1
|
Wang Y, Chang J, Hu P, Deng C, Luo Z, Zhao J, Zhang Z, Yi W, Zhu G, Zheng G, Wang S, He K, Liu J, Liu H. Key factors in epidemiological exposure and insights for environmental management: Evidence from meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124991. [PMID: 39303936 PMCID: PMC7616677 DOI: 10.1016/j.envpol.2024.124991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/14/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
In recent years, the precision of exposure assessment methods has been rapidly improved and more widely adopted in epidemiological studies. However, such methodological advancement has introduced additional heterogeneity among studies. The precision of exposure assessment has become a potential confounding factors in meta-analyses, whose impacts on effect calculation remain unclear. To explore, we conducted a meta-analysis to integrate the long- and short-term exposure effects of PM2.5, NO2, and O3 on all-cause, cardiovascular, and respiratory mortality in the Chinese population. Literature was identified through Web of Science, PubMed, Scopus, and China National Knowledge Infrastructure before August 28, 2023. Sub-group analyses were performed to quantify the impact of exposure assessment precisions and pollution levels on the estimated risk. Studies achieving merely city-level resolution and population exposure are classified as using traditional assessment methods, while those achieving sub-kilometer simulations and individual exposure are considered finer assessment methods. Using finer assessment methods, the RR (under 10 μg/m3 increment, with 95% confidence intervals) for long-term NO2 exposure to all-cause mortality was 1.13 (1.05-1.23), significantly higher (p-value = 0.01) than the traditional assessment result of 1.02 (1.00-1.03). Similar trends were observed for long-term PM2.5 and short-term NO2 exposure. A decrease in short-term PM2.5 levels led to an increase in the RR for all-cause and cardiovascular mortality, from 1.0035 (1.0016-1.0053) and 1.0051 (1.0021-1.0081) to 1.0055 (1.0035-1.0075) and 1.0086 (1.0061-1.0111), with weak between-group significance (p-value = 0.13 and 0.09), respectively. Based on the quantitative analysis and literature information, we summarized four key factors influencing exposure assessment precision under a conceptualized framework: pollution simulation resolution, subject granularity, micro-environment classification, and pollution levels. Our meta-analysis highlighted the urgency to improve pollution simulation resolution, and we provide insights for researchers, policy-makers and the public. By integrating the most up-to-date epidemiological research, our study has the potential to provide systematic evidence and motivation for environmental management.
Collapse
Affiliation(s)
- Yongyue Wang
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Jie Chang
- National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, 100084, China; Centre for Clinical and Epidemiologic Research, Beijing an Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Piaopiao Hu
- Centre for Clinical and Epidemiologic Research, Beijing an Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Chun Deng
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Zhenyu Luo
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Junchao Zhao
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Zhining Zhang
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Wen Yi
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Guanlin Zhu
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Guangjie Zheng
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Shuxiao Wang
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Kebin He
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Jing Liu
- Centre for Clinical and Epidemiologic Research, Beijing an Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Huan Liu
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
2
|
Ma J, Zhang J, Zhang Y, Wang Z. Causal effects of noise and air pollution on multiple diseases highlight the dual role of inflammatory factors in ambient exposures. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175743. [PMID: 39182784 DOI: 10.1016/j.scitotenv.2024.175743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/08/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND Noise and air pollution are significant environmental threats with proven adverse health effects. However, the causality between these ambient exposures and disease is still largely unknown. This study aims to provide genetic evidence for this gap and investigates the dual role of inflammatory factors, emphasizing the need for integrated public health strategies. METHODS We included noise and air pollution as exposures, 91 inflammatory factors as mediators, and 26 diseases as outcomes. We explored causal relationships using Mendelian randomization. To ensure the reliability, we screened single nucleotide polymorphisms (SNPs) closely associated with exposure as instrumental variables (IVs), and assessed the pleiotropy and heterogeneity of these IVs. RESULTS Our results suggest that "Hearing difficulty/problems with background noise" increases the risk of hypertension, bronchitis, and menopause; loud music exposure frequency increases the risk of bronchitis; noisy workplace raises the risk of hypertension, coronary heart disease, narcolepsy, and irritable bowel syndrome; NO2 increases the risk of myocardial infarction and chronic heart failure; NOx increases the risk of pneumonia and inflammatory diseases of female pelvic organs; and PM10 increases the risk of myocardial infarction, narcolepsy, and type 2 diabetes; PM2.5-10 increases the risk of developing pneumonia and type 2 diabetes. Furthermore, we found that nine inflammatory factors play a mediating role, of which four play a mediating role in increasing the risk of morbidity and eight play a mediating role in protection against ambient exposures. Finally, we selected SNPs significantly associated with exposure and outcome for enrichment analysis. CONCLUSIONS This study provides the first genetic evidence linking noise and air pollution to various diseases, highlighting the dual mediating role of inflammatory factors. Our findings align with the "One Health" framework, emphasizing the interconnectedness of environmental and human health. Integrated public health strategies considering these complex biological responses are essential for promoting overall well-being.
Collapse
Affiliation(s)
- Jialao Ma
- The Affiliated Guangzhou Twelfth People's Hospital, Guangzhou Medical University, Guangzhou 510620, China; Key Laboratory of Occupational Environment and Health, Guangzhou Twelfth People's Hospital, Guangzhou 510620, China
| | - Jinwei Zhang
- Key Laboratory of Occupational Environment and Health, Guangzhou Twelfth People's Hospital, Guangzhou 510620, China
| | - Yifan Zhang
- The Affiliated Guangzhou Twelfth People's Hospital, Guangzhou Medical University, Guangzhou 510620, China; Key Laboratory of Occupational Environment and Health, Guangzhou Twelfth People's Hospital, Guangzhou 510620, China
| | - Zhi Wang
- The Affiliated Guangzhou Twelfth People's Hospital, Guangzhou Medical University, Guangzhou 510620, China; Key Laboratory of Occupational Environment and Health, Guangzhou Twelfth People's Hospital, Guangzhou 510620, China.
| |
Collapse
|
3
|
Wang Y, Wang Z, Zhang Y, Zhang J, Shen J, Tan Y, Zhang Y, Peng M, Zheng H, Zhang Y. Developing and validating intracity spatiotemporal air quality health index in eastern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175556. [PMID: 39153638 DOI: 10.1016/j.scitotenv.2024.175556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND Recently pilot published city-level air quality health index (AQHI) provides a useful tool for communicating short-term health risks of ambient air pollution, but fails to account for intracity spatial heterogeneity in exposure and associated population health impacts. This study aims to develop the intracity spatiotemporal AQHI (ST-AQHI) via refined air pollution-related health risk assessments. METHODS A three-stage analysis was conducted through integrating province-wide death surveillance data and high-resolution gridded estimates of air pollution and climate factors spanning 2016-2019 in Jiangsu Province, eastern China. First, an individual-level case-crossover design was employed to quantify the short-term risk of nonaccidental mortality associated with residential exposure to individual pollutant (i.e., PM2.5, NO2, O3, and SO2). Second, we accumulated and scaled the excess risks arising from multiple pollutants to formulate daily gridded ST-AQHI estimates at 0.1° × 0.1°, dividing exposure-related risks into low (0-3), moderate (4-6), high (7-9), and extreme high (10+) levels. Finally, the effectiveness of ST-AQHI as composite risk communication was validated through checking the dose-response associations of individual ST-AQHI exposure with deaths from nonaccidental and major cardiopulmonary causes via repeating case-crossover analyses. RESULTS We analyzed a total of 1,905,209 nonaccidental death cases, comprising 785,567 from circulatory diseases and 247,336 from respiratory diseases. In the first-stage analysis, for each 10-μg/m3 rise in PM2.5, NO2, O3, and SO2 exposure at lag-01 day, population risk of nonaccidental death was increased by 0.8% (95% confidence interval: 0.7%, 0.9%), 1.9% (1.7%, 2.0%), 0.4% (0.3%, 0.5%), and 4.1% (3.7%, 4.5%), respectively. Spatiotemporal distribution of ST-AQHI exhibited a consistent declining trend throughout the study period (2016-2019), with annual average ST-AQHI decreasing from 5.2 ± 1.3 to 4.0 ± 1.0 and high-risk days dropping from 15.8% (58 days) to 1.6% (6 days). Exposure associated health risks showed great intracity- and between-city heterogeneities. In the validation analysis, ST-AQHI demonstrated approximately linear, threshold-free associations with multiple death events from nonaccidental and major cardiopulmonary causes, suggesting excellent performance in predicting exposure-related health risks. Specifically, each 1-unit rise in ST-AQHI was significantly associated with an excess risk of 2.0% (1.8%, 2.1%) for nonaccidental mortality, 2.3% (2.1%, 2.6%) for overall circulatory mortality, and 2.7% (2.3%, 3.1%) for overall respiratory mortality, as well as 1.7%-3.0% for major cardiopulmonary sub-causes. CONCLUSIONS ST-AQHI developed in this study performed well in predicting intracity spatiotemporal heterogeneity of death risks related to multiple air pollutants, and may hold significant practical importance in communicating air pollution-related health risks to the public at the community scales.
Collapse
Affiliation(s)
- Yixiang Wang
- Institute of Social Development and Health Management, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Zhen Wang
- Department of Pediatrics, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Yuanyuan Zhang
- Wuhan Center for Disease Control and Prevention, Wuhan 430022, China
| | - Jingjing Zhang
- Institute of Social Development and Health Management, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Jiajun Shen
- Institute of Social Development and Health Management, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yuxi Tan
- Institute of Social Development and Health Management, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yalin Zhang
- Institute of Social Development and Health Management, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Minjin Peng
- Department of Outpatient, Hubei Provincial Clinical Research Center for Precision Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Hao Zheng
- Department of Environmental Health, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China.
| | - Yunquan Zhang
- Institute of Social Development and Health Management, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| |
Collapse
|
4
|
Huang J, He Q, Jiang Y, Wong JMJ, Li J, Liu J, Wang R, Chen R, Dai Y, Ge J. Low ambient temperature and incident myocardial infarction with or without obstructive coronary arteries: a Chinese nationwide study. Eur Heart J 2024:ehae711. [PMID: 39468415 DOI: 10.1093/eurheartj/ehae711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 09/01/2024] [Accepted: 10/01/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND AND AIMS Although non-optimum ambient temperature is a major non-traditional risk factor for acute myocardial infarction, there is no prior knowledge on whether non-optimum ambient temperature could differentially affect myocardial infarction with obstructive coronary artery disease (MI-CAD) and myocardial infarction with non-obstructive coronary arteries (MINOCA). METHODS Using the Chinese Cardiovascular Association database-Chest Pain Center Registry, a nationwide, time-stratified, case-crossover investigation was conducted from 2015 to 2021. Meteorological data were obtained from an established satellite-based model, and daily exposures were assigned according to the onset of myocardial infarction in each patient. A conditional logistic regression model combined with distributed lag non-linear models (10 days) was used to estimate the exposure-response relationships. RESULTS A total of 83 784 MINOCA patients and 918 730 MI-CAD patients were included. The risk of MINOCA and MI-CAD associated with low temperature occurred at lag 2 day and lasted to 1 week. Extremely low temperature was associated with a substantially greater odds ratio (OR) of MINOCA [OR 1.58, 95% confidence interval (CI) 1.31-1.90] than MI-CAD (unmatched: OR 1.32, 95% CI 1.23-1.43; equally matched by age and sex: OR 1.25, 95% CI 1.04-1.50), compared with the corresponding reference temperatures (30°C, 35°C, and 30°C). Stronger associations were observed for patients who were aged ≥65 years, female, or resided in the south. There was no significant difference for the impacts of high temperature on MINOCA and MI-CAD. CONCLUSIONS This nationwide study highlights the particular susceptibility of MINOCA patients to ambient low temperature compared with that of MI-CAD patients.
Collapse
Affiliation(s)
- Jia Huang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai 200032, China
| | - Qinglin He
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, P.O. Box 249, 130 Dong-An Road, Shanghai 200032, China
- Division of Health Risk Factor Monitoring and Control, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Yixuan Jiang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, P.O. Box 249, 130 Dong-An Road, Shanghai 200032, China
| | - Jennifer Ming Jen Wong
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai 200032, China
| | - Jianxuan Li
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai 200032, China
| | - Jiangdong Liu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, P.O. Box 249, 130 Dong-An Road, Shanghai 200032, China
| | - Ruochen Wang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai 200032, China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, P.O. Box 249, 130 Dong-An Road, Shanghai 200032, China
| | - Yuxiang Dai
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai 200032, China
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai 200032, China
| |
Collapse
|
5
|
Ning Z, Ma Y, He S, Li G, Xu Y, Wang Z, Zhang Y, Ma E, Ma C, Wu J. High altitude air pollution and respiratory disease: Evaluating compounded exposure events and interactions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117046. [PMID: 39276646 DOI: 10.1016/j.ecoenv.2024.117046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/06/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Today, air pollution remains a significant issue, particularly in high-altitude areas where its impact on respiratory disease remains incompletely explored. This study aims to investigate the association between various air pollutants and outpatient visits for respiratory disease in such regions, specifically focussing on Xining from 2016 to 2021. By analysing over 570,000 outpatient visits using a time-stratified case-crossover design and conditional logistic regression, we assessed the independent effects of pollutants like PM2.5, PM10, SO2, NO2, and CO, as well as their interactions. The evaluation of interactions employed measures such as relative excess odds due to interaction (REOI), attributable proportion due to interaction (AP), and synergy index (S). We also conducted a stratified analysis to identify potentially vulnerable populations. Our findings indicated that exposure to PM2.5, PM10, SO2, NO2, and CO significantly increased outpatient visits for respiratory disease, with odds ratios (ORs) of 2.40 % (95 % CI: 2.05 %, 2.74 %), 1.07 % (0.98 %, 1.16 %), 3.86 % (3.23 %, 4.49 %), 4.45 % (4.14 %, 4.77 %), and 6.37 % (5.70 %, 7.04 %), respectively. However, exposure to O3 did not show a significant association. We found significant interactions among PM2.5, SO2, NO2, and CO, where combined exposure further exacerbated the risk of respiratory diseases. For example, in the combination of PM2.5 and SO2, the REOI, AP, and S were 0.07 (95 % CI: 0.06, 0.09), 0.07 (0.06, 0.07), and 1.07 (1.05, 1.09), respectively. Additionally, elderly individuals and females were more sensitive to these pollutants, but no statistically significant interaction effects were observed between different age and gender groups. In conclusion, our study highlights the strong link between air pollution and respiratory disease in high-altitude areas, with combined pollutant exposure posing an even greater risk. It underscores the need for enhanced air quality monitoring and public awareness campaigns, particularly to protect vulnerable populations like the elderly and females.
Collapse
Affiliation(s)
- Zhenxu Ning
- Department of Public Health, Qinghai University Medical College, Xining, Qinghai 810016, China
| | - Yanjun Ma
- Qinghai Institute of Health Sciences, Xining, Qinghai 810016, China.
| | - Shuzhen He
- Xining Centre for Disease Control and Prevention, Xining, Qinghai 810000, China.
| | - Genshan Li
- Department of Public Health, Qinghai University Medical College, Xining, Qinghai 810016, China
| | - Yueshun Xu
- Qinghai Meteorological Bureau, Xining, Qinghai 810000, China
| | - Zhanqing Wang
- Datong County Center for Disease Control and Prevention, Xining, Qinghai 810100, China
| | - Yunxia Zhang
- The First People's Hospital of Xining, Xining, Qinghai 810000, China
| | - Enzhou Ma
- Qinghai Meteorological Bureau, Xining, Qinghai 810000, China
| | - Chunguang Ma
- Xining Centre for Disease Control and Prevention, Xining, Qinghai 810000, China
| | - Jing Wu
- Xining Centre for Disease Control and Prevention, Xining, Qinghai 810000, China
| |
Collapse
|
6
|
Guo C, Cai K, Chen G, Wang J, Zeng J, Huang X, Deng M. Daily diurnal temperature range associated with emergency ambulance calls: a nine-year time-series study. Front Public Health 2024; 12:1454097. [PMID: 39421822 PMCID: PMC11484036 DOI: 10.3389/fpubh.2024.1454097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/27/2024] [Indexed: 10/19/2024] Open
Abstract
Background Diurnal temperature range (DTR) is associated with the increased risk of morbidity and mortality. However, the relationship between DTR and emergency ambulance calls (EACs), which more accurately and immediately reflect the health impacts of temperature changes, remains underexplored in China. Methods We collected daily data on EACs and meteorological factors from 2009 to 2017 in Guangzhou, China. DTR, representing the temperature range within a day, was calculated by subtracting the minimum temperature from the maximum temperature for each day. Generalized additive models were used to estimate the association between DTR and EACs for all-cause, cardiovascular diseases, and respiratory diseases. Additionally, subgroup and sensitivity analyses were conducted in our study. Results We found significant associations between daily DTR and EACs. The excess risks (ERs) were 0.47% (95% CI: 0.14, 0.81%) for all-cause EACs, 0.94% (95% CI: 0.46, 1.43%) for cardiovascular-related EACs, and 1.31% (95% CI: 0.76, 1.86%) for respiratory -related EACs at lag01, respectively. Subgroup analyses indicated that these associations were notably stronger among the older, males, and during the warm season. Specifically, there was an increase of 1.16% (95% CI: 0.59, 1.74%) in cardiovascular-related EACs among the older adult, compared to 0.45% (95% CI: -0.21, 1.12%) among those younger than 65 years. Among males, the increase was 1.39% (95% CI: 0.79, 1.99%), compared to 0.13% (95% CI: -0.53, 0.79%) among females. During the warm season, the increase was 1.53% (95% CI: 0.74, 2.34%), compared to 0.75% (95% CI: 0.14, 1.37%) during the cold season. Conclusion DTR might increase the risk of daily all-cause, cardiovascular-related, and respiratory-related EACs in Guangzhou, China. The associations were particularly strong among older adults, males, and during the warm season. Implementing public health policies is essential to mitigate the adverse health effects of DTR.
Collapse
Affiliation(s)
- Chaohui Guo
- Department of Clinical Psychology, The Third Hospital of Quzhou, Quzhou, China
| | - Keke Cai
- Department of Traditional Medicine, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Gao Chen
- Department of Traditional Medicine, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Jin Wang
- Department of Traditional Medicine, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Jie Zeng
- Department of Internet Medical Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Xiaoqing Huang
- Department of Traditional Medicine, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Mengling Deng
- Department of Psychiatry, The Third Hospital of Quzhou, Quzhou, China
| |
Collapse
|
7
|
Zhang L, Liu Z, Zeng J, Wu M. Long-term effects of air quality on hospital readmission for heart failure in patients with acute myocardial infarction. Int J Cardiol 2024; 412:132344. [PMID: 38977226 DOI: 10.1016/j.ijcard.2024.132344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/10/2024]
Abstract
BACKGROUND Cardiovascular disease (CVD) is the leading cause of death worldwide, with air pollution posing significant risks to cardiovascular health. The effect of air quality on heart failure (HF) readmission in acute myocardial infarction (AMI) patients is unclear.The aim of this study was to evaluate the role of a single measure of air pollution exposure collected on the day of first hospitalization. METHODS We retrospectively analyzed data from 12,857 acute coronary syndrome (ACS) patients (January 2015-March 2023). After multiple screenings, 4023 AMI patients were included. The air pollution data is updated by the automatic monitoring data of the national urban air quality monitoring stations in real time and synchronized to the China Environmental Monitoring Station. Cox proportional hazards regression assessed the impact of air quality indicators on admission and outcomes in 4013 AMI patients. A decision tree model identified the most susceptible groups. RESULTS After adjusting for confounders, NO2 (HR 1.009, 95% CI 1.004-1.015, P = 0.00066) and PM10 (HR 1.006, 95% CI 1.002-1.011, P = 0.00751) increased the risk of HF readmission in ST-segment elevation myocardial infarction (STEMI) patients. No significant effect was observed in non-STEMI (NSTEMI) patients (P > 0.05). STEMI patients had a 2.8-fold higher risk of HF readmission with NO2 > 13 μg/m3 (HR 2.857, 95% CI 1.439-5.670, P = 0.00269) and a 1.65-fold higher risk with PM10 > 55 μg/m3 (HR 1.654, 95% CI 1.124-2.434, P = 0.01064). CONCLUSION NO2 and PM10 are linked to increased HF readmission risk in STEMI patients, particularly when NO2 exceeds 13 μg/m3 and PM10 exceeds 55 μg/m3. Younger, less symptomatic male STEMI patients with fewer underlying conditions are more vulnerable to these pollutants.
Collapse
Affiliation(s)
- Lingling Zhang
- Department of Cardiology, Xiangtan Central Hospital, Xiangtan 411100, China; Chest Pain Centre, Xiangtan Central Hospital, Xiangtan 411100, China; Department of Scientific Research, Xiangtan Central Hospital, Xiangtan 411100, China.
| | - Zhican Liu
- Department of Cardiology, Xiangtan Central Hospital, Xiangtan 411100, China; Department of Pulmonary and Critical Care Medicine, Xiangtan Central Hospital, Xiangtan 411100, China; Department of Scientific Research, Xiangtan Central Hospital, Xiangtan 411100, China.
| | - Jianping Zeng
- Department of Cardiology, Xiangtan Central Hospital, Xiangtan 411100, China; Chest Pain Centre, Xiangtan Central Hospital, Xiangtan 411100, China; Department of Scientific Research, Xiangtan Central Hospital, Xiangtan 411100, China.
| | - Mingxin Wu
- Department of Cardiology, Xiangtan Central Hospital, Xiangtan 411100, China; Chest Pain Centre, Xiangtan Central Hospital, Xiangtan 411100, China; Department of Scientific Research, Xiangtan Central Hospital, Xiangtan 411100, China; Graduate Collaborative Training Base of Xiangtan Central Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
8
|
Lin X, Cai M, Pan J, Liu E, Wang X, Song C, Lin H, Pan J. PM 2.5 chemical components are associated with in-hospital case fatality among acute myocardial infarction patients in China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116898. [PMID: 39181075 DOI: 10.1016/j.ecoenv.2024.116898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 08/27/2024]
Abstract
Recent studies have linked the cardiovascular events with the exposure to ambient fine particulate matter (PM2.5); however, the impact of PM2.5 chemical components on acute myocardial infarction (AMI) case fatality remains poorly understood. To address this gap, we included 178,340 hospitalised patients with AMI utilising the inpatient discharge database from Sichuan, Shanxi, Guangxi, and Guangdong, China spanning 2014-2019. We evaluated exposure to PM2.5 and its components (black carbon (BC), organic matter (OM), sulphate (SO42-), nitrate (NO3-), and ammonium (NH4+)) using bilinear interpolation based on the patient's residential address. We used mixed-effects logistic regression models to investigate the associations of PM2.5 and its five components with in-hospital AMI case fatality. Per interquartile range (IQR) increment in short-term exposure (7-day average) to overall PM2.5 (odds ratio (OR): 1.086, 95 % confidence interval (CI): 1.045-1.128), SO42-(1.063, 1.024-1.104), BC (1.055, 1.023-1.089), OM (1.052, 1.019-1.086, and NO3- (1.045, 1.003-1.089) were significantly associated with high risk of in-hospital AMI case fatality. The ORs per IQR increment in long-term exposure (annual average) were 1.323 (95 % CI: 1.255-1.394) for PM2.5, followed by BC (1.271, 1.210-1.335), OM (1.243, 1.188-1.300), SO42- (1.212, 1.157-1.270), NO3- (1.116, 1.075-1.159), and NH4+ (1.068, 1.031-1.106). Our study suggests that PM2.5 chemical components might be important risk factors for in-hospital AMI case fatality, highlighting the importance of targeted reduction of PM2.5 emissions, particularly BC, OM, and SO42-.
Collapse
Affiliation(s)
- Xiaojun Lin
- HEOA Group, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, Section 3, Ren Min Nan Road, Chengdu, Sichuan 610041, China; Institute for Healthy Cities and West China Research Center for Rural Health Development, Sichuan University, No. 16, Section 3, Ren Min Nan Road, Chengdu, Sichuan 610041, China
| | - Miao Cai
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, No. 74, Zhongshan 2nd road, Yuexiu District, Guangzhou, Guangdong 510080, China
| | - Jingping Pan
- Health Information Center of Sichuan Province, No. 39, Wangjiaguai Street, Chengdu, Sichuan 610041, China
| | - Echu Liu
- Department of Health Management and Policy, College for Public Health and Social Justice, Saint Louis University, St. Louis, MO 63103, USA
| | - Xiuli Wang
- HEOA Group, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, Section 3, Ren Min Nan Road, Chengdu, Sichuan 610041, China; Institute for Healthy Cities and West China Research Center for Rural Health Development, Sichuan University, No. 16, Section 3, Ren Min Nan Road, Chengdu, Sichuan 610041, China
| | - Chao Song
- HEOA Group, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, Section 3, Ren Min Nan Road, Chengdu, Sichuan 610041, China; Institute for Healthy Cities and West China Research Center for Rural Health Development, Sichuan University, No. 16, Section 3, Ren Min Nan Road, Chengdu, Sichuan 610041, China
| | - Hualiang Lin
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, No. 74, Zhongshan 2nd road, Yuexiu District, Guangzhou, Guangdong 510080, China.
| | - Jay Pan
- HEOA Group, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, Section 3, Ren Min Nan Road, Chengdu, Sichuan 610041, China; School of Public Administration, Sichuan University, No.24 South Section I, Yihuan Road, Chengdu, Sichuan 610065, China.
| |
Collapse
|
9
|
Ndlovu N, Nkeh-Chungag BN. Impact of Indoor Air Pollutants on the Cardiovascular Health Outcomes of Older Adults: Systematic Review. Clin Interv Aging 2024; 19:1629-1639. [PMID: 39372166 PMCID: PMC11453128 DOI: 10.2147/cia.s480054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/25/2024] [Indexed: 10/08/2024] Open
Abstract
Indoor air pollution accounts for approximately 3.8 million inopportune deaths annually at global level. Due to spending more time indoors, children and older adults are especially susceptible to the health risks of indoor air pollution. This review seeks to summarise existing knowledge on the cardiovascular health effects of three common indoor air pollutants, namely carbon monoxide (CO), particulate matter (PM2.5 and PM10), and Nitrogen dioxide (NO2), focusing on older adults. We systematically reviewed the literature (PROSPERO CRD42024479220) on PubMed, Google Scholar, Scopus, Web of Science and Embase. The search yielded 20,914 records. Two independent reviewers screened the articles using titles, abstracts, and full-length articles written in English. Upon a detailed assessment of all the records, the review considered 38 full-length articles. Several studies reported mortality, myocardial infarction, stroke, increased hospitalisation and increased emergency room visits due to exposure to indoor air pollution. A few studies reported arrhythmias, hypertension and Ischaemic heart disease due to exposure to indoor air pollutants. The increased mortality, morbidity, hospitalization, and emergency rooms visits resulting from indoor air pollution associated CVDs makes indoor air pollution a health risk for older adults. There is, therefore, a need to synthesize information on studies relate d to how the selected indoor air pollutants affected the cardiovascular health of older adults.
Collapse
Affiliation(s)
- Nomagugu Ndlovu
- Department of Biological and Environmental Sciences, Walter Sisulu University, Mthatha, South Africa
| | | |
Collapse
|
10
|
Jiang Y, Li G, Wu S, Duan F, Liu S, Liu Y. Assessment of short-term effects of ambient air pollution exposure on osteoarthritis outpatient visits. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:117014. [PMID: 39260220 DOI: 10.1016/j.ecoenv.2024.117014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/05/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024]
Abstract
The association of short-term ambient air pollution exposure with osteoarthritis (OA) outpatient visits has been unclear and no study has assessed the modifying roles of district-level characteristics in the association between ambient air pollution exposure and OA outpatient visits. We investigated the cumulative associations of ambient air pollution exposure with daily OA outpatient visits and vulnerable factors influencing the associations using data from 16 districts of Beijing, China during 2013-2019. A total of 18,351,795 OA outpatient visits were included in the analyses. An increase of 10 μg/m3 in fine particulate matter (PM2.5), inhalable particulate matter (PM10), nitrogen dioxide (NO2), sulfur dioxide (SO2), maximum 8-hour moving-average ozone (8 h-O3), and 0.1 mg/m3 in carbon monoxide (CO) at representative lag days were associated with significant increases of 0.31 %, 0.06 %, 0.77 %, 0.87 %, 0.30 %, and 0.48 % in daily OA outpatient visits, respectively. Considerable OA outpatient visits were attributable to short-term ambient air pollution exposure. In addition, low temperature and high humidity aggravated ambient air pollution associated OA outpatient visits. District-level characteristics, such as population density, green coverage rate, and urbanization rate modified the risk of OA outpatient visits associated with air pollution exposure. These findings highlight the significance of controlling ambient air pollution during the urbanization process, which is useful in policy formation and implementation.
Collapse
Affiliation(s)
- Yunxing Jiang
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, China; Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi 710061, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi 710061, China
| | - Ge Li
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China; Shaanxi Provincial Institute for Endemic Disease Control, Xi'an, Shaanxi, China
| | - Shaowei Wu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, China; Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi 710061, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi 710061, China
| | - Fangfang Duan
- Clinical Epidemiology Research Center, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yajun Liu
- Beijing Jishuitan Hospital, Peking University Health Science Center, Beijing 100035, China.
| |
Collapse
|
11
|
Ma Y, Li D, Cui F, Wang J, Tang L, Yang Y, Liu R, Xie J, Tian Y. Exposure to Air Pollutants and Myocardial Infarction Incidence: A UK Biobank Study Exploring Gene-Environment Interaction. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:107002. [PMID: 39388260 PMCID: PMC11466320 DOI: 10.1289/ehp14291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 08/26/2024] [Accepted: 09/06/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Unraveling gene-environment interaction can provide a novel insight into early disease prevention. Nevertheless, current understanding of the interplay between genetic predisposition and air pollution in relation to myocardial infarction (MI) risk remains limited. Furthermore, the potential long-term influence of air pollutants on MI incidence risk warrants more conclusive evidence in a community population. OBJECTIVE We investigated interactions between genetic predisposition and exposure to air pollutants on MI incidence. METHODS This study incorporated a sample of 456,354 UK Biobank participants and annual mean air pollution (PM 2.5 , PM 10 , NO 2 , and NO x ) from the UK Department for Environment, Food and Rural Affairs (2006-2021). The Cox proportional hazards model was employed to explore MI incidence after chronic air pollutants exposure. By quantifying genetic risk through the calculation of polygenic risk score (PRS), this study further examined the interactions between genetic risk and exposure to air pollutants in the development of MI on both additive and multiplicative scales. RESULTS Among 456,354 participants, 9,114 incident MI events were observed during a median follow-up of 12.08 y. Chronic exposure to air pollutants was linked with an increased risk of MI occurrence. Specifically, the hazard ratios (per interquartile range) were 1.12 (95% CI: 1.10, 1.13) for PM 2.5 , 1.20 (95% CI: 1.19, 1.22) for PM 10 , 1.13 (95% CI: 1.12, 1.15) for NO 2 , and 1.12 (95% CI: 1.11, 1.13) for NO x . In terms of the joint effects, participants with high PRS and high level of air pollution exposure exhibited the greatest risk of MI among all study participants (∼ 255 % to 324%). Remarkably, both multiplicative and additive interactions were detected in the ambient air pollutants exposure and genetic risk on the incidence of MI. DISCUSSION There were interactions between exposure to ambient air pollutants and genetic susceptibility on the risk of MI onset. Moreover, the joint effects of these two exposures were greater than the effect of each factor alone. https://doi.org/10.1289/EHP14291.
Collapse
Affiliation(s)
- Yudiyang Ma
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dankang Li
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feipeng Cui
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianing Wang
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Linxi Tang
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingping Yang
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Run Liu
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junqing Xie
- Centre for Statistics in Medicine and National Institute for Health and Care Research Biomedical Research Centre Oxford, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Yaohua Tian
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
12
|
Zhang L, Liu Z, Zhou X, Zeng J, Wu M, Jiang M. Long-term impact of air pollution on heart failure readmission in unstable angina patients. Sci Rep 2024; 14:22132. [PMID: 39333793 PMCID: PMC11436851 DOI: 10.1038/s41598-024-73495-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Cardiovascular disease remains the leading cause of death worldwide, with air pollution's impact on cardiovascular health being closely monitored. However, the specific effects of air pollution on the risk of hospital readmission for heart failure (HF) in patients with unstable angina (UA) have not been fully explored. We conducted a retrospective study involving 12,857 consecutive patients diagnosed with acute coronary syndrome (ACS) between January 2015 and March 2023. After rigorous screening, we included 8,737 patients with UA in the analysis. Furthermore, we used a Cox proportional hazards regression model to examine the relationship between air quality indicators and hospital readmission for HF in patients with UA. Additionally, a decision tree model identified air quality indicators levels that had the most significant impact on readmission for HF risk. After adjusting for confounding factors, we found that elevated levels of PM10 [hazard ratio (HR) = 1.003, 95% confidence interval (CI): 1.000-1.005, p = 0.04453] and CO (HR = 1.013, 95% CI: 1.005-1.021, p = 0.00216) were associated with an increased risk of hospital readmission for HF in UA patients. Specifically, patients exposed to PM10 levels above 112.5 µ g/m3 had a 1.61-fold higher risk of readmission for HF in UA patients. (HR = 1.609, 95% CI: 1.190-2.176, p = 0.00201), and those exposed to CO levels above 37.5 mg/m3 had a 2.70-fold higher risk of readmission for HF in UA patients. (HR = 2.681, 95% CI: 1.731-4.152, p < 0.00001). Higher concentrations of PM10 and CO significantly increased the risk of HF (HF) readmission in patients with UA after discharge, particularly when PM10 levels exceeded 112.5 ug/m3 and CO levels surpassed 37.5 ug/m3. Besides, female patients with UA, with fewer underlying diseases, were more susceptible to the adverse effects of PM10 and CO.
Collapse
Affiliation(s)
- Lingling Zhang
- Medical Department, Xiangtan Central Hospital, The Affiliated Hospital of Hunan University, Xiangtan, 411100, China.
- Cardiologist of Medical Department, Xiangtan Central Hospital, Xiangtan, 411100, China.
| | - Zhican Liu
- Department of Pulmonary and Critical Care Medicine, Xiangtan Central Hospital, The Affiliated Hospital of Hunan University, Xiangtan, 411100, China
| | - Xianghong Zhou
- Medical Department, Xiangtan Central Hospital, The Affiliated Hospital of Hunan University, Xiangtan, 411100, China
| | - Jianping Zeng
- Department of Cardiology, Xiangtan Central Hospital, The Affiliated Hospital of Hunan University, Xiangtan, 411100, China.
- Department of Cardiology, Xiangtan Central Hospital, Xiangtan, 411100, China.
| | - Mingxin Wu
- Department of Cardiology, Xiangtan Central Hospital, The Affiliated Hospital of Hunan University, Xiangtan, 411100, China.
- Heart Center, Xiangtan Central Hospital, Xiangtan, 411100, China.
| | - Mingyan Jiang
- Department of Pulmonary and Critical Care Medicine, Xiangtan Central Hospital, The Affiliated Hospital of Hunan University, Xiangtan, 411100, China.
- Department of Pulmonary and Critical Care Medicine, Xiangtan Central Hospital, Xiangtan, 411100, China.
| |
Collapse
|
13
|
An Z, Shen L, Lu Y, Yao B, Wu H, Niu T, Wu W, Song J. Acute effects of ambient nitrogen dioxide pollution on outpatient visits for neurological diseases in Xinxiang, China. BMC Public Health 2024; 24:2648. [PMID: 39334108 PMCID: PMC11437807 DOI: 10.1186/s12889-024-19907-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Accumulating evidence suggests that exposure to air pollution acts as a potential trigger for neurological diseases (NDs), yet the current knowledge regarding the impact of ambient nitrogen dioxide (NO2) on the patients with NDs remains limited. In this study, we conducted a time-series study to evaluate the association between short-term exposure to NO2 and hospital visits for NDs in Xinxiang, China. METHODS An over-dispersed Poisson generalized additive model was used to analyze the association between ambient NO2 concentrations and daily outpatient visits for NDs from January 1, 2015 to December 31, 2017. The model adjusted for meteorological factors, temporal trends, day of the week, and public holidays. The concentrations of air pollutants were collected from four air quality stations in Xinxiang. RESULTS A total of 38, 865 outpatient visits for NDs were retrieved during the study period. 86.5% of the patients were below the age of 65 years. It was revealed that a 10 µg/m3 increase in NO2 at lag 0 was associated with a significant rise of 1.50% (95% CI: 0.45-2.56%) in outpatient visits for NDs, which was stronger during the cold season. However, the overall results from stratified analyses did not reach statistical significance. CONCLUSIONS Short-term exposure to NO2 is associated with increased outpatient visits for NDs. These findings underscore the need for implementing mitigating measures to reduce the neurological health effects of air pollutants.
Collapse
Affiliation(s)
- Zhen An
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan, 453003, China
- College of Life Sciences, Henan Normal University, 453003, Xinxiang, Henan, China
| | - Lingling Shen
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Yuanyuan Lu
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Bin Yao
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Hui Wu
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Tianqi Niu
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Weidong Wu
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Jie Song
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan, 453003, China.
| |
Collapse
|
14
|
Xu R, Luo L, Yuan T, Chen W, Wei J, Shi C, Wang S, Liang S, Li Y, Zhong Z, Liu L, Zheng Y, Deng X, Liu T, Fan Z, Liu Y, Zhang J. Association of short-term exposure to ambient fine particulate matter and ozone with outpatient visits for anxiety disorders: A hospital-based case-crossover study in South China. J Affect Disord 2024; 361:277-284. [PMID: 38844166 DOI: 10.1016/j.jad.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/25/2024] [Accepted: 06/02/2024] [Indexed: 06/17/2024]
Abstract
BACKGROUND The short-term adverse effects of ambient fine particulate matter (PM2.5) and ozone (O3) on anxiety disorders (ADs) remained inconclusive. METHODS We applied an individual-level time-stratified case-crossover study, which including 126,112 outpatient visits for ADs during 2019-2021 in Guangdong province, China, to investigate the association of short-term exposure to PM2.5 and O3 with outpatient visits for ADs, and estimate excess outpatient visits in South China. Daily residential air pollutant exposure assessments were performed by extracting grid data (spatial resolution: 1 km × 1 km) from validated datasets. We employed the conditional logistic regression model to quantify the associations and excess outpatient visits. RESULTS The results of the single-pollutant models showed that each 10 μg/m3 increase of PM2.5 and O3 exposures was significantly associated with a 3.14 % (95 % confidence interval: 2.47 %, 3.81 %) and 0.88 % (0.49 %, 1.26 %) increase in odds of outpatient visits for ADs, respectively. These associations remained robust in 2-pollutant models. The proportion of outpatient visits attributable to PM2.5 and O3 exposures was up to 7.20 % and 8.93 %, respectively. Older adults appeared to be more susceptible to PM2.5 exposure, especially in cool season, and subjects with recurrent outpatient visits were more susceptible to O3 exposure. LIMITATION As our study subjects were from one single hospital in China, it should be cautious when generalizing our findings to other regions. CONCLUSION Short-term exposure to ambient PM2.5 and O3 was significantly associated with a higher odds of outpatient visits for ADs, which can contribute to considerable excess outpatient visits.
Collapse
Affiliation(s)
- Ruijun Xu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lu Luo
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ting Yuan
- Department of Psychosomatic Medicine, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wangni Chen
- Department of Psychosomatic Medicine, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jing Wei
- Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, USA
| | - Chunxiang Shi
- Meteorological Data Laboratory, National Meteorological Information Center, Beijing, China
| | - Sirong Wang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Sihan Liang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yingxin Li
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zihua Zhong
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Likun Liu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yi Zheng
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xinyi Deng
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Tingting Liu
- Health Department, The Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Zhaoyu Fan
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yuewei Liu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Jie Zhang
- Department of Psychosomatic Medicine, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
15
|
Chu Z, Zhang Y, Guo B, Zhang X, Cao Y, Ji H, Sun B, Schikowski T, Zhao Q, Wang J, Chen Y. Long-term PM 2.5 exposure associated with severity of angina pectoris and related health status in patients admitted with acute coronary syndrome: Modification effect of genetic susceptibility and disease history. ENVIRONMENTAL RESEARCH 2024; 257:119232. [PMID: 38810823 DOI: 10.1016/j.envres.2024.119232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/08/2024] [Accepted: 05/25/2024] [Indexed: 05/31/2024]
Abstract
Long-term particulate matter with aerodynamic diameters ≤2.5 μm (PM2.5) exposure has been associated with the occurrence of acute coronary syndrome (ACS). However, the impact of PM2.5 exposure and its components on the severity of angina pectoris and disease-related health status in patients hospitalized for ACS is understudied. To assess the association between long-term exposure to PM2.5 components and the angina pectoris severity in ACS patients, as well as the modification effects of genetic factors and disease history in north China. During 2017-2019, 6729 ACS patients were collected in Shandong Province and Beijing, with their angina pectoris severity evaluated using Seattle Angina Questionnaire (SAQ). The 0-3 years' average concentrations of PM2.5 and its five major components were assigned to each patient's residential address. Linear mixed-effects model, weighted quantile regression, and quantile g-computation were used to estimate the effects of both single and joint associations between PM2.5 components and SAQ scores. The interactive effect was estimated by polygenic risk scores and disease history. For each interquartile range increase in PM2.5, the overall SAQ score changed by -3.71% (95%CI: -4.54% to -2.88%), with score of angina stability more affected than angina frequency and other dimensions of angina pectoris severity. Sulfate and ammonium were major contributors to the effect of PM2.5 exposure. Significant modification effect was only observed for disease history, especially for the dimension of physical limitation. Among a series of pre-existing diseases, patients with a family history of coronary artery disease, previous percutaneous coronary intervention or coronary artery bypass grafting, and stroke were more susceptible to PM2.5 exposure than others. Greater exposure to PM2.5 is associated with more serious angina pectoris and worse disease-related health status in ACS patients. Public health and clinical priority should be given to cutting down key effective components and protecting highly vulnerable individuals.
Collapse
Affiliation(s)
- Zunyan Chu
- Department of Epidemiology, School of Public Health/Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yan Zhang
- Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Bangjie Guo
- Department of Epidemiology, School of Public Health/Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xiao Zhang
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Yingying Cao
- Department of Epidemiology, School of Public Health/Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Hongmei Ji
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Bo Sun
- Department of Epidemiology, IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| | - Tamara Schikowski
- Department of Epidemiology, IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| | - Qi Zhao
- Department of Epidemiology, School of Public Health/Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| | - Jiali Wang
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China.
| | - Yuguo Chen
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
16
|
Ning Z, Ma Y, He S, Li G, Hua X, Ma C, Wu J. Effects of combined exposure to fine particulate matter and cold waves and on IHD hospitalizations at low and high altitudes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116977. [PMID: 39216221 DOI: 10.1016/j.ecoenv.2024.116977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/30/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Climate change and air pollution are major challenges facing the world today. Cold waves and air pollution significantly impact ischemic heart disease (IHD), but the extent of these effects at different altitudes remains unclear, especially their interactions. We collected daily meteorological, pollutant, and IHD hospitalization data from Xining and Xinxiang from 2016 to 2021. Using a time-stratified case-crossover approach, we fitted conditional Poisson regression models to assess the association between cold waves, PM2.5, and IHD hospitalizations and quantified their interactions. Additionally, we calculated the attributable fraction (AF) and attributable number (AN) of hospitalizations due to exposure to cold waves and medium to high-level PM2.5. We also performed stratified analyses by altitude, gender, and age. Both cold waves and PM2.5 were positively associated with IHD hospitalization rates in Xining and Xinxiang, but the differences between the two regions were not significant. The relative risk of cold waves was 1.15 (1.07, 1.24) in Xining and 1.16 (1.11, 1.21) in Xinxiang. In Xining, there was an interaction between cold waves and different levels of PM2.5. We estimated the attributable fraction due to the joint exposure of cold waves and PM2.5 to be 0.14-0.49 in Xining and 0.26-0.36 in Xinxiang. Older adults and males faced higher risks. This study highlights the importance of reducing PM2.5 exposure and optimizing extreme weather warning systems and suggests further exploration of the impacts of individual behaviors and regional characteristics on IHD.
Collapse
Affiliation(s)
- Zhenxu Ning
- Department of Public Health, Qinghai University Medical College, Xining, Qinghai 810016, China
| | - Yanjun Ma
- Qinghai Institute of Health Sciences, Xining, Qinghai 810016, China.
| | - Shuzhen He
- Xining Centre for Disease Control and Prevention, Xining, Qinghai 810000, China.
| | - Genshan Li
- Department of Public Health, Qinghai University Medical College, Xining, Qinghai 810016, China
| | - Xiaojuan Hua
- Department of Public Health, Qinghai University Medical College, Xining, Qinghai 810016, China
| | - Chunguang Ma
- Xining Centre for Disease Control and Prevention, Xining, Qinghai 810000, China
| | - Jing Wu
- Xining Centre for Disease Control and Prevention, Xining, Qinghai 810000, China
| |
Collapse
|
17
|
Li Y, Lu B, Wei J, Wang Q, Ma W, Wang R, Xu R, Zhong Z, Luo L, Chen X, Lv Z, Huang S, Sun H, Liu Y. Short-term exposure to ambient fine particulate matter constituents and myocardial infarction mortality. CHEMOSPHERE 2024; 364:143101. [PMID: 39151575 DOI: 10.1016/j.chemosphere.2024.143101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/10/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Short-term ambient fine particulate matter (PM2.5) exposure has been related to an increased risk of myocardial infarction (MI) death, but which PM2.5 constituents are associated with MI death and to what extent remain unclear. We aimed to explore the associations of short-term exposure to PM2.5 constituents with MI death and evaluate excess mortality. We conducted a time-stratified case-crossover study on 237,492 MI decedents in Jiangsu province, China during 2015-2021. Utilizing a validated PM2.5 constituents grid dataset at 1 km spatial resolution, we estimated black carbon (BC), organic carbon (OC), sulfate (SO42-), nitrate (NO3-), ammonium (NH4+), and chloride (Cl-) exposure by extracting daily concentrations grounding on the home address of each subject. We employed conditional logistic regression models to evaluate the exposure-response relationship between PM2.5 constituents and MI death. Overall, per interquartile range (IQR) increase of BC (lag 06-day; IQR: 1.75 μg/m3) and SO42- (lag 04-day; IQR: 5.06 μg/m3) exposures were significantly associated with a 3.91% and 2.94% increase in odds of MI death, respectively, and no significant departure from linearity was identified in the exposure-response curves for BC and SO42-. If BC and SO42- exposures were reduced to theoretical minimal risk exposure concentration (0.89 μg/m3 and 1.51 μg/m3), an estimate of 4.55% and 4.80% MI deaths would be avoided, respectively. We did not find robust associations of OC, NO3-, NH4+, and Cl- exposures with MI death. Individuals aged ≥80 years were more vulnerable to PM2.5 constituent exposures in MI death (p for difference <0.05). In conclusion, short-term exposure to PM2.5-bound BC and SO42- was significantly associated with increased odds of MI death and resulted in extensive excess mortality, notably in older adults. Our findings emphasized the necessity of reducing toxic PM2.5 constituent exposures to prevent deaths from MI and warranted further studies on the relative contribution of specific constituents.
Collapse
Affiliation(s)
- Yingxin Li
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Bing Lu
- Department of Geriatrics, Geriatric Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jing Wei
- Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA
| | - Qingqing Wang
- Institute of Environment and Health, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu, China
| | - Wancheng Ma
- Luohu District Chronic Disease Hospital, Shenzhen, Guangdong, China
| | - Rui Wang
- Luohu District Chronic Disease Hospital, Shenzhen, Guangdong, China
| | - Ruijun Xu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zihua Zhong
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lu Luo
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xi Chen
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ziquan Lv
- Department of Environment and Health, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Suli Huang
- School of Public Health, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, China
| | - Hong Sun
- Institute of Environment and Health, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu, China.
| | - Yuewei Liu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
18
|
Zhang Y, Wang Y, Zheng H, Wei J. Increased mortality risk from airborne exposure to polycyclic aromatic hydrocarbons. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134714. [PMID: 38820754 DOI: 10.1016/j.jhazmat.2024.134714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/15/2024] [Accepted: 05/22/2024] [Indexed: 06/02/2024]
Abstract
BACKGROUND The potential health effects of airborne polycyclic aromatic hydrocarbons (PAHs) among general population remained extensively unstudied. This study sought to investigate the association of short-term exposure to low-level total and 7 carcinogenic PAHs with mortality risk. METHODS We conducted an individual-level time-stratified case-crossover study in Jiangsu province of eastern China, by investigating over 2 million death cases during 2016-2019. Daily concentrations of total PAH and its 7 carcinogenic species including benzo[a]anthracene (BaA), benzo[a]pyrene (BaP), benzo[b]fluoranthene (BbF), benzo[k]fluoranthene (BkF), chrysene (Chr), dibenz[a,h]anthracene (DahA), and indeno[1,2,3-cd]pyrene (IcdP), predicted by well-validated spatiotemporal models, were assigned to death cases according to their residential addresses. We estimated mortality risk associated with short-term exposure to increase of an interquartile range (IQR) for aforementioned PAHs using conditional logistic regression. RESULTS An IQR increase (16.9 ng/m3) in 2-day (the current and prior day) moving average of total PAH concentration was associated with risk increases of 1.90% (95% confidence interval [CI]: 1.71-2.09) in all-cause mortality, 1.90% (95% CI: 1.70-2.10) in nonaccidental mortality, 2.01% (95% CI: 1.72-2.29) in circulatory mortality, and 2.53% (95% CI: 2.03-3.02) in respiratory mortality. Risk increases of cause-specific mortality ranged between 1.42-1.90% for BaA (IQR: 1.6 ng/m3), 1.94-2.53% for BaP (IQR: 1.6 ng/m3), 2.45-3.16% for BbF (IQR: 2.8 ng/m3), 2.80-3.65% for BkF (IQR: 1.0 ng/m3), 1.36-1.77% for Chr (IQR: 1.8 ng/m3), 0.77-1.24% for DahA (IQR: 0.8 ng/m3), and 2.96-3.85% for IcdP (IQR: 1.7 ng/m3). CONCLUSIONS This study provided suggested evidence for heightened mortality risk in relation to short-term exposure to airborne PAHs in general population. Our findings suggest that airborne PAHs may pose a potential threat to public health, emphasizing the need of more population-based evidence to enhance the understanding of health risk under the low-dose exposure scenario.
Collapse
Affiliation(s)
- Yunquan Zhang
- Institute of Social Development and Health Management, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Yaqi Wang
- Institute of Social Development and Health Management, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Hao Zheng
- Department of Environmental Health, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China.
| | - Jing Wei
- Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD 20742, United States.
| |
Collapse
|
19
|
Yu P, Xu R, Wu Y, Huang W, Coelho MSZS, Saldiva PHN, Ye T, Wen B, Liu Y, Yang Z, Li S, Abramson MJ, Guo Y. Cancer mortality risk from short-term PM 2.5 exposure and temporal variations in Brazil. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134606. [PMID: 38788590 DOI: 10.1016/j.jhazmat.2024.134606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/30/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024]
Abstract
Although some studies have found that short-term PM2.5 exposure is associated with lung cancer deaths, its impact on other cancer sites is unclear. To answer this research question, this time-stratified case-crossover study used individual cancer death data between January 1, 2000, and December 31, 2019, extracted from the Brazilian mortality information system to quantify the associations between short-term PM2.5 exposure and cancer mortality from 25 common cancer sites. Daily PM2.5 concentration was aggregated at the municipality level as the key exposure. The study included a total of 34,516,120 individual death records, with the national daily mean PM2.5 exposure 15.3 (SD 4.3) μg/m3. For every 10-μg/m3 increase in three-day average PM2.5 exposure, the odds ratio (OR) for all-cancer mortality was 1.04 (95% CI 1.03-1.04). Apart from all-cancer deaths, PM2.5 exposure may impact cancers of oesophagus (1.04, 1.00-1.08), stomach (1.05, 1.02-1.08), colon-rectum (1.04, 1.01-1.06), lung (1.04, 1.02-1.06), breast (1.03, 1.00-1.06), prostate (1.07, 1.04-1.10), and leukaemia (1.05, 1.01-1.09). During the study period, acute PM2.5 exposure contributed to an estimated 1,917,994 cancer deaths, ranging from 0 to 6,054 cases in each municipality. Though there has been a consistent downward trend in PM2.5-related all-cancer mortality risks from 2000 to 2019, the impact remains significant, indicating the continued importance of cancer patients avoiding PM2.5 exposure. This nationwide study revealed a notable association between acute PM2.5 exposure and heightened overall and site-specific cancer mortality for the first time to our best knowledge. The findings suggest the importance of considering strategies to minimize such exposure in cancer care guidelines. ENVIRONMENTAL IMPLICATION: The 20-year analysis of nationwide death records in Brazil revealed that heightened short-term exposure to PM2.5 is associated with increased cancer mortality at various sites, although this association has gradually decreased over time. Despite the declining impact, the research highlights the persistent adverse effects of PM2.5 on cancer mortality, emphasizing the importance of continued research and preventive measures to address the ongoing public health challenges posed by air pollution.
Collapse
Affiliation(s)
- Pei Yu
- Climate Air quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Rongbin Xu
- Climate Air quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Yao Wu
- Climate Air quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Wenzhong Huang
- Climate Air quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Micheline S Z S Coelho
- Laboratory of Urban Health Insper/Faculty of Medicine of the University of São Paulo, Brazil
| | - Paulo H N Saldiva
- Laboratory of Urban Health Insper/Faculty of Medicine of the University of São Paulo, Brazil
| | - Tingting Ye
- Climate Air quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Bo Wen
- Climate Air quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Yanming Liu
- Climate Air quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Zhengyu Yang
- Climate Air quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Shanshan Li
- Climate Air quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Michael J Abramson
- Climate Air quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Yuming Guo
- Climate Air quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia.
| |
Collapse
|
20
|
Mei Y, Huang L, Gong C, Zhao W, Gui M, Qiu Q, Wang Z, Chen Y, Xie Y, Cai X, Yuan YS, Zheng ZF, Xue Y, Deng H, Liu X. Leisure-time physical activity and the incidence of atrial fibrillation in senior adults: a prospective cohort study. Age Ageing 2024; 53:afae142. [PMID: 38984694 DOI: 10.1093/ageing/afae142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/21/2024] [Indexed: 07/11/2024] Open
Abstract
OBJECTIVE Whether physical activity could reduce the risk of atrial fibrillation (AF) remains unclear. This study was to investigate the relationship of leisure-time physical activity (LTPA) with AF incidence among Chinese older adults. METHODS A total of 3253 participants aged ≥60 years from the Guangzhou Heart Study were successfully followed between March 2018 and September 2019. LTPA was assessed using a modified Global Physical Activity Questionnaire. AF was ascertained by 12-lead electrocardiograms, 24-hour single-lead Holter and clinical examination. The Cox proportional hazards model was used to the estimate hazard ratio (HR) and 95% confidence interval (CI) after adjustment for confounders, and the population-attributable fraction (PAF) was estimated. RESULTS A total of 76 (2.34%) new-onset cases of AF were identified during a median of 31.13 months of follow-up. After adjustment for confounders, subjects who had LTPA at least 10.0 metabolic equivalent (MET)-hours/week had a 55% lower risk of developing AF (HR: 0.45, 95%CI: 0.25-0.81), and at least 20 MET-hours/week reduced the risk by 45% (HR: 0.55, 95%CI: 0.34-0.92). At least 11% (PAF: 11%, 95%CI: 0%-20%) or 14% (PAF: 14%, 95%CI: 0%-26%) of AF cases could be avoided, respectively, if the subjects do LTPA at least 10 MET-hours/week or 20 MET-hours/week. A significant exposure-response trend was also observed between LTPA and AF risk (Plinear-trend = 0.002). For a specific LTPA, doing housework was associated with a 43% reduced risk, while engaging in ball games was associated with an increased risk. CONCLUSION This prospective cohort study indicated that a higher LTPA volume was associated with a lower AF risk in Chinese older adults.
Collapse
Affiliation(s)
- Yunting Mei
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Li Huang
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Cong Gong
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Science, Southern Medical University, Guangzhou 510080, China
| | - Wenjing Zhao
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ming Gui
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Quan Qiu
- Department of Administrative Affairs, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430 China
| | - Zhiwei Wang
- Department of 12320 Health Hotline, Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Yufeng Chen
- Department of Community Health, Guangzhou Yuexiu District Center for Disease Control and Prevention, Guangzhou 510080, China
| | - Yuanling Xie
- Department of Community Health, Guangzhou Baiyun Street Community Health Service Center, Guangzhou 510080, China
| | - Xueqing Cai
- Department of Community Health, Guangzhou Dadong Street Community Health Service Center, Guangzhou 510080, China
| | - Yue-Shuang Yuan
- Department of Community Health, Guangzhou Xinzao Town Community Health Service Center, Guangzhou 511442, China
| | - Zhen-Feng Zheng
- Department of Community Health, Guangzhou Nancun Town Community Health Service Center, Guangzhou 511442, China
| | - Yumei Xue
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Science, Southern Medical University, Guangzhou 510080, China
| | - Hai Deng
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Science, Southern Medical University, Guangzhou 510080, China
| | - Xudong Liu
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| |
Collapse
|
21
|
Han C, Cheng C, Liu Y, Fang Q, Li C, Cui F, Li X. Enhancing the health benefits of air quality improvement: a comparative study across diverse scenarios. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:44244-44253. [PMID: 38937357 DOI: 10.1007/s11356-024-33919-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 06/03/2024] [Indexed: 06/29/2024]
Abstract
In many studies, linear methods were used to calculate health benefits of air quality improvement, but the relationship between air pollutants and diseases may be complex and nonlinear. In addition, previous studies using reference number as average number of diseases may overestimate the health benefits. Therefore, the nonlinear model estimation and resetting of the reference number were very important. Hospital admission data for coronary heart disease (CHD), meteorological data, and air pollutant data of Zibo City from 2015 to 2019 were collected. The generalized additive model (GAM) was used to explore the association between air pollutants and hospital admission for CHD, and to evaluate the effects on health benefits under different reference number settings. A total of 21,105 hospitalized cases for CHD were reported in Zibo during the study period. The results of the GAM showed there was a log-linear exposure-response relationship between O3 and hospital admissions for CHD, with RR (relative risk) of 1.0143 (95% CI: 1.0047 ~ 1.0239). There were log-nonlinear exposure-response relationships between PM10, PM2.5, SO2, and hospital admissions for CHD. With the increase of pollutants concentrations, the risk for hospital admission showed a trend of increasing first and then decreasing. Compared with the average hospital admissions as the reference number, health benefits calculated by hospital admissions predicted by the GAM model yielded lower. Using the World Health Organization air quality guidelines as reference, attributable fractions of O3, PM10, and PM2.5 were 1.97% (95% CI: 0.63 ~ 3.40%), 11.82% (95% CI: 8.60 ~ 15.24%), and 11.82% (95% CI: 8.79 ~ 15.04%), respectively. When quantifying health benefits brought by improving air quality, corresponding calculation methods should first be determined according to the exposure-response relationships between air pollutants and outcomes. Then, applying the average hospital admissions as reference number may overestimate health benefits resulting from improved air quality.
Collapse
Affiliation(s)
- Chuang Han
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, 44# Wenhuaxi Road, Lixia District, Jinan, 250012, Shandong, China
| | - Chuanlong Cheng
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, 44# Wenhuaxi Road, Lixia District, Jinan, 250012, Shandong, China
| | - Ying Liu
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, 44# Wenhuaxi Road, Lixia District, Jinan, 250012, Shandong, China
| | - Qidi Fang
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, 44# Wenhuaxi Road, Lixia District, Jinan, 250012, Shandong, China
| | - Chunyu Li
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, 44# Wenhuaxi Road, Lixia District, Jinan, 250012, Shandong, China
| | - Feng Cui
- Zibo Center for Disease Control and Prevention, Zibo, Shandong, China
| | - Xiujun Li
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, 44# Wenhuaxi Road, Lixia District, Jinan, 250012, Shandong, China.
| |
Collapse
|
22
|
Zhang Y, He Q, Tong X, Yin P, Liu Y, Meng X, Gao Y, Shi S, Li X, Kan H, Zhou M, Li Y, Chen R. Differential associations of fine and coarse particulate air pollution with cause-specific pneumonia mortality: A nationwide, individual-level, case-crossover study. ENVIRONMENTAL RESEARCH 2024; 252:119054. [PMID: 38704007 DOI: 10.1016/j.envres.2024.119054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/25/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND The connections between fine particulate matter (PM2.5) and coarse particulate matter (PM2.5-10) and daily mortality of viral pneumonia and bacterial pneumonia were unclear. OBJECTIVES To distinguish the connections between PM2.5 and PM2.5-10 and daily mortality due to viral pneumonia and bacterial pneumonia. METHODS Using a comprehensive national death registry encompassing all areas of mainland China, we conducted a case-crossover investigation from 2013 to 2019 at an individual level. Residential daily particle concentrations were evaluated using satellite-based models with a spatial resolution of 1 km. To analyze the data, we employed the conditional logistic regression model in conjunction with polynomial distributed lag models. RESULTS We included 221,507 pneumonia deaths in China. Every interquartile range (IQR) elevation in concentrations of PM2.5 (lag 0-2 d, 37.6 μg/m3) was associated with higher magnitude of mortality for viral pneumonia (3.03%) than bacterial pneumonia (2.14%), whereas the difference was not significant (p-value for difference = 0.38). An IQR increase in concentrations of PM2.5-10 (lag 0-2 d, 28.4 μg/m3) was also linked to higher magnitude of mortality from viral pneumonia (3.06%) compared to bacterial pneumonia (2.31%), whereas the difference was not significant (p-value for difference = 0.52). After controlling for gaseous pollutants, their effects were all stable; however, with mutual adjustment, the associations of PM2.5 remained, and those of PM2.5-10 were no longer statistically significant. Greater magnitude of associations was noted in individuals aged 75 years and above, as well as during the cold season. CONCLUSION This nationwide study presents compelling evidence that both PM2.5 and PM2.5-10 exposures could increase pneumonia mortality of viral and bacterial causes, highlighting the more robust effects of PM2.5 and somewhat higher sensitivity of viral pneumonia.
Collapse
Affiliation(s)
- Ye Zhang
- Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Qinglin He
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Xunliang Tong
- Department of Respiratory and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Peng Yin
- National Center for Chronic Non-communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Yunning Liu
- National Center for Chronic Non-communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Xia Meng
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Ya Gao
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Su Shi
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Xinyue Li
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Maigeng Zhou
- National Center for Chronic Non-communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Yanming Li
- Department of Respiratory and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
23
|
Beegam S, Zaaba NE, Elzaki O, Alzaabi A, Alkaabi A, Alseiari K, Alshamsi N, Nemmar A. Palliative effects of carnosol on lung-deposited pollutant particles-induced thrombogenicity and vascular injury in mice. Pharmacol Res Perspect 2024; 12:e1201. [PMID: 38775298 PMCID: PMC11110483 DOI: 10.1002/prp2.1201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 05/25/2024] Open
Abstract
The toxicity of inhaled particulate air pollution perseveres even at lower concentrations than those of the existing air quality limit. Therefore, the identification of safe and effective measures against pollutant particles-induced vascular toxicity is warranted. Carnosol is a bioactive phenolic diterpene found in rosemary herb, with anti-inflammatory and antioxidant actions. However, its possible protective effect on the thrombotic and vascular injury induced by diesel exhaust particles (DEP) has not been studied before. We assessed here the potential alleviating effect of carnosol (20 mg/kg) administered intraperitoneally 1 h before intratracheal (i.t.) instillation of DEP (20 μg/mouse). Twenty-four hours after the administration of DEP, various parameters were assessed. Carnosol administration prevented the increase in the plasma concentrations of C-reactive protein, fibrinogen, and tissue factor induced by DEP exposure. Carnosol inhibited DEP-induced prothrombotic effects in pial microvessels in vivo and platelet aggregation in vitro. The shortening of activated partial thromboplastin time and prothrombin time induced by DEP was abated by carnosol administration. Carnosol inhibited the increase in pro-inflammatory cytokines (interleukin-6 and tumor necrosis factor α) and adhesion molecules (intercellular adhesion molecule-1, vascular cell adhesion molecule-1, E-selectin, and P-selectin) in aortic tissue. Moreover, it averted the effects of DEP-induced increase of thiobarbituric acid reactive substances, depletion of antioxidants and DNA damage in the aortic tissue. Likewise, carnosol prevented the decrease in the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) caused by DEP. We conclude that carnosol alleviates DEP-induced thrombogenicity and vascular inflammation, oxidative damage, and DNA injury through Nrf2 and HO-1 activation.
Collapse
Affiliation(s)
- Sumaya Beegam
- Department of Physiology, College of Medicine and Health SciencesUnited Arab Emirates UniversityAl AinUAE
| | - Nur Elena Zaaba
- Department of Physiology, College of Medicine and Health SciencesUnited Arab Emirates UniversityAl AinUAE
| | - Ozaz Elzaki
- Department of Physiology, College of Medicine and Health SciencesUnited Arab Emirates UniversityAl AinUAE
| | - Abdulrahman Alzaabi
- Department of Physiology, College of Medicine and Health SciencesUnited Arab Emirates UniversityAl AinUAE
| | - Abdulrahman Alkaabi
- Department of Physiology, College of Medicine and Health SciencesUnited Arab Emirates UniversityAl AinUAE
| | - Khalifa Alseiari
- Department of Physiology, College of Medicine and Health SciencesUnited Arab Emirates UniversityAl AinUAE
| | - Nasser Alshamsi
- Department of Physiology, College of Medicine and Health SciencesUnited Arab Emirates UniversityAl AinUAE
| | - Abderrahim Nemmar
- Department of Physiology, College of Medicine and Health SciencesUnited Arab Emirates UniversityAl AinUAE
| |
Collapse
|
24
|
Zhang W, Zhu A, Ling J, Zhang R, Liu T, Tian T, Niu J, Dong J, Ruan Y. Short-term effects of nitrogen dioxide on inpatient acute myocardial infarction in Lanzhou, China. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2024; 74:449-456. [PMID: 38739852 DOI: 10.1080/10962247.2024.2350441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 04/24/2024] [Indexed: 05/16/2024]
Abstract
Nitrogen dioxide (NO2) represents a deleterious effect on acute myocardial infarction (AMI), but few relevant studies have been conducted in China. We aim to evaluate the acute effects of NO2 exposure on hospitalization for AMI in Lanzhou, China. In this study, we applied a distributional lag nonlinear model (DLNM) to assess the association between NO2 exposure and AMI hospitalization. We explored the sensitivity of various groups through stratified analysis by gender, age, and season. The daily average concentration of NO2 is 47.50 ± 17.38 µg/m3. We observed a significant exposure-response relationship between NO2 concentration and AMI hospitalization. The single pollutant model analysis shows that NO2 is positively correlated with AMI hospitalization at lag1, lag01, lag02, and lag03. The greatest lag effect estimate occurs at lag01, where a 10 µg/m3 increase in NO2 concentrations is significantly associated with a relative risk (RR) of hospitalization due to AMI of 1.027 [95% confidence interval (CI): 1.013, 1.042]. The results of the stratified analysis by gender, age, and season indicate that males, those aged ≥65 years, and the cold season are more sensitive to the deleterious effects caused by NO2 exposure. Short-term exposure to NO2 can enhance the risk of AMI hospitalization in urban Lanzhou.Implications: Exposure to particulate matter can lead to an increased incidence of AMI. Our study once again shows that NO2 exposure increases the risk of AMI hospital admission. AMI is a common and expensive fatal condition. Reducing NO2 exposure will benefit cardiovascular health and save on healthcare costs.
Collapse
Affiliation(s)
- Wancheng Zhang
- School of Public Health, Lanzhou University, Lanzhou, People's Republic of China
| | - Anning Zhu
- School of Public Health, Lanzhou University, Lanzhou, People's Republic of China
| | - Jianglong Ling
- School of Public Health, Lanzhou University, Lanzhou, People's Republic of China
| | - Runping Zhang
- School of Public Health, Lanzhou University, Lanzhou, People's Republic of China
| | - Tong Liu
- School of Public Health, Lanzhou University, Lanzhou, People's Republic of China
| | - Tian Tian
- School of Public Health, Lanzhou University, Lanzhou, People's Republic of China
| | - Jingping Niu
- School of Public Health, Lanzhou University, Lanzhou, People's Republic of China
| | - Jiyuan Dong
- School of Public Health, Lanzhou University, Lanzhou, People's Republic of China
| | - Ye Ruan
- School of Public Health, Lanzhou University, Lanzhou, People's Republic of China
| |
Collapse
|
25
|
Li Z, Yu Z, Cui S, Hu S, Li B, Chen T, Qu C, Yang B. AMPA receptor inhibition alleviates inflammatory response and myocardial apoptosis after myocardial infarction by inhibiting TLR4/NF-κB signaling pathway. Int Immunopharmacol 2024; 133:112080. [PMID: 38613882 DOI: 10.1016/j.intimp.2024.112080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/28/2024] [Accepted: 04/09/2024] [Indexed: 04/15/2024]
Abstract
Myocardial infarction leads to myocardial inflammation and apoptosis, which are crucial factors leading to heart failure and cardiovascular dysfunction, eventually resulting in death. While the inhibition of AMPA receptors mitigates inflammation and tissue apoptosis, the effectiveness of this inhibition in the pathophysiological processes of myocardial infarction remains unclear. This study investigated the role of AMPA receptor inhibition in myocardial infarction and elucidated the underlying mechanisms. This study established a myocardial infarction model by ligating the left anterior descending branch of the coronary artery in Sprague-Dawley rats. The findings suggested that injecting the AMPA receptor antagonist NBQX into myocardial infarction rats effectively alleviated cardiac inflammation, myocardial necrosis, and apoptosis and improved their cardiac contractile function. Conversely, injecting the AMPA receptor agonist CX546 into infarcted rats exacerbated the symptoms and tissue damage, as reflected by histopathology. This agonist also stimulated the TLR4/NF-κB pathway, further deteriorating cardiac function. Furthermore, the investigations revealed that AMPA receptor inhibition hindered the nuclear translocation of P65, blocking its downstream signaling pathway and attenuating tissue inflammation. In summary, this study affirmed the potential of AMPA receptor inhibition in countering inflammation and tissue apoptosis after myocardial infarction, making it a promising therapeutic target for mitigating myocardial infarction.
Collapse
Affiliation(s)
- Zixuan Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Zhili Yu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Shengyu Cui
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Shan Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Bin Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Tao Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Chuan Qu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China.
| | - Bo Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China.
| |
Collapse
|
26
|
Qian Y, Su X, Yu H, Li Q, Jin S, Cai R, Shi W, Shi S, Meng X, Zhou L, Guo Y, Wang C, Wang X, Zhang Y. Differentiating the impact of fine and coarse particulate matter on cause-specific cerebrovascular mortality: An individual-level, case-crossover study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 279:116447. [PMID: 38759537 DOI: 10.1016/j.ecoenv.2024.116447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/05/2024] [Accepted: 05/07/2024] [Indexed: 05/19/2024]
Abstract
BACKGROUND AND OBJECTIVES Many studies suggested that short-term exposure to fine particulate matter (PM2.5) and coarse particulate matter (PM2.5-10) was linked to elevated risk of cerebrovascular disease. However, little is known about the potentially differential effects of PM2.5 and PM2.5-10 on various types of cerebrovascular disease. METHODS We collected individual cerebrovascular death records for all residents in Shanghai, China from 2005 to 2021. Residential daily air pollution data were predicted from a satellite model. The associations between particulate matters (PM) and cerebrovascular mortality were investigated by an individual-level, time-stratified, case-crossover design. The data was analyzed by the conditional logistic regression combined with the distributed lag model with a maximum lag of 7 days. Furthermore, we explored the effect modifications by sex, age and season. RESULTS A total of 388,823 cerebrovascular deaths were included. Monotonous increases were observed for mortality of all cerebrovascular diseases except for hemorrhagic stroke. A 10 μg/m3 rise in PM2.5 was related to rises of 1.35% [95% confidence interval (CI): 1.04%, 1.66%] in mortality of all cerebrovascular diseases, 1.84% (95% CI: 1.25%, 2.44%) in ischemic stroke, 1.53% (95% CI: 1.07%, 1.99%) in cerebrovascular sequelae and 1.56% (95% CI: 1.08%, 2.05%) in ischemic stroke sequelae. The excess risk estimates per each 10 μg/m3 rise in PM2.5-10 were 1.47% (95% CI: 1.10%, 1.84%), 1.53% (95% CI: 0.83%, 2.24%), 1.93% (95% CI: 1.38%, 2.49%) and 2.22% (95% CI: 1.64%, 2.81%), respectively. The associations of both pollutants with all cerebrovascular outcomes were robust after controlling for co-pollutants. The associations were greater in females, individuals > 80 years, and during the warm season. CONCLUSIONS Short-term exposures to both PM2.5 and PM2.5-10 may independently increase the mortality risk of cerebrovascular diseases, particularly of ischemic stroke and stroke sequelae.
Collapse
Affiliation(s)
- Yifeng Qian
- Department of Oral and Craniomaxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, China
| | - Xiaozhen Su
- Department of Environmental Health, School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, China
| | - Huiting Yu
- Division of Vital Statistics, Institute of Health Information, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Qi Li
- Division of Vital Statistics, Institute of Health Information, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Shan Jin
- Division of Vital Statistics, Institute of Health Information, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Renzhi Cai
- Division of Vital Statistics, Institute of Health Information, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Wentao Shi
- Shanghai Ninth People's Hospital Affiliated to Shanghai JiaoTong University, School of Medicine, Clinical research Unit, Shanghai, China
| | - Su Shi
- Department of Environmental Health, School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, China
| | - Xia Meng
- Department of Environmental Health, School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, China
| | - Lu Zhou
- Department of Environmental Health, School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, China
| | - Yichen Guo
- Department of Environmental Health, School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, China
| | - Chunfang Wang
- Division of Vital Statistics, Institute of Health Information, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China.
| | - Xudong Wang
- Department of Oral and Craniomaxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, China.
| | - Yuhao Zhang
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China; Shanghai Clinical Research Center for Interventional Medicine, Shanghai 200032, China.
| |
Collapse
|
27
|
Lin W, Pan J, Li J, Zhou X, Liu X. Short-Term Exposure to Air Pollution and the Incidence and Mortality of Stroke: A Meta-Analysis. Neurologist 2024; 29:179-187. [PMID: 38048541 DOI: 10.1097/nrl.0000000000000544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
BACKGROUND The relationship between short-term exposure to various air pollutants [particulate matter <10 μm (PM 10 ), particulate matter <2.5 μm (PM 2.5 ), nitrogen dioxide (NO 2 ), sulfur dioxide (SO 2 ), carbon monoxide, and ozone (O 3 )] and the incidence and mortality of stroke remain unclear. REVIEW SUMMARY We conducted a comprehensive search across databases, including PubMed, Web of Science, and others. A random-effects model was employed to estimate the odds ratios (OR) and their 95% CIs. Short-term exposure to PM 10 , PM 2.5 , NO 2 , SO 2 , and O 3 was associated with increased stroke incidence [per 10 μg/m 3 increase in PM 2.5 : OR = 1.005 (95% CI: 1.004-1.007), per 10 μg/m 3 increase in PM 10 : OR = 1.006 (95% CI: 1.004-1.009), per 10 μg/m 3 increase in SO 2 : OR = 1.034 (95% CI: 1.020-1.048), per 10 μg/m 3 increase in NO 2 : OR = 1.029 (95% CI: 1.015-1.043), and O 3 for per 10 μg/m 3 increase: OR: 1.006 (95% CI: 1.004-1.007)]. In addition, short-term exposure to PM 2.5 , PM 10 , SO 2, and NO 2 was correlated with increased mortality from stroke [per 10 μg/m 3 increase in PM 2.5 : OR = 1.010 (95% CI: 1.006-1.013), per 10 μg/m 3 increase in PM 10 : OR = 1.004 (95% CI: 1.003-1.006), per 10 μg/m 3 increase in SO 2 : OR = 1.013 (95% CI: 1.007-1.019) and per 10 μg/m 3 increase in NO 2 : OR = 1.012 (95% CI: 1.008-1.015)]. CONCLUSION Reducing outdoor air pollutant levels may yield a favorable outcome in reducing the incidence and mortality associated with strokes.
Collapse
Affiliation(s)
- Wenjian Lin
- Department of Neurology, Shanghai Tenth People's Hospital, Tongji University School of Medicine
- Tongji University School of Medicine, Shanghai, China
| | - Jie Pan
- Department of Neurology, Shanghai Tenth People's Hospital, Tongji University School of Medicine
| | - Jiahe Li
- Tongji University School of Medicine, Shanghai, China
| | - Xiaoyu Zhou
- Department of Neurology, Shanghai Tenth People's Hospital, Tongji University School of Medicine
| | - Xueyuan Liu
- Department of Neurology, Shanghai Tenth People's Hospital, Tongji University School of Medicine
| |
Collapse
|
28
|
Abstract
Ubiquitous environmental exposures increase cardiovascular disease risk via diverse mechanisms. This review examines personal strategies to minimize this risk. With regard to fine particulate air pollution exposure, evidence exists to recommend the use of portable air cleaners and avoidance of outdoor activity during periods of poor air quality. Other evidence may support physical activity, dietary modification, omega-3 fatty acid supplementation, and indoor and in-vehicle air conditioning as viable strategies to minimize adverse health effects. There is currently insufficient data to recommend specific personal approaches to reduce the adverse cardiovascular effects of noise pollution. Public health advisories for periods of extreme heat or cold should be observed, with limited evidence supporting a warm ambient home temperature and physical activity as strategies to limit the cardiovascular harms of temperature extremes. Perfluoroalkyl and polyfluoroalkyl substance exposure can be reduced by avoiding contact with perfluoroalkyl and polyfluoroalkyl substance-containing materials; blood or plasma donation and cholestyramine may reduce total body stores of perfluoroalkyl and polyfluoroalkyl substances. However, the cardiovascular impact of these interventions has not been examined. Limited utilization of pesticides and safe handling during use should be encouraged. Finally, vasculotoxic metal exposure can be decreased by using portable air cleaners, home water filtration, and awareness of potential contaminants in ground spices. Chelation therapy reduces physiological stores of vasculotoxic metals and may be effective for the secondary prevention of cardiovascular disease.
Collapse
Affiliation(s)
- Luke J Bonanni
- Grossman School of Medicine (L.J.B.), NYU Langone Health, New York, NY
| | | |
Collapse
|
29
|
Luque-García L, Muxika-Legorburu J, Mendia-Berasategui O, Lertxundi A, García-Baquero G, Ibarluzea J. Green and blue space exposure and non-communicable disease related hospitalizations: A systematic review. ENVIRONMENTAL RESEARCH 2024; 245:118059. [PMID: 38157973 DOI: 10.1016/j.envres.2023.118059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/05/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
The global increase in non-communicable diseases (NCDs) presents a critical public health concern. Emerging evidence suggests that exposure to natural environments may reduce the risk of developing NCDs through multiple pathways. The present systematic review aims to synthesize and evaluate the observational evidence regarding associations between exposure to green and blue spaces and hospital admissions related to NCDs. A comprehensive literature search strategy was conducted in Embase (Ovid), PubMed, and Web of Science. The risk of bias and quality of the evidence were assessed using The Navigation Guide methodology, an approach specifically designed for environmental health research. Of 3060 search results, 17 articles were included. Notably, the majority of the studies (n = 14; 82.4%) were published from 2020 onwards. Most studies were conducted in the United States (n = 6; 35.3%) and China (n = 4; 23.5%). Exposure to green spaces was assessed through all studies, while only three included blue spaces. In terms of study design, cohort design was employed in nearly half of the studies (n = 8; 47.1%), followed by case-crossover design (n = 3, 17.6%). Over 75% of the included studies (n = 13) had a high or probably high rating in the risk of bias assessment. The studies encompassed diverse NCD outcome domains; cardiovascular diseases (CVDs) (n = 10), respiratory diseases (RSDs) (n = 2), heat-related diseases (n = 1), metabolic diseases (n = 2), cancer (n = 1), neurodegenerative diseases (NDDs) (n = 2), and mental health disorders (n = 2). The present review suggests that a clear link between blue space exposure and NCD hospital admissions is not evident. However, exposure to green spaces appears to predominantly have a protective effect, although the direction of the association varies across different outcome domains. The heterogeneity among the outcome domains together with the limited number of studies, emphasizes the need for more robust evidence.
Collapse
Affiliation(s)
- L Luque-García
- Department of Preventive Medicine and Public Health, Faculty of Medicine, University of the Basque Country (UPV/EHU), Leioa, 48940, Spain; Biogipuzkoa Health Research Institute, Group of Environmental Epidemiology and Child Development, Paseo Doctor Begiristain S/n, 20014, Donostia- San Sebastián, Spain; Osakidetza Basque Health Service, Goierri Alto-Urola Integrated Health Organisation, Zumarraga Hospital, Zumarraga, 20700, Spain.
| | - J Muxika-Legorburu
- Osakidetza Basque Health Service, Goierri Alto-Urola Integrated Health Organisation, Zumarraga Hospital, Zumarraga, 20700, Spain
| | - O Mendia-Berasategui
- Osakidetza Basque Health Service, Goierri Alto-Urola Integrated Health Organisation, Zumarraga Hospital, Zumarraga, 20700, Spain
| | - A Lertxundi
- Department of Preventive Medicine and Public Health, Faculty of Medicine, University of the Basque Country (UPV/EHU), Leioa, 48940, Spain; Biogipuzkoa Health Research Institute, Group of Environmental Epidemiology and Child Development, Paseo Doctor Begiristain S/n, 20014, Donostia- San Sebastián, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), 28029, Madrid, Spain
| | - G García-Baquero
- Biogipuzkoa Health Research Institute, Group of Environmental Epidemiology and Child Development, Paseo Doctor Begiristain S/n, 20014, Donostia- San Sebastián, Spain; Faculty of Biology, University of Salamanca, Avda Licenciado Méndez Nieto S/n, 37007, Salamanca, Spain
| | - J Ibarluzea
- Biogipuzkoa Health Research Institute, Group of Environmental Epidemiology and Child Development, Paseo Doctor Begiristain S/n, 20014, Donostia- San Sebastián, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), 28029, Madrid, Spain; Ministry of Health of the Basque Government, Sub-Directorate for Public Health and Addictions of Gipuzkoa, 20013, San Sebastián, Spain; Faculty of Psychology of the University of the Basque Country, 20018, San Sebastian, Spain
| |
Collapse
|
30
|
Zhang J, Xu Z, Han P, Fu Y, Wang Q, Wei X, Wang Q, Yang L. Exploring the Modifying Role of GDP and Greenness on the Short Effect of Air Pollutants on Respiratory Hospitalization in Beijing. GEOHEALTH 2024; 8:e2023GH000930. [PMID: 38505689 PMCID: PMC10949333 DOI: 10.1029/2023gh000930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 01/31/2024] [Accepted: 02/28/2024] [Indexed: 03/21/2024]
Abstract
It is unclear whether Gross Domestic Product (GDP) and greenness have additional modifying effects on the association between air pollution and respiratory system disease. Utilizing a time-stratified case-crossover design with a distributed lag linear model, we analyzed the association between six pollutants (PM2.5, PM10, NO2, SO2, O3, and CO) and 555,498 respiratory hospital admissions in Beijing from 1st January 2016 to 31st December 2019. We employed conditional logistic regression, adjusting for meteorological conditions, holidays and influenza, to calculate percent change of hospitalization risk. Subsequently, we performed subgroup analysis to investigate potential effect modifications using a two-sample z test. Every 10 μg/m3 increase in PM2.5, PM10, NO2, SO2, and O3 led to increases of 0.26% (95%CI: 0.17%, 0.35%), 0.15% (95%CI: 0.09%, 0.22%), 0.61% (95%CI: 0.44%, 0.77%), 1.72% (95%CI: 1.24%, 2.21%), and 0.32% (95%CI: 0.20%, 0.43%) in admissions, respectively. Also, a 1 mg/m3 increase in CO levels resulted in a 2.50% (95%CI: 1.96%, 3.04%) rise in admissions. The links with NO2 (p < 0.001), SO2 (p < 0.001), O3 (during the warm season, p < 0.001), and CO (p < 0.001) were significantly weaker among patients residing in areas with higher levels of greenness. No significant modifying role of GDP was observed. Greenness can help mitigate the effects of air pollutants, while the role of GDP needs further investigation.
Collapse
Affiliation(s)
- Jiawei Zhang
- Department of Health Policy and ManagementPeking University School of Public HealthBeijingChina
| | - Zhihu Xu
- Department of Occupational and Environmental Health SciencesPeking University School of Public HealthBeijingChina
| | - Peien Han
- Department of Health Policy and ManagementPeking University School of Public HealthBeijingChina
| | - Yaqun Fu
- Department of Health Policy and ManagementPeking University School of Public HealthBeijingChina
| | - Quan Wang
- Department of Health Policy and ManagementPeking University School of Public HealthBeijingChina
- Brown SchoolWashington University in St. LouisSt. LouisMOUSA
| | - Xia Wei
- Department of Health Policy and ManagementPeking University School of Public HealthBeijingChina
- Department of Health Services Research and PolicyLondon School of Hygiene & Tropical MedicineLondonUK
| | - Qingbo Wang
- Department of Health Policy and ManagementPeking University School of Public HealthBeijingChina
| | - Li Yang
- Department of Health Policy and ManagementPeking University School of Public HealthBeijingChina
| |
Collapse
|
31
|
Rinaldi R, Russo M, Bonanni A, Camilli M, Caffè A, Basile M, Salzillo C, Animati FM, Trani C, Niccoli G, Crea F, Montone RA. Short-term air pollution exposure and mechanisms of plaque instability in acute coronary syndromes: An optical coherence tomography study. Atherosclerosis 2024; 390:117393. [PMID: 38061973 DOI: 10.1016/j.atherosclerosis.2023.117393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 03/06/2024]
Abstract
BACKGROUND AND AIMS Air pollution is emerging as an important risk factor for acute coronary syndrome (ACS). In this study, we investigated the association between short-term air pollution exposure and mechanisms of coronary plaque instability evaluated by optical coherence tomography (OCT) imaging in ACS patients. METHODS Patients with ACS undergoing OCT imaging were retrospectively selected. Mechanism of culprit lesion instability was classified as plaque rupture (PR) or intact fibrous cap (IFC) by OCT. Based on each case's home address, the mean daily exposures to several pollutants, including particulate matter 2.5 (PM2.5), on the same day of ACS and in the immediate days (up to 6 days) prior to the index ACS, were collected. RESULTS 139 ACS patients were included [69 (49.6%) had PR and 70 (50.4%) IFC]. Patients with PR, compared to those with IFC, had higher PM2.5 exposure levels on the same day of ACS, without differences in the immediate 6 days before index ACS. At multivariate analysis, PM2.5 exposure on the same day of ACS was the only independent predictor of PR [OR = 1.912 per SD (8.6 μg/m3), CI95 % (1.087-3.364), p = 0.025]. Patients with PR presented a steady increase in PM2.5 daily exposure levels in the days preceding the occurrence of ACS, with a peak the day of ACS (p for trend = 0.042) CONCLUSIONS: This study demonstrates for the first time that a higher short-term PM2.5 exposure, on the same day of ACS, is associated with an increased risk of PR as a pathobiological mechanism of coronary plaque instability.
Collapse
Affiliation(s)
- Riccardo Rinaldi
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
| | - Michele Russo
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy; Department of Cardiology, S. Maria Dei Battuti Hospital, AULSS 2 Veneto, Conegliano, TV, Italy
| | - Alice Bonanni
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Massimiliano Camilli
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy; Department of Cardiovascular Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Andrea Caffè
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
| | - Mattia Basile
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
| | - Carmine Salzillo
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
| | - Francesco Maria Animati
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
| | - Carlo Trani
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy; Department of Cardiovascular Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | | | - Filippo Crea
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy; Department of Cardiovascular Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Rocco A Montone
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy; Department of Cardiovascular Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
| |
Collapse
|
32
|
Zhu X, Chen R, Yuan J, Liu Y, Wang Y, Ji X, Kan H, Zhao J. Hourly Heat Exposure and Acute Ischemic Stroke. JAMA Netw Open 2024; 7:e240627. [PMID: 38416489 PMCID: PMC10902723 DOI: 10.1001/jamanetworkopen.2024.0627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 01/08/2024] [Indexed: 02/29/2024] Open
Abstract
Importance Previous studies have demonstrated the associations of daily high temperature with hospitalizations and mortality from ischemic stroke, but the hourly association of ambient heat and acute ischemic stroke (AIS) onset has been rarely examined. Objectives To evaluate the association between hourly high ambient temperature and the onset of AIS. Design, Setting, and Participants This time-stratified case-crossover study was conducted using a nationwide registry that collects data from more than 200 stroke centers in China. Participants were adult patients with AIS who were hospitalized in the warm seasons between January 1, 2019, and December 31, 2021. Exposures Hourly temperature and single-hour temperature exposure lag up to 24 hours before the AIS onset (lag 0 hours to lag 24 hours). Main Outcomes and Measures The main outcome was onset of AIS. Associations between hourly mean temperatures and AIS onset were analyzed using conditional logistic regression integrated with the distributed lag nonlinear model. Stratification analyses were applied to examine potential association modifiers. Several sensitivity analyses were conducted to examine the robustness of the results. Results A total of 82 455 patients with AIS (mean [SD] age, 65.8 [11.9] years; 52 267 males [63.4%]) were included in the final analysis. A monotonically increasing risk of AIS onset was associated with higher temperatures. The excess AIS risk occurred immediately at lag 0 hours and persisted for 10 hours. Compared with the reference temperature (12.1 °C), the cumulative odds ratio (OR) over lag 0 to 10 hours of AIS onset associated with extremely high temperature (33.3 °C) was 1.88 (95% CI, 1.65-2.13) nationwide. The exposure-response curve was steeper in the north than in the south (OR, 1.80 [95% CI, 1.53-2.11] vs 1.57 [95% CI, 1.31-1.87]). The ORs were greater for males and patients with a history of dyslipidemia or atrial fibrillation, but the differences were not significant. Conclusions and Relevance Results of this study suggest that hourly heat exposure is associated with increased risk of AIS onset. This finding may benefit the formulation of public health strategies to reduce cerebrovascular risk associated with high ambient temperature under global warming.
Collapse
Affiliation(s)
- Xinlei Zhu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and National Health Commission Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and National Health Commission Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Jing Yuan
- Minhang Hospital and School of Pharmacy, Fudan University, Shanghai, China
| | - Yang Liu
- Department of Neurology, Minhang Hospital, Fudan University, Shanghai, China
| | - Yong Wang
- Department of Neurology, Minhang Hospital, Fudan University, Shanghai, China
| | - Xunming Ji
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and National Health Commission Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Jing Zhao
- Department of Neurology, Minhang Hospital, Fudan University, Shanghai, China
| |
Collapse
|
33
|
Liu T, Shi C, Wei J, Xu R, Li Y, Wang R, Lu W, Liu L, Zhong C, Zhong Z, Zheng Y, Wang T, Hou S, Lv Z, Huang S, Chen G, Zhou Y, Sun H, Liu Y. Extreme temperature events and dementia mortality in Chinese adults: a population-based, case-crossover study. Int J Epidemiol 2024; 53:dyad119. [PMID: 37690069 DOI: 10.1093/ije/dyad119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 08/23/2023] [Indexed: 09/12/2023] Open
Abstract
BACKGROUND The effect of exposure to extreme temperature events (ETEs) on dementia mortality remains largely unknown. We aimed to quantify the association of ETE exposure with dementia mortality. METHODS We conducted a population-based, case-crossover study among 57 791 dementia deaths in Jiangsu province, China, during 2015-20. Daily mean temperatures were extracted from a validated grid dataset at each subject's residential address, and grid-specific exposures to heat wave and cold spell were assessed with a combination of their intensity and duration. We applied conditional logistic regression models to investigate cumulative and lag effects for ETE exposures. RESULTS Exposure to ETE with each of all 24 definitions was associated with an increased odds of dementia mortality, which was higher when exposed to heat wave. Exposure to heat wave (daily mean temperature ≥95th percentile, duration ≥3 days (d); P95_3d) and cold spell (≤5th percentile, duration ≥3 d; P5_3d) was associated with a 75% (95% CI: 61%, 90%) and 30% (19%, 43%) increase in odds of dementia mortality, respectively. Definitions with higher intensity were generally associated with a higher odds of dementia mortality. We estimated that 6.14% of dementia deaths were attributable to exposure to heat wave (P90_2d) and cold spell (P10_2d). No effect modifications were observed by sex or age, except that the association for heat wave was stronger among women. CONCLUSIONS Exposure to both heat wave and cold spell was associated with an increased odds of dementia mortality. Our findings highlight that reducing individual ETE exposures may be helpful in preventing deaths from dementia, especially among women in summer.
Collapse
Affiliation(s)
- Tingting Liu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Chunxiang Shi
- Meteorological Data Laboratory, National Meteorological Information Center, Beijing, China
| | - Jing Wei
- Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA
| | - Ruijun Xu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yingxin Li
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Rui Wang
- Luohu District Chronic Disease Hospital, Shenzhen, Guangdong, China
| | - Wenfeng Lu
- Department of Preventive Medicine, School of Public Health, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Likun Liu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Chenghui Zhong
- Department of Preventive Medicine, School of Public Health, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zihua Zhong
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yi Zheng
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Tingting Wang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Sihan Hou
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ziquan Lv
- Central Laboratory, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Suli Huang
- Department of Environment and Health, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Gongbo Chen
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Yun Zhou
- Department of Preventive Medicine, School of Public Health, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Hong Sun
- Department of Environment and Health, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu, China
| | - Yuewei Liu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
34
|
Demirbilek H, Mercan Y. Long-term effects of air pollutants on deaths in a semi-urban city in Northwestern Turkey: a time series analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:815-825. [PMID: 36716387 DOI: 10.1080/09603123.2023.2173155] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
To examine the associations between daily variations of coarse Particulate Matter(PM10) and/or sulfur dioxide(SO2) and mortality. The Poisson Generalized Linear Model(GLM) was employed to analyze the relationship between ambient air pollutants such as PM10 and SO2 and mortality. For each 10 μg/m3 increase in PM10, the overall mortality risk was found to be 1.022-fold high on the previous-eighth-day(lag 7) (RR, 95%CI:1.002-1.042) in the unadjusted model; 1.031-fold high in men (RR, 95%CI:1.005-1.058); 1.024-fold high in those aged 65 and over (RR, 95%CI:1.001-1.048). Also, the risk of death in men was 1.028-fold high in the model adjusted on the previous- eighth-day(lag 7) (RR, 95%CI:1.002-1.055). Mortality risk was found to be 1.088-fold high in 10 μg/m3 increase in SO2 under 65 years in males in the previous-third-day(lag 2) in the unadjusted model, and the risk of death was found to be 1.086-fold (RR, 95%CI:1.007-1.164) high in males in the adjusted model. .
Collapse
Affiliation(s)
- Hamza Demirbilek
- Kirklareli University Institute of Health Sciences, Kırklareli, Turkey
| | - Yeliz Mercan
- Kirklareli University Faculty of Health Sciences, Kirklareli, Turkey
| |
Collapse
|
35
|
Wu C, He G, Wu W, Meng R, Zhou C, Bai G, Yu M, Gong W, Huang B, Xiao Y, Hu J, Xiao J, Zeng F, Yang P, Liu D, Zhu Q, Chen Z, Yu S, Huang C, Du Y, Liang X, Liu T, Ma W. Ambient PM 2.5 and cardiopulmonary mortality in the oldest-old people in China: A national time-stratified case-crossover study. MED 2024; 5:62-72.e3. [PMID: 38218176 DOI: 10.1016/j.medj.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/03/2023] [Accepted: 12/07/2023] [Indexed: 01/15/2024]
Abstract
BACKGROUND Evidence on the associations of fine particulate matter (PM2.5) with cardiopulmonary mortality in the oldest-old (aged 80+ years) people remains limited. METHODS We conducted a time-stratified case-crossover study of 1,475,459 deaths from cardiopulmonary diseases in China to estimate the associations between short-term exposure to ambient PM2.5 and cardiopulmonary mortality among the oldest-old people. FINDINGS Each 10 μg/m3 increase in PM2.5 concentration (6-day moving average [lag05]) was associated with higher mortality from cardiopulmonary diseases (excess risks [ERs] = 1.69%, 95% confidence interval [CI]: 1.54%, 1.84%), cardiovascular diseases (ER = 1.72%, 95% CI: 1.54%, 1.90%), and respiratory diseases (ER = 1.62%, 95% CI: 1.33%, 1.91%). Compared to the other groups, females (ER = 1.94%, 95% CI: 1.73%, 2.15%) (p for difference test = 0.043) and those aged 95-99 years (ER = 2.31%, 95% CI: 1.61%, 3.02%) (aged 80-85 years old was the reference, p for difference test = 0.770) presented greater mortality risks. We found 14 specific cardiopulmonary causes associated with PM2.5, out of which emphysema (ER = 3.20%, 95% CI: 1.57%, 4.86%) had the largest association. Out of the total deaths, 6.27% (attributable fraction [AF], 95% CI: 5.72%, 6.82%) were ascribed to short-term PM2.5 exposure. CONCLUSIONS This study provides evidence of PM2.5-induced cardiopulmonary mortality and calls for targeted prevention actions for the oldest-old people. FUNDING This work was supported by the National Key Research and Development Program of China, the National Natural Science Foundation of China, the Foreign Expert Program of the Ministry of Science and Technology, the Natural Science Foundation of Guangdong, China, and the Science and Technology Program of Guangzhou.
Collapse
Affiliation(s)
- Cuiling Wu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, China; Disease Control and Prevention Institute of Jinan University, Jinan University, Guangzhou 510632, China
| | - Guanhao He
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, China; Disease Control and Prevention Institute of Jinan University, Jinan University, Guangzhou 510632, China
| | - Wei Wu
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
| | - Ruilin Meng
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
| | - Chunliang Zhou
- Department of Environment and Health, Hunan Provincial Center for Disease Control and Prevention, Changsha 450001, China
| | - Guoxia Bai
- Institute of Non-communicable Diseases Prevention and Control, Tibet Center for Disease Control and Prevention, Lhasa 850000, China
| | - Min Yu
- Zhejiang Center for Disease Control and Prevention, Hangzhou, Zhejiang 310051, China
| | - Weiwei Gong
- Zhejiang Center for Disease Control and Prevention, Hangzhou, Zhejiang 310051, China
| | - Biao Huang
- Health Hazard Factors Control Department, Jilin Provincial Center for Disease Control and Prevention, Changchun 130062, China
| | - Yize Xiao
- Yunnan Center for Disease Control and Prevention, Kunming 650022, China
| | - Jianxiong Hu
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
| | - Jianpeng Xiao
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
| | - Fangfang Zeng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, China; Disease Control and Prevention Institute of Jinan University, Jinan University, Guangzhou 510632, China
| | - Pan Yang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, China; Disease Control and Prevention Institute of Jinan University, Jinan University, Guangzhou 510632, China
| | - Dan Liu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, China; Disease Control and Prevention Institute of Jinan University, Jinan University, Guangzhou 510632, China
| | - Qijiong Zhu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, China; Disease Control and Prevention Institute of Jinan University, Jinan University, Guangzhou 510632, China
| | - Zhiqing Chen
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, China; Disease Control and Prevention Institute of Jinan University, Jinan University, Guangzhou 510632, China
| | - Siwen Yu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, China; Disease Control and Prevention Institute of Jinan University, Jinan University, Guangzhou 510632, China
| | - Cunrui Huang
- Vanke School of Public Health, Tsinghua University, Beijing 100084, China
| | - Yaodong Du
- Guangdong Provincial Climate Center, Guangzhou 510080, China
| | - Xiaofeng Liang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, China; Disease Control and Prevention Institute of Jinan University, Jinan University, Guangzhou 510632, China
| | - Tao Liu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, China; Disease Control and Prevention Institute of Jinan University, Jinan University, Guangzhou 510632, China.
| | - Wenjun Ma
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, China; Disease Control and Prevention Institute of Jinan University, Jinan University, Guangzhou 510632, China
| |
Collapse
|
36
|
Xu R, Sun H, Zhong Z, Zheng Y, Liu T, Li Y, Liu L, Luo L, Wang S, Lv Z, Huang S, Shi C, Chen W, Wei J, Xia W, Liu Y. Ozone, Heat Wave, and Cardiovascular Disease Mortality: A Population-Based Case-Crossover Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:171-181. [PMID: 38100468 DOI: 10.1021/acs.est.3c06889] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
A case-crossover study among 511,767 cardiovascular disease (CVD) deaths in Jiangsu province, China, during 2015-2021 was conducted to assess the association of exposure to ambient ozone (O3) and heat wave with CVD mortality and explore their possible interactions. Heat wave was defined as extreme high temperature for at least two consecutive days. Grid-level heat waves were defined by multiple combinations of apparent temperature thresholds and durations. Residential O3 and heat wave exposures were assessed using grid data sets (spatial resolution: 1 km × 1 km for O3; 0.0625° × 0.0625° for heat wave). Conditional logistic regression models were applied for exposure-response analyses and evaluation of additive interactions. Under different heat wave definitions, the odds ratios (ORs) of CVD mortality associated with medium-level and high-level O3 exposures ranged from 1.029 to 1.107 compared with low-level O3, while the ORs for heat wave exposure ranged from 1.14 to 1.65. Significant synergistic effects on CVD mortality were observed for the O3 and heat wave exposures, which were generally greater with higher levels of the O3 exposure, higher temperature thresholds, and longer durations of heat wave exposure. Up to 5.8% of the CVD deaths were attributable to O3 and heat wave. Women and older adults were more vulnerable to the exposure to O3 and heat wave exposure. Exposure to both O3 and heat wave was significantly associated with an increased odds of CVD mortality, and O3 and heat wave can interact synergistically to trigger CVD deaths.
Collapse
Affiliation(s)
- Ruijun Xu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Hong Sun
- Institute of Environment and Health, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu 210009, China
| | - Zihua Zhong
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Yi Zheng
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Tingting Liu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Yingxin Li
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Likun Liu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Lu Luo
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Sirong Wang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Ziquan Lv
- Central Laboratory of Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong 518055, China
| | - Suli Huang
- School of Public Health, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Chunxiang Shi
- Meteorological Data Laboratory, National Meteorological Information Center, Beijing 100081, China
| | - Weiqing Chen
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Jing Wei
- Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland 20740, United States
| | - Wenhao Xia
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
- Department of Cardiology, Guangxi Hospital Division of The First Affiliated Hospital, Sun Yat-sen University, Nanning, Guangxi 530022, China
| | - Yuewei Liu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| |
Collapse
|
37
|
Yan R, Ying S, Jiang Y, Duan Y, Chen R, Kan H, Fu Q, Gu Y. Associations between ultrafine particle pollution and daily outpatient visits for respiratory diseases in Shanghai, China: a time-series analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:3004-3013. [PMID: 38072886 PMCID: PMC10791965 DOI: 10.1007/s11356-023-31248-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/22/2023] [Indexed: 01/18/2024]
Abstract
Previous epidemiological studies have linked short-term exposure to particulate matter with outpatient visits for respiratory diseases. However, evidence on ultrafine particle (UFP) is still scarce in China. To investigate the association between short-term UFP exposure and outpatient visits for respiratory diseases as well as the corresponding lag patterns, information on outpatient visits for main respiratory diseases during January 1, 2017, to December 31, 2019 was collected from electronic medical records of two large tertiary hospitals in Shanghai, China. Generalized additive models employing a Quasi-Poisson distribution were employed to investigate the relationships between UFP and respiratory diseases. We computed the percentage change and its corresponding 95% confidence interval (CI) for outpatient visits related to respiratory diseases per interquartile range (IQR) increase in UFP concentrations. Based on a total of 1,034,394 hospital visits for respiratory diseases in Shanghai, China, we found that the strongest associations of total UFP with acute upper respiratory tract infection (AURTI), bronchitis, chronic obstructive pulmonary disease (COPD), and pneumonia occurred at lag 03, 03, 0, and 03 days, respectively. Each IQR increase in the total UFP concentrations was associated with increments of 9.02% (95% CI: 8.64-9.40%), 3.94% (95% CI: 2.84-5.06%), 4.10% (95% CI: 3.01-5.20%), and 10.15% (95% CI: 9.32-10.99%) for AURTI, bronchitis, COPD, and pneumonia, respectively. Almost linear concentration-response relationship curves without apparent thresholds were observed between total UFP and outpatient-department visits for four respiratory diseases. Stratified analyses illustrated significantly stronger associations of total UFP with AURTI, bronchitis, and pneumonia among female patients, while that with COPD was stronger among male patients. After adjustment of criteria air pollutants, these associations all remained robust. This time-series study indicates that short-term exposure to UFP was associated with increased risk of hospital visits for respiratory diseases, underscoring the importance of reducing ambient UFP concentrations for respiratory diseases control and prevention.
Collapse
Affiliation(s)
- Ran Yan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Shengjie Ying
- Shanghai Minhang District Center for Disease Control and Prevention, Shanghai, 201101, China
| | - Yixuan Jiang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Yusen Duan
- Shanghai Environmental Monitoring Center, Shanghai, 200235, China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Qingyan Fu
- Shanghai Environmental Monitoring Center, Shanghai, 200235, China
| | - Yiqin Gu
- Shanghai Minhang District Center for Disease Control and Prevention, Shanghai, 201101, China.
- Shanghai Minhang Dental Disease Prevention and Treatment Institute, Shanghai, 201103, China.
| |
Collapse
|
38
|
Tian X, Zeng J, Li X, Li S, Zhang T, Deng Y, Yin F, Ma Y. Assessing the short-term effects of PM 2.5 and O 3 on cardiovascular mortality using high-resolution exposure: a time-stratified case cross-over study in Southwestern China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:3775-3785. [PMID: 38087153 DOI: 10.1007/s11356-023-31276-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/24/2023] [Indexed: 01/19/2024]
Abstract
Air pollution is a major risk factor of cardiovascular disease (CVD). To date, limited studies have estimated the effects of ambient air pollution on CVD mortality using high-resolution exposure assessment, which might fail to capture the spatial variation in exposure and introduce bias in results. Besides, the three-year action plan (TYAP, 2018-2020) was released; thus, the constitution and health effect of air pollutants may have changed. In this study, we estimated the short-term effect exposed to particulate matters with parameter less than 2.5 µm (PM2.5) and ozone (O3) with 0.05° × 0.05° resolution on CVD mortality and measured the influence of TYAP in the associations. We used random forest models with spatial weight matrices to attain high-resolution pollutant concentrations and conditional Poisson regression to assess the relationship between air pollution and cardiovascular mortality. With an increase of 10 µg/m3 in PM2.5 and O3 during 2018-2021 in the Sichuan Basin (SCB), CVD mortality increased 1.0134 (95% CI 1.0102, 1.0166) and 1.0083 (95% CI 1.0060, 1.0107), respectively, using high-resolution air pollutant concentration, comparing to 1.0070 (95% CI 1.0052, 1.0087) and 1.0057 (95% CI 1.0037, 1.0078) using data from air quality monitoring stations (AQMs). After TYAP, the relative risk (RR) due to PM2.5 rose up to 1.0149 (95% CI 1.0054, 1.0243), and the RR due to O3 rose up to 1.0089 (95% CI 1.0030, 1.0148) in Sichuan Province. We found significantly positive association of cardiovascular mortality and air pollution in Sichuan Province. And using high-resolution exposure would be more accurate to estimate the effect of air pollution on CVD. After TYAP, the cardiovascular mortality risk estimation due to PM2.5 decreased in elderly in SCB, and the risk due to O3 increased in Sichuan Province.
Collapse
Affiliation(s)
- Xinyue Tian
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jing Zeng
- Department of Chronic Disease Surveillance, Sichuan Center for Disease Control and Prevention, Chengdu, Sichuan, China
| | - Xuelin Li
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Sheng Li
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tao Zhang
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ying Deng
- Department of Chronic Disease Surveillance, Sichuan Center for Disease Control and Prevention, Chengdu, Sichuan, China
| | - Fei Yin
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yue Ma
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China.
- Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
39
|
Lin X, Cai M, Tan K, Liu E, Wang X, Song C, Wei J, Lin H, Pan J. Ambient particulate matter and in-hospital case fatality of acute myocardial infarction: A multi-province cross-sectional study in China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 268:115731. [PMID: 38007949 DOI: 10.1016/j.ecoenv.2023.115731] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/18/2023] [Accepted: 11/21/2023] [Indexed: 11/28/2023]
Abstract
The acute myocardial infarction (AMI) outcomes have been extensively linked with ambient particulate matter (PM). However, whether a smaller particle has greater impact and the consequent attributable burden associated with PM of different sizes remain unclear. We conducted a multi-province cross-sectional study among AMI patients using the inpatient discharge datasets from four Chinese provinces (Shanxi, Sichuan, Guangxi, and Guangdong) from 2014 to 2019. Ambient PM exposure for each patient was assessed using the ChinaHighAirPollutants dataset. We employed the mixed-effects logistic regression models to evaluate the association of PM of different sizes (PM1, PM2.5, PM10) on in-hospital case fatality. The potential reducible fractions in in-hospital case fatality were estimated through counterfactual analyses. Of 177,749 participants, 125,501 (70.6 %) were male and the in-hospital case fatality rate was 4.9%. For short-term (7-day average) exposure, the odds ratios (ORs) for PM1, PM2.5, and PM10 (per 10 µg/m3) were 1.052 (95 % confidence interval [CI], 1.032-1.071), 1.026 (95 % CI, 1.014-1.037), and 1.016 (95% CI, 1.008-1.024), respectively. The estimated ORs for long-term exposure (annual average) were 1.303 (95 % CI, 1.252-1.356) for PM1, 1.209 (95 % CI, 1.178-1.241) for PM2.5, 1.157 (95 % CI, 1.134-1.181) for PM10. Short-term exposure to PM1 showed the highest potential reducible fraction (8.5 %, 95 % CI, 5.0-11.7 %), followed by PM2.5 and PM10, while the greatest potential reducible fraction of long-term exposure was observed in PM10 (30.9 %, 95 % CI, 27.2-34.4%), followed by PM2.5 and PM1. In summary, PM with smaller size had a more pronounced impact on in-hospital AMI case fatality, with PM1 exhibiting greater effects than PM2.5 and PM10. Substantial health benefits for AMI patients could be achieved by mitigating ambient PM exposure.
Collapse
Affiliation(s)
- Xiaojun Lin
- HEOA Group, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, Section 3, Ren Min Nan Road, Chengdu, Sichuan 610041, China; Institute for Healthy Cities and West China Research Center for Rural Health Development, Sichuan University, No. 16, Section 3, Ren Min Nan Road, Chengdu, Sichuan 610041, China; West China-PUMC C.C. Chen Institute of Health, Sichuan University, No. 16, Section 3, Ren Min Nan Road, Chengdu, Sichuan 610041, China
| | - Miao Cai
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, No. 74, Zhongshan 2nd road, Yuexiu District, Guangzhou, Guangdong 510080, China
| | - Kun Tan
- Health Information Center of Sichuan Province, No. 39, Wangjiaguai Street, Chengdu, Sichuan 610041, China
| | - Echu Liu
- Department of Health Management and Policy, College for Public Health and Social Justice, Saint Louis University, St. Louis, MO 63103, USA
| | - Xiuli Wang
- HEOA Group, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, Section 3, Ren Min Nan Road, Chengdu, Sichuan 610041, China; Institute for Healthy Cities and West China Research Center for Rural Health Development, Sichuan University, No. 16, Section 3, Ren Min Nan Road, Chengdu, Sichuan 610041, China; West China-PUMC C.C. Chen Institute of Health, Sichuan University, No. 16, Section 3, Ren Min Nan Road, Chengdu, Sichuan 610041, China
| | - Chao Song
- HEOA Group, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, Section 3, Ren Min Nan Road, Chengdu, Sichuan 610041, China; Institute for Healthy Cities and West China Research Center for Rural Health Development, Sichuan University, No. 16, Section 3, Ren Min Nan Road, Chengdu, Sichuan 610041, China; West China-PUMC C.C. Chen Institute of Health, Sichuan University, No. 16, Section 3, Ren Min Nan Road, Chengdu, Sichuan 610041, China
| | - Jing Wei
- Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD 20740, USA.
| | - Hualiang Lin
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, No. 74, Zhongshan 2nd road, Yuexiu District, Guangzhou, Guangdong 510080, China.
| | - Jay Pan
- HEOA Group, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, Section 3, Ren Min Nan Road, Chengdu, Sichuan 610041, China; West China-PUMC C.C. Chen Institute of Health, Sichuan University, No. 16, Section 3, Ren Min Nan Road, Chengdu, Sichuan 610041, China; China Center for South Asian Studies, Sichuan University, No.24 South Section I, Yihuan Road, Chengdu, Sichuan 610065, China.
| |
Collapse
|
40
|
Anbari K, Sicard P, Omidi Khaniabadi Y, Raja Naqvi H, Rashidi R. Assessing the effect of COVID-19 pandemic on air quality change and human health outcomes in a capital city, southwestern Iran. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2023; 33:1716-1727. [PMID: 36099327 DOI: 10.1080/09603123.2022.2120967] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
The aimsof this study were to assess the spatial variation of PM2.5, NO2, and O3 between 2019 (before) and 2020 (during COVID-19 pandemic); and calculation the health outcomes of exposure to these pollutants. The daily PM2.5, NO2, and O3 concentrations were applied to assess health effects by relative risk, and baseline incidence. The annual PM2.5 and NO2 mean concentrations exceeded the WHO guideline values, while O3 did not exceed. The restrictive measures associated to COVID-19 led to reduction at the annual means of PM2.5 and NO2 by -25.5% and -23.1%, respectively, while the annual mean of O3 increased by +7.9%. The number of M-CVD and M-RD (-25.6%, -26.1%) related to PM2.5 exposure, and HA-COPD and HA-RD >65 years old (-21% and -3.84%) related to NO2 exposure were reduced in 2020, and O3 exposure-related M-CVD (+30.1%) and HA-RD >65 years old (+23.4%) increased compared to the previous year 2019.
Collapse
Affiliation(s)
- Khatereh Anbari
- Social Determinants of Health Research Center, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | | | - Yusef Omidi Khaniabadi
- Occupational and Environmental Health Research Center, Petroleum Industry Health Organization (PIHO), Ahvaz, Iran
| | - Hasan Raja Naqvi
- Department of Geography, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, India
| | - Rajab Rashidi
- Department of Occupational Health, Nutritional Health Research Center, School of Health and Nutrition, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
41
|
He Q, Liu Y, Yin P, Gao Y, Kan H, Zhou M, Chen R, Li Y. Differentiating the impacts of ambient temperature on pneumonia mortality of various infectious causes: a nationwide, individual-level, case-crossover study. EBioMedicine 2023; 98:104854. [PMID: 38251462 PMCID: PMC10628343 DOI: 10.1016/j.ebiom.2023.104854] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/02/2023] [Accepted: 10/12/2023] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND It remains unknown how ambient temperature impact pneumonia of various infectious causes. METHODS Based on the national death registry covering all counties in Chinese mainland, we conducted an individual-level case-crossover study in China from 2013 to 2019. Exposures were assigned at residential addresses for each decedent. Conditional logistic regression model combined with distributed lag non-linear models were used to estimate the exposure-response associations. The attributable fractions due to non-optimum temperature were calculated after accounting for spatial and temporal patterns for the excess risks. FINDINGS The exposure-response curves were inversely J-shaped with both low and high temperature increasing the risks, and the effect of low temperature was stronger. Extremely low temperature was associated with higher magnitude of influenza-related pneumonia [relative risk (RR): 2.46, 95% confidence interval (CI): 1.62-3.74], than viral pneumonia (RR: 1.89, 95% CI: 1.55-2.30) and bacterial pneumonia (RR: 1.81, 95% CI: 1.56-2.09). The magnitudes of RRs associated with extremely high temperature were similar among the three categories of pneumonia. The mortality attributable fraction for influenza-related pneumonia (29.78%) was the highest. The effects were stronger in people of low education level or residence in the north. INTERPRETATION This nationwide study presents findings on the varied risk and burden of pneumonia mortality of various infectious causes, and highlights the susceptibility of influenza-related pneumonia to ambient low temperature. FUNDING This study is supported by the National Key Research and Development Program (2022YFC3702701), the Shanghai Municipal Science and Technology Commission (21TQ015) and Shanghai International Science and Technology Partnership Project (21230780200).
Collapse
Affiliation(s)
- Qinglin He
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Yunning Liu
- National Center for Chronic Non-communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Peng Yin
- National Center for Chronic Non-communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Ya Gao
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Maigeng Zhou
- National Center for Chronic Non-communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, 200032, China.
| | - Yanming Li
- Department of Respiratory and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
42
|
Sun HZ, Zhao J, Liu X, Qiu M, Shen H, Guillas S, Giorio C, Staniaszek Z, Yu P, Wan MW, Chim MM, van Daalen KR, Li Y, Liu Z, Xia M, Ke S, Zhao H, Wang H, He K, Liu H, Guo Y, Archibald AT. Antagonism between ambient ozone increase and urbanization-oriented population migration on Chinese cardiopulmonary mortality. Innovation (N Y) 2023; 4:100517. [PMID: 37822762 PMCID: PMC10562756 DOI: 10.1016/j.xinn.2023.100517] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/17/2023] [Indexed: 10/13/2023] Open
Abstract
Ever-increasing ambient ozone (O3) pollution in China has been exacerbating cardiopulmonary premature deaths. However, the urban-rural exposure inequity has seldom been explored. Here, we assess population-scale O3 exposure and mortality burdens between 1990 and 2019 based on integrated pollution tracking and epidemiological evidence. We find Chinese population have been suffering from climbing O3 exposure by 4.3 ± 2.8 ppb per decade as a result of rapid urbanization and growing prosperity of socioeconomic activities. Rural residents are broadly exposed to 9.8 ± 4.1 ppb higher ambient O3 than the adjacent urban citizens, and thus urbanization-oriented migration compromises the exposure-associated mortality on total population. Cardiopulmonary excess premature deaths attributable to long-term O3 exposure, 373,500 (95% uncertainty interval [UI]: 240,600-510,900) in 2019, is underestimated in previous studies due to ignorance of cardiovascular causes. Future O3 pollution policy should focus more on rural population who are facing an aggravating threat of mortality risks to ameliorate environmental health injustice.
Collapse
Affiliation(s)
- Haitong Zhe Sun
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
- Department of Earth Sciences, University of Cambridge, Cambridge CB2 3EQ, UK
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Junchao Zhao
- State Key Joint Laboratory of ESPC, State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiang Liu
- School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
| | - Minghao Qiu
- Department of Earth System Science, Stanford University, Stanford, CA 94305, USA
| | - Huizhong Shen
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Serge Guillas
- Department of Statistical Science, University College London, London WC1E 6BT, UK
- The Alan Turing Institute, London NW1 2DB, UK
| | - Chiara Giorio
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Zosia Staniaszek
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Pei Yu
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Michelle W.L. Wan
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Man Mei Chim
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Kim Robin van Daalen
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
- Heart and Lung Research Institute, University of Cambridge, Cambridge CB2 0BD, UK
- Barcelona Supercomputing Center, Department of Earth Sciences, 08034 Barcelona, Spain
| | - Yilin Li
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Zhenze Liu
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Mingtao Xia
- Department of Mathematics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Shengxian Ke
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Haifan Zhao
- Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, UK
| | - Haikun Wang
- School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
| | - Kebin He
- State Key Joint Laboratory of ESPC, State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, School of Environment, Tsinghua University, Beijing 100084, China
| | - Huan Liu
- State Key Joint Laboratory of ESPC, State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yuming Guo
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Alexander T. Archibald
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
- National Centre for Atmospheric Science, Cambridge CB2 1EW, UK
| |
Collapse
|
43
|
Tabaghi S, Sheibani M, Khaheshi I, Miri R, Haji Aghajani M, Safi M, Eslami V, Pishgahi M, Alipour Parsa S, Namazi MH, Beyranvand MR, Sohrabifar N, Hassanian‐Moghaddam H, Pourmotahari F, Khaiat S, Akbarzadeh MA. Associations between short-term exposure to fine particulate matter and acute myocardial infarction: A case-crossover study. Clin Cardiol 2023; 46:1319-1325. [PMID: 37501642 PMCID: PMC10642339 DOI: 10.1002/clc.24111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/21/2023] [Accepted: 07/27/2023] [Indexed: 07/29/2023] Open
Abstract
BACKGROUND Previous studies evaluated the impact of particle matters (PM) on the risk of acute myocardial infarction (AMI) based on local registries. HYPOTHESIS This study aimed to evaluate possible short term effect of air pollutants on occurrence of AMI based on a specific case report sheet that was designed for this purpose. METHODS AMI was documented among 982 patients who referred to the emergency departments in Tehran, Iran, between July 2017 to March 2019. For each patient, case period was defined as 24 hour period preceding the time of emergency admission and referent periods were defined as the corresponding time in 1, 2, and 3 weeks before the admission. The associations of particulate matter with an aerodynamic diameter ≤2.5 μm (PM2 .5 ) and particulate matter with an aerodynamic diameter ≤10 μm (PM10 ) with AMI were analyzed using conditional logistic regression in a case-crossover design. RESULT Increase in PM2.5 and PM10 was significantly associated with the occurrence of AMI with and without adjustment for the temperature and humidity. In the adjusted model each 10 μg/m3 increase of PM10 and PM2.5 in case periods was significantly associated with increase myocardial infarction events (95% CI = 1.041-1.099, OR = 1.069 and 95% CI = 1.073-1.196, and OR = 1.133, respectively). Subgroup analysis showed that increase in PM10 did not increase AMI events in diabetic subgroup, but in all other subgroups PM10 and PM2 .5 concentration showed positive associations with increased AMI events. CONCLUSION Acute exposure to ambient air pollution was associated with increased risk of AMI irrespective of temperature and humidity.
Collapse
Affiliation(s)
- Shiva Tabaghi
- Cardiovascular Research CenterShahid Beheshti University of Medical SciencesTehranIran
| | - Mehdi Sheibani
- Cardiovascular Research CenterShahid Beheshti University of Medical SciencesTehranIran
| | - Isa Khaheshi
- Cardiovascular Research CenterShahid Beheshti University of Medical SciencesTehranIran
| | - Reza Miri
- Prevention of Cardiovascular Disease Research CenterShahid Beheshti University of Medical SciencesTehranIran
| | - Mohammad Haji Aghajani
- Prevention of Cardiovascular Disease Research CenterShahid Beheshti University of Medical SciencesTehranIran
| | - Morteza Safi
- Cardiovascular Research CenterShahid Beheshti University of Medical SciencesTehranIran
| | - Vahid Eslami
- Department of CardiologyShahid Labbafinejad Hospital, Shahid Beheshti University of Medical SciencesTehranIran
| | - Mehdi Pishgahi
- Department of CardiologyShohada‐e Tajrish Hospital, Shahid Beheshti University of Medical SciencesTehranIran
| | - Saeed Alipour Parsa
- Cardiovascular Research CenterShahid Beheshti University of Medical SciencesTehranIran
| | | | - Mohammad Reza Beyranvand
- Department of CardiologyTaleghani Hospital, Shahid Beheshti University of Medical SciencesTehranIran
| | - Nasim Sohrabifar
- Cardiovascular Research CenterShahid Beheshti University of Medical SciencesTehranIran
| | | | - Fatemeh Pourmotahari
- Department of Community MedicineSchool of Medicine, Dezful University of Medical SciencesDezfulIran
| | | | | |
Collapse
|
44
|
Mo S, Hu J, Yu C, Bao J, Shi Z, Zhou P, Yang Z, Luo S, Yin Z, Zhang Y. Short-term effects of fine particulate matter constituents on myocardial infarction death. J Environ Sci (China) 2023; 133:60-69. [PMID: 37451789 DOI: 10.1016/j.jes.2022.07.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 07/18/2023]
Abstract
Existing evidence suggested that short-term exposure to fine particulate matter (PM2.5) may increase the risk of death from myocardial infarction (MI), while PM2.5 constituents responsible for this association has not been determined. We collected 12,927 MI deaths from 32 counties in southern China during 2011-2013. County-level exposures of ambient PM2.5 and its 5 constituents (i.e., elemental carbon (EC), organic carbon (OC), sulfate (SO42-), ammonium (NH4+), and nitrate (NO3-)) were aggregated from gridded datasets predicted by Community Multiscale Air Quality Modeling System. We employed a space-time-stratified case-crossover design and conditional logistic regression models to quantify the association of MI mortality with short-term exposure to PM2.5 and its constituents across various lag days. Over the study period, the daily mean PM2.5 mass concentration was 77.8 (standard deviation (SD) = 72.7) µg/m3. We estimated an odds ratio of 1.038 (95% confidence interval (CI): 1.003-1.074), 1.038 (1.013-1.063) and 1.057 (1.023-1.097) for MI mortality associated with per interquartile range (IQR) increase in the 3-day moving-average exposure to PM2.5 (IQR = 76.3 µg/m3), EC (4.1 µg/m3) and OC (9.1 µg/m3), respectively. We did not identify significant association between MI death and exposure to water-soluble ions (SO42-, NH4+ and NO3-). Likelihood ratio tests supported no evident violations of linear assumptions for constituents-MI associations. Subgroup analyses showed stronger associations between MI death and EC/OC exposure in the elderly, males and cold months. Short-term exposure to PM2.5 constituents, particularly those carbonaceous aerosols, was associated with increased risks of MI mortality.
Collapse
Affiliation(s)
- Shaocai Mo
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Jianlin Hu
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Chuanhua Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan 430071, China
| | - Junzhe Bao
- Department of Epidemiology and Biostatistics, School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Zhihao Shi
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Peixuan Zhou
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Zhiming Yang
- School of Economics and Management, University of Science and Technology Beijing, Beijing 100083, China
| | - Siqi Luo
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Zhouxin Yin
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yunquan Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China; Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, China.
| |
Collapse
|
45
|
Li Y, Fan Z, Lu W, Xu R, Liu T, Liu L, Chen G, Lv Z, Huang S, Zhou Y, Liu Y, Sun H. Long-term exposure to ambient fine particulate matter-bound polycyclic aromatic hydrocarbons and cancer mortality: A difference-in-differences approach. CHEMOSPHERE 2023; 340:139800. [PMID: 37572709 DOI: 10.1016/j.chemosphere.2023.139800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/19/2023] [Accepted: 08/10/2023] [Indexed: 08/14/2023]
Abstract
The association of ambient fine particulate matter (PM2.5) exposure with cancer mortality was controversial, which may ascribe to the difference in PM2.5 constituents. Polycyclic aromatic hydrocarbons (PAHs) are carcinogenic constituents in PM2.5, which are suspected to account for PM2.5-induced cancer mortality but are yet to be investigated. We aimed to assess the association between long-term exposure to PM2.5-bound PAHs and cancer mortality and estimate the attributable mortality. A difference-in-differences approach was used to investigate the causal effect of long-term exposure to PM2.5-bound PAHs on cancer mortality. We divided Jiangsu province, China into 53 spatial units and summarized the annual number of cancer deaths in each spatial unit during 2016-2020. Annual population-weighted exposure to PM2.5-bound PAHs of each spatial unit was assessed by an inverse distance weighting method. The association between PM2.5-bound PAHs exposures and cancer mortality was evaluated by controlling spatial differences, temporal trends, PM2.5 mass exposures, temperatures, and socioeconomic status. Records of 793,269 cancer deaths were identified among 84.7 million population. Each ln-unit increase of exposure to total benzo[a]pyrene equivalents (∑BaPeq), total carcinogenic PAHs (∑PAH7c), and total PAHs (∑PAHs) was significantly associated with a 3.21%, 3.48%, and 2.64% increased risk of cancer mortality, respectively; the risk increased monotonically at low-level exposures but attenuated or flattened afterward (all p for nonlinearity <0.05). Similar exposure-response associations were identified for specific PAHs except that the associations for both fluoranthene and benzo[a]anthracene were linear. We estimated that exposure to ∑BaPeq, ∑PAH7c, and ∑PAHs contributed to 5.73%, 8.73%, and 7.33% of cancer deaths, respectively. In conclusion, long-term exposure to PM2.5-bound PAHs was associated with an increased risk of cancer mortality and contributed to substantial cancer deaths. Our findings highlight the importance to prevent deaths from cancer by reducing PM2.5-bound PAHs exposures and the necessity to take into consideration specific constituents in particulate pollution management in future.
Collapse
Affiliation(s)
- Yingxin Li
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhaoyu Fan
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wenfeng Lu
- Department of Preventive Medicine, School of Public Health, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ruijun Xu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Tingting Liu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Likun Liu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Gongbo Chen
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Ziquan Lv
- Central Laboratory of Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Suli Huang
- Department of Environment and Health, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Yun Zhou
- Department of Preventive Medicine, School of Public Health, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yuewei Liu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Hong Sun
- Department of Environment and Health, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu, China.
| |
Collapse
|
46
|
Jiang W, Chen H, Li H, Zhou Y, Xie M, Zhou C, Yang L. The Short-Term Effects and Burden of Ambient Air Pollution on Hospitalization for Type 2 Diabetes: Time-Stratified Case-Crossover Evidence From Sichuan, China. GEOHEALTH 2023; 7:e2023GH000846. [PMID: 38023385 PMCID: PMC10680437 DOI: 10.1029/2023gh000846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 10/22/2023] [Accepted: 11/02/2023] [Indexed: 12/01/2023]
Abstract
Type 2 diabetes mellitus (T2DM), a complicated metabolic disease, might be developed or exacerbated by air pollution, resulting in economic and health burden to patients. So far, limited studies have estimated associations between short-term exposure to air pollution and disease burden of T2DM in China. Hence, we aimed to estimate the associations and burden of ambient air pollutants (NO2, PM10, PM2.5, SO2, and CO) on hospital admissions (HAs) for T2DM using a time-stratified case-crossover design. Data on HAs for T2DM during 2017-2019 were collected from hospital electronic health records in nine cities in Sichuan Province using conditional poisson regression. Totally, 92,381 T2DM hospitalizations were recorded. There were significant short-term effects of NO2, PM10, PM2.5, SO2 and CO on HAs for T2DM. A 10 μg/m3 increment of NO2, PM10, PM2.5, SO2 and CO as linked with a 3.39% (95% CI: 2.26%, 4.54%), 0.33% (95% CI: 0.04%, 0.62%), 0.76% (95% CI: 0.35%, 1.16%), 12.68% (95% CI: 8.14%, 17.42%) and 79.00% (95% CI: 39.81%, 129.18%) increase in HAs for T2DM at lag 6. Stratified analyses modified by age, sex, and season showed old (≥65 years) and female patients linked with higher impacts. Using WHO's air quality guidelines of NO2, PM10, PM2.5, and CO as the reference, the attributable number of T2DM HAs exceeding these pollutants exposures were 786, 323, 793, and 2,127 during 2017-2019. Besides, the total medical costs of 25.83, 10.54, 30.74, and 67.78 million China Yuan were attributed to NO2, PM10, PM2.5, and CO. In conclusion, short-term exposures to air pollutants were associated with higher risks of HAs for T2DM.
Collapse
Affiliation(s)
- Wanyanhan Jiang
- School of Public HealthChengdu University of Traditional Chinese MedicineChengduSichuanChina
| | - Han Chen
- Sichuan Wanhao Consulting Co., LtdChengduSichuanChina
| | - Hongwei Li
- School of Public HealthChengdu University of Traditional Chinese MedicineChengduSichuanChina
| | - Yuelin Zhou
- School of Public HealthChengdu University of Traditional Chinese MedicineChengduSichuanChina
| | - Mengxue Xie
- School of Public HealthChengdu University of Traditional Chinese MedicineChengduSichuanChina
| | - Chengchao Zhou
- Centre for Health Management and Policy ResearchSchool of Public HealthCollege of MedicineShandong UniversityJinanChina
| | - Lian Yang
- School of Public HealthChengdu University of Traditional Chinese MedicineChengduSichuanChina
| |
Collapse
|
47
|
Li L, Feng T, Wu R, Zhang Y, Wang N, Wu M, Pang Y, Yang S, Yang A, Zhang D, Hao G, Zhang R. The role of total antioxidant capacity and malondialdehyde of seminal plasma in the association between air pollution and sperm quality. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122324. [PMID: 37544399 DOI: 10.1016/j.envpol.2023.122324] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/08/2023]
Abstract
Accumulating evidence has suggested that men exposed to air pollution are associated with decreased sperm quality, and seminal plasma plays a pivotal role in maintaining sperm viability. However, the role of seminal plasma in air pollution related sperm quality decline remain unestablished. In current study, we recruited 524 participants from couples who underwent in vitro fertilization treatment due to female factors at a fertility clinic in China from March to August 2020. Conventional sperm parameters, total antioxidant capacity (T-AOC), malondialdehyde (MDA) and testosterone were measured using semen samples. The six main air pollutants (PM2.5, PM10, NO2, SO2, CO, O3) during four key periods of sperm development (meiotic stage, spermiogenesis stage, epididymal stage and total sperm cycle period) were estimated using inverse distance weighting method. Multiple linear regression models were employed to investigate the exposure-outcome relationships. And we found that PM10 exposures were negatively related to sperm total motility and the exposures of PM2.5 and PM10 were inversely associated with sperm progressive motility during epididymal stage. Furthermore, PM2.5 and PM10 exposures were positively associated with seminal plasma MDA and PM10 was negatively related to seminal plasma T-AOC during epididymal stage. PM2.5, PM10 and CO exposures during total sperm cycle period might relate to increased seminal plasma testosterone. Mediation analysis indicated seminal plasma MDA and T-AOC partially mediated PM10 associated reduction of sperm motility during epididymal stage. Our study suggested MDA and T-AOC of seminal plasma played a role in air pollution associated decline of sperm motility.
Collapse
Affiliation(s)
- Lipeng Li
- Department of Toxicology, Hebei Medical University, Shijiazhuang, 050017, Hebei, PR China; Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, 050017, PR China.
| | - Tengfei Feng
- Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Ruiting Wu
- Department of Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang, 050017, Hebei, PR China
| | - Yaling Zhang
- Department of Toxicology, Hebei Medical University, Shijiazhuang, 050017, Hebei, PR China
| | - Ning Wang
- Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Mengqi Wu
- Department of Toxicology, Hebei Medical University, Shijiazhuang, 050017, Hebei, PR China
| | - Yaxian Pang
- Department of Toxicology, Hebei Medical University, Shijiazhuang, 050017, Hebei, PR China
| | - Sujuan Yang
- Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Aimin Yang
- Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Dengsuo Zhang
- Department of Reproductive Medicine, The First Hospital of Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Guimin Hao
- Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Rong Zhang
- Department of Toxicology, Hebei Medical University, Shijiazhuang, 050017, Hebei, PR China; Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang, 050017, Hebei, PR China.
| |
Collapse
|
48
|
Yin P, Luo H, Gao Y, Liu W, Shi S, Li X, Meng X, Kan H, Zhou M, Li G, Chen R. Criteria air pollutants and diabetes mortality classified by different subtypes and complications: A nationwide, case-crossover study. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132412. [PMID: 37696209 DOI: 10.1016/j.jhazmat.2023.132412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/09/2023] [Accepted: 08/24/2023] [Indexed: 09/13/2023]
Abstract
The associations between air pollution and diabetes mortality of different subtypes and complications were largely unclear. We performed an individual-level, time-stratified case-crossover study among over 0.9 million diabetes deaths from all administrative regions of Chinese mainland during 2013-2019. Daily concentrations of fine particles (PM2.5), coarse particles (PM2.5-10), nitrogen dioxide (NO2) and ozone (O3) were obtained for each decedent using high-resolution prediction models. Conditional logistic regression models were utilized to analyze the data. Each interquartile range increment in PM2.5, PM2.5-10, NO2 and O3 concentrations on lag 0-2 d increased the risks of overall diabetes mortality by 2.81 %, 1.92 %, 3.96 % and 2.15 %, respectively. Type 2 diabetes had stronger associations with air pollution than type 1 diabetes. Air pollutants were associated with diabetic ketoacidosis and diabetic nephropathy, but not other complications. The exposure-response curves were approximately linear with a plateau at higher concentrations of PM2.5, PM2.5-10, and NO2, while the associations for O3 appear to be statistically significant beyond 60 μg/m3. This nationwide study reinforces the evidence of higher risks of acute diabetic events following short-term air pollution exposure. We identified differential effects of air pollutants on various subtypes and complications of diabetes, which require further mechanistic investigations.
Collapse
Affiliation(s)
- Peng Yin
- National Center for Chronic Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Huihuan Luo
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Ya Gao
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Wei Liu
- National Center for Chronic Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Su Shi
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Xinyue Li
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Xia Meng
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Maigeng Zhou
- National Center for Chronic Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Guanglin Li
- Chinese Preventive Medicine Association, Beijing, China.
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China.
| |
Collapse
|
49
|
Wang W, Zeng J, Li X, Liao F, Li S, Tian X, Yin F, Zhang T, Deng Y, Ma Y. Using a novel strategy to investigate the spatially autocorrelated and clustered associations between short-term exposure to PM 2.5 and mortality and the attributable burden: A case study in the Sichuan Basin, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115405. [PMID: 37657390 DOI: 10.1016/j.ecoenv.2023.115405] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/03/2023]
Abstract
Due to the lack of statistical methods, few studies have investigated the spatial autocorrelated distribution in the association between short-term exposure to PM2.5 and mortality and used a statistical manner to explore the association-clustered regions, which play important roles in identifying high-sensitivity/susceptibility regions. The Sichuan Basin (SCB) is one of the most PM2.5-polluted areas, and the extreme economic imbalance may cause considerable spatial heterogeneity and clustering in PM2.5-mortality association. In this work, we used a recently proposed strategy by us to investigate the spatially autocorrelated and clustered association between daily PM2.5 and cardiorespiratory mortality from 2015 to 2019 in 130 counties of the SCB. First, generalized additive models were independently constructed to obtain the county-level association estimations. Then, an estimation-error-based spatial scan statistic was used to detect the association-clustered regions. Third, multivariate conditional meta autoregression was used to obtain the spatially autocorrelated association distribution, based on which the attributable deaths were mapped and their inequality was evaluated using the Gini coefficient and Lorenz curve. Results showed that two significantly association-clustered regions were detected. One is mainly located in the megacity Chengdu where PM2.5 presented a significantly stronger association with no threshold effect at low-level PM2.5 but a threshold at high-level PM2.5. In the other cluster, a threshold effect at low-level PM2.5 but no threshold at high-level PM2.5 were found. The mortality risk at low/middle-level PM2.5 decreased from Chengdu as the center to the surrounding areas. A total of 29,129 (2.0 %) deaths were attributable to the excess PM2.5 exposure. The attributable deaths also decreased from Chengdu as the center to the surrounding areas with Gini coefficients of 0.43 and 0.3 for absolute and relative attributable deaths, respectively. This novel strategy provided a new epidemiological perspective regarding the association and implicated that Chengdu is significantly deserving of more attention regarding PM2.5-related health loss.
Collapse
Affiliation(s)
- Wei Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, China
| | - Jing Zeng
- Sichuan Provincial Center for Disease Prevention and Control, China
| | - Xuelin Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, China
| | - Fang Liao
- Sichuan Provincial Center for Mental Health, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu 610072, China
| | - Sheng Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, China
| | - Xinyue Tian
- West China School of Public Health and West China Fourth Hospital, Sichuan University, China
| | - Fei Yin
- West China School of Public Health and West China Fourth Hospital, Sichuan University, China
| | - Tao Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, China
| | - Ying Deng
- Sichuan Provincial Center for Disease Prevention and Control, China
| | - Yue Ma
- West China School of Public Health and West China Fourth Hospital, Sichuan University, China; Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
50
|
Liao H, Chen S, Xu S, Lv Y, Liu W, Xu H. Acute effects of ambient air pollution exposure on lung function in the elderly in Hangzhou, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2023; 33:1022-1032. [PMID: 35469508 DOI: 10.1080/09603123.2022.2067523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
Evidence of an association between acute air pollution exposure and lung function in the elderly is limited. This study is cross-sectional. We quantified the effects of air pollution exposure on lung function among 256 elderly by using a linear mixed model. The results revealed that air pollutants had lag effects on lung function after adjusting for confounders. PM2.5 (Lag03, Lag 03 was defined three-day moving average, and so forth), PM10, NO2 (Lag04-Lag05) were significantly associated with reduced FEV1. PM2.5 (Lag01-Lag02), PM10 (Lag0-Lag07), NO2 (Lag0, Lag04), and SO2 (Lag0) were significantly associated with reduced Forced vital capacity (FVC). PM2.5 (Lag04-Lag07) and NO2 (Lag01-Lag07) were significantly associated with reduced FEF25%-75%. The results showed the adverse change was stronger after adjusting for other pollutants in the PM models, and women were more susceptible to air pollutants. Therefore, we should pay attention to the problem of air pollution in the elderly, especially in women.
Collapse
Affiliation(s)
- Hui Liao
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Shuchang Chen
- Department of Environmental Health, Hangzhou Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Shanshan Xu
- Department of Environmental Health, Hangzhou Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Ye Lv
- Department of Environmental Health, Hangzhou Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Weiyan Liu
- Department of Environmental Health, Hangzhou Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Hong Xu
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Department of Environmental Health, Hangzhou Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| |
Collapse
|