expressing Cx43 and an NRK-derived cell line expressing v-Src with temperature-sensitive activity, were used to demonstrate that EGF and v-Src stimulation, respectively, induced TC-PTP to colocalize with Cx43 at the plasma membrane. Cell biology experiments using phospho-specific antibodies and biophysical assays demonstrated that the interaction is direct and that TC-PTP dephosphorylates Cx43 residues Y247 and Y265, but does not affect v-Src. Transfection of TC-PTP also indirectly led to the dephosphorylation of Cx43 S368, by inactivating PKCα and PKCδ, with no effect on the phosphorylation of S279 and S282 (MAPK-dependent phosphorylation sites). Dephosphorylation maintained Cx43 gap junctions at the plaque and partially reversed the channel closure caused by v-Src-mediated phosphorylation of Cx43. Understanding dephosphorylation, along with the well-documented roles of Cx43 phosphorylation, might eventually lead to methods to modulate the regulation of gap junction channels, with potential benefits for human health.
Collapse
Affiliation(s)
- Hanjun Li
- Department of Biochemistry and Molecular Biology and the Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Gaelle Spagnol
- Department of Biochemistry and Molecular Biology and the Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Naava Naslavsky
- Department of Biochemistry and Molecular Biology and the Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Steve Caplan
- Department of Biochemistry and Molecular Biology and the Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Paul L Sorgen
- Department of Biochemistry and Molecular Biology and the Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
46
|
Mestroni L, Nguyen DT. Inhibition of proto-oncogene c-Src tyrosine kinase: toward a new antiarrhythmic strategy? J Am Coll Cardiol 2014; 63:935-7. [PMID: 24412447 DOI: 10.1016/j.jacc.2013.10.082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 10/08/2013] [Indexed: 12/26/2022]
Affiliation(s)
- Luisa Mestroni
- Division of Cardiology, University of Colorado AMC, Aurora, Colorado.
| | - Duy Thai Nguyen
- Division of Cardiology, University of Colorado AMC, Aurora, Colorado
| |
Collapse
|