1
|
Zhu Y, Chen R, Liu C, Niu Y, Meng X, Shi S, Yu K, Huang G, Xie L, Lin S, Huang M, Huang M, Chen S, Kan H, Liu F, Chu C. Short-term exposure to ozone may trigger the onset of Kawasaki disease: An individual-level, case-crossover study in East China. CHEMOSPHERE 2024; 349:140828. [PMID: 38040257 DOI: 10.1016/j.chemosphere.2023.140828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 11/14/2023] [Accepted: 11/26/2023] [Indexed: 12/03/2023]
Abstract
Kawasaki disease (KD) is an acute, systemic vasculitis that primarily affects children aged under the age of 5. While environmental factors have been linked to the development of KD, the specific role of ozone (O3) pollution in triggering the disease onset remains uncertain. This study aimed to examine the associations between short-term O3 exposure and KD onset in children. Utilizing a satellite-based model with a spatial resolution of 1 × 1 km, we matched 1808 KD patients (out of a total of 6115 eligible individuals) to pre-onset ozone exposures based on their home addresses in East China between 2013 and 2020. Our findings revealed a significant association of O3 exposure with KD onset on the day of onset (lag 0 day). However, this association attenuated and became statistically insignificant on lag 1 and lag 2 days. Each interquartile range (52.32 μg/m3) increase in O3 concentration at lag 0 day was associated with a 16.2% (95% CI: 3.6%, 30.3%) increased risk of KD onset. The E-R curve for O3 exhibited a plateau at low concentrations and then increased rapidly at concentrations ≥75 μg/m3. Notably, these associations were stronger in male children, younger children (<2 years of age) and patients experiencing KD onset during the warm season. This study provides novel epidemiological evidence indicating that short-term O3 exposure is associated with an increased risk of childhood KD onset. These findings emphasized the importance of considering this environmental risk factor in KD prevention strategies.
Collapse
Affiliation(s)
- Yixiang Zhu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Cong Liu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Yue Niu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Xia Meng
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Su Shi
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Kexin Yu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Guoying Huang
- Heart Center, Children's Hospital of Fudan University, National Children's Medical Center, 399 Wanyuan Road, Shanghai, 201102, China
| | - Liping Xie
- Heart Center, Children's Hospital of Fudan University, National Children's Medical Center, 399 Wanyuan Road, Shanghai, 201102, China
| | - Siyuan Lin
- Heart Center, Children's Hospital of Fudan University, National Children's Medical Center, 399 Wanyuan Road, Shanghai, 201102, China
| | - Min Huang
- Department of Cardiology, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Meirong Huang
- Pediatric Heart Center, Shanghai Children's Medical Center, Shanghai, China
| | - Sun Chen
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China; Heart Center, Children's Hospital of Fudan University, National Children's Medical Center, 399 Wanyuan Road, Shanghai, 201102, China
| | - Fang Liu
- Heart Center, Children's Hospital of Fudan University, National Children's Medical Center, 399 Wanyuan Road, Shanghai, 201102, China.
| | - Chen Chu
- Heart Center, Children's Hospital of Fudan University, National Children's Medical Center, 399 Wanyuan Road, Shanghai, 201102, China.
| |
Collapse
|
2
|
Perryman AN, Kim HYH, Payton A, Rager JE, McNell EE, Rebuli ME, Wells H, Almond M, Antinori J, Alexis NE, Porter NA, Jaspers I. Plasma sterols and vitamin D are correlates and predictors of ozone-induced inflammation in the lung: A pilot study. PLoS One 2023; 18:e0285721. [PMID: 37186612 PMCID: PMC10184915 DOI: 10.1371/journal.pone.0285721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/27/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND Ozone (O3) exposure causes respiratory effects including lung function decrements, increased lung permeability, and airway inflammation. Additionally, baseline metabolic state can predispose individuals to adverse health effects from O3. For this reason, we conducted an exploratory study to examine the effect of O3 exposure on derivatives of cholesterol biosynthesis: sterols, oxysterols, and secosteroid (25-hydroxyvitamin D) not only in the lung, but also in circulation. METHODS We obtained plasma and induced sputum samples from non-asthmatic (n = 12) and asthmatic (n = 12) adult volunteers 6 hours following exposure to 0.4ppm O3 for 2 hours. We quantified the concentrations of 24 cholesterol precursors and derivatives by UPLC-MS and 30 cytokines by ELISA. We use computational analyses including machine learning to determine whether baseline plasma sterols are predictive of O3 responsiveness. RESULTS We observed an overall decrease in the concentration of cholesterol precursors and derivatives (e.g. 27-hydroxycholesterol) and an increase in concentration of autooxidation products (e.g. secosterol-B) in sputum samples. In plasma, we saw a significant increase in the concentration of secosterol-B after O3 exposure. Machine learning algorithms showed that plasma cholesterol was a top predictor of O3 responder status based on decrease in FEV1 (>5%). Further, 25-hydroxyvitamin D was positively associated with lung function in non-asthmatic subjects and with sputum uteroglobin, whereas it was inversely associated with sputum myeloperoxidase and neutrophil counts. CONCLUSION This study highlights alterations in sterol metabolites in the airway and circulation as potential contributors to systemic health outcomes and predictors of pulmonary and inflammatory responsiveness following O3 exposure.
Collapse
Affiliation(s)
- Alexia N. Perryman
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Hye-Young H. Kim
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States of America
| | - Alexis Payton
- Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Julia E. Rager
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Erin E. McNell
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Meghan E. Rebuli
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Heather Wells
- Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Martha Almond
- Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Jamie Antinori
- Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Neil E. Alexis
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Ned A. Porter
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States of America
| | - Ilona Jaspers
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| |
Collapse
|
3
|
A Review of the GSTM1 Null Genotype Modifies the Association between Air Pollutant Exposure and Health Problems. Int J Genomics 2023; 2023:4961487. [PMID: 36793931 PMCID: PMC9925255 DOI: 10.1155/2023/4961487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 02/08/2023] Open
Abstract
Air pollution is one of the significant environmental risks known as the cause of premature deaths. It has deleterious effects on human health, including deteriorating respiratory, cardiovascular, nervous, and endocrine functions. Exposure to air pollution stimulates reactive oxygen species (ROS) production in the body, which can further cause oxidative stress. Antioxidant enzymes, such as glutathione S-transferase mu 1 (GSTM1), are essential to prevent oxidative stress development by neutralizing excess oxidants. When the antioxidant enzyme function is lacking, ROS can accumulate and, thus, cause oxidative stress. Genetic variation studies from different countries show that GSTM1 null genotype dominates the GSTM1 genotype in the population. However, the impact of the GSTM1 null genotype in modifying the association between air pollution and health problem is not yet clear. This study will elaborate on GSTM1's null genotype role in modifying the relationship between air pollution and health problems.
Collapse
|
4
|
Arjomandi M, Wong H, Tenney R, Holland N, Balmes JR. Effect of ozone on allergic airway inflammation. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2022; 1:273-281. [PMID: 36643820 PMCID: PMC9838882 DOI: 10.1016/j.jacig.2022.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Background Exposure to ozone (O3) is associated with increased risk of exacerbations of asthma, but the underlying mechanisms are not well studied. Objective We sought to determine whether O3 exposure would enhance airway inflammatory responses to allergen and the GSTM1-null genotype would modulate this enhancement. Methods In a crossover design, 10 asthmatic participants (5 with GSTM1-null genotype) who had specific sensitization to Dermatophagoides pteronyssinus (DP) were exposed to 160 ppb O3 or filtered air (FA) control for 4 hours on 2 separate days at least 3 weeks apart. At 20 hours after exposure, endobronchial challenge with DP allergen, and sham normal saline (NS) instillation, were performed in separate bronchi. Six hours later, a second bronchoscopy was performed to collect bronchoalveolar lavage (BAL) from the DP- and NS-challenged segments for analyses of inflammatory biomarkers. Linear regression compared cell and cytokine responses across the 4 exposure groups (FA-NS, O3-NS, FA-DP, O3-DP). Effect modification by GSTM1 genotype was assessed in stratified regressions. Results BAL eosinophil counts were increased in segments challenged with DP compared to sham-challenged segments (P < .01). DP challenge compared to sham also caused a significant increase in BAL concentrations of the TH2 cytokines IL-4, IL-5, IL-10, and IL-13 (P < .03 for all comparisons). O3 exposure did not significantly affect BAL cells or cytokine after DP challenge. Compared to GSTM1-present participants, GSTM1-null participants had significantly lower eosinophil (P < .041) and IL-4 (P < .014) responses to DP challenge after O3 exposure. Conclusions While O3 did not cause a clear differential effect on airway inflammatory responses to allergen challenge, those responses did appear to be modulated by the antioxidant enzyme, GSTM1.
Collapse
Affiliation(s)
- Mehrdad Arjomandi
- Department of Medicine, University of California, San Francisco;,Medical Service, San Francisco Veterans Affairs Healthcare System, San Francisco
| | - Hofer Wong
- Department of Medicine, University of California, San Francisco
| | - Rachel Tenney
- Department of Medicine, University of California, San Francisco;,Medical Service, San Francisco Veterans Affairs Healthcare System, San Francisco
| | - Nina Holland
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley
| | - John R. Balmes
- Department of Medicine, University of California, San Francisco;,Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley
| |
Collapse
|
5
|
Alexis NE, Zhou LY, Burbank AJ, Almond M, Hernandez ML, Mills KH, Noah TL, Wells H, Zhou H, Peden DB. Development of a screening protocol to identify persons who are responsive to wood smoke particle-induced airway inflammation with pilot assessment of GSTM1 genotype and asthma status as response modifiers. Inhal Toxicol 2022; 34:329-339. [PMID: 35968917 PMCID: PMC10519374 DOI: 10.1080/08958378.2022.2110334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 07/28/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND We are currently screening human volunteers to determine their sputum polymorphonuclear neutrophil (PMN) response 6- and 24-hours following initiation of exposure to wood smoke particles (WSP). Inflammatory responders (≥10% increase in %PMN) are identified for their subsequent participation in mitigation studies against WSP-induced airways inflammation. In this report we compared responder status (<i>N</i> = 52) at both 6 and 24 hr time points to refine/expand its classification, assessed the impact of the GSTM1 genotype, asthma status and sex on responder status, and explored whether sputum soluble phase markers of inflammation correlate with PMN responsiveness to WSP. RESULTS Six-hour responders tended to be 24-hour responders and vice versa, but 24-hour responders also had significantly increased IL-1beta, IL-6, IL-8 at 24 hours post WSP exposure. The GSTM1 null genotype significantly (<i>p</i> < 0.05) enhanced the %PMN response by 24% in the 24-hour responders and not at all in the 6 hours responders. Asthma status enhanced the 24 hour %PMN response in the 6- and 24-hour responders. In the entire cohort (not stratified by responder status), we found a significant, but very small decrease in FVC and systolic blood pressure immediately following WSP exposure and sputum %PMNs were significantly increased and associated with sputum inflammatory markers (IL-1beta, IL-6, IL-8, and PMN/mg) at 24 but not 6 hours post exposure. Blood endpoints in the entire cohort showed a significant increase in %PMN and PMN/mg at 6 but not 24 hours. Sex had no effect on %PMN response. CONCLUSIONS The 24-hour time point was more informative than the 6-hour time point in optimally and expansively defining airway inflammatory responsiveness to WSP exposure. GSTM1 and asthma status are significant effect modifiers of this response. These study design and subject parameters should be considered before enrolling volunteers for proof-of-concept WSP mitigation studies.
Collapse
Affiliation(s)
- Neil E Alexis
- Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
- Division of Allergy & Immunology, Department of Pediatrics, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Laura Y Zhou
- Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Allison J Burbank
- Division of Allergy & Immunology, Department of Pediatrics, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
- Children's Research Institute, Department of Pediatrics, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Martha Almond
- Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Michelle L Hernandez
- Division of Allergy & Immunology, Department of Pediatrics, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
- Children's Research Institute, Department of Pediatrics, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Katherine H Mills
- Division of Allergy & Immunology, Department of Pediatrics, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Terry L Noah
- Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
- Division of Pulmonology, Department of Pediatrics, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Heather Wells
- Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Haibo Zhou
- Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
- Children's Research Institute, Department of Pediatrics, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - David B Peden
- Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
- Division of Allergy & Immunology, Department of Pediatrics, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
6
|
van de Wetering C, Elko E, Berg M, Schiffers CHJ, Stylianidis V, van den Berge M, Nawijn MC, Wouters EFM, Janssen-Heininger YMW, Reynaert NL. Glutathione S-transferases and their implications in the lung diseases asthma and chronic obstructive pulmonary disease: Early life susceptibility? Redox Biol 2021; 43:101995. [PMID: 33979767 PMCID: PMC8131726 DOI: 10.1016/j.redox.2021.101995] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 04/23/2021] [Accepted: 04/24/2021] [Indexed: 01/01/2023] Open
Abstract
Our lungs are exposed daily to airborne pollutants, particulate matter, pathogens as well as lung allergens and irritants. Exposure to these substances can lead to inflammatory responses and may induce endogenous oxidant production, which can cause chronic inflammation, tissue damage and remodeling. Notably, the development of asthma and Chronic Obstructive Pulmonary Disease (COPD) is linked to the aforementioned irritants. Some inhaled foreign chemical compounds are rapidly absorbed and processed by phase I and II enzyme systems critical in the detoxification of xenobiotics including the glutathione-conjugating enzymes Glutathione S-transferases (GSTs). GSTs, and in particular genetic variants of GSTs that alter their activities, have been found to be implicated in the susceptibility to and progression of these lung diseases. Beyond their roles in phase II metabolism, evidence suggests that GSTs are also important mediators of normal lung growth. Therefore, the contribution of GSTs to the development of lung diseases in adults may already start in utero, and continues through infancy, childhood, and adult life. GSTs are also known to scavenge oxidants and affect signaling pathways by protein-protein interaction. Moreover, GSTs regulate reversible oxidative post-translational modifications of proteins, known as protein S-glutathionylation. Therefore, GSTs display an array of functions that impact the pathogenesis of asthma and COPD. In this review we will provide an overview of the specific functions of each class of mammalian cytosolic GSTs. This is followed by a comprehensive analysis of their expression profiles in the lung in healthy subjects, as well as alterations that have been described in (epithelial cells of) asthmatics and COPD patients. Particular emphasis is placed on the emerging evidence of the regulatory properties of GSTs beyond detoxification and their contribution to (un)healthy lungs throughout life. By providing a more thorough understanding, tailored therapeutic strategies can be designed to affect specific functions of particular GSTs.
Collapse
Affiliation(s)
- Cheryl van de Wetering
- Department of Respiratory Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands; Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, VT, USA
| | - Evan Elko
- Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, VT, USA
| | - Marijn Berg
- Pathology and Medical Biology, GRIAC Research Institute, University of Groningen, University Medical Center Groningen (UMCG), Groningen, the Netherlands
| | - Caspar H J Schiffers
- Department of Respiratory Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands; Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, VT, USA
| | - Vasili Stylianidis
- Department of Respiratory Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Maarten van den Berge
- Pulmonology, GRIAC Research Institute, University of Groningen, University Medical Center Groningen (UMCG), Groningen, the Netherlands
| | - Martijn C Nawijn
- Pathology and Medical Biology, GRIAC Research Institute, University of Groningen, University Medical Center Groningen (UMCG), Groningen, the Netherlands
| | - Emiel F M Wouters
- Department of Respiratory Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands; Ludwig Boltzmann Institute for Lung Health, Vienna, Austria
| | - Yvonne M W Janssen-Heininger
- Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, VT, USA.
| | - Niki L Reynaert
- Department of Respiratory Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands.
| |
Collapse
|
7
|
Hernandez ML, Ivins S, Chason K, Burbank AJ, Rebuli ME, Kobernick A, Schworer SA, Zhou H, Alexis NE, Peden DB. Respiratory Effects of Sedentary Ozone Exposure at the 70-ppb National Ambient Air Quality Standard: A Randomized Clinical Trial. Am J Respir Crit Care Med 2021; 203:910-913. [PMID: 33400891 DOI: 10.1164/rccm.202006-2597le] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
| | - Sally Ivins
- University of North Carolina Chapel Hill, North Carolina and
| | - Kelly Chason
- University of North Carolina Chapel Hill, North Carolina and
| | | | - Meghan E Rebuli
- University of North Carolina Chapel Hill, North Carolina and
| | | | | | - Haibo Zhou
- University of North Carolina Chapel Hill, North Carolina and
| | - Neil E Alexis
- University of North Carolina Chapel Hill, North Carolina and
| | - David B Peden
- University of North Carolina Chapel Hill, North Carolina and
| |
Collapse
|
8
|
Cosselman KE, Allen J, Jansen KL, Stapleton P, Trenga CA, Larson TV, Kaufman JD. Acute exposure to traffic-related air pollution alters antioxidant status in healthy adults. ENVIRONMENTAL RESEARCH 2020; 191:110027. [PMID: 32810504 PMCID: PMC8568481 DOI: 10.1016/j.envres.2020.110027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 07/20/2020] [Accepted: 07/30/2020] [Indexed: 05/27/2023]
Abstract
BACKGROUND Exposure to traffic-related air pollution is associated with an increased risk of cardiovascular and respiratory disease. Evidence suggests that inhaled pollutants precipitate these effects via multiple pathways involving oxidative stress. OBJECTIVE Postulating that a decrease in circulating antioxidant levels reflect an oxidative response, we investigated the effect of inhaled diesel exhaust (DE) on the ratio of reduced to oxidized glutathione (GSH/GSSG) in healthy adults, and whether pre-exposure antioxidant supplementation blunted this response. We also examined exposure-related changes in antioxidant/stress response leukocyte gene expression (GCLc, HMOX-1, IL-6, TGFβ) and plasma IL-6 levels. METHODS Nineteen nonsmoking adults participated in a double-blind, randomized, four-way crossover study. Each subject completed 120-min exposures to filtered air and DE (200 μg/m3), with and without antioxidant pretreatment. Antioxidant comprised 1000 mg ascorbate for 7 days and 1200 mg N-acetylcysteine 1 day prior to exposure, with 1000 mg and 600 mg, respectively, administered 2 h prior to exposure. Whole blood glutathione was measured pre- and post-exposure; plasma IL-6 and mRNA expression were quantified pre, during and post exposure. RESULTS Diesel exhaust exposure was associated with significantly decreased GSH/GSSG (p = 0.001) and a 4-fold increase in IL-6 mRNA (p = 0.01) post exposure. Antioxidant pretreatment did not significantly mediate the effect of DE exposure on GSH/GSSG, though appeared to decrease the effect of exposure on IL-6 mRNA expression. CONCLUSIONS Acute DE inhalation induced detectable oxidative effects in healthy adults, which were not significantly attenuated by the selected antioxidant pre-treatment. This finding supports the premise that oxidative stress is one mechanism underlying the adverse effects of traffic-related air pollution.
Collapse
Affiliation(s)
| | - Jason Allen
- Department of Environmental and Occupational Health Sciences, USA
| | - Karen L Jansen
- Department of Environmental and Occupational Health Sciences, USA
| | | | - Carol A Trenga
- Department of Environmental and Occupational Health Sciences, USA
| | - Timothy V Larson
- Department of Environmental and Occupational Health Sciences, USA; Department of Civil and Environmental Engineering, USA
| | - Joel D Kaufman
- Department of Environmental and Occupational Health Sciences, USA; Department of Medicine, USA; Department of Epidemiology, University of Washington, Seattle, WA, USA
| |
Collapse
|
9
|
Huff RD, Carlsten C, Hirota JA. An update on immunologic mechanisms in the respiratory mucosa in response to air pollutants. J Allergy Clin Immunol 2020; 143:1989-2001. [PMID: 31176381 DOI: 10.1016/j.jaci.2019.04.012] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/16/2019] [Accepted: 04/23/2019] [Indexed: 12/11/2022]
Abstract
Every day, we breathe in more than 10,000 L of air that contains a variety of air pollutants that can pose negative consequences to lung health. The respiratory mucosa formed by the airway epithelium is the first point of contact for air pollution in the lung, functioning as a mechanical and immunologic barrier. Under normal circumstances, airway epithelial cells connected by tight junctions secrete mucus, airway surface lining fluid, host defense peptides, and antioxidants and express innate immune pattern recognition receptors to respond to inhaled foreign substances and pathogens. Under conditions of air pollution exposure, the defenses of the airway epithelium are compromised by reductions in barrier function, impaired host defense to pathogens, and exaggerated inflammatory responses. Central to the mechanical and immunologic changes induced by air pollution are activation of redox-sensitive pathways and a role for antioxidants in normalizing these negative effects. Genetic variants in genes important in epithelial cell function and phenotype contribute to a diversity of responses to air pollution in the population at the individual and group levels and suggest a need for personalized approaches to attenuate the respiratory mucosal immune responses to air pollution.
Collapse
Affiliation(s)
- Ryan D Huff
- Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Chris Carlsten
- Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jeremy A Hirota
- Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Firestone Institute for Respiratory Health, Division of Respirology, Department of Medicine, Hamilton, Ontario, Canada; McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada; Department of Medicine, McMaster University, Hamilton, Ontario, Canada; Department of Biology, University of Waterloo, Waterloo, Ontario, Canada.
| |
Collapse
|
10
|
Fuertes E, van der Plaat DA, Minelli C. Antioxidant genes and susceptibility to air pollution for respiratory and cardiovascular health. Free Radic Biol Med 2020; 151:88-98. [PMID: 32007521 DOI: 10.1016/j.freeradbiomed.2020.01.181] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/23/2020] [Accepted: 01/24/2020] [Indexed: 12/25/2022]
Abstract
Oxidative stress occurs when antioxidant defences, which are regulated by a complex network of genes, are insufficient to maintain the level of reactive oxygen species below a toxic threshold. Outdoor air pollution has long been known to adversely affect health and one prominent mechanism of action common to all pollutants is the induction of oxidative stress. An individual's susceptibility to the effects of air pollution partly depends on variation in their antioxidant genes. Thus, understanding antioxidant gene-pollution interactions has significant potential clinical and public health impacts, including the development of targeted and cost-effective preventive measures, such as setting appropriate standards which protect all members of the population. In this review, we aimed to summarize the latest epidemiological evidence on interactions between antioxidant genes and outdoor air pollution, in the context of respiratory and cardiovascular health. The evidence supporting the existence of interactions between antioxidant genes and outdoor air pollution is strongest for childhood asthma and wheeze, especially for interactions with GSTT1, GSTM1 and GSTP1, for lung function in both children and adults for several antioxidant genes (GSTT1, GSTM1, GSTP1, HMOX1, NQO1, and SOD2) and, to a more limited extent, for heart rate variability in adults for GSTM1 and HMOX1. Methodological challenges hampering a clear interpretation of these findings and understanding of true potential heterogeneity are discussed.
Collapse
Affiliation(s)
- Elaine Fuertes
- National Heart and Lung Institute, Imperial College London, London, United Kingdom.
| | | | - Cosetta Minelli
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
11
|
Gigliotti JC, Tin A, Pourafshar S, Cechova S, Wang YT, Sung SSJ, Bodonyi-Kovacs G, Cross JV, Yang G, Nguyen N, Chan F, Rebholz C, Yu B, Grove ML, Grams ME, Köttgen A, Scharpf R, Ruiz P, Boerwinkle E, Coresh J, Le TH. GSTM1 Deletion Exaggerates Kidney Injury in Experimental Mouse Models and Confers the Protective Effect of Cruciferous Vegetables in Mice and Humans. J Am Soc Nephrol 2020; 31:102-116. [PMID: 31727850 PMCID: PMC6935006 DOI: 10.1681/asn.2019050449] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 09/07/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND GSTM1 encodes glutathione S-transferase μ-1 (GSTM1), which belongs to a superfamily of phase 2 antioxidant enzymes. The highly prevalent GSTM1 deletion variant is associated with kidney disease progression in human cohorts: the African American Study of Kidney Disease and Hypertension and the Atherosclerosis Risk in Communities (ARIC) Study. METHODS We generated a Gstm1 knockout mouse line to study its role in a CKD model (involving subtotal nephrectomy) and a hypertension model (induced by angiotensin II). We examined the effect of intake of cruciferous vegetables and GSTM1 genotypes on kidney disease in mice as well as in human ARIC study participants. We also examined the importance of superoxide in the mediating pathways and of hematopoietic GSTM1 on renal inflammation. RESULTS Gstm1 knockout mice displayed increased oxidative stress, kidney injury, and inflammation in both models. The central mechanism for kidney injury is likely mediated by oxidative stress, because treatment with Tempol, an superoxide dismutase mimetic, rescued kidney injury in knockout mice without lowering BP. Bone marrow crosstransplantation revealed that Gstm1 deletion in the parenchyma, and not in bone marrow-derived cells, drives renal inflammation. Furthermore, supplementation with cruciferous broccoli powder rich in the precursor to antioxidant-activating sulforaphane significantly ameliorated kidney injury in Gstm1 knockout, but not wild-type mice. Similarly, among humans (ARIC study participants), high consumption of cruciferous vegetables was associated with fewer kidney failure events compared with low consumption, but this association was observed primarily in participants homozygous for the GSTM1 deletion variant. CONCLUSIONS Our data support a role for the GSTM1 enzyme in the modulation of oxidative stress, inflammation, and protective metabolites in CKD.
Collapse
Affiliation(s)
| | - Adrienne Tin
- Department of Epidemiology and
- Welch Center for Prevention, Epidemiology and Clinical Research, Baltimore, Maryland
| | | | | | - Yves T Wang
- Division of Nephrology, Department of Medicine, University of Rochester School of Medicine, Rochester, New York
| | | | | | - Janet V Cross
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Guang Yang
- Division of Nephrology, Heinrich-Heine University of Dusseldorf, Dusseldorf, Germany
| | - Nhu Nguyen
- Department of Biomedical Sciences, Grand Valley State University, Allendale, Michigan
| | - Fang Chan
- Division of Nephrology, Department of Medicine and
| | - Casey Rebholz
- Department of Epidemiology and
- Welch Center for Prevention, Epidemiology and Clinical Research, Baltimore, Maryland
| | - Bing Yu
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health and
| | - Megan L Grove
- Human Genetics Center, University of Texas Health Science Center at Houston, Houston, Texas
| | - Morgan E Grams
- Welch Center for Prevention, Epidemiology and Clinical Research, Baltimore, Maryland
- Department of Medicine and
| | - Anna Köttgen
- Department of Epidemiology and
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany; and
| | - Robert Scharpf
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Heath, Baltimore, Maryland
- Division of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Phillip Ruiz
- Department of Pathology, University of Miami, Miami, Florida
| | - Eric Boerwinkle
- Human Genetics Center, University of Texas Health Science Center at Houston, Houston, Texas
| | - Josef Coresh
- Department of Epidemiology and
- Welch Center for Prevention, Epidemiology and Clinical Research, Baltimore, Maryland
| | - Thu H Le
- Division of Nephrology, Department of Medicine and
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Heath, Baltimore, Maryland
| |
Collapse
|
12
|
Balmes JR, Arjomandi M, Bromberg PA, Costantini MG, Dagincourt N, Hazucha MJ, Hollenbeck-Pringle D, Rich DQ, Stark P, Frampton MW. Ozone effects on blood biomarkers of systemic inflammation, oxidative stress, endothelial function, and thrombosis: The Multicenter Ozone Study in oldEr Subjects (MOSES). PLoS One 2019; 14:e0222601. [PMID: 31553765 PMCID: PMC6760801 DOI: 10.1371/journal.pone.0222601] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 09/02/2019] [Indexed: 02/01/2023] Open
Abstract
The evidence that exposure to ozone air pollution causes acute cardiovascular effects is mixed. We postulated that exposure to ambient levels of ozone would increase blood markers of systemic inflammation, prothrombotic state, oxidative stress, and vascular dysfunction in healthy older subjects, and that absence of the glutathione S-transferase Mu 1 (GSTM1) gene would confer increased susceptibility. This double-blind, randomized, crossover study of 87 healthy volunteers 55-70 years of age was conducted at three sites using a common protocol. Subjects were exposed for 3 h in random order to 0 parts per billion (ppb) (filtered air), 70 ppb, and 120 ppb ozone, alternating 15 min of moderate exercise and rest. Blood was obtained the day before, approximately 4 h after, and approximately 22 h after each exposure. Linear mixed effect and logistic regression models evaluated the impact of exposure to ozone on pre-specified primary and secondary outcomes. The definition of statistical significance was p<0.01. There were no effects of ozone on the three primary markers of systemic inflammation and a prothrombotic state: C-reactive protein, monocyte-platelet conjugates, and microparticle-associated tissue factor activity. However, among the secondary endpoints, endothelin-1, a potent vasoconstrictor, increased from pre- to post-exposure with ozone concentration (120 vs 0 ppb: 0.07 pg/mL, 95% confidence interval [CI] 0.01, 0.14; 70 vs 0 ppb: -0.03 pg/mL, CI -0.09, 0.04; p = 0.008). Nitrotyrosine, a marker of oxidative and nitrosative stress, decreased with increasing ozone concentrations, with marginal significance (120 vs 0 ppb: -41.5, CI -70.1, -12.8; 70 vs 0 ppb: -14.2, CI -42.7, 14.2; p = 0.017). GSTM1 status did not modify the effect of ozone exposure on any of the outcomes. These findings from healthy older adults fail to identify any mechanistic basis for the epidemiologically described cardiovascular effects of exposure to ozone. The findings, however, may not be applicable to adults with cardiovascular disease.
Collapse
Affiliation(s)
- John R. Balmes
- Department of Medicine, University of California at San Francisco, San Francisco, CA, United States of America
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, United States of America
| | - Mehrdad Arjomandi
- Department of Medicine, University of California at San Francisco, San Francisco, CA, United States of America
- San Francisco Veterans Affairs Medical Center, San Francisco, CA, United States of America
| | - Philip A. Bromberg
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, United States of America
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina, Chapel Hill, NC, United States of America
| | | | | | - Milan J. Hazucha
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, United States of America
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina, Chapel Hill, NC, United States of America
| | | | - David Q. Rich
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, United States of America
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, United States of America
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Paul Stark
- New England Research Institute, Watertown, MA, United States of America
| | - Mark W. Frampton
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, United States of America
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States of America
| |
Collapse
|
13
|
Ward-Caviness CK. A review of gene-by-air pollution interactions for cardiovascular disease, risk factors, and biomarkers. Hum Genet 2019; 138:547-561. [DOI: 10.1007/s00439-019-02004-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 03/22/2019] [Indexed: 02/07/2023]
|
14
|
Assessing the impact of air pollution on childhood asthma morbidity: how, when, and what to do. Curr Opin Allergy Clin Immunol 2019; 18:124-131. [PMID: 29493555 DOI: 10.1097/aci.0000000000000422] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE OF REVIEW Exposure to air pollutants is linked with poor asthma control in children and represents a potentially modifiable risk factor for impaired lung function, rescue medication use, and increased asthma-related healthcare utilization. Identification of the most relevant pollutants to asthma as well as susceptibility factors and strategies to reduce exposure are needed to improve child health. RECENT FINDINGS The current available literature supports the association between pollutants and negative asthma outcomes. Ethnicity, socioeconomic status, and presence of certain gene polymorphisms may impact susceptibility to the negative health effects of air pollution. Improved air quality standards were associated with better asthma outcomes. SUMMARY The link between air pollution and pediatric asthma morbidity is supported by the recent relevant literature. Continued efforts are needed to identify the most vulnerable populations and develop strategies to reduce exposures and improve air quality.
Collapse
|
15
|
Burbank AJ, Vadlamudi A, Mills KH, Alt EM, Wells H, Zhou H, Alexis N, Hernandez ML, Peden DB. The glutathione-S-transferase mu-1 null genotype increases wood smoke-induced airway inflammation. J Allergy Clin Immunol 2019; 143:2299-2302.e3. [PMID: 30790595 DOI: 10.1016/j.jaci.2019.02.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/06/2019] [Accepted: 02/08/2019] [Indexed: 11/18/2022]
Affiliation(s)
- Allison J Burbank
- Division of Allergy, Immunology, & Rheumatology, Department of Pediatrics, University of North Carolina, Chapel Hill, NC; Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina, Chapel Hill, NC.
| | | | - Katherine H Mills
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina, Chapel Hill, NC
| | - Ethan M Alt
- Department of Biostatistics, Gillings School of Public Health, University of North Carolina, Chapel Hill, NC
| | - Heather Wells
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina, Chapel Hill, NC
| | - Haibo Zhou
- Department of Biostatistics, Gillings School of Public Health, University of North Carolina, Chapel Hill, NC
| | - Neil Alexis
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina, Chapel Hill, NC
| | - Michelle L Hernandez
- Division of Allergy, Immunology, & Rheumatology, Department of Pediatrics, University of North Carolina, Chapel Hill, NC; Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina, Chapel Hill, NC
| | - David B Peden
- Division of Allergy, Immunology, & Rheumatology, Department of Pediatrics, University of North Carolina, Chapel Hill, NC; Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina, Chapel Hill, NC
| |
Collapse
|
16
|
Kim HB. Modifiable prenatal environmental factors for the prevention of childhood asthma. ALLERGY ASTHMA & RESPIRATORY DISEASE 2019; 7:179. [DOI: 10.4168/aard.2019.7.4.179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 05/11/2019] [Accepted: 05/14/2019] [Indexed: 09/01/2023]
Affiliation(s)
- Hyo-Bin Kim
- Department of Pediatrics, Inje University Sanggye Paik Hospital, Seoul, Korea
| |
Collapse
|
17
|
Lavrich KS, Speen AM, Ghio AJ, Bromberg PA, Samet JM, Alexis NE. Macrophages from the upper and lower human respiratory tract are metabolically distinct. Am J Physiol Lung Cell Mol Physiol 2018; 315:L752-L764. [PMID: 30091382 DOI: 10.1152/ajplung.00208.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The function and cell surface phenotype of lung macrophages vary within the respiratory tract. Alterations in the bioenergetic profile of macrophages may also be influenced by their location within the respiratory tract. This study sought to characterize the bioenergetic profile of macrophages sampled from different locations within the respiratory tract at baseline and in response to ex vivo xenobiotic challenge. Surface macrophages recovered from healthy volunteers by induced sputum and by bronchial and bronchoalveolar lavage were profiled using extracellular flux analyses. Oxygen consumption and extracellular acidification rates were measured at rest and after stimulation with lipopolysaccharide (LPS), phorbol 12-myristate 13-acetate (PMA), or 1,2-naphthoquinone (1,2-NQ). Oxygen consumption and extracellular acidification rates were highly correlated for all macrophage samples. Induced sputum macrophages had relatively higher oxygen consumption and extracellular acidification rates and were largely reliant on glycolysis. In contrast, bronchial fraction and bronchoalveolar macrophages depended more heavily on mitochondrial respiration. Bronchoalveolar macrophages showed elevated LPS-induced cytokine responses. Unlike their autologous peripheral blood monocytes, lung macrophages from any source did not display bioenergetic changes following LPS stimulation. The protein kinase C activator PMA did not affect mitochondrial respiration, whereas the air pollutant 1,2-NQ induced marked mitochondrial dysfunction in bronchoalveolar and bronchial fraction macrophages. The bioenergetic characteristics of macrophages from healthy individuals are dependent on their location within the respiratory tract. These findings establish a regional bioenergetic profile for macrophages from healthy human airways that serves as a reference for changes that occur in disease.
Collapse
Affiliation(s)
- Katelyn S Lavrich
- Curriculum in Toxicology, University of North Carolina Chapel Hill , Chapel Hill, North Carolina
| | - Adam M Speen
- Curriculum in Toxicology, University of North Carolina Chapel Hill , Chapel Hill, North Carolina
| | - Andrew J Ghio
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, United States Environmental Protection Agency, Research Triangle Park, North Carolina
| | - Philip A Bromberg
- Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina Chapel Hill , Chapel Hill, North Carolina
| | - James M Samet
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, United States Environmental Protection Agency, Research Triangle Park, North Carolina
| | - Neil E Alexis
- Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina Chapel Hill , Chapel Hill, North Carolina
| |
Collapse
|
18
|
Sierra-Heredia C, North M, Brook J, Daly C, Ellis AK, Henderson D, Henderson SB, Lavigne É, Takaro TK. Aeroallergens in Canada: Distribution, Public Health Impacts, and Opportunities for Prevention. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:E1577. [PMID: 30044421 PMCID: PMC6121311 DOI: 10.3390/ijerph15081577] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/04/2018] [Accepted: 07/18/2018] [Indexed: 12/17/2022]
Abstract
Aeroallergens occur naturally in the environment and are widely dispersed across Canada, yet their public health implications are not well-understood. This review intends to provide a scientific and public health-oriented perspective on aeroallergens in Canada: their distribution, health impacts, and new developments including the effects of climate change and the potential role of aeroallergens in the development of allergies and asthma. The review also describes anthropogenic effects on plant distribution and diversity, and how aeroallergens interact with other environmental elements, such as air pollution and weather events. Increased understanding of the relationships between aeroallergens and health will enhance our ability to provide accurate information, improve preventive measures and provide timely treatments for affected populations.
Collapse
Affiliation(s)
| | - Michelle North
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 3H7, Canada.
- Department of Biomedical & Molecular Sciences and Division of Allergy & Immunology, Department of Medicine, Queen's University, Kingston, ON K7L 3N6, Canada.
- Allergy Research Unit, Kingston General Hospital, Kingston, ON K7L 2V7, Canada.
| | - Jeff Brook
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON M3H 5T4, Canada.
| | - Christina Daly
- Air Quality Health Index, Health Canada, Ottawa, ON K1A 0K9, Canada.
| | - Anne K Ellis
- Department of Biomedical & Molecular Sciences and Division of Allergy & Immunology, Department of Medicine, Queen's University, Kingston, ON K7L 3N6, Canada.
- Allergy Research Unit, Kingston General Hospital, Kingston, ON K7L 2V7, Canada.
| | - Dave Henderson
- Health and Air Quality Services, Environment and Climate Change Canada, Gatineau, QC K1A 0H3, Canada.
| | - Sarah B Henderson
- Environmental Health Services, BC Centre for Disease Control, Vancouver, BC V5Z 4R4, Canada.
- School of Population and Public Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| | - Éric Lavigne
- Air Health Science Division, Health Canada, Ottawa, ON K1A 0K9, Canada.
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON K1G 5Z3, Canada.
| | - Tim K Takaro
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada.
| |
Collapse
|
19
|
Cheng W, Duncan KE, Ghio AJ, Ward-Caviness C, Karoly ED, Diaz-Sanchez D, Conolly RB, Devlin RB. Changes in Metabolites Present in Lung-Lining Fluid Following Exposure of Humans to Ozone. Toxicol Sci 2018; 163:430-439. [PMID: 29471466 PMCID: PMC6348881 DOI: 10.1093/toxsci/kfy043] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Controlled human exposure to the oxidant air pollutant ozone causes decrements in lung function and increased inflammation as evidenced by neutrophil influx into the lung and increased levels of proinflammatory cytokines in the airways. Here we describe a targeted metabolomics evaluation of human bronchoalveolar lavage fluid (BALF) following controlled in vivo exposure to ozone to gain greater insight into its pulmonary effects. In a 2-arm cross-over study, each healthy adult human volunteer was randomly exposed to filtered air (FA) and to 0.3 ppm ozone for 2 h while undergoing intermittent exercise with a minimum of 4 weeks between exposures. Bronchoscopy was performed and BALF obtained at 1 (n = 9) or 24 (n = 23) h postexposure. Metabolites were detected using ultrahigh performance liquid chromatography-tandem mass spectroscopy. At 1-h postexposure, a total of 28 metabolites were differentially expressed (DE) (p < .05) following ozone exposure compared with FA-exposure. These changes were associated with increased glycolysis and antioxidant responses, suggesting rapid increased energy utilization as part of the cellular response to oxidative stress. At 24-h postexposure, 41 metabolites were DE. Many of the changes were in amino acids and linked with enhanced proteolysis. Changes associated with increased lipid membrane turnover were also observed. These later-stage changes were consistent with ongoing repair of airway tissues. There were 1.37 times as many metabolites were differentially expressed at 24 h compared with 1-h postexposure. The changes at 1 h reflect responses to oxidative stress while the changes at 24 h indicate a broader set of responses consistent with tissue repair. These results illustrate the ability of metabolomic analysis to identify mechanistic features of ozone toxicity and aspects of the subsequent tissue response.
Collapse
Affiliation(s)
- WanYun Cheng
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 2799
| | - Kelly E Duncan
- School of Medicine, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina 27599
| | - Andrew J Ghio
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 2799
| | - Cavin Ward-Caviness
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 2799
| | | | - David Diaz-Sanchez
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 2799
| | - Rory B Conolly
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 2799
| | - Robert B Devlin
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 2799
| |
Collapse
|
20
|
Sandström T, Blomberg A, Bosson JA. Can Elderly Lungs Cope with Urban Concentrations of Ground-Level Ozone? Experiences from a Large-Scale Multicenter Exposure Chamber Study. Am J Respir Crit Care Med 2018; 197:1245-1246. [PMID: 29412685 DOI: 10.1164/rccm.201801-0108ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Thomas Sandström
- 1 Department of Public Health and Clinical Medicine Umeå University Umeå, Sweden
| | - Anders Blomberg
- 1 Department of Public Health and Clinical Medicine Umeå University Umeå, Sweden
| | - Jenny A Bosson
- 1 Department of Public Health and Clinical Medicine Umeå University Umeå, Sweden
| |
Collapse
|
21
|
Lee AG, Le Grand B, Hsu HHL, Chiu YHM, Brennan KJ, Bose S, Rosa MJ, Brunst KJ, Kloog I, Wilson A, Schwartz J, Morgan W, Coull BA, Wright RO, Baccarelli AA, Wright RJ. Prenatal fine particulate exposure associated with reduced childhood lung function and nasal epithelia GSTP1 hypermethylation: Sex-specific effects. Respir Res 2018; 19:76. [PMID: 29703190 PMCID: PMC5923186 DOI: 10.1186/s12931-018-0774-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/06/2018] [Indexed: 12/31/2022] Open
Abstract
Background In utero exposure to particulate matter with an aerodynamic diameter of less than 2.5 μm (PM2.5) has been linked to child lung function. Overlapping evidence suggests that child sex and exposure timing may modify effects and associations may be mediated through glutathione S-transferase P1 (GSTP1) methylation. Methods We prospectively examined associations among prenatal PM2.5 exposure and child lung function and GSTP1 methylation in an urban pregnancy cohort study. We employed a validated satellite-based spatiotemporally resolved prediction model to estimate daily prenatal PM2.5 exposure over gestation. We used Baysian distributed lag interaction models (BDLIMs) to identify sensitive windows for prenatal PM2.5 exposure on child lung function and nasal epithelia GSTP1 methylation at age 7 years, and to examine effect modification by child sex. Results BDLIMs identified a sensitive window for prenatal PM2.5 exposure at 35–40 weeks gestation [cumulative effect estimate (CEE) = − 0.10, 95%CI = − 0.19 to − 0.01, per μg/m3 increase in PM2.5] and at 36–40 weeks (CEE = − 0.12, 95%CI = − 0.20 to − 0.01) on FEV1 and FVC, respectively, in boys. BDLIMs also identified a sensitive window of exposure at 37–40 weeks gestation between higher prenatal PM2.5 exposure and increased GSTP1 percent methylation. The association between higher GSTP1 percent methylation and decreased FEV1 was borderline significant in the sample as a whole (β = − 0.37, SE = 0.20, p = 0.06) and in boys in stratified analyses (β = − 0.56, SE = 0.29, p = 0.05). Conclusions Prenatal PM2.5 exposure in late pregnancy was associated with impaired early childhood lung function and hypermethylation of GSTPI in DNA isolated from nasal epithelial cells. There was a trend towards higher GSTP1 percent methylation being associated with reduced FEV1. All findings were most evident among boys.
Collapse
Affiliation(s)
- Alison G Lee
- Division of Pulmonary, Critical Care and Sleep Medicine, Icahn School of Medicine at Mount Sinai, 1236 Park Avenue, First Floor, New York, NY, 10029, USA.
| | - Blake Le Grand
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hsiao-Hsien Leon Hsu
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Pediatrics, Kravis Children's Hospital, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yueh-Hsiu Mathilda Chiu
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Pediatrics, Kravis Children's Hospital, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kasey J Brennan
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, New York, USA
| | - Sonali Bose
- Division of Pulmonary, Critical Care and Sleep Medicine, Icahn School of Medicine at Mount Sinai, 1236 Park Avenue, First Floor, New York, NY, 10029, USA
| | - Maria José Rosa
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kelly J Brunst
- Department of Environmental Health, University of Cincinnati College of Medicine, 160 Panzeca Way, Cincinnati, OH, USA
| | - Itai Kloog
- Department of Geography and Environmental Development, Faculty of Humanities and Social Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Ander Wilson
- Department of Statistics, Colorado State University, Fort Collins, CO, USA
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Wayne Morgan
- Department of Pediatrics, University of Arizona, Tucson, Arizona, USA
| | - Brent A Coull
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Pediatrics, Kravis Children's Hospital, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, New York, USA
| | - Rosalind J Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Pediatrics, Kravis Children's Hospital, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
22
|
Burbank AJ, Duran CG, Pan Y, Burns P, Jones S, Jiang Q, Yang C, Jenkins S, Wells H, Alexis N, Kesimer M, Bennett WD, Zhou H, Peden DB, Hernandez ML. Gamma tocopherol-enriched supplement reduces sputum eosinophilia and endotoxin-induced sputum neutrophilia in volunteers with asthma. J Allergy Clin Immunol 2017; 141:1231-1238.e1. [PMID: 28736267 DOI: 10.1016/j.jaci.2017.06.029] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 06/05/2017] [Accepted: 06/14/2017] [Indexed: 11/20/2022]
Abstract
BACKGROUND We and others have shown that the gamma tocopherol (γT) isoform of vitamin E has multiple anti-inflammatory and antioxidant actions and that γT supplementation reduces eosinophilic and endotoxin (LPS)-induced neutrophilic airway inflammation in animal models and healthy human volunteers. OBJECTIVE We sought to determine whether γT supplementation reduces eosinophilic airway inflammation and acute neutrophilic response to inhaled LPS challenge in volunteers with asthma. METHODS Participants with mild asthma were enrolled in a double-blinded, placebo-controlled crossover study to assess the effect of 1200 mg of γT daily for 14 days on sputum eosinophils, mucins, and cytokines. We also assessed the effect on acute inflammatory response to inhaled LPS challenge following γT treatment, focusing on changes in sputum neutrophilia, mucins, and cytokines. Mucociliary clearance was measured using gamma scintigraphy. RESULTS Fifteen subjects with mild asthma completed both arms of the study. Compared with placebo, γT notably reduced pre-LPS challenge sputum eosinophils and mucins, including mucin 5AC and reduced LPS-induced airway neutrophil recruitment 6 and 24 hours after challenge. Mucociliary clearance was slowed 4 hours postchallenge in the placebo group but not in the γT treatment group. Total sputum mucins (but not mucin 5AC) were reduced at 24 hours postchallenge during γT treatment compared with placebo. CONCLUSIONS When compared with placebo, γT supplementation for 14 days reduced inflammatory features of asthma, including sputum eosinophils and mucins, as well as acute airway response to inhaled LPS challenge. Larger scale clinical trials are needed to assess the efficacy of γT supplements as a complementary or steroid-sparing treatment for asthma.
Collapse
Affiliation(s)
- Allison J Burbank
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina, Chapel Hill, NC; Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, University of North Carolina, Chapel Hill, NC.
| | - Charity G Duran
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina, Chapel Hill, NC
| | - Yinghao Pan
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC
| | - Patricia Burns
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina, Chapel Hill, NC
| | - Susan Jones
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina, Chapel Hill, NC
| | - Qing Jiang
- Department of Nutrition Science, Purdue University, West Lafayette, Ind
| | - Chao Yang
- Department of Nutrition Science, Purdue University, West Lafayette, Ind
| | - Sha'Leema Jenkins
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina, Chapel Hill, NC
| | - Heather Wells
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina, Chapel Hill, NC
| | - Neil Alexis
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina, Chapel Hill, NC; Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, University of North Carolina, Chapel Hill, NC
| | - Mehmet Kesimer
- Department of Pathology and Laboratory Medicine, Cystic Fibrosis/Pulmonary Research and Treatment Center, Marsico Lung Institute, University of North Carolina, Chapel Hill, NC
| | - William D Bennett
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina, Chapel Hill, NC
| | - Haibo Zhou
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC
| | - David B Peden
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina, Chapel Hill, NC; Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, University of North Carolina, Chapel Hill, NC
| | - Michelle L Hernandez
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina, Chapel Hill, NC; Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, University of North Carolina, Chapel Hill, NC
| |
Collapse
|
23
|
Duan L, Li J, Ma P, Yang X, Xu S. Vitamin E antagonizes ozone-induced asthma exacerbation in Balb/c mice through the Nrf2 pathway. Food Chem Toxicol 2017. [PMID: 28624471 DOI: 10.1016/j.fct.2017.06.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Millions of people are regularly exposed to ozone, a gas known to contribute significantly to worsening the symptoms of patients with asthma. However, the mechanisms underlying these ozone exacerbation effects are not fully understood. In this study, we examined the exacerbation effect of ozone in OVA-induced asthma mice and tried to demonstrate the protective mechanism of vitamin E (VE). An asthma mouse model was established, and used to identify the exacerbating effects of ozone by assessing cytokine and serum immunoglobulin concentrations, airway leukocyte infiltration, histopathological changes in lung tissues, and airway hyper-responsiveness. We then determined the amount of reactive oxygen species (ROS) accumulated, the extent to which VE induced ROS elimination, and examined the antagonistic effects of VE on the ozone-induced exacerbating effects. This study showed that 1-ppm ozone exposure could exacerbate OVA-induced asthma in mice. More importantly we found that ozone induced oxidative stress in asthmatic airways may lead to the inhibition of Nuclear factor-erythroid 2-related factor 2 (Nrf2), and may subsequently induce even more exaggerated oxidative stress associated with asthma exacerbation. Through VE induced Nrf2 activation and the subsequent increase in Nrf2 target protein expression, this study suggests a novel mechanism for alleviating ozone exacerbated asthma symptoms.
Collapse
Affiliation(s)
- Liju Duan
- Key Laboratory of Environment and Health (Huazhong University of Science and Technology), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Jinquan Li
- Section of Environmental Biomedicine, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Ping Ma
- Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning 437100, China
| | - Xu Yang
- Section of Environmental Biomedicine, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Shunqing Xu
- Key Laboratory of Environment and Health (Huazhong University of Science and Technology), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
24
|
Frampton MW, Balmes JR, Bromberg PA, Stark P, Arjomandi M, Hazucha MJ, Rich DQ, Hollenbeck-Pringle D, Dagincourt N, Alexis N, Ganz P, Zareba W, Costantini MG. Multicenter Ozone Study in oldEr Subjects (MOSES): Part 1. Effects of Exposure to Low Concentrations of Ozone on Respiratory and Cardiovascular Outcomes. Res Rep Health Eff Inst 2017; 2017:1-107. [PMID: 31898880 PMCID: PMC7266375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023] Open
Abstract
INTRODUCTION Exposure to air pollution is a well-established risk factor for cardiovascular morbidity and mortality. Most of the evidence supporting an association between air pollution and adverse cardiovascular effects involves exposure to particulate matter (PM). To date, little attention has been paid to acute cardiovascular responses to ozone, in part due to the notion that ozone causes primarily local effects on lung function, which are the basis for the current ozone National Ambient Air Quality Standards (NAAQS). There is evidence from a few epidemiological studies of adverse health effects of chronic exposure to ambient ozone, including increased risk of mortality from cardiovascular disease. However, in contrast to the well-established association between ambient ozone and various nonfatal adverse respiratory effects, the observational evidence for impacts of acute (previous few days) increases in ambient ozone levels on total cardiovascular mortality and morbidity is mixed. Ozone is a prototypic oxidant gas that reacts with constituents of the respiratory tract lining fluid to generate reactive oxygen species (ROS) that can overwhelm antioxidant defenses and cause local oxidative stress. Pathways by which ozone could cause cardiovascular dysfunction include alterations in autonomic balance, systemic inflammation, and oxidative stress. These initial responses could lead ultimately to arrhythmias, endothelial dysfunction, acute arterial vasoconstriction, and procoagulant activity. Individuals with impaired antioxidant defenses, such as those with the null variant of glutathione S-transferase mu 1 (GSTM1), may be at increased risk for acute health effects. The Multicenter Ozone Study in oldEr Subjects (MOSES) was a controlled human exposure study designed to evaluate whether short-term exposure of older, healthy individuals to ambient levels of ozone induces acute cardiovascular responses. The study was designed to test the a priori hypothesis that short-term exposure to ambient levels of ozone would induce acute cardiovascular responses through the following mechanisms: autonomic imbalance, systemic inflammation, and development of a prothrombotic vascular state. We also postulated a priori the confirmatory hypothesis that exposure to ozone would induce airway inflammation, lung injury, and lung function decrements. Finally, we postulated the secondary hypotheses that ozone-induced acute cardiovascular responses would be associated with: (a) increased systemic oxidative stress and lung effects, and (b) the GSTM1-null genotype. METHODS The study was conducted at three clinical centers with a separate Data Coordinating and Analysis Center (DCAC) using a common protocol. All procedures were approved by the institutional review boards (IRBs) of the participating centers. Healthy volunteers 55 to 70 years of age were recruited. Consented participants who successfully completed the screening and training sessions were enrolled in the study. All three clinical centers adhered to common standard operating procedures (SOPs) and used common tracking and data forms. Each subject was scheduled to participate in a total of 11 visits: screening visit, training visit, and three sets of exposure visits, each consisting of the pre-exposure day, the exposure day, and the post-exposure day. The subjects spent the night in a nearby hotel the night of the pre-exposure day. On exposure days, the subjects were exposed for three hours in random order to 0 ppb ozone (clean air), 70 ppb ozone, and 120 ppm ozone, alternating 15 minutes of moderate exercise with 15 minutes of rest. A suite of cardiovascular and pulmonary endpoints was measured on the day before, the day of, and up to 22 hours after, each exposure. The endpoints included: (1) electrocardiographic changes (continuous Holter monitoring: heart rate variability [HRV], repolarization, and arrhythmia); (2) markers of inflammation and oxidative stress (C-reactive protein [CRP], interleukin-6 [IL-6], 8-isoprostane, nitrotyrosine, and P-selectin); (3) vascular function measures (blood pressure [BP], flow-mediated dilatation [FMD] of the brachial artery, and endothelin-1 [ET-1]; (4) venous blood markers of platelet activation, thrombosis, and microparticle-associated tissue factor activity (MP-TFA); (5) pulmonary function (spirometry); (6) markers of airway epithelial cell injury (increases in plasma club cell protein 16 [CC16] and sputum total protein); and (7) markers of lung inflammation in sputum (polymorphonuclear leukocytes [PMN], IL-6, interleukin-8 [IL-8], and tumor necrosis factor-alpha [TNF-α]). Sputum was collected only at 22 hours after exposure. The analyses of the continuous electrocardiographic monitoring, the brachial artery ultrasound (BAU) images, and the blood and sputum samples were carried out by core laboratories. The results of all analyses were submitted directly to the DCAC. The variables analyzed in the statistical models were represented as changes from pre-exposure to post-exposure (post-exposure minus pre-exposure). Mixed-effect linear models were used to evaluate the impact of exposure to ozone on the prespecified primary and secondary continuous outcomes. Site and time (when multiple measurements were taken) were controlled for in the models. Three separate interaction models were constructed for each outcome: ozone concentration by subject sex; ozone concentration by subject age; and ozone concentration by subject GSTM1 status (null or sufficient). Because of the issue of multiple comparisons, the statistical significance threshold was set a priori at P < 0.01. RESULTS Subject recruitment started in June 2012, and the first subject was randomized on July 25, 2012. Subject recruitment ended on December 31, 2014, and testing of all subjects was completed by April 30, 2015. A total of 87 subjects completed all three exposures. The mean age was 59.9 ± 4.5 years, 60% of the subjects were female, 88% were white, and 57% were GSTM1 null. Mean baseline body mass index (BMI), BP, cholesterol (total and low-density lipoprotein), and lung function were all within the normal range. We found no significant effects of ozone exposure on any of the primary or secondary endpoints for autonomic function, repolarization, ST segment change, or arrhythmia. Ozone exposure also did not cause significant changes in the primary endpoints for systemic inflammation (CRP) and vascular function (systolic blood pressure [SBP] and FMD) or secondary endpoints for systemic inflammation and oxidative stress (IL-6, P-selectin, and 8-isoprostane). Ozone did cause changes in two secondary endpoints: a significant increase in plasma ET-1 (P = 0.008) and a marginally significant decrease in nitrotyrosine (P = 0.017). Lastly, ozone exposure did not affect the primary prothrombotic endpoints (MP-TFA and monocyte-platelet conjugate count) or any secondary markers of prothrombotic vascular status (platelet activation, circulating microparticles [MPs], von Willebrand factor [vWF], or fibrinogen.). Although our hypothesis focused on possible acute cardiovascular effects of exposure to low levels of ozone, we recognized that the initial effects of inhaled ozone involve the lower airways. Therefore, we looked for: (a) changes in lung function, which are known to occur during exposure to ozone and are maximal at the end of exposure; and (b) markers of airway injury and inflammation. We found an increase in forced vital capacity (FVC) and forced expiratory volume in 1 second (FEV₁) after exposure to 0 ppb ozone, likely due to the effects of exercise. The FEV₁ increased significantly 15 minutes after 0 ppb exposure (85 mL; 95% confidence interval [CI], 64 to 106; P < 0.001), and remained significantly increased from pre-exposure at 22 hours (45 mL; 95% CI, 26 to 64; P < 0.001). The increase in FVC followed a similar pattern. The increase in FEV₁ and FVC were attenuated in a dose-response manner by exposure to 70 and 120 ppb ozone. We also observed a significant ozone-induced increase in the percentage of sputum PMN 22 hours after exposure at 120 ppb compared to 0 ppb exposure (P = 0.003). Plasma CC16 also increased significantly after exposure to 120 ppb (P < 0.001). Sputum IL-6, IL-8, and TNF-α concentrations were not significantly different after ozone exposure. We found no significant interactions with sex, age, or GSTM1 status regarding the effect of ozone on lung function, percentage of sputum PMN, or plasma CC16. CONCLUSIONS In this multicenter clinical study of older healthy subjects, ozone exposure caused concentration-related reductions in lung function and presented evidence for airway inflammation and injury. However, there was no convincing evidence for effects on cardiovascular function. Blood levels of the potent vasoconstrictor, ET-1, increased with ozone exposure (with marginal statistical significance), but there were no effects on BP, FMD, or other markers of vascular function. Blood levels of nitrotyrosine decreased with ozone exposure, the opposite of our hypothesis. Our study does not support acute cardiovascular effects of low-level ozone exposure in healthy older subjects. Inclusion of only healthy older individuals is a major limitation, which may affect the generalizability of our findings. We cannot exclude the possibility of effects with higher ozone exposure concentrations or more prolonged exposure, or the possibility that subjects with underlying vascular disease, such as hypertension or diabetes, would show effects under these conditions.
Collapse
Affiliation(s)
- M W Frampton
- University of Rochester Medical Center, Rochester, New York
| | | | | | - P Stark
- New England Research Institute, Watertown, Massachusetts
| | | | | | - D Q Rich
- University of Rochester Medical Center, Rochester, New York
| | | | - N Dagincourt
- New England Research Institute, Watertown, Massachusetts
| | - N Alexis
- University of North Carolina, Chapel Hill
| | - P Ganz
- University of California, San Francisco
| | - W Zareba
- University of Rochester Medical Center, Rochester, New York
| | | |
Collapse
|
25
|
Stiegel MA, Pleil JD, Sobus JR, Stevens T, Madden MC. Linking physiological parameters to perturbations in the human exposome: Environmental exposures modify blood pressure and lung function via inflammatory cytokine pathway. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2017; 80:485-501. [PMID: 28696913 PMCID: PMC6089069 DOI: 10.1080/15287394.2017.1330578] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Human biomonitoring is an indispensable tool for evaluating the systemic effects derived from external stressors including environmental pollutants, chemicals from consumer products, and pharmaceuticals. The aim of this study was to explore consequences of environmental exposures to diesel exhaust (DE) and ozone (O3) and ultimately to interpret these parameters from the perspective of in vitro to in vivo extrapolation. In particular, the objective was to use cytokine expression at the cellular level as a biomarker for physiological systemic responses such as blood pressure and lung function at the systemic level. The values obtained could ultimately link in vivo behavior to simpler in vitro experiments where cytokines are a measured parameter. Human exposures to combinations of DE and O3 and the response correlations between forced exhaled volume in 1 second (FEV1), forced vital capacity (FVC), systolic and diastolic blood pressure (SBP and DBP, respectively), and 10 inflammatory cytokines in blood (interleukins 1β, 2, 4, 5, 8, 10, 12p70 and 13, IFN-γ, and TNF-α) were determined in 15 healthy human volunteers. Results across all exposures revealed that certain individuals displayed greater inflammatory responses compared to the group and, generally, there was more between-person variation in the responses. Evidence indicates that individuals are more stable within themselves and are more likely to exhibit responses independent of one another. Data suggest that in vitro findings may ultimately be implemented to elucidate underlying adverse outcome pathways (AOP) for linking high-throughput toxicity tests to physiological in vivo responses. Further, this investigation supports assessing subjects based upon individual responses as a complement to standard longitudinal (pre vs. post) intervention grouping strategies. Ultimately, it may become possible to predict a physiological (systemic) response based upon cellular-level (in vitro) observations.
Collapse
Affiliation(s)
- Matthew A Stiegel
- a Duke University Medical Center , Department of Occupational and Environmental Safety , Durham , NC , US
| | - Joachim D Pleil
- b United States Environmental Protection Agency, National Exposure Research Lab , Exposure Methods and Measurement Division , Research Triangle Park , NC , US
| | - Jon R Sobus
- b United States Environmental Protection Agency, National Exposure Research Lab , Exposure Methods and Measurement Division , Research Triangle Park , NC , US
| | - Tina Stevens
- c United States Environmental Protection Agency , National Health and Environmental Effects Research Lab, Environmental Public Health Division , Chapel Hill , NC , US
| | - Michael C Madden
- c United States Environmental Protection Agency , National Health and Environmental Effects Research Lab, Environmental Public Health Division , Chapel Hill , NC , US
| |
Collapse
|
26
|
Bromberg PA. Mechanisms of the acute effects of inhaled ozone in humans. Biochim Biophys Acta Gen Subj 2016; 1860:2771-81. [PMID: 27451958 DOI: 10.1016/j.bbagen.2016.07.015] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 07/13/2016] [Accepted: 07/18/2016] [Indexed: 12/31/2022]
Abstract
Ambient air ozone (O3) is generated photochemically from oxides of nitrogen and volatile hydrocarbons. Inhaled O3 causes remarkably reversible acute lung function changes and inflammation. Approximately 80% of inhaled O3 is deposited on the airways. O3 reacts rapidly with CC double bonds in hydrophobic airway and alveolar surfactant-associated phospholipids and cholesterol. Resultant primary ozonides further react to generate bioactive hydrophilic products that also initiate lipid peroxidation leading to eicosanoids and isoprostanes of varying electrophilicity. Airway surface liquid ascorbate and urate also scavenge O3. Thus, inhaled O3 may not interact directly with epithelial cells. Acute O3-induced lung function changes are dominated by involuntary inhibition of inspiration (rather than bronchoconstriction), mediated by stimulation of intraepithelial nociceptive vagal C-fibers via activation of transient receptor potential (TRP) A1 cation channels by electrophile (e.g., 4-oxo-nonenal) adduction of TRPA1 thiolates enhanced by PGE2-stimulated sensitization. Acute O3-induced neutrophilic airways inflammation develops more slowly than the lung function changes. Surface macrophages and epithelial cells are involved in the activation of epithelial NFkB and generation of proinflammatory mediators such as IL-6, IL-8, TNFa, IL-1b, ICAM-1, E-selectin and PGE2. O3-induced partial depolymerization of hyaluronic acid and the release of peroxiredoxin-1 activate macrophage TLR4 while oxidative epithelial cell release of EGFR ligands such as TGFa or EGFR transactivation by activated Src may also be involved. The ability of lipid ozonation to generate potent electrophiles also provides pathways for Nrf2 activation and inhibition of canonical NFkB activation. This article is part of a Special Issue entitled Air Pollution, edited by Wenjun Ding, Andrew J. Ghio and Weidong Wu.
Collapse
Affiliation(s)
- Philip A Bromberg
- Center for Environmental Medicine, Asthma and Lung Biology, and Division of Pulmonary and Critical Care Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States.
| |
Collapse
|
27
|
Kobernick AK, Peden DB, Zhou H, Zhou Q, Dillon MA, Alexis NE. Reproducibility of the inflammatory response to inhaled endotoxin in healthy volunteers. J Allergy Clin Immunol 2016; 138:1205-1207. [PMID: 27297997 DOI: 10.1016/j.jaci.2016.04.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 03/24/2016] [Accepted: 04/06/2016] [Indexed: 11/20/2022]
Affiliation(s)
- Aaron K Kobernick
- Center for Environmental Medicine, Asthma and Lung Biology, Division of Allergy and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC.
| | - David B Peden
- Center for Environmental Medicine, Asthma and Lung Biology, Division of Allergy and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC
| | - Haibo Zhou
- Division of Biostatistics, University of North Carolina Gillings School of Global Public Health, Chapel Hill, NC
| | - Qinging Zhou
- Division of Biostatistics, University of North Carolina Gillings School of Global Public Health, Chapel Hill, NC
| | | | - Neil E Alexis
- Center for Environmental Medicine, Asthma and Lung Biology, Division of Allergy and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC
| |
Collapse
|
28
|
Stiegel MA, Pleil JD, Sobus JR, Madden MC. Inflammatory Cytokines and White Blood Cell Counts Response to Environmental Levels of Diesel Exhaust and Ozone Inhalation Exposures. PLoS One 2016; 11:e0152458. [PMID: 27058360 PMCID: PMC4825980 DOI: 10.1371/journal.pone.0152458] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 03/15/2016] [Indexed: 12/21/2022] Open
Abstract
Epidemiological observations of urban inhalation exposures to diesel exhaust (DE) and ozone (O3) have shown pre-clinical cardiopulmonary responses in humans. Identifying the key biological mechanisms that initiate these health bioindicators is difficult due to variability in environmental exposure in time and from person to person. Previously, environmentally controlled human exposure chambers have been used to study DE and O3 dose-response patterns separately, but investigation of co-exposures has not been performed under controlled conditions. Because a mixture is a more realistic exposure scenario for the general public, in this study we investigate the relationships of urban levels of urban-level DE exposure (300 μg/m3), O3 (0.3 ppm), DE + O3 co-exposure, and innate immune system responses. Fifteen healthy human volunteers were studied for changes in ten inflammatory cytokines (interleukins 1β, 2, 4, 5, 8, 10, 12p70 and 13, IFN-γ, and TNF-α) and counts of three white blood cell types (lymphocytes, monocytes, and neutrophils) following controlled exposures to DE, O3, and DE+O3. The results show subtle cytokines responses to the diesel-only and ozone-only exposures, and that a more complex (possibly synergistic) relationship exists in the combination of these two exposures with suppression of IL-5, IL-12p70, IFN-γ, and TNF-α that persists up to 22-hours for IFN-γ and TNF-α. The white blood cell differential counts showed significant monocyte and lymphocyte decreases and neutrophil increases following the DE + O3 exposure; lymphocytes and neutrophils changes also persist for at least 22-hours. Because human studies must be conducted under strict safety protocols at environmental levels, these effects are subtle and are generally only seen with detailed statistical analysis. This study indicates that the observed associations between environmental exposures and cardiopulmonary effects are possibly mediated by inflammatory response mechanisms.
Collapse
Affiliation(s)
- Matthew A. Stiegel
- Duke University Medical Center, Department of Occupational and Environmental Safety, Division of Occupational Hygiene and Safety, Durham, North Carolina, United States of America
| | - Joachim D. Pleil
- United States Environmental Protection Agency, National Exposure Research Lab, Human Exposure and Atmospheric Sciences Division, Research Triangle Park, North Carolina, United States of America
| | - Jon R. Sobus
- United States Environmental Protection Agency, National Exposure Research Lab, Human Exposure and Atmospheric Sciences Division, Research Triangle Park, North Carolina, United States of America
| | - Michael C. Madden
- United States Environmental Protection Agency, National Health and Environmental Effects Research Lab, Environmental Public Health Division, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
29
|
Air pollution and asthma: how can a public health concern inform the care of individual patients? Ann Allergy Asthma Immunol 2015; 113:343-6. [PMID: 25256028 DOI: 10.1016/j.anai.2014.07.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 07/17/2014] [Accepted: 07/20/2014] [Indexed: 01/21/2023]
|
30
|
Theis WS, Andringa KK, Millender-Swain T, Dickinson DA, Postlethwait EM, Bailey SM. Ozone inhalation modifies the rat liver proteome. Redox Biol 2014; 2:52-60. [PMID: 25544660 PMCID: PMC4297937 DOI: 10.1016/j.redox.2013.11.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 11/18/2013] [Accepted: 11/18/2013] [Indexed: 02/06/2023] Open
Abstract
Ozone (O3) is a serious public health concern. Recent findings indicate that the damaging health effects of O3 extend to multiple systemic organ systems. Herein, we hypothesize that O3 inhalation will cause downstream alterations to the liver. To test this, male Sprague-Dawley rats were exposed to 0.5 ppm O3 for 8 h/day for 5 days. Plasma liver enzyme measurements showed that 5 day O3 exposure did not cause liver cell death. Proteomic and mass spectrometry analysis identified 10 proteins in the liver that were significantly altered in abundance following short-term O3 exposure and these included several stress responsive proteins. Glucose-regulated protein 78 and protein disulfide isomerase increased, whereas glutathione S-transferase M1 was significantly decreased by O3 inhalation. In contrast, no significant changes were detected for the stress response protein heme oxygenase-1 or cytochrome P450 2E1 and 2B in liver of O3 exposed rats compared to controls. In summary, these results show that an environmentally-relevant exposure to inhaled O3 can alter the expression of select proteins in the liver. We propose that O3 inhalation may represent an important unrecognized factor that can modulate hepatic metabolic functions. Rats were exposed to filtered air (FA) or 0.5 ppm ozone (O3) 8 h/day for 5 days. Using this exposure protocol, O3 caused no detectable lung injury or liver cell death. O3 altered the expression of some drug metabolism and stress proteins in liver.
Collapse
Affiliation(s)
- Whitney S Theis
- Department of Environmental Health Sciences, University of Alabama at Birmingham, 1720 2nd Avenue South, Birmingham, AL 35294, USA.
| | - Kelly K Andringa
- Department of Environmental Health Sciences, University of Alabama at Birmingham, 1720 2nd Avenue South, Birmingham, AL 35294, USA.
| | - Telisha Millender-Swain
- Department of Environmental Health Sciences, University of Alabama at Birmingham, 1720 2nd Avenue South, Birmingham, AL 35294, USA; Department of Pathology, University of Alabama at Birmingham, 1720 2nd Avenue South, Birmingham, AL 35294, USA.
| | - Dale A Dickinson
- Department of Environmental Health Sciences, University of Alabama at Birmingham, 1720 2nd Avenue South, Birmingham, AL 35294, USA; Center for Free Radical Biology, University of Alabama at Birmingham, 1720 2nd Avenue South, Birmingham, AL 35294, USA.
| | - Edward M Postlethwait
- Department of Environmental Health Sciences, University of Alabama at Birmingham, 1720 2nd Avenue South, Birmingham, AL 35294, USA; Center for Free Radical Biology, University of Alabama at Birmingham, 1720 2nd Avenue South, Birmingham, AL 35294, USA.
| | - Shannon M Bailey
- Department of Environmental Health Sciences, University of Alabama at Birmingham, 1720 2nd Avenue South, Birmingham, AL 35294, USA; Department of Pathology, University of Alabama at Birmingham, 1720 2nd Avenue South, Birmingham, AL 35294, USA; Center for Free Radical Biology, University of Alabama at Birmingham, 1720 2nd Avenue South, Birmingham, AL 35294, USA.
| |
Collapse
|
31
|
Polosukhin VV, Polosukhin IV, Hoskins A, Han W, Abdolrasulnia R, Blackwell TS, Dworski R. Glutathione S-transferase M1 modulates allergen-induced NF-κB activation in asthmatic airway epithelium. Allergy 2014; 69:1666-72. [PMID: 25118837 DOI: 10.1111/all.12506] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2014] [Indexed: 11/27/2022]
Abstract
BACKGROUND Glutathione S-transferase M1 (GSTM1) is a phase II enzyme and regulator of inflammatory signaling in airway epithelial cells. We have found upregulation of neutrophilic airway inflammation in atopic asthmatics expressing GSTM1 gene (GSTM1+) compared to GSTM1null asthmatics. We hypothesized that GSTM1 modulates NF-κB activation in bronchial epithelium in atopic asthmatics. We determined regulation of allergen-induced NF-κB activation in bronchial epithelium by GSTM1 in human atopic asthmatics in vivo. METHODS Endobronchial biopsies and bronchoalveolar lavage fluid samples were collected from 13 GSTM1+ and 12 GSTM1null human atopic asthmatics at baseline and 24 h after segmental allergen challenge. A quantitative analysis of NF-κB activation in airway epithelium was accomplished using a polyclonal antibody against the phosphorylated p65 component of NF-κB. Elastase-positive neutrophils in the bronchial wall were quantified. RESULTS Postallergen neutrophilia in airway subepithelium and epithelial lining fluid was greater in GSTM1+ compared to GSTM1null asthmatics. Airway eosinophilia was similar in GSTM1+ and GSTM1null asthmatics. Allergen-provoked NF-κB induction in bronchial epithelium was significantly greater in GSTM1+ compared to GSTM1null asthmatics. Activation of NF-κB activation in airway epithelial cells correlated with interleukin-8 concentrations and absolute neutrophil numbers in bronchoalveolar lavage fluid in GSTM1+ but not GSTM1null asthmatics. CONCLUSIONS Allergen-induced neutrophilic airway inflammation in GSTM1+ asthmatics is associated with NF-κB activation in airway epithelial cells in vivo. These novel data provide a potential mechanism of the genomic link between GSTM1 polymorphism and airway neutrophilia in atopic asthma.
Collapse
Affiliation(s)
- V. V. Polosukhin
- Division of Allergy; Pulmonary and Critical Care Medicine; Department of Medicine; Vanderbilt University School of Medicine; Nashville TN USA
| | - I. V. Polosukhin
- The Vanderbilt Center for Science Outreach; Research Experience for High School Students; Nashville TN USA
| | - A. Hoskins
- Division of Allergy; Pulmonary and Critical Care Medicine; Department of Medicine; Vanderbilt University School of Medicine; Nashville TN USA
| | - W. Han
- Division of Allergy; Pulmonary and Critical Care Medicine; Department of Medicine; Vanderbilt University School of Medicine; Nashville TN USA
| | - R. Abdolrasulnia
- Division of Allergy; Pulmonary and Critical Care Medicine; Department of Medicine; Vanderbilt University School of Medicine; Nashville TN USA
| | - T. S. Blackwell
- Division of Allergy; Pulmonary and Critical Care Medicine; Department of Medicine; Vanderbilt University School of Medicine; Nashville TN USA
| | - R. Dworski
- Division of Allergy; Pulmonary and Critical Care Medicine; Department of Medicine; Vanderbilt University School of Medicine; Nashville TN USA
| |
Collapse
|
32
|
Vinikoor-Imler LC, Owens EO, Nichols JL, Ross M, Brown JS, Sacks JD. Evaluating potential response-modifying factors for associations between ozone and health outcomes: a weight-of-evidence approach. ENVIRONMENTAL HEALTH PERSPECTIVES 2014; 122:1166-76. [PMID: 24927060 PMCID: PMC4216162 DOI: 10.1289/ehp.1307541] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 06/11/2014] [Indexed: 05/04/2023]
Abstract
BACKGROUND Epidemiologic and experimental studies have reported a variety of health effects in response to ozone (O3) exposure, and some have indicated that certain populations may be at increased or decreased risk of O3-related health effects. OBJECTIVES We sought to identify potential response-modifying factors to determine whether specific groups of the population or life stages are at increased or decreased risk of O3-related health effects using a weight-of-evidence approach. METHODS Epidemiologic, experimental, and exposure science studies of potential factors that may modify the relationship between O3 and health effects were identified in U.S. Environmental Protection Agency's 2013 Integrated Science Assessment for Ozone and Related Photochemical Oxidants. Scientific evidence from studies that examined factors that may influence risk were integrated across disciplines to evaluate consistency, coherence, and biological plausibility of effects. The factors identified were then classified using a weight-of-evidence approach to conclude whether a specific factor modified the response of a population or life stage, resulting in an increased or decreased risk of O3-related health effects. DISCUSSION We found "adequate" evidence that populations with certain genotypes, preexisting asthma, or reduced intake of certain nutrients, as well as different life stages or outdoor workers, are at increased risk of O3-related health effects. In addition, we identified other factors (i.e., sex, socioeconomic status, and obesity) for which there was "suggestive" evidence that they may increase the risk of O3-related health effects. CONCLUSIONS Using a weight-of-evidence approach, we identified a diverse group of factors that should be considered when characterizing the overall risk of health effects associated with exposures to ambient O3.
Collapse
Affiliation(s)
- Lisa C Vinikoor-Imler
- National Center for Environmental Assessment (NCEA), U.S. Environmental Protection Agency (EPA), Research Triangle Park, North Carolina, USA
| | | | | | | | | | | |
Collapse
|
33
|
Hernandez ML, Mills K, Almond M, Todoric K, Aleman MM, Zhang H, Zhou H, Peden DB. IL-1 receptor antagonist reduces endotoxin-induced airway inflammation in healthy volunteers. J Allergy Clin Immunol 2014; 135:379-85. [PMID: 25195169 DOI: 10.1016/j.jaci.2014.07.039] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 06/27/2014] [Accepted: 07/07/2014] [Indexed: 10/24/2022]
Abstract
BACKGROUND Asthma with neutrophil predominance is challenging to treat with corticosteroids. Novel treatment options for asthma include those that target innate immune activity. Recent literature has indicated a significant role for IL-1β in both acute and chronic neutrophilic asthma. OBJECTIVE This study used inhaled endotoxin (LPS) challenge as a model of innate immune activation to (1) assess the safety of the IL-1 receptor antagonist anakinra in conjunction with inhaled LPS and (2) to test the hypothesis that IL-1 blockade will suppress the acute neutrophil response to challenge with inhaled LPS. METHODS In a phase I clinical study 17 healthy volunteers completed a double-blind, placebo-controlled crossover study in which they received 2 daily subcutaneous doses of 1 mg/kg anakinra (maximum dose, 100 mg) or saline (placebo). One hour after the second treatment dose, subjects underwent an inhaled LPS challenge. Induced sputum was assessed for neutrophils 4 hours after inhaled LPS. The effect of anakinra compared with placebo on airway neutrophil counts and airway proinflammatory cytokine levels after LPS challenge was compared by using a linear mixed-model approach. RESULTS Anakinra pretreatment significantly diminished airway neutrophilia compared with placebo. LPS-induced IL-1β, IL-6, and IL-8 levels were significantly reduced during the anakinra treatment period compared with those seen after placebo. Subjects tolerated the anakinra treatment well without an increased frequency of infections attributable to anakinra treatment. CONCLUSIONS Anakinra effectively reduced airway neutrophilic inflammation and resulted in no serious adverse events in a model of inhaled LPS challenge. Anakinra is a potential therapeutic candidate for treatment of asthma with neutrophil predominance in diseased populations.
Collapse
Affiliation(s)
- Michelle L Hernandez
- Center for Environmental Medicine, Asthma, & Lung Biology, University of North Carolina, Chapel Hill, NC.
| | - Katherine Mills
- Center for Environmental Medicine, Asthma, & Lung Biology, University of North Carolina, Chapel Hill, NC
| | - Martha Almond
- Center for Environmental Medicine, Asthma, & Lung Biology, University of North Carolina, Chapel Hill, NC
| | - Krista Todoric
- Center for Environmental Medicine, Asthma, & Lung Biology, University of North Carolina, Chapel Hill, NC
| | - Maria M Aleman
- Center for Environmental Medicine, Asthma, & Lung Biology, University of North Carolina, Chapel Hill, NC
| | - Hongtao Zhang
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC
| | - Haibo Zhou
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC
| | - David B Peden
- Center for Environmental Medicine, Asthma, & Lung Biology, University of North Carolina, Chapel Hill, NC
| |
Collapse
|
34
|
Fry RC, Rager JE, Bauer R, Sebastian E, Peden DB, Jaspers I, Alexis NE. Air toxics and epigenetic effects: ozone altered microRNAs in the sputum of human subjects. Am J Physiol Lung Cell Mol Physiol 2014; 306:L1129-37. [PMID: 24771714 DOI: 10.1152/ajplung.00348.2013] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Ozone (O3) is a criteria air pollutant that is associated with numerous adverse health effects, including altered respiratory immune responses. Despite its deleterious health effects, possible epigenetic mechanisms underlying O3-induced health effects remain understudied. MicroRNAs (miRNAs) are epigenetic regulators of genomic response to environmental insults and unstudied in relationship to O3 inhalation exposure. Our objective was to test whether O3 inhalation exposure significantly alters miRNA expression profiles within the human bronchial airways. Twenty healthy adult human volunteers were exposed to 0.4 ppm O3 for 2 h. Induced sputum samples were collected from each subject 48 h preexposure and 6 h postexposure for evaluation of miRNA expression and markers of inflammation in the airways. Genomewide miRNA expression profiles were evaluated by microarray analysis, and in silico predicted mRNA targets of the O3-responsive miRNAs were identified and validated against previously measured O3-induced changes in mRNA targets. Biological network analysis was performed on the O3-associated miRNAs and mRNA targets to reveal potential associated response signaling and functional enrichment. Expression analysis of the sputum samples revealed that O3 exposure significantly increased the expression levels of 10 miRNAs, namely miR-132, miR-143, miR-145, miR-199a*, miR-199b-5p, miR-222, miR-223, miR-25, miR-424, and miR-582-5p. The miRNAs and their predicted targets were associated with a diverse range of biological functions and disease signatures, noted among them inflammation and immune-related disease. The present study shows that O3 inhalation exposure disrupts select miRNA expression profiles that are associated with inflammatory and immune response signaling. These findings provide novel insight into epigenetic regulation of responses to O3 exposure.
Collapse
Affiliation(s)
- Rebecca C Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina; Curriculum in Toxicology, University of North Carolina, Chapel Hill, North Carolina; Center for Environmental Health and Susceptibility, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina
| | - Julia E Rager
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina
| | - Rebecca Bauer
- Curriculum in Toxicology, University of North Carolina, Chapel Hill, North Carolina
| | - Elizabeth Sebastian
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina
| | - David B Peden
- Center for Environmental Medicine, Asthma, and Lung Biology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina; and Department of Pediatrics, University of North Carolina, School of Medicine University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Ilona Jaspers
- Center for Environmental Medicine, Asthma, and Lung Biology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina; and Department of Pediatrics, University of North Carolina, School of Medicine University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Neil E Alexis
- Center for Environmental Medicine, Asthma, and Lung Biology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina; and Department of Pediatrics, University of North Carolina, School of Medicine University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
35
|
Devlin RB, Smith CB, Schmitt MT, Rappold AG, Hinderliter A, Graff D, Carraway MS. Controlled exposure of humans with metabolic syndrome to concentrated ultrafine ambient particulate matter causes cardiovascular effects. Toxicol Sci 2014; 140:61-72. [PMID: 24718702 DOI: 10.1093/toxsci/kfu063] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Many studies have reported associations between air pollution particles with an aerodynamic diameter <2.5 μm (fine particulate matter (PM)) and adverse cardiovascular effects. However, there is an increased concern that so-called ultrafine PM which comprises the smallest fraction of fine PM (aerodynamic diameter <0.1 μm) may be disproportionately toxic relative to the 0.1-2.5 μm fraction. Ultrafine PM is not routinely measured in state monitoring networks and is not homogenously dispersed throughout an airshed but rather located in hot spots such as near combustion sources (e.g., roads), making it difficult for epidemiology studies to associate exposure to ultrafine PM with adverse health effects. Thirty four middle-aged individuals with metabolic syndrome were exposed for 2 h while at rest in a randomized crossover design to clean air and concentrated ambient ultrafine particles (UCAPS) for 2 h. To further define potential risk, study individuals carrying the null allele for GSTM1 (a prominent antioxidant gene) were identified by genotyping. Blood was obtained immediately prior to exposure, and at 1 and 20 h afterward. Continuous Holter monitoring began immediately prior to exposure and continued for 24 h. Based on changes we observed in previous CAPS studies, we hypothesized that ultrafine CAPS would cause changes in markers of blood inflammation and fibrinolysis as well as changes in heart rate variability and cardiac repolarization. GSTM1 null individuals had altered cardiac repolarization as seen by a change in QRS complexity following exposure to UCAPS and both the entire study population as well as GSTM1 null individuals had increased QT duration. Blood plasminogen and thrombomodulin were decreased in the whole population following UCAPS exposure, whereas C-reactive protein (CRP) and SAA were increased. This controlled human exposure study is the first to show that ambient ultrafine particles can cause cardiovascular changes in people with metabolic syndrome, which affects nearly a quarter of the U.S. adult population.
Collapse
Affiliation(s)
- Robert B Devlin
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, US EPA, Research Triangle Park, North Carolina 27711
| | - Candice B Smith
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, US EPA, Research Triangle Park, North Carolina 27711
| | - Michael T Schmitt
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, US EPA, Research Triangle Park, North Carolina 27711
| | - Ana G Rappold
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, US EPA, Research Triangle Park, North Carolina 27711
| | - Alan Hinderliter
- University of North Carolina, School of Medicine, Chapel Hill 27599, North Carolina
| | - Don Graff
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, US EPA, Research Triangle Park, North Carolina 27711
| | - Martha Sue Carraway
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, US EPA, Research Triangle Park, North Carolina 27711
| |
Collapse
|
36
|
Possible molecular mechanisms linking air pollution and asthma in children. BMC Pulm Med 2014; 14:31. [PMID: 24581224 PMCID: PMC3941253 DOI: 10.1186/1471-2466-14-31] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 02/03/2014] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Air pollution has many effects on the health of both adults and children, but children's vulnerability is unique. The aim of this review is to discuss the possible molecular mechanisms linking air pollution and asthma in children, also taking into account their genetic and epigenetic characteristics. RESULTS Air pollutants appear able to induce airway inflammation and increase asthma morbidity in children. A better definition of mechanisms related to pollution-induced airway inflammation in asthmatic children is needed in order to find new clinical and therapeutic strategies for preventing the exacerbation of asthma. Moreover, reducing pollution-induced oxidative stress and consequent lung injury could decrease children's susceptibility to air pollution. This would be extremely useful not only for the asthmatic children who seem to have a genetic susceptibility to oxidative stress, but also for the healthy population. In addition, epigenetics seems to have a role in the lung damage induced by air pollution. Finally, a number of epidemiological studies have demonstrated that exposure to common air pollutants plays a role in the susceptibility to, and severity of respiratory infections. CONCLUSIONS Air pollution has many negative effects on pediatric health and it is recognised as a serious health hazard. There seems to be an association of air pollution with an increased risk of asthma exacerbations and acute respiratory infections. However, further studies are needed in order to clarify the specific mechanism of action of different air pollutants, identify genetic polymorphisms that modify airway responses to pollution, and investigate the effectiveness of new preventive and/or therapeutic approaches for subjects with low antioxidant enzyme levels. Moreover, as that epigenetic changes are inheritable during cell division and may be transmitted to subsequent generations, it is very important to clarify the role of epigenetics in the relationship between air pollution and lung disease in asthmatic and healthy children.
Collapse
|
37
|
Hernandez ML, Wagner JG, Kala A, Mills K, Wells HB, Alexis NE, Lay JC, Jiang Q, Zhang H, Zhou H, Peden DB. Vitamin E, γ-tocopherol, reduces airway neutrophil recruitment after inhaled endotoxin challenge in rats and in healthy volunteers. Free Radic Biol Med 2013; 60:56-62. [PMID: 23402870 PMCID: PMC3654053 DOI: 10.1016/j.freeradbiomed.2013.02.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 02/01/2013] [Accepted: 02/05/2013] [Indexed: 01/11/2023]
Abstract
Epidemiologic studies suggest that dietary vitamin E is an important candidate intervention for asthma. Our group has shown that daily consumption of vitamin E (γ-tocopherol, γT) has anti-inflammatory actions in both rodent and human phase I studies. The objective of this study was to test whether γT supplementation could mitigate a model of neutrophilic airway inflammation in rats and in healthy human volunteers. F344/N rats were randomized to oral gavage with γT versus placebo, followed by intranasal LPS (20μg) challenge. Bronchoalveolar lavage fluid and lung histology were used to assess airway neutrophil recruitment. In a phase IIa clinical study, 13 nonasthmatic subjects completed a double-blinded, placebo-controlled crossover study in which they consumed either a γT-enriched capsule or a sunflower oil placebo capsule. After 7 days of daily supplementation, they underwent an inhaled LPS challenge. Induced sputum was assessed for neutrophils 6 h after inhaled LPS. The effect of γT compared to placebo on airway neutrophils post-LPS was compared using a repeated-measures analysis of variance. In rats, oral γT supplementation significantly reduced tissue infiltration (p<0.05) and accumulation of airway neutrophils (p<0.05) that are elicited by intranasal LPS challenge compared to control rats. In human volunteers, γT treatment significantly decreased induced sputum neutrophils (p=0.03) compared to placebo. Oral supplementation with γT reduced airway neutrophil recruitment in both rat and human models of inhaled LPS challenge. These results suggest that γT is a potential therapeutic candidate for prevention or treatment of neutrophilic airway inflammation in diseased populations.
Collapse
Affiliation(s)
- Michelle L Hernandez
- Center for Environmental Medicine, Asthma, & Lung Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27516, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Hoskins A, Reiss S, Wu P, Chen N, Han W, Do RH, Abdolrasulnia R, Dworski R. Asthmatic airway neutrophilia after allergen challenge is associated with the glutathione S-transferase M1 genotype. Am J Respir Crit Care Med 2013; 187:34-41. [PMID: 23204253 PMCID: PMC3570644 DOI: 10.1164/rccm.201204-0786oc] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 11/12/2012] [Indexed: 12/31/2022] Open
Abstract
RATIONALE Asthma is a heterogeneous lung disorder characterized by airway inflammation and airway dysfunction, manifesting as hyperresponsiveness and obstruction. Glutathione S-transferase M1 (GSTM1) is a multifunctional phase II enzyme and regulator of stress-activated cellular signaling relevant to asthma pathobiology. A common homozygous deletion polymorphism of the GSTM1 gene eliminates enzyme activity. OBJECTIVES To determine the effect of GSTM1 on airway inflammation and reactivity in adults with established atopic asthma in vivo. METHODS Nineteen GSTM1 wild-type and eighteen GSTM1-null individuals with mild atopic asthma underwent methacholine and inhaled allergen challenges, and endobronchial allergen provocations through a bronchoscope. MEASUREMENTS AND MAIN RESULTS The influx of inflammatory cells, panels of cytokines and chemokines linked to asthmatic inflammation, F(2)-isoprostanes (markers of oxidative stress), and IgE were measured in bronchoalveolar lavage fluid at baseline and 24 hours after allergen instillation. Individuals with asthma with the GSTM1 wild-type genotype had greater baseline and allergen-provoked airway neutrophilia and concentrations of myeloperoxidase than GSTM1-null patients. In contrast, the eosinophilic inflammation was unaffected by GSTM1. The allergen-stimulated generation of acute-stress and proneutrophilic mediators, tumor necrosis factor-α, CXCL-8, IL-1β, and IL-6, was also greater in the GSTM1 wild-type patients. Moreover, post-allergen airway concentrations of IgE and neutrophil-generated mediators, matrix metalloproteinase-9, B-cell activating factor, transforming growth factor-β1, and elastase were higher in GSTM1 wild-type individuals with asthma. Total airway IgE correlated with B-cell activating factor concentrations. In contrast, levels of F(2)-isoprostane were comparable in both groups. Finally, GSTM1 wild-type individuals with asthma required lower threshold concentrations of allergen to produce bronchoconstriction. CONCLUSIONS The functional GSTM1 genotype promotes neutrophilic airway inflammation in humans with atopic asthma in vivo.
Collapse
Affiliation(s)
- Aimee Hoskins
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University, Nashville, Tennessee
| | - Sara Reiss
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University, Nashville, Tennessee
| | - Pingsheng Wu
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University, Nashville, Tennessee
| | - Ning Chen
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University, Nashville, Tennessee
| | - Wei Han
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University, Nashville, Tennessee
| | - Rui-hong Do
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University, Nashville, Tennessee
| | - Rasul Abdolrasulnia
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University, Nashville, Tennessee
| | - Ryszard Dworski
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
39
|
Fry RC, Rager JE, Zhou H, Zou B, Brickey JW, Ting J, Lay JC, Peden DB, Alexis NE. Individuals with increased inflammatory response to ozone demonstrate muted signaling of immune cell trafficking pathways. Respir Res 2012; 13:89. [PMID: 23033980 PMCID: PMC3607990 DOI: 10.1186/1465-9921-13-89] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 09/21/2012] [Indexed: 11/14/2022] Open
Abstract
Background Exposure to ozone activates innate immune function and causes neutrophilic (PMN) airway inflammation that in some individuals is robustly elevated. The interplay between immuno-inflammatory function and genomic signaling in those with heightened inflammatory responsiveness to ozone is not well understood. Objectives Determine baseline predictors and post exposure discriminators for the immuno-inflammatory response to ozone in inflammatory responsive adult volunteers. Methods Sputum induction was performed on 27 individuals before and after a two hour chamber exposure to 0.4 ppm ozone. Subjects were classified as inflammatory responders or non-responders to ozone based on their PMN response. Innate immune function, inflammatory cell and cytokine modulation and transcriptional signaling pathways were measured in sputum. Results Post exposure, responders showed activated innate immune function (CD16: 31,004 MFI vs 8988 MFI; CD11b: 44,986 MFI vs 24,770 MFI; CD80: 2236 MFI vs 1506 MFI; IL-8: 37,603 pg/ml vs 2828 pg/ml; and IL-1β: 1380 pg/ml vs 318 pg/ml) with muted signaling of immune cell trafficking pathways. In contrast, non-responders displayed decreased innate immune activity (CD16, CD80; phagocytosis: 2 particles/PMN vs 4 particles/PMN) post exposure that was accompanied by a heightened signaling of immune cell trafficking pathways. Conclusions Inflammatory responsive and non responsive individuals to ozone show an inverse relationship between immune cell trafficking and immuno-inflammatory functional responses to ozone. These distinct genomic signatures may further our understanding about ozone-induced morbidity in individuals with different levels of inflammatory responsiveness.
Collapse
Affiliation(s)
- Rebecca C Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Alexis NE, Lay JC, Zhou H, Kim CS, Hernandez ML, Kehrl H, Hazucha MJ, Devlin RB, Diaz-Sanchez D, Peden DB. The glutathione-S-transferase mu 1 (GSTM1) null genotype and increased neutrophil response to low-level ozone (0.06 ppm). J Allergy Clin Immunol 2012; 131:610-2. [PMID: 22921799 DOI: 10.1016/j.jaci.2012.07.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 06/26/2012] [Accepted: 07/05/2012] [Indexed: 11/28/2022]
|
41
|
Wu W, Peden D, Diaz-Sanchez D. Role of GSTM1 in resistance to lung inflammation. Free Radic Biol Med 2012; 53:721-9. [PMID: 22683820 PMCID: PMC3418458 DOI: 10.1016/j.freeradbiomed.2012.05.037] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 05/18/2012] [Accepted: 05/23/2012] [Indexed: 01/04/2023]
Abstract
Lung inflammation resulting from oxidant/antioxidant imbalance is a common feature of many lung diseases. In particular, the role of enzymes regulated by the NF-E2-related factor 2 transcription factor has recently received increased attention. Among these antioxidant genes, glutathione S-transferase Mu 1 (GSTM1) has been most extensively characterized because it has a null polymorphism that is highly prevalent in the population and associated with increased risk of inflammatory lung diseases. Present evidence suggests that GSTM1 acts through interactions with other genes and environmental factors, especially air pollutants. Here, we review GSTM1 gene expression and regulation and summarize the findings from epidemiological, clinical, animal, and in vitro studies on the role played by GSTM1 in lung inflammation. We discuss limitations in the existing knowledge base and future perspectives and evaluate the potential of pharmacologic and genetic manipulation of the GSTM1 gene to modulate pulmonary inflammatory responses.
Collapse
Affiliation(s)
- Weidong Wu
- Department of Pediatrics, Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina, Chapel Hill, NC 7599, USA.
| | | | | |
Collapse
|
42
|
Wu W, Peden DB, McConnell R, Fruin S, Diaz-Sanchez D. Glutathione-S-transferase M1 regulation of diesel exhaust particle-induced pro-inflammatory mediator expression in normal human bronchial epithelial cells. Part Fibre Toxicol 2012; 9:31. [PMID: 22867088 PMCID: PMC3480908 DOI: 10.1186/1743-8977-9-31] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 08/01/2012] [Indexed: 12/11/2022] Open
Abstract
Background Diesel exhaust particles (DEP) contribute substantially to ambient particulate matter (PM) air pollution in urban areas. Inhalation of PM has been associated with increased incidence of lung disease in susceptible populations. We have demonstrated that the glutathione S-transferase M1 (GSTM1) null genotype could aggravate DEP-induced airway inflammation in human subjects. Given the critical role airway epithelial cells play in the pathogenesis of airway inflammation, we established the GSTM1 deficiency condition in primary bronchial epithelial cells from human volunteers with GSTM1 sufficient genotype (GSTM1+) using GSTM1 shRNA to determine whether GSTM1 deficiency could exaggerate DEP-induced expression of interleukin-8 (IL-8) and IL-1β proteins. Furthermore, the mechanisms underlying GSTM1 regulation of DEP-induced IL-8 and IL-1β expression were also investigated. Methods IL-8 and IL-1β protein levels were measured using enzyme-linked immunosorbent assay. GSTM1 deficiency in primary human bronchial epithelial cells was achieved using lentiviral GSTM1 shRNA particles and verified using real-time polymerase chain reaction and immunoblotting. Intracellular reactive oxygen species (ROS) production was evaluated using flow cytometry. Phosphorylation of protein kinases was detected using immunoblotting. Results Exposure of primary human bronchial epithelial cells (GSTM1+) to 25-100 μg/ml DEP for 24 h significantly increased IL-8 and IL-1β protein expression. Knockdown of GSTM1 in these cells further elevated DEP-induced IL-8 and IL-1β expression, implying that GSTM1 deficiency aggravated DEP-induced pro-inflammatory response. DEP stimulation induced the phosphorylation of extracellular signal-regulated kinase (ERK) and Akt, the downstream kinase of phosphoinositide 3-kinase (PI3K), in GSTM1+ bronchial epithelial cells. Pharmacological inhibition of ERK kinase and PI3K activity blocked DEP-induced IL-8 and IL-1β expression. DEP-induced ERK and Akt phosphorylation could be increased by GSTM1 knockdown. In addition, pretreatment of HBEC with the antioxidant N-acetyl cysteine significantly inhibited DEP-induced ERK and Akt phosphorylation, and subsequent IL-8 and IL-1β expression. Conclusion GSTM1 regulates DEP-induced IL-8 and IL-1β expression in primary human bronchial epithelial cells by modulation of ROS, ERK and Akt signaling.
Collapse
Affiliation(s)
- Weidong Wu
- Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina, Chapel Hill, NC 27599, USA.
| | | | | | | | | |
Collapse
|
43
|
Fitzpatrick AM, Jones DP, Brown LAS. Glutathione redox control of asthma: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal 2012; 17:375-408. [PMID: 22304503 PMCID: PMC3353819 DOI: 10.1089/ars.2011.4198] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 01/22/2012] [Accepted: 01/22/2012] [Indexed: 12/11/2022]
Abstract
Asthma is a chronic inflammatory disorder of the airways associated with airway hyper-responsiveness and airflow limitation in response to specific triggers. Whereas inflammation is important for tissue regeneration and wound healing, the profound and sustained inflammatory response associated with asthma may result in airway remodeling that involves smooth muscle hypertrophy, epithelial goblet-cell hyperplasia, and permanent deposition of airway extracellular matrix proteins. Although the specific mechanisms responsible for asthma are still being unraveled, free radicals such as reactive oxygen species and reactive nitrogen species are important mediators of airway tissue damage that are increased in subjects with asthma. There is also a growing body of literature implicating disturbances in oxidation/reduction (redox) reactions and impaired antioxidant defenses as a risk factor for asthma development and asthma severity. Ultimately, these redox-related perturbations result in a vicious cycle of airway inflammation and injury that is not always amenable to current asthma therapy, particularly in cases of severe asthma. This review will discuss disruptions of redox signaling and control in asthma with a focus on the thiol, glutathione, and reduced (thiol) form (GSH). First, GSH synthesis, GSH distribution, and GSH function and homeostasis are discussed. We then review the literature related to GSH redox balance in health and asthma, with an emphasis on human studies. Finally, therapeutic opportunities to restore the GSH redox balance in subjects with asthma are discussed.
Collapse
Affiliation(s)
- Anne M Fitzpatrick
- Department of Pediatrics, Emory University, Atlanta, Georgia 30322, USA.
| | | | | |
Collapse
|
44
|
The effect of environmental oxidative stress on airway inflammation. Curr Opin Allergy Clin Immunol 2012; 12:133-9. [PMID: 22306553 DOI: 10.1097/aci.0b013e32835113d6] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE OF REVIEW Asthma is an inflammatory respiratory condition with significantly associated morbidity and mortality that is increasing in prevalence. Air pollution is an important factor in both the development of asthma and in asthma exacerbations. Oxidative stress as a result of exposure to air pollution and underlying genetic polymorphisms that may play a role in susceptibility to this oxidative stress are the subject of current investigation. This article reviews the data regarding the effects of air pollution on the innate immune response and potential clinical and treatment implications of how genetic polymorphisms affect this response. RECENT FINDINGS Recent investigation reveals how pollutant-induced oxidative stress impacts airway inflammatory responses. Work by our study group demonstrates that asthmatic patients have an exaggerated inflammatory response to air pollution-induced oxidative stress. New trials investigating antioxidants as potential therapeutic interventions may target this specific issue. SUMMARY Air pollution plays a critical role in asthma and may affect certain patients more than others. Further investigation into the genetic polymorphisms that affect inflammatory responses may help target patient populations at greatest risk for air pollution-induced asthma and may provide new therapeutic options for these patient populations.
Collapse
|
45
|
Hernandez ML, Herbst M, Lay JC, Alexis NE, Brickey WJ, Ting JPY, Zhou H, Peden DB. Atopic asthmatic patients have reduced airway inflammatory cell recruitment after inhaled endotoxin challenge compared with healthy volunteers. J Allergy Clin Immunol 2012; 130:869-76.e2. [PMID: 22770265 DOI: 10.1016/j.jaci.2012.05.026] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 05/03/2012] [Accepted: 05/11/2012] [Indexed: 12/31/2022]
Abstract
BACKGROUND Atopic asthmatic patients are reported to be more sensitive to the effects of environmental endotoxin (LPS) than healthy volunteers (HVs). It is unknown whether this sensitivity is due to dysregulated inflammatory responses after LPS exposure in atopic asthmatic patients. OBJECTIVE We sought to test the hypothesis that atopic asthmatic patients respond differentially to inhaled LPS challenge compared with HVs. METHODS Thirteen allergic asthmatic (AA) patients and 18 nonallergic nonasthmatic subjects (healthy volunteers [HVs]) underwent an inhalation challenge to 20,000 endotoxin units of Clinical Center Reference Endotoxin (LPS). Induced sputum and peripheral blood were obtained at baseline and 6 hours after inhaled LPS challenge. Sputum and blood samples were assayed for changes in inflammatory cell numbers and cytokine and cell-surface marker levels on monocytes and macrophages. RESULTS The percentage of neutrophils in sputum (%PMN) in induced sputum similarly and significantly increased in both HVs and AA patients after inhaled LPS challenge. However, the absolute numbers of leukocytes and PMNs recruited to the airways were significantly lower in AA patients compared with those seen in HVs with inhaled LPS challenge. Sputum levels of IL-6 and TNF-α were significantly increased in both cohorts, but levels of IL-1β and IL-18 were only significantly increased in the HV group. Cell-surface expression of Toll-like receptors 4 and 2 were significantly enhanced only in the HV group. CONCLUSIONS The airway inflammatory response to inhaled LPS challenge is blunted in AA patients compared with that seen in HVs and accompanied by reductions in airway neutrophilia and inflammasome-dependent cytokine production. These factors might contribute to increased susceptibility to airway microbial infection or colonization in AA patients.
Collapse
Affiliation(s)
- Michelle L Hernandez
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27516, USA.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
The existence of pronounced differences in health outcomes between US populations is a problem of moral significance and public health urgency. Pursuing research on genetic contributors to such disparities, despite striking data on the fundamental role of social factors, has been controversial. Still, advances in genomic science are providing an understanding of disease biology at a level of precision not previously possible. The potential for genomic strategies to help in addressing population-level disparities therefore needs to be carefully evaluated. Using 3 examples from current research, we argue that the best way to maximize the benefits of population-based genomic investigations, and mitigate potential harms, is to direct research away from the identification of genetic causes of disparities and instead focus on applying genomic methodologies to the development of clinical and public health tools with the potential to ameliorate healthcare inequities, direct population-level health interventions or inform public policy. Such a transformation will require close collaboration between transdisciplinary teams and community members as well as a reorientation of current research objectives to better align genomic discovery efforts with public health priorities and well-recognized barriers to fair health care delivery.
Collapse
Affiliation(s)
- S M Fullerton
- Department of Bioethics and Humanities, and Center for Genomics and Healthcare Equality, University of Washington, Seattle, WA 98195, USA.
| | | | | |
Collapse
|
47
|
Klein T, Selinski S, Blaszkewicz M, Hengstler JG, Golka K. Indication for joint replacement and glutathione s-transferases M1 and T1 genotypes. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2012; 75:597-601. [PMID: 22686321 DOI: 10.1080/15287394.2012.675313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In most patients with osteoarthritis (OA), therapy-resistant pain is the indication for hip or knee replacement. Glutathione S-transferases, particularly glutathione S-transferase M1 (GSTM1), are involved in metabolism of highly reactive metabolites that may be generated by inflammatory processes. In total, 148 patients with indication for hip or knee replacement and 129 patients of the same hospital without indication for joint replacement were genotyped for GSTM1 and GSTT1 and interviewed by a newly developed questionnaire for occupational and nonoccupational risk factors of hip and/or knee osteoarthritis. Mean age was 70.9 yr in OA cases and 67.4 yr in controls. The frequency of GSTM1 negative in the OA case group was (45%) in the lower range compared to values in Caucasian general population (approximately 50%), whereas the frequency in the controls was normal (51%). The frequency of GSTT1 negative genotype in OA cases and controls was normal. The normal distribution of the GSTM1 negative genotype in patients with indication for hip or knee replacement indicates that the role GSTM1 in these patients is different from that in other aseptic inflammatory diseases such as ozone-related inflammatory reactions of the respiratory tract.
Collapse
Affiliation(s)
- Torsten Klein
- Department of Anaesthesia and Critical Care, St. Vincenz-Hospital, Menden, Germany
| | | | | | | | | |
Collapse
|
48
|
Peden DB. The role of oxidative stress and innate immunity in O(3) and endotoxin-induced human allergic airway disease. Immunol Rev 2011; 242:91-105. [PMID: 21682740 DOI: 10.1111/j.1600-065x.2011.01035.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Ozone (O(3)) and endotoxin are common environmental contaminants that cause asthma exacerbation. These pollutants have similar phenotype response characteristics, including induction of neutrophilic inflammation, changes in airway macrophage immunophenotypes, and ability to enhance response to inhaled allergen. Evoked phenotyping studies of volunteers exposed to O(3) and endotoxin were used to identify the response characteristics of volunteers to these pollutants. New studies support the hypotheses that similar innate immune and oxidant processes modulate response to these agents. These include TLR4 and inflammasome-mediated signaling and cytokine production. Innate immune responses are also impacted by oxidative stress. It is likely that continued discovery of common molecular processes which modulate response to these pollutants will occur. Understanding the pathways that modulate response to pollutants will also allow for discovery of genetic and epigenetic factors that regulate response to these pollutants and determine risk of disease exacerbation. Additionally, defining the mechanisms of response will allow rational selection of interventions to examine. Interventions focused on inhibition of Toll-like receptor 4 and inflammasome represent promising new approaches to preventing pollutant-induced asthma exacerbations. Such interventions include specific inhibitors of innate immunity and antioxidant therapies designed to counter the effects of pollutants on cell signaling.
Collapse
Affiliation(s)
- David B Peden
- Division of Pediatric Allergy, Immunology, Rheumatology and Infectious Diseases, Department of Pediatrics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
49
|
Lay JC, Peden DB, Alexis NE. Flow cytometry of sputum: assessing inflammation and immune response elements in the bronchial airways. Inhal Toxicol 2011; 23:392-406. [PMID: 21639708 DOI: 10.3109/08958378.2011.575568] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND The evaluation of sputum leukocytes by flow cytometry (FCM) is an opportunity to assess characteristics of cells residing in the central airways, yet it is hampered by certain inherent properties of sputum including mucus and large amounts of contaminating cells and debris. OBJECTIVE To develop a gating strategy based on specific antibody panels in combination with light scatter properties for flow cytometric evaluation of sputum cells. METHODS Healthy and mild asthmatic volunteers underwent sputum induction. Manually selected mucus "plug" material was treated with dithiothreitol, filtered and total leukocytes acquired. Multicolor FCM was performed using specific gating strategies based on light scatter properties, differential expression of CD45 and cell lineage markers to discriminate leukocytes from squamous epithelial cells and debris. RESULTS The combination of forward scatter and CD45 expression reliably segregated sputum leukocytes from contaminating squamous epithelial cells and debris. Overlap of major leukocyte populations (neutrophils, macrophages/monocytes) required the use of specific antibodies (e.g. CD16, CD64, CD14, HLA-DR) that differentiated granulocytes from monocytes and macrophages. These gating strategies allowed identification of small populations of eosinophils, CD11c+ myeloid dendritic cells, B-cells and natural killer cells. CONCLUSIONS Multicolor FCM can be successfully applied to sputum samples to identify and characterize leukocyte populations residing on the surfaces of the central airways. CLINICAL RELEVANCE This research describes detailed methods to overcome difficulties associated with FCM of sputum samples, which previously has been lacking in the literature. FCM of sputum samples can provide valuable information on inflammation and immunological response elements in the bronchial airways for both clinical diagnostic and research applications and can be a useful tool in inhalation toxicology for assessing health effects of inhaled environmental pollutants.
Collapse
Affiliation(s)
- John C Lay
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina School of Medicine, Chapel Hill, USA.
| | | | | |
Collapse
|
50
|
Wu W, Doreswamy V, Diaz-Sanchez D, Samet JM, Kesic M, Dailey L, Zhang W, Jaspers I, Peden DB. GSTM1 modulation of IL-8 expression in human bronchial epithelial cells exposed to ozone. Free Radic Biol Med 2011; 51:522-9. [PMID: 21621609 PMCID: PMC3134273 DOI: 10.1016/j.freeradbiomed.2011.05.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 04/14/2011] [Accepted: 05/09/2011] [Indexed: 11/21/2022]
Abstract
Exposure to the major air pollutant ozone can aggravate asthma and other lung diseases. Our recent study in human volunteers has shown that the glutathione S-transferase Mu 1 (GSTM1)-null genotype is associated with increased airway neutrophilic inflammation induced by inhaled ozone. The aim of this study was to examine the effect of GSTM1 modulation on interleukin 8 (IL-8) production in ozone-exposed human bronchial epithelial cells (BEAS-2B) and the underlying mechanisms. Exposure of BEAS-2B cells to 0.4 ppm ozone for 4 h significantly increased IL-8 release, with a modest reduction in intracellular reduced glutathione (GSH). Ozone exposure induced reactive oxygen species (ROS) production and NF-κB activation. Pharmacological inhibition of NF-κB activation or mutation of the IL-8 promoter at the κB-binding site significantly blocked ozone-induced IL-8 production or IL-8 transcriptional activity, respectively. Knockdown of GSTM1 in BEAS-2B cells enhanced ozone-induced NF-κB activation and IL-8 production. Consistently, an ozone-induced overt increase in IL-8 production was detected in GSTM1-null primary human bronchial epithelial cells. In addition, supplementation with reduced GSH inhibited ozone-induced ROS production, NF-κB activation, and IL-8 production. Taken together, GSTM1 deficiency enhances ozone-induced IL-8 production, which is mediated by generated ROS and subsequent NF-κB activation in human bronchial epithelial cells.
Collapse
Affiliation(s)
- Weidong Wu
- Department of Pediatrics, University of North Carolina, Chapel Hill, NC 27599, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|