1
|
Hemnes AR, Celermajer DS, D'Alto M, Haddad F, Hassoun PM, Prins KW, Naeije R, Vonk Noordegraaf A. Pathophysiology of the right ventricle and its pulmonary vascular interaction. Eur Respir J 2024; 64:2401321. [PMID: 39209482 PMCID: PMC11525331 DOI: 10.1183/13993003.01321-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 09/04/2024]
Abstract
The right ventricle and its stress response is perhaps the most important arbiter of survival in patients with pulmonary hypertension of many causes. The physiology of the cardiopulmonary unit and definition of right heart failure proposed in the 2018 World Symposium on Pulmonary Hypertension have proven useful constructs in subsequent years. Here, we review updated knowledge of basic mechanisms that drive right ventricular function in health and disease, and which may be useful for therapeutic intervention in the future. We further contextualise new knowledge on assessment of right ventricular function with a focus on metrics readily available to clinicians and updated understanding of the roles of the right atrium and tricuspid regurgitation. Typical right ventricular phenotypes in relevant forms of pulmonary vascular disease are reviewed and recent studies of pharmacological interventions on chronic right ventricular failure are discussed. Finally, unanswered questions and future directions are proposed.
Collapse
Affiliation(s)
- Anna R Hemnes
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - David S Celermajer
- Faculty of Medicine and Health, University of Sydney, Sydney, Australia
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, Australia
| | - Michele D'Alto
- Department of Cardiology, Monaldi Hospital, Naples, Italy
| | - Francois Haddad
- Division of Cardiovascular Medicine, Stanford University and Stanford Cardiovascular Institute, Palo Alto, CA, USA
| | - Paul M Hassoun
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Kurt W Prins
- Lillehei Heart Institute, Cardiovascular Division, University of Minnesota Medical School, Minneapolis, MN, USA
| | | | - Anton Vonk Noordegraaf
- Amsterdam UMC, Vrije Universiteit Amsterdam, Pulmonary Medicine, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Dimiene I, Hoppenot D, Vajauskas D, Padervinskiene L, Rimkunas A, Zemaitis M, Barkauskiene D, Lapinskas T, Ereminiene E, Miliauskas S. Systemic Manifestations of COPD and the Impact of Dual Bronchodilation with Tiotropium/Olodaterol on Cardiac Function and Autonomic Integrity. J Clin Med 2024; 13:2937. [PMID: 38792478 PMCID: PMC11121926 DOI: 10.3390/jcm13102937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/06/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Background: Chronic obstructive pulmonary disease (COPD) has significant systemic manifestations, including cardiovascular morbidity. The main aim of our study was to evaluate the effect of short-term COPD treatment with tiotropium/olodaterol (TIO/OLO) 5/5 μg on cardiac function and autonomic integrity. Methods: Twenty-nine patients with newly diagnosed moderate-to-severe COPD were enrolled. We performed pulmonary function tests, cardiac magnetic resonance, cardiac 123I-metaiodobenzylguanidine (123I-MIBG) imaging and analysis of blood biomarkers on our study subjects. The correlations between the tests' results were evaluated at baseline. The changes in pulmonary and cardiac parameters from baseline through 12 weeks were assessed. Results: Significant associations between pulmonary function tests' results and high-sensitivity C-reactive protein (hs-CRP), as well as interleukin-22 (IL-22), were observed at baseline. Treatment with TIO/OLO significantly improved lung function as measured by spirometry and body plethysmography. Moreover, we found that the cardiac index increased from 2.89 (interquartile range (IQR) 1.09) to 3.21 L/min/m2 (IQR 0.78) (p = 0.013; N = 18) and the late heart-to-mediastinum ratio improved from 1.88 (IQR 0.37) to 2 (IQR 0.41) (p = 0.026; N = 16) after 12 weeks of treatment. Conclusions: Treatment with TIO/OLO improves lung function and positively impacts cardiac function and autonomic integrity, suggesting that dual bronchodilation might have a potential in decreasing the risk for cardiac events in COPD. Hs-CRP and IL-22 might be beneficial in determining the intensity of systemic inflammation in COPD. Further research with a larger cohort is needed to enhance the initial results of this study.
Collapse
Affiliation(s)
- Ieva Dimiene
- Department of Pulmonology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (D.H.); (M.Z.); (D.B.); (S.M.)
| | - Deimante Hoppenot
- Department of Pulmonology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (D.H.); (M.Z.); (D.B.); (S.M.)
| | - Donatas Vajauskas
- Department of Radiology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (D.V.); (L.P.)
| | - Lina Padervinskiene
- Department of Radiology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (D.V.); (L.P.)
| | - Airidas Rimkunas
- Laboratory of Pulmonology, Department of Pulmonology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania;
| | - Marius Zemaitis
- Department of Pulmonology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (D.H.); (M.Z.); (D.B.); (S.M.)
| | - Diana Barkauskiene
- Department of Pulmonology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (D.H.); (M.Z.); (D.B.); (S.M.)
| | - Tomas Lapinskas
- Department of Cardiology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (T.L.); (E.E.)
| | - Egle Ereminiene
- Department of Cardiology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (T.L.); (E.E.)
| | - Skaidrius Miliauskas
- Department of Pulmonology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (D.H.); (M.Z.); (D.B.); (S.M.)
| |
Collapse
|
3
|
Hartmann JP, Lassen ML, Mohammad M, Iepsen UW, Mortensen J, Hasbak P, Berg RMG. Pulmonary blood volume measured by 82Rb-PET in patients with chronic obstructive pulmonary disease: a retrospective cohort study. J Appl Physiol (1985) 2024; 136:1276-1283. [PMID: 38602000 DOI: 10.1152/japplphysiol.00058.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/12/2024] Open
Abstract
In patients with chronic obstructive pulmonary disease (COPD), pulmonary vascular dysfunction and destruction are observable before the onset of detectable emphysema, but it is unknown whether this is associated with central hypovolemia. We investigated if patients with COPD have reduced pulmonary blood volume (PBV) evaluated by 82Rb-positron emission tomography (PET) at rest and during adenosine-induced hyperemia. This single-center retrospective cohort study assessed 6,301 82Rb-PET myocardial perfusion imaging (MPI) examinations performed over a 6-yr period. We compared 77 patients with COPD with 44 healthy kidney donors (controls). Cardiac output ([Formula: see text]) and mean 82Rb bolus transit time (MBTT) were used to calculate PBV. [Formula: see text] was similar at rest (COPD: 3,649 ± 120 mL vs. control: 3,891 ± 160 mL, P = 0.368) but lower in patients with COPD compared with controls during adenosine infusion (COPD: 5,432 ± 124 mL vs. control: 6,185 ± 161 mL, P < 0.050). MBTT was shorter in patients with COPD compared with controls at rest (COPD: 8.7 ± 0.28 s vs. control: 11.4 ± 0.37 s, P < 0.001) and during adenosine infusion (COPD: 9.2 ± 0.28 s vs. control: 10.2 ± 0.37 s, P < 0.014). PBV was lower in patients with COPD, even after adjustment for body surface area, sex, and age at rest [COPD: 530 (29) mL vs. 708 (38) mL, P < 0.001] and during adenosine infusion [COPD: 826 (29) mL vs. 1,044 (38) mL, P < 0.001]. In conclusion, patients with COPD show evidence of central hypovolemia, but it remains to be determined whether this has any diagnostic or prognostic impact.NEW & NOTEWORTHY The present study demonstrated that patients with chronic obstructive pulmonary disease (COPD) exhibit central hypovolemia compared with healthy controls. Pulmonary blood volume may thus be a relevant physiological and/or clinical outcome measure in future COPD studies.
Collapse
Affiliation(s)
- Jacob Peter Hartmann
- Centre for Physical Activity Research, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Martin Lyngby Lassen
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Milan Mohammad
- Centre for Physical Activity Research, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Ulrik Winning Iepsen
- Centre for Physical Activity Research, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- Department of Anaesthesiology and Intensive Care, Copenhagen University Hospital-Hvidovre, Copenhagen, Denmark
| | - Jann Mortensen
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Philip Hasbak
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Ronan M G Berg
- Centre for Physical Activity Research, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, United Kingdom
| |
Collapse
|
4
|
Celeski M, Segreti A, Polito D, Valente D, Vicchio L, Di Gioia G, Ussia GP, Incalzi RA, Grigioni F. Traditional and Advanced Echocardiographic Evaluation in Chronic Obstructive Pulmonary Disease: The Forgotten Relation. Am J Cardiol 2024; 217:102-118. [PMID: 38412881 DOI: 10.1016/j.amjcard.2024.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/22/2024] [Accepted: 02/12/2024] [Indexed: 02/29/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is a significant preventable and treatable clinical disorder defined by a persistent, typically progressive airflow obstruction. This disease has a significant negative impact on mortality and morbidity worldwide. However, the complex interaction between the heart and lungs is usually underestimated, necessitating more attention to improve clinical outcomes and prognosis. Indeed, COPD significantly impacts ventricular function, right and left chamber architecture, tricuspid valve functionality, and pulmonary blood vessels. Accordingly, more emphasis should be paid to their diagnosis since cardiac alterations may occur very early before COPD progresses and generate pulmonary hypertension (PH). Echocardiography enables a quick, noninvasive, portable, and accurate assessment of such changes. Indeed, recent advancements in imaging technology have improved the characterization of the heart chambers and made it possible to investigate the association between a few cardiac function indexes and clinical and functional aspects of COPD. This review aims to describe the intricate relation between COPD and heart changes and provide basic and advanced echocardiographic methods to detect early right ventricular and left ventricular morphologic alterations and early systolic and diastolic dysfunction. In addition, it is crucial to comprehend the clinical and prognostic significance of functional tricuspid regurgitation in COPD and PH and the currently available transcatheter therapeutic approaches for its treatment. Moreover, it is also essential to assess noninvasively PH and pulmonary resistance in patients with COPD by applying new echocardiographic parameters. In conclusion, echocardiography should be used more frequently in assessing patients with COPD because it may aid in discovering previously unrecognized heart abnormalities and selecting the most appropriate treatment to improve the patient's symptoms, quality of life, and survival.
Collapse
Affiliation(s)
- Mihail Celeski
- Research Unit of Cardiovascular Science, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21 - 00128, Rome, Italy; Cardiology Unit, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200 - 00128, Rome, Italy
| | - Andrea Segreti
- Research Unit of Cardiovascular Science, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21 - 00128, Rome, Italy; Cardiology Unit, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200 - 00128, Rome, Italy; Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy.
| | - Dajana Polito
- Research Unit of Cardiovascular Science, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21 - 00128, Rome, Italy; Cardiology Unit, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200 - 00128, Rome, Italy
| | - Daniele Valente
- Research Unit of Cardiovascular Science, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21 - 00128, Rome, Italy; Cardiology Unit, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200 - 00128, Rome, Italy
| | - Luisa Vicchio
- Research Unit of Cardiovascular Science, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21 - 00128, Rome, Italy; Cardiology Unit, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200 - 00128, Rome, Italy
| | - Giuseppe Di Gioia
- Research Unit of Cardiovascular Science, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21 - 00128, Rome, Italy; Cardiology Unit, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200 - 00128, Rome, Italy; Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy; Institute of Sports Medicine and Science, Italian National Olympic Committee, Rome, Italy
| | - Gian Paolo Ussia
- Research Unit of Cardiovascular Science, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21 - 00128, Rome, Italy; Cardiology Unit, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200 - 00128, Rome, Italy
| | | | - Francesco Grigioni
- Research Unit of Cardiovascular Science, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21 - 00128, Rome, Italy; Cardiology Unit, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200 - 00128, Rome, Italy
| |
Collapse
|
5
|
Meloni A, Pistoia L, Ricchi P, Maggio A, Cecinati V, Longo F, Sorrentino F, Borsellino Z, Salvo A, Rossi V, Grassedonio E, Restaino G, Renne S, Righi R, Positano V, Cademartiri F. Prognostic Role of Multiparametric Cardiac Magnetic Resonance in Neo Transfusion-Dependent Thalassemia. J Clin Med 2024; 13:1281. [PMID: 38592121 PMCID: PMC10931742 DOI: 10.3390/jcm13051281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/13/2024] [Accepted: 02/21/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND We prospectively evaluated the predictive value of multiparametric cardiac magnetic resonance (CMR) for cardiovascular complications in non-transfusion-dependent β-thalassemia (β-NTDT) patients who started regular transfusions in late childhood/adulthood (neo β-TDT). METHODS We considered 180 patients (38.25 ± 11.24 years; 106 females). CMR was used to quantify cardiac iron overload, biventricular function, and atrial dimensions, and to detect left ventricular (LV) replacement fibrosis. RESULTS During a mean follow-up of 76.87 ± 41.60 months, 18 (10.0%) cardiovascular events were recorded: 2 heart failures, 13 arrhythmias (10 supraventricular), and 3 cases of pulmonary hypertension. Right ventricular (RV) end-diastolic volume index (EDVI), RV mass index (MI), LV replacement fibrosis, and right atrial (RA) area index emerged as significant univariate prognosticators of cardiovascular complications. The low number of events prevented us from performing a multivariable analysis including all univariable predictors simultaneously. Firstly, a multivariable analysis including the two RV size parameters (mass and volume) was carried out, and only the RV MI was proven to independently predict cardiovascular diseases. Then, a multivariable analysis, including RV MI, RA atrial area, and LV replacement fibrosis, was conducted. In this model, RV MI and LV replacement fibrosis emerged as independent predictors of cardiovascular outcomes (RV MI: hazard ratio (HR) = 1.18; LV replacement fibrosis: HR = 6.26). CONCLUSIONS Our results highlight the importance of CMR in cardiovascular risk stratification.
Collapse
Affiliation(s)
- Antonella Meloni
- Bioengineering Unit, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy; (A.M.); (V.P.)
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy;
| | - Laura Pistoia
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy;
- Unità Operativa Complessa Ricerca Clinica, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy
| | - Paolo Ricchi
- Unità Operativa Semplice Dipartimentale Malattie Rare del Globulo Rosso, Azienda Ospedaliera di Rilievo Nazionale “A. Cardarelli”, 80131 Napoli, Italy;
| | - Aurelio Maggio
- Ematologia II con Talassemia, Ospedale “V. Cervello”, 90100 Palermo, Italy;
| | - Valerio Cecinati
- Struttura Semplice di Microcitemia, Ospedale “SS. Annunziata”, 74123 Taranto, Italy;
| | - Filomena Longo
- Unità Operativa Day Hospital della Talassemia e delle Emoglobinopatie, Azienda Ospedaliero-Universitaria “S. Anna”, 44124 Cona, FE, Italy;
| | - Francesco Sorrentino
- Unità Operativa Semplice Dipartimentale Day Hospital Talassemici, Ospedale “Sant’Eugenio”, 00143 Rome, Italy;
| | - Zelia Borsellino
- Unità Operativa Complessa Ematologia con Talassemia, ARNAS Civico “Benfratelli-Di Cristina”, 90134 Palermo, Italy;
| | - Alessandra Salvo
- Operativa Semplice Talassemia, Presidio Ospedaliero “Umberto I”, 96100 Siracusa, Italy;
| | - Vincenza Rossi
- Unità Operativa Complessa Ematologia, Ospedale di Cosenza, 87100 Cosenza, Italy;
| | - Emanuele Grassedonio
- Sezione di Scienze Radiologiche, Dipartimento di Biopatologia e Biotecnologie Mediche, Policlinico “Paolo Giaccone”, 90127 Palermo, Italy;
| | - Gennaro Restaino
- Unità Operativa Complessa Radiodiagnostica, Gemelli Molise SpA, Fondazione di Ricerca e Cura “Giovanni Paolo II”, 86100 Campobasso, Italy;
| | - Stefania Renne
- Struttura Complessa di Cardioradiologia-UTIC, Presidio Ospedaliero “Giovanni Paolo II”, 88046 Lamezia Terme, CZ, Italy;
| | - Riccardo Righi
- Diagnostica per Immagini e Radiologia Interventistica, Ospedale del Delta, 44023 Lagosanto, FE, Italy;
| | - Vincenzo Positano
- Bioengineering Unit, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy; (A.M.); (V.P.)
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy;
| | - Filippo Cademartiri
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy;
| |
Collapse
|
6
|
Yeom R, Gorgone M, Malinovic M, Panzica P, Maslow A, Augoustides JG, Marchant BE, Fernando RJ, Nampi RG, Pospishil L, Neuburger PJ. Surgical Aortic Valve Replacement in a Patient with Very Severe Chronic Obstructive Pulmonary Disease. J Cardiothorac Vasc Anesth 2023; 37:2335-2349. [PMID: 37657996 DOI: 10.1053/j.jvca.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 08/06/2023] [Indexed: 09/03/2023]
Affiliation(s)
- Richard Yeom
- Department of Anesthesiology, Westchester Medical Center, Valhalla, NY
| | - Michelle Gorgone
- Department of Anesthesiology, Rhode Island Hospital, Providence, RI
| | - Matea Malinovic
- Department of Anesthesiology, Westchester Medical Center, Valhalla, NY
| | - Peter Panzica
- Department of Anesthesiology, Westchester Medical Center, Valhalla, NY
| | - Andrew Maslow
- Department of Anesthesiology, Rhode Island Hospital, Providence, RI
| | - John G Augoustides
- Department of Anesthesiology and Critical Care, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Bryan E Marchant
- Department of Anesthesiology, Cardiothoracic and Critical Care Sections, Wake Forest University School of Medicine, Winston Salem, NC
| | - Rohesh J Fernando
- Department of Anesthesiology, Cardiothoracic Section, Wake Forest University School of Medicine, Medical Center Boulevard, Winston Salem, NC.
| | - Robert G Nampi
- Department of Anesthesiology, Perioperative Care, and Pain Medicine, NYU Grossman School of Medicine, New York, NY
| | - Liliya Pospishil
- Department of Anesthesiology, Perioperative Care, and Pain Medicine, NYU Grossman School of Medicine, New York, NY
| | - Peter J Neuburger
- Department of Anesthesiology, Perioperative Care, and Pain Medicine, NYU Grossman School of Medicine, New York, NY
| |
Collapse
|
7
|
Barmehziar S, Fadaii A, Samadian F, Shakiba A, Koolaji S. Investigating the role of uric acid and uric acid-to-creatinine ratio as a predictive factor of chronic obstructive pulmonary disease exacerbation in 2019. THE CLINICAL RESPIRATORY JOURNAL 2023; 17:1025-1037. [PMID: 37643874 PMCID: PMC10543099 DOI: 10.1111/crj.13689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/26/2023] [Accepted: 08/11/2023] [Indexed: 08/31/2023]
Abstract
INTRODUCTION Serum uric acid has been suggested as an independent marker of oxidative metabolism in chronic obstructive pulmonary disease (COPD), a disease with significant social, health, and economic burden. Therefore, we aimed to investigate the role of this factor in COPD exacerbation. METHODS We investigated 20- to 70-year-old patients who were admitted due to COPD exacerbation (acute phase) or presented to the pulmonary clinic for follow-up (non-acute phase). Correlation of uric acid and uric acid-to-creatinine ratio (UCR) with multiple factors and their predictive performance for more exacerbations and acute phase of COPD was investigated (receiver operating characteristic [ROC] analysis). RESULTS Overall, 63 patients were enrolled in this study, of whom 79.4% were men. Acute-phase group encompassed 79.4% of the population with a greater rate of heavy smoking and average exacerbation in a year (p-value = 0.009 and <0.001). The mean of uric acid and UCR was 5.6 (SD, 2.35) and 4.4 (SD, 1.9) in the total population, respectively, and were significantly higher in the acute phase and patients with frequent exacerbations (FE ≥ 3 exacerbations a year), p-value <0.05. The area under the curve (AUC) of ROC analysis showed a high performance of uric acid and UCR for predicting acute phase (0.84 [95%CI, 0.73-0.96] and 0.86 [0.74-0.98]), FE (0.72 [0.60-0.85] and 0.75 [0.63-0.87]), and FE among acute-phase patients (AUC, 0.63 [0.46-0.79] and 0.66 [0.50-0.81], respectively). CONCLUSION Uric acid and UCR could be invaluable predictors of frequent exacerbation and the acute phase of COPD. Therefore, they might be applicable in evaluating the severity and progress of the disease.
Collapse
Affiliation(s)
- Saman Barmehziar
- Department of Internal Medicine, Shahid Labbafinejad HospitalShahid Beheshti University of Medical SciencesTehranIran
| | - Abbas Fadaii
- Department of Pulmonology and Intensive Care Medicine, Shahid Labbafinejad HospitalShahid Beheshti University of Medical SciencesTehranIran
| | - Fariba Samadian
- Department of Nephrology, Shahid Labbafinejad HospitalShahid Beheshti University of Medical SciencesTehranIran
| | - Ali Shakiba
- Department of Internal Medicine, Shahid Labbafinejad HospitalShahid Beheshti University of Medical SciencesTehranIran
| | - Sogol Koolaji
- Department of Internal Medicine, Shahid Labbafinejad HospitalShahid Beheshti University of Medical SciencesTehranIran
- Non‐Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences InstituteTehran University of Medical SciencesTehranIran
| |
Collapse
|
8
|
Shin HH, Maquiling A, Thomson EM, Park IW, Stieb DM, Dehghani P. Sex-difference in air pollution-related acute circulatory and respiratory mortality and hospitalization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150515. [PMID: 34627116 DOI: 10.1016/j.scitotenv.2021.150515] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/15/2021] [Accepted: 09/18/2021] [Indexed: 05/27/2023]
Abstract
BACKGROUND Numerous studies have estimated adverse effects of short-term exposure to ambient air pollution on public health. Few have focused on sex-differences, and results have been inconsistent. The purpose of this study was three-fold: to identify sex-differences in air pollution-related health outcomes; to examine sex-differences by cause and season; and to examine time trends in sex-differences. METHODS Daily data were collected on circulatory- and respiratory-related mortality (for 29 years) and cause-specific hospitalization (for 17 years) with hourly concentrations of ozone (O3), nitrogen dioxide (NO2), and fine particulate matter (PM2.5). For hospitalization, more specific causes were examined: ischemic heart disease (IHD), other heart disease (OHD), cerebrovascular disease (CEV), chronic lower respiratory diseases (CLRD), and Influenza/Pneumonia (InfPn). Generalized Poisson models were applied to 24 Canadian cities, and the city-specific estimates were combined for nationwide estimates for each sex using Bayesian hierarchical models. Finally, sex-differences were tested statistically based on their interval estimates, considering the correlation between sex-specific national estimates. RESULTS Sex-differences were more frequently observed for hospitalization than mortality, respiratory than circulatory health outcomes, and warm than cold season. For hospitalization, males were at higher risk (M > F) for warm season (OHD and InfPn from O3; IHD from NO2; and InfPn from PM2.5), but F > M for cold season (CEV from O3 and OHD from NO2). For mortality, we found F > M only for circulatory diseases from ozone during the warm season. Among the above-mentioned sex-differences, three cases showed consistent time trends over the years: while M > F for OHD from O3 and IHD from NO2, F > M for OHD from NO2. CONCLUSIONS We found that sex-differences in effect of ambient air pollution varied over health outcome, cause, season and time. In particular, the consistent trends (either F > M or M > F) across 17 years provide stronger evidence of sex-differences in hospitalizations, and warrant investigation in other populations.
Collapse
Affiliation(s)
- Hwashin H Shin
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada; Department of Mathematics and Statistics, Queen's University, Kingston, ON, Canada.
| | - Aubrey Maquiling
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada.
| | - Errol M Thomson
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada; Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, Canada.
| | - In-Woo Park
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX, USA.
| | - Dave M Stieb
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada; School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada.
| | - Parvin Dehghani
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada.
| |
Collapse
|
9
|
Neder JA, O'Donnell DE. Right ventricular dimensions during COPD exacerbations: A matter of low preload versus high afterload? Respirology 2021; 27:7-9. [PMID: 34845796 DOI: 10.1111/resp.14187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 11/09/2021] [Indexed: 01/19/2023]
Affiliation(s)
- J Alberto Neder
- Laboratory of Clinical Exercise Physiology and Respiratory Investigation Unit, Queen's University & Kingston General Hospital, Kingston, Ontario, Canada
| | - Denis E O'Donnell
- Laboratory of Clinical Exercise Physiology and Respiratory Investigation Unit, Queen's University & Kingston General Hospital, Kingston, Ontario, Canada
| |
Collapse
|
10
|
"Yiqi Huayu, Wenyang Lishui" Prescription (YHWLP) Improves the Symptoms of Chronic Obstructive Pulmonary Disease-Induced Chronic Pulmonary Heart Disease by Inhibiting the RhoA/ROCK Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6636426. [PMID: 34737781 PMCID: PMC8563114 DOI: 10.1155/2021/6636426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 08/10/2021] [Indexed: 11/18/2022]
Abstract
Background Chronic pulmonary heart disease (CPHD) is a common type of heart disease. In China, chronic obstructive pulmonary disease (COPD) is one of the main causes of CPHD. At present, there is no specific therapy for COPD-induced CPHD, so it is of great importance to identify a new therapy for CPHD. Objective The purpose of this study was to explore the effects of "Yiqi Huayu, Wenyang Lishui" prescription (YHWLP) on CPHD symptoms. Methods Eighty patients with COPD-induced CPHD were randomly divided into the control group and the YHWLP group, both involving treatment for 3 months. Both groups were treated with Western medicine, and the YHWLP group was also treated with YHWLP. The changes (relative to baseline) in the symptoms, pulmonary arterial pressure, prothrombin time (PT), activated partial thromboplastin time (aPTT), fibrinogen (Fbg), D-dimer (D-D), and ratio of phosphorylated (p)-myosin-binding subunit (MBS)/total (t)-MBS in peripheral blood (which indirectly indicates the activation/inhibition of RhoA/ROCK signaling) were compared between the two groups. Results YHWLP plus Western medicine was superior to Western medicine alone at reducing symptoms, pulmonary arterial pressure, PT, aPTT, Fbg, D-D, and p-MBS/t-MBS. Conclusion YHWLP can relieve CPHD by inhibiting the RhoA/ROCK signaling pathway, which means YHWLP is a potential treatment for CPHD.
Collapse
|
11
|
Leong P, Osadnik CR, King PT, MacDonald MI, Ko BS, Lau KK, Joosten SA, Kathriachchige G, Chua A, Hamza K, Kuganesan A, Troupis JM, Bardin PG. Right ventricular end-diastolic volume and outcomes in exacerbations of COPD. Respirology 2021; 27:56-65. [PMID: 34693587 DOI: 10.1111/resp.14170] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/05/2021] [Accepted: 09/28/2021] [Indexed: 01/07/2023]
Abstract
BACKGROUND AND OBJECTIVE Right ventricular (RV) volumes are crucial outcome determinants in pulmonary diseases. Little is known about the associations of RV volumes during hospitalized acute exacerbations of chronic obstructive pulmonary disease (AECOPD). We aimed to ascertain associations of RV end-diastolic volume indexed to body surface area (RVEDVI) during hospitalized AECOPD and its relationship with mortality in long-term follow-up. METHODS This is a prospective observational cohort study (December 2013-November 2019, ACTRN12617001562369) using dynamic retrospective ECG-gated computed tomography during hospitalized AECOPD. RVEDVI was defined as normal or high using Framingham Offspring Cohort values. Cox regression determined the prognostic relevance of RVEDVI for death. RESULTS A total of 148 participants (70 ± 10 years [mean ± SD], 88 [59%] men) were included, of whom 75 (51%) had high RVEDVI. This was associated with more frequent hospital admissions in the 12 months before admission (52/75 [69%] vs. 38/73 [52%], p = 0.04) and higher breathlessness (modified Medical Research Council score, 2.9 ± 1.3 vs. 2.4 ± 1.2, p = 0.007). During follow-up, high RVEDVI was associated with greater mortality (log-rank p = 0.001). In univariable Cox regression, increasing RVEDVI was associated with higher mortality (hazard ratio [HR]: 1.02 per ml/m2 ; 95% CI: 1.01, 1.03; p = 0.001). In multivariable Cox regression, RVEDVI was independently associated with mortality (HR: 1.01 per ml/m2 ; 95% CI: 1.00, 1.03; p = 0.050) at a borderline significance level. Adding RVEDVI to three COPD mortality prediction systems improved model fit (pooled chi-square test [BODE: p = 0.05, ADO: p = 0.04, DOSE: p = 0.02]). CONCLUSION In patients with hospitalized AECOPD, higher RV end-diastolic volume was associated with worse acute clinical parameters and greater mortality.
Collapse
Affiliation(s)
- Paul Leong
- Monash Lung and Sleep, Monash Health, Clayton, Victoria, Australia.,School of Clinical Sciences, Monash University, Clayton, Victoria, Australia
| | - Christian R Osadnik
- Monash Lung and Sleep, Monash Health, Clayton, Victoria, Australia.,School of Primary and Allied Health Care, Monash University, Clayton, Victoria, Australia
| | - Paul T King
- Monash Lung and Sleep, Monash Health, Clayton, Victoria, Australia.,School of Clinical Sciences, Monash University, Clayton, Victoria, Australia
| | - Martin I MacDonald
- Monash Lung and Sleep, Monash Health, Clayton, Victoria, Australia.,School of Clinical Sciences, Monash University, Clayton, Victoria, Australia
| | - Brian S Ko
- School of Clinical Sciences, Monash University, Clayton, Victoria, Australia.,Monash Heart, Monash Health, Clayton, Victoria, Australia
| | - Kenneth K Lau
- School of Clinical Sciences, Monash University, Clayton, Victoria, Australia.,Monash Imaging, Monash Health, Clayton, Victoria, Australia
| | - Simon A Joosten
- Monash Lung and Sleep, Monash Health, Clayton, Victoria, Australia.,School of Clinical Sciences, Monash University, Clayton, Victoria, Australia
| | | | - Alexander Chua
- Monash Heart, Monash Health, Clayton, Victoria, Australia
| | - Kais Hamza
- School of Mathematical Sciences, Monash University, Clayton, Victoria, Australia
| | | | - John M Troupis
- School of Clinical Sciences, Monash University, Clayton, Victoria, Australia.,Monash Imaging, Monash Health, Clayton, Victoria, Australia
| | - Philip G Bardin
- Monash Lung and Sleep, Monash Health, Clayton, Victoria, Australia.,School of Clinical Sciences, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
12
|
Leopold JA, Kawut SM, Aldred MA, Archer SL, Benza RL, Bristow MR, Brittain EL, Chesler N, DeMan FS, Erzurum SC, Gladwin MT, Hassoun PM, Hemnes AR, Lahm T, Lima JA, Loscalzo J, Maron BA, Rosa LM, Newman JH, Redline S, Rich S, Rischard F, Sugeng L, Tang WHW, Tedford RJ, Tsai EJ, Ventetuolo CE, Zhou Y, Aggarwal NR, Xiao L. Diagnosis and Treatment of Right Heart Failure in Pulmonary Vascular Diseases: A National Heart, Lung, and Blood Institute Workshop. Circ Heart Fail 2021; 14:e007975. [PMID: 34422205 PMCID: PMC8375628 DOI: 10.1161/circheartfailure.120.007975] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Right ventricular dysfunction is a hallmark of advanced pulmonary vascular, lung parenchymal, and left heart disease, yet the underlying mechanisms that govern (mal)adaptation remain incompletely characterized. Owing to the knowledge gaps in our understanding of the right ventricle (RV) in health and disease, the National Heart, Lung, and Blood Institute (NHLBI) commissioned a working group to identify current challenges in the field. These included a need to define and standardize normal RV structure and function in populations; access to RV tissue for research purposes and the development of complex experimental platforms that recapitulate the in vivo environment; and the advancement of imaging and invasive methodologies to study the RV within basic, translational, and clinical research programs. Specific recommendations were provided, including a call to incorporate precision medicine and innovations in prognosis, diagnosis, and novel RV therapeutics for patients with pulmonary vascular disease.
Collapse
Affiliation(s)
- Jane A. Leopold
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Steven M. Kawut
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Micheala A. Aldred
- Division of Pulmonary, Critical Care, Sleep & Occupational Medicine, Department of Medicine, Indiana University, Indianapolis, IN
| | - Stephen L. Archer
- Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Ray L. Benza
- Department of Medicine, Allegheny General Hospital, Pittsburgh, PA
| | | | - Evan L. Brittain
- Division of Cardiovascular Medicine and Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University Medical Center, Nashville, TN
| | - Naomi Chesler
- Department of Biomedical Engineering, University of Wisconsin-Madison College of Engineering, Madison, WI
| | - Frances S. DeMan
- Department of Pulmonary Medicine, PHEniX laboratory, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | | | - Mark T. Gladwin
- Department of Medicine, Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, UPMC and the University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Paul M. Hassoun
- Department of Medicine, Johns Hopkins University, Baltimore, MD
| | - Anna R. Hemnes
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Tim Lahm
- Division of Pulmonary, Critical Care, Sleep & Occupational Medicine, Department of Medicine, Indiana University, Indianapolis, IN
| | - Joao A.C. Lima
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Joseph Loscalzo
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Bradley A. Maron
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital and Harvard Medical School and Department of Cardiology, Boston VA Healthcare System, West Roxbury, MA
| | - Laura Mercer Rosa
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - John H. Newman
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Susan Redline
- Departments of Medicine and Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Stuart Rich
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Franz Rischard
- Department of Medicine, University of Arizona- Tucson, Tucson, AZ
| | - Lissa Sugeng
- Department of Medicine, Yale School of Medicine, New Haven, CT
| | - W. H. Wilson Tang
- Department of Cardiovascular Medicine, Heart and Vascular Institute, Cleveland Clinic, Cleveland, OH
| | - Ryan J. Tedford
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC
| | - Emily J. Tsai
- Division of Cardiology, Columbia University Vagelos College of Physicians & Surgeons, New York, NY
| | - Corey E. Ventetuolo
- Department of Medicine, Alpert Medical School of Brown University, Department of Health Services, Policy and Practice, Brown University School of Public Health, Providence, RI
| | - YouYang Zhou
- Departments of Pediatrics (Division of Critical Care), Pharmacology, and Medicine, Northwestern University Feinberg School of Medicine. Chicago, Illinois
| | - Neil R. Aggarwal
- Division of Lung Diseases, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD
| | - Lei Xiao
- Division of Lung Diseases, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD
| |
Collapse
|
13
|
Fujikura K, Albini A, Barr RG, Parikh M, Kern J, Hoffman E, Hiura GT, Bluemke DA, Carr J, Lima JAC, Michos ED, Gomes AS, Prince MR. Aortic enlargement in chronic obstructive pulmonary disease (COPD) and emphysema: The Multi-Ethnic Study of Atherosclerosis (MESA) COPD study. Int J Cardiol 2021; 331:214-220. [PMID: 33587941 PMCID: PMC8026709 DOI: 10.1016/j.ijcard.2021.02.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 12/25/2020] [Accepted: 02/05/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND The prevalence of abdominal aortic aneurysm is high in chronic obstructive pulmonary disease (COPD) population. Emphysema involves proteolytic destruction of elastic fibers. Therefore, emphysema may also contribute to thoracic aorta dilatation. This study assessed aorta dilation in smokers stratified by presence of COPD, emphysema and airway thickening. METHODS Aorta diameters were measured on 3D magnetic resonance angiography in smokers recruited from the Multi-Ethnic Study of Atherosclerosis (MESA), the Emphysema and Cancer Action Project (EMCAP), and the local community. COPD was defined by standard spirometric criteria; emphysema was measured quantitatively on computed tomography and bronchitis was determined from medical history. RESULTS Participants (n = 315, age 58-79) included 150 with COPD and 165 without COPD, of whom 56% and 19%, respectively, had emphysema. Subjects in the most severe quartile of emphysematous change showed the largest diameter at all four aorta locations compared to those in the least severe quartiles (all p < 0.001). Comparing subjects with and without COPD, aorta diameters were larger in participants with severe COPD in ascending and arch (both p < 0.001), and abdominal aorta (p = 0.001). Chronic bronchitis and bronchial wall thickness did not correlate with aorta diameter. In subjects with emphysema, subjects with coexistence of COPD showed larger aorta than those without COPD in ascending (p = 0.003), arch (p = 0.002), and abdominal aorta (p = 0.04). CONCLUSIONS This study showed larger aorta diameter in subjects with COPD and severe emphysema compared to COPD related to chronic bronchitis or bronchial wall thickening.
Collapse
Affiliation(s)
- Kana Fujikura
- Advanced Cardiovascular Imaging Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, ML, USA
| | | | - R Graham Barr
- Department of Medicine, Columbia University, New York, USA
| | - Megha Parikh
- Department of Medicine, Columbia University, New York, USA
| | - Julia Kern
- Department of Medicine, Columbia University, New York, USA
| | - Eric Hoffman
- Department of Radiology, Medicine and Biomedical Engineering, University of Iowa, Iowa City, USA
| | - Grant T Hiura
- Department of Medicine, Columbia University, New York, USA
| | - David A Bluemke
- Department of Radiology, University of Wisconsin, Madison, USA
| | - James Carr
- Department of Radiology, Northwestern University, Chicago, USA
| | - João A C Lima
- Division of Cardiology, Johns Hopkins University, Baltimore, USA
| | - Erin D Michos
- Division of Cardiology, Johns Hopkins University, Baltimore, USA
| | - Antoinette S Gomes
- Department of Radiology, University of California-Los Angeles, School of Medicine, Los Angeles, USA
| | - Martin R Prince
- Department of Radiology, Weill Cornell Medicine, NY, New York, USA.
| |
Collapse
|
14
|
Karnati S, Seimetz M, Kleefeldt F, Sonawane A, Madhusudhan T, Bachhuka A, Kosanovic D, Weissmann N, Krüger K, Ergün S. Chronic Obstructive Pulmonary Disease and the Cardiovascular System: Vascular Repair and Regeneration as a Therapeutic Target. Front Cardiovasc Med 2021; 8:649512. [PMID: 33912600 PMCID: PMC8072123 DOI: 10.3389/fcvm.2021.649512] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a major cause of morbidity and mortality worldwide and encompasses chronic bronchitis and emphysema. It has been shown that vascular wall remodeling and pulmonary hypertension (PH) can occur not only in patients with COPD but also in smokers with normal lung function, suggesting a causal role for vascular alterations in the development of emphysema. Mechanistically, abnormalities in the vasculature, such as inflammation, endothelial dysfunction, imbalances in cellular apoptosis/proliferation, and increased oxidative/nitrosative stress promote development of PH, cor pulmonale, and most probably pulmonary emphysema. Hypoxemia in the pulmonary chamber modulates the activation of key transcription factors and signaling cascades, which propagates inflammation and infiltration of neutrophils, resulting in vascular remodeling. Endothelial progenitor cells have angiogenesis capabilities, resulting in transdifferentiation of the smooth muscle cells via aberrant activation of several cytokines, growth factors, and chemokines. The vascular endothelium influences the balance between vaso-constriction and -dilation in the heart. Targeting key players affecting the vasculature might help in the development of new treatment strategies for both PH and COPD. The present review aims to summarize current knowledge about vascular alterations and production of reactive oxygen species in COPD. The present review emphasizes on the importance of the vasculature for the usually parenchyma-focused view of the pathobiology of COPD.
Collapse
Affiliation(s)
- Srikanth Karnati
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Michael Seimetz
- Excellence Cluster Cardio-Pulmonary System (ECCPS), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Florian Kleefeldt
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Avinash Sonawane
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Thati Madhusudhan
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - Akash Bachhuka
- UniSA Science, Technology, Engineering and Mathematics, University of South Australia, Mawson Lakes Campus, Adelaide, SA, Australia
| | - Djuro Kosanovic
- Excellence Cluster Cardio-Pulmonary System (ECCPS), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany.,Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Norbert Weissmann
- Excellence Cluster Cardio-Pulmonary System (ECCPS), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Karsten Krüger
- Department of Exercise Physiology and Sports Therapy, University of Giessen, Giessen, Germany
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| |
Collapse
|
15
|
Cherneva RV, Denchev SV, Cherneva ZV. Cardio-pulmonary-exercise testing, stress-induced right ventricular diastolic dysfunction and exercise capacity in non-severe chronic obstructive pulmonary disease. Pulmonology 2020; 27:194-207. [PMID: 32943349 DOI: 10.1016/j.pulmoe.2020.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 04/28/2020] [Accepted: 06/08/2020] [Indexed: 11/18/2022] Open
Affiliation(s)
| | | | - Zheina Vlaeva Cherneva
- Medical Institute of the Ministry of Internal Affairs, Clinic of Cardiology, Sofia, Bulgaria.
| |
Collapse
|
16
|
Mandoli GE, Sciaccaluga C, Bandera F, Cameli P, Esposito R, D'Andrea A, Evola V, Sorrentino R, Malagoli A, Sisti N, Nistor D, Santoro C, Bargagli E, Mondillo S, Galderisi M, Cameli M. Cor pulmonale: the role of traditional and advanced echocardiography in the acute and chronic settings. Heart Fail Rev 2020; 26:263-275. [PMID: 32860180 PMCID: PMC7895796 DOI: 10.1007/s10741-020-10014-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cor pulmonale is the condition in which the right ventricle undergoes morphological and/or functional changes due to diseases that affect the lungs, the pulmonary circulation, or the breathing process. Depending on the speed of onset of the pathological condition and subsequent effects on the right ventricle, it is possible to distinguish the acute cor pulmonale from the chronic type of disease. Echocardiography plays a central role in the diagnostic and therapeutic work-up of these patients, because of its non-invasive nature and wide accessibility, providing its greatest usefulness in the acute setting. It also represents a valuable tool for tracking right ventricular function in patients with cor pulmonale, assessing its stability, deterioration, or improvement during follow-up. In fact, not only it provides parameters with prognostic value, but also it can be used to assess the efficacy of treatment. This review attempts to provide the current standards of an echocardiographic evaluation in both acute and chronic cor pulmonale, focusing also on the findings present in the most common pathologies causing this condition.
Collapse
Affiliation(s)
- Giulia Elena Mandoli
- Department of Medical Biotechnologies, Division of Cardiology, AOUS Policlinico Santa Maria alle Scotte, University of Siena, Viale Bracci 1, 53100, Siena, Italy.
| | - Carlotta Sciaccaluga
- Department of Medical Biotechnologies, Division of Cardiology, AOUS Policlinico Santa Maria alle Scotte, University of Siena, Viale Bracci 1, 53100, Siena, Italy
| | - Francesco Bandera
- Cardiology University Department, Heart Failure Unit, IRCCS, Policlinico San Donato, San Donato Milanese and Department of Biomedical Sciences for Health, University of Milano, Milan, Italy
| | - Paolo Cameli
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences and Neuroscience, University of Siena, Siena, Italy
| | - Roberta Esposito
- Department of Advanced Biomedical Science, Federico II University Hospital Naples, Naples, Italy
| | - Antonello D'Andrea
- Cardiology Department, Echocardiography Lab and Rehabilitation Unit, Monaldi Hospital, Second University of Naples, Naples, Italy
| | - Vincenzo Evola
- Department of Health Promotion Sciences, Maternal-Infant Care, Internal Medicine and Specialities of Excellence "G. D'Alessandro", University of Palermo, Cardiology Unit, University Hospital P. Giaccone, Palermo, Italy
| | - Regina Sorrentino
- Department of Advanced Biomedical Science, Federico II University Hospital Naples, Naples, Italy
| | - Alessandro Malagoli
- Division of Cardiology, Nephro-Cardiovascular Department, "S. Agostino-Estense" Public Hospital, University of Modena and Reggio Emilia, Modena, Italy
| | - Nicolò Sisti
- Department of Medical Biotechnologies, Division of Cardiology, AOUS Policlinico Santa Maria alle Scotte, University of Siena, Viale Bracci 1, 53100, Siena, Italy
| | - Dan Nistor
- Institute for Emergency Cardiovascular Diseases and Transplant Targu Mures, Targu Mures, Romania
| | - Ciro Santoro
- Department of Advanced Biomedical Science, Federico II University Hospital Naples, Naples, Italy
| | - Elena Bargagli
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences and Neuroscience, University of Siena, Siena, Italy
| | - Sergio Mondillo
- Department of Medical Biotechnologies, Division of Cardiology, AOUS Policlinico Santa Maria alle Scotte, University of Siena, Viale Bracci 1, 53100, Siena, Italy
| | - Maurizio Galderisi
- Department of Advanced Biomedical Science, Federico II University Hospital Naples, Naples, Italy
| | - Matteo Cameli
- Department of Medical Biotechnologies, Division of Cardiology, AOUS Policlinico Santa Maria alle Scotte, University of Siena, Viale Bracci 1, 53100, Siena, Italy
| |
Collapse
|
17
|
Cherneva ZV, Denchev SV, Cherneva RV. Echocardiographic predictors of stress induced right ventricular diastolic dysfunction in non-severe chronic obstructive pulmonary disease. J Cardiol 2020; 76:163-170. [DOI: 10.1016/j.jjcc.2020.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 01/19/2020] [Accepted: 02/04/2020] [Indexed: 10/24/2022]
|
18
|
Alter P, Baker JR, Dauletbaev N, Donnelly LE, Pistenmaa C, Schmeck B, Washko G, Vogelmeier CF. Update in Chronic Obstructive Pulmonary Disease 2019. Am J Respir Crit Care Med 2020; 202:348-355. [PMID: 32407642 PMCID: PMC8054880 DOI: 10.1164/rccm.202002-0370up] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Peter Alter
- Department of Medicine, Pulmonary and Critical Care Medicine, Member of the German Center for Lung Research (DZL)
| | - Jonathan R. Baker
- Airway Disease, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Nurlan Dauletbaev
- Department of Medicine, Pulmonary and Critical Care Medicine, Member of the German Center for Lung Research (DZL),Department of Pediatrics, Faculty of Medicine, McGill University, Montreal, Quebec, Canada,Faculty of Medicine and Healthcare, al-Farabi Kazakh National University, Almaty, Kazakhstan; and
| | - Louise E. Donnelly
- Airway Disease, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Carrie Pistenmaa
- Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Bernd Schmeck
- Department of Medicine, Pulmonary and Critical Care Medicine, Member of the German Center for Lung Research (DZL),Institute for Lung Research, Member of the DZL and of the German Center of Infection Research (DZIF), and,Center for Synthetic Microbiology (SYNMIKRO), Philipps University of Marburg, Marburg, Germany
| | - George Washko
- Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Claus F. Vogelmeier
- Department of Medicine, Pulmonary and Critical Care Medicine, Member of the German Center for Lung Research (DZL)
| |
Collapse
|
19
|
Gredic M, Blanco I, Kovacs G, Helyes Z, Ferdinandy P, Olschewski H, Barberà JA, Weissmann N. Pulmonary hypertension in chronic obstructive pulmonary disease. Br J Pharmacol 2020; 178:132-151. [PMID: 31976545 DOI: 10.1111/bph.14979] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 12/29/2019] [Accepted: 01/06/2020] [Indexed: 12/12/2022] Open
Abstract
Even mild pulmonary hypertension (PH) is associated with increased mortality and morbidity in patients with chronic obstructive pulmonary disease (COPD). However, the underlying mechanisms remain elusive; therefore, specific and efficient treatment options are not available. Therapeutic approaches tested in the clinical setting, including long-term oxygen administration and systemic vasodilators, gave disappointing results and might be only beneficial for specific subgroups of patients. Preclinical studies identified several therapeutic approaches for the treatment of PH in COPD. Further research should provide deeper insight into the complex pathophysiological mechanisms driving vascular alterations in COPD, especially as such vascular (molecular) alterations have been previously suggested to affect COPD development. This review summarizes the current understanding of the pathophysiology of PH in COPD and gives an overview of the available treatment options and recent advances in preclinical studies. LINKED ARTICLES: This article is part of a themed issue on Risk factors, comorbidities, and comedications in cardioprotection. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.1/issuetoc.
Collapse
Affiliation(s)
- Marija Gredic
- Cardio-Pulmonary Institute, University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| | - Isabel Blanco
- Department of Pulmonary Medicine, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain.,Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
| | - Gabor Kovacs
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria.,Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School & János Szentágothai Research Centre, University of Pécs, Pécs, Hungary.,PharmInVivo Ltd, Pécs, Hungary
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary.,Pharmahungary Group, Szeged, Hungary
| | - Horst Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria.,Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Joan Albert Barberà
- Department of Pulmonary Medicine, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain.,Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
| | - Norbert Weissmann
- Cardio-Pulmonary Institute, University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| |
Collapse
|
20
|
Sousa Carvalho GF, Marques LK, Sousa HG, Silva LR, Leão Ferreira DC, Pires de Moura do Amaral F, Martins Maia Filho AL, Figueredo-Silva J, Alves WDS, Oliveira MDDAD, Soares da Costa Júnior J, Cardoso Costa Junior FL, Ramos RM, Rai M, Uchôa VT. Phytochemical study, molecular docking, genotoxicity and therapeutic efficacy of the aqueous extract of the stem bark of Ximenia americana L. in the treatment of experimental COPD in rats. JOURNAL OF ETHNOPHARMACOLOGY 2020; 247:112259. [PMID: 31577938 DOI: 10.1016/j.jep.2019.112259] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/27/2019] [Accepted: 09/27/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ximenia americana L. is popularly known as yellow plum, brave plum or tallow wood. All the parts of this plant are used in popular medicine. Its reddish and smooth bark are used to treat skin infections, inflammation of the mucous membranes and in the wound healing process. OBJECTIVE Verification of phytochemical profile, the molecular interaction between flavonoid, (-) epi-catechin and 5-LOX enzyme, by means of in silico study, the genotoxic effect and to investigate the pharmacological action of the aqueous extract of the stem bark of X. americana in pulmonary alterations caused by experimental COPD in Rattus norvegicus. MATERIALS AND METHODS The identification of secondary metabolites was carried out by TLC and HPLC chromatographic methods, molecular anchoring tests were applied to analyze the interaction of flavonoid present in the extract with the enzyme involved in pulmonary inflammation process and the genotoxic effect was assessed by comet assay and micronucleus test. For induction of COPD, male rats were distributed in seven groups. The control group was exposed only to ambient air and six were subjected to passive smoke inhalations for 20 min/day for 60 days. One of the groups exposed to cigarette smoke did not receive treatment. The others were treated by inhalation with beclomethasone dipropionate (400 mcg/kg) and aqueous and lyophilized extracts of X. americana (500 mg/kg) separately or in combination for a period of 15 days. The structural and inflammatory pulmonary alterations were evaluated by histological examination. Additional morphometric analyses were performed, including the alveolar diameter and the thickness of the right ventricle wall. RESULTS The results showed that the aqueous extract of the bark of X. americana possesses (-) epi -catechin, in silico studies with 5-LOX indicate that the EpiC ligand showed better affinity parameters than the AracA ligand, which is in accordance with the results obtained in vivo studies. Genotoxity was not observed at the dose tested and the extract was able to stagnate the alveolar enlargement caused by the destruction of the interalveolar septa, attenuation of mucus production and decrease the presence of collagen fibers in the bronchi of animals submitted to cigarette smoke. CONCLUSION Altogether, the results proved that the aqueous extract of X. americana presents itself as a new option of therapeutic approach in the treatment of COPD.
Collapse
Affiliation(s)
| | | | | | - Laryssa Roque Silva
- Nucleus of Research in Biotechnology - State University of Piaui, Teresina, PI, CEP 64003-120, Brazil
| | | | | | | | - José Figueredo-Silva
- Nucleus of Research in Biotechnology - State University of Piaui, Teresina, PI, CEP 64003-120, Brazil
| | | | | | | | | | - Ricardo Martins Ramos
- Research Laboratory in Information Systems, Federal Institute of Piaui, Teresina, PI, CEP-64000-040, Brazil
| | - Mahendra Rai
- Department of Biotechnology, SGB Amravati University, Amravati, 444 602, Maharashtra State, India
| | | |
Collapse
|
21
|
Ramalho SHR, Shah AM. Lung function and cardiovascular disease: A link. Trends Cardiovasc Med 2020; 31:93-98. [PMID: 31932098 DOI: 10.1016/j.tcm.2019.12.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 11/27/2019] [Accepted: 12/25/2019] [Indexed: 02/08/2023]
Abstract
The relationship between lung and heart diseases has long been recognized, with necropsy studies demonstrating silent myocardial infarctions or coronary artery calcification in patients with advanced emphysema as the death cause. Improvements in non-invasive techniques and epidemiologic approaches established that lung and cardiovascular diseases frequently coexist in mid and late life. Even among those without diagnosed lung disease, lower than expected forced vital capacity, forced expiratory volume in 1 s, and their ratio each portend greater risk of developing cardiovascular risk factors including hypertension, obesity, and metabolic syndrome, and for incident cardiovascular diseases including left heart failure, atrial fibrillation and stroke. Greater longitudinal declines in these spirometric measures are further associated with cardiovascular morbidity and mortality. While obstructive ventilatory patterns are more common, restrictive ventilatory patterns seem to demonstrate an independent and more robust association with cardiovascular diseases such as heart failure. These subclinical alterations in pulmonary function also relate to subclinical abnormalities of cardiac structure and function. Although the biologic pathways linking pulmonary and cardiovascular dysfunction are not clear, chronic systemic inflammation appears to be one important underlying pathophysiologic link. Despite the growing evidence of lung dysfunction as a cardiovascular risk factor, spirometric evaluation is still underutilized in clinical practice, particularly among cardiac patients, and optimal therapeutic and preventive strategies are still unclear. In this review, we address the current knowledge and controversies regarding the links between lung function and cardiovascular disease.
Collapse
Affiliation(s)
- Sergio H R Ramalho
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02445, USA; Health Sciences and Technologies Program, University of Brasilia, Brazil
| | - Amil M Shah
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02445, USA.
| |
Collapse
|
22
|
Schafnitzel A, Lorbeer R, Bayerl C, Patscheider H, Auweter SD, Meisinger C, Heier M, Ertl-Wagner B, Reiser M, Peters A, Bamberg F, Hetterich H. Association of smoking and physical inactivity with MRI derived changes in cardiac function and structure in cardiovascular healthy subjects. Sci Rep 2019; 9:18616. [PMID: 31819090 PMCID: PMC6901589 DOI: 10.1038/s41598-019-54956-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 11/20/2019] [Indexed: 02/07/2023] Open
Abstract
We aimed to investigate the association of smoking and physical exercise on ventricular function and structure, determined by cardiac magnetic resonance imaging (CMR), in subjects without known cardiovascular diseases. A total of 381 participants (median age 57 years) of the Cooperative Health Research in the Region of Augsburg (KORA) FF4 cohort underwent CMR. The participants' smoking and sporting habits were measured by a questionnaire. Physical inactivity was associated with a reduction of left ventricular ejection fraction (LV-EF), stroke volume, early diastolic peak filling rate and peak ejection rate of the left ventricle as well as right ventricular stroke volume. LV-EF was reduced in subjects with almost no physical activity compared to subjects with regular physical activity (68.4%, 95%CI 66.8-70.1% vs. 70.8%, 95%CI 69.2-72.3%, p < 0,05). Smokers had lower right ventricular end-diastolic volumes (80.6 ml/m², 95%CI 76.7-84.5 ml/m²; never-smokers: 85.5 ml/m², 95%CI 82.6-88.3 ml/m²; p < 0.05) but higher extracellular volume fractions (ECV) and fibrosis volumes (34.3 ml, 95%CI 32.5-36.0 ml, vs. 31.0 ml, 95%CI 29.6-32.3 ml, p < 0.01). We conclude that asymptomatic individuals without known cardiovascular diseases show differences in cardiac function and structure depending on their physical activity and smoking habits. This underlines the importance of prevention and health education.
Collapse
Affiliation(s)
- Anina Schafnitzel
- Department of Radiology, Ludwig-Maximilians-University Hospital, Marchioninistr. 15, 81377, Munich, Germany. .,Center for Diagnostic and Therapeutic Radiology, Department of Diagnostic and Interventional Radiology, Medical Center - University of Freiburg, Faculty of Medicine, Hugstetter Str. 55, 79106, Freiburg, Germany.
| | - Roberto Lorbeer
- Department of Radiology, Ludwig-Maximilians-University Hospital, Marchioninistr. 15, 81377, Munich, Germany
| | - Christian Bayerl
- Department of Radiology, Ludwig-Maximilians-University Hospital, Marchioninistr. 15, 81377, Munich, Germany
| | - Hannah Patscheider
- Department of Radiology, Ludwig-Maximilians-University Hospital, Marchioninistr. 15, 81377, Munich, Germany
| | - Sigrid D Auweter
- Department of Radiology, Ludwig-Maximilians-University Hospital, Marchioninistr. 15, 81377, Munich, Germany
| | - Christa Meisinger
- Institute of Epidemiology II, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.,Chair of Epidemiology, Ludwig-Maximilians-University Munich, Geschwister-Scholl-Platz 1, 80539, Munich, Germany.,UNIKA-T Augsburg, Neusaesser Str. 47, 86156, Augsburg, Germany
| | - Margit Heier
- Institute of Epidemiology II, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Birgit Ertl-Wagner
- Department of Radiology, Ludwig-Maximilians-University Hospital, Marchioninistr. 15, 81377, Munich, Germany
| | - Maximilian Reiser
- Department of Radiology, Ludwig-Maximilians-University Hospital, Marchioninistr. 15, 81377, Munich, Germany
| | - Annette Peters
- Institute of Epidemiology II, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Fabian Bamberg
- Department of Radiology, Ludwig-Maximilians-University Hospital, Marchioninistr. 15, 81377, Munich, Germany. .,Center for Diagnostic and Therapeutic Radiology, Department of Diagnostic and Interventional Radiology, Medical Center - University of Freiburg, Faculty of Medicine, Hugstetter Str. 55, 79106, Freiburg, Germany.
| | - Holger Hetterich
- Department of Radiology, Ludwig-Maximilians-University Hospital, Marchioninistr. 15, 81377, Munich, Germany
| |
Collapse
|
23
|
Rethinking Chronic Obstructive Pulmonary Disease. Chronic Pulmonary Insufficiency and Combined Cardiopulmonary Insufficiency. Ann Am Thorac Soc 2019; 15:S30-S34. [PMID: 29461894 DOI: 10.1513/annalsats.201708-667kv] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Almost 70 years ago, Drs. Baldwin, Cournand, and Richards defined chronic pulmonary insufficiency by the presence of respiratory symptoms, radiologic evidence of pulmonary emphysema on chest radiography, and physiologic gas trapping. A decade later, airflow obstruction on spirometry was added to the definition and insufficiency became a disease. Contemporary studies are reviving the diagnostic approach described by these early luminaries, with researchers finding that symptomatic smokers with preserved spirometry have increased exacerbations and that smokers and non-smokers with normal spirometry but emphysema on chest computed tomography have increased mortality. Hence, the Baldwin-Cournand-Richards concept of disease defined by respiratory symptoms, radiologic findings, and physiology-regardless of spirometric criteria-is being rediscovered. Baldwin, Cournand, and Richards also stated that "functionally, it is obvious that the pulmonary and circulatory apparatus are one unit," and they defined combined cardiopulmonary insufficiency as chronic pulmonary insufficiency with (left or right) cardiac and pulmonary artery enlargement. They appreciated the complexity of these interactions, which include the potential role of gas trapping in heart failure with reduced ejection fraction; the impact of emphysema on blood flow in heart failure with preserved ejection fraction; multiple contributions to cor pulmonale with increased pulmonary artery pressure; and cor pulmonale parvus in emphysema; all of which may be amenable to specific therapeutic interventions. Given the complexity of heart-lung interactions originally identified by Baldwin, Cournand, and Richards and the potentially large therapeutic opportunities, large-scale studies are still warranted to find specific therapies for subphenotypes of combined cardiopulmonary insufficiency.
Collapse
|
24
|
Kovacs G, Agusti A, Barberà JA, Celli B, Criner G, Humbert M, Sin DD, Voelkel N, Olschewski H. Pulmonary Vascular Involvement in Chronic Obstructive Pulmonary Disease. Is There a Pulmonary Vascular Phenotype? Am J Respir Crit Care Med 2019; 198:1000-1011. [PMID: 29746142 DOI: 10.1164/rccm.201801-0095pp] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Gabor Kovacs
- 1 Medical University of Graz, Graz, Austria.,2 Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Alvar Agusti
- 3 Respiratory Institute, Hospital Clinic, August Pi i Sunyer Biomedical Research Institute, University of Barcelona, Barcelona, Spain.,4 Centro Investigacion Biomedica en Red de Enfermedades Respiratorias, Madrid, Spain
| | - Joan Albert Barberà
- 3 Respiratory Institute, Hospital Clinic, August Pi i Sunyer Biomedical Research Institute, University of Barcelona, Barcelona, Spain.,4 Centro Investigacion Biomedica en Red de Enfermedades Respiratorias, Madrid, Spain
| | | | - Gerard Criner
- 6 Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Marc Humbert
- 7 Université Paris-Sud, Université Paris-Saclay; Inserm U999; Hôpital Bicêtre, Assistance Publique - Hôpitaux de Paris, Le Kremlin Bicêtre, France
| | - Don D Sin
- 8 Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada.,9 Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, British Columbia; Canada; and
| | - Norbert Voelkel
- 10 Department of Pulmonary Medicine, Frije University, Medical Center, Amsterdam, the Netherlands
| | - Horst Olschewski
- 1 Medical University of Graz, Graz, Austria.,2 Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| |
Collapse
|
25
|
Mehmood M. Biomarkers of Right Ventricular-Pulmonary Coupling in Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 2019; 200:792. [PMID: 31189068 PMCID: PMC6775889 DOI: 10.1164/rccm.201905-1065le] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- Muddassir Mehmood
- The University of Tennessee Graduate School of MedicineKnoxville, Tennessee
| |
Collapse
|
26
|
Rahman O, Markl M, Balte P, Berhane H, Blanken C, Suwa K, Dashnaw S, Wieben O, Bluemke DA, Prince MR, Lima J, Michos E, Ambale-Venkatesh B, Hoffman EA, Gomes AS, Watson K, Sun Y, Carr J, Barr RG. Reproducibility and Changes in Vena Caval Blood Flow by Using 4D Flow MRI in Pulmonary Emphysema and Chronic Obstructive Pulmonary Disease (COPD): The Multi-Ethnic Study of Atherosclerosis (MESA) COPD Substudy. Radiology 2019; 292:585-594. [PMID: 31335282 PMCID: PMC6736177 DOI: 10.1148/radiol.2019182143] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 05/19/2019] [Accepted: 06/03/2019] [Indexed: 11/11/2022]
Abstract
BackgroundChronic obstructive pulmonary disease (COPD) is associated with hemodynamic changes in the pulmonary vasculature. However, cardiac effects are not fully understood and vary by phenotype of chronic lower respiratory disease.PurposeTo use four-dimensional (4D) flow MRI for comprehensive assessment of the right-sided cardiovascular system, assess its interrater and intraobserver reproducibility, and examine associations with venous return to the right heart in individuals with chronic COPD and emphysema.Materials and MethodsThe Multi-Ethnic Study of Atherosclerosis COPD substudy prospectively recruited participants who smoked and who had COPD and nested control participants from population-based samples. Electrocardiography and respiratory gated 4D flow 1.5-T MRI was performed at three sites with full volumetric coverage of the thoracic vessels in 2014-2017 with postbronchodilator spirometry and inspiratory chest CT to quantify percent emphysema. Net flow, peak velocity, retrograde flow, and retrograde fraction were measured on 14 analysis planes. Interrater reproducibility was assessed by two independent observers, and the principle of conservation of mass was employed to evaluate the internal consistency of flow measures. Partial correlation coefficients were adjusted for age, sex, race/ethnicity, height, weight, and smoking status.ResultsAmong 70 participants (29 participants with COPD [mean age, 73.5 years ± 8.1 {standard deviation}; 20 men] and 41 control participants [mean age, 71.0 years ± 6.1; 22 men]), the interrater reproducibility of the 4D flow MRI measures was good to excellent (intraclass correlation coefficient range, 0.73-0.98), as was the internal consistency. There were no statistically significant differences in venous flow parameters according to COPD severity (P > .05). Greater percent emphysema at CT was associated with greater regurgitant flow in the superior and inferior caval veins and tricuspid valve (adjusted r = 0.28-0.55; all P < .01), particularly in the superior vena cava.ConclusionFour-dimensional flow MRI had good-to-excellent observer variability and flow consistency. Percent emphysema at CT was associated with statistically significant differences in retrograde flow, greatest in the superior vena cava.© RSNA, 2019Online supplemental material is available for this article.See also the editorial by Choe in this issue.
Collapse
Affiliation(s)
| | | | - Pallavi Balte
- From the Department of Radiology, Feinberg School of Medicine,
Northwestern University, 737 N Michigan Ave, Suite 1600, Chicago, IL 60611
(O.R., M.M., H.B., C.B., K.S., J.C.); Departments of Radiology (O.R., S.D.,
M.R.P., Y.S.), Medicine (P.B., Y.S., R.G.B.), and Epidemiology (R.G.B.),
Columbia University Medical Center, New York, NY; Department of Radiology,
NewYork–Presbyterian Hospital, New York, NY (O.R.); Department of
Biomedical Engineering, McCormick School of Engineering, Northwestern
University, Evanston, Ill (M.M.); Departments of Medical Physics (O.W.) and
Radiology (D.A.B.), University of Wisconsin School of Medicine and Public
Health, Madison, Wis; Division of Cardiology, Johns Hopkins University,
Baltimore, Md (J.L., E.M., B.A.V.); Department of Radiology, Biomedical
Engineering and Medicine, University of Iowa, Iowa City, Iowa (E.A.H.); and
Departments of Radiology (A.S.G.) and Medicine (K.W.), University of California
Los Angeles, Los Angeles, Calif
| | - Haben Berhane
- From the Department of Radiology, Feinberg School of Medicine,
Northwestern University, 737 N Michigan Ave, Suite 1600, Chicago, IL 60611
(O.R., M.M., H.B., C.B., K.S., J.C.); Departments of Radiology (O.R., S.D.,
M.R.P., Y.S.), Medicine (P.B., Y.S., R.G.B.), and Epidemiology (R.G.B.),
Columbia University Medical Center, New York, NY; Department of Radiology,
NewYork–Presbyterian Hospital, New York, NY (O.R.); Department of
Biomedical Engineering, McCormick School of Engineering, Northwestern
University, Evanston, Ill (M.M.); Departments of Medical Physics (O.W.) and
Radiology (D.A.B.), University of Wisconsin School of Medicine and Public
Health, Madison, Wis; Division of Cardiology, Johns Hopkins University,
Baltimore, Md (J.L., E.M., B.A.V.); Department of Radiology, Biomedical
Engineering and Medicine, University of Iowa, Iowa City, Iowa (E.A.H.); and
Departments of Radiology (A.S.G.) and Medicine (K.W.), University of California
Los Angeles, Los Angeles, Calif
| | - Carmen Blanken
- From the Department of Radiology, Feinberg School of Medicine,
Northwestern University, 737 N Michigan Ave, Suite 1600, Chicago, IL 60611
(O.R., M.M., H.B., C.B., K.S., J.C.); Departments of Radiology (O.R., S.D.,
M.R.P., Y.S.), Medicine (P.B., Y.S., R.G.B.), and Epidemiology (R.G.B.),
Columbia University Medical Center, New York, NY; Department of Radiology,
NewYork–Presbyterian Hospital, New York, NY (O.R.); Department of
Biomedical Engineering, McCormick School of Engineering, Northwestern
University, Evanston, Ill (M.M.); Departments of Medical Physics (O.W.) and
Radiology (D.A.B.), University of Wisconsin School of Medicine and Public
Health, Madison, Wis; Division of Cardiology, Johns Hopkins University,
Baltimore, Md (J.L., E.M., B.A.V.); Department of Radiology, Biomedical
Engineering and Medicine, University of Iowa, Iowa City, Iowa (E.A.H.); and
Departments of Radiology (A.S.G.) and Medicine (K.W.), University of California
Los Angeles, Los Angeles, Calif
| | - Kenichiro Suwa
- From the Department of Radiology, Feinberg School of Medicine,
Northwestern University, 737 N Michigan Ave, Suite 1600, Chicago, IL 60611
(O.R., M.M., H.B., C.B., K.S., J.C.); Departments of Radiology (O.R., S.D.,
M.R.P., Y.S.), Medicine (P.B., Y.S., R.G.B.), and Epidemiology (R.G.B.),
Columbia University Medical Center, New York, NY; Department of Radiology,
NewYork–Presbyterian Hospital, New York, NY (O.R.); Department of
Biomedical Engineering, McCormick School of Engineering, Northwestern
University, Evanston, Ill (M.M.); Departments of Medical Physics (O.W.) and
Radiology (D.A.B.), University of Wisconsin School of Medicine and Public
Health, Madison, Wis; Division of Cardiology, Johns Hopkins University,
Baltimore, Md (J.L., E.M., B.A.V.); Department of Radiology, Biomedical
Engineering and Medicine, University of Iowa, Iowa City, Iowa (E.A.H.); and
Departments of Radiology (A.S.G.) and Medicine (K.W.), University of California
Los Angeles, Los Angeles, Calif
| | - Stephen Dashnaw
- From the Department of Radiology, Feinberg School of Medicine,
Northwestern University, 737 N Michigan Ave, Suite 1600, Chicago, IL 60611
(O.R., M.M., H.B., C.B., K.S., J.C.); Departments of Radiology (O.R., S.D.,
M.R.P., Y.S.), Medicine (P.B., Y.S., R.G.B.), and Epidemiology (R.G.B.),
Columbia University Medical Center, New York, NY; Department of Radiology,
NewYork–Presbyterian Hospital, New York, NY (O.R.); Department of
Biomedical Engineering, McCormick School of Engineering, Northwestern
University, Evanston, Ill (M.M.); Departments of Medical Physics (O.W.) and
Radiology (D.A.B.), University of Wisconsin School of Medicine and Public
Health, Madison, Wis; Division of Cardiology, Johns Hopkins University,
Baltimore, Md (J.L., E.M., B.A.V.); Department of Radiology, Biomedical
Engineering and Medicine, University of Iowa, Iowa City, Iowa (E.A.H.); and
Departments of Radiology (A.S.G.) and Medicine (K.W.), University of California
Los Angeles, Los Angeles, Calif
| | - Oliver Wieben
- From the Department of Radiology, Feinberg School of Medicine,
Northwestern University, 737 N Michigan Ave, Suite 1600, Chicago, IL 60611
(O.R., M.M., H.B., C.B., K.S., J.C.); Departments of Radiology (O.R., S.D.,
M.R.P., Y.S.), Medicine (P.B., Y.S., R.G.B.), and Epidemiology (R.G.B.),
Columbia University Medical Center, New York, NY; Department of Radiology,
NewYork–Presbyterian Hospital, New York, NY (O.R.); Department of
Biomedical Engineering, McCormick School of Engineering, Northwestern
University, Evanston, Ill (M.M.); Departments of Medical Physics (O.W.) and
Radiology (D.A.B.), University of Wisconsin School of Medicine and Public
Health, Madison, Wis; Division of Cardiology, Johns Hopkins University,
Baltimore, Md (J.L., E.M., B.A.V.); Department of Radiology, Biomedical
Engineering and Medicine, University of Iowa, Iowa City, Iowa (E.A.H.); and
Departments of Radiology (A.S.G.) and Medicine (K.W.), University of California
Los Angeles, Los Angeles, Calif
| | - David A. Bluemke
- From the Department of Radiology, Feinberg School of Medicine,
Northwestern University, 737 N Michigan Ave, Suite 1600, Chicago, IL 60611
(O.R., M.M., H.B., C.B., K.S., J.C.); Departments of Radiology (O.R., S.D.,
M.R.P., Y.S.), Medicine (P.B., Y.S., R.G.B.), and Epidemiology (R.G.B.),
Columbia University Medical Center, New York, NY; Department of Radiology,
NewYork–Presbyterian Hospital, New York, NY (O.R.); Department of
Biomedical Engineering, McCormick School of Engineering, Northwestern
University, Evanston, Ill (M.M.); Departments of Medical Physics (O.W.) and
Radiology (D.A.B.), University of Wisconsin School of Medicine and Public
Health, Madison, Wis; Division of Cardiology, Johns Hopkins University,
Baltimore, Md (J.L., E.M., B.A.V.); Department of Radiology, Biomedical
Engineering and Medicine, University of Iowa, Iowa City, Iowa (E.A.H.); and
Departments of Radiology (A.S.G.) and Medicine (K.W.), University of California
Los Angeles, Los Angeles, Calif
| | - Martin R. Prince
- From the Department of Radiology, Feinberg School of Medicine,
Northwestern University, 737 N Michigan Ave, Suite 1600, Chicago, IL 60611
(O.R., M.M., H.B., C.B., K.S., J.C.); Departments of Radiology (O.R., S.D.,
M.R.P., Y.S.), Medicine (P.B., Y.S., R.G.B.), and Epidemiology (R.G.B.),
Columbia University Medical Center, New York, NY; Department of Radiology,
NewYork–Presbyterian Hospital, New York, NY (O.R.); Department of
Biomedical Engineering, McCormick School of Engineering, Northwestern
University, Evanston, Ill (M.M.); Departments of Medical Physics (O.W.) and
Radiology (D.A.B.), University of Wisconsin School of Medicine and Public
Health, Madison, Wis; Division of Cardiology, Johns Hopkins University,
Baltimore, Md (J.L., E.M., B.A.V.); Department of Radiology, Biomedical
Engineering and Medicine, University of Iowa, Iowa City, Iowa (E.A.H.); and
Departments of Radiology (A.S.G.) and Medicine (K.W.), University of California
Los Angeles, Los Angeles, Calif
| | - Joao Lima
- From the Department of Radiology, Feinberg School of Medicine,
Northwestern University, 737 N Michigan Ave, Suite 1600, Chicago, IL 60611
(O.R., M.M., H.B., C.B., K.S., J.C.); Departments of Radiology (O.R., S.D.,
M.R.P., Y.S.), Medicine (P.B., Y.S., R.G.B.), and Epidemiology (R.G.B.),
Columbia University Medical Center, New York, NY; Department of Radiology,
NewYork–Presbyterian Hospital, New York, NY (O.R.); Department of
Biomedical Engineering, McCormick School of Engineering, Northwestern
University, Evanston, Ill (M.M.); Departments of Medical Physics (O.W.) and
Radiology (D.A.B.), University of Wisconsin School of Medicine and Public
Health, Madison, Wis; Division of Cardiology, Johns Hopkins University,
Baltimore, Md (J.L., E.M., B.A.V.); Department of Radiology, Biomedical
Engineering and Medicine, University of Iowa, Iowa City, Iowa (E.A.H.); and
Departments of Radiology (A.S.G.) and Medicine (K.W.), University of California
Los Angeles, Los Angeles, Calif
| | - Erin Michos
- From the Department of Radiology, Feinberg School of Medicine,
Northwestern University, 737 N Michigan Ave, Suite 1600, Chicago, IL 60611
(O.R., M.M., H.B., C.B., K.S., J.C.); Departments of Radiology (O.R., S.D.,
M.R.P., Y.S.), Medicine (P.B., Y.S., R.G.B.), and Epidemiology (R.G.B.),
Columbia University Medical Center, New York, NY; Department of Radiology,
NewYork–Presbyterian Hospital, New York, NY (O.R.); Department of
Biomedical Engineering, McCormick School of Engineering, Northwestern
University, Evanston, Ill (M.M.); Departments of Medical Physics (O.W.) and
Radiology (D.A.B.), University of Wisconsin School of Medicine and Public
Health, Madison, Wis; Division of Cardiology, Johns Hopkins University,
Baltimore, Md (J.L., E.M., B.A.V.); Department of Radiology, Biomedical
Engineering and Medicine, University of Iowa, Iowa City, Iowa (E.A.H.); and
Departments of Radiology (A.S.G.) and Medicine (K.W.), University of California
Los Angeles, Los Angeles, Calif
| | - Bharath Ambale-Venkatesh
- From the Department of Radiology, Feinberg School of Medicine,
Northwestern University, 737 N Michigan Ave, Suite 1600, Chicago, IL 60611
(O.R., M.M., H.B., C.B., K.S., J.C.); Departments of Radiology (O.R., S.D.,
M.R.P., Y.S.), Medicine (P.B., Y.S., R.G.B.), and Epidemiology (R.G.B.),
Columbia University Medical Center, New York, NY; Department of Radiology,
NewYork–Presbyterian Hospital, New York, NY (O.R.); Department of
Biomedical Engineering, McCormick School of Engineering, Northwestern
University, Evanston, Ill (M.M.); Departments of Medical Physics (O.W.) and
Radiology (D.A.B.), University of Wisconsin School of Medicine and Public
Health, Madison, Wis; Division of Cardiology, Johns Hopkins University,
Baltimore, Md (J.L., E.M., B.A.V.); Department of Radiology, Biomedical
Engineering and Medicine, University of Iowa, Iowa City, Iowa (E.A.H.); and
Departments of Radiology (A.S.G.) and Medicine (K.W.), University of California
Los Angeles, Los Angeles, Calif
| | - Eric A. Hoffman
- From the Department of Radiology, Feinberg School of Medicine,
Northwestern University, 737 N Michigan Ave, Suite 1600, Chicago, IL 60611
(O.R., M.M., H.B., C.B., K.S., J.C.); Departments of Radiology (O.R., S.D.,
M.R.P., Y.S.), Medicine (P.B., Y.S., R.G.B.), and Epidemiology (R.G.B.),
Columbia University Medical Center, New York, NY; Department of Radiology,
NewYork–Presbyterian Hospital, New York, NY (O.R.); Department of
Biomedical Engineering, McCormick School of Engineering, Northwestern
University, Evanston, Ill (M.M.); Departments of Medical Physics (O.W.) and
Radiology (D.A.B.), University of Wisconsin School of Medicine and Public
Health, Madison, Wis; Division of Cardiology, Johns Hopkins University,
Baltimore, Md (J.L., E.M., B.A.V.); Department of Radiology, Biomedical
Engineering and Medicine, University of Iowa, Iowa City, Iowa (E.A.H.); and
Departments of Radiology (A.S.G.) and Medicine (K.W.), University of California
Los Angeles, Los Angeles, Calif
| | - Antoinette S. Gomes
- From the Department of Radiology, Feinberg School of Medicine,
Northwestern University, 737 N Michigan Ave, Suite 1600, Chicago, IL 60611
(O.R., M.M., H.B., C.B., K.S., J.C.); Departments of Radiology (O.R., S.D.,
M.R.P., Y.S.), Medicine (P.B., Y.S., R.G.B.), and Epidemiology (R.G.B.),
Columbia University Medical Center, New York, NY; Department of Radiology,
NewYork–Presbyterian Hospital, New York, NY (O.R.); Department of
Biomedical Engineering, McCormick School of Engineering, Northwestern
University, Evanston, Ill (M.M.); Departments of Medical Physics (O.W.) and
Radiology (D.A.B.), University of Wisconsin School of Medicine and Public
Health, Madison, Wis; Division of Cardiology, Johns Hopkins University,
Baltimore, Md (J.L., E.M., B.A.V.); Department of Radiology, Biomedical
Engineering and Medicine, University of Iowa, Iowa City, Iowa (E.A.H.); and
Departments of Radiology (A.S.G.) and Medicine (K.W.), University of California
Los Angeles, Los Angeles, Calif
| | - Karol Watson
- From the Department of Radiology, Feinberg School of Medicine,
Northwestern University, 737 N Michigan Ave, Suite 1600, Chicago, IL 60611
(O.R., M.M., H.B., C.B., K.S., J.C.); Departments of Radiology (O.R., S.D.,
M.R.P., Y.S.), Medicine (P.B., Y.S., R.G.B.), and Epidemiology (R.G.B.),
Columbia University Medical Center, New York, NY; Department of Radiology,
NewYork–Presbyterian Hospital, New York, NY (O.R.); Department of
Biomedical Engineering, McCormick School of Engineering, Northwestern
University, Evanston, Ill (M.M.); Departments of Medical Physics (O.W.) and
Radiology (D.A.B.), University of Wisconsin School of Medicine and Public
Health, Madison, Wis; Division of Cardiology, Johns Hopkins University,
Baltimore, Md (J.L., E.M., B.A.V.); Department of Radiology, Biomedical
Engineering and Medicine, University of Iowa, Iowa City, Iowa (E.A.H.); and
Departments of Radiology (A.S.G.) and Medicine (K.W.), University of California
Los Angeles, Los Angeles, Calif
| | - Yanping Sun
- From the Department of Radiology, Feinberg School of Medicine,
Northwestern University, 737 N Michigan Ave, Suite 1600, Chicago, IL 60611
(O.R., M.M., H.B., C.B., K.S., J.C.); Departments of Radiology (O.R., S.D.,
M.R.P., Y.S.), Medicine (P.B., Y.S., R.G.B.), and Epidemiology (R.G.B.),
Columbia University Medical Center, New York, NY; Department of Radiology,
NewYork–Presbyterian Hospital, New York, NY (O.R.); Department of
Biomedical Engineering, McCormick School of Engineering, Northwestern
University, Evanston, Ill (M.M.); Departments of Medical Physics (O.W.) and
Radiology (D.A.B.), University of Wisconsin School of Medicine and Public
Health, Madison, Wis; Division of Cardiology, Johns Hopkins University,
Baltimore, Md (J.L., E.M., B.A.V.); Department of Radiology, Biomedical
Engineering and Medicine, University of Iowa, Iowa City, Iowa (E.A.H.); and
Departments of Radiology (A.S.G.) and Medicine (K.W.), University of California
Los Angeles, Los Angeles, Calif
| | - James Carr
- From the Department of Radiology, Feinberg School of Medicine,
Northwestern University, 737 N Michigan Ave, Suite 1600, Chicago, IL 60611
(O.R., M.M., H.B., C.B., K.S., J.C.); Departments of Radiology (O.R., S.D.,
M.R.P., Y.S.), Medicine (P.B., Y.S., R.G.B.), and Epidemiology (R.G.B.),
Columbia University Medical Center, New York, NY; Department of Radiology,
NewYork–Presbyterian Hospital, New York, NY (O.R.); Department of
Biomedical Engineering, McCormick School of Engineering, Northwestern
University, Evanston, Ill (M.M.); Departments of Medical Physics (O.W.) and
Radiology (D.A.B.), University of Wisconsin School of Medicine and Public
Health, Madison, Wis; Division of Cardiology, Johns Hopkins University,
Baltimore, Md (J.L., E.M., B.A.V.); Department of Radiology, Biomedical
Engineering and Medicine, University of Iowa, Iowa City, Iowa (E.A.H.); and
Departments of Radiology (A.S.G.) and Medicine (K.W.), University of California
Los Angeles, Los Angeles, Calif
| | - R. Graham Barr
- From the Department of Radiology, Feinberg School of Medicine,
Northwestern University, 737 N Michigan Ave, Suite 1600, Chicago, IL 60611
(O.R., M.M., H.B., C.B., K.S., J.C.); Departments of Radiology (O.R., S.D.,
M.R.P., Y.S.), Medicine (P.B., Y.S., R.G.B.), and Epidemiology (R.G.B.),
Columbia University Medical Center, New York, NY; Department of Radiology,
NewYork–Presbyterian Hospital, New York, NY (O.R.); Department of
Biomedical Engineering, McCormick School of Engineering, Northwestern
University, Evanston, Ill (M.M.); Departments of Medical Physics (O.W.) and
Radiology (D.A.B.), University of Wisconsin School of Medicine and Public
Health, Madison, Wis; Division of Cardiology, Johns Hopkins University,
Baltimore, Md (J.L., E.M., B.A.V.); Department of Radiology, Biomedical
Engineering and Medicine, University of Iowa, Iowa City, Iowa (E.A.H.); and
Departments of Radiology (A.S.G.) and Medicine (K.W.), University of California
Los Angeles, Los Angeles, Calif
| |
Collapse
|
27
|
Abstract
Chronic heart and lung diseases are very common in the elderly population. The combination of chronic heart failure and chronic obstructive pulmonary disease (COPD) is also common and, according to current guidelines, these patients should be treated for both diseases. In patients with heart failure, beta-blockers are very important drugs because their use is associated with significantly improved morbidity and mortality. These beneficial effects were documented in patients with and without COPD, although theoretically there is a risk for bronchoconstriction, particularly with non-beta1 selective blockers. In COPD patients, long-acting sympathomimetics (LABA) improve lung function, dyspnea, and quality of life and their combination with a beta-blocker makes sense from a pharmacological and a clinical point of view, because any potential arrhythmogenic effects of the LABA will be ameliorated by the beta-blocker. Inhaled tiotropium, a long-acting muscarinic antagonist (LAMA), has been extensively investigated and no safety concerns were reported in terms of cardiac adverse effects. The same applies for the other approved LAMA preparations and LAMA-LABA combinations. Severe COPD causes air-trapping with increasing pressures in the thorax, leading to limitations in blood return into the thorax from the periphery of the body. This causes a decrease in stroke volume and cardiac index and is associated with dyspnea. All these adverse effects can be ameliorated by potent anti-obstructive therapy as recently shown by means of a LABA-LAMA combination.
Collapse
Affiliation(s)
- H Olschewski
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria.
| | - M Canepa
- Cardiovascular Unit, Department of Internal Medicine, University of Genova, Genova, Italy
| | - G Kovacs
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
| |
Collapse
|
28
|
Washko GR, Nardelli P, Ash SY, Vegas Sanchez-Ferrero G, Rahaghi FN, Come CE, Dransfield MT, Kalhan R, Han MK, Bhatt SP, Wells JM, Aaron CP, Diaz AA, Ross JC, Cuttica MJ, Labaki WW, Querejeta Roca G, Shah AM, Young K, Kinney GL, Hokanson JE, Agustí A. Arterial Vascular Pruning, Right Ventricular Size, and Clinical Outcomes in Chronic Obstructive Pulmonary Disease. A Longitudinal Observational Study. Am J Respir Crit Care Med 2019; 200:454-461. [PMID: 30758975 PMCID: PMC6701031 DOI: 10.1164/rccm.201811-2063oc] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 02/08/2019] [Indexed: 01/05/2023] Open
Abstract
Rationale: Cor pulmonale (right ventricular [RV] dilation) and cor pulmonale parvus (RV shrinkage) are both described in chronic obstructive pulmonary disease (COPD). The identification of emphysema as a shared risk factor suggests that additional disease characterization is needed to understand these widely divergent cardiac processes.Objectives: To explore the relationship between computed tomography measures of emphysema and distal pulmonary arterial morphology with RV volume, and their association with exercise capacity and mortality in ever-smokers with COPD enrolled in the COPDGene Study.Methods: Epicardial (myocardium and chamber) RV volume (RVEV), distal pulmonary arterial blood vessel volume (arterial BV5: vessels <5 mm2 in cross-section), and objective measures of emphysema were extracted from 3,506 COPDGene computed tomography scans. Multivariable linear and Cox regression models and the log-rank test were used to explore the association between emphysema, arterial BV5, and RVEV with exercise capacity (6-min-walk distance) and all-cause mortality.Measurements and Main Results: The RVEV was approximately 10% smaller in Global Initiative for Chronic Obstructive Lung Disease stage 4 versus stage 1 COPD (P < 0.0001). In multivariable modeling, a 10-ml decrease in arterial BV5 (pruning) was associated with a 1-ml increase in RVEV. For a given amount of emphysema, relative preservation of the arterial BV5 was associated with a smaller RVEV. An increased RVEV was associated with reduced 6-minute-walk distance and in those with arterial pruning an increased mortality.Conclusions: Pulmonary arterial pruning is associated with clinically significant increases in RV volume in smokers with COPD and is related to exercise capacity and mortality in COPD.Clinical trial registered with www.clinicaltrials.gov (NCT00608764).
Collapse
Affiliation(s)
| | | | - Samuel Y. Ash
- Division of Pulmonary and Critical Care, Department of Medicine
| | | | | | - Carolyn E. Come
- Division of Pulmonary and Critical Care, Department of Medicine
| | - Mark T. Dransfield
- Lung Health Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Ravi Kalhan
- Asthma and COPD Program, Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - MeiLan K. Han
- Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Surya P. Bhatt
- Lung Health Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - J. Michael Wells
- Lung Health Center, University of Alabama at Birmingham, Birmingham, Alabama
| | | | | | - James C. Ross
- Applied Chest Imaging Laboratory, Department of Radiology
| | - Michael J. Cuttica
- Asthma and COPD Program, Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Wassim W. Labaki
- Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | | | - Amil M. Shah
- Division of Cardiovascular, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Kendra Young
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, Colorado; and
| | - Gregory L. Kinney
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, Colorado; and
| | - John E. Hokanson
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, Colorado; and
| | | | - for the COPDGene Investigators
- Division of Pulmonary and Critical Care, Department of Medicine
- Applied Chest Imaging Laboratory, Department of Radiology
- Department of Anesthesia, and
- Division of Cardiovascular, Brigham and Women’s Hospital, Boston, Massachusetts
- Lung Health Center, University of Alabama at Birmingham, Birmingham, Alabama
- Asthma and COPD Program, Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, Colorado; and
- Hospital Clinic Barcelona, Barcelona, Spain
| |
Collapse
|
29
|
Franssen FME, Alter P, Bar N, Benedikter BJ, Iurato S, Maier D, Maxheim M, Roessler FK, Spruit MA, Vogelmeier CF, Wouters EFM, Schmeck B. Personalized medicine for patients with COPD: where are we? Int J Chron Obstruct Pulmon Dis 2019; 14:1465-1484. [PMID: 31371934 PMCID: PMC6636434 DOI: 10.2147/copd.s175706] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 06/05/2019] [Indexed: 12/19/2022] Open
Abstract
Chronic airflow limitation is the common denominator of patients with chronic obstructive pulmonary disease (COPD). However, it is not possible to predict morbidity and mortality of individual patients based on the degree of lung function impairment, nor does the degree of airflow limitation allow guidance regarding therapies. Over the last decades, understanding of the factors contributing to the heterogeneity of disease trajectories, clinical presentation, and response to existing therapies has greatly advanced. Indeed, diagnostic assessment and treatment algorithms for COPD have become more personalized. In addition to the pulmonary abnormalities and inhaler therapies, extra-pulmonary features and comorbidities have been studied and are considered essential components of comprehensive disease management, including lifestyle interventions. Despite these advances, predicting and/or modifying the course of the disease remains currently impossible, and selection of patients with a beneficial response to specific interventions is unsatisfactory. Consequently, non-response to pharmacologic and non-pharmacologic treatments is common, and many patients have refractory symptoms. Thus, there is an ongoing urgency for a more targeted and holistic management of the disease, incorporating the basic principles of P4 medicine (predictive, preventive, personalized, and participatory). This review describes the current status and unmet needs regarding personalized medicine for patients with COPD. Also, it proposes a systems medicine approach, integrating genetic, environmental, (micro)biological, and clinical factors in experimental and computational models in order to decipher the multilevel complexity of COPD. Ultimately, the acquired insights will enable the development of clinical decision support systems and advance personalized medicine for patients with COPD.
Collapse
Affiliation(s)
- Frits ME Franssen
- Department of Research and Education, CIRO, Horn, The Netherlands
- Department of Respiratory Medicine, Maastricht University Medical Centre, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht, The Netherlands
| | - Peter Alter
- Department of Medicine, Pulmonary and Critical Care Medicine, University Medical Center Giessen and Marburg, Philipps University of Marburg (UMR), Member of the German Center for Lung Research (DZL), Marburg, Germany
| | - Nadav Bar
- Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Birke J Benedikter
- Institute for Lung Research, Universities of Giessen and Marburg Lung Centre, Philipps-University Marburg, Member of the German Center for Lung Research (DZL), Marburg, Germany
- Department of Medical Microbiology, Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands
| | | | | | - Michael Maxheim
- Department of Medicine, Pulmonary and Critical Care Medicine, University Medical Center Giessen and Marburg, Philipps University of Marburg (UMR), Member of the German Center for Lung Research (DZL), Marburg, Germany
| | - Fabienne K Roessler
- Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Martijn A Spruit
- Department of Research and Education, CIRO, Horn, The Netherlands
- Department of Respiratory Medicine, Maastricht University Medical Centre, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht, The Netherlands
- REVAL - Rehabilitation Research Center, BIOMED - Biomedical Research Institute, Faculty of Rehabilitation Sciences, Hasselt University, Diepenbeek, Belgium
| | - Claus F Vogelmeier
- Department of Medicine, Pulmonary and Critical Care Medicine, University Medical Center Giessen and Marburg, Philipps University of Marburg (UMR), Member of the German Center for Lung Research (DZL), Marburg, Germany
| | - Emiel FM Wouters
- Department of Research and Education, CIRO, Horn, The Netherlands
- Department of Respiratory Medicine, Maastricht University Medical Centre, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht, The Netherlands
| | - Bernd Schmeck
- Department of Medicine, Pulmonary and Critical Care Medicine, University Medical Center Giessen and Marburg, Philipps University of Marburg (UMR), Member of the German Center for Lung Research (DZL), Marburg, Germany
- Institute for Lung Research, Universities of Giessen and Marburg Lung Centre, Philipps-University Marburg, Member of the German Center for Lung Research (DZL), Marburg, Germany
| |
Collapse
|
30
|
Capron T, Bourdin A, Perez T, Chanez P. COPD beyond proximal bronchial obstruction: phenotyping and related tools at the bedside. Eur Respir Rev 2019; 28:28/152/190010. [PMID: 31285287 DOI: 10.1183/16000617.0010-2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 05/04/2019] [Indexed: 11/05/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is characterised by nonreversible proximal bronchial obstruction leading to major respiratory disability. However, patient phenotypes better capture the heterogeneously reported complaints and symptoms of COPD. Recent studies provided evidence that classical bronchial obstruction does not properly reflect respiratory disability, and symptoms now form the new paradigm for assessment of disease severity and guidance of therapeutic strategies. The aim of this review was to explore pathways addressing COPD pathogenesis beyond proximal bronchial obstruction and to highlight innovative and promising tools for phenotyping and bedside assessment. Distal small airways imaging allows quantitative characterisation of emphysema and functional air trapping. Micro-computed tomography and parametric response mapping suggest small airways disease precedes emphysema destruction. Small airways can be assessed functionally using nitrogen washout, probing ventilation at conductive or acinar levels, and forced oscillation technique. These tests may better correlate with respiratory symptoms and may well capture bronchodilation effects beyond proximal obstruction.Knowledge of inflammation-based processes has not provided well-identified targets so far, and eosinophils probably play a minor role. Adaptative immunity or specific small airways secretory protein may provide new therapeutic targets. Pulmonary vasculature is involved in emphysema through capillary loss, microvascular lesions or hypoxia-induced remodelling, thereby impacting respiratory disability.
Collapse
Affiliation(s)
- Thibaut Capron
- Clinique des Bronches, Allergies et Sommeil, Hôpital Nord, Assistance Publique des Hôpitaux de Marseille, Aix Marseille Université, Marseille, France
| | - Arnaud Bourdin
- Université de Montpellier, PhyMedExp, INSERM, CNRS, CHU de Montpellier, Dept of Respiratory Diseases, Montpellier, France
| | - Thierry Perez
- Dept of Respiratory Diseases, CHU Lille, Center for Infection and Immunity of Lille, INSERM U1019 - CNRS UMR 8204, Université Lille Nord de France, Lille, France
| | - Pascal Chanez
- Clinique des Bronches, Allergies et Sommeil, Hôpital Nord, Assistance Publique des Hôpitaux de Marseille, Aix Marseille Université, Marseille, France .,Aix Marseille Université, INSERM, INRA, CV2N, Marseille, France
| |
Collapse
|
31
|
Winther HB, Gutberlet M, Hundt C, Kaireit TF, Alsady TM, Schmidt B, Wacker F, Sun Y, Dettmer S, Maschke SK, Hinrichs JB, Jambawalikar S, Prince MR, Barr RG, Vogel-Claussen J. Deep semantic lung segmentation for tracking potential pulmonary perfusion biomarkers in chronic obstructive pulmonary disease (COPD): The multi-ethnic study of atherosclerosis COPD study. J Magn Reson Imaging 2019; 51:571-579. [PMID: 31276264 DOI: 10.1002/jmri.26853] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/19/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is associated with high morbidity and mortality. Identification of imaging biomarkers for phenotyping is necessary for future treatment and therapy monitoring. However, translation of visual analytic pipelines into clinics or their use in large-scale studies is significantly slowed by time-consuming postprocessing steps. PURPOSE To implement an automated tool chain for regional quantification of pulmonary microvascular blood flow in order to reduce analysis time and user variability. STUDY TYPE Prospective. POPULATION In all, 90 MRI scans of 63 patients, of which 31 had a COPD with a mean Global Initiative for Chronic Obstructive Lung Disease status of 1.9 ± 0.64 (μ ± σ). FIELD STRENGTH/SEQUENCE 1.5T dynamic gadolinium-enhanced MRI measurement using 4D dynamic contrast material-enhanced (DCE) time-resolved angiography acquired in a single breath-hold in inspiration. [Correction added on August 20, 2019, after first online publication: The field strength in the preceding sentence was corrected.] ASSESSMENT: We built a 3D convolutional neural network for semantic segmentation using 29 manually segmented perfusion maps. All five lobes of the lung are denoted, including the middle lobe. Evaluation was performed on 61 independent cases from two sites of the Multi-Ethnic Study of Arteriosclerosis (MESA)-COPD study. We publish our implementation of a model-free deconvolution filter according to Sourbron et al for 4D DCE MRI scans as open source. STATISTICAL TEST Cross-validation 29/61 (# training / # testing), intraclass correlation coefficient (ICC), Spearman ρ, Pearson r, Sørensen-Dice coefficient, and overlap. RESULTS Segmentations and derived clinical parameters were processed in ~90 seconds per case on a Xeon E5-2637v4 workstation with Tesla P40 GPUs. Clinical parameters and predicted segmentations exhibit high concordance with the ground truth regarding median perfusion for all lobes with an ICC of 0.99 and a Sørensen-Dice coefficient of 93.4 ± 2.8 (μ ± σ). DATA CONCLUSION We present a robust end-to-end pipeline that allows for the extraction of perfusion-based biomarkers for all lung lobes in 4D DCE MRI scans by combining model-free deconvolution with deep learning. LEVEL OF EVIDENCE 3 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2020;51:571-579.
Collapse
Affiliation(s)
- Hinrich B Winther
- Department of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
| | - Marcel Gutberlet
- Department of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
| | | | - Till F Kaireit
- Department of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
| | - Tawfik Moher Alsady
- Department of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
| | - Bertil Schmidt
- Institute for Computer Science, Johannes Gutenberg University, Mainz, Germany
| | - Frank Wacker
- Department of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Yanping Sun
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Sabine Dettmer
- Department of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Sabine K Maschke
- Department of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
| | - Jan B Hinrichs
- Department of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
| | - Sachin Jambawalikar
- Department of Radiology, Columbia University Medical Center, New York, New York, USA
| | - Martin R Prince
- Cornell Cardiovascular Magnetic Resonance Imaging Laboratory, Radiology Department, Weill Medical College of Cornell University, New York, New York, USA
| | - R Graham Barr
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Jens Vogel-Claussen
- Department of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| |
Collapse
|
32
|
Beckett RG, Conlogue GJ. The importance of pathophysiology to the understanding of functional limitations in the bioarchaeology of care approach. INTERNATIONAL JOURNAL OF PALEOPATHOLOGY 2019; 25:118-128. [PMID: 30007861 DOI: 10.1016/j.ijpp.2018.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/26/2018] [Accepted: 06/27/2018] [Indexed: 06/08/2023]
Abstract
This article presents a partial bioarchaeology of care case study of a mummified adult female with chronic obstructive pulmonary disease (COPD) from late historic period United States. It examines likely clinical and functional impacts of disease and corresponding need for provision of care, stopping short of Stage 4 Interpretation/analysis. The case study illustrates and argues for the importance of an interdisciplinary research team for achieving a comprehensive understanding of disability and care. The article highlights the necessity of knowledge of pathophysiology for identifying the potential interventions (supports) dictated by the associated functional limitations. inter alia, this case is a powerful illustration of the way analysis of preserved soft tissue can provide insights into disease and likely care that are inaccessible using skeletal analysis alone. The article represents an interesting contribution to the theory and methodology of both the bioarchaeology of care approach and mummy studies.
Collapse
Affiliation(s)
- Ronald G Beckett
- Bioanthropology Research Institute, Quinnipiac University, Hamden, CT, United States.
| | - Gerald J Conlogue
- Bioanthropology Research Institute, Quinnipiac University, Hamden, CT, United States.
| |
Collapse
|
33
|
de Oliveira MV, Rocha NDN, Santos RS, Rocco MRM, de Magalhães RF, Silva JD, Souza SAL, Capelozzi VL, Pelosi P, Silva PL, Rocco PRM. Endotoxin-Induced Emphysema Exacerbation: A Novel Model of Chronic Obstructive Pulmonary Disease Exacerbations Causing Cardiopulmonary Impairment and Diaphragm Dysfunction. Front Physiol 2019; 10:664. [PMID: 31191356 PMCID: PMC6546905 DOI: 10.3389/fphys.2019.00664] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 05/09/2019] [Indexed: 12/26/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a progressive disorder of the lung parenchyma which also involves extrapulmonary manifestations, such as cardiovascular impairment, diaphragm dysfunction, and frequent exacerbations. The development of animal models is important to elucidate the pathophysiology of COPD exacerbations and enable analysis of possible therapeutic approaches. We aimed to characterize a model of acute emphysema exacerbation and evaluate its consequences on the lung, heart, and diaphragm. Twenty-four Wistar rats were randomly assigned into one of two groups: control (C) or emphysema (ELA). In ELA group, animals received four intratracheal instillations of pancreatic porcine elastase (PPE) at 1-week intervals. The C group received saline under the same protocol. Five weeks after the last instillation, C and ELA animals received saline (SAL) or E. coli lipopolysaccharide (LPS) (200 μg in 200 μl) intratracheally. Twenty-four hours after saline or endotoxin administration, arterial blood gases, lung inflammation and morphometry, collagen fiber content, and lung mechanics were analyzed. Echocardiography, diaphragm ultrasonography (US), and computed tomography (CT) of the chest were done. ELA-LPS animals, compared to ELA-SAL, exhibited decreased arterial oxygenation; increases in alveolar collapse (p < 0.0001), relative neutrophil counts (p = 0.007), levels of cytokine-induced neutrophil chemoattractant-1, interleukin (IL)-1β, tumor necrosis factor-α, IL-6, and vascular endothelial growth factor in lung tissue, collagen fiber deposition in alveolar septa, airways, and pulmonary vessel walls, and dynamic lung elastance (p < 0.0001); reduced pulmonary acceleration time/ejection time ratio, (an indirect index of pulmonary arterial hypertension); decreased diaphragm thickening fraction and excursion; and areas of emphysema associated with heterogeneous alveolar opacities on chest CT. In conclusion, we developed a model of endotoxin-induced emphysema exacerbation that affected not only the lungs but also the heart and diaphragm, thus resembling several features of human disease. This model of emphysema should allow preclinical testing of novel therapies with potential for translation into clinical practice.
Collapse
Affiliation(s)
- Milena Vasconcellos de Oliveira
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Nazareth de Novaes Rocha
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Department of Physiology and Pharmacology, Biomedical Institute, Fluminense Federal University, Niterói, Brazil
| | - Raquel Souza Santos
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcella Rieken Macedo Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Raquel Ferreira de Magalhães
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Johnatas Dutra Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sergio Augusto Lopes Souza
- Department of Radiology, Faculty of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vera Luiza Capelozzi
- Department of Pathology, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Paolo Pelosi
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy.,San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Pedro Leme Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patricia Rieken Macedo Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
34
|
Ewert R, Heine A, Bollmann T, Müller-Heinrich A, Gläser S, Opitz CF. Right Heart Catheterization During Exercise in Patients with COPD-An Overview of Clinical Results and Methodological Aspects. COPD 2019; 15:588-599. [PMID: 30894079 DOI: 10.1080/15412555.2018.1545832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
While right heart catheterization (RHC) at rest is the gold standard to assess pulmonary hemodynamics in patients with chronic obstructive pulmonary disease (COPD) and pulmonary hypertension (PH), the invasive measurement of exercise hemodynamics is less well established in this group. Since exercise hemodynamics are increasingly recognized as important clinical information in patients with PH, our goal was to review the literature in this field to provide a basis for clinical use, further studies, and future recommendations. We identified 69 studies (published since 1968) reporting RHC data in 2819 patients with COPD, of whom 2561 underwent exercise testing. Few studies simultaneously measured gas exchange during exercise. Overall, these studies showed large variations in the patient populations and research questions studied and the methods and definitions employed. Despite these limitations, the data consistently demonstrated the presence of precapillary PH at rest in up to 38% of patients with COPD. With exercise, a relevant proportion of patients developed an abnormal hemodynamic response, depending on the definition used. Furthermore, some studies assessed right ventricular function during exercise and showed a blunted increase in right ventricular ejection fraction. Drug effects and the impact of interventional procedures were also studied. Again, due to large variations in the patients studied and the methods used, firm conclusions are difficult to derive. Despite the limitations of this dataset, several recommendations with respect to technical aspects (body position, exercise protocol, and data acquisition) can be inferred for this challenging patient population and may be helpful for further studies or recommendations.
Collapse
Affiliation(s)
- Ralf Ewert
- a Department of Internal Medicine B , University Hospital Greifswald , Greifswald, Germany
| | - Alexander Heine
- a Department of Internal Medicine B , University Hospital Greifswald , Greifswald, Germany
| | - Tom Bollmann
- a Department of Internal Medicine B , University Hospital Greifswald , Greifswald, Germany
| | | | - Sven Gläser
- b Vivantes Klinik Berlin-Spandau, Klinik für Pneumologie , Berlin , Germany
| | - Christian F Opitz
- c DRK-Kliniken Berlin-Westend, Klinik für Kardiologie , Berlin , Germany
| |
Collapse
|
35
|
Schäfer M, Humphries S, Stenmark KR, Kheyfets VO, Buckner JK, Hunter KS, Fenster BE. 4D-flow cardiac magnetic resonance-derived vorticity is sensitive marker of left ventricular diastolic dysfunction in patients with mild-to-moderate chronic obstructive pulmonary disease. Eur Heart J Cardiovasc Imaging 2019; 19:415-424. [PMID: 28460004 DOI: 10.1093/ehjci/jex069] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/17/2017] [Indexed: 12/20/2022] Open
Abstract
Aims To investigate the possibility that vorticity assessed by four-dimensional flow cardiac magnetic resonance (4D-Flow CMR) in the left ventricle of patients with mild-to-moderate chronic obstructive pulmonary disease (COPD) is a potential marker of early LV diastolic dysfunction (LVDD) and more sensitive than standard echocardiography, and whether changes in vorticity are associated with quantitative computed tomography (CT) and clinical markers of COPD, and right ventricular (RV) echocardiographic markers indicative of ventricular interdependency. Methods and results Sixteen COPD patients with presumptive LVDD and 10 controls underwent same-day 4D-Flow CMR and Doppler echocardiography to quantify early and late diastolic vorticity as well as standard evaluation for LVDD. Furthermore, all patients underwent detailed CT analysis for COPD markers including percent emphysema and air trapping. The 4D-Flow CMR derived diastolic vorticity measures were correlated with CT measures, standard clinical and CMR markers, and echocardiographic diastolic RV metrics. Early diastolic vorticity was significantly reduced in COPD patients (P < 0.0001) with normal left ventricular (LV) mass, geometry, systolic function, and no or mild signs of Doppler LVDD when compared with controls. Vorticity significantly differentiated COPD patients without echocardiographic signs of LVDD (n = 11) from controls (P < 0.0001), and from COPD patients with stage I LVDD (n = 5) (P < 0.0180). Vorticity markers significantly correlated with CT computed measures, CMR-derived RV ejection fraction, echocardiographic RV diastolic metrics, and 6-minute walk test. Conclusion 4D-Flow CMR derived diastolic vorticity is reduced in patients with mild-to-moderate COPD and no or mild signs of LVDD, implying early perturbations in the LV flow domain preceding more obvious mechanical changes (i.e. stiffening and dilation). Furthermore, reduced LV vorticity appears to be driven by COPD induced changes in lung tissue and parallel RV dysfunction.
Collapse
Affiliation(s)
- Michal Schäfer
- Department of Cardiology, National Jewish Health, 1400 Jackson St, Denver, CO 80206, USA.,Department of Bioengineering, University of Colorado Denver, Anschutz Medical Campus, Research 2 - Building P15, 12700 E 19th Avenue, Aurora, CO 80045-2560, USA
| | - Stephen Humphries
- Department of Radiology, National Jewish Health, 1400 Jackson St, Denver, CO 80206, USA
| | - Kurt R Stenmark
- Division of Pediatrics, Department of Critical Care, University of Colorado, Anschutz Medical Campus, 212700 E. 19th Avenue, Box B131, Aurora, CO 80045, USA
| | - Vitaly O Kheyfets
- Department of Cardiology, National Jewish Health, 1400 Jackson St, Denver, CO 80206, USA.,Department of Bioengineering, University of Colorado Denver, Anschutz Medical Campus, Research 2 - Building P15, 12700 E 19th Avenue, Aurora, CO 80045-2560, USA
| | - J Kern Buckner
- Department of Cardiology, National Jewish Health, 1400 Jackson St, Denver, CO 80206, USA
| | - Kendall S Hunter
- Department of Cardiology, National Jewish Health, 1400 Jackson St, Denver, CO 80206, USA.,Department of Bioengineering, University of Colorado Denver, Anschutz Medical Campus, Research 2 - Building P15, 12700 E 19th Avenue, Aurora, CO 80045-2560, USA
| | - Brett E Fenster
- Department of Cardiology, National Jewish Health, 1400 Jackson St, Denver, CO 80206, USA
| |
Collapse
|
36
|
Impact of pulmonary emphysema on exercise capacity and its physiological determinants in chronic obstructive pulmonary disease. Sci Rep 2018; 8:15745. [PMID: 30356114 PMCID: PMC6200804 DOI: 10.1038/s41598-018-34014-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 10/05/2018] [Indexed: 12/27/2022] Open
Abstract
Exercise limitation is common in chronic obstructive pulmonary disease (COPD). We determined the impact of pulmonary emphysema on the physiological response to exercise independent of contemporary measures of COPD severity. Smokers 40–79 years old with COPD underwent computed tomography, pulmonary function tesing, and symptom-limited incremental exercise testing. COPD severity was quantified according to the Global Initiative for Chronic Obstructive Lung Disease (GOLD) by spirometry (GOLD 1–4); and symptom burden and exacerbation risk (GOLD A-D). Emphysema severity was quantified as the percent lung volume <−950 Hounsfield units. Regression models adjusted for age, gender, body size, smoking status, airflow limitation, symptom burden and exacerbation risk. Among 67 COPD subjects (age 67 ± 8 years; 75% male; GOLD 1–4: 11%, 43%, 30%, 16%), median percent emphysema was 11%, and peak power output (PPO) was 61 ± 32 W. Higher percent emphysema independently predicted lower PPO (−24 W per 10% increment in emphysema; 95%CI −41 to −7 W). Throughout exercise, higher percent emphysema predicted 1) higher minute ventilation, ventilatory equivalent for CO2, and heart rate; and 2) lower oxy-hemoglobin saturation, and end-tidal PCO2. Independent of contemporary measures of COPD severity, the extent of pulmonary emphysema predicts lower exercise capacity, ventilatory inefficiency, impaired gas-exchange and increased heart rate response to exercise.
Collapse
|
37
|
Guo X, Nie H, Chen Q, Chen S, Deng N, Li R, Ding X, Hu S, Wang A. The role of plasma N-terminal brain natriuretic pro-peptide in diagnosing elderly patients with acute exacerbation of COPD concurrent with left heart failure. Int J Chron Obstruct Pulmon Dis 2018; 13:2931-2940. [PMID: 30275691 PMCID: PMC6157578 DOI: 10.2147/copd.s164671] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Introduction Acute exacerbation of COPD (AECOPD) and left heart failure (LHF) commonly exist together in clinical practice. However, the identification of AECOPD concurrent with LHF is currently challenging. Our study aimed to investigate the role of plasma N-terminal brain natriuretic pro-peptide (NT-proBNP) in diagnosing elderly patients with AECOPD associated with LHF. Methods and results LHF was diagnosed in patients with AECOPD according to echocardiographic criteria, and the levels of NT-proBNP in plasma were measured by quantitative electrochemiluminescence assay. Among the 655 patients with AECOPD, 158 (24.1%) had comorbid LHF, whether systolic (n=108, 68.4%) or diastolic (n=50, 31.6%). The plasma concentrations of NT-proBNP in elderly patients with AECOPD associated with LHF were markedly elevated, compared with those with only AECOPD (4,542.5 and 763.0 ng/L, respectively, P<0.01). The receiver operating characteristic curve indicated a diagnostic cutoff value of 1,677.5 ng/L of NT-proBNP in plasma for ascertaining the presence of LHF in AECOPD, with a sensitivity of 87.9%, a specificity of 88.5%, and an accuracy of 88.4%. Conclusion The plasma level of NT-proBNP may be a useful indicator in diagnosing AECOPD associated with LHF.
Collapse
Affiliation(s)
- Xuxue Guo
- Department of Respiratory Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Hanxiang Nie
- Department of Respiratory Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Qianhui Chen
- Department of Respiratory Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Shuo Chen
- Department of Respiratory Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Nishan Deng
- Department of Respiratory Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Ruiyun Li
- Department of Respiratory Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Xuhong Ding
- Department of Respiratory Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Suping Hu
- Department of Respiratory Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Ailing Wang
- Nursing Department, Wuhan University School of Health Sciences, Wuhan 430071, Hubei Province, China,
| |
Collapse
|
38
|
Guo X, Fan Y, Cui J, Hao B, Zhu L, Sun X, He J, Yang J, Dong J, Wang Y, Liu X, Chen J. NOX4 expression and distal arteriolar remodeling correlate with pulmonary hypertension in COPD. BMC Pulm Med 2018; 18:111. [PMID: 29986678 PMCID: PMC6038356 DOI: 10.1186/s12890-018-0680-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 06/25/2018] [Indexed: 12/26/2022] Open
Abstract
Background Pulmonary hypertension (PH) in chronic obstructive pulmonary disease (COPD) is suggested as the consequence of emphysematous destruction of vascular bed and hypoxia of pulmonary microenvironment, mechanisms underpinning its pathogenesis however remain elusive. The dysregulated expression of nicotinamide adenine dinucleotide phosphate (NADPH)-oxidases and superoxide generation by pulmonary vasculatures have significant implications in the hypoxia-induced PH. Methods In this study, the involvement of NADPH oxidase subunit 4 (NOX4) in pulmonary arteriolar remodeling of PH in COPD was investigated by ascertaining the morphological alteration of pulmonary arteries and pulmonary blood flow using cardiac magnetic resonance imaging (cMRI), and the expression and correlation of NOX4 with pulmonary vascular remodeling and pulmonary functions in COPD lungs. Results Results demonstrated that an augmented expression of NOX4 was correlated with the increased volume of pulmonary vascular wall in COPD lung. While the volume of distal pulmonary arteries was inversely correlated with pulmonary functions, despite it was positively associated with the main pulmonary artery distensibility, right ventricular myocardial mass end-systolic and right ventricular myocardial mass end-diastolic in COPD. In addition, an increased malondialdehyde and a decreased superoxide dismutase were observed in sera of COPD patients. Mechanistically, the abundance of NOX4 and production of reactive oxygen species (ROS) in pulmonary artery smooth muscle cells could be dynamically induced by transforming growth factor-beta (TGF-β), which in turn led pulmonary arteriolar remodeling in COPD lungs. Conclusion These results suggest that the NOX4-derived ROS production may play a key role in the development of PH in COPD by promoting distal pulmonary vascular remodeling.
Collapse
Affiliation(s)
- Xiaotong Guo
- Department of Pulmonary and Critical Care Medicine, General Hospital of Ningxia Medical University, 804 Shengli South Street, Xingqing District, Yinchuan, Ningxia, 750004, People's Republic of China
| | - Yuchun Fan
- Department of Pulmonary and Critical Care Medicine, General Hospital of Ningxia Medical University, 804 Shengli South Street, Xingqing District, Yinchuan, Ningxia, 750004, People's Republic of China
| | - Jieda Cui
- Department of Pulmonary and Critical Care Medicine, General Hospital of Ningxia Medical University, 804 Shengli South Street, Xingqing District, Yinchuan, Ningxia, 750004, People's Republic of China.,Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Binwei Hao
- Department of Pulmonary and Critical Care Medicine, General Hospital of Ningxia Medical University, 804 Shengli South Street, Xingqing District, Yinchuan, Ningxia, 750004, People's Republic of China
| | - Li Zhu
- Department of Radiology, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Xiao Sun
- Department of Radiology, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Jinxi He
- Department of Thoracic Surgery, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Jiali Yang
- Institute of Human Stem Cell Research, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Jianda Dong
- Department of Pathology, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Yanyang Wang
- Department of Radiotherapy, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Xiaoming Liu
- Department of Pulmonary and Critical Care Medicine, General Hospital of Ningxia Medical University, 804 Shengli South Street, Xingqing District, Yinchuan, Ningxia, 750004, People's Republic of China. .,Institute of Human Stem Cell Research, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China.
| | - Juan Chen
- Department of Pulmonary and Critical Care Medicine, General Hospital of Ningxia Medical University, 804 Shengli South Street, Xingqing District, Yinchuan, Ningxia, 750004, People's Republic of China.
| |
Collapse
|
39
|
Huang Y, Li L, Li X, Fan S, Zhuang P, Zhang Y. Ginseng Compatibility Environment Attenuates Toxicity and Keeps Efficacy in Cor Pulmonale Treated by Fuzi Beimu Incompatibility Through the Coordinated Crosstalk of PKA and Epac Signaling Pathways. Front Pharmacol 2018; 9:634. [PMID: 29962951 PMCID: PMC6013823 DOI: 10.3389/fphar.2018.00634] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 05/29/2018] [Indexed: 12/24/2022] Open
Abstract
Cor pulmonale is characterized by severe right ventricular dysfunction caused by lung disease, particularly chronic obstructive pulmonary disease, which can lead to pulmonary hypertension. Our previous study has demonstrated that Fuzi and Beimu compatibility (FBC), a traditional TCM compatibility taboo, improves lung function in early-stage of pulmonary hypertension through the synergistic action of β-ARs signals. However, FBC increases cardiotoxicity with prolonged treatment and disease progression. Considering that the compatibility environment influences the exertion of the medicine, we selected ginseng for coordinating the compatibility environment to improve the security and extend the therapeutic time window of FBC. Monocrotaline-induced cor pulmonale rats were treated with FBC, ginseng, or ginseng combined with FBC (G/FBC). Then, the pulmonary and cardiac functions of the rats were examined to evaluate the toxicity and efficacy of the treatments. The crosstalk between PKA and Epac pathways was also studied. Results showed that G/FBC ameliorated lung function similar to or even better than FBC treatment did. Furthermore, G/FBC treatment attenuated FBC-induced cardiotoxicity, which significantly restored cardiac dysfunction and clearly decreased myocardial enzymes and apoptosis. The βAR-Gs-PKA/CaMKII pathway was inhibited and the Epac1/ERK1/2 axis was activated in G/FBC group. These findings indicate that ginseng compatibility environment could improve pulmonary function and attenuate cardiotoxicity in cor pulmonale via the coordinated crosstalk of PKA and Epac pathways, implying that ginseng could be used to prevent detrimental cardiotoxicity in cor pulmonale treatment.
Collapse
Affiliation(s)
- Yingying Huang
- Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lili Li
- Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaojin Li
- Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Simiao Fan
- Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Pengwei Zhuang
- Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanjun Zhang
- Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
40
|
Weir-McCall JR, Liu-Shiu-Cheong PS, Struthers AD, Lipworth BJ, Houston JG. Disconnection of pulmonary and systemic arterial stiffness in COPD. Int J Chron Obstruct Pulmon Dis 2018; 13:1755-1765. [PMID: 29881265 PMCID: PMC5978466 DOI: 10.2147/copd.s160077] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Background Both pulmonary arterial stiffening and systemic arterial stiffening have been described in COPD. The aim of the current study was to assess pulse wave velocity (PWV) within these two arterial beds to determine whether they are separate or linked processes. Materials and methods In total, 58 participants with COPD and 21 healthy volunteers (HVs) underwent cardiac magnetic resonance imaging (MRI) and were tested with a panel of relevant biomarkers. Cardiac MRI was used to quantify ventricular mass, volumes, and pulmonary (pulse wave velocity [pPWV] and systemic pulse wave velocity [sPWV]). Results Those with COPD had higher pPWV (COPD: 2.62 vs HV: 1.78 ms−1, p=0.006), higher right ventricular mass/volume ratio (RVMVR; COPD: 0.29 vs HV: 0.25 g/mL, p=0.012), higher left ventricular mass/volume ratio (LVMVR; COPD: 0.78 vs HV: 0.70 g/mL, p=0.009), and a trend toward a higher sPWV (COPD: 8.7 vs HV: 7.4 ms−1, p=0.06). Multiple biomarkers were elevated: interleukin-6 (COPD: 1.38 vs HV: 0.58 pg/mL, p=0.02), high-sensitivity C-reactive protein (COPD: 6.42 vs HV: 2.49 mg/L, p=0.002), surfactant protein D (COPD: 16.9 vs HV: 9.13 ng/mL, p=0.001), N-terminal pro-brain natriuretic peptide (COPD: 603 vs HV: 198 pg/mL, p=0.001), and high-sensitivity troponin I (COPD: 2.27 vs HV: 0.92 pg/mL, p<0.001). There was a significant relationship between sPWV and LVMVR (p=0.01) but not pPWV (p=0.97) nor between pPWV and RVMVR (p=0.27). Conclusion Pulmonary arterial stiffening and systemic arterial stiffening appear to be disconnected and should therefore be considered independent processes in COPD. Further work is warranted to determine whether both these cause an increased morbidity and mortality and whether both can be targeted by similar pharmacological therapy or whether different strategies are required for each.
Collapse
Affiliation(s)
- Jonathan R Weir-McCall
- Division of Molecular and Clinical Medicine, Medical Research Institute, University of Dundee, Dundee, UK
| | | | - Allan D Struthers
- Division of Molecular and Clinical Medicine, Medical Research Institute, University of Dundee, Dundee, UK
| | - Brian J Lipworth
- Scottish Centre for Respiratory Research, Medical Research Institute, University of Dundee, Dundee, UK
| | - J Graeme Houston
- Division of Molecular and Clinical Medicine, Medical Research Institute, University of Dundee, Dundee, UK
| |
Collapse
|
41
|
Huang YY, Li XJ, Liu KX, Zhuang PW, Zhang YJ. Toxicity-efficacy converting of ginseng combined with Fuzi Banxia incompatibility in heart failure stage of cor pulmonale. CHINESE HERBAL MEDICINES 2018. [DOI: 10.1016/j.chmed.2018.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
42
|
Thomson RJ, Aung N, Sanghvi MM, Paiva JM, Lee AM, Zemrak F, Fung K, Pfeffer PE, Mackay AJ, McKeever TM, Lukaschuk E, Carapella V, Kim YJ, Bolton CE, Piechnik SK, Neubauer S, Petersen SE. Variation in lung function and alterations in cardiac structure and function-Analysis of the UK Biobank cardiovascular magnetic resonance imaging substudy. PLoS One 2018; 13:e0194434. [PMID: 29558496 PMCID: PMC5860758 DOI: 10.1371/journal.pone.0194434] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 03/03/2018] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Reduced lung function is common and associated with increased cardiovascular morbidity and mortality, even in asymptomatic individuals without diagnosed respiratory disease. Previous studies have identified relationships between lung function and cardiovascular structure in individuals with pulmonary disease, but the relationships in those free from diagnosed cardiorespiratory disease have not been fully explored. METHODS UK Biobank is a prospective cohort study of community participants in the United Kingdom. Individuals self-reported demographics and co-morbidities, and a subset underwent cardiovascular magnetic resonance (CMR) imaging and spirometry. CMR images were analysed to derive ventricular volumes and mass. The relationships between CMR-derived measures and spirometry and age were modelled with multivariable linear regression, taking account of the effects of possible confounders. RESULTS Data were available for 4,975 individuals, and after exclusion of those with pre-existing cardiorespiratory disease and unacceptable spirometry, 1,406 were included in the analyses. In fully-adjusted multivariable linear models lower FEV1 and FVC were associated with smaller left ventricular end-diastolic (-5.21ml per standard deviation (SD) change in FEV1, -5.69ml per SD change in FVC), end-systolic (-2.34ml, -2.56ml) and stroke volumes (-2.85ml, -3.11ml); right ventricular end-diastolic (-5.62ml, -5.84ml), end-systolic (-2.47ml, -2.46ml) and stroke volumes (-3.13ml, -3.36ml); and with lower left ventricular mass (-2.29g, -2.46g). Changes of comparable magnitude and direction were observed per decade increase in age. CONCLUSIONS This study shows that reduced FEV1 and FVC are associated with smaller ventricular volumes and reduced ventricular mass. The changes seen per standard deviation change in FEV1 and FVC are comparable to one decade of ageing.
Collapse
Affiliation(s)
- Ross J. Thomson
- William Harvey Research Institute, NIHR Biomedical Research Centre at Barts, Queen Mary University of London, London, United Kingdom
| | - Nay Aung
- William Harvey Research Institute, NIHR Biomedical Research Centre at Barts, Queen Mary University of London, London, United Kingdom
| | - Mihir M. Sanghvi
- William Harvey Research Institute, NIHR Biomedical Research Centre at Barts, Queen Mary University of London, London, United Kingdom
| | - Jose Miguel Paiva
- William Harvey Research Institute, NIHR Biomedical Research Centre at Barts, Queen Mary University of London, London, United Kingdom
| | - Aaron M. Lee
- William Harvey Research Institute, NIHR Biomedical Research Centre at Barts, Queen Mary University of London, London, United Kingdom
| | - Filip Zemrak
- William Harvey Research Institute, NIHR Biomedical Research Centre at Barts, Queen Mary University of London, London, United Kingdom
| | - Kenneth Fung
- William Harvey Research Institute, NIHR Biomedical Research Centre at Barts, Queen Mary University of London, London, United Kingdom
| | - Paul E. Pfeffer
- William Harvey Research Institute, NIHR Biomedical Research Centre at Barts, Queen Mary University of London, London, United Kingdom
- Barts Health NHS Trust, London, United Kingdom
| | | | - Tricia M. McKeever
- Nottingham Respiratory Research Unit, NIHR Nottingham Biomedical Research Centre, School of Medicine, City Hospital NUH Trust Campus, University of Nottingham, Nottingham, United Kingdom
| | - Elena Lukaschuk
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Valentina Carapella
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Young Jin Kim
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Charlotte E. Bolton
- Nottingham Respiratory Research Unit, NIHR Nottingham Biomedical Research Centre, School of Medicine, City Hospital NUH Trust Campus, University of Nottingham, Nottingham, United Kingdom
| | - Stefan K. Piechnik
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Stefan Neubauer
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Steffen E. Petersen
- William Harvey Research Institute, NIHR Biomedical Research Centre at Barts, Queen Mary University of London, London, United Kingdom
- * E-mail:
| |
Collapse
|
43
|
Weir-McCall JR, Liu-Shiu-Cheong PS, Struthers AD, Lipworth BJ, Houston JG. Pulmonary arterial stiffening in COPD and its implications for right ventricular remodelling. Eur Radiol 2018; 28:3464-3472. [PMID: 29488084 PMCID: PMC6028842 DOI: 10.1007/s00330-018-5346-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 01/16/2018] [Accepted: 01/18/2018] [Indexed: 01/09/2023]
Abstract
Background Pulmonary pulse wave velocity (PWV) allows the non-invasive measurement of pulmonary arterial stiffening, but has not previously been assessed in COPD. The aim of the current study was to assess PWV in COPD and its association with right ventricular (RV) remodelling. Methods Fifty-eight participants with COPD underwent pulmonary function tests, 6-min walk test and cardiac MRI, while 21 healthy controls (HCs) underwent cardiac MRI. Thirty-two COPD patients underwent a follow-up MRI to assess for longitudinal changes in RV metrics. Cardiac MRI was used to quantify RV mass, volumes and PWV. Differences in continuous variables between the COPD and HC groups was tested using an independent t-test, and associations between PWV and right ventricular parameters was examined using Pearson’s correlation coefficient. Results Those with COPD had reduced pulsatility (COPD (mean±SD):24.88±8.84% vs. HC:30.55±11.28%, p=0.021), pulmonary acceleration time (COPD:104.0±22.9ms vs. HC: 128.1±32.2ms, p<0.001), higher PWV (COPD:2.62±1.29ms-1 vs. HC:1.78±0.72ms-1, p=0.001), lower RV end diastolic volume (COPD:53.6±11.1ml vs. HC:59.9±13.0ml, p=0.037) and RV stroke volume (COPD:31.9±6.9ml/m2 vs. HC:37.1±6.2ml/m2, p=0.003) with no difference in mass (p=0.53). PWV was not associated with right ventricular parameters. Conclusions While pulmonary vascular remodelling is present in COPD, cardiac remodelling favours reduced filling rather than increased afterload. Treatment of obstructive lung disease may have greater effect on cardiac function than treatment of pulmonary vascular disease in most COPD patients Key Points • Pulmonary pulse wave velocity (PWV) is elevated in COPD. • Pulmonary PWV is not associated with right ventricular remodelling. • Right ventricular remodelling is more in keeping with that of reduced filling. Electronic supplementary material The online version of this article (10.1007/s00330-018-5346-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jonathan R Weir-McCall
- Division of Cardiovascular and Diabetes Medicine, Medical Research Institute, University of Dundee, Dundee, UK
| | - Patrick Sk Liu-Shiu-Cheong
- Division of Cardiovascular and Diabetes Medicine, Medical Research Institute, University of Dundee, Dundee, UK
| | - Allan D Struthers
- Division of Cardiovascular and Diabetes Medicine, Medical Research Institute, University of Dundee, Dundee, UK
| | - Brian J Lipworth
- Scottish Centre for Respiratory Research, Medical Research Institute, University of Dundee, Dundee, UK
| | - J Graeme Houston
- Division of Cardiovascular and Diabetes Medicine, Medical Research Institute, University of Dundee, Dundee, UK.
- Division of Cardiovascular and Diabetes Medicine, Ninewells Hospital, Dundee, DD1 9SY, UK.
| |
Collapse
|
44
|
Hohlfeld JM, Vogel-Claussen J, Biller H, Berliner D, Berschneider K, Tillmann HC, Hiltl S, Bauersachs J, Welte T. Effect of lung deflation with indacaterol plus glycopyrronium on ventricular filling in patients with hyperinflation and COPD (CLAIM): a double-blind, randomised, crossover, placebo-controlled, single-centre trial. THE LANCET RESPIRATORY MEDICINE 2018; 6:368-378. [PMID: 29477448 DOI: 10.1016/s2213-2600(18)30054-7] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/14/2017] [Accepted: 12/19/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND Pulmonary hyperinflation in chronic obstructive pulmonary disease (COPD) is associated with reduced biventricular end-diastolic volumes and increased morbidity and mortality. The combination of a long-acting β agonist (LABA) and a muscarinic antagonist (LAMA) is more effective in reducing hyperinflation than LABA-inhaled corticosteroid combination therapy but whether dual bronchodilation improves cardiac function is unknown. METHODS We did a double-blind, randomised, two-period crossover, placebo-controlled, single-centre study (CLAIM) at the Fraunhofer Institute of Toxicology and Experimental Medicine (Hannover, Germany), a specialty clinic. Eligible participants were patients aged at least 40 years with COPD, pulmonary hyperinflation (defined by a baseline residual volume >135% of predicted), a smoking history of at least ten pack-years, and airflow limitation (FEV1 <80% predicted and post-bronchodilator FEV1: forced vital capacity <0·7). Patients with stable cardiovascular disease were eligible, but those with arrhythmias, heart failure, unstable ischaemic heart disease, or uncontrolled hypertension were not. We randomly assigned participants (1:1) to either receive a combined inhaled dual bronchodilator containing the LABA indacaterol (110 μg as maleate salt) plus the LAMA glycopyrronium (50 μg as bromide salt) once per day for 14 days, followed by a 14-day washout, then a matched placebo for 14 days, or to receive the same treatments in reverse order. The randomisation was done using lists and was concealed from patients and investigators. The primary endpoint was the effect of indacaterol-glycopyrronium versus placebo on left-ventricular end-diastolic volume measured by MRI done on day 1 (visit 4) and day 15 (visit 5) in treatment period 1 and on day 29 (visit 6) and day 43 (visit 7) in treatment period 2 in the per-protocol population. Left-ventricular end-diastolic volume was indexed to body surface area. Safety was assessed in all participants who received at least one dose of the study drug. This study is registered with ClinicalTrials.gov, number NCT02442206. FINDINGS Between May 18, 2015, and April 20, 2017, we randomly assigned 62 eligible participants to treatment; 30 to indacaterol-glycopyrronium followed by placebo and 32 to placebo followed by indacaterol-glycopyrronium. The 62 randomly assigned patients were included in the intent-to-treat analysis. There were two protocol violations and therefore 60 were included in the per-protocol analysis. 57 patients completed both treatment periods. After indacaterol-glycopyrronium treatment, left-ventricular end-diastolic volume increased from a mean 55·46 mL/m2 (SD 15·89) at baseline to a least-squares (LS) mean of 61·76 mL/m2 (95% CI 57·68-65·84), compared with a change from 56·42 mL/m2 at baseline (13·54) to 56·53 mL/m2 (52·43-60·62) after placebo (LS means treatment difference 5·23 mL/m2 [95% CI 3·22 to 7·25; p<0·0001]). The most common adverse events reported with indacaterol-glycopyrronium were cough (in nine patients [15%] of 59) and throat irritation (in seven [12%]). With placebo, the most common adverse events reported were headache (in five patients [8%] of 61) and upper respiratory tract infection (in four [7%]). Two patients had serious adverse events: one (2%) after indacaterol-glycopyrronium (endometrial cancer) and one (2%) after placebo (myocardial infarction); these were not thought to be treatment related. No patients died during the study. INTERPRETATION This is the first study to analyse the effect of LABA-LAMA combination therapy on cardiac function in patients with COPD and lung hyperinflation. Dual bronchodilation with indacaterol-glycopyrronium significantly improved cardiac function as measured by left-ventricular end-diastolic volume. The results are important because of the known association of cardiovascular impairment with COPD, and support the early use of dual bronchodilation in patients with COPD who show signs of pulmonary hyperinflation. FUNDING Novartis Pharma GmbH.
Collapse
Affiliation(s)
- Jens M Hohlfeld
- Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany; German Center for Lung Research (BREATH), Hannover, Germany; Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
| | - Jens Vogel-Claussen
- German Center for Lung Research (BREATH), Hannover, Germany; Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
| | - Heike Biller
- Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany
| | - Dominik Berliner
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | | | | | - Simone Hiltl
- Novartis Pharma GmbH, Clinical Research Respiratory, Nuremberg, Germany
| | - Johann Bauersachs
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Tobias Welte
- German Center for Lung Research (BREATH), Hannover, Germany; Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
45
|
Rocha NDN, de Oliveira MV, Braga CL, Guimarães G, Maia LDA, Padilha GDA, Silva JD, Takiya CM, Capelozzi VL, Silva PL, Rocco PRM. Ghrelin therapy improves lung and cardiovascular function in experimental emphysema. Respir Res 2017; 18:185. [PMID: 29100513 PMCID: PMC5670513 DOI: 10.1186/s12931-017-0668-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 10/30/2017] [Indexed: 12/21/2022] Open
Abstract
Background Emphysema is a progressive disease characterized by irreversible airspace enlargement followed by a decline in lung function. It also causes extrapulmonary effects, such as loss of body mass and cor pulmonale, which are associated with shorter survival and worse clinical outcomes. Ghrelin, a growth-hormone secretagogue, stimulates muscle anabolism, has anti-inflammatory effects, promotes vasodilation, and improves cardiac performance. Therefore, we hypothesized that ghrelin might reduce lung inflammation and remodelling as well as improve lung mechanics and cardiac function in experimental emphysema. Methods Forty female C57BL/6 mice were randomly assigned into two main groups: control (C) and emphysema (ELA). In the ELA group (n=20), animals received four intratracheal instillations of pancreatic porcine elastase (PPE) at 1-week intervals. C animals (n=20) received saline alone (50 μL) using the same protocol. Two weeks after the last instillation of saline or PPE, C and ELA animals received ghrelin or saline (n=10/group) intraperitoneally (i.p.) daily, during 3 weeks. Dual-energy X-ray absorptiometry (DEXA), echocardiography, lung mechanics, histology, and molecular biology were analysed. Results In elastase-induced emphysema, ghrelin treatment decreased alveolar hyperinflation and mean linear intercept, neutrophil infiltration, and collagen fibre content in the alveolar septa and pulmonary vessel wall; increased elastic fibre content; reduced M1-macrophage populations and increased M2 polarization; decreased levels of keratinocyte-derived chemokine (KC, a mouse analogue of interleukin-8), tumour necrosis factor-α, and transforming growth factor-β, but increased interleukin-10 in lung tissue; augmented static lung elastance; reduced arterial pulmonary hypertension and right ventricular hypertrophy on echocardiography; and increased lean mass. Conclusion In the elastase-induced emphysema model used herein, ghrelin not only reduced lung damage but also improved cardiac function and increased lean mass. These findings should prompt further studies to evaluate ghrelin as a potential therapy for emphysema. Electronic supplementary material The online version of this article (10.1186/s12931-017-0668-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nazareth de Novaes Rocha
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Avenida Carlos Chagas Filho, s/n, Bloco G-014, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil.,Department of Physiology and Pharmacology, Biomedical Institute, Fluminense Federal University, Rio de Janeiro, Brazil
| | - Milena Vasconcellos de Oliveira
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Avenida Carlos Chagas Filho, s/n, Bloco G-014, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Cássia Lisboa Braga
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Avenida Carlos Chagas Filho, s/n, Bloco G-014, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Gabriela Guimarães
- Laboratory of Immunopathology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lígia de Albuquerque Maia
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Avenida Carlos Chagas Filho, s/n, Bloco G-014, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Gisele de Araújo Padilha
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Avenida Carlos Chagas Filho, s/n, Bloco G-014, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Johnatas Dutra Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Avenida Carlos Chagas Filho, s/n, Bloco G-014, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| | - Christina Maeda Takiya
- Laboratory of Immunopathology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vera Luiza Capelozzi
- Department of Pathology, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Pedro Leme Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Avenida Carlos Chagas Filho, s/n, Bloco G-014, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| | - Patricia Rieken Macedo Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Avenida Carlos Chagas Filho, s/n, Bloco G-014, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil. .,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil.
| |
Collapse
|
46
|
Roversi S, Fabbri LM, Sin DD, Hawkins NM, Agustí A. Chronic Obstructive Pulmonary Disease and Cardiac Diseases. An Urgent Need for Integrated Care. Am J Respir Crit Care Med 2017; 194:1319-1336. [PMID: 27589227 DOI: 10.1164/rccm.201604-0690so] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a global health issue with high social and economic costs. Concomitant chronic cardiac disorders are frequent in patients with COPD, likely owing to shared risk factors (e.g., aging, cigarette smoke, inactivity, persistent low-grade pulmonary and systemic inflammation) and add to the overall morbidity and mortality of patients with COPD. The prevalence and incidence of cardiac comorbidities are higher in patients with COPD than in matched control subjects, although estimates of prevalence vary widely. Furthermore, cardiac diseases contribute to disease severity in patients with COPD, being a common cause of hospitalization and a frequent cause of death. The differential diagnosis may be challenging, especially in older and smoking subjects complaining of unspecific symptoms, such as dyspnea and fatigue. The therapeutic management of patients with cardiac and pulmonary comorbidities may be similarly challenging: bronchodilators may have cardiac side effects, and, vice versa, some cardiac medications should be used with caution in patients with lung disease. The aim of this review is to summarize the evidence of the relationship between COPD and the three most frequent and important cardiac comorbidities in patients with COPD: ischemic heart disease, heart failure, and atrial fibrillation. We have chosen a practical approach, first summarizing relevant epidemiological and clinical data, then discussing the diagnostic and screening procedures, and finally evaluating the impact of lung-heart comorbidities on the therapeutic management of patients with COPD and heart diseases.
Collapse
Affiliation(s)
- Sara Roversi
- 1 Department of Metabolic Medicine, University of Modena and Reggio Emilia and Sant'Agostino Estense Hospital, Modena, Italy
| | - Leonardo M Fabbri
- 1 Department of Metabolic Medicine, University of Modena and Reggio Emilia and Sant'Agostino Estense Hospital, Modena, Italy
| | | | - Nathaniel M Hawkins
- 3 Division of Cardiology, Department of Medicine, Centre for Heart Lung Innovation, University of British Columbia, Vancouver, British Columbia, Canada; and
| | - Alvar Agustí
- 4 Thorax Institute, Hospital Clinic in Barcelona, University of Barcelona, Barcelona, Spain
| |
Collapse
|
47
|
Chatterjee NA, Shah RV, Murthy VL, Praestgaard A, Shah SJ, Ventetuolo CE, Barr RG, Kronmal R, Lima JAC, Bluemke DA, Jerosch-Herold M, Alonso A, Kawut SM. Right Ventricular Structure and Function Are Associated With Incident Atrial Fibrillation: MESA-RV Study (Multi-Ethnic Study of Atherosclerosis-Right Ventricle). Circ Arrhythm Electrophysiol 2017; 10:CIRCEP.116.004738. [PMID: 28082528 DOI: 10.1161/circep.116.004738] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 11/22/2016] [Indexed: 11/16/2022]
Abstract
BACKGROUND Right ventricular (RV) morphology has been associated with drivers of atrial fibrillation (AF) risk, including left ventricular and pulmonary pathology, systemic inflammation, and neurohormonal activation. The aim of this study was to investigate the association between RV morphology and risk of incident AF. METHODS AND RESULTS We interpreted cardiac magnetic resonance imaging in 4204 participants free of clinical cardiovascular disease in the MESA (Multi-Ethnic Study of Atherosclerosis). Incident AF was determined using hospital discharge records, study electrocardiograms, and Medicare claims data. The study sample (n=3819) was 61±10 years old and 47% male with 47.2% current/former smokers. After adjustment for demographics and clinical factors, including incident heart failure, higher RV ejection fraction (hazard ratio, 1.16 per SD; 95% confidence interval, 1.03-1.32; P=0.02) and greater RV mass (hazard ratio, 1.25 per SD; 95% confidence interval, 1.08-1.44; P=0.002) were significantly associated with incident AF. After additional adjustment for the respective left ventricular parameter, higher RV ejection fraction remained significantly associated with incident AF (hazard ratio, 1.15 per SD; 95% confidence interval, 1.01-1.32; P=0.04), whereas the association was attenuated for RV mass (hazard ratio, 1.16 per SD; 95% confidence interval, 0.99-1.35; P=0.07). In a subset of patients with available spirometry (n=2540), higher RV ejection fraction and mass remained significantly associated with incident AF after additional adjustment for lung function (P=0.02 for both). CONCLUSIONS Higher RV ejection fraction and greater RV mass were associated with an increased risk of AF in a multiethnic population free of clinical cardiovascular disease at baseline.
Collapse
Affiliation(s)
| | - Ravi V Shah
- For the author affiliations, please see the Appendix
| | | | | | - Sanjiv J Shah
- For the author affiliations, please see the Appendix
| | | | - R Graham Barr
- For the author affiliations, please see the Appendix
| | | | - Joao A C Lima
- For the author affiliations, please see the Appendix
| | | | | | - Alvaro Alonso
- For the author affiliations, please see the Appendix
| | | |
Collapse
|
48
|
Poor HD, Kawut SM, Liu CY, Smith BM, Hoffman EA, Lima JA, Ambale-Venkatesh B, Michos ED, Prince MR, Barr RG. Pulmonary hyperinflation due to gas trapping and pulmonary artery size: The MESA COPD Study. PLoS One 2017; 12:e0176812. [PMID: 28463971 PMCID: PMC5413010 DOI: 10.1371/journal.pone.0176812] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 04/18/2017] [Indexed: 11/19/2022] Open
Abstract
Background Pulmonary hypertension is associated with increased morbidity and mortality in chronic obstructive pulmonary disease (COPD). Since pulmonary artery (PA) size increases in pulmonary hypertension, we measured PA cross-sectional area using magnetic resonance imaging (MRI) to test the hypothesis that pulmonary hyperinflation due to gas trapping is associated with PA cross-sectional area in COPD. Methods The MESA COPD Study recruited participants with COPD and controls from two population-based cohort studies ages 50–79 years with 10 or more pack-years and free of clinical cardiovascular disease. Body plethysmography was performed according to standard criteria. Cardiac MRI was performed at functional residual capacity to measure the cross-sectional area of the main PA. Percent emphysema was defined as the percentage of lung voxels less than -950 Hounsfield units as assessed via x-ray computed tomography. Analyses were adjusted for age, gender, height, weight, race-ethnicity, the forced expiratory volume in one second, smoking status, pack-years, lung function, oxygen saturation, blood pressure, left ventricular ejection fraction and percent emphysema. Results Among 106 participants, mean residual volume was 1.98±0.71 L and the mean PA cross-sectional area was 7.23±1.72 cm2. A one standard deviation increase in residual volume was independently associated with an increase in main PA cross-sectional area of 0.55 cm2 (95% CI 0.18 to 0.92; p = 0.003). In contrast, there was no evidence for an association with percent emphysema or total lung capacity. Conclusion Increased residual volume was associated with a larger PA in COPD, suggesting that gas trapping may contribute to pulmonary hypertension in COPD.
Collapse
Affiliation(s)
- Hooman D. Poor
- Department of Medicine, Columbia University Medical Center, New York, New York, United States of America
| | - Steven M. Kawut
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Chia-Ying Liu
- Department of Radiology Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Benjamin M. Smith
- Department of Medicine, Columbia University Medical Center, New York, New York, United States of America
| | - Eric A. Hoffman
- Department of Radiology, University of Iowa, Iowa City, Iowa, United States of America
| | - João A. Lima
- Department of Radiology Johns Hopkins University, Baltimore, Maryland, United States of America
| | | | - Erin D. Michos
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Martin R. Prince
- Department of Radiology, Columbia University Medical Center, New York, New York, United States of America
| | - R. Graham Barr
- Department of Medicine, Columbia University Medical Center, New York, New York, United States of America
- Department of Epidemiology, Columbia University Medical Center, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
49
|
Aaron CP, Hoffman EA, Lima JAC, Kawut SM, Bertoni AG, Vogel-Claussen J, Habibi M, Hueper K, Jacobs DR, Kalhan R, Michos ED, Post WS, Prince MR, Smith BM, Ambale-Venkatesh B, Liu CY, Zemrak F, Watson KE, Budoff M, Bluemke DA, Barr RG. Pulmonary vascular volume, impaired left ventricular filling and dyspnea: The MESA Lung Study. PLoS One 2017; 12:e0176180. [PMID: 28426728 PMCID: PMC5398710 DOI: 10.1371/journal.pone.0176180] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 04/06/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Evaluation of impaired left ventricular (LV) filling has focused on intrinsic causes of LV dysfunction; however, pulmonary vascular changes may contribute to reduced LV filling and dyspnea. We hypothesized that lower total pulmonary vascular volume (TPVV) on computed tomography (CT) would be associated with dyspnea and decrements in LV end-diastolic volume, particularly among ever-smokers. METHODS The Multi-Ethnic Study of Atherosclerosis recruited adults without clinical cardiovascular disease in 2000-02. In 2010-12, TPVV was ascertained as the volume of arteries and veins in the lungs detectable on non-contrast chest CT (vessels ≥1 mm diameter). Cardiac measures were assessed by magnetic resonance imaging (MRI). Dyspnea was self-reported. RESULTS Of 2303 participants, 53% had ever smoked cigarettes. Among ever-smokers, a lower TPVV was associated with a lower LV end-diastolic volume (6.9 mL per SD TPVV), stroke volume, and cardiac output and with dyspnea (all P-values <0.001). Findings were similar among those without lung disease and those with 0-10 pack-years but were mostly non-significant among never-smokers. TPVV was associated smaller left atrial volume but not with LV ejection fraction or MRI measures of impaired LV relaxation. In a second sample of ever-smokers, a lower pulmonary microvascular blood volume on contrast-enhanced MRI was also associated with a lower LV end-diastolic volume (P-value = 0.008). CONCLUSION Reductions in pulmonary vascular volume were associated with lower LV filling and dyspnea among ever-smokers, including those without lung disease, suggesting that smoking-related pulmonary vascular changes may contribute to symptoms and impair cardiac filling and function without evidence of impaired LV relaxation.
Collapse
Affiliation(s)
- Carrie P. Aaron
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, United States of America
- * E-mail:
| | - Eric A. Hoffman
- Department of Radiology, University of Iowa, Iowa City, IA, United States of America
| | - Joao A. C. Lima
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Steven M. Kawut
- Departments of Medicine and Epidemiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States of America
| | - Alain G. Bertoni
- Departments of Medicine and Epidemiology and Prevention, Wake Forest University School of Medicine, Winston Salem, NC, United States of America
| | - Jens Vogel-Claussen
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
- Department of Radiology, Hannover Medical School, Hannover, Germany
| | - Mohammadali Habibi
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Katja Hueper
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
- Department of Radiology, Hannover Medical School, Hannover, Germany
| | - David R. Jacobs
- Division of Epidemiology and Community Health, University of Minnesota School of Public Health, Minneapolis, MN, United States of America
| | - Ravi Kalhan
- Asthma and COPD Program, Northwestern University Feinberg School of Medicine, Chicago, IL, United States of America
| | - Erin D. Michos
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States of America
| | - Wendy S. Post
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States of America
| | - Martin R. Prince
- Department of Radiology, College of Physicians and Surgeons, Columbia University, New York, NY, United States of America
| | - Benjamin M. Smith
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, United States of America
- Department of Medicine, McGill University Health Center, Montreal, QC, Canada
| | - Bharath Ambale-Venkatesh
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Chia-Ying Liu
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
- Radiology and Imaging Sciences, National Institutes of Health/Clinical Center; Bethesda, MD, United States of America
| | - Filip Zemrak
- Radiology and Imaging Sciences, National Institutes of Health/Clinical Center; Bethesda, MD, United States of America
| | - Karol E. Watson
- Department of Medicine, University of California, Los Angeles, CA, United States of America
| | - Matthew Budoff
- Department of Medicine, University of California, Los Angeles, CA, United States of America
| | - David A. Bluemke
- Radiology and Imaging Sciences, National Institutes of Health/Clinical Center; Bethesda, MD, United States of America
| | - R. Graham Barr
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, United States of America
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, United States of America
| |
Collapse
|
50
|
Parry A, Higginson R, Gleeson A. End-of-life prognostic indicators in patients with COPD: part 2. Int J Palliat Nurs 2017; 22:560-567. [PMID: 27885911 DOI: 10.12968/ijpn.2016.22.11.560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In the UK, chronic respiratory diseases cause 13% of adult disability. The major chronic respiratory disease is chronic obstructive pulmonary disease (COPD), a condition involving chronic airway inflammation that causes airflow obstruction and destruction of lung tissue. This leads to a progressive loss of respiratory membrane, which accounts for the clinical manifestation of COPD, which is difficulty maintaining sufficient gas exchange to meet metabolic demands. The primary cause is smoking, with the vast majority of COPD patients having a past or present history of smoking. However, exposure to industrial pollutants is also a contributing factor, as is a rare genetic predisposition to developing COPD.
Collapse
Affiliation(s)
- Andy Parry
- Senior Lecturer in Critical Care, School of Care Sciences, Glyntaf Campus, University of South Wales
| | - Ray Higginson
- Senior Lecturer in Critical Care, School of Care Sciences, Glyntaf Campus, University of South Wales
| | - Aoife Gleeson
- Consultant in Palliative Medicine, Ysbyty Ystrad Fawr, Ystrad Mynach
| |
Collapse
|