1
|
Gokhan I, Blum TS, Campbell SG. Engineered heart tissue: Design considerations and the state of the art. BIOPHYSICS REVIEWS 2024; 5:021308. [PMID: 38912258 PMCID: PMC11192576 DOI: 10.1063/5.0202724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/29/2024] [Indexed: 06/25/2024]
Abstract
Originally developed more than 20 years ago, engineered heart tissue (EHT) has become an important tool in cardiovascular research for applications such as disease modeling and drug screening. Innovations in biomaterials, stem cell biology, and bioengineering, among other fields, have enabled EHT technologies to recapitulate many aspects of cardiac physiology and pathophysiology. While initial EHT designs were inspired by the isolated-trabecula culture system, current designs encompass a variety of formats, each of which have unique strengths and limitations. In this review, we describe the most common EHT formats, and then systematically evaluate each aspect of their design, emphasizing the rational selection of components for each application.
Collapse
Affiliation(s)
| | - Thomas S. Blum
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06511, USA
| | | |
Collapse
|
2
|
Qiu M, Chen J, Liu M, Nie Z, Ke M, Dong G, Zhao H, Zhou C, Zeng H, He B, Chen J, Zhuang J, Li X, Ou Y. Single-cell RNA sequencing reveals the role of mitochondrial dysfunction in the cardiogenic toxicity of perfluorooctane sulfonate in human embryonic stem cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115945. [PMID: 38183750 DOI: 10.1016/j.ecoenv.2024.115945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/17/2023] [Accepted: 01/03/2024] [Indexed: 01/08/2024]
Abstract
Perfluorooctane sulfonate (PFOS), an endocrine-disrupting chemical pollutant, affects embryonic heart development; however, the mechanisms underlying its toxicity have not been fully elucidated. Here, Single-cell RNA sequencing (scRNA-seq) was used to investigate the overall effects of PFOS on myocardial differentiation from human embryonic stem cells (hESCs). Additionally, apoptosis, mitochondrial membrane potential, and ATP assays were performed. Downregulated cardiogenesis-related genes and inhibited cardiac differentiation were observed after PFOS exposure in vitro. The percentages of cardiomyocyte and cardiac progenitor cell clusters decreased significantly following exposure to PFOS, while the proportion of primitive endoderm cell was increased in PFOS group. Moreover, PFOS inhibited myocardial differentiation and blocked cellular development at the early- and middle-stage. A Gene Ontology analysis and pseudo-time trajectory illustrated that PFOS disturbed multiple processes related to cardiogenesis and oxidative phosphorylation in the mitochondria. Furthermore, PFOS decreased mitochondrial membrane potential and induced apoptosis. These results offer meaningful insights into the cardiogenic toxicity of PFOS exposure during heart formation as well as the adverse effects of PFOS on mitochondria.
Collapse
Affiliation(s)
- Min Qiu
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, PR China
| | - Jing Chen
- Medical Research Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, PR China
| | - Mingqin Liu
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou 510080, PR China
| | - Zhiqiang Nie
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, PR China
| | - Miaola Ke
- Department of Blood Transfusion, Sun Yat-Sen University Cancer Center, Guangzhou 510050, PR China
| | - Guanghui Dong
- Department of Occupational and Environmental, Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, PR China
| | - Haishan Zhao
- Medical Research Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, PR China
| | - Chengbin Zhou
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, PR China
| | - Haiyan Zeng
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou 510080, PR China
| | - Biaochuan He
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, PR China
| | - Jimei Chen
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, PR China
| | - Jian Zhuang
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, PR China.
| | - Xiaohong Li
- Medical Research Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, PR China.
| | - Yanqiu Ou
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, PR China.
| |
Collapse
|
3
|
Ding S, Zhang R, Zhang P, Shi J, Liu L, Li J, Zhang R, Wu F, Zhou P. The application of quantitative telomerase activity measurement as an important indicator to monitor the cardiomyocyte differentiation process of human induced pluripotent stem cells under defined conditions. Biochem Biophys Res Commun 2023; 687:149150. [PMID: 37939503 DOI: 10.1016/j.bbrc.2023.149150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/11/2023] [Accepted: 10/23/2023] [Indexed: 11/10/2023]
Abstract
The construction of an in vitro differentiation system for human induced pluripotent stem cells (hiPSCs) has made exciting progress, but it is still of great significance to clarify the differentiation process. The use of conventional genetic and protein-labeled microscopes to observe or detect different stages of hiPSC differentiation is not specific enough and is cumbersome and time-consuming. In this study, in addition to analyzing the expression of gene/protein-related markers, we used a previously reported simple and excellent quantitative method of cellular telomerase activity based on a quartz crystal microbalance (TREAQ) device to monitor the dynamic changes in cellular telomerase activity in hiPSCs during myocardial differentiation under chemically defined conditions. Finally, by integrating these results, we analyzed the relationship between telomerase activity and the expression of marker genes/proteins as well as the cell type at each study time point. This dynamic quantitative measurement of cellular telomerase activity should be a promising indicator for monitoring dynamic changes in a stage of hiPSC differentiation and inducing cell types. This study provided a quantitative, dynamic and simple monitoring index for the in vitro differentiation process of hiPSC-CMs, which was a certain reference value for the optimization and improvement of the induction system.
Collapse
Affiliation(s)
- Shaoli Ding
- Department of Pain Treatment, Gansu Provincial Hospital, Lanzhou, China; The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Rongzhi Zhang
- Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Pengxia Zhang
- School of Stomatology, Lanzhou University, No.222 Tianshui South Road, Chengguan District, Lanzhou, 730000, China
| | - Jiamin Shi
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Lu Liu
- Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Jiamin Li
- School of Stomatology, Lanzhou University, No.222 Tianshui South Road, Chengguan District, Lanzhou, 730000, China
| | - Rui Zhang
- School of Stomatology, Lanzhou University, No.222 Tianshui South Road, Chengguan District, Lanzhou, 730000, China
| | - Fujian Wu
- Translational Medicine Collaborative Innovation Center, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology, The Second Clinical Medical College of Jinan University), Shenzhen, 518055, Guangdong, China.
| | - Ping Zhou
- School of Stomatology, Lanzhou University, No.222 Tianshui South Road, Chengguan District, Lanzhou, 730000, China.
| |
Collapse
|
4
|
Xu G, Fatima A, Breitbach M, Kuzmenkin A, Fügemann CJ, Ivanyuk D, Kim KP, Cantz T, Pfannkuche K, Schoeler HR, Fleischmann BK, Hescheler J, Šarić T. Electrophysiological Properties of Tetraploid Cardiomyocytes Derived from Murine Pluripotent Stem Cells Generated by Fusion of Adult Somatic Cells with Embryonic Stem Cells. Int J Mol Sci 2023; 24:ijms24076546. [PMID: 37047520 PMCID: PMC10095437 DOI: 10.3390/ijms24076546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 03/20/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Most cardiomyocytes (CMs) in the adult mammalian heart are either binucleated or contain a single polyploid nucleus. Recent studies have shown that polyploidy in CMs plays an important role as an adaptive response to physiological demands and environmental stress and correlates with poor cardiac regenerative ability after injury. However, knowledge about the functional properties of polyploid CMs is limited. In this study, we generated tetraploid pluripotent stem cells (PSCs) by fusion of murine embryonic stem cells (ESCs) and somatic cells isolated from bone marrow or spleen and performed a comparative analysis of the electrophysiological properties of tetraploid fusion-derived PSCs and diploid ESC-derived CMs. Fusion-derived PSCs exhibited characteristics of genuine ESCs and contained a near-tetraploid genome. Ploidy features and marker expression were also retained during the differentiation of fusion-derived cells. Fusion-derived PSCs gave rise to CMs, which were similar to their diploid ESC counterparts in terms of their expression of typical cardiospecific markers, sarcomeric organization, action potential parameters, response to pharmacologic stimulation with various drugs, and expression of functional ion channels. These results suggest that the state of ploidy does not significantly affect the structural and electrophysiological properties of murine PSC-derived CMs. These results extend our knowledge of the functional properties of polyploid CMs and contribute to a better understanding of their biological role in the adult heart.
Collapse
|
5
|
Wang L, Nguyen T, Rosa-Garrido M, Zhou Y, Cleveland DC, Zhang J. Comparative analysis of the cardiomyocyte differentiation potential of induced pluripotent stem cells reprogrammed from human atrial or ventricular fibroblasts. Front Bioeng Biotechnol 2023; 11:1108340. [PMID: 36845191 PMCID: PMC9950567 DOI: 10.3389/fbioe.2023.1108340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/01/2023] [Indexed: 02/12/2023] Open
Abstract
Background: We had shown that cardiomyocytes (CMs) were more efficiently differentiated from human induced pluripotent stem cells (hiPSCs) when the hiPSCs were reprogrammed from cardiac fibroblasts rather than dermal fibroblasts or blood mononuclear cells. Here, we continued to investigate the relationship between somatic-cell lineage and hiPSC-CM production by comparing the yield and functional properties of CMs differentiated from iPSCs reprogrammed from human atrial or ventricular cardiac fibroblasts (AiPSC or ViPSC, respectively). Methods: Atrial and ventricular heart tissues were obtained from the same patient, reprogrammed into AiPSCs or ViPSCs, and then differentiated into CMs (AiPSC-CMs or ViPSC-CMs, respectively) via established protocols. Results: The time-course of expression for pluripotency genes (OCT4, NANOG, and SOX2), the early mesodermal marker Brachyury, the cardiac mesodermal markers MESP1 and Gata4, and the cardiovascular progenitor-cell transcription factor NKX2.5 were broadly similar in AiPSC-CMs and ViPSC-CMs during the differentiation protocol. Flow-cytometry analyses of cardiac troponin T expression also indicated that purity of the two differentiated hiPSC-CM populations (AiPSC-CMs: 88.23% ± 4.69%, ViPSC-CMs: 90.25% ± 4.99%) was equivalent. While the field-potential durations were significantly longer in ViPSC-CMs than in AiPSC-CMs, measurements of action potential duration, beat period, spike amplitude, conduction velocity, and peak calcium-transient amplitude did not differ significantly between the two hiPSC-CM populations. Yet, our cardiac-origin iPSC-CM showed higher ADP and conduction velocity than previously reported iPSC-CM derived from non-cardiac tissues. Transcriptomic data comparing iPSC and iPSC-CMs showed similar gene expression profiles between AiPSC-CMs and ViPSC-CMs with significant differences when compared to iPSC-CM derived from other tissues. This analysis also pointed to several genes involved in electrophysiology processes responsible for the physiological differences observed between cardiac and non-cardiac-derived cardiomyocytes. Conclusion: AiPSC and ViPSC were differentiated into CMs with equal efficiency. Detected differences in electrophysiological properties, calcium handling activity, and transcription profiles between cardiac and non-cardiac derived cardiomyocytes demonstrated that 1) tissue of origin matters to generate a better-featured iPSC-CMs, 2) the sublocation within the cardiac tissue has marginal effects on the differentiation process.
Collapse
Affiliation(s)
- Lu Wang
- Department of Biomedical Engineering, School of Medicine, School of Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Thanh Nguyen
- Department of Biomedical Engineering, School of Medicine, School of Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Manuel Rosa-Garrido
- Department of Biomedical Engineering, School of Medicine, School of Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Yang Zhou
- Department of Biomedical Engineering, School of Medicine, School of Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - David C. Cleveland
- Department of Biomedical Engineering, School of Medicine, School of Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
- Children’s Hospital of Alabama, Birmingham, AL, United States
| | - Jianyi Zhang
- Department of Biomedical Engineering, School of Medicine, School of Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Medicine, Division of Cardiovascular Disease, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
6
|
Ai X, Yan B, Witman N, Gong Y, Yang L, Tan Y, Chen Y, Liu M, Lu T, Luo R, Wang H, Chien KR, Wang W, Fu W. Transient secretion of VEGF protein from transplanted hiPSC-CMs enhances engraftment and improves rat heart function post MI. Mol Ther 2023; 31:211-229. [PMID: 35982619 PMCID: PMC9840120 DOI: 10.1016/j.ymthe.2022.08.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/15/2022] [Accepted: 08/12/2022] [Indexed: 01/28/2023] Open
Abstract
Cell-based therapies offer an exciting and novel treatment for heart repair following myocardial infarction (MI). However, these therapies often suffer from poor cell viability and engraftment rates, which involve many factors, including the hypoxic conditions of the infarct environment. Meanwhile, vascular endothelial growth factor (VEGF) has previously been employed as a therapeutic agent to limit myocardial damage and simultaneously induce neovascularization. This study took an approach to transiently overexpress VEGF protein, in a controlled manner, by transfecting human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) with VEGF mRNA prior to transplantation. The conditioning of iPSC-CMs with VEGF mRNA ultimately led to greater survival rates of the transplanted cells, which promoted a stable vascular network in the grafted region. Furthermore, bulk RNA transcriptomics data and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that phosphoinositide 3-kinase (PI3K)-protein kinase B (Akt) and AGE-RAGE signaling pathways were significantly upregulated in the VEGF-treated iPSC-CMs group. The over-expression of VEGF from iPSC-CMs stimulated cell proliferation and partially attenuated the hypoxic environment in the infarcted area, resulting in reduced ventricular remodeling. This study provides a valuable solution for the survival of transplanted cells in tissue-engineered heart regeneration and may further promote the application of modified mRNA (modRNA) in the field of tissue engineering.
Collapse
Affiliation(s)
- Xuefeng Ai
- Department of Pediatric Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Bingqian Yan
- Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Nevin Witman
- Department of Cell and Molecular Biology, Karolinska Institutet, 17165 Stockholm, Sweden; Department of Clinical Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Yiqi Gong
- Department of Pediatric Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Li Yang
- Department of Anesthesiology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yao Tan
- Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Ying Chen
- Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Minglu Liu
- Department of Pediatric Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Tingting Lu
- Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Runjiao Luo
- Department of Pediatric Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Huijing Wang
- Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Kenneth R Chien
- Department of Cell and Molecular Biology, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Wei Wang
- Department of Pediatric Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Wei Fu
- Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; Shanghai Key Laboratory of Tissue Engineering, Shanghai 9th People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China.
| |
Collapse
|
7
|
Carvalho AB, Coutinho KCDS, Barbosa RAQ, de Campos DBP, Leitão IDC, Pinto RS, Dos Santos DS, Farjun B, De Araújo DDS, Mesquita FCP, Monnerat-Cahli G, Medei EH, Kasai-Brunswick TH, De Carvalho ACC. Action potential variability in human pluripotent stem cell-derived cardiomyocytes obtained from healthy donors. Front Physiol 2022; 13:1077069. [PMID: 36589430 PMCID: PMC9800870 DOI: 10.3389/fphys.2022.1077069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
Human pluripotent stem cells (PSC) have been used for disease modelling, after differentiation into the desired cell type. Electrophysiologic properties of cardiomyocytes derived from pluripotent stem cells are extensively used to model cardiac arrhythmias, in cardiomyopathies and channelopathies. This requires strict control of the multiple variables that can influence the electrical properties of these cells. In this article, we report the action potential variability of 780 cardiomyocytes derived from pluripotent stem cells obtained from six healthy donors. We analyze the overall distribution of action potential (AP) data, the distribution of action potential data per cell line, per differentiation protocol and batch. This analysis indicates that even using the same cell line and differentiation protocol, the differentiation batch still affects the results. This variability has important implications in modeling arrhythmias and imputing pathogenicity to variants encountered in patients with arrhythmic diseases. We conclude that even when using isogenic cell lines to ascertain pathogenicity to variants associated to arrythmias one should use cardiomyocytes derived from pluripotent stem cells using the same differentiation protocol and batch and pace the cells or use only cells that have very similar spontaneous beat rates. Otherwise, one may find phenotypic variability that is not attributable to pathogenic variants.
Collapse
Affiliation(s)
- A. B. Carvalho
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil,National Center for Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil,National Institute of Science and Technology in Regenerative Medicine, Rio de Janeiro, Brazil,*Correspondence: A. B. Carvalho,
| | | | | | | | - Isabela de Carvalho Leitão
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - R. S. Pinto
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - D. Silva Dos Santos
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruna Farjun
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Dayana da Silva De Araújo
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - G. Monnerat-Cahli
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - E. H. Medei
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil,National Center for Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil,National Institute of Science and Technology in Regenerative Medicine, Rio de Janeiro, Brazil
| | - Tais Hanae Kasai-Brunswick
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil,National Center for Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil,National Institute of Science and Technology in Regenerative Medicine, Rio de Janeiro, Brazil
| | - A. C. Campos De Carvalho
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil,National Center for Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil,National Institute of Science and Technology in Regenerative Medicine, Rio de Janeiro, Brazil,National Institute of Cardiology, Rio de Janeiro, Brazil
| |
Collapse
|
8
|
Kim H, Park K, Yon JM, Kim SW, Lee SY, Jeong I, Jang J, Lee S, Cho DW. Predicting multipotency of human adult stem cells derived from various donors through deep learning. Sci Rep 2022; 12:21614. [PMID: 36517519 PMCID: PMC9749643 DOI: 10.1038/s41598-022-25423-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022] Open
Abstract
Adult stem cell-based therapeutic approaches have great potential in regenerative medicine because of their immunoregulatory properties and multidifferentiation capacity. Nevertheless, the outcomes of stem cell‑based therapies to date have shown inconsistent efficacy owing to donor variation, thwarting the expectation of clinical effects. However, such donor dependency has been elucidated by biological consequences that current research could not predict. Here, we introduce cellular morphology-based prediction to determine the multipotency rate of human nasal turbinate stem cells (hNTSCs), aiming to predict the differentiation rate of keratocyte progenitors. We characterized the overall genes and morphologies of hNTSCs from five donors and compared stemness-related properties, including multipotency and specific lineages, using mRNA sequencing. It was demonstrated that transformation factors affecting the principal components were highly related to cell morphology. We then performed a convolutional neural network-based analysis, which enabled us to assess the multipotency level of each cell group based on their morphologies with 85.98% accuracy. Surprisingly, the trend in expression levels after ex vivo differentiation matched well with the deep learning prediction. These results suggest that AI‑assisted cellular behavioral prediction can be utilized to perform quantitative, non-invasive, single-cell, and multimarker characterizations of live stem cells for improved quality control in clinical cell therapies.
Collapse
Affiliation(s)
- Hyeonji Kim
- grid.49100.3c0000 0001 0742 4007Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673 South Korea
| | - Keonhyeok Park
- grid.49100.3c0000 0001 0742 4007Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673 South Korea
| | - Jung-Min Yon
- grid.411947.e0000 0004 0470 4224Department of Otolaryngology-Head and Neck Surgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, 06591 South Korea
| | - Sung Won Kim
- grid.411947.e0000 0004 0470 4224Department of Otolaryngology-Head and Neck Surgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, 06591 South Korea
| | - Soo Young Lee
- grid.49100.3c0000 0001 0742 4007Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673 South Korea
| | - Iljoo Jeong
- grid.49100.3c0000 0001 0742 4007Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673 South Korea
| | - Jinah Jang
- grid.49100.3c0000 0001 0742 4007Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673 South Korea ,grid.49100.3c0000 0001 0742 4007Department of Convergence IT Engineering, POSTECH, Pohang, Gyeongbuk 37673 South Korea ,grid.15444.300000 0004 0470 5454Institute of Convergence Science, Yonsei University, Seoul, 03722 South Korea
| | - Seungchul Lee
- grid.49100.3c0000 0001 0742 4007Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673 South Korea ,grid.15444.300000 0004 0470 5454Institute of Convergence Science, Yonsei University, Seoul, 03722 South Korea
| | - Dong-Woo Cho
- grid.49100.3c0000 0001 0742 4007Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673 South Korea ,grid.15444.300000 0004 0470 5454Institute of Convergence Science, Yonsei University, Seoul, 03722 South Korea
| |
Collapse
|
9
|
He X, Liang J, Paul C, Huang W, Dutta S, Wang Y. Advances in Cellular Reprogramming-Based Approaches for Heart Regenerative Repair. Cells 2022; 11:3914. [PMID: 36497171 PMCID: PMC9740402 DOI: 10.3390/cells11233914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/18/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Continuous loss of cardiomyocytes (CMs) is one of the fundamental characteristics of many heart diseases, which eventually can lead to heart failure. Due to the limited proliferation ability of human adult CMs, treatment efficacy has been limited in terms of fully repairing damaged hearts. It has been shown that cell lineage conversion can be achieved by using cell reprogramming approaches, including human induced pluripotent stem cells (hiPSCs), providing a promising therapeutic for regenerative heart medicine. Recent studies using advanced cellular reprogramming-based techniques have also contributed some new strategies for regenerative heart repair. In this review, hiPSC-derived cell therapeutic methods are introduced, and the clinical setting challenges (maturation, engraftment, immune response, scalability, and tumorigenicity), with potential solutions, are discussed. Inspired by the iPSC reprogramming, the approaches of direct cell lineage conversion are merging, such as induced cardiomyocyte-like cells (iCMs) and induced cardiac progenitor cells (iCPCs) derived from fibroblasts, without induction of pluripotency. The studies of cellular and molecular pathways also reveal that epigenetic resetting is the essential mechanism of reprogramming and lineage conversion. Therefore, CRISPR techniques that can be repurposed for genomic or epigenetic editing become attractive approaches for cellular reprogramming. In addition, viral and non-viral delivery strategies that are utilized to achieve CM reprogramming will be introduced, and the therapeutic effects of iCMs or iCPCs on myocardial infarction will be compared. After the improvement of reprogramming efficiency by developing new techniques, reprogrammed iCPCs or iCMs will provide an alternative to hiPSC-based approaches for regenerative heart therapies, heart disease modeling, and new drug screening.
Collapse
Affiliation(s)
- Xingyu He
- Department of Pathology & Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Jialiang Liang
- Department of Pathology & Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Christian Paul
- Department of Pathology & Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Wei Huang
- Department of Pathology & Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Suchandrima Dutta
- Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Yigang Wang
- Department of Pathology & Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45221, USA
| |
Collapse
|
10
|
He H, Zhang Y, Xu J, Li Y, Fang H, Liu Y, Zhang S. Discovery of Orally Bioavailable SOS1 Inhibitors for Suppressing KRAS-Driven Carcinoma. J Med Chem 2022; 65:13158-13171. [PMID: 36173339 DOI: 10.1021/acs.jmedchem.2c00986] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The interaction between son of sevenless 1 (SOS1) gene and Kirsten rat sarcoma viral oncogene (KRAS) is crucial for activating signals of proliferation and survival in a range of cancers. We previously discovered compound 40a with a tetracyclic quinazoline pharmacophore as a potent orally bioavailable SOS1 inhibitor. Herein, we disclosed the discovery of compound 13c, which substituted the third ring with the seven-membered ring, as a clinical drug candidate for suppressing KRAS-driven tumors. 13c strongly disrupted the protein-protein interaction between SOS1 and KRAS with low IC50 values of 3.9 nM (biochemical) and 21 nM (cellular). 13c showed a favorable pharmacokinetic profile with a bioavailability of 86.8% in beagles and exhibited 83.0% tumor suppression in Mia-paca-2 pancreas xenograft mice tumor models. 13c exhibited a weak time-dependent CY3A4P inhibition than BI-3406, thereby reducing the risk of drug-drug interaction in drug combination. Toxicological investigations revealed that 13c had a lower risk of sudden cardiac death than BI-3406. Overall, 13c has been under evaluation in preclinical trials.
Collapse
Affiliation(s)
- Huan He
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, College of Chemistry and Chemical Engineering, Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
- Wuhan Yuxiang Pharmaceutical Technology Co., Ltd., Wuhan 430200, P. R. China
| | - Yu Zhang
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, College of Chemistry and Chemical Engineering, Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Juan Xu
- College of Chemistry and Chemical Engineering, Hubei Polytechnic University, Huangshi 435003, P. R. China
- Wuhan Yuxiang Pharmaceutical Technology Co., Ltd., Wuhan 430200, P. R. China
| | - Yuanyuan Li
- Wuhan Yuxiang Pharmaceutical Technology Co., Ltd., Wuhan 430200, P. R. China
- School of Life Science and Technology & School Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, P. R. China
| | - Huaxiang Fang
- Wuhan Yuxiang Pharmaceutical Technology Co., Ltd., Wuhan 430200, P. R. China
| | - Yi Liu
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, College of Chemistry and Chemical Engineering, Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
- School of Life Science and Technology & School Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, P. R. China
- State Key Laboratory of Membrane Separation and Membrane Process & Tianjin Key Laboratory of Green Chemical Technology and Process Engineering, School of Chemistry, Tiangong University, Tianjin 300387, P. R. China
| | - Silong Zhang
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, College of Chemistry and Chemical Engineering, Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
- Wuhan Yuxiang Pharmaceutical Technology Co., Ltd., Wuhan 430200, P. R. China
| |
Collapse
|
11
|
Zhen X, Kang W, Park SJ, Choe SH, Hong SH, Lee DS, Lee JH. Generation and characterization of cynomolgus monkey kidney fibroblasts (cmKF)-derived induced pluripotent stem cells (cmKF-iPS-C5). Stem Cell Res 2022; 64:102887. [PMID: 35944314 DOI: 10.1016/j.scr.2022.102887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/17/2022] [Accepted: 08/01/2022] [Indexed: 10/16/2022] Open
Abstract
Cynomolgus monkeys, a non-human primate species, are genetically and physiologically similar to humans; hence, they have been employed as an ideal developmental and biomedical model. Non-human primate animals and their induced pluripotent stem cell (iPSC) derivatives have been used as a research tool to investigate autologous regenerative medicine. Here, we reprogrammed cynomolgus monkey kidney fibroblasts (cmKFs) as a control for animal iPSCs and to study autologous transplant. The resulting cmKF-iPSCs, which displayed canonical characteristics of PSCs, could be used as a unique model for autologous cell-based therapy.
Collapse
Affiliation(s)
- Xing Zhen
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea; Department of Nanoscience and Nanotechnology, Graduate School, Kyungpook National University, Daegu, Republic of Korea
| | - Woojoo Kang
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea; Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, Republic of Korea
| | - Sang-Je Park
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Se-Hee Choe
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Seok-Ho Hong
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, Republic of Korea
| | - Dong-Seok Lee
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea.
| | - Jong-Hee Lee
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea; Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea.
| |
Collapse
|
12
|
Metzler E, Escobar H, Sunaga-Franze DY, Sauer S, Diecke S, Spuler S. Generation of hiPSC-Derived Skeletal Muscle Cells: Exploiting the Potential of Skeletal Muscle-Derived hiPSCs. Biomedicines 2022; 10:1204. [PMID: 35625941 PMCID: PMC9138862 DOI: 10.3390/biomedicines10051204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/13/2022] [Accepted: 05/18/2022] [Indexed: 12/28/2022] Open
Abstract
Cell therapies for muscle wasting disorders are on the verge of becoming a realistic clinical perspective. Muscle precursor cells derived from human induced pluripotent stem cells (hiPSCs) represent the key to unrestricted cell numbers indispensable for the treatment of generalized muscle wasting such as cachexia or intensive care unit (ICU)-acquired weakness. We asked how the cell of origin influences efficacy and molecular properties of hiPSC-derived muscle progenitor cells. We generated hiPSCs from primary muscle stem cells and from peripheral blood mononuclear cells (PBMCs) of the same donors (n = 4) and compared their molecular profiles, myogenic differentiation potential, and ability to generate new muscle fibers in vivo. We show that reprogramming into hiPSCs from primary muscle stem cells was faster and 35 times more efficient than from blood cells. Global transcriptome comparison revealed significant differences, but differentiation into induced myogenic cells using a directed transgene-free approach could be achieved with muscle- and PBMC-derived hiPSCs, and both cell types generated new muscle fibers in vivo. Differences in myogenic differentiation efficiency were identified with hiPSCs generated from individual donors. The generation of muscle-stem-cell-derived hiPSCs is a fast and economic method to obtain unrestricted cell numbers for cell-based therapies in muscle wasting disorders, and in this aspect are superior to blood-derived hiPSCs.
Collapse
Affiliation(s)
- Eric Metzler
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13125 Berlin, Germany; (H.E.); (D.Y.S.-F.); (S.S.); (S.D.)
- Experimental and Clinical Research Center, a Cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and Charité—Universitätsmedizin Berlin, Lindenberger Weg 80, 13125 Berlin, Germany
| | - Helena Escobar
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13125 Berlin, Germany; (H.E.); (D.Y.S.-F.); (S.S.); (S.D.)
- Experimental and Clinical Research Center, a Cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and Charité—Universitätsmedizin Berlin, Lindenberger Weg 80, 13125 Berlin, Germany
| | - Daniele Yumi Sunaga-Franze
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13125 Berlin, Germany; (H.E.); (D.Y.S.-F.); (S.S.); (S.D.)
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Genomics Platform, Hannoversche Straße 28, 10115 Berlin, Germany
| | - Sascha Sauer
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13125 Berlin, Germany; (H.E.); (D.Y.S.-F.); (S.S.); (S.D.)
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Genomics Platform, Hannoversche Straße 28, 10115 Berlin, Germany
| | - Sebastian Diecke
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13125 Berlin, Germany; (H.E.); (D.Y.S.-F.); (S.S.); (S.D.)
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Pluripotent Stem Cells Platform, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Simone Spuler
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13125 Berlin, Germany; (H.E.); (D.Y.S.-F.); (S.S.); (S.D.)
- Experimental and Clinical Research Center, a Cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and Charité—Universitätsmedizin Berlin, Lindenberger Weg 80, 13125 Berlin, Germany
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental and Clinical Research Center, Lindenberger Weg 80, 13125 Berlin, Germany
| |
Collapse
|
13
|
Mitrečić D, Hribljan V, Jagečić D, Isaković J, Lamberto F, Horánszky A, Zana M, Foldes G, Zavan B, Pivoriūnas A, Martinez S, Mazzini L, Radenovic L, Milasin J, Chachques JC, Buzanska L, Song MS, Dinnyés A. Regenerative Neurology and Regenerative Cardiology: Shared Hurdles and Achievements. Int J Mol Sci 2022; 23:855. [PMID: 35055039 PMCID: PMC8776151 DOI: 10.3390/ijms23020855] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/24/2021] [Accepted: 01/09/2022] [Indexed: 02/05/2023] Open
Abstract
From the first success in cultivation of cells in vitro, it became clear that developing cell and/or tissue specific cultures would open a myriad of new opportunities for medical research. Expertise in various in vitro models has been developing over decades, so nowadays we benefit from highly specific in vitro systems imitating every organ of the human body. Moreover, obtaining sufficient number of standardized cells allows for cell transplantation approach with the goal of improving the regeneration of injured/disease affected tissue. However, different cell types bring different needs and place various types of hurdles on the path of regenerative neurology and regenerative cardiology. In this review, written by European experts gathered in Cost European action dedicated to neurology and cardiology-Bioneca, we present the experience acquired by working on two rather different organs: the brain and the heart. When taken into account that diseases of these two organs, mostly ischemic in their nature (stroke and heart infarction), bring by far the largest burden of the medical systems around Europe, it is not surprising that in vitro models of nervous and heart muscle tissue were in the focus of biomedical research in the last decades. In this review we describe and discuss hurdles which still impair further progress of regenerative neurology and cardiology and we detect those ones which are common to both fields and some, which are field-specific. With the goal to elucidate strategies which might be shared between regenerative neurology and cardiology we discuss methodological solutions which can help each of the fields to accelerate their development.
Collapse
Affiliation(s)
- Dinko Mitrečić
- Laboratory for Stem Cells, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
- Department of Histology and Embryology, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Valentina Hribljan
- Laboratory for Stem Cells, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
- Department of Histology and Embryology, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Denis Jagečić
- Laboratory for Stem Cells, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
- Department of Histology and Embryology, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | | | - Federica Lamberto
- BioTalentum Ltd., Aulich Lajos Str. 26, 2100 Gordillo, Hungary
- Department of Physiology and Animal Health, Institute of Physiology and Animal Health, Hungarian University of Agriculture and Life Sciences, Páter Károly Str. 1, 2100 Godollo, Hungary
| | - Alex Horánszky
- BioTalentum Ltd., Aulich Lajos Str. 26, 2100 Gordillo, Hungary
- Department of Physiology and Animal Health, Institute of Physiology and Animal Health, Hungarian University of Agriculture and Life Sciences, Páter Károly Str. 1, 2100 Godollo, Hungary
| | - Melinda Zana
- BioTalentum Ltd., Aulich Lajos Str. 26, 2100 Gordillo, Hungary
| | - Gabor Foldes
- Heart and Vascular Center, Semmelweis University, 1122 Budapest, Hungary
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK
| | - Barbara Zavan
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Augustas Pivoriūnas
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102 Vilnius, Lithuania
| | - Salvador Martinez
- Instituto de Neurociencias UMH-CSIC, 03550 San Juan de Alicante, Spain
| | - Letizia Mazzini
- ALS Center, Department of Neurology, Maggiore della Carità Hospital, University of Piemonte Orientale, 28100 Novara, Italy
| | - Lidija Radenovic
- Center for Laser Microscopy, Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia
| | - Jelena Milasin
- Laboratory for Stem Cell Research, School of Dental Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Juan Carlos Chachques
- Laboratory of Biosurgical Research, Pompidou Hospital, University of Paris, 75006 Paris, France
| | - Leonora Buzanska
- Department of Stem Cell Bioengineering, Mossakowski Medical Research Institute Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Min Suk Song
- Omnion Research International Ltd., 10000 Zagreb, Croatia
| | - András Dinnyés
- BioTalentum Ltd., Aulich Lajos Str. 26, 2100 Gordillo, Hungary
- Department of Physiology and Animal Health, Institute of Physiology and Animal Health, Hungarian University of Agriculture and Life Sciences, Páter Károly Str. 1, 2100 Godollo, Hungary
- HCEMM-USZ Stem Cell Research Group, Department of Cell Biology and Molecular Medicine, University of Szeged, 6720 Szeged, Hungary
- College of Life Sciences, Sichuan University, Chengdu 610064, China
| |
Collapse
|
14
|
Schaniel C, Dhanan P, Hu B, Xiong Y, Raghunandan T, Gonzalez DM, Dariolli R, D'Souza SL, Yadaw AS, Hansen J, Jayaraman G, Mathew B, Machado M, Berger SI, Tripodig J, Najfeld V, Garg J, Miller M, Surlyn CS, Michelis KC, Tangirala NC, Weerahandi H, Thomas DC, Beaumont KG, Sebra R, Mahajan M, Schadt E, Vidovic D, Schürer SC, Goldfarb J, Azeloglu EU, Birtwistle MR, Sobie EA, Kovacic JC, Dubois NC, Iyengar R. A library of induced pluripotent stem cells from clinically well-characterized, diverse healthy human individuals. Stem Cell Reports 2021; 16:3036-3049. [PMID: 34739849 PMCID: PMC8693622 DOI: 10.1016/j.stemcr.2021.10.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 12/14/2022] Open
Abstract
A library of well-characterized human induced pluripotent stem cell (hiPSC) lines from clinically healthy human subjects could serve as a useful resource of normal controls for in vitro human development, disease modeling, genotype-phenotype association studies, and drug response evaluation. We report generation and extensive characterization of a gender-balanced, racially/ethnically diverse library of hiPSC lines from 40 clinically healthy human individuals who range in age from 22 to 61 years. The hiPSCs match the karyotype and short tandem repeat identities of their parental fibroblasts, and have a transcription profile characteristic of pluripotent stem cells. We provide whole-genome sequencing data for one hiPSC clone from each individual, genomic ancestry determination, and analysis of mendelian disease genes and risks. We document similar transcriptomic profiles, single-cell RNA-sequencing-derived cell clusters, and physiology of cardiomyocytes differentiated from multiple independent hiPSC lines. This extensive characterization makes this hiPSC library a valuable resource for many studies on human biology. A library of induced pluripotent stem cells from 40 healthy human subjects Racially/ethnically diverse subjects of clinically well-characterized health Whole-genome sequencing identifies variants of mild common phenotypes or incomplete penetrance Similar physiology of cardiomyocytes from independent hiPSC clones and individuals
Collapse
Affiliation(s)
- Christoph Schaniel
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Priyanka Dhanan
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Cancer Immunology and Virology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Bin Hu
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yuguang Xiong
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Teeya Raghunandan
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - David M Gonzalez
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rafael Dariolli
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sunita L D'Souza
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; St. Jude's Children's Research Hospital, Memphis, TN, USA
| | - Arjun S Yadaw
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jens Hansen
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gomathi Jayaraman
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | - Seth I Berger
- Center for Genetic Medicine Research & Rare Disease Institute, Children's National Hospital, Washington, DC, USA
| | - Joseph Tripodig
- Sema4, Stamford, CT, USA; Department of Pathology, Tumor Cytogenomics Laboratory, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Vesna Najfeld
- Department of Pathology, Tumor Cytogenomics Laboratory, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jalaj Garg
- Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Medicine, Division of Cardiology, Icahn School of Medicine at Mount Sinai, and The Mount Sinai Hospital, New York, NY, USA; Division of Cardiology, Cardiac Arrhythmia Service, Loma Linda University Health, Loma Linda, CA, USA
| | - Marc Miller
- Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Medicine, Division of Cardiology, Icahn School of Medicine at Mount Sinai, and The Mount Sinai Hospital, New York, NY, USA
| | - Colleen S Surlyn
- Department of Medicine, Division of General Internal Medicine, Icahn School of Medicine at Mount Sinai, The Mount Sinai Hospital, New York, NY, USA; Southeast Health Center, San Francisco Department of Public Health, San Francisco, CA, USA
| | - Katherine C Michelis
- Department of Medicine, Division of General Internal Medicine, Icahn School of Medicine at Mount Sinai, The Mount Sinai Hospital, New York, NY, USA; Department of Internal Medicine, Division of Cardiology, University of Texas Southwestern, Dallas, TX, USA
| | - Neelima C Tangirala
- Department of Medicine, Division of General Internal Medicine, Icahn School of Medicine at Mount Sinai, The Mount Sinai Hospital, New York, NY, USA
| | - Himali Weerahandi
- Department of Medicine, Division of General Internal Medicine, Icahn School of Medicine at Mount Sinai, The Mount Sinai Hospital, New York, NY, USA; Department of Medicine, Division of General Internal Medicine and Clinical Innovation, NYU Grossman School of Medicine, New York, NY, USA
| | - David C Thomas
- Department of Medicine, Division of General Internal Medicine, Icahn School of Medicine at Mount Sinai, The Mount Sinai Hospital, New York, NY, USA
| | - Kristin G Beaumont
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Milind Mahajan
- St. Jude's Children's Research Hospital, Memphis, TN, USA
| | - Eric Schadt
- St. Jude's Children's Research Hospital, Memphis, TN, USA
| | - Dusica Vidovic
- Institute for Data Science and Computing, University of Miami, Coral Gables, FL, USA
| | - Stephan C Schürer
- Institute for Data Science and Computing, University of Miami, Coral Gables, FL, USA
| | - Joseph Goldfarb
- Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Evren U Azeloglu
- Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marc R Birtwistle
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, USA
| | - Eric A Sobie
- Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jason C Kovacic
- Center for Genetic Medicine Research & Rare Disease Institute, Children's National Hospital, Washington, DC, USA; Department of Pathology, Tumor Cytogenomics Laboratory, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia; St. Vincent's Clinical School, University of New South Wales, Sydney, Australia
| | - Nicole C Dubois
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Cancer Immunology and Virology, Dana Farber Cancer Institute, Boston, MA, USA; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Ravi Iyengar
- Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
15
|
Tissue of Origin, but Not XCI State, Influences Germ Cell Differentiation from Human Pluripotent Stem Cells. Cells 2021; 10:cells10092400. [PMID: 34572048 PMCID: PMC8466594 DOI: 10.3390/cells10092400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 09/02/2021] [Accepted: 09/09/2021] [Indexed: 12/26/2022] Open
Abstract
Human pluripotent stem cells (hPSCs) are not only a promising tool to investigate differentiation to many cell types, including the germline, but are also a potential source of cells to use for regenerative medicine purposes in the future. However, current in vitro models to generate human primordial germ cell-like cells (hPGCLCs) have revealed high variability regarding differentiation efficiency depending on the hPSC lines used. Here, we investigated whether differences in X chromosome inactivation (XCI) in female hPSCs could contribute to the variability of hPGCLC differentiation efficiency during embryoid body (EB) formation. For this, we first characterized the XCI state in different hPSC lines by investigating the expression of XIST and H3K27me3, followed by differentiation and quantification of hPGCLCs. We observed that the XCI state did not influence the efficiency to differentiate to hPGCLCs; rather, hPSCs derived from cells isolated from urine showed an increased trend towards hPGCLCs differentiation compared to skin-derived hPSCs. In addition, we also characterized the XCI state in the generated hPGCLCs. Interestingly, we observed that independent of the XCI state of the hPSCs used, both hPGCLCs and soma cells in the EBs acquired XIST expression, indicative of an inactive X chromosome. In fact, culture conditions for EB formation seemed to promote XIST expression. Together, our results contribute to understanding how epigenetic properties of hPSCs influence differentiation and to optimize differentiation methods to obtain higher numbers of hPGCLCs, the first step to achieve human in vitro gametogenesis.
Collapse
|
16
|
Thomas D, Shenoy S, Sayed N. Building Multi-Dimensional Induced Pluripotent Stem Cells-Based Model Platforms to Assess Cardiotoxicity in Cancer Therapies. Front Pharmacol 2021; 12:607364. [PMID: 33679396 PMCID: PMC7930625 DOI: 10.3389/fphar.2021.607364] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 01/06/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular disease (CVD) complications have contributed significantly toward poor survival of cancer patients worldwide. These complications that result in myocardial and vascular damage lead to long-term multisystemic disorders. In some patient cohorts, the progression from acute to symptomatic CVD state may be accelerated due to exacerbation of underlying comorbidities such as obesity, diabetes and hypertension. In such situations, cardio-oncologists are often left with a clinical predicament in finding the optimal therapeutic balance to minimize cardiovascular risks and maximize the benefits in treating cancer. Hence, prognostically there is an urgent need for cost-effective, rapid, sensitive and patient-specific screening platform to allow risk-adapted decision making to prevent cancer therapy related cardiotoxicity. In recent years, momentous progress has been made toward the successful derivation of human cardiovascular cells from induced pluripotent stem cells (iPSCs). This technology has not only provided deeper mechanistic insights into basic cardiovascular biology but has also seamlessly integrated within the drug screening and discovery programs for early efficacy and safety evaluation. In this review, we discuss how iPSC-derived cardiovascular cells have been utilized for testing oncotherapeutics to pre-determine patient predisposition to cardiovascular toxicity. Lastly, we highlight the convergence of tissue engineering technologies and precision medicine that can enable patient-specific cardiotoxicity prognosis and treatment on a multi-organ level.
Collapse
Affiliation(s)
- Dilip Thomas
- Stanford Cardiovascular Institute, Stanford, CA, United States.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA, United States
| | - Sushma Shenoy
- Stanford Cardiovascular Institute, Stanford, CA, United States
| | - Nazish Sayed
- Stanford Cardiovascular Institute, Stanford, CA, United States.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA, United States.,Division of Vascular Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
17
|
Liao X, Wu C, Shao Z, Zhang S, Zou Y, Wang K, Ha Y, Xing J, Zheng A, Shen Z, Zheng S, Guo J, Jie W. SETD4 in the Proliferation, Migration, Angiogenesis, Myogenic Differentiation and Genomic Methylation of Bone Marrow Mesenchymal Stem Cells. Stem Cell Rev Rep 2021; 17:1374-1389. [PMID: 33506343 DOI: 10.1007/s12015-021-10121-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2021] [Indexed: 11/28/2022]
Abstract
Epigenetic modification is a crucial mechanism affecting the biological function of stem cells. SETD4 is a histone methyltransferase, and its biological role in bone marrow mesenchymal stem cells (BMSCs) is currently unknown. In this study, we employed CRISPR/Cas9 technology edited mouse model and found that SETD4 knockout significantly promoted the proliferation of BMSCs, impaired BMSCs migration and differentiation potentials of lineages of cardiacmyocyte and smooth muscle cell, and even the angiogenesis via paracrine of VEGF. Through Reduced Representation Bisulfite Sequencing (RRBS) method, we verified that the overall genomic methylation of BMSCs in the SETD4 knockout group only was decreased by 0.47 % compared with wild type. However, the changed genomic methylation covers a total of 96,331 differential methylated CpG sites and 8,692 differential methylation regions (DMRs), with part of them settled in promoter regions. Bioinformatic analysis revealed that differential CpG islands and DMRs in promoter impacted 270 GO functions and 34 KEGG signaling pathways, with some closely related to stem cell biology. Mechanismly, SETD4 knockout inhibited sets of monomethylases and dimethylases for histone lysine, along with significant changes in some factors including Nkx2.5, Gata4, Gli2, Grem2, E2f7, Map7, Nr2f2 and Shox2 that associated with stem cell biology. These results are the first to reveal that even though SETD4 changes the genome's overall methylation to a limited extent in BMSCs, it still affects the numerous cellular functions and signaling pathways, implying SETD4-altered genomic methylation serves a crucial molecular role in BMSCs' biological functions.
Collapse
Affiliation(s)
- Xiaomin Liao
- Department of Pathology, School of Basic Medicine Sciences, Guangdong Medical University, Zhanjiang, 524023, China
| | - Caixia Wu
- Department of Pathology, School of Basic Medicine Sciences, Guangdong Medical University, Zhanjiang, 524023, China
| | - Zhongming Shao
- Department of Pathology, School of Basic Medicine Sciences, Guangdong Medical University, Zhanjiang, 524023, China
| | - Shuya Zhang
- Key Laboratory for Tropical Cardiovascular Diseases Research of Hainan Province, The First Affiliated Hospital of Hainan Medical University, Haikou, 571199, China
| | - Yuan Zou
- Department of Pathology, School of Basic Medicine Sciences, Guangdong Medical University, Zhanjiang, 524023, China
| | - Keke Wang
- Department of Pathology, School of Basic Medicine Sciences, Guangdong Medical University, Zhanjiang, 524023, China
| | - Yanping Ha
- Department of Pathology, School of Basic Medicine Sciences, Guangdong Medical University, Zhanjiang, 524023, China
| | - Jingci Xing
- Department of Pathology, School of Basic Medicine Sciences, Guangdong Medical University, Zhanjiang, 524023, China
| | - Axiu Zheng
- Department of Pathology, School of Basic Medicine Sciences, Guangdong Medical University, Zhanjiang, 524023, China
| | - Zhihua Shen
- Department of Pathology, School of Basic Medicine Sciences, Guangdong Medical University, Zhanjiang, 524023, China
| | - Shaojiang Zheng
- Key Laboratory for Tropical Cardiovascular Diseases Research of Hainan Province, The First Affiliated Hospital of Hainan Medical University, Haikou, 571199, China.,Key Laboratory of Emergency and Trauma of Ministry of Education & Research Unit of Island Emergency Medicine of Chinese Academy of Medical Sciences, Hainan Medical University, Haikou, 571199, China
| | - Junli Guo
- Key Laboratory for Tropical Cardiovascular Diseases Research of Hainan Province, The First Affiliated Hospital of Hainan Medical University, Haikou, 571199, China. .,Key Laboratory of Emergency and Trauma of Ministry of Education & Research Unit of Island Emergency Medicine of Chinese Academy of Medical Sciences, Hainan Medical University, Haikou, 571199, China.
| | - Wei Jie
- Department of Pathology, School of Basic Medicine Sciences, Guangdong Medical University, Zhanjiang, 524023, China. .,Key Laboratory for Tropical Cardiovascular Diseases Research of Hainan Province, The First Affiliated Hospital of Hainan Medical University, Haikou, 571199, China. .,Key Laboratory of Emergency and Trauma of Ministry of Education & Research Unit of Island Emergency Medicine of Chinese Academy of Medical Sciences, Hainan Medical University, Haikou, 571199, China.
| |
Collapse
|
18
|
Metzler E, Telugu N, Diecke S, Spuler S, Escobar H. Generation of three age and gender matched pairs of human induced pluripotent stem cells derived from myoblasts (MDCi011-A, MDCi012-A, MDCi013-A) and from peripheral blood mononuclear cells (MDCi011-B, MDCi012-B, MDCi013-B) from the same donor. Stem Cell Res 2020; 48:101987. [PMID: 32961449 DOI: 10.1016/j.scr.2020.101987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/20/2020] [Accepted: 09/01/2020] [Indexed: 11/17/2022] Open
Abstract
We describe the generation and characterization of three pairs of human induced pluripotent stem cell (hiPSC) lines reprogrammed from myoblasts and from peripheral blood mononuclear cells (PBMCs) of the same donor. All donors were free of neuromuscular disorders, female and between 47 and 50 years of age. For reprogramming we used Sendai-virus delivery of the four Yamanaka factors. The pluripotent identity of the hiPSC lines was confirmed by the expression of pluripotency markers and their capacity to differentiate into all three germ layers. These hiPSCs constitute a tool to study tissue of origin specific differences in the identity of hiPSCs.
Collapse
Affiliation(s)
- Eric Metzler
- Muscle Research Unit, Experimental and Clinical Research Center, a joint cooperation of Charité, Universitätsmedizin Berlin and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany; Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Narasimha Telugu
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Sebastian Diecke
- Berlin Institute of Health (BIH), Berlin, Germany; DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany; Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Simone Spuler
- Muscle Research Unit, Experimental and Clinical Research Center, a joint cooperation of Charité, Universitätsmedizin Berlin and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany; Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany; Charité, Universitätsmedizin Berlin, Germany
| | - Helena Escobar
- Muscle Research Unit, Experimental and Clinical Research Center, a joint cooperation of Charité, Universitätsmedizin Berlin and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany; Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| |
Collapse
|
19
|
"Betwixt Mine Eye and Heart a League Is Took": The Progress of Induced Pluripotent Stem-Cell-Based Models of Dystrophin-Associated Cardiomyopathy. Int J Mol Sci 2020; 21:ijms21196997. [PMID: 32977524 PMCID: PMC7582534 DOI: 10.3390/ijms21196997] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/17/2020] [Accepted: 09/21/2020] [Indexed: 12/19/2022] Open
Abstract
The ultimate goal of precision disease modeling is to artificially recreate the disease of affected people in a highly controllable and adaptable external environment. This field has rapidly advanced which is evident from the application of patient-specific pluripotent stem-cell-derived precision therapies in numerous clinical trials aimed at a diverse set of diseases such as macular degeneration, heart disease, spinal cord injury, graft-versus-host disease, and muscular dystrophy. Despite the existence of semi-adequate treatments for tempering skeletal muscle degeneration in dystrophic patients, nonischemic cardiomyopathy remains one of the primary causes of death. Therefore, cardiovascular cells derived from muscular dystrophy patients' induced pluripotent stem cells are well suited to mimic dystrophin-associated cardiomyopathy and hold great promise for the development of future fully effective therapies. The purpose of this article is to convey the realities of employing precision disease models of dystrophin-associated cardiomyopathy. This is achieved by discussing, as suggested in the title echoing William Shakespeare's words, the settlements (or "leagues") made by researchers to manage the constraints ("betwixt mine eye and heart") distancing them from achieving a perfect precision disease model.
Collapse
|
20
|
Metzler E, Telugu N, Diecke S, Spuler S, Escobar H. Generation of two human induced pluripotent stem cell lines derived from myoblasts (MDCi014-A) and from peripheral blood mononuclear cells (MDCi014-B) from the same donor. Stem Cell Res 2020; 48:101998. [PMID: 32979629 DOI: 10.1016/j.scr.2020.101998] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/01/2020] [Accepted: 09/10/2020] [Indexed: 11/15/2022] Open
Abstract
We describe the generation and characterization of two human induced pluripotent stem cell (hiPSCs) lines reprogrammed from myoblasts and from peripheral blood mononuclear cells (PBMCs) from the same donor. The donor was free of neuromuscular disorders, male and 18 years of age. For reprogramming we used Sendai-virus delivery of the four Yamanaka factors. The pluripotent identity of the hiPSC lines was confirmed by the expression of pluripotency markers and their capacity to differentiate into all three germ layers. These hiPSCs constitute a tool to study tissue of origin specific differences in the identity of hiPSCs.
Collapse
Affiliation(s)
- Eric Metzler
- Muscle Research Unit, Experimental and Clinical Research Center, A Joint Cooperation of Charité, Universitätsmedizin Berlin and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany; Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Narasimha Telugu
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Sebastian Diecke
- Berlin Institute of Health (BIH), Berlin, Germany; DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany; Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Simone Spuler
- Muscle Research Unit, Experimental and Clinical Research Center, A Joint Cooperation of Charité, Universitätsmedizin Berlin and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany; Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany; Charité, Universitätsmedizin Berlin, Germany
| | - Helena Escobar
- Muscle Research Unit, Experimental and Clinical Research Center, A Joint Cooperation of Charité, Universitätsmedizin Berlin and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany; Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| |
Collapse
|
21
|
Ostrominski JW, Yada RC, Sato N, Klein M, Blinova K, Patel D, Valadez R, Palisoc M, Pittaluga S, Peng KW, San H, Lin Y, Basuli F, Zhang X, Swenson RE, Haigney M, Choyke PL, Zou J, Boehm M, Hong SG, Dunbar CE. CRISPR/Cas9-mediated introduction of the sodium/iodide symporter gene enables noninvasive in vivo tracking of induced pluripotent stem cell-derived cardiomyocytes. Stem Cells Transl Med 2020; 9:1203-1217. [PMID: 32700830 PMCID: PMC7519772 DOI: 10.1002/sctm.20-0019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/10/2020] [Accepted: 05/24/2020] [Indexed: 12/31/2022] Open
Abstract
Techniques that enable longitudinal tracking of cell fate after myocardial delivery are imperative for optimizing the efficacy of cell‐based cardiac therapies. However, these approaches have been underutilized in preclinical models and clinical trials, and there is considerable demand for site‐specific strategies achieving long‐term expression of reporter genes compatible with safe noninvasive imaging. In this study, the rhesus sodium/iodide symporter (NIS) gene was incorporated into rhesus macaque induced pluripotent stem cells (RhiPSCs) via CRISPR/Cas9. Cardiomyocytes derived from NIS‐RhiPSCs (NIS‐RhiPSC‐CMs) exhibited overall similar morphological and electrophysiological characteristics compared to parental control RhiPSC‐CMs at baseline and with exposure to physiological levels of sodium iodide. Mice were injected intramyocardially with 2 million NIS‐RhiPSC‐CMs immediately following myocardial infarction, and serial positron emission tomography/computed tomography was performed with 18F‐tetrafluoroborate to monitor transplanted cells in vivo. NIS‐RhiPSC‐CMs could be detected until study conclusion at 8 to 10 weeks postinjection. This NIS‐based molecular imaging platform, with optimal safety and sensitivity characteristics, is primed for translation into large‐animal preclinical models and clinical trials.
Collapse
Affiliation(s)
- John W Ostrominski
- Translational Stem Cell Biology Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Ravi Chandra Yada
- Translational Stem Cell Biology Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Noriko Sato
- Molecular Imaging Program, Laboratory of Cellular Therapeutics, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Michael Klein
- Division of Cardiology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Ksenia Blinova
- Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Dakshesh Patel
- Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Racquel Valadez
- Laboratory of Pathology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland, USA
| | - Maryknoll Palisoc
- Laboratory of Pathology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland, USA
| | - Stefania Pittaluga
- Laboratory of Pathology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland, USA
| | - Kah-Whye Peng
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Hong San
- Animal Surgery and Resources Core, NHLBI, NIH, Bethesda, Maryland, USA
| | | | - Falguni Basuli
- Chemistry and Synthesis Center, NHLBI, NIH, Bethesda, Maryland, USA
| | - Xiang Zhang
- Chemistry and Synthesis Center, NHLBI, NIH, Bethesda, Maryland, USA
| | - Rolf E Swenson
- Chemistry and Synthesis Center, NHLBI, NIH, Bethesda, Maryland, USA
| | - Mark Haigney
- Division of Cardiology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Peter L Choyke
- Molecular Imaging Program, Laboratory of Cellular Therapeutics, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Jizhong Zou
- iPSC Core, NHLBI, NIH, Bethesda, Maryland, USA
| | - Manfred Boehm
- Laboratory of Cardiovascular Regenerative Medicine, NHLBI, NIH, Bethesda, Maryland, USA
| | - So Gun Hong
- Translational Stem Cell Biology Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Cynthia E Dunbar
- Translational Stem Cell Biology Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, Maryland, USA
| |
Collapse
|
22
|
Increased predominance of the matured ventricular subtype in embryonic stem cell-derived cardiomyocytes in vivo. Sci Rep 2020; 10:11883. [PMID: 32681032 PMCID: PMC7368005 DOI: 10.1038/s41598-020-68373-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 06/22/2020] [Indexed: 12/12/2022] Open
Abstract
Accumulating evidence suggests that human pluripotent stem cell-derived cardiomyocytes can affect “heart regeneration”, replacing injured cardiac scar tissue with concomitant electrical integration. However, electrically coupled graft cardiomyocytes were found to innately induce transient post-transplant ventricular tachycardia in recent large animal model transplantation studies. We hypothesised that these phenomena were derived from alterations in the grafted cardiomyocyte characteristics. In vitro experiments showed that human embryonic stem cell-derived cardiomyocytes (hESC-CMs) contain nodal-like cardiomyocytes that spontaneously contract faster than working-type cardiomyocytes. When transplanted into athymic rat hearts, proliferative capacity was lower for nodal-like than working-type cardiomyocytes with grafted cardiomyocytes eventually comprising only relatively matured ventricular cardiomyocytes. RNA-sequencing of engrafted hESC-CMs confirmed the increased expression of matured ventricular cardiomyocyte-related genes, and simultaneous decreased expression of nodal cardiomyocyte-related genes. Temporal engraftment of electrical excitable nodal-like cardiomyocytes may thus explain the transient incidence of post-transplant ventricular tachycardia, although further large animal model studies will be required to control post-transplant arrhythmia.
Collapse
|
23
|
Barilani M, Cherubini A, Peli V, Polveraccio F, Bollati V, Guffanti F, Del Gobbo A, Lavazza C, Giovanelli S, Elvassore N, Lazzari L. A circular RNA map for human induced pluripotent stem cells of foetal origin. EBioMedicine 2020; 57:102848. [PMID: 32574961 PMCID: PMC7322262 DOI: 10.1016/j.ebiom.2020.102848] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/28/2020] [Accepted: 06/04/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Adult skin fibroblasts represent the most common starting cell type used to generate human induced pluripotent stem cells (F-hiPSC) for clinical studies. Yet, a foetal source would offer unique advantages, primarily the absence of accumulated somatic mutations. Herein, we generated hiPSC from cord blood multipotent mesenchymal stromal cells (MSC-hiPSC) and compared them with F-hiPSC. Assessment of the full activation of the pluripotency gene regulatory network (PGRN) focused on circular RNA (circRNA), recently proposed to participate in the control of pluripotency. METHODS Reprogramming was achieved by a footprint-free strategy. Self-renewal and pluripotency of cord blood MSC-hiPSC were investigated in vitro and in vivo, compared to parental MSC, to embryonic stem cells and to F-hiPSC. High-throughput array-based approaches and bioinformatics analyses were applied to address the PGRN. FINDINGS Cord blood MSC-hiPSC successfully acquired a complete pluripotent identity. Functional comparison with F-hiPSC showed no differences in terms of i) generation of mesenchymal-like derivatives, ii) their subsequent adipogenic, osteogenic and chondrogenic commitment, and iii) their hematopoietic support ability. At the transcriptional level, specific subsets of mRNA, miRNA and circRNA (n = 4,429) were evidenced, casting a further layer of complexity on the PGRN regulatory crosstalk. INTERPRETATION A circRNA map of transcripts associated to naïve and primed pluripotency is provided for hiPSC of clinical-grade foetal origin, offering insights on still unreported regulatory circuits of the PGRN to consider for the optimization and development of efficient differentiation protocols for clinical translation. FUNDING This research was funded by Ricerca Corrente 2012-2018 by the Italian Ministry of Health.
Collapse
Affiliation(s)
- Mario Barilani
- Laboratory of Regenerative Medicine - Cell Factory, Department of Transfusion Medicine and Haematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122 Milano, Italy; EPIGET Lab, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy; Department of Industrial Engineering, University of Padova, Padova, Italy
| | - Alessandro Cherubini
- Laboratory of Regenerative Medicine - Cell Factory, Department of Transfusion Medicine and Haematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122 Milano, Italy
| | - Valeria Peli
- Laboratory of Regenerative Medicine - Cell Factory, Department of Transfusion Medicine and Haematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122 Milano, Italy
| | - Francesca Polveraccio
- Laboratory of Regenerative Medicine - Cell Factory, Department of Transfusion Medicine and Haematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122 Milano, Italy; Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Valentina Bollati
- EPIGET Lab, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | | | - Alessandro Del Gobbo
- Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Cristiana Lavazza
- Laboratory of Regenerative Medicine - Cell Factory, Department of Transfusion Medicine and Haematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122 Milano, Italy
| | - Silvia Giovanelli
- Milano Cord Blood Bank, Department of Transfusion Medicine and Haematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Nicola Elvassore
- Department of Industrial Engineering, University of Padova, Padova, Italy; Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai, China; Venetian Institute of Molecular Medicine, Padova, Italy; Stem Cells & Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Lorenza Lazzari
- Laboratory of Regenerative Medicine - Cell Factory, Department of Transfusion Medicine and Haematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122 Milano, Italy.
| |
Collapse
|
24
|
Panda A, Gurusamy N, Rajasingh S, Carter HK, Thomas EL, Rajasingh J. Non-viral reprogramming and induced pluripotent stem cells for cardiovascular therapy. Differentiation 2020; 112:58-66. [PMID: 31954271 DOI: 10.1016/j.diff.2019.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 11/15/2019] [Accepted: 12/20/2019] [Indexed: 12/27/2022]
Abstract
Despite significant effort devoted to developing new treatments and procedures, cardiac disease is still one of the leading causes of death in the world. The loss of myocytes due to ischemic injury remains a major therapeutic challenge. However, cell-based therapy to repair the injured heart has shown significant promise in basic and translation research and in clinical trials. Embryonic stem cells have been successfully used to improve cardiac outcomes. Unfortunately, treatment with these cells is complicated by ethical and legal issues. Recent progress in developing induced pluripotent stem cells (iPSCs) using non-viral vectors has made it possible to derive cardiomyocytes for therapy. This review will focus on these non-integration-based approaches for reprogramming and their therapeutic advantages for cardiovascular medicine.
Collapse
Affiliation(s)
- Arunima Panda
- Department of Cardiovascular Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Narasimman Gurusamy
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Sheeja Rajasingh
- Department of Cardiovascular Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA; Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Hannah-Kaye Carter
- Department of Cardiovascular Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Edwin L Thomas
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Johnson Rajasingh
- Department of Cardiovascular Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA; Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| |
Collapse
|
25
|
Lodrini AM, Barile L, Rocchetti M, Altomare C. Human Induced Pluripotent Stem Cells Derived from a Cardiac Somatic Source: Insights for an In-Vitro Cardiomyocyte Platform. Int J Mol Sci 2020; 21:ijms21020507. [PMID: 31941149 PMCID: PMC7013592 DOI: 10.3390/ijms21020507] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/10/2020] [Accepted: 01/10/2020] [Indexed: 12/24/2022] Open
Abstract
Reprogramming of adult somatic cells into induced pluripotent stem cells (iPSCs) has revolutionized the complex scientific field of disease modelling and personalized therapy. Cardiac differentiation of human iPSCs into cardiomyocytes (hiPSC-CMs) has been used in a wide range of healthy and disease models by deriving CMs from different somatic cells. Unfortunately, hiPSC-CMs have to be improved because existing protocols are not completely able to obtain mature CMs recapitulating physiological properties of human adult cardiac cells. Therefore, improvements and advances able to standardize differentiation conditions are needed. Lately, evidences of an epigenetic memory retained by the somatic cells used for deriving hiPSC-CMs has led to evaluation of different somatic sources in order to obtain more mature hiPSC-derived CMs.
Collapse
Affiliation(s)
- Alessandra Maria Lodrini
- Department of Biotechnology and Biosciences, Università degli Studi di Milano-Bicocca, Milano 20126, Italy; (A.M.L.); (M.R.)
| | - Lucio Barile
- Fondazione Cardiocentro Ticino, Lugano 6900, Switzerland;
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano 6900, Switzerland
| | - Marcella Rocchetti
- Department of Biotechnology and Biosciences, Università degli Studi di Milano-Bicocca, Milano 20126, Italy; (A.M.L.); (M.R.)
| | - Claudia Altomare
- Fondazione Cardiocentro Ticino, Lugano 6900, Switzerland;
- Correspondence:
| |
Collapse
|
26
|
Targeting cell plasticity for regeneration: From in vitro to in vivo reprogramming. Adv Drug Deliv Rev 2020; 161-162:124-144. [PMID: 32822682 DOI: 10.1016/j.addr.2020.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 12/14/2022]
Abstract
The discovery of induced pluripotent stem cells (iPSCs), reprogrammed to pluripotency from somatic cells, has transformed the landscape of regenerative medicine, disease modelling and drug discovery pipelines. Since the first generation of iPSCs in 2006, there has been enormous effort to develop new methods that increase reprogramming efficiency, and obviate the need for viral vectors. In parallel to this, the promise of in vivo reprogramming to convert cells into a desired cell type to repair damage in the body, constitutes a new paradigm in approaches for tissue regeneration. This review article explores the current state of reprogramming techniques for iPSC generation with a specific focus on alternative methods that use biophysical and biochemical stimuli to reduce or eliminate exogenous factors, thereby overcoming the epigenetic barrier towards vector-free approaches with improved clinical viability. We then focus on application of iPSC for therapeutic approaches, by giving an overview of ongoing clinical trials using iPSCs for a variety of health conditions and discuss future scope for using materials and reagents to reprogram cells in the body.
Collapse
|
27
|
Barreto S, Hamel L, Schiatti T, Yang Y, George V. Cardiac Progenitor Cells from Stem Cells: Learning from Genetics and Biomaterials. Cells 2019; 8:E1536. [PMID: 31795206 PMCID: PMC6952950 DOI: 10.3390/cells8121536] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 02/07/2023] Open
Abstract
Cardiac Progenitor Cells (CPCs) show great potential as a cell resource for restoring cardiac function in patients affected by heart disease or heart failure. CPCs are proliferative and committed to cardiac fate, capable of generating cells of all the cardiac lineages. These cells offer a significant shift in paradigm over the use of human induced pluripotent stem cell (iPSC)-derived cardiomyocytes owing to the latter's inability to recapitulate mature features of a native myocardium, limiting their translational applications. The iPSCs and direct reprogramming of somatic cells have been attempted to produce CPCs and, in this process, a variety of chemical and/or genetic factors have been evaluated for their ability to generate, expand, and maintain CPCs in vitro. However, the precise stoichiometry and spatiotemporal activity of these factors and the genetic interplay during embryonic CPC development remain challenging to reproduce in culture, in terms of efficiency, numbers, and translational potential. Recent advances in biomaterials to mimic the native cardiac microenvironment have shown promise to influence CPC regenerative functions, while being capable of integrating with host tissue. This review highlights recent developments and limitations in the generation and use of CPCs from stem cells, and the trends that influence the direction of research to promote better application of CPCs.
Collapse
Affiliation(s)
- Sara Barreto
- Guy Hilton Research Centre, School of Pharmacy & Bioengineering, Keele University, Staffordshire ST4 7QB, UK; (S.B.); (T.S.); (Y.Y.)
| | | | - Teresa Schiatti
- Guy Hilton Research Centre, School of Pharmacy & Bioengineering, Keele University, Staffordshire ST4 7QB, UK; (S.B.); (T.S.); (Y.Y.)
| | - Ying Yang
- Guy Hilton Research Centre, School of Pharmacy & Bioengineering, Keele University, Staffordshire ST4 7QB, UK; (S.B.); (T.S.); (Y.Y.)
| | - Vinoj George
- Guy Hilton Research Centre, School of Pharmacy & Bioengineering, Keele University, Staffordshire ST4 7QB, UK; (S.B.); (T.S.); (Y.Y.)
| |
Collapse
|
28
|
Vincent A, Ouelkdite-Oumouchal A, Souidi M, Leclerc J, Neve B, Van Seuningen I. Colon cancer stemness as a reversible epigenetic state: Implications for anticancer therapies. World J Stem Cells 2019; 11:920-936. [PMID: 31768220 PMCID: PMC6851010 DOI: 10.4252/wjsc.v11.i11.920] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 08/29/2019] [Accepted: 09/11/2019] [Indexed: 02/06/2023] Open
Abstract
The recent discovery of cancer cell plasticity, i.e. their ability to reprogram into cancer stem cells (CSCs) either naturally or under chemotherapy and/or radiotherapy, has changed, once again, the way we consider cancer treatment. If cancer stemness is a reversible epigenetic state rather than a genetic identity, opportunities will arise for therapeutic strategies that remodel epigenetic landscapes of CSCs. However, the systematic use of DNA methyltransferase and histone deacetylase inhibitors, alone or in combination, in advanced solid tumors including colorectal cancers, regardless of their molecular subtypes, does not seem to be the best strategy. In this review, we first summarize the knowledge researchers have gathered on the epigenetic signatures of CSCs with the difficulty of isolating rare populations of cells. We raise questions about the relevant use of currently available epigenetic inhibitors (epidrugs) while the expression of numerous cancer stem cell markers are often repressed by epigenetic mechanisms. These markers include the three cluster of differentiation CD133, CD44 and CD166 that have been extensively used for the isolation of colon CSCs.and . Finally, we describe current treatment strategies using epidrugs, and we hypothesize that, using correlation tools comparing associations of relevant CSC markers with chromatin modifier expression, we could identify better candidates for epienzyme targeting.
Collapse
Affiliation(s)
- Audrey Vincent
- Lille University, Institut National de la Santé et de la Recherche Médicale, CHU Lille, UMR-S 1172-Jean-Pierre Aubert Research Center, Lille F-59000, France
| | - Aïcha Ouelkdite-Oumouchal
- Lille University, Institut National de la Santé et de la Recherche Médicale, CHU Lille, UMR-S 1172-Jean-Pierre Aubert Research Center, Lille F-59000, France
| | - Mouloud Souidi
- Lille University, Institut National de la Santé et de la Recherche Médicale, CHU Lille, UMR-S 1172-Jean-Pierre Aubert Research Center, Lille F-59000, France
| | - Julie Leclerc
- Lille University, Institut National de la Santé et de la Recherche Médicale, CHU Lille, UMR-S 1172-Jean-Pierre Aubert Research Center, Lille F-59000, France
- Department of Biochemistry and Molecular Biology, Lille University Hospital, Lille F-59000, France
| | - Bernadette Neve
- Lille University, Institut National de la Santé et de la Recherche Médicale, CHU Lille, UMR-S 1172-Jean-Pierre Aubert Research Center, Lille F-59000, France
| | - Isabelle Van Seuningen
- Lille University, Institut National de la Santé et de la Recherche Médicale, CHU Lille, UMR-S 1172-Jean-Pierre Aubert Research Center, Lille F-59000, France
| |
Collapse
|
29
|
Horton C, Davies TJ, Lahiri P, Sachamitr P, Fairchild PJ. Induced pluripotent stem cells reprogrammed from primary dendritic cells provide an abundant source of immunostimulatory dendritic cells for use in immunotherapy. Stem Cells 2019; 38:67-79. [PMID: 31621975 PMCID: PMC7003857 DOI: 10.1002/stem.3095] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 08/10/2019] [Accepted: 08/30/2019] [Indexed: 12/30/2022]
Abstract
Cell types differentiated from induced pluripotent stem cells (iPSCs) are frequently arrested in their development program, more closely resembling a fetal rather than an adult phenotype, potentially limiting their utility for downstream clinical applications. The fetal phenotype of iPSC‐derived dendritic cells (ipDCs) is evidenced by their low expression of MHC class II and costimulatory molecules, impaired secretion of IL‐12, and poor responsiveness to conventional maturation stimuli, undermining their use for applications such as immune‐oncology. Given that iPSCs display an epigenetic memory of the cell type from which they were originally derived, we investigated the feasibility of reprogramming adult DCs to pluripotency to determine the impact on the phenotype and function of ipDCs differentiated from them. Using murine bone marrow‐derived DCs (bmDCs) as proof of principle, we show here that immature DCs are tractable candidates for reprogramming using non‐integrating Sendai virus for the delivery of Oct4, Sox2, Klf4, and c‐Myc transcription factors. Reprogramming efficiency of DCs was lower than mouse embryonic fibroblasts (MEFs) and highly dependent on their maturation status. Although control iPSCs derived from conventional MEFs yielded DCs that displayed a predictable fetal phenotype and impaired immunostimulatory capacity in vitro and in vivo, DCs differentiated from DC‐derived iPSCs exhibited a surface phenotype, immunostimulatory capacity, and responsiveness to maturation stimuli indistinguishable from the source DCs, a phenotype that was retained for 15 passages of the parent iPSCs. Our results suggest that the epigenetic memory of iPSCs may be productively exploited for the generation of potently immunogenic DCs for immunotherapeutic applications.
Collapse
Affiliation(s)
- Christopher Horton
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Timothy J Davies
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Priyoshi Lahiri
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Patty Sachamitr
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Paul J Fairchild
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
30
|
Ribeiro AJS, Guth BD, Engwall M, Eldridge S, Foley CM, Guo L, Gintant G, Koerner J, Parish ST, Pierson JB, Brock M, Chaudhary KW, Kanda Y, Berridge B. Considerations for an In Vitro, Cell-Based Testing Platform for Detection of Drug-Induced Inotropic Effects in Early Drug Development. Part 2: Designing and Fabricating Microsystems for Assaying Cardiac Contractility With Physiological Relevance Using Human iPSC-Cardiomyocytes. Front Pharmacol 2019; 10:934. [PMID: 31555128 PMCID: PMC6727630 DOI: 10.3389/fphar.2019.00934] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 07/22/2019] [Indexed: 12/14/2022] Open
Abstract
Contractility of the myocardium engines the pumping function of the heart and is enabled by the collective contractile activity of its muscle cells: cardiomyocytes. The effects of drugs on the contractility of human cardiomyocytes in vitro can provide mechanistic insight that can support the prediction of clinical cardiac drug effects early in drug development. Cardiomyocytes differentiated from human-induced pluripotent stem cells have high potential for overcoming the current limitations of contractility assays because they attach easily to extracellular materials and last long in culture, while having human- and patient-specific properties. Under these conditions, contractility measurements can be non-destructive and minimally invasive, which allow assaying sub-chronic effects of drugs. For this purpose, the function of cardiomyocytes in vitro must reflect physiological settings, which is not observed in cultured cardiomyocytes derived from induced pluripotent stem cells because of the fetal-like properties of their contractile machinery. Primary cardiomyocytes or tissues of human origin fully represent physiological cellular properties, but are not easily available, do not last long in culture, and do not attach easily to force sensors or mechanical actuators. Microengineered cellular systems with a more mature contractile function have been developed in the last 5 years to overcome this limitation of stem cell-derived cardiomyocytes, while simultaneously measuring contractile endpoints with integrated force sensors/actuators and image-based techniques. Known effects of engineered microenvironments on the maturity of cardiomyocyte contractility have also been discovered in the development of these systems. Based on these discoveries, we review here design criteria of microengineered platforms of cardiomyocytes derived from pluripotent stem cells for measuring contractility with higher physiological relevance. These criteria involve the use of electromechanical, chemical and morphological cues, co-culture of different cell types, and three-dimensional cellular microenvironments. We further discuss the use and the current challenges for developing and improving these novel technologies for predicting clinical effects of drugs based on contractility measurements with cardiomyocytes differentiated from induced pluripotent stem cells. Future research should establish contexts of use in drug development for novel contractility assays with stem cell-derived cardiomyocytes.
Collapse
Affiliation(s)
- Alexandre J S Ribeiro
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translation Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States
| | - Brian D Guth
- Department of Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co KG, Biberach an der Riss, Germany.,PreClinical Drug Development Platform (PCDDP), North-West University, Potchefstroom, South Africa
| | - Michael Engwall
- Safety Pharmacology and Animal Research Center, Amgen Research, Thousand Oaks, CA, United States
| | - Sandy Eldridge
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - C Michael Foley
- Department of Integrative Pharmacology, Integrated Sciences and Technology, AbbVie, North Chicago, IL, United States
| | - Liang Guo
- Laboratory of Investigative Toxicology, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Gary Gintant
- Department of Integrative Pharmacology, Integrated Sciences and Technology, AbbVie, North Chicago, IL, United States
| | - John Koerner
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translation Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States
| | - Stanley T Parish
- Health and Environmental Sciences Institute, Washington, DC, United States
| | - Jennifer B Pierson
- Health and Environmental Sciences Institute, Washington, DC, United States
| | - Mathew Brock
- Department of Safety Assessment, Genentech, South San Francisco, CA, United States
| | - Khuram W Chaudhary
- Global Safety Pharmacology, GlaxoSmithKline plc, Collegeville, PA, United States
| | - Yasunari Kanda
- Division of Pharmacology, National Institute of Health Sciences, Kanagawa, Japan
| | - Brian Berridge
- National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| |
Collapse
|
31
|
Pianezzi E, Altomare C, Bolis S, Balbi C, Torre T, Rinaldi A, Camici GG, Barile L, Vassalli G. Role of somatic cell sources in the maturation degree of human induced pluripotent stem cell-derived cardiomyocytes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1867:118538. [PMID: 31472168 DOI: 10.1016/j.bbamcr.2019.118538] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 08/27/2019] [Accepted: 08/27/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Induced pluripotent stem cell (iPSC)-derived cardiomyocytes (iPSC-CMs) are a unique source of human cardiomyocytes for cardiac disease modeling. Incomplete functional maturation remains a major limitation, however. One of the determinants of iPSC-CM maturation is somatic cell origin. We therefore compared iPSC-CMs derived from different somatic cell sources. METHODS Cardiac-derived mesenchymal progenitor cells (CPCs), bone marrow-derived mesenchymal stem cells (BMCs), and human dermal fibroblasts (HDFs) from same patients were reprogrammed into iPSCs and differentiated into iPSC-CMs. Expression of cardiac-specific genes, caffeine-responsive cells, and electrophysiological properties of differentiated cells were analyzed. To assess the contribution of epigenetic memory toward differences in gene expression observed during cardiac differentiation, DNA methylation patterns were determined in the early mesodermal cardiac promoter NKX2-5 and KCNQ1, which encodes for the pore-forming α-subunit of the slow component of delayed-rectifier potassium current (IKs). RESULTS Cardiac genes (MYH6, TNNI3, KCNQ1, KCNE1) were upregulated in CPC-vs. BMC- and HDF-iPSC-CMs. At early differentiation stages, CPC-iPSC-CMs displayed higher numbers of caffeine-responsive cells than BMC- and HDF-iPSC-CMs. The hERG1 (KV11.1) blocker, E4031, followed by the IKs blocker, JNJ303, increased extracellular field potential duration in CPC-iPSC-CMs to a greater extent than in BMC- and HDF-iPSC-CMs. The promoter region of NKX2-5 was more highly methylated in BMCs and HDFs compared to CPCs, and to a lesser extent in BMC-iPSCs compared to CPC-iPSCs. CONCLUSIONS These results suggest that human iPSCs from cardiac somatic cell sources may display enhanced capacity toward cardiac re-differentiation compared to non-cardiac cell sources, and that epigenetic mechanisms may play a role in this regard.
Collapse
Affiliation(s)
- Enea Pianezzi
- Laboratory of Cellular and Molecular Cardiology, Fondazione Cardiocentro Ticino and Foundation for Cardiovascular Research and Education (FCRE), 6900 Lugano, Switzerland
| | - Claudia Altomare
- Laboratory of Cellular and Molecular Cardiology, Fondazione Cardiocentro Ticino and Foundation for Cardiovascular Research and Education (FCRE), 6900 Lugano, Switzerland
| | - Sara Bolis
- Laboratory of Cellular and Molecular Cardiology, Fondazione Cardiocentro Ticino and Foundation for Cardiovascular Research and Education (FCRE), 6900 Lugano, Switzerland
| | - Carolina Balbi
- Laboratory of Cellular and Molecular Cardiology, Fondazione Cardiocentro Ticino and Foundation for Cardiovascular Research and Education (FCRE), 6900 Lugano, Switzerland
| | - Tiziano Torre
- Laboratory of Cellular and Molecular Cardiology, Fondazione Cardiocentro Ticino and Foundation for Cardiovascular Research and Education (FCRE), 6900 Lugano, Switzerland
| | - Andrea Rinaldi
- Istituto di Ricerca in Biomedicina (IRB), 6500 Bellinzona, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera Italiana (USI), 6900 Lugano, Switzerland
| | - Giovanni G Camici
- Center for Molecular Cardiology, University of Zürich, 8001 Zürich, Switzerland
| | - Lucio Barile
- Laboratory of Cellular and Molecular Cardiology, Fondazione Cardiocentro Ticino and Foundation for Cardiovascular Research and Education (FCRE), 6900 Lugano, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera Italiana (USI), 6900 Lugano, Switzerland
| | - Giuseppe Vassalli
- Laboratory of Cellular and Molecular Cardiology, Fondazione Cardiocentro Ticino and Foundation for Cardiovascular Research and Education (FCRE), 6900 Lugano, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera Italiana (USI), 6900 Lugano, Switzerland; Center for Molecular Cardiology, University of Zürich, 8001 Zürich, Switzerland.
| |
Collapse
|
32
|
Lyon A. Stress in a Dish: Exploring the Mechanisms of Takotsubo Syndrome. J Am Coll Cardiol 2019; 70:992-995. [PMID: 28818209 DOI: 10.1016/j.jacc.2017.07.716] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 07/04/2017] [Indexed: 01/26/2023]
Affiliation(s)
- Alexander Lyon
- Cardiovascular Research Centre, Royal Brompton Hospital and Imperial College London, London, United Kingdom.
| |
Collapse
|
33
|
Durán-Pastén ML, Cortes D, Valencia-Amaya AE, King S, González-Gómez GH, Hautefeuille M. Cell Culture Platforms with Controllable Stiffness for Chick Embryonic Cardiomyocytes. Biomimetics (Basel) 2019; 4:biomimetics4020033. [PMID: 31105218 PMCID: PMC6630216 DOI: 10.3390/biomimetics4020033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/11/2019] [Accepted: 04/23/2019] [Indexed: 12/20/2022] Open
Abstract
For several years, cell culture techniques have been physiologically relevant to understand living organisms both structurally and functionally, aiming at preserving as carefully as possible the in vivo integrity and function of the cells. However, when studying cardiac cells, glass or plastic Petri dishes and culture-coated plates lack important cues that do not allow to maintain the desired phenotype, especially for primary cell culture. In this work, we show that microscaffolds made with polydimethylsiloxane (PDMS) enable modulating the stiffness of the surface of the culture substrate and this originates different patterns of adhesion, self-organization, and synchronized or propagated activity in the culture of chick embryonic cardiomyocytes. Thanks to the calcium imaging technique, we found that the substrate stiffness affected cardiomyocyte adhesion, as well as the calcium signal propagation in the formed tissue. The patterns of activity shown by the calcium fluorescence variations are reliable clues of the functional organization achieved by the cell layers. We found that PDMS substrates with a stiffness of 25 kPa did not allow the formation of cell layers and therefore the optimal propagation of the intracellular calcium signals, while softer PDMS substrates with Young’s modulus within the physiological in vivo reported range did permit synchronized and coordinated contractility and intracellular calcium activity. This type of methodology allows us to study phenomena such as arrhythmias. For example, the occurrence of synchronized activity or rotors that can initiate or maintain cardiac arrhythmias can be reproduced on different substrates for study, so that replacement tissues or patches can be better designed.
Collapse
Affiliation(s)
- María Luisa Durán-Pastén
- Taller de Biofísica de Sistemas Excitables, Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510 México City, Mexico.
- Laboratorio Nacional de Canalopatias LaNCa, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 México City, Mexico.
| | - Daniela Cortes
- Taller de Biofísica de Sistemas Excitables, Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510 México City, Mexico.
- Laboratorio Nacional de Soluciones Biomiméticas para Diagnóstico y Terapia LaNSBioDyT, Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510 México City, Mexico.
| | - Alan E Valencia-Amaya
- Taller de Biofísica de Sistemas Excitables, Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510 México City, Mexico.
- Laboratorio Nacional de Soluciones Biomiméticas para Diagnóstico y Terapia LaNSBioDyT, Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510 México City, Mexico.
| | - Santiago King
- Taller de Biofísica de Sistemas Excitables, Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510 México City, Mexico.
- Laboratorio Nacional de Soluciones Biomiméticas para Diagnóstico y Terapia LaNSBioDyT, Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510 México City, Mexico.
| | - Gertrudis Hortensia González-Gómez
- Taller de Biofísica de Sistemas Excitables, Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510 México City, Mexico.
- Departamento de Física. Facultad de Ciencias Universidad Nacional Autónoma de México; 04510 México City, Mexico.
| | - Mathieu Hautefeuille
- Laboratorio Nacional de Soluciones Biomiméticas para Diagnóstico y Terapia LaNSBioDyT, Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510 México City, Mexico.
- Departamento de Física. Facultad de Ciencias Universidad Nacional Autónoma de México; 04510 México City, Mexico.
| |
Collapse
|
34
|
Biendarra-Tiegs SM, Li X, Ye D, Brandt EB, Ackerman MJ, Nelson TJ. Single-Cell RNA-Sequencing and Optical Electrophysiology of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes Reveal Discordance Between Cardiac Subtype-Associated Gene Expression Patterns and Electrophysiological Phenotypes. Stem Cells Dev 2019; 28:659-673. [PMID: 30892143 PMCID: PMC6534093 DOI: 10.1089/scd.2019.0030] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The ability to accurately phenotype cells differentiated from human induced pluripotent stem cells (hiPSCs) is essential for their application in modeling developmental and disease processes, yet also poses a particular challenge without the context of anatomical location. Our specific objective was to determine if single-cell gene expression was sufficient to predict the electrophysiology of iPSC-derived cardiac lineages, to evaluate the concordance between molecular and functional surrogate markers. To this end, we used the genetically encoded voltage indicator ArcLight to profile hundreds of hiPSC-derived cardiomyocytes (hiPSC-CMs), thus identifying patterns of electrophysiological maturation and increased prevalence of cells with atrial-like action potentials (APs) between days 11 and 42 of differentiation. To profile expression patterns of cardiomyocyte subtype-associated genes, single-cell RNA-seq was performed at days 12 and 40 after the populations were fully characterized with the high-throughput ArcLight platform. Although we could detect global gene expression changes supporting progressive differentiation, individual cellular expression patterns alone were not able to delineate the individual cardiomyocytes into atrial, ventricular, or nodal subtypes as functionally documented by electrophysiology measurements. Furthermore, our efforts to understand the distinct electrophysiological properties associated with day 12 versus day 40 hiPSC-CMs revealed that ion channel regulators SLMAP, FGF12, and FHL1 were the most significantly increased genes at day 40, categorized by electrophysiology-related gene functions. Notably, FHL1 knockdown during differentiation was sufficient to significantly modulate APs toward ventricular-like electrophysiology. Thus, our results establish the inability of subtype-associated gene expression patterns to specifically categorize hiPSC-derived cells according to their functional electrophysiology, and yet, altered FHL1 expression is able to redirect electrophysiological maturation of these developing cells. Therefore, noncanonical gene expression patterns of cardiac maturation may be sufficient to direct functional maturation of cardiomyocytes, with canonical gene expression patterns being insufficient to temporally define cardiac subtypes of in vitro differentiation.
Collapse
Affiliation(s)
- Sherri M Biendarra-Tiegs
- 1 Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota.,2 Center for Regenerative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Xing Li
- 2 Center for Regenerative Medicine, Mayo Clinic, Rochester, Minnesota.,3 Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Dan Ye
- 4 Windland Smith Rice Sudden Death Genomics Laboratory, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
| | - Emma B Brandt
- 1 Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota.,2 Center for Regenerative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Michael J Ackerman
- 4 Windland Smith Rice Sudden Death Genomics Laboratory, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota.,5 Division of Heart Rhythm Services, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota.,6 Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota
| | - Timothy J Nelson
- 1 Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota.,2 Center for Regenerative Medicine, Mayo Clinic, Rochester, Minnesota.,5 Division of Heart Rhythm Services, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota.,6 Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota.,7 Division of General Internal Medicine, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
35
|
Ohashi F, Miyagawa S, Yasuda S, Miura T, Kuroda T, Itoh M, Kawaji H, Ito E, Yoshida S, Saito A, Sameshima T, Kawai J, Sawa Y, Sato Y. CXCL4/PF4 is a predictive biomarker of cardiac differentiation potential of human induced pluripotent stem cells. Sci Rep 2019; 9:4638. [PMID: 30874579 PMCID: PMC6420577 DOI: 10.1038/s41598-019-40915-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 02/21/2019] [Indexed: 12/23/2022] Open
Abstract
Selection of human induced pluripotent stem cell (hiPSC) lines with high cardiac differentiation potential is important for regenerative therapy and drug screening. We aimed to identify biomarkers for predicting cardiac differentiation potential of hiPSC lines by comparing the gene expression profiles of six undifferentiated hiPSC lines with different cardiac differentiation capabilities. We used three platforms of gene expression analysis, namely, cap analysis of gene expression (CAGE), mRNA array, and microRNA array to efficiently screen biomarkers related to cardiac differentiation of hiPSCs. Statistical analysis revealed candidate biomarker genes with significant correlation between the gene expression levels in the undifferentiated hiPSCs and their cardiac differentiation potential. Of the candidate genes, PF4 was validated as a biomarker expressed in undifferentiated hiPSCs with high potential for cardiac differentiation in 13 additional hiPSC lines. Our observations suggest that PF4 may be a useful biomarker for selecting hiPSC lines appropriate for the generation of cardiomyocytes.
Collapse
Affiliation(s)
- Fumiya Ohashi
- Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan.,Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan.,Department of Cellular & Gene Therapy Products, Osaka University Graduate School of Pharmaceutical Sciences, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Terumo Corporation, 1500 Inokuchi, Nakai-machi, Ashigarakami-gun, Kanagawa, 259-0151, Japan
| | - Shigeru Miyagawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Satoshi Yasuda
- Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan
| | - Takumi Miura
- Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan
| | - Takuya Kuroda
- Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan
| | - Masayoshi Itoh
- Preventive Medicine and Diagnosis Innovation Program, RIKEN Center, 1-7-22, Suehirocho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Hideya Kawaji
- Preventive Medicine and Diagnosis Innovation Program, RIKEN Center, 1-7-22, Suehirocho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.,Preventive Medicine and Applied Genomics Unit, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehirocho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Emiko Ito
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Shohei Yoshida
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Atsuhiro Saito
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Tadashi Sameshima
- Terumo Corporation, 1500 Inokuchi, Nakai-machi, Ashigarakami-gun, Kanagawa, 259-0151, Japan
| | - Jun Kawai
- Preventive Medicine and Diagnosis Innovation Program, RIKEN Center, 1-7-22, Suehirocho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Yoshiki Sawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Yoji Sato
- Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan. .,Department of Cellular & Gene Therapy Products, Osaka University Graduate School of Pharmaceutical Sciences, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan. .,Department of Quality Assurance Science for Pharmaceuticals, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi, 467-8603, Japan. .,Department of Translational Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka, 812-8582, Japan. .,LiSE Laboratory, Kanagawa Institute of Industrial Science and Technology, 3-25-13 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-0821, Japan.
| |
Collapse
|
36
|
Addressing Variability and Heterogeneity of Induced Pluripotent Stem Cell-Derived Cardiomyocytes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1212:1-29. [DOI: 10.1007/5584_2019_350] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
37
|
Amin M, Kushida Y, Wakao S, Kitada M, Tatsumi K, Dezawa M. Cardiotrophic Growth Factor-Driven Induction of Human Muse Cells Into Cardiomyocyte-Like Phenotype. Cell Transplant 2019; 27:285-298. [PMID: 29637816 PMCID: PMC5898685 DOI: 10.1177/0963689717721514] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Multilineage-differentiating stress-enduring (Muse) cells are endogenous nontumorigenic stem cells collectable as stage-specific embryonic antigen 3 (SSEA-3) + from various organs including the bone marrow and are pluripotent-like. The potential of human bone marrow-derived Muse cells to commit to cardiac lineage cells was evaluated. We found that (1) initial treatment of Muse cells with 5'-azacytidine in suspension culture successfully accelerated demethylation of cardiac marker Nkx2.5 promoter; (2) then transferring the cells onto adherent culture and treatment with early cardiac differentiation factors including wingless-int (Wnt)-3a, bone morphogenetic proteins (BMP)-2/4, and transforming growth factor (TGF) β1; and (3) further treatment with late cardiac differentiation cytokines including cardiotrophin-1 converted Muse cells into cardiomyocyte-like cells that expressed α-actinin and troponin-I with a striation-like pattern. MLC2a expression in the final step suggested differentiation of the cells into an atrial subtype. MLC2v, a marker for a mature ventricular subtype, was expressed when cells were treated with Dickkopf-related protein 1 (DKK-1) and Noggin, inhibitors of Wnt3a and BMP-4, respectively, between steps (2) and (3). None of the steps included exogenous gene transfection, making induced cells feasible for future clinical application.
Collapse
Affiliation(s)
- Mohamed Amin
- 1 Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai, Japan.,2 Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Dakahlia, Egypt
| | - Yoshihiro Kushida
- 1 Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shohei Wakao
- 1 Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masaaki Kitada
- 1 Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kazuki Tatsumi
- 1 Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai, Japan.,3 Life Science Institute Inc., Regenerative Medicine Division, Nagoya, Japan
| | - Mari Dezawa
- 1 Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
38
|
Wu KH, Wang SY, Xiao QR, Yang Y, Huang NP, Mo XM, Sun J. Small-molecule-based generation of functional cardiomyocytes from human umbilical cord-derived induced pluripotent stem cells. J Cell Biochem 2019; 120:1318-1327. [PMID: 30317643 DOI: 10.1002/jcb.27094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 04/26/2018] [Indexed: 01/24/2023]
Abstract
The purpose of this study was to investigate the cardiac-differentiation potential of induced pluripotent stem cells (iPSCs) generated from human umbilical cord-derived mesenchymal cells. Spontaneous beating colonies were observed at day 7 after the sequential addition of CHIR99021 and IWP-4. The combined use of CHIR99021 and IWP-4 downregulated the expression of pluripotency markers while upregulating cardiac transcription factors and cardiomyocyte-specific markers. The derived cardiomyocytes demonstrated typical sarcomeric structures and action-potential features; most importantly, the derived cells exhibited responsiveness to β-adrenergic and muscarinic stimulations. The analyses of molecular, structural, and functional properties revealed that the derived cardiomyocytes were similar to cardiomyocytes derived from BJ foreskin fibroblast cells. In summary, our results demonstrate that functional cardiomyocytes can be generated from human umbilical cord-derived cells. The methodology described here has potential as a means for the production of functional cardiomyocytes from discarded human umbilical cord tissue.
Collapse
Affiliation(s)
- Kai Hong Wu
- Cardiovascular Center, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Su Yun Wang
- Cardiovascular Center, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Qian Ru Xiao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Yu Yang
- Cardiovascular Center, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Ning Ping Huang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Xu Ming Mo
- Cardiovascular Center, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Jian Sun
- Cardiovascular Center, Children's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
39
|
Wnorowski A, Yang H, Wu JC. Progress, obstacles, and limitations in the use of stem cells in organ-on-a-chip models. Adv Drug Deliv Rev 2019; 140:3-11. [PMID: 29885330 DOI: 10.1016/j.addr.2018.06.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 05/16/2018] [Accepted: 06/01/2018] [Indexed: 12/18/2022]
Abstract
In recent years, drug development costs have soared, primarily due to the failure of preclinical animal and cell culture models, which do not directly translate to human physiology. Organ-on-a-chip (OOC) is a burgeoning technology with the potential to revolutionize disease modeling, drug discovery, and toxicology research by strengthening the relevance of culture-based models while reducing costly animal studies. Although OOC models can incorporate a variety of tissue sources, the most robust and relevant OOC models going forward will include stem cells. In this review, we will highlight the benefits of stem cells as a tissue source while considering current limitations to their complete and effective implementation into OOC models.
Collapse
Affiliation(s)
- Alexa Wnorowski
- Stanford Cardiovascular Institute, Stanford, CA 94305, United States; Department of Bioengineering, Stanford University Schools of Engineering and Medicine, Stanford, CA 943055, United States
| | - Huaxiao Yang
- Stanford Cardiovascular Institute, Stanford, CA 94305, United States
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford, CA 94305, United States; Division of Cardiovascular Medicine, Department of Medicine, Stanford, CA 94305, United States; Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305, United States.
| |
Collapse
|
40
|
van Mil A, Balk GM, Neef K, Buikema JW, Asselbergs FW, Wu SM, Doevendans PA, Sluijter JPG. Modelling inherited cardiac disease using human induced pluripotent stem cell-derived cardiomyocytes: progress, pitfalls, and potential. Cardiovasc Res 2018; 114:1828-1842. [PMID: 30169602 PMCID: PMC6887927 DOI: 10.1093/cvr/cvy208] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/06/2018] [Accepted: 08/28/2018] [Indexed: 12/17/2022] Open
Abstract
In the past few years, the use of specific cell types derived from induced pluripotent stem cells (iPSCs) has developed into a powerful approach to investigate the cellular pathophysiology of numerous diseases. Despite advances in therapy, heart disease continues to be one of the leading causes of death in the developed world. A major difficulty in unravelling the underlying cellular processes of heart disease is the extremely limited availability of viable human cardiac cells reflecting the pathological phenotype of the disease at various stages. Thus, the development of methods for directed differentiation of iPSCs to cardiomyocytes (iPSC-CMs) has provided an intriguing option for the generation of patient-specific cardiac cells. In this review, a comprehensive overview of the currently published iPSC-CM models for hereditary heart disease is compiled and analysed. Besides the major findings of individual studies, detailed methodological information on iPSC generation, iPSC-CM differentiation, characterization, and maturation is included. Both, current advances in the field and challenges yet to overcome emphasize the potential of using patient-derived cell models to mimic genetic cardiac diseases.
Collapse
Affiliation(s)
- Alain van Mil
- Division Heart and Lungs, Department of Cardiology, Experimental Cardiology Laboratory, Regenerative Medicine Center, University Medical Center Utrecht, Internal Mail No G03.550, GA Utrecht, the Netherlands
- Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Geerthe Margriet Balk
- Division Heart and Lungs, Department of Cardiology, Experimental Cardiology Laboratory, Regenerative Medicine Center, University Medical Center Utrecht, Internal Mail No G03.550, GA Utrecht, the Netherlands
- Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Klaus Neef
- Division Heart and Lungs, Department of Cardiology, Experimental Cardiology Laboratory, Regenerative Medicine Center, University Medical Center Utrecht, Internal Mail No G03.550, GA Utrecht, the Netherlands
- Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Jan Willem Buikema
- Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Folkert W Asselbergs
- Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Faculty of Population Health Sciences, Institute of Cardiovascular Science, University College London, London, UK
- Durrer Center for Cardiovascular Research, Netherlands Heart Institute, Utrecht, the Netherlands
- Farr Institute of Health Informatics Research and Institute of Health Informatics, University College London, London, UK
| | - Sean M Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Pieter A Doevendans
- Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Joost P G Sluijter
- Division Heart and Lungs, Department of Cardiology, Experimental Cardiology Laboratory, Regenerative Medicine Center, University Medical Center Utrecht, Internal Mail No G03.550, GA Utrecht, the Netherlands
- Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
41
|
Lau E, Paik DT, Wu JC. Systems-Wide Approaches in Induced Pluripotent Stem Cell Models. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2018; 14:395-419. [PMID: 30379619 DOI: 10.1146/annurev-pathmechdis-012418-013046] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Human induced pluripotent stem cells (iPSCs) provide a renewable supply of patient-specific and tissue-specific cells for cellular and molecular studies of disease mechanisms. Combined with advances in various omics technologies, iPSC models can be used to profile the expression of genes, transcripts, proteins, and metabolites in relevant tissues. In the past 2 years, large panels of iPSC lines have been derived from hundreds of genetically heterogeneous individuals, further enabling genome-wide mapping to identify coexpression networks and elucidate gene regulatory networks. Here, we review recent developments in omics profiling of various molecular phenotypes and the emergence of human iPSCs as a systems biology model of human diseases.
Collapse
Affiliation(s)
- Edward Lau
- Stanford Cardiovascular Institute, and Department of Medicine, Division of Cardiology, Stanford University, Stanford, California 94305, USA;
| | - David T Paik
- Stanford Cardiovascular Institute, and Department of Medicine, Division of Cardiology, Stanford University, Stanford, California 94305, USA;
| | - Joseph C Wu
- Stanford Cardiovascular Institute, and Department of Medicine, Division of Cardiology, Stanford University, Stanford, California 94305, USA; .,Department of Radiology, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
42
|
Hu S, Zhao MT, Jahanbani F, Shao NY, Lee WH, Chen H, Snyder MP, Wu JC. Effects of cellular origin on differentiation of human induced pluripotent stem cell-derived endothelial cells. JCI Insight 2018; 1:85558. [PMID: 27398408 DOI: 10.1172/jci.insight.85558] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Human induced pluripotent stem cells (iPSCs) can be derived from various types of somatic cells by transient overexpression of 4 Yamanaka factors (OCT4, SOX2, C-MYC, and KLF4). Patient-specific iPSC derivatives (e.g., neuronal, cardiac, hepatic, muscular, and endothelial cells [ECs]) hold great promise in drug discovery and regenerative medicine. In this study, we aimed to evaluate whether the cellular origin can affect the differentiation, in vivo behavior, and single-cell gene expression signatures of human iPSC-derived ECs. We derived human iPSCs from 3 types of somatic cells of the same individuals: fibroblasts (FB-iPSCs), ECs (EC-iPSCs), and cardiac progenitor cells (CPC-iPSCs). We then differentiated them into ECs by sequential administration of Activin, BMP4, bFGF, and VEGF. EC-iPSCs at early passage (10 < P < 20) showed higher EC differentiation propensity and gene expression of EC-specific markers (PECAM1 and NOS3) than FB-iPSCs and CPC-iPSCs. In vivo transplanted EC-iPSC-ECs were recovered with a higher percentage of CD31+ population and expressed higher EC-specific gene expression markers (PECAM1, KDR, and ICAM) as revealed by microfluidic single-cell quantitative PCR (qPCR). In vitro EC-iPSC-ECs maintained a higher CD31+ population than FB-iPSC-ECs and CPC-iPSC-ECs with long-term culturing and passaging. These results indicate that cellular origin may influence lineage differentiation propensity of human iPSCs; hence, the somatic memory carried by early passage iPSCs should be carefully considered before clinical translation.
Collapse
Affiliation(s)
- Shijun Hu
- Stanford Cardiovascular Institute.,Department of Medicine, Division of Cardiology, and.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA.,Institute for Cardiovascular Science, Soochow University & Department of Cardiovascular Surgery of the First Affiliated Hospital, Suzhou, Jiangsu, China
| | - Ming-Tao Zhao
- Stanford Cardiovascular Institute.,Department of Medicine, Division of Cardiology, and.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Fereshteh Jahanbani
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - Ning-Yi Shao
- Stanford Cardiovascular Institute.,Department of Medicine, Division of Cardiology, and.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Won Hee Lee
- Stanford Cardiovascular Institute.,Department of Medicine, Division of Cardiology, and.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Haodong Chen
- Stanford Cardiovascular Institute.,Department of Medicine, Division of Cardiology, and.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Michael P Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute.,Department of Medicine, Division of Cardiology, and.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
43
|
Abou-Saleh H, Zouein FA, El-Yazbi A, Sanoudou D, Raynaud C, Rao C, Pintus G, Dehaini H, Eid AH. The march of pluripotent stem cells in cardiovascular regenerative medicine. Stem Cell Res Ther 2018; 9:201. [PMID: 30053890 PMCID: PMC6062943 DOI: 10.1186/s13287-018-0947-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Cardiovascular disease (CVD) continues to be the leading cause of global morbidity and mortality. Heart failure remains a major contributor to this mortality. Despite major therapeutic advances over the past decades, a better understanding of molecular and cellular mechanisms of CVD as well as improved therapeutic strategies for the management or treatment of heart failure are increasingly needed. Loss of myocardium is a major driver of heart failure. An attractive approach that appears to provide promising results in reducing cardiac degeneration is stem cell therapy (SCT). In this review, we describe different types of stem cells, including embryonic and adult stem cells, and we provide a detailed discussion of the properties of induced pluripotent stem cells (iPSCs). We also present and critically discuss the key methods used for converting somatic cells to pluripotent cells and iPSCs to cardiomyocytes (CMs), along with their advantages and limitations. Integrating and non-integrating reprogramming methods as well as characterization of iPSCs and iPSC-derived CMs are discussed. Furthermore, we critically present various methods of differentiating iPSCs to CMs. The value of iPSC-CMs in regenerative medicine as well as myocardial disease modeling and cardiac regeneration are emphasized.
Collapse
Affiliation(s)
- Haissam Abou-Saleh
- Department of Biological and Environmental Sciences, Qatar University, Doha, Qatar
| | - Fouad A. Zouein
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Ahmed El-Yazbi
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Department of Pharmacology and Toxicology, Alexandria University, Alexandria, Egypt
| | - Despina Sanoudou
- Clinical Genomics and Pharmacogenomics Unit, 4th Department of Internal Medicine, “Attikon” Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Christopher Rao
- Department of Surgery, Queen Elizabeth Hospital, Woolwich, London, UK
| | - Gianfranco Pintus
- Department of Biomedical Sciences, College of Health Sciences, Qatar University, Doha, Qatar
| | - Hassan Dehaini
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Ali H. Eid
- Department of Biological and Environmental Sciences, Qatar University, Doha, Qatar
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Department of Biomedical Sciences, College of Health Sciences, Qatar University, Doha, Qatar
| |
Collapse
|
44
|
Sun Y, Timofeyev V, Dennis A, Bektik E, Wan X, Laurita KR, Deschênes I, Li RA, Fu JD. A Singular Role of I K1 Promoting the Development of Cardiac Automaticity during Cardiomyocyte Differentiation by I K1 -Induced Activation of Pacemaker Current. Stem Cell Rev Rep 2018. [PMID: 28623610 DOI: 10.1007/s12015-017-9745-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The inward rectifier potassium current (IK1) is generally thought to suppress cardiac automaticity by hyperpolarizing membrane potential (MP). We recently observed that IK1 could promote the spontaneously-firing automaticity induced by upregulation of pacemaker funny current (If) in adult ventricular cardiomyocytes (CMs). However, the intriguing ability of IK1 to activate If and thereby promote automaticity has not been explored. In this study, we combined mathematical and experimental assays and found that only IK1 and If, at a proper-ratio of densities, were sufficient to generate rhythmic MP-oscillations even in unexcitable cells (i.e. HEK293T cells and undifferentiated mouse embryonic stem cells [ESCs]). We termed this effect IK1-induced If activation. Consistent with previous findings, our electrophysiological recordings observed that around 50% of mouse (m) and human (h) ESC-differentiated CMs could spontaneously fire action potentials (APs). We found that spontaneously-firing ESC-CMs displayed more hyperpolarized maximum diastolic potential and more outward IK1 current than quiescent-yet-excitable m/hESC-CMs. Rather than classical depolarization pacing, quiescent mESC-CMs were able to fire APs spontaneously with an electrode-injected small outward-current that hyperpolarizes MP. The automaticity to spontaneously fire APs was also promoted in quiescent hESC-CMs by an IK1-specific agonist zacopride. In addition, we found that the number of spontaneously-firing m/hESC-CMs was significantly decreased when If was acutely upregulated by Ad-CGI-HCN infection. Our study reveals a novel role of IK1 promoting the development of cardiac automaticity in m/hESC-CMs through a mechanism of IK1-induced If activation and demonstrates a synergistic interaction between IK1 and If that regulates cardiac automaticity.
Collapse
Affiliation(s)
- Yu Sun
- Department of Medicine, Heart and Vascular Research Center, MetroHealth Campus, Case Western Reserve University, 2500 Metrohealth Drive, Rammelkamp 650, Cleveland, OH, 44109, USA
| | - Valeriy Timofeyev
- Department of Internal Medicine, University of California, Davis, CA, USA
| | - Adrienne Dennis
- Department of Medicine, Heart and Vascular Research Center, MetroHealth Campus, Case Western Reserve University, 2500 Metrohealth Drive, Rammelkamp 650, Cleveland, OH, 44109, USA
| | - Emre Bektik
- Department of Medicine, Heart and Vascular Research Center, MetroHealth Campus, Case Western Reserve University, 2500 Metrohealth Drive, Rammelkamp 650, Cleveland, OH, 44109, USA.,Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Japan
| | - Xiaoping Wan
- Department of Medicine, Heart and Vascular Research Center, MetroHealth Campus, Case Western Reserve University, 2500 Metrohealth Drive, Rammelkamp 650, Cleveland, OH, 44109, USA
| | - Kenneth R Laurita
- Department of Medicine, Heart and Vascular Research Center, MetroHealth Campus, Case Western Reserve University, 2500 Metrohealth Drive, Rammelkamp 650, Cleveland, OH, 44109, USA
| | - Isabelle Deschênes
- Department of Medicine, Heart and Vascular Research Center, MetroHealth Campus, Case Western Reserve University, 2500 Metrohealth Drive, Rammelkamp 650, Cleveland, OH, 44109, USA
| | - Ronald A Li
- Dr. Li Dak-Sum Center for Regenerative Medicine, University of Hong Kong, The Hong Kong Jockey Club Building for Interdisciplinary Research, LB 5-06, 5 Sassoon Road, Pokfulam, Hong Kong. .,Ming-Wai Lau Center for Regenerative Medicine, Karolinska Institutet, Solna, Sweden.
| | - Ji-Dong Fu
- Department of Medicine, Heart and Vascular Research Center, MetroHealth Campus, Case Western Reserve University, 2500 Metrohealth Drive, Rammelkamp 650, Cleveland, OH, 44109, USA.
| |
Collapse
|
45
|
Human-Induced Pluripotent Stem Cell Technology and Cardiomyocyte Generation: Progress and Clinical Applications. Cells 2018; 7:cells7060048. [PMID: 29799480 PMCID: PMC6025241 DOI: 10.3390/cells7060048] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/16/2018] [Accepted: 05/22/2018] [Indexed: 12/11/2022] Open
Abstract
Human-induced pluripotent stem cells (hiPSCs) are reprogrammed cells that have hallmarks similar to embryonic stem cells including the capacity of self-renewal and differentiation into cardiac myocytes. The improvements in reprogramming and differentiating methods achieved in the past 10 years widened the use of hiPSCs, especially in cardiac research. hiPSC-derived cardiac myocytes (CMs) recapitulate phenotypic differences caused by genetic variations, making them attractive human disease models and useful tools for drug discovery and toxicology testing. In addition, hiPSCs can be used as sources of cells for cardiac regeneration in animal models. Here, we review the advances in the genetic and epigenetic control of cardiomyogenesis that underlies the significant improvement of the induced reprogramming of somatic cells to CMs; the methods used to improve scalability of throughput assays for functional screening and drug testing in vitro; the phenotypic characteristics of hiPSCs-derived CMs and their ability to rescue injured CMs through paracrine effects; we also cover the novel approaches in tissue engineering for hiPSC-derived cardiac tissue generation, and finally, their immunological features and the potential use in biomedical applications.
Collapse
|
46
|
Srivastava R, Faust T, Ramos A, Ishizuka K, Sawa A. Dynamic Changes of the Mitochondria in Psychiatric Illnesses: New Mechanistic Insights From Human Neuronal Models. Biol Psychiatry 2018; 83:751-760. [PMID: 29486891 PMCID: PMC6469392 DOI: 10.1016/j.biopsych.2018.01.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/18/2017] [Accepted: 01/07/2018] [Indexed: 02/06/2023]
Abstract
Mitochondria play a crucial role in neuronal function, especially in energy production, the generation of reactive oxygen species, and calcium signaling. Multiple lines of evidence have suggested the possible involvement of mitochondrial deficits in major psychiatric disorders, such as schizophrenia and bipolar disorder. This review will outline the current understanding of the physiological role of mitochondria and their dysfunction under pathological conditions, particularly in psychiatric disorders. The current knowledge about mitochondrial deficits in these disorders is somewhat limited because of the lack of effective methods to dissect dynamic changes in functional deficits that are directly associated with psychiatric conditions. Human neuronal cell model systems have been dramatically developed in recent years with the use of stem cell technology, and these systems may be key tools for overcoming this dilemma and improving our understanding of the dynamic changes in the mitochondrial deficits in patients with psychiatric disorders. We introduce recent discoveries from new experimental models and conclude the discussion by referring to future perspectives. We emphasize the significance of combining studies of human neuronal cell models with those of other experimental systems, including animal models.
Collapse
Affiliation(s)
- Rupali Srivastava
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Travis Faust
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Adriana Ramos
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Koko Ishizuka
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Akira Sawa
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
47
|
Sonntag KC, Song B, Lee N, Jung JH, Cha Y, Leblanc P, Neff C, Kong SW, Carter BS, Schweitzer J, Kim KS. Pluripotent stem cell-based therapy for Parkinson's disease: Current status and future prospects. Prog Neurobiol 2018; 168:1-20. [PMID: 29653250 DOI: 10.1016/j.pneurobio.2018.04.005] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 03/13/2018] [Accepted: 04/05/2018] [Indexed: 12/11/2022]
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative disorders, which affects about 0.3% of the general population. As the population in the developed world ages, this creates an escalating burden on society both in economic terms and in quality of life for these patients and for the families that support them. Although currently available pharmacological or surgical treatments may significantly improve the quality of life of many patients with PD, these are symptomatic treatments that do not slow or stop the progressive course of the disease. Because motor impairments in PD largely result from loss of midbrain dopamine neurons in the substantia nigra pars compacta, PD has long been considered to be one of the most promising target diseases for cell-based therapy. Indeed, numerous clinical and preclinical studies using fetal cell transplantation have provided proof of concept that cell replacement therapy may be a viable therapeutic approach for PD. However, the use of human fetal cells as a standardized therapeutic regimen has been fraught with fundamental ethical, practical, and clinical issues, prompting scientists to explore alternative cell sources. Based on groundbreaking establishments of human embryonic stem cells and induced pluripotent stem cells, these human pluripotent stem cells have been the subject of extensive research, leading to tremendous advancement in our understanding of these novel classes of stem cells and promising great potential for regenerative medicine. In this review, we discuss the prospects and challenges of human pluripotent stem cell-based cell therapy for PD.
Collapse
Affiliation(s)
- Kai-C Sonntag
- Department of Psychiatry, McLean Hospital, Harvard Medical School, United States; Laboratory for Translational Research on Neurodegeneration, 115 Mill Street, Belmont, MA, 02478, United States; Program for Neuropsychiatric Research, 115 Mill Street, Belmont, MA, 02478, United States
| | - Bin Song
- Department of Psychiatry, McLean Hospital, Harvard Medical School, United States; Molecular Neurobiology Laboratory, Program in Neuroscience and Harvard Stem Cell Institute, McLean Hospital, Harvard Medical School, 115 Mill Street, Belmont, MA, 02478, United States
| | - Nayeon Lee
- Department of Psychiatry, McLean Hospital, Harvard Medical School, United States; Molecular Neurobiology Laboratory, Program in Neuroscience and Harvard Stem Cell Institute, McLean Hospital, Harvard Medical School, 115 Mill Street, Belmont, MA, 02478, United States
| | - Jin Hyuk Jung
- Department of Psychiatry, McLean Hospital, Harvard Medical School, United States; Molecular Neurobiology Laboratory, Program in Neuroscience and Harvard Stem Cell Institute, McLean Hospital, Harvard Medical School, 115 Mill Street, Belmont, MA, 02478, United States
| | - Young Cha
- Department of Psychiatry, McLean Hospital, Harvard Medical School, United States; Molecular Neurobiology Laboratory, Program in Neuroscience and Harvard Stem Cell Institute, McLean Hospital, Harvard Medical School, 115 Mill Street, Belmont, MA, 02478, United States
| | - Pierre Leblanc
- Department of Psychiatry, McLean Hospital, Harvard Medical School, United States; Molecular Neurobiology Laboratory, Program in Neuroscience and Harvard Stem Cell Institute, McLean Hospital, Harvard Medical School, 115 Mill Street, Belmont, MA, 02478, United States
| | - Carolyn Neff
- Kaiser Permanente Medical Group, Irvine, CA, 92618, United States
| | - Sek Won Kong
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, United States; Computational Health Informatics Program, Boston Children's Hospital, Boston, MA, 02115, United States
| | - Bob S Carter
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, 02114, United States
| | - Jeffrey Schweitzer
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, 02114, United States.
| | - Kwang-Soo Kim
- Department of Psychiatry, McLean Hospital, Harvard Medical School, United States; Molecular Neurobiology Laboratory, Program in Neuroscience and Harvard Stem Cell Institute, McLean Hospital, Harvard Medical School, 115 Mill Street, Belmont, MA, 02478, United States.
| |
Collapse
|
48
|
Shafa M, Yang F, Fellner T, Rao MS, Baghbaderani BA. Human-Induced Pluripotent Stem Cells Manufactured Using a Current Good Manufacturing Practice-Compliant Process Differentiate Into Clinically Relevant Cells From Three Germ Layers. Front Med (Lausanne) 2018; 5:69. [PMID: 29600249 PMCID: PMC5862873 DOI: 10.3389/fmed.2018.00069] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 02/28/2018] [Indexed: 01/07/2023] Open
Abstract
The discovery of reprogramming and generation of human-induced pluripotent stem cells (iPSCs) has revolutionized the field of regenerative medicine and opened new opportunities in cell replacement therapies. While generation of iPSCs represents a significant breakthrough, the clinical relevance of iPSCs for cell-based therapies requires generation of high-quality specialized cells through robust and reproducible directed differentiation protocols. We have recently reported manufacturing of human iPSC master cell banks (MCB) under current good manufacturing practices (cGMPs). Here, we describe the clinical potential of human iPSCs generated using this cGMP-compliant process by differentiating them into the cells from all three embryonic germ layers including ectoderm, endoderm, and mesoderm. Most importantly, we have shown that our iPSC manufacturing process and cell culture system is not biased toward a specific lineage. Following controlled induction into a specific differentiation lineage, specialized cells with morphological and cellular characteristics of neural stem cells, definitive endoderm, and cardiomyocytes were developed. We believe that these cGMP-compliant iPSCs have the potential to make various clinically relevant products suitable for cell therapy applications.
Collapse
Affiliation(s)
- Mehdi Shafa
- Lonza Walkersville, Inc., Walkersville, MD, United States
| | - Fan Yang
- Lonza Walkersville, Inc., Walkersville, MD, United States
| | - Thomas Fellner
- Lonza Walkersville, Inc., Walkersville, MD, United States
| | - Mahendra S Rao
- NxCell Inc, Novato, CA, United States.,Q Therapeutics, Salt Lake City, UT, United States
| | | |
Collapse
|
49
|
Abstract
Stem cell therapy is a promising approach to the treatment of ischemic heart disease via replenishing cell loss after myocardial infarction. Both preclinical studies and clinical trials have indicated that cardiac function improved consistently, but very modestly after cell-based therapy. This mainly attributed to low cell survival rate, engraftment and functional integration, which became the major challenges to regenerative medicine. In recent years, several new cell types have been developed to regenerate cardiomyocytes and novel delivery approaches helped to increase local cell retention. New strategies, such as cell pretreatment, gene-based therapy, tissue engineering, extracellular vesicles application and immunologic regulation, have surged and brought about improved cell survival and functional integration leading to better therapeutic effects after cell transplantation. In this review, we summarize these new strategies targeting at challenges of cardiac regenerative medicine and discuss recent evidences that may hint their effectiveness in the future clinical settings.
Collapse
|
50
|
Falconer D, Papageorgiou N, Androulakis E, Alfallouji Y, Lim WY, Providencia R, Tousoulis D. Biological therapies targeting arrhythmias: are cells and genes the answer? Expert Opin Biol Ther 2017; 18:237-249. [PMID: 29202595 DOI: 10.1080/14712598.2018.1410130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Arrhythmias can cause symptoms ranging from simple dizziness to life-threatening circulatory collapse. Current management includes medical therapy and procedures such as catheter ablation or device implantation. However, these strategies still pose a risk of serious side effects, and some patients remain symptomatic. Advancement in our understanding of how arrhythmias develop on the cellular level has made more targeted approaches possible. In addition, contemporary studies have found that several genes are involved in the pathogenesis of arrhythmias. AREAS COVERED In the present review, the authors explore the cellular and genetic mechanisms leading to arrhythmias as well as the progress that has been made in using both gene and cell therapy to treat tachy- and bradyarrhythmias. They also consider why gene and cell therapy has resulted into a few clinical trials with promising results, however still not applicable in routine clinical practice. EXPERT OPINION The question currently is whether such biological therapies could replace current established approaches. The contemporary evidence suggests that despite recent advances in this field, it will need more work in experimental models before this is applied into clinical practice. Gene and cell studies targeting conduction and repolarization are promising, but still not ready for use in the clinical setting.
Collapse
Affiliation(s)
| | | | | | | | - Wei Yao Lim
- b Barts Heart Centre, St Bartholomew's Hospital , London , UK
| | - Rui Providencia
- b Barts Heart Centre, St Bartholomew's Hospital , London , UK
| | - Dimitris Tousoulis
- d 1st Cardiology Department , Hippokration Hospital, Athens University Medical School , Athens , Greece
| |
Collapse
|