1
|
Olivieri B, Günaydın FE, Corren J, Senna G, Durham SR. The combination of allergen immunotherapy and biologics for inhalant allergies: Exploring the synergy. Ann Allergy Asthma Immunol 2024:S1081-1206(24)00365-X. [PMID: 38897405 DOI: 10.1016/j.anai.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/21/2024]
Abstract
The development of monoclonal antibodies that selectively target IgE and type 2 immunity has opened new possibilities in the treatment of allergies. Although they have been used mainly as single therapies found to have efficacy in the management of asthma and other T2-mediated diseases, there is a growing interest in using these monoclonal antibodies in combination with allergen immunotherapy (AIT). AIT has transformed the treatment of allergic diseases by aiming to modify the underlying immune response to allergens rather than just providing temporary symptom relief. Despite the proven efficacy and safety of AIT, unmet needs call for further research and innovation. Combination strategies involving biologics and AIT exhibit potential in improving short-term efficacy, reducing adverse events, and increasing immunologic tolerance. Anti-IgE emerges as the most promising therapeutic strategy, not only enhancing AIT's safety and tolerability but also providing additional evidence of efficacy compared with AIT alone. Anti-interleukin-4 receptor offers a reduction in adverse effects and an improved immunologic profile when combined with AIT; however, its impact on short-term efficacy seems limited. The combination of cat dander subcutaneous immunotherapy with anti-thymic stromal lymphopoietin was synergistic with enhanced efficacy and altered immune responses that persisted for 1 year after discontinuation compared with AIT alone. Long-term studies are needed to evaluate the sustained benefits and safety profiles of combination strategies.
Collapse
Affiliation(s)
- Bianca Olivieri
- Asthma, Allergy and Clinical Immunology Section, University Hospital of Verona, Verona, Italy
| | - Fatma Esra Günaydın
- Department of Immunology and Allergy Diseases, Ordu University Education and Training Hospital, Ordu, Turkey
| | - Jonathan Corren
- Division of Allergy and Clinical Immunology, Department of Medicine and Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Gianenrico Senna
- Asthma, Allergy and Clinical Immunology Section, University Hospital of Verona, Verona, Italy; Department of Medicine, University of Verona, Verona, Italy
| | - Stephen R Durham
- Allergy and Clinical Immunology, Section Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, London, United Kingdom; Royal Brompton Hospital, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom.
| |
Collapse
|
2
|
Sollid LM. Tolerance-inducing therapies in coeliac disease - mechanisms, progress and future directions. Nat Rev Gastroenterol Hepatol 2024; 21:335-347. [PMID: 38336920 DOI: 10.1038/s41575-024-00895-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/08/2024] [Indexed: 02/12/2024]
Abstract
Coeliac disease is an autoinflammatory condition caused by immune reactions to cereal gluten proteins. Currently, the only available treatment for the condition is a lifelong avoidance of gluten proteins in the diet. There is an unmet need for alternative therapies. Coeliac disease has a strong association with certain HLA-DQ allotypes (DQ2.5, DQ2.2 and DQ8), and these disease-associated HLA-DQ molecules present deamidated gluten peptides to gluten-specific CD4+ T cells. The gluten-specific CD4+ T cells are the drivers of the immune reactions leading to coeliac disease. Once established, the clonotypes of gluten-specific CD4+ T cells persist for decades, explaining why patients must adhere to a gluten-free diet for life. Given the key pathogenic role of gluten-specific CD4+ T cells, tolerance-inducing therapies that target these T cells are attractive for treatment of the disorder. Lessons learned from coeliac disease might provide clues for treatment of other HLA-associated diseases for which the disease-driving antigens are unknown. Thus, intensive efforts have been and are currently implemented to bring an effective tolerance-inducing therapy for coeliac disease. This Review discusses mechanisms of the various approaches taken, summarizing the progress made, and highlights future directions in this field.
Collapse
Affiliation(s)
- Ludvig M Sollid
- Norwegian Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
- Department of Immunology, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
3
|
Voskamp AL, Khosa S, Phan T, DeBerg HA, Bingham J, Hew M, Smith W, Abramovitch J, Rolland JM, Moyle M, Nadeau KC, Lack G, Larché M, Wambre E, O'Hehir RE, Hickey P, Prickett SR. Phase 1 trial supports safety and mechanism of action of peptide immunotherapy for peanut allergy. Allergy 2024; 79:485-498. [PMID: 38112286 DOI: 10.1111/all.15966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 10/12/2023] [Accepted: 11/06/2023] [Indexed: 12/21/2023]
Abstract
BACKGROUND Food allergy is a leading cause of anaphylaxis worldwide. Allergen-specific immunotherapy is the only treatment shown to modify the natural history of allergic disease, but application to food allergy has been hindered by risk of severe allergic reactions and short-lived efficacy. Allergen-derived peptides could provide a solution. PVX108 comprises seven short peptides representing immunodominant T-cell epitopes of major peanut allergens for treatment of peanut allergy. METHODS Pre-clinical safety of PVX108 was assessed using ex vivo basophil activation tests (n = 185). Clinical safety and tolerability of single and repeat PVX108 doses were evaluated in a first-in-human, randomized, double-blind, placebo-controlled trial in peanut-allergic adults (46 active, 21 placebo). The repeat-dose cohort received six doses over 16 weeks with safety monitored to 21 weeks. Exploratory immunological analyses were performed at pre-dose, Week 21 and Month 18 after treatment. RESULTS PVX108 induced negligible activation of peanut-sensitised basophils. PVX108 was safe and well tolerated in peanut-allergic adults. There were no treatment-related hypersensitivity events or AEs of clinical concern. The only events occurring more frequently in active than placebo were mild injection site reactions. Exploratory immunological analyses revealed a decrease in the ratio of ST2+ Th2A:CCR6+ Th17-like cells within the peanut-reactive Th pool which strengthened following treatment. CONCLUSION This study supports the concept that PVX108 could provide a safe alternative to whole peanut immunotherapies and provides evidence of durable peanut-specific T-cell modulation. Translation of these findings to clinical efficacy in ongoing Phase 2 trials would provide important proof-of-concept for using peptides to treat food allergy.
Collapse
Affiliation(s)
- Astrid L Voskamp
- Aravax Pty Ltd, Melbourne, Victoria, Australia
- Monash University, Melbourne, Victoria, Australia
- Alfred Health, Melbourne, Victoria, Australia
- WhiteFox Science Consulting, Nelson, New Zealand
| | | | - Tracy Phan
- Aravax Pty Ltd, Melbourne, Victoria, Australia
- Monash University, Melbourne, Victoria, Australia
- Alfred Health, Melbourne, Victoria, Australia
| | | | - Judy Bingham
- Aravax Pty Ltd, Melbourne, Victoria, Australia
- Easington Pty Ltd, Melbourne, Victoria, Australia
| | - Mark Hew
- Monash University, Melbourne, Victoria, Australia
- Alfred Health, Melbourne, Victoria, Australia
| | | | - Jodie Abramovitch
- Monash University, Melbourne, Victoria, Australia
- Alfred Health, Melbourne, Victoria, Australia
| | | | | | | | | | - Mark Larché
- Schroeder Allergy & Immunology Research Institute, Firestone Institute for Respiratory Health, McMaster University, Hamilton, Ontario, Canada
| | - Erik Wambre
- Benaroya Research Institute, Seattle, Washington, USA
| | - Robyn E O'Hehir
- Aravax Pty Ltd, Melbourne, Victoria, Australia
- Monash University, Melbourne, Victoria, Australia
- Alfred Health, Melbourne, Victoria, Australia
| | | | - Sara R Prickett
- Aravax Pty Ltd, Melbourne, Victoria, Australia
- Monash University, Melbourne, Victoria, Australia
- Alfred Health, Melbourne, Victoria, Australia
| |
Collapse
|
4
|
Šošić L, Paolucci M, Flory S, Jebbawi F, Kündig TM, Johansen P. Allergen immunotherapy: progress and future outlook. Expert Rev Clin Immunol 2023:1-25. [PMID: 37122076 DOI: 10.1080/1744666x.2023.2209319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
INTRODUCTION Allergy, the immunological hypersensitivity to innocuous environmental compounds, is a global health problem. The disease triggers, allergens, are mostly proteins contained in various natural sources such as plant pollen, animal dander, dust mites, foods, fungi and insect venoms. Allergies can manifest with a wide range of symptoms in various organs, and be anything from just tedious to life-threatening. A majority of all allergy patients are self-treated with symptom-relieving medicines, while allergen immunotherapy (AIT) is the only causative treatment option. AREAS COVERED This review will aim to give an overview of the state-of-the-art allergy management, including the use of new biologics and the application of biomarkers, and a special emphasis and discussion on current research trends in the field of AIT. EXPERT OPINION Conventional AIT has proven effective, but the years-long treatment compromises patient compliance. Moreover, AIT is typically not offered in food allergy. Hence, there is a need for new, effective and safe AIT methods. Novel routes of administration (e.g. oral and intralymphatic), hypoallergenic AIT products and more effective adjuvants holds great promise. Most recently, the development of allergen-specific monoclonal antibodies for passive immunotherapy may also allow treatment of patients currently not treated or treatable.
Collapse
Affiliation(s)
- Lara Šošić
- Department of Dermatology, University of Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| | - Marta Paolucci
- Department of Dermatology, University of Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| | - Stephan Flory
- Department of Dermatology, University of Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| | - Fadi Jebbawi
- Department of Dermatology, University of Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| | - Thomas M Kündig
- Department of Dermatology, University of Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
- Department of Dermatology, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| | - Pål Johansen
- Department of Dermatology, University of Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
- Department of Dermatology, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| |
Collapse
|
5
|
Wise SK, Damask C, Roland LT, Ebert C, Levy JM, Lin S, Luong A, Rodriguez K, Sedaghat AR, Toskala E, Villwock J, Abdullah B, Akdis C, Alt JA, Ansotegui IJ, Azar A, Baroody F, Benninger MS, Bernstein J, Brook C, Campbell R, Casale T, Chaaban MR, Chew FT, Chambliss J, Cianferoni A, Custovic A, Davis EM, DelGaudio JM, Ellis AK, Flanagan C, Fokkens WJ, Franzese C, Greenhawt M, Gill A, Halderman A, Hohlfeld JM, Incorvaia C, Joe SA, Joshi S, Kuruvilla ME, Kim J, Klein AM, Krouse HJ, Kuan EC, Lang D, Larenas-Linnemann D, Laury AM, Lechner M, Lee SE, Lee VS, Loftus P, Marcus S, Marzouk H, Mattos J, McCoul E, Melen E, Mims JW, Mullol J, Nayak JV, Oppenheimer J, Orlandi RR, Phillips K, Platt M, Ramanathan M, Raymond M, Rhee CS, Reitsma S, Ryan M, Sastre J, Schlosser RJ, Schuman TA, Shaker MS, Sheikh A, Smith KA, Soyka MB, Takashima M, Tang M, Tantilipikorn P, Taw MB, Tversky J, Tyler MA, Veling MC, Wallace D, Wang DY, White A, Zhang L. International consensus statement on allergy and rhinology: Allergic rhinitis - 2023. Int Forum Allergy Rhinol 2023; 13:293-859. [PMID: 36878860 DOI: 10.1002/alr.23090] [Citation(s) in RCA: 101] [Impact Index Per Article: 101.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/11/2022] [Accepted: 09/13/2022] [Indexed: 03/08/2023]
Abstract
BACKGROUND In the 5 years that have passed since the publication of the 2018 International Consensus Statement on Allergy and Rhinology: Allergic Rhinitis (ICAR-Allergic Rhinitis 2018), the literature has expanded substantially. The ICAR-Allergic Rhinitis 2023 update presents 144 individual topics on allergic rhinitis (AR), expanded by over 40 topics from the 2018 document. Originally presented topics from 2018 have also been reviewed and updated. The executive summary highlights key evidence-based findings and recommendation from the full document. METHODS ICAR-Allergic Rhinitis 2023 employed established evidence-based review with recommendation (EBRR) methodology to individually evaluate each topic. Stepwise iterative peer review and consensus was performed for each topic. The final document was then collated and includes the results of this work. RESULTS ICAR-Allergic Rhinitis 2023 includes 10 major content areas and 144 individual topics related to AR. For a substantial proportion of topics included, an aggregate grade of evidence is presented, which is determined by collating the levels of evidence for each available study identified in the literature. For topics in which a diagnostic or therapeutic intervention is considered, a recommendation summary is presented, which considers the aggregate grade of evidence, benefit, harm, and cost. CONCLUSION The ICAR-Allergic Rhinitis 2023 update provides a comprehensive evaluation of AR and the currently available evidence. It is this evidence that contributes to our current knowledge base and recommendations for patient evaluation and treatment.
Collapse
Affiliation(s)
- Sarah K Wise
- Otolaryngology-HNS, Emory University, Atlanta, Georgia, USA
| | - Cecelia Damask
- Otolaryngology-HNS, Private Practice, University of Central Florida, Lake Mary, Florida, USA
| | - Lauren T Roland
- Otolaryngology-HNS, Washington University, St. Louis, Missouri, USA
| | - Charles Ebert
- Otolaryngology-HNS, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Joshua M Levy
- Otolaryngology-HNS, Emory University, Atlanta, Georgia, USA
| | - Sandra Lin
- Otolaryngology-HNS, University of Wisconsin, Madison, Wisconsin, USA
| | - Amber Luong
- Otolaryngology-HNS, McGovern Medical School of the University of Texas, Houston, Texas, USA
| | - Kenneth Rodriguez
- Otolaryngology-HNS, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Ahmad R Sedaghat
- Otolaryngology-HNS, University of Cincinnati, Cincinnati, Ohio, USA
| | - Elina Toskala
- Otolaryngology-HNS, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | - Baharudin Abdullah
- Otolaryngology-HNS, Universiti Sains Malaysia, Kubang, Kerian, Kelantan, Malaysia
| | - Cezmi Akdis
- Immunology, Infectious Diseases, Swiss Institute of Allergy and Asthma Research, Davos, Switzerland
| | - Jeremiah A Alt
- Otolaryngology-HNS, University of Utah, Salt Lake City, Utah, USA
| | | | - Antoine Azar
- Allergy/Immunology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Fuad Baroody
- Otolaryngology-HNS, University of Chicago, Chicago, Illinois, USA
| | | | | | - Christopher Brook
- Otolaryngology-HNS, Harvard University, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Raewyn Campbell
- Otolaryngology-HNS, Macquarie University, Sydney, NSW, Australia
| | - Thomas Casale
- Allergy/Immunology, University of South Florida College of Medicine, Tampa, Florida, USA
| | - Mohamad R Chaaban
- Otolaryngology-HNS, Cleveland Clinic, Case Western Reserve University, Cleveland, Ohio, USA
| | - Fook Tim Chew
- Allergy/Immunology, Genetics, National University of Singapore, Singapore, Singapore
| | - Jeffrey Chambliss
- Allergy/Immunology, University of Texas Southwestern, Dallas, Texas, USA
| | - Antonella Cianferoni
- Allergy/Immunology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | | | | | | | - Anne K Ellis
- Allergy/Immunology, Queens University, Kingston, ON, Canada
| | | | - Wytske J Fokkens
- Otorhinolaryngology, Amsterdam University Medical Centres, Amsterdam, Netherlands
| | | | - Matthew Greenhawt
- Allergy/Immunology, Pediatrics, University of Colorado, Children's Hospital Colorado, Aurora, Colorado, USA
| | - Amarbir Gill
- Otolaryngology-HNS, University of Michigan, Ann Arbor, Michigan, USA
| | - Ashleigh Halderman
- Otolaryngology-HNS, University of Texas Southwestern, Dallas, Texas, USA
| | - Jens M Hohlfeld
- Respiratory Medicine, Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Hannover Medical School, German Center for Lung Research, Hannover, Germany
| | | | - Stephanie A Joe
- Otolaryngology-HNS, University of Illinois Chicago, Chicago, Illinois, USA
| | - Shyam Joshi
- Allergy/Immunology, Oregon Health and Science University, Portland, Oregon, USA
| | | | - Jean Kim
- Otolaryngology-HNS, Johns Hopkins University, Baltimore, Maryland, USA
| | - Adam M Klein
- Otolaryngology-HNS, Emory University, Atlanta, Georgia, USA
| | - Helene J Krouse
- Otorhinolaryngology Nursing, University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | - Edward C Kuan
- Otolaryngology-HNS, University of California Irvine, Orange, California, USA
| | - David Lang
- Allergy/Immunology, Cleveland Clinic, Cleveland, Ohio, USA
| | | | | | - Matt Lechner
- Otolaryngology-HNS, University College London, Barts Health NHS Trust, London, UK
| | - Stella E Lee
- Otolaryngology-HNS, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Victoria S Lee
- Otolaryngology-HNS, University of Illinois Chicago, Chicago, Illinois, USA
| | - Patricia Loftus
- Otolaryngology-HNS, University of California San Francisco, San Francisco, California, USA
| | - Sonya Marcus
- Otolaryngology-HNS, Stony Brook University, Stony Brook, New York, USA
| | - Haidy Marzouk
- Otolaryngology-HNS, State University of New York Upstate, Syracuse, New York, USA
| | - Jose Mattos
- Otolaryngology-HNS, University of Virginia, Charlottesville, Virginia, USA
| | - Edward McCoul
- Otolaryngology-HNS, Ochsner Clinic, New Orleans, Louisiana, USA
| | - Erik Melen
- Pediatric Allergy, Karolinska Institutet, Stockholm, Sweden
| | - James W Mims
- Otolaryngology-HNS, Wake Forest University, Winston Salem, North Carolina, USA
| | - Joaquim Mullol
- Otorhinolaryngology, Hospital Clinic Barcelona, Barcelona, Spain
| | - Jayakar V Nayak
- Otolaryngology-HNS, Stanford University, Palo Alto, California, USA
| | - John Oppenheimer
- Allergy/Immunology, Rutgers, State University of New Jersey, Newark, New Jersey, USA
| | | | - Katie Phillips
- Otolaryngology-HNS, University of Cincinnati, Cincinnati, Ohio, USA
| | - Michael Platt
- Otolaryngology-HNS, Boston University, Boston, Massachusetts, USA
| | | | | | - Chae-Seo Rhee
- Rhinology/Allergy, Seoul National University Hospital and College of Medicine, Seoul, Korea
| | - Sietze Reitsma
- Otolaryngology-HNS, University of Amsterdam, Amsterdam, Netherlands
| | - Matthew Ryan
- Otolaryngology-HNS, University of Texas Southwestern, Dallas, Texas, USA
| | - Joaquin Sastre
- Allergy, Fundacion Jiminez Diaz, University Autonoma de Madrid, Madrid, Spain
| | - Rodney J Schlosser
- Otolaryngology-HNS, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Theodore A Schuman
- Otolaryngology-HNS, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Marcus S Shaker
- Allergy/Immunology, Dartmouth Geisel School of Medicine, Lebanon, New Hampshire, USA
| | - Aziz Sheikh
- Primary Care, University of Edinburgh, Edinburgh, Scotland
| | - Kristine A Smith
- Otolaryngology-HNS, University of Utah, Salt Lake City, Utah, USA
| | - Michael B Soyka
- Otolaryngology-HNS, University of Zurich, University Hospital of Zurich, Zurich, Switzerland
| | - Masayoshi Takashima
- Otolaryngology-HNS, Houston Methodist Academic Institute, Houston, Texas, USA
| | - Monica Tang
- Allergy/Immunology, University of California San Francisco, San Francisco, California, USA
| | | | - Malcolm B Taw
- Integrative East-West Medicine, University of California Los Angeles, Westlake Village, California, USA
| | - Jody Tversky
- Allergy/Immunology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Matthew A Tyler
- Otolaryngology-HNS, University of Minnesota, Minneapolis, Minnesota, USA
| | - Maria C Veling
- Otolaryngology-HNS, University of Texas Southwestern, Dallas, Texas, USA
| | - Dana Wallace
- Allergy/Immunology, Nova Southeastern University, Ft. Lauderdale, Florida, USA
| | - De Yun Wang
- Otolaryngology-HNS, National University of Singapore, Singapore, Singapore
| | - Andrew White
- Allergy/Immunology, Scripps Clinic, San Diego, California, USA
| | - Luo Zhang
- Otolaryngology-HNS, Beijing Tongren Hospital, Beijing, China
| |
Collapse
|
6
|
Dramburg S, Hilger C, Santos AF, de Las Vecillas L, Aalberse RC, Acevedo N, Aglas L, Altmann F, Arruda KL, Asero R, Ballmer-Weber B, Barber D, Beyer K, Biedermann T, Bilo MB, Blank S, Bosshard PP, Breiteneder H, Brough HA, Bublin M, Campbell D, Caraballo L, Caubet JC, Celi G, Chapman MD, Chruszcz M, Custovic A, Czolk R, Davies J, Douladiris N, Eberlein B, Ebisawa M, Ehlers A, Eigenmann P, Gadermaier G, Giovannini M, Gomez F, Grohman R, Guillet C, Hafner C, Hamilton RG, Hauser M, Hawranek T, Hoffmann HJ, Holzhauser T, Iizuka T, Jacquet A, Jakob T, Janssen-Weets B, Jappe U, Jutel M, Kalic T, Kamath S, Kespohl S, Kleine-Tebbe J, Knol E, Knulst A, Konradsen JR, Korošec P, Kuehn A, Lack G, Le TM, Lopata A, Luengo O, Mäkelä M, Marra AM, Mills C, Morisset M, Muraro A, Nowak-Wegrzyn A, Nugraha R, Ollert M, Palosuo K, Pastorello EA, Patil SU, Platts-Mills T, Pomés A, Poncet P, Potapova E, Poulsen LK, Radauer C, Radulovic S, Raulf M, Rougé P, Sastre J, Sato S, Scala E, Schmid JM, Schmid-Grendelmeier P, Schrama D, Sénéchal H, Traidl-Hoffmann C, Valverde-Monge M, van Hage M, van Ree R, Verhoeckx K, Vieths S, Wickman M, Zakzuk J, Matricardi PM, Hoffmann-Sommergruber K. EAACI Molecular Allergology User's Guide 2.0. Pediatr Allergy Immunol 2023; 34 Suppl 28:e13854. [PMID: 37186333 DOI: 10.1111/pai.13854] [Citation(s) in RCA: 72] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 05/17/2023]
Abstract
Since the discovery of immunoglobulin E (IgE) as a mediator of allergic diseases in 1967, our knowledge about the immunological mechanisms of IgE-mediated allergies has remarkably increased. In addition to understanding the immune response and clinical symptoms, allergy diagnosis and management depend strongly on the precise identification of the elicitors of the IgE-mediated allergic reaction. In the past four decades, innovations in bioscience and technology have facilitated the identification and production of well-defined, highly pure molecules for component-resolved diagnosis (CRD), allowing a personalized diagnosis and management of the allergic disease for individual patients. The first edition of the "EAACI Molecular Allergology User's Guide" (MAUG) in 2016 rapidly became a key reference for clinicians, scientists, and interested readers with a background in allergology, immunology, biology, and medicine. Nevertheless, the field of molecular allergology is moving fast, and after 6 years, a new EAACI Taskforce was established to provide an updated document. The Molecular Allergology User's Guide 2.0 summarizes state-of-the-art information on allergen molecules, their clinical relevance, and their application in diagnostic algorithms for clinical practice. It is designed for both, clinicians and scientists, guiding health care professionals through the overwhelming list of different allergen molecules available for testing. Further, it provides diagnostic algorithms on the clinical relevance of allergenic molecules and gives an overview of their biology, the basic mechanisms of test formats, and the application of tests to measure allergen exposure.
Collapse
Affiliation(s)
- Stephanie Dramburg
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Christiane Hilger
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Alexandra F Santos
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
- Children's Allergy Service, Evelina London, Guy's and St Thomas' Hospital, London, United Kingdom
| | | | - Rob C Aalberse
- Sanquin Research, Dept Immunopathology, University of Amsterdam, Amsterdam, The Netherlands
- Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Nathalie Acevedo
- Institute for Immunological Research, University of Cartagena, Cartagena de Indias, Colombia, Colombia
| | - Lorenz Aglas
- Department of Biosciences and Medical Biology, Paris Lodron University Salzburg, Salzburg, Austria
| | - Friedrich Altmann
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Karla L Arruda
- Department of Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Sao Paulo, Brasil, Brazil
| | - Riccardo Asero
- Ambulatorio di Allergologia, Clinica San Carlo, Paderno Dugnano, Italy
| | - Barbara Ballmer-Weber
- Klinik für Dermatologie und Allergologie, Kantonsspital St. Gallen, St. Gallen, Switzerland
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Domingo Barber
- Institute of Applied Molecular Medicine Nemesio Diez (IMMAND), Department of Basic Medical Sciences, Facultad de Medicina, Universidad San Pablo CEU, CEU Universities, Madrid, Spain
- RETIC ARADyAL and RICORS Enfermedades Inflamatorias (REI), Madrid, Spain
| | - Kirsten Beyer
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Tilo Biedermann
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University Munich, Munich, Germany
| | - Maria Beatrice Bilo
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
- Allergy Unit Department of Internal Medicine, University Hospital Ospedali Riuniti di Ancona, Torrette, Italy
| | - Simon Blank
- Center of Allergy and Environment (ZAUM), Technical University of Munich, School of Medicine and Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany
| | - Philipp P Bosshard
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Heimo Breiteneder
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Helen A Brough
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Children's Allergy Service, Evelina London, Guy's and St Thomas' Hospital, London, United Kingdom
| | - Merima Bublin
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Dianne Campbell
- Department of Allergy and Immunology, Children's Hospital at Westmead, Sydney Children's Hospitals Network, Sydney, New South Wales, Australia
- Child and Adolescent Health, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Luis Caraballo
- Institute for Immunological Research, University of Cartagena, Cartagena de Indias, Colombia, Colombia
| | - Jean Christoph Caubet
- Pediatric Allergy Unit, Department of Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland
| | - Giorgio Celi
- Centro DH Allergologia e Immunologia Clinica ASST- MANTOVA (MN), Mantova, Italy
| | | | - Maksymilian Chruszcz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, USA
| | - Adnan Custovic
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Rebecca Czolk
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Janet Davies
- Queensland University of Technology, Centre for Immunology and Infection Control, School of Biomedical Sciences, Herston, Queensland, Australia
- Metro North Hospital and Health Service, Emergency Operations Centre, Herston, Queensland, Australia
| | - Nikolaos Douladiris
- Allergy Department, 2nd Paediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Bernadette Eberlein
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University Munich, Munich, Germany
| | - Motohiro Ebisawa
- Clinical Research Center for Allergy and Rheumatology, National Hospital Organization, Sagamihara National Hospital, Kanagawa, Japan
| | - Anna Ehlers
- Chemical Biology and Drug Discovery, Utrecht University, Utrecht, The Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Philippe Eigenmann
- Pediatric Allergy Unit, Department of Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland
| | - Gabriele Gadermaier
- Department of Biosciences and Medical Biology, Paris Lodron University Salzburg, Salzburg, Austria
| | - Mattia Giovannini
- Allergy Unit, Department of Pediatrics, Meyer Children's University Hospital, Florence, Italy
| | - Francisca Gomez
- Allergy Unit IBIMA-Hospital Regional Universitario de Malaga, Malaga, Spain
- Spanish Network for Allergy research RETIC ARADyAL, Malaga, Spain
| | - Rebecca Grohman
- NYU Langone Health, Department of Internal Medicine, New York, New York, USA
| | - Carole Guillet
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Christine Hafner
- Department of Dermatology, University Hospital St. Poelten, Karl Landsteiner University of Health Sciences, St. Poelten, Austria
| | - Robert G Hamilton
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael Hauser
- Department of Biosciences and Medical Biology, Paris Lodron University Salzburg, Salzburg, Austria
| | - Thomas Hawranek
- Department of Dermatology and Allergology, Paracelsus Private Medical University, Salzburg, Austria
| | - Hans Jürgen Hoffmann
- Institute for Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
- Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus, Denmark
| | | | - Tomona Iizuka
- Laboratory of Protein Science, Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Alain Jacquet
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Thilo Jakob
- Department of Dermatology and Allergology, University Medical Center, Justus Liebig University Gießen, Gießen, Germany
| | - Bente Janssen-Weets
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
| | - Uta Jappe
- Division of Clinical and Molecular Allergology, Priority Research Area Asthma and Allergy, Research Center Borstel, Borstel, Germany
- Leibniz Lung Center, Airway Research Center North (ARCN), Member of the German Center for Lung Research, Germany
- Interdisciplinary Allergy Outpatient Clinic, Dept. of Pneumology, University of Lübeck, Lübeck, Germany
| | - Marek Jutel
- Department of Clinical Immunology, Wroclaw Medical University, Wroclaw, Poland
| | - Tanja Kalic
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
- Department of Dermatology, University Hospital St. Poelten, Karl Landsteiner University of Health Sciences, St. Poelten, Austria
| | - Sandip Kamath
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | - Sabine Kespohl
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr- Universität Bochum, Bochum, Germany
| | - Jörg Kleine-Tebbe
- Allergy & Asthma Center Westend, Outpatient Clinic and Clinical Research Center, Berlin, Germany
| | - Edward Knol
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - André Knulst
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jon R Konradsen
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
- Pediatric Allergy and Pulmonology Unit at Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Peter Korošec
- University Clinic of Respiratory and Allergic Diseases Golnik, Golnik, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Annette Kuehn
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Gideon Lack
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
- Children's Allergy Service, Evelina London, Guy's and St Thomas' Hospital, London, United Kingdom
| | - Thuy-My Le
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Andreas Lopata
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | - Olga Luengo
- RETIC ARADyAL and RICORS Enfermedades Inflamatorias (REI), Madrid, Spain
- Allergy Section, Internal Medicine Department, Vall d'Hebron University Hospital, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mika Mäkelä
- Division of Allergy, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Pediatric Department, Skin and Allergy Hospital, Helsinki University Central Hospital, Helsinki, Finland
| | | | - Clare Mills
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
| | | | - Antonella Muraro
- Food Allergy Referral Centre, Department of Woman and Child Health, Padua University Hospital, Padua, Italy
| | - Anna Nowak-Wegrzyn
- Division of Pediatric Allergy and Immunology, NYU Grossman School of Medicine, Hassenfeld Children's Hospital, New York, New York, USA
- Department of Pediatrics, Gastroenterology and Nutrition, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland
| | - Roni Nugraha
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
- Department of Aquatic Product Technology, Faculty of Fisheries and Marine Science, IPB University, Bogor, Indonesia
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
| | - Kati Palosuo
- Department of Allergology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | | | - Sarita Ulhas Patil
- Division of Rheumatology, Allergy and Immunology, Departments of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Division of Allergy and Immunology, Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Thomas Platts-Mills
- Division of Allergy and Clinical Immunology, University of Virginia, Charlottesville, Virginia, USA
| | | | - Pascal Poncet
- Institut Pasteur, Immunology Department, Paris, France
- Allergy & Environment Research Team Armand Trousseau Children Hospital, APHP, Paris, France
| | - Ekaterina Potapova
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Lars K Poulsen
- Allergy Clinic, Department of Dermatology and Allergy, Copenhagen University Hospital-Herlev and Gentofte, Copenhagen, Denmark
| | - Christian Radauer
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Suzana Radulovic
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Children's Allergy Service, Evelina London, Guy's and St Thomas' Hospital, London, United Kingdom
| | - Monika Raulf
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr- Universität Bochum, Bochum, Germany
| | - Pierre Rougé
- UMR 152 PharmaDev, IRD, Université Paul Sabatier, Faculté de Pharmacie, Toulouse, France
| | - Joaquin Sastre
- Allergy Service, Fundación Jiménez Díaz; CIBER de Enfermedades Respiratorias (CIBERES); Faculty of Medicine, Universidad Autonoma de Madrid, Madrid, Spain
| | - Sakura Sato
- Allergy Department, 2nd Paediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Enrico Scala
- Clinical and Laboratory Molecular Allergy Unit - IDI- IRCCS, Fondazione L M Monti Rome, Rome, Italy
| | - Johannes M Schmid
- Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus, Denmark
| | - Peter Schmid-Grendelmeier
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
- Christine Kühne Center for Allergy Research and Education CK-CARE, Davos, Switzerland
| | - Denise Schrama
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Faro, Portugal
| | - Hélène Sénéchal
- Allergy & Environment Research Team Armand Trousseau Children Hospital, APHP, Paris, France
| | - Claudia Traidl-Hoffmann
- Christine Kühne Center for Allergy Research and Education CK-CARE, Davos, Switzerland
- Department of Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Marcela Valverde-Monge
- Allergy Service, Fundación Jiménez Díaz; CIBER de Enfermedades Respiratorias (CIBERES); Faculty of Medicine, Universidad Autonoma de Madrid, Madrid, Spain
| | - Marianne van Hage
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Ronald van Ree
- Department of Experimental Immunology and Department of Otorhinolaryngology, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Kitty Verhoeckx
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Stefan Vieths
- Division of Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - Magnus Wickman
- Department of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Josefina Zakzuk
- Institute for Immunological Research, University of Cartagena, Cartagena de Indias, Colombia, Colombia
| | - Paolo M Matricardi
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | | |
Collapse
|
7
|
REGN1908/1909 prevented cat allergen-induced early asthmatic responses in an environmental exposure unit. J Allergy Clin Immunol 2022; 150:1437-1446. [PMID: 35934082 DOI: 10.1016/j.jaci.2022.06.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/22/2022] [Accepted: 06/28/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND The dominant allergen in cat dander, Felis domesticus allergen 1 (Fel d 1), is a persistent trigger for allergic rhinitis and asthma symptoms. OBJECTIVE We evaluated the efficacy of Fel d 1 monoclonal antibodies (REGN1908/1909) in preventing cat allergen-induced early asthmatic responses (EARs) in cat-allergic patients with mild asthma. METHODS Patients were randomized to single-dose REGN1908/1909 600 mg (n = 29) or placebo (n = 27). The FEV1 was measured for up to 4 hours in a cat allergen environmental exposure unit up to 85 days after dosing. Assessments included between-group differences in change from baseline in FEV1 area under the curve (AUC; 0-2 hours) and incidence of EAR (FEV1 reduction ≥20%). TRIAL REGISTRATION NCT03838731. RESULTS Single-dose REGN1908/1909 significantly prevented reductions in FEV1 on days 8, 29, 57, and 85. Most REGN1908/1909 patients did not have an EAR by 4 hours (the last time point tested). In contrast, placebo-treated patients experienced a ≥20% mean FEV1 reduction on days 8, 29, 57, and 85 after dosing, with most experiencing an EAR within 1 hour. REGN1908/1909-treated patients tolerated 3-fold higher allergen quantities (P < .05 at all time points) versus placebo. REGN1908/1909 substantially reduced skin test reactivity to cat allergen versus placebo at all time points tested (nominal P < .001). REGN1908/1909 was generally well tolerated; no serious adverse events or deaths were reported. CONCLUSION Single-dose REGN1908/1909 significantly prevented reductions in FEV1 in cat-allergic patients with mild asthma on cat allergen environmental exposure unit exposure at 8 days and up to 85 days after dose.
Collapse
|
8
|
Abstract
Allergen immunotherapy is a form of therapeutic vaccination for established IgE-mediated hypersensitivity to common allergen sources such as pollens, house dust mites and the venom of stinging insects. The classical protocol, introduced in 1911, involves repeated subcutaneous injection of increasing amounts of allergen extract, followed by maintenance injections over a period of 3 years, achieving a form of allergen-specific tolerance that provides clinical benefit for years after its discontinuation. More recently, administration through the sublingual route has emerged as an effective, safe alternative. Oral immunotherapy for peanut allergy induces effective ‘desensitization’ but not long-term tolerance. Research and clinical trials over the past few decades have elucidated the mechanisms underlying immunotherapy-induced tolerance, involving a reduction of allergen-specific T helper 2 (TH2) cells, an induction of regulatory T and B cells, and production of IgG and IgA ‘blocking’ antibodies. To better harness these mechanisms, novel strategies are being explored to achieve safer, effective, more convenient regimens and more durable long-term tolerance; these include alternative routes for current immunotherapy approaches, novel adjuvants, use of recombinant allergens (including hypoallergenic variants) and combination of allergens with immune modifiers or monoclonal antibodies targeting the TH2 cell pathway. Durham and Shamji review the history and future of allergen immunotherapy for established IgE-mediated hypersensitivity to common allergens. They describe the mechanisms of immunotherapy-induced tolerance and the new strategies being explored to achieve safer, more effective, long-term tolerance.
Collapse
|
9
|
Zinkhan S, Thoms F, Augusto G, Vogel M, Bachmann MF. On the role of allergen-specific IgG subclasses for blocking human basophil activation. Front Immunol 2022; 13:892631. [PMID: 36275723 PMCID: PMC9582512 DOI: 10.3389/fimmu.2022.892631] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 09/16/2022] [Indexed: 11/30/2022] Open
Abstract
Successful treatment of IgE mediated allergies by allergen-specific immunotherapy (AIT) usually correlates with the induction of allergen-specific IgG4. However, it is not clear whether IgG4 prevents the allergic reaction more efficiently than other IgG subclasses. Here we aimed to compare allergen-specific monoclonal IgG1 and IgG4 antibodies in their capacity to inhibit type I allergic reactions by engaging FcγRIIb. We found that IgG1, which is the dominant subclass induced by viruses, binds with a similar affinity to the FcγRIIb as IgG4 and is comparable at blocking human basophil activation from allergic patients; both by neutralizing the allergen as well as engaging the inhibitory receptor FcγRIIb. Hence, the IgG subclass plays a limited role for the protective efficacy of AIT even if IgG4 is considered the best correlate of protection, most likely simply because it is the dominant subclass induced by classical AITs.
Collapse
Affiliation(s)
- Simon Zinkhan
- Department of Immunology, University Clinic of Rheumatology and Immunology, Inselspital, University of Bern, Bern, Switzerland
- Department of BioMedical Research, University of Bern, Bern, Switzerland
| | | | - Gilles Augusto
- Department of Immunology, University Clinic of Rheumatology and Immunology, Inselspital, University of Bern, Bern, Switzerland
- Department of BioMedical Research, University of Bern, Bern, Switzerland
- Nuffield Department of Medicine, The Henry Wellcome Building for Molecular Physiology, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Monique Vogel
- Department of Immunology, University Clinic of Rheumatology and Immunology, Inselspital, University of Bern, Bern, Switzerland
- Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Martin F. Bachmann
- Department of Immunology, University Clinic of Rheumatology and Immunology, Inselspital, University of Bern, Bern, Switzerland
- Department of BioMedical Research, University of Bern, Bern, Switzerland
- Nuffield Department of Medicine, The Henry Wellcome Building for Molecular Physiology, The Jenner Institute, University of Oxford, Oxford, United Kingdom
- *Correspondence: Martin F. Bachmann,
| |
Collapse
|
10
|
Hesse L, Oude Elberink J, van Oosterhout AJ, Nawijn MC. Allergen immunotherapy for allergic airway diseases: Use lessons from the past to design a brighter future. Pharmacol Ther 2022; 237:108115. [DOI: 10.1016/j.pharmthera.2022.108115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 12/23/2021] [Accepted: 01/11/2022] [Indexed: 10/19/2022]
|
11
|
Intradermal Allergen Immunotherapy for Allergic Rhinitis: Current Evidence. J Pers Med 2022; 12:jpm12081341. [PMID: 36013290 PMCID: PMC9409804 DOI: 10.3390/jpm12081341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/11/2022] [Accepted: 08/17/2022] [Indexed: 12/02/2022] Open
Abstract
Allergic rhinitis (AR) is an immunoglobulin E (IgE)-mediated inflammatory disease that is induced by allergen introduction to the nasal mucosa, which triggers an inflammatory response. The current treatments for AR include allergen avoidance and pharmacotherapy; however, allergen-specific immunotherapy (AIT) is the only treatment that can be employed to modify immunologic responses and to achieve a cure for allergic diseases. The current standard routes of AIT administration are the subcutaneous and sublingual routes. Alternatively, the dermis contains a high density of dermal dendritic cells that act as antigen-presenting cells, so intradermal administration may confer added advantages and increase the efficacy of AIT. Moreover, intradermal immunotherapy (IDIT) may facilitate a reduction in the allergen dosage and a shortening of the treatment duration. The aim of this review was to search and evaluate the current evidence specific to IDIT, including its modified formulations, such as allergoids and peptides. The results of this review reveal conflicting evidence that suggests that the overall benefit of IDIT remains unclear. As such, further clinical trials are needed to establish the clinical utility of IDIT, and to determine the optimal treatment-related protocols.
Collapse
|
12
|
Liu YF, Powrie J, Arif S, Yang JH, Williams E, Khatri L, Joshi M, Lhuillier L, Fountoulakis N, Smith E, Beam C, Lorenc A, Peakman M, Tree T. Immune and Metabolic Effects of Antigen-Specific Immunotherapy Using Multiple β-Cell Peptides in Type 1 Diabetes. Diabetes 2022; 71:722-732. [PMID: 35073398 PMCID: PMC8965665 DOI: 10.2337/db21-0728] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 01/15/2022] [Indexed: 01/11/2023]
Abstract
Type 1 diabetes is characterized by a loss of tolerance to pancreatic β-cell autoantigens and defects in regulatory T-cell (Treg) function. In preclinical models, immunotherapy with MHC-selective, autoantigenic peptides restores immune tolerance, prevents diabetes, and shows greater potency when multiple peptides are used. To translate this strategy into the clinical setting, we administered a mixture of six HLA-DRB1*0401-selective, β-cell peptides intradermally to patients with recent-onset type 1 diabetes possessing this genotype in a randomized placebo-controlled study at monthly doses of 10, 100, and 500 μg for 24 weeks. Stimulated C-peptide (measuring insulin functional reserve) had declined in all placebo subjects at 24 weeks but was maintained at ≥100% baseline levels in one-half of the treated group. Treatment was accompanied by significant changes in islet-specific immune responses and a dose-dependent increase in Treg expression of the canonical transcription factor FOXP3 and changes in Treg gene expression. In this first-in-human study, multiple-peptide immunotherapy shows promise as a strategy to correct immune regulatory defects fundamental to the pathobiology of autoimmune diabetes.
Collapse
Affiliation(s)
- Yuk-Fun Liu
- Department of Diabetes, School of Life Course Sciences, King’s College London, London, U.K
- Department of Diabetes and Endocrinology, Guy’s and St. Thomas’ NHS Foundation Trust, London, U.K
- Institute of Diabetes, Endocrinology and Obesity, King’s Health Partners, London, U.K
| | - Jake Powrie
- Department of Diabetes and Endocrinology, Guy’s and St. Thomas’ NHS Foundation Trust, London, U.K
| | - Sefina Arif
- Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, London, U.K
| | - Jennie H.M. Yang
- Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, London, U.K
- National Institute for Health Research Biomedical Research Centre, Guy’s and St. Thomas’ NHS Foundation Trust and Kings College London, London, U.K
| | - Evangelia Williams
- Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, London, U.K
- National Institute for Health Research Biomedical Research Centre, Guy’s and St. Thomas’ NHS Foundation Trust and Kings College London, London, U.K
| | - Leena Khatri
- Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, London, U.K
- National Institute for Health Research Biomedical Research Centre, Guy’s and St. Thomas’ NHS Foundation Trust and Kings College London, London, U.K
| | - Mamta Joshi
- Department of Diabetes and Endocrinology, Guy’s and St. Thomas’ NHS Foundation Trust, London, U.K
| | - Loic Lhuillier
- Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, London, U.K
| | - Nikolaos Fountoulakis
- Department of Diabetes and Endocrinology, Guy’s and St. Thomas’ NHS Foundation Trust, London, U.K
| | | | - Craig Beam
- Department of Biomedical Sciences, Homer Stryker MD School of Medicine, Western Michigan University, Kalamazoo, MI
| | - Anna Lorenc
- Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, London, U.K
| | - Mark Peakman
- Department of Diabetes, School of Life Course Sciences, King’s College London, London, U.K
- Department of Diabetes and Endocrinology, Guy’s and St. Thomas’ NHS Foundation Trust, London, U.K
- Institute of Diabetes, Endocrinology and Obesity, King’s Health Partners, London, U.K
- Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, London, U.K
- Corresponding authors: Mark Peakman, , and Timothy Tree,
| | - Timothy Tree
- Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, London, U.K
- National Institute for Health Research Biomedical Research Centre, Guy’s and St. Thomas’ NHS Foundation Trust and Kings College London, London, U.K
- Corresponding authors: Mark Peakman, , and Timothy Tree,
| |
Collapse
|
13
|
Brackett NF, Davis BW, Adli M, Pomés A, Chapman MD. Evolutionary Biology and Gene Editing of Cat Allergen, Fel d 1. CRISPR J 2022; 5:213-223. [PMID: 35343817 DOI: 10.1089/crispr.2021.0101] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Allergy to domestic cat affects up to 15% of the population, and sensitization to cat allergen is associated with asthma. Despite the pervasiveness of cat allergic disease, current treatments have limited impact. Here, we present a bioinformatics analysis of the major cat allergen, Fel d 1, and demonstrate proof of principle for CRISPR gene editing of the allergen. Sequence and structural analyses of Fel d 1 from 50 domestic cats identified conserved coding regions in genes CH1 and CH2 suitable for CRISPR editing. Comparative analyses of Fel d 1 and orthologous sequences from eight exotic felid species determined relatively low-sequence identities for CH1 and CH2, and implied that the allergen may be nonessential for cats, given the apparent lack of evolutionary conservation. In vitro knockouts of domestic cat Fel d 1 using CRISPR-Cas9 yielded editing efficiencies of up to 55% and found no evidence of editing at predicted potential off-target sites. Taken together, our data indicate that Fel d 1 is both a rational and viable candidate for gene deletion, which may profoundly benefit cat allergy sufferers by removing the major allergen at the source.
Collapse
Affiliation(s)
| | - Brian W Davis
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Mazhar Adli
- Robert Lurie Comprehensive Cancer Center, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | | | | |
Collapse
|
14
|
Hossenbaccus L, Linton S, Ramchandani R, Burrows AG, Ellis AK. Study of Cat Allergy Using Controlled Methodology-A Review of the Literature and a Call to Action. FRONTIERS IN ALLERGY 2022; 3:828091. [PMID: 35386639 PMCID: PMC8974834 DOI: 10.3389/falgy.2022.828091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
The prevalence of cat allergen-induced AR is increasing worldwide, prompting its study using controlled methodology. Three general categories of allergen exposure models currently exist for the study of cat allergen-induced AR: natural exposure cat rooms, allergen exposure chambers (AEC), and nasal allergen challenges (NAC). We evaluated existing literature surrounding the use of these models to study cat allergen induced AR using online research databases, including OVID Medline, Embase, and Web of Science. We report that natural exposure cat rooms have been important in establishing the foundation for our understanding of cat allergen-induced AR. Major limitations, including variable allergen ranges and differing study designs highlight the need for a more standardized protocol. In comparison, AECs are an exceptional model to mimic real-world allergen exposure and study long-term implications of AR with large sample sizes. Existing AECs are limited by heterogeneous facility designs, differing methods of cat allergen distribution, and issues surrounding cost and accessibility. Conversely, NACs allow for smaller participant cohorts for easier biological sampling and are ideal for phase I, phase 2 or proof-of-concept studies. NACs generally have a standardized protocol and are less expensive compared to AECs. Nevertheless, NACs solely capture acute allergen exposure and have the further limitation of using allergen extracts rather than natural allergen. As the use of combined controlled methodologies is sparse, we recommend concurrent use of AECs and NACs to study short- and long-term effects of AR, thereby providing a more holistic representation of cat allergen-induced AR.
Collapse
Affiliation(s)
- Lubnaa Hossenbaccus
- Department of Medicine, Queen's University, Kingston, ON, Canada
- Allergy Research Unit, Kingston Health Sciences Centre – KGH Site, Kingston, ON, Canada
| | - Sophia Linton
- Department of Medicine, Queen's University, Kingston, ON, Canada
- Allergy Research Unit, Kingston Health Sciences Centre – KGH Site, Kingston, ON, Canada
| | - Rashi Ramchandani
- Department of Medicine, Queen's University, Kingston, ON, Canada
- Allergy Research Unit, Kingston Health Sciences Centre – KGH Site, Kingston, ON, Canada
| | - Alyssa G. Burrows
- Department of Medicine, Queen's University, Kingston, ON, Canada
- Allergy Research Unit, Kingston Health Sciences Centre – KGH Site, Kingston, ON, Canada
| | - Anne K. Ellis
- Department of Medicine, Queen's University, Kingston, ON, Canada
- Allergy Research Unit, Kingston Health Sciences Centre – KGH Site, Kingston, ON, Canada
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| |
Collapse
|
15
|
Brackett NF, Pomés A, Chapman MD. New Frontiers: Precise Editing of Allergen Genes Using CRISPR. FRONTIERS IN ALLERGY 2022; 2:821107. [PMID: 35386981 PMCID: PMC8974684 DOI: 10.3389/falgy.2021.821107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/24/2021] [Indexed: 11/14/2022] Open
Abstract
Genome engineering with clustered regularly interspaced short palindromic repeats (CRISPR) technology offers the unique potential for unequivocally deleting allergen genes at the source. Compared to prior gene editing approaches, CRISPR boasts substantial improvements in editing efficiency, throughput, and precision. CRISPR has demonstrated success in several clinical applications such as sickle cell disease and β-thalassemia, and preliminary knockout studies of allergenic proteins using CRISPR editing show promise. Given the advantages of CRISPR, as well as specific DNA targets in the allergen genes, CRISPR gene editing is a viable approach for tackling allergy, which may lead to significant disease improvement. This review will highlight recent applications of CRISPR editing of allergens, particularly cat allergen Fel d 1, and will discuss the advantages and limitations of this approach compared to existing treatment options.
Collapse
|
16
|
Boonpiyathad T, Lao-Araya M, Chiewchalermsri C, Sangkanjanavanich S, Morita H. Allergic Rhinitis: What Do We Know About Allergen-Specific Immunotherapy? FRONTIERS IN ALLERGY 2021; 2:747323. [PMID: 35387059 PMCID: PMC8974870 DOI: 10.3389/falgy.2021.747323] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/30/2021] [Indexed: 01/23/2023] Open
Abstract
Allergic rhinitis (AR) is an IgE-mediated disease that is characterized by Th2 joint inflammation. Allergen-specific immunotherapy (AIT) is indicated for AR when symptoms remain uncontrolled despite medication and allergen avoidance. AIT is considered to have been effective if it alleviated allergic symptoms, decreased medication use, improved the quality of life even after treatment cessation, and prevented the progression of AR to asthma and the onset of new sensitization. AIT can be administered subcutaneously or sublingually, and novel routes are still being developed, such as intra-lymphatically and epicutaneously. AIT aims at inducing allergen tolerance through modification of innate and adaptive immunologic responses. The main mechanism of AIT is control of type 2 inflammatory cells through induction of various functional regulatory cells such as regulatory T cells (Tregs), follicular T cells (Tfr), B cells (Bregs), dendritic cells (DCregs), innate lymphoid cells (IL-10+ ILCs), and natural killer cells (NKregs). However, AIT has a number of disadvantages: the long treatment period required to achieve greater efficacy, high cost, systemic allergic reactions, and the absence of a biomarker for predicting treatment responders. Currently, adjunctive therapies, vaccine adjuvants, and novel vaccine technologies are being studied to overcome the problems associated with AIT. This review presents an updated overview of AIT, with a special focus on AR.
Collapse
Affiliation(s)
- Tadech Boonpiyathad
- Department of Medicine, Phramongkutklao Hospital, Bangkok, Thailand
- *Correspondence: Tadech Boonpiyathad
| | - Mongkol Lao-Araya
- Faculty of Medicine, Department of Pediatrics, Chiang Mai University, Chiang Mai, Thailand
| | - Chirawat Chiewchalermsri
- Department of Medicine, Panyananthaphikkhu Chonprathan Medical Center, Srinakharinwirot University, Nonthaburi, Thailand
| | - Sasipa Sangkanjanavanich
- Faculty of Medicine Ramathibodi Hospital, Department of Medicine, Mahidol University, Bangkok, Thailand
| | - Hideaki Morita
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
- Allergy Center, National Center for Child Health and Development, Tokyo, Japan
| |
Collapse
|
17
|
Dogmas, challenges, and promises in phase III allergen immunotherapy studies. World Allergy Organ J 2021; 14:100578. [PMID: 34659627 PMCID: PMC8487954 DOI: 10.1016/j.waojou.2021.100578] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 08/02/2021] [Accepted: 08/10/2021] [Indexed: 12/11/2022] Open
Abstract
The concept of treatment of an allergy with the offending allergen was introduced more than a century ago. Allergen immunotherapy (AIT) is the only disease modifying treatment of allergic diseases caused by inhalational allergens and insect venoms. Despite this, only few AIT products have reached licensure in the US or an official marketing authorization status in European countries. Moreover, most of these AIT products are provided on an individual patient basis as named patient products (NPP) in Europe, while individualized preparations of (mixed) allergenic extract vials for subcutaneous administration (compounding) is common practice in the US. AIT products are generally considered safe and well tolerated, but the major practical clinical development challenge is to define the optimal dose and prove the efficacy and safety of these products using state-of-the art Phase II and pivotal Phase III studies. In planning Phase II-III AIT studies, a thorough understanding of the study challenges is essential (e.g. variability and non-validated status of subjective primary endpoints, limitations of pollen season definitions) and dogmas of these products (e.g., for sublingual immunotherapy (SLIT) trials double-blinding conditions cannot be maintained, resulting in stronger placebo responses in the active treatment group and inflated treatment effects in Phase III). There is future promise for more objective biomarker endpoints (e.g. basophil activation (CD63 and CD203c), subsets of regulatory dendritic, T and B cells, IL-10–producing group 2 innate lymphoid cells; alone or in combination) to overcome several of these dogmas and challenges; innovation in AIT clinical trials can only progress with integral biomarker research to complement the traditional endpoints in Phase II-III clinical development. The aim of this paper is to provide an overview of these dogmas, challenges and recommendations based on published data, to facilitate the design of Phase III studies and improve the evidence basis of safe and effective AIT products.
Collapse
|
18
|
Ramchandani R, Hossenbaccus L, Ellis AK. Immunoregulatory T cell epitope peptides for the treatment of allergic disease. Immunotherapy 2021; 13:1283-1291. [PMID: 34558985 DOI: 10.2217/imt-2021-0133] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Allergic diseases are type 2 inflammatory reactions with an increasing worldwide prevalence, making the search for new therapeutic options pertinent. Allergen immunotherapy is the only disease-modifying approach for allergic rhinitis, though it can result in systemic reactions. Recently, peptide immunotherapy (PIT), involving T-cell epitope peptides that bind to major histocompatibility complexes, have been developed. It is speculated that they can induce T helper cell type 2 anergy, Treg cell upregulation or immune deviation. Promising results in cat dander, honeybee venom, Japanese cedar pollen, grass pollens, ragweed and house dust mite clinical trials have shown safety, efficacy and tolerability to PIT. Hence, PIT may hold the potential to change the treatment algorithm for allergic rhinitis.
Collapse
Affiliation(s)
- Rashi Ramchandani
- Department of Medicine, Queen's University, Kingston, ON, K7L 3N6, Canada.,Allergy Research Unit, Kingston Health Sciences Center - KGH Site, Kingston, on, K7L 2V7, Canada
| | - Lubnaa Hossenbaccus
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada.,Allergy Research Unit, Kingston Health Sciences Center - KGH Site, Kingston, on, K7L 2V7, Canada
| | - Anne K Ellis
- Department of Medicine, Queen's University, Kingston, ON, K7L 3N6, Canada.,Department of Biomedical & Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada.,Allergy Research Unit, Kingston Health Sciences Center - KGH Site, Kingston, on, K7L 2V7, Canada
| |
Collapse
|
19
|
Xu LL, Gasset M, Lin H, Yu C, Zhao JL, Dang XW, Li ZX. Identification of the Dominant T-Cell Epitopes of Lit v 1 Shrimp Major Allergen and Their Functional Overlap with Known B-Cell Epitopes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7420-7428. [PMID: 34170668 DOI: 10.1021/acs.jafc.1c02231] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Development of efficient peptide-based immunotherapy for shrimp allergy relies on the identification of the dominant T-cell epitopes of its major allergen, tropomyosin. In this study, immunoinformatic tools, T-cell proliferation, cytokine release, IgG/IgE binding, and degranulation assays were used to identify and characterize the T-cell epitopes in Lit v 1 in comparison with previously validated B-cell epitopes. The results showed that of the six in silico predicted T-cell epitopes only one (T2: VQESLLKANIQLVEK, 60-74) promoted T-cell proliferation, the release of IL-2, and upregulated secretion of Th2-associated cytokines in the absence of IgG/IgE binding and degranulation activities. These findings support T2 as a candidate for the development of an efficient peptide-based vaccine for the immunotherapy for shrimp-allergic patients.
Collapse
Affiliation(s)
- Li Li Xu
- College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao, Shandong Province 266003, P. R. China
| | - María Gasset
- Institute of Physical Chemistry Rocasolano (IQFR), Spanish National Research Council (CSIC), 28006 Madrid, Spain
| | - Hong Lin
- College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao, Shandong Province 266003, P. R. China
| | - Chuang Yu
- College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao, Shandong Province 266003, P. R. China
| | - Jin Long Zhao
- College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao, Shandong Province 266003, P. R. China
| | - Xue Wen Dang
- College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao, Shandong Province 266003, P. R. China
| | - Zhen Xing Li
- College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao, Shandong Province 266003, P. R. China
| |
Collapse
|
20
|
Calzada D, Cremades-Jimeno L, López-Ramos M, Cárdaba B. Peptide Allergen Immunotherapy: A New Perspective in Olive-Pollen Allergy. Pharmaceutics 2021; 13:pharmaceutics13071007. [PMID: 34371699 PMCID: PMC8309132 DOI: 10.3390/pharmaceutics13071007] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 11/16/2022] Open
Abstract
Allergic diseases are highly prevalent disorders, mainly in industrialized countries where they constitute a high global health problem. Allergy is defined as an immune response “shifted toward a type 2 inflammation” induced by the interaction between the antigen (allergen) and IgE antibodies bound to mast cells and basophils that induce the release of inflammatory mediators that cause the clinical symptoms. Currently, allergen-specific immunotherapy (AIT) is the only treatment able to change the course of these diseases, modifying the type 2 inflammatory response by an allergenic tolerance, where the implication of T regulatory (Treg) cells is considered essential. The pollen of the olive tree is one of the most prevalent causes of respiratory allergic diseases in Mediterranean countries, inducing mainly nasal and conjunctival symptoms, although, in areas with a high antigenic load, olive-tree pollen may cause asthma exacerbation. Classically, olive-pollen allergy treatment has been based on specific immunotherapy using whole-olive pollen extracts. Despite extracts standardization, the effectiveness of this strategy varies widely, therefore there is a need for more effective AIT approaches. One of the most attractive is the use of synthetic peptides representing the B- or T-cell epitopes of the main allergens. This review summarizes experimental evidence of several T-cell epitopes derived from the Ole e 1 sequence to modulate the response to olive pollen in vitro, associated with several possible mechanisms that these peptides could be inducing, showing their usefulness as a safe preventive tool for these complex diseases.
Collapse
Affiliation(s)
- David Calzada
- Immunology Department, IIS-Fundación Jiménez Díaz-UAM, 28040 Madrid, Spain; (D.C.); (L.C.-J.); (M.L.-R.)
| | - Lucía Cremades-Jimeno
- Immunology Department, IIS-Fundación Jiménez Díaz-UAM, 28040 Madrid, Spain; (D.C.); (L.C.-J.); (M.L.-R.)
| | - María López-Ramos
- Immunology Department, IIS-Fundación Jiménez Díaz-UAM, 28040 Madrid, Spain; (D.C.); (L.C.-J.); (M.L.-R.)
| | - Blanca Cárdaba
- Immunology Department, IIS-Fundación Jiménez Díaz-UAM, 28040 Madrid, Spain; (D.C.); (L.C.-J.); (M.L.-R.)
- Ciber de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
- Correspondence:
| |
Collapse
|
21
|
Leonard C, Montamat G, Davril C, Domingues O, Hunewald O, Revets D, Guerin C, Blank S, Heckendorn J, Jardon G, Hentges F, Ollert M. Comprehensive mapping of immune tolerance yields a regulatory TNF receptor 2 signature in a murine model of successful Fel d 1-specific immunotherapy using high-dose CpG adjuvant. Allergy 2021; 76:2153-2165. [PMID: 33345329 PMCID: PMC8359185 DOI: 10.1111/all.14716] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/27/2020] [Accepted: 12/09/2020] [Indexed: 01/23/2023]
Abstract
Background The prevalence of allergy to cat is expanding worldwide. Allergen‐specific immunotherapy (AIT) has advantages over symptomatic pharmacotherapy and promises long‐lasting disease control in allergic patients. However, there is still a need to improve cat AIT regarding efficacy, safety, and adherence to the treatment. Here, we aim to boost immune tolerance to the major cat allergen Fel d 1 by increasing the anti‐inflammatory activity of AIT with the established immunomodulatory adjuvant CpG, but at a higher dose than previously used in AIT. Methods Together with CpG, we used endotoxin‐free Fel d 1 as therapeutic allergen throughout the study in a BALB/c model of allergy to Fel d 1, thus mimicking the conditions of human AIT trials. Multidimensional immune phenotyping including mass cytometry (CyTOF) was applied to analyze AIT‐specific immune signatures. Results We show that AIT with high‐dose CpG in combination with endotoxin‐free Fel d 1 reverts all major hallmarks of allergy. High‐dimensional CyTOF analysis of the immune cell signatures initiating and sustaining the AIT effect indicates the simultaneous engagement of both, the pDC‐Treg and B‐cell axis, with the emergence of a systemic GATA3+ FoxP3hi biTreg population. The regulatory immune signature also suggests the involvement of the anti‐inflammatory TNF/TNFR2 signaling cascade in NK and B cells at an early stage and in Tregs later during AIT. Conclusion Our results highlight the potential of CpG adjuvant in a novel formulation to be further exploited for inducing allergen‐specific tolerance in patients with cat allergy or other allergic diseases.
Collapse
Affiliation(s)
- Cathy Leonard
- Department of Infection and Immunity Luxembourg Institute of Health Esch‐sur‐Alzette Luxembourg
| | - Guillem Montamat
- Department of Infection and Immunity Luxembourg Institute of Health Esch‐sur‐Alzette Luxembourg
- Department of Clinical Research University of Southern Denmark Odense Denmark
| | - Caroline Davril
- Department of Infection and Immunity Luxembourg Institute of Health Esch‐sur‐Alzette Luxembourg
| | - Olivia Domingues
- Department of Infection and Immunity Luxembourg Institute of Health Esch‐sur‐Alzette Luxembourg
| | - Oliver Hunewald
- Department of Infection and Immunity Luxembourg Institute of Health Esch‐sur‐Alzette Luxembourg
| | - Dominique Revets
- Department of Infection and Immunity Luxembourg Institute of Health Esch‐sur‐Alzette Luxembourg
- Quantitative Biology Unit National Cytometry Platform Luxembourg Institute of Health Esch‐sur‐Alzette Luxembourg
| | - Coralie Guerin
- Department of Infection and Immunity Luxembourg Institute of Health Esch‐sur‐Alzette Luxembourg
- Quantitative Biology Unit National Cytometry Platform Luxembourg Institute of Health Esch‐sur‐Alzette Luxembourg
| | - Simon Blank
- Center of Allergy and Environment (ZAUM) Technical University of Munich and Helmholtz Center Munich Member of the German Center of Lung Research (DZL) Munich Germany
| | - Justine Heckendorn
- Department of Infection and Immunity Luxembourg Institute of Health Esch‐sur‐Alzette Luxembourg
| | - Gauthier Jardon
- Department of Infection and Immunity Luxembourg Institute of Health Esch‐sur‐Alzette Luxembourg
| | - François Hentges
- Department of Infection and Immunity Luxembourg Institute of Health Esch‐sur‐Alzette Luxembourg
- National Unit of Immunology‐Allergology Centre Hospitalier de Luxembourg Luxembourg Luxembourg
| | - Markus Ollert
- Department of Infection and Immunity Luxembourg Institute of Health Esch‐sur‐Alzette Luxembourg
- Department of Dermatology and Allergy Center Odense Research Center for Anaphylaxis Odense University Hospital University of Southern Denmark Odense Denmark
| |
Collapse
|
22
|
Wraith DC, Krishna MT. Peptide allergen-specific immunotherapy for allergic airway diseases-State of the art. Clin Exp Allergy 2021; 51:751-769. [PMID: 33529435 DOI: 10.1111/cea.13840] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/24/2021] [Accepted: 01/28/2021] [Indexed: 12/13/2022]
Abstract
Allergen-specific immunotherapy (AIT) is the only means of altering the natural immunological course of allergic diseases and achieving long-term remission. Pharmacological measures are able to suppress the immune response and/or ameliorate the symptoms but there is a risk of relapse soon after these measures are withdrawn. Current AIT approaches depend on the administration of intact allergens, often comprising crude extracts of the allergen. We propose that the challenges arising from current approaches, including the risk of serious side-effects, burdensome duration of treatment, poor compliance and high cost, are overcome by application of peptides based on CD4+ T cell epitopes rather than whole allergens. Here we describe evolving approaches, summarize clinical trials involving peptide AIT in allergic rhinitis and asthma, discuss the putative mechanisms involved in their action, address gaps in evidence and propose future directions for research and clinical development.
Collapse
Affiliation(s)
- David C Wraith
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Mamidipudi T Krishna
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
- Department of Allergy and Immunology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| |
Collapse
|
23
|
Kim YW, Tonti E, Hickey P, Ellis AK, Neighbour H, Larché M, Tebbutt SJ. Immunological changes in peripheral blood following nasal allergen challenge in subjects with allergic rhinitis pre- and post-peptide immunotherapy: An open-label clinical study. Allergy 2021; 76:1907-1911. [PMID: 33320968 DOI: 10.1111/all.14710] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/27/2020] [Accepted: 12/09/2020] [Indexed: 11/30/2022]
Affiliation(s)
- Young Woong Kim
- Experimental Medicine University of British Columbia Vancouver BC Canada
- Prevention of Organ Failure (PROOF) Centre of Excellence Vancouver BC Canada
- Centre for Heart Lung Innovation St. Paul’s Hospital Vancouver BC Canada
| | - Elena Tonti
- Department of Medicine McMaster University Hamilton ON Canada
| | | | - Anne K. Ellis
- Departments of Medicine and Biomedical & Molecular Science Queen’s University Kingston ON Canada
- Allergy Research Unit Kingston General Hospital Kingston ON Canada
| | - Helen Neighbour
- Department of Medicine McMaster University Hamilton ON Canada
- Firestone Institute for Respiratory Health, St. Joseph’s Healthcare Hamilton ON Canada
| | - Mark Larché
- Department of Medicine McMaster University Hamilton ON Canada
- Firestone Institute for Respiratory Health, St. Joseph’s Healthcare Hamilton ON Canada
| | - Scott J. Tebbutt
- Experimental Medicine University of British Columbia Vancouver BC Canada
- Prevention of Organ Failure (PROOF) Centre of Excellence Vancouver BC Canada
- Centre for Heart Lung Innovation St. Paul’s Hospital Vancouver BC Canada
- Department of Medicine (Respiratory Division) University of British Columbia Vancouver BC Canada
| |
Collapse
|
24
|
Precision medicine reaching out to the patients in allergology - a German-Japanese workshop report. Allergol Select 2021; 5:162-179. [PMID: 34079922 PMCID: PMC8167740 DOI: 10.5414/alx02234e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 03/19/2021] [Indexed: 12/12/2022] Open
Abstract
An expert workshop in collaboration of the German Society of Allergy and Clinical Immunology (DGAKI) and the Japanese Society of Allergy (JSA) provided a platform for key opinion leaders of both countries aimed to join expertise and to highlight current developments and achievements in allergy research. Key domains of the meeting included the following seven main sections and related subchapters: 1) basic immunology, 2) bronchial asthma, 3) prevention of allergic diseases, 4) food allergy and anaphylaxis, 5) atopic dermatitis, 6) venom allergy, and 7) upper airway diseases. This report provides a summary of panel discussions of all seven domains and highlights unmet needs and project possibilities of enhanced collaborations of scientific projects.
Collapse
|
25
|
Pfaar O, Creticos PS, Kleine-Tebbe J, Canonica GW, Palomares O, Schülke S. One Hundred Ten Years of Allergen Immunotherapy: A Broad Look Into the Future. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2021; 9:1791-1803. [PMID: 33966868 DOI: 10.1016/j.jaip.2020.12.067] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/14/2020] [Accepted: 12/18/2020] [Indexed: 12/15/2022]
Abstract
Allergen immunotherapy (AIT) is the only disease-modifying treatment option for patients with type 1-mediated allergic diseases such as allergic rhinitis/rhinoconjunctivitis with/without allergic asthma. Although many innovations have been developed since the first clinical report of Noon et al in 1911, the improvement of clinical efficacy and tolerability of this treatment is still an important unmet need. Hence, much progress has been made in the characterization of the cell types, cytokines, and intracellular signaling events involved in the development, maintenance, and regulation of allergic reactions, and also in the understanding of the mechanisms of tolerance induction in AIT. This comprehensive review aims to summarize the current innovative approaches in AIT, but also gives an outlook on promising candidates of the future. On the basis of an extensive literature review, integrating a clinical point of view, this article focuses on recent and future innovations regarding biologicals, allergen-derived peptides, recombinant allergens, "Toll"-like receptor agonists and other adjuvants, and novel application routes being developed for future AIT.
Collapse
Affiliation(s)
- Oliver Pfaar
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Marburg, Philipps-Universität Marburg, Marburg, Germany.
| | - Peter S Creticos
- Division of Allergy & Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, Md; Creticos Research Group, Crownsville, Md
| | - Jörg Kleine-Tebbe
- Allergy & Asthma Center Westend, Outpatient & Clinical Research Center, Hanf, Ackermann & Kleine-Tebbe, Berlin, Germany
| | - Giorgio Walter Canonica
- Personalized Medicine Asthma & Allergy Clinic, Humanitas University & Research Hospital-IRCCS, Milano, Italy
| | - Oscar Palomares
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University, Madrid, Spain
| | - Stefan Schülke
- Vice Presidents Research Group, Paul-Ehrlich-Institut, Langen, Germany
| |
Collapse
|
26
|
Streeter HB, Wraith DC. Manipulating antigen presentation for antigen-specific immunotherapy of autoimmune diseases. Curr Opin Immunol 2021; 70:75-81. [PMID: 33878516 PMCID: PMC8376632 DOI: 10.1016/j.coi.2021.03.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 12/14/2022]
Abstract
Specific immunotherapy is the ‘holy grail’ for treatment of autoimmunity. Antigens are delivered by either direct or indirect presentation mechanisms. Liver APC and steady state DC mediate distinct forms of immune regulation. Tr1 cell induction involves epigenetic modification of tolerance associated genes. Trials reveal that antigen-specific immunotherapy can control autoimmune diseases.
Current treatments for autoimmune diseases do not address the immune pathology underlying their initiation and progression and too often rely on non-specific immunosuppressive drugs for control of symptoms. Antigen-specific immunotherapy aims to induce tolerance selectively among the cells causing the disease while leaving the rest of the adaptive immune system capable of protecting against infectious diseases and cancers. Here we describe how novel approaches for antigen-specific immunotherapy are designed to manipulate antigen presentation and promote tolerance to specific self-antigens. This analysis points to liver antigen presenting cells, targeted by carrier particles, and steady-state dendritic cells, to which antigen-processing independent T-cell epitopes (apitopes) bind directly, as the principal targets for antigen-specific immunotherapy. Delivery of antigens to these cells holds great promise for effective control of this rapidly expanding group of diseases.
Collapse
Affiliation(s)
- Heather B Streeter
- Institute of Immunology and Immunotherapy, University of Birmingham, B15 2TT, United Kingdom
| | - David C Wraith
- Institute of Immunology and Immunotherapy, University of Birmingham, B15 2TT, United Kingdom.
| |
Collapse
|
27
|
Hossenbaccus L, Ellis AK. The use of nasal allergen vs allergen exposure chambers to evaluate allergen immunotherapy. Expert Rev Clin Immunol 2021; 17:461-470. [PMID: 33729907 DOI: 10.1080/1744666x.2021.1905523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Allergen-specific immunotherapy (AIT) is the only disease-modifying treatment option for allergic rhinitis (AR) patients with persistent moderate-severe AR for whom traditional pharmacotherapies are ineffective. The nasal allergen challenge (NAC) and allergen exposure chamber (AEC) are two translational models of AR that can be used to investigate the properties, safety, and efficacy of AIT. AREAS COVERED Peer-reviewed, human-centered articles utilizing AEC or NAC models to investigate AIT between 2010 and 2020 were curated from PubMed, EMBASE, and OVID Medline databases. AECs have been used to evaluate traditional subcutaneous and sublingual administrations of AIT, including cross-protective effects and different dosing regimens. More recently, the effectiveness of novel AIT formulations has been evaluated. NACs are another model used to study AIT, including using novel intralymphatic routes of administration. It is an especially powerful and versatile tool to determine if basic science and animal model findings are clinically translatable. EXPERT OPINION The AEC and NAC models both produce clinically relevant and reproducible results. AECs are more effective for studying many participants but are limited because they require a specialized facility. As more AIT therapies and new formulations are developed over time, the versatility of the NAC will be especially useful.
Collapse
Affiliation(s)
- Lubnaa Hossenbaccus
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada.,Allergy Research Unit, Kingston Health Sciences Centre - KGH Site, Kingston, Canada
| | - Anne K Ellis
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada.,Allergy Research Unit, Kingston Health Sciences Centre - KGH Site, Kingston, Canada.,Department of Medicine, Queen's University, Kingston, Canada
| |
Collapse
|
28
|
Petrova SY, Khlgatian SV, Svirshchevskaya EV, Vasilyeva AV, Berzhets VM. DNA vaccines and recombinant allergens with reduced allergenic activity treat allergies. RUSSIAN OPEN MEDICAL JOURNAL 2021. [DOI: 10.15275/rusomj.2021.0102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
This review is intended to familiarize readers with major novel directions of developing allergy vaccines, their structure, as well as the mechanisms of forming a new immunological response in the course of the treating immunoglobulin E (IgE)-mediated allergic diseases. Currently, science offers a huge variety of new experimental forms of recombinant allergens with reduced allergenic activity and increased immunogenicity, or vice-versa, immune tolerance. Often, the mechanisms of their effect on the immune system are not fully understood. Scientific publications, including reviews covering this topic, allowed us identifying top priority areas in the development of allergy vaccines: recombinant hypoallergenic allergen derivatives, T cell epitope-based allergy vaccines, and B cell epitope-based allergy vaccines. In addition, the review discusses use of deoxyribonucleic acid (DNA) vaccines. Immunotherapy with DNA vaccines is the newest and least studied method of treating allergic diseases.
Collapse
Affiliation(s)
| | | | - Elena V. Svirshchevskaya
- M.M. Shemyakin – Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences
| | | | | |
Collapse
|
29
|
Pfaar O, Agache I, Bergmann K, Bindslev‐Jensen C, Bousquet J, Creticos PS, Devillier P, Durham SR, Hellings P, Kaul S, Kleine‐Tebbe J, Klimek L, Jacobsen L, Jutel M, Muraro A, Papadopoulos NG, Rief W, Scadding GK, Schedlowski M, Shamji MH, Sturm G, Ree R, Vidal C, Vieths S, Wedi B, Gerth van Wijk R, Frew AJ. Placebo effects in allergen immunotherapy-An EAACI Task Force Position Paper. Allergy 2021; 76:629-647. [PMID: 32324902 DOI: 10.1111/all.14331] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 03/18/2020] [Indexed: 12/12/2022]
Abstract
The placebo (Latin "I will please") effect commonly occurs in clinical trials. The psychological and physiological factors associated with patients' expectations about a treatment's positive and negative effects have yet to be well characterized, although a functional prefrontal cortex and intense bidirectional communication between the central nervous system and the immune system appear to be prerequisites for a placebo effect. The use of placebo raises certain ethical issues, especially if patients in a placebo group are denied an effective treatment for a long period of time. The placebo effect appears to be relatively large (up to 77%, relative to pretreatment scores) in controlled clinical trials of allergen immunotherapy (AIT), such as the pivotal, double-blind, placebo-controlled (DBPC) randomized clinical trials currently required by regulatory authorities worldwide. The European Academy of Allergy and Clinical Immunology (EAACI) therefore initiated a Task Force, in order to better understand the placebo effect in AIT and its specific role in comorbidities, blinding issues, adherence, measurement time points, variability and the natural course of the disease. In this Position Paper, the EAACI Task Force highlights several important topics regarding the placebo effect in AIT such as a) regulatory aspects, b) neuroimmunological and psychological mechanisms, c) placebo effect sizes in AIT trials, d) methodological limitations in AIT trial design and e) potential solutions in future AIT trial design. In conclusion, this Position Paper aims to examine the methodological problem of placebo in AIT from different aspects and also to highlight unmet needs and possible solutions for future trials.
Collapse
Affiliation(s)
- Oliver Pfaar
- Department of Otorhinolaryngology, Head and Neck Surgery Section of Rhinology and Allergy University Hospital Marburg Philipps‐Universität Marburg Marburg Germany
| | | | - Karl‐Christian Bergmann
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin Humboldt‐Universität zu Berlin Berlin Germany
- Berlin Institute of Health Allergy‐Centre‐Charité Berlin Germany
| | - Carsten Bindslev‐Jensen
- Department of Dermatology and Allergy Centre Odense University Hospital Odense Research Center for Anaphylaxis (ORCA) Odense Denmark
| | - Jean Bousquet
- MACVIA‐France Montpellier France
- University Hospital Montpellier Montpellier France
| | - Peter S. Creticos
- Division of Allergy & Clinical Immunology Johns Hopkins University School of Medicine Baltimore MD USA
- Creticos Research Group Crownsville MD USA
| | - Philippe Devillier
- Department of Airway Diseases, Exhalomics, Hôpital Foch Université Paris‐Saclay Suresnes France
| | - Stephen R. Durham
- Allergy and Clinical Immunology National Heart and Lung Institute Imperial College London London UK
| | - Peter Hellings
- Department of Otorhinolaryngology University Hospitals of Leuven Leuven Belgium
- Department of Otorhinolaryngology Academic Medical Center University of Amsterdam Amsterdam The Netherlands
- Department of Neuroscience University of Ghent Ghent Belgium
| | - Susanne Kaul
- Paul‐Ehrlich‐Institut Federal Institute for Vaccines and Biomedicines Langen Germany
| | - Jörg Kleine‐Tebbe
- Allergy & Asthma Center Westend Outpatient Clinic and Clinical Research Center Berlin Germany
| | - Ludger Klimek
- Center for Rhinology and Allergology Wiesbaden Germany
| | - Lars Jacobsen
- ALC, Allergy Learning and Consulting Copenhagen Denmark
| | - Marek Jutel
- Department of Clinical Immunology Wroclaw Medical University Wroclaw Poland
- All‐Med Medical Research Institute Wroclaw Poland
| | - Antonella Muraro
- Food Allergy Referral Centre Padua University Hospital Padua Padua Italy
| | - Nikolaos G. Papadopoulos
- Division of Infection Immunity & Respiratory Medicine University of Manchester Manchester UK
- Allergy Department 2nd Pediatric Clinic University of Athens Athens Greece
| | - Winfried Rief
- Department of Clinical Psychology and Psychotherapy Philipps‐University of Marburg Marburg Germany
| | | | - Manfred Schedlowski
- Institute of Medical Psychology and Behavioral Immunobiology University Clinic Essen Essen Germany
| | - Mohamed H. Shamji
- National Heart and Lung Institute Imperial College London London UK
- NIHR Biomedical Research Centre Imperial College London London UK
| | - Gunter Sturm
- Department of Dermatology and Venereology Medical University of Graz Graz Austria
- Allergy Outpatient Clinic Reumannplatz Vienna Austria
| | - Ronald Ree
- Departments of Experimental Immunology and of Otorhinolaryngology Amsterdam University Medical Centers Amsterdam The Netherlands
| | - Carmen Vidal
- Department of Allergy and Faculty of Medicine University of Santiago de Compostela Santiago Spain
| | - Stefan Vieths
- Paul‐Ehrlich‐Institut Federal Institute for Vaccines and Biomedicines Langen Germany
| | - Bettina Wedi
- Department of Dermatology and Allergy Hannover Medical School Comprehensive Allergy Center Hannover Germany
| | - Roy Gerth van Wijk
- Section of Allergology Department of Internal Medicine Erasmus MC Rotterdam the Netherlands
| | - Anthony J. Frew
- Department of Respiratory Medicine Royal Sussex County Hospital University of Sussex and University of Brighton Brighton UK
| |
Collapse
|
30
|
Jacquet A. Perspectives in Allergen-Specific Immunotherapy: Molecular Evolution of Peptide- and Protein-Based Strategies. Curr Protein Pept Sci 2020; 21:203-223. [PMID: 31416410 DOI: 10.2174/1389203720666190718152534] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/30/2019] [Accepted: 06/20/2019] [Indexed: 12/13/2022]
Abstract
Allergen-specific Immunotherapy (AIT), through repetitive subcutaneous or sublingual administrations of allergen extracts, represents up to now the unique treatment against allergic sensitizations. However, the clinical efficacy of AIT can be largely dependent on the quality of natural allergen extracts. Moreover, the long duration and adverse side effects associated with AIT negatively impact patient adherence. Tremendous progress in the field of molecular allergology has made possible the design of safer, shorter and more effective new immunotherapeutic approaches based on purified and characterized natural or recombinant allergen derivatives and peptides. This review will summarize the characteristics of these different innovative vaccines including their effects in preclinical studies and clinical trials.
Collapse
Affiliation(s)
- Alain Jacquet
- Center of Excellence in Vaccine Research and Development, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| |
Collapse
|
31
|
Holzhauser T, Schuler F, Dudek S, Kaul S, Vieths S, Mahler V. [Recombinant allergens, peptides, and virus-like particles for allergy immunotherapy]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2020; 63:1412-1423. [PMID: 33095280 PMCID: PMC7648003 DOI: 10.1007/s00103-020-03231-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/24/2020] [Indexed: 11/05/2022]
Abstract
Currently, extract-based therapeutic allergens from natural allergen sources (e.g., house dust mites, tree and grass pollen) are used for allergen-specific immunotherapy (AIT), the only causative therapy that can exhibit positive disease-modifying effects by tolerance induction and prevention of disease progression. Due to variations in the natural composition of the starting materials and different manufacturing processes, there are variations in protein content, allergen composition, and allergenic activity of similar products, which poses specific challenges for their standardization. The identification of the nucleotide sequences of allergenic proteins led to the development of molecular AIT approaches. This allows for the application of exclusively relevant structures as chemically synthesized peptides, recombinant single allergens, or molecules with hypoallergenic properties that potentially allow for an up-dosing with higher allergen-doses without allergic side effects leading more quickly to effective cumulative doses. Further modifications of AIT preparations to improve allergenic and immunogenic properties may be achieved, e.g., by including the use of virus-like particles (VLPs). To date, the herein described therapeutic approaches have been tested in clinical trials only. This article provides an overview of published molecular approaches for allergy treatment used in clinical AIT studies. Their added value and challenges compared to established therapeutic allergens are discussed. The aim of these approaches is to develop highly effective and well-tolerated AIT preparations with improved patient acceptance and adherence.
Collapse
Affiliation(s)
- Thomas Holzhauser
- Paul-Ehrlich-Institut, Bundesinstitut für Impfstoffe und Biomedizinische Arzneimittel (PEI), Paul-Ehrlich-Straße 51-59, 63225, Langen, Deutschland.
| | - Frank Schuler
- Paul-Ehrlich-Institut, Bundesinstitut für Impfstoffe und Biomedizinische Arzneimittel (PEI), Paul-Ehrlich-Straße 51-59, 63225, Langen, Deutschland
| | - Simone Dudek
- Paul-Ehrlich-Institut, Bundesinstitut für Impfstoffe und Biomedizinische Arzneimittel (PEI), Paul-Ehrlich-Straße 51-59, 63225, Langen, Deutschland
| | - Susanne Kaul
- Paul-Ehrlich-Institut, Bundesinstitut für Impfstoffe und Biomedizinische Arzneimittel (PEI), Paul-Ehrlich-Straße 51-59, 63225, Langen, Deutschland
| | - Stefan Vieths
- Paul-Ehrlich-Institut, Bundesinstitut für Impfstoffe und Biomedizinische Arzneimittel (PEI), Paul-Ehrlich-Straße 51-59, 63225, Langen, Deutschland
| | - Vera Mahler
- Paul-Ehrlich-Institut, Bundesinstitut für Impfstoffe und Biomedizinische Arzneimittel (PEI), Paul-Ehrlich-Straße 51-59, 63225, Langen, Deutschland
| |
Collapse
|
32
|
Arasi S, Pajno GB, Panasiti I, Sandoval M, Alvaro-Lozano M. Allergen Immunotherapy in children with respiratory allergic diseases. Minerva Pediatr 2020; 72:343-357. [PMID: 32731732 DOI: 10.23736/s0026-4946.20.05959-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Allergen immunotherapy (AIT) is a well-established treatment for allergic respiratory diseases. It represents a cornerstone in the clinical management of allergic children since it is the only curative option to date able to modify the natural history of Ig-E mediated allergic diseases. Through a well-defined immunologic mechanism, AIT promotes regulatory T cells and cuts down the immune response induced by allergens. According to current guidelines based on up-to-date evidence, AIT should be offered to children with moderate-severe allergic rhinitis and/or controlled asthma starting from 5 years of age, further to an adequate risk-benefit assessment which includes patient's adherence to the treatment and a proper selection of the right product. Younger age and mild disease could be considered based on an individual evaluation. Both subcutaneous (SCIT) and sublingual (SLIT) routes of administration have a good efficacy and safety profile with safer outcomes for SLIT compared to SCIT. Only standardized products with documented evidence of clinical efficacy should be used. Although AIT is used worldwide, there are still gaps and limitations, including the lack of reliable biomarkers predictive of the clinical outcome. Novel adjuvants are currently under investigations to boost the strength and efficiency of the immune response, as well as new formulations with better efficacy and better patient's adherence to the treatment. Herein, we aim to provide an overview of current key evidence with major regard to clinical practice as well as knowledge gaps and future research needs in the context of AIT in children with respiratory allergic diseases.
Collapse
Affiliation(s)
- Stefania Arasi
- Predictive and Preventive Medicine Research Unit, Multifactorial and Systemic Diseases Research Area, Pediatric Allergology Unit, Bambino Gesù Children's Hospital IRCCS, Rome, Italy -
| | - Giovanni B Pajno
- Allergy Unit, Department of Pediatrics, University of Messina, Messina, Italy
| | - Ilenia Panasiti
- Allergy Unit, Department of Pediatrics, University of Messina, Messina, Italy
| | - Mónica Sandoval
- Department of Allergy and Clinical Immunology, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain
| | - Montserrat Alvaro-Lozano
- Department of Allergy and Clinical Immunology, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain
| |
Collapse
|
33
|
Pfaar O, Zieglmayer P. Allergen exposure chambers: implementation in clinical trials in allergen immunotherapy. Clin Transl Allergy 2020; 10:33. [PMID: 32742636 PMCID: PMC7388504 DOI: 10.1186/s13601-020-00336-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/19/2020] [Indexed: 12/13/2022] Open
Abstract
Allergen exposure chambers (AECs) have been developed for controlled allergen challenges of allergic patients mimicking natural exposure. As such, these facilities have been utilized e.g., for proof of concept, dose finding or the demonstration of onset of action and treatment effect sizes of antiallergic medication. Moreover, clinical effects of and immunological mechanisms in allergen immunotherapy (AIT) have been investigated in AECs. In Europe AIT products have to fulfill regulatory requirements for obtaining market authorization through Phase I to III clinical trials. Multiple Phase II (dose-range-finding or proof-of-concept) trials on AIT products have been performed in AECs. However, they are not accepted by regulatory bodies for pivotal (Phase III) trials and a more thorough technical and clinical validation is requested. Recently, a Position Paper of the European Academy of Allergy and Clinical Immunology (EAACI) has outlined unmet needs in further development of AECs. The following review aims to address some of these needs on the basis of recently published data in the first part, whereas the second part overviews published examples of most relevant Phase II trials in AIT performed in AEC facilities.
Collapse
Affiliation(s)
- O Pfaar
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Rhinology and Allergy, University Hospital Marburg, Philipps-Universität Marburg, Marburg, Germany
| | | |
Collapse
|
34
|
Dona DW, Suphioglu C. Egg Allergy: Diagnosis and Immunotherapy. Int J Mol Sci 2020; 21:E5010. [PMID: 32708567 PMCID: PMC7404024 DOI: 10.3390/ijms21145010] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/03/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023] Open
Abstract
Hypersensitivity or an allergy to chicken egg proteins is a predominant symptomatic condition affecting 1 in 20 children in Australia; however, an effective form of therapy has not yet been found. This occurs as the immune system of the allergic individual overreacts when in contact with egg allergens (egg proteins), triggering a complex immune response. The subsequent instantaneous inflammatory immune response is characterized by the excessive production of immunoglobulin E (IgE) antibody against the allergen, T-cell mediators and inflammation. Current allergen-specific approaches to egg allergy diagnosis and treatment lack consistency and therefore pose safety concerns among anaphylactic patients. Immunotherapy has thus far been found to be the most efficient way to treat and relieve symptoms, this includes oral immunotherapy (OIT) and sublingual immunotherapy (SLIT). A major limitation in immunotherapy, however, is the difficulty in preparing effective and safe extracts from natural allergen sources. Advances in molecular techniques allow for the production of safe and standardized recombinant and hypoallergenic egg variants by targeting the IgE-binding epitopes responsible for clinical allergic symptoms. Site-directed mutagenesis can be performed to create such safe hypoallergens for their potential use in future methods of immunotherapy, providing a feasible standardized therapeutic approach to target egg allergies safely.
Collapse
Affiliation(s)
| | - Cenk Suphioglu
- NeuroAllergy Research Laboratory (NARL), School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, 75 Pigdons Road, Geelong 3216 VIC, Australia;
| |
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW More than 30 years ago, the first molecular structures of allergens were elucidated and defined recombinant allergens became available. We review the state of the art regarding molecular AIT with the goal to understand why progress in this field has been slow, although there is huge potential for treatment and allergen-specific prevention. RECENT FINDINGS On the basis of allergen structures, several AIT strategies have been developed and were advanced into clinical evaluation. In clinical AIT trials, promising results were obtained with recombinant and synthetic allergen derivatives inducing allergen-specific IgG antibodies, which interfered with allergen recognition by IgE whereas clinical efficacy could not yet be demonstrated for approaches targeting only allergen-specific T-cell responses. Available data suggest that molecular AIT strategies have many advantages over allergen extract-based AIT. SUMMARY Clinical studies indicate that recombinant allergen-based AIT vaccines, which are superior to existing allergen extract-based AIT can be developed for respiratory, food and venom allergy. Allergen-specific preventive strategies based on recombinant allergen-based vaccine approaches and induction of T-cell tolerance are on the horizon and hold promise that allergy can be prevented. However, progress is limited by lack of resources needed for clinical studies, which are necessary for the development of these innovative strategies.
Collapse
|
36
|
Hossenbaccus L, Steacy LM, Walker T, Ellis AK. Utility of Environmental Exposure Unit Challenge Protocols for the Study of Allergic Rhinitis Therapies. Curr Allergy Asthma Rep 2020; 20:34. [PMID: 32506346 DOI: 10.1007/s11882-020-00922-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
PURPOSE OF REVIEW This paper explores how the Environmental Exposure Unit (EEU) experimental model can be used to further our understanding of pharmacotherapies and immunotherapies for the treatment of allergic rhinitis (AR). RECENT FINDINGS EEUs are used increasingly for the study of combination therapies, immunotherapies, and novel AR treatments. A combined antihistamine/corticosteroid nasal spray formulation was seen to have a faster onset of action relative to the therapies individually in the Environmental Exposure Chamber. House dust mite sublingual immunotherapy tablets are both safe and efficacious as evaluated by the Vienna Challenge Chamber. The Kingston EEU found that a novel peptide-based immunotherapy approach to be effective in reducing grass pollen-induced AR. Lastly, nasal filters were determined to reduce seasonal AR symptoms, given out-of-season in the Denmark Environmental Exposure Unit. EEUs are controlled, replicable models that provide valuable insight into the efficacy, onset and duration of action, and dose-related impacts of AR therapeutics, with direct clinical relevance.
Collapse
Affiliation(s)
- Lubnaa Hossenbaccus
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada.,Allergy Research Unit, Kingston Health Sciences Center - KGH Site, Kingston, ON, Canada
| | - Lisa M Steacy
- Allergy Research Unit, Kingston Health Sciences Center - KGH Site, Kingston, ON, Canada
| | - Terry Walker
- Allergy Research Unit, Kingston Health Sciences Center - KGH Site, Kingston, ON, Canada
| | - Anne K Ellis
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada. .,Allergy Research Unit, Kingston Health Sciences Center - KGH Site, Kingston, ON, Canada. .,Department of Medicine, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
37
|
Zahirović A, Luzar J, Molek P, Kruljec N, Lunder M. Bee Venom Immunotherapy: Current Status and Future Directions. Clin Rev Allergy Immunol 2020; 58:326-341. [PMID: 31240545 DOI: 10.1007/s12016-019-08752-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Bee venom immunotherapy is the main treatment option for bee sting allergy. Its major limitations are the high percentage of allergic side effects and long duration, which are driving the development of novel therapeutic modalities. Three general approaches have been evaluated including the use of hypoallergenic allergen derivatives, adjunctive therapy, and alternative delivery routes. This article reviews preclinical and clinical evidence on the therapeutic potential of these new therapies. Among hypoallergenic derivatives, hybrid allergens showed a markedly reduced IgE reactivity in mouse models. Whether they will offer therapeutic benefit over extract, it is still not known since clinical trials have not been carried out yet. T cell epitope peptides have proven effective in small clinical trials. Major histocompatibility complex class II restriction was circumvented by using long overlapping or promiscuous T cell epitope peptides. However, the T cell-mediated late-phase adverse events have been reported with both short and longer peptides. Application of mimotopes could potentially overcome both T cell- and IgE-mediated adverse events. During this evolution of vaccine, there has been a gain in safety. The efficacy was further improved with the use of Toll-like receptor-activating adjuvants and delivery systems. In murine models, the association of allergen Api m 1 with cytosine-guanosine rich oligonucleotides stimulated strong T-helper type-1 response, whereas its encapsulation into microbubbles protected mice against allergen challenge. An intralymphatic administration of low-dose vaccine has shown the potential to decrease treatment from 5 years to only 12 weeks. Bigger clinical trials are needed to follow up on these results.
Collapse
Affiliation(s)
- Abida Zahirović
- Faculty of Pharmacy, Department of Pharmaceutical Biology, University of Ljubljana, Aškerčeva 7, SI-1000, Ljubljana, Slovenia.
| | - Jernej Luzar
- Faculty of Pharmacy, Department of Pharmaceutical Biology, University of Ljubljana, Aškerčeva 7, SI-1000, Ljubljana, Slovenia
| | - Peter Molek
- Faculty of Pharmacy, Department of Pharmaceutical Biology, University of Ljubljana, Aškerčeva 7, SI-1000, Ljubljana, Slovenia
| | - Nika Kruljec
- Faculty of Pharmacy, Department of Pharmaceutical Biology, University of Ljubljana, Aškerčeva 7, SI-1000, Ljubljana, Slovenia
| | - Mojca Lunder
- Faculty of Pharmacy, Department of Pharmaceutical Biology, University of Ljubljana, Aškerčeva 7, SI-1000, Ljubljana, Slovenia
| |
Collapse
|
38
|
Alvaro-Lozano M, Akdis CA, Akdis M, Alviani C, Angier E, Arasi S, Arzt-Gradwohl L, Barber D, Bazire R, Cavkaytar O, Comberiati P, Dramburg S, Durham SR, Eifan AO, Forchert L, Halken S, Kirtland M, Kucuksezer UC, Layhadi JA, Matricardi PM, Muraro A, Ozdemir C, Pajno GB, Pfaar O, Potapova E, Riggioni C, Roberts G, Rodríguez Del Río P, Shamji MH, Sturm GJ, Vazquez-Ortiz M. EAACI Allergen Immunotherapy User's Guide. Pediatr Allergy Immunol 2020; 31 Suppl 25:1-101. [PMID: 32436290 PMCID: PMC7317851 DOI: 10.1111/pai.13189] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Allergen immunotherapy is a cornerstone in the treatment of allergic children. The clinical efficiency relies on a well-defined immunologic mechanism promoting regulatory T cells and downplaying the immune response induced by allergens. Clinical indications have been well documented for respiratory allergy in the presence of rhinitis and/or allergic asthma, to pollens and dust mites. Patients who have had an anaphylactic reaction to hymenoptera venom are also good candidates for allergen immunotherapy. Administration of allergen is currently mostly either by subcutaneous injections or by sublingual administration. Both methods have been extensively studied and have pros and cons. Specifically in children, the choice of the method of administration according to the patient's profile is important. Although allergen immunotherapy is widely used, there is a need for improvement. More particularly, biomarkers for prediction of the success of the treatments are needed. The strength and efficiency of the immune response may also be boosted by the use of better adjuvants. Finally, novel formulations might be more efficient and might improve the patient's adherence to the treatment. This user's guide reviews current knowledge and aims to provide clinical guidance to healthcare professionals taking care of children undergoing allergen immunotherapy.
Collapse
Affiliation(s)
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland.,Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland
| | - Mubeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Cherry Alviani
- The David Hide Asthma and Allergy Research Centre, St Mary's Hospital, Newport, Isle of Wight, UK.,Clinical and Experimental Sciences and Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK.,NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Elisabeth Angier
- Primary Care and Population Sciences, University of Southampton, Southampton, UK
| | - Stefania Arasi
- Pediatric Allergology Unit, Department of Pediatric Medicine, Bambino Gesù Children's research Hospital (IRCCS), Rome, Italy
| | - Lisa Arzt-Gradwohl
- Department of Dermatology and Venerology, Medical University of Graz, Graz, Austria
| | - Domingo Barber
- School of Medicine, Institute for Applied Molecular Medicine (IMMA), Universidad CEU San Pablo, Madrid, Spain.,RETIC ARADYAL RD16/0006/0015, Instituto de Salud Carlos III, Madrid, Spain
| | - Raphaëlle Bazire
- Allergy Department, Hospital Infantil Niño Jesús, ARADyAL RD16/0006/0026, Madrid, Spain
| | - Ozlem Cavkaytar
- Department of Paediatric Allergy and Immunology, Faculty of Medicine, Goztepe Training and Research Hospital, Istanbul Medeniyet University, Istanbul, Turkey
| | - Pasquale Comberiati
- Department of Clinical Immunology and Allergology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia.,Department of Clinical and Experimental Medicine, Section of Paediatrics, University of Pisa, Pisa, Italy
| | - Stephanie Dramburg
- Department of Pediatric Pneumology, Immunology and Intensive Care Medicine, Charité Medical University, Berlin, Germany
| | - Stephen R Durham
- Immunomodulation and Tolerance Group; Allergy and Clinical Immunology, Section of Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, London, UK.,the MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| | - Aarif O Eifan
- Allergy and Clinical Immunology, National Heart and Lung Institute, Imperial College London and Royal Brompton Hospitals NHS Foundation Trust, London, UK
| | - Leandra Forchert
- Department of Pediatric Pneumology, Immunology and Intensive Care Medicine, Charité Medical University, Berlin, Germany
| | - Susanne Halken
- Hans Christian Andersen Children's Hospital, Odense University Hospital, Odense, Denmark
| | - Max Kirtland
- Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Inflammation, Repair and Development, National Heart and Lung Institute, Asthma UK Centre in Allergic Mechanisms of Asthma, Imperial College London, London, UK
| | - Umut C Kucuksezer
- Aziz Sancar Institute of Experimental Medicine, Department of Immunology, Istanbul University, Istanbul, Turkey
| | - Janice A Layhadi
- Immunomodulation and Tolerance Group; Allergy and Clinical Immunology, Section of Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, London, UK.,the MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK.,Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Inflammation, Repair and Development, National Heart and Lung Institute, Asthma UK Centre in Allergic Mechanisms of Asthma, Imperial College London, London, UK
| | - Paolo Maria Matricardi
- Department of Pediatric Pneumology, Immunology and Intensive Care Medicine, Charité Medical University, Berlin, Germany
| | - Antonella Muraro
- The Referral Centre for Food Allergy Diagnosis and Treatment Veneto Region, Department of Women and Child Health, University of Padua, Padua, Italy
| | - Cevdet Ozdemir
- Institute of Child Health, Department of Pediatric Basic Sciences, Istanbul University, Istanbul, Turkey.,Faculty of Medicine, Department of Pediatrics, Division of Pediatric Allergy and Immunology, Istanbul University, Istanbul, Turkey
| | | | - Oliver Pfaar
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Rhinology and Allergy, University Hospital Marburg, Philipps-Universität Marburg, Marburg, Germany
| | - Ekaterina Potapova
- Department of Pediatric Pneumology, Immunology and Intensive Care Medicine, Charité Medical University, Berlin, Germany
| | - Carmen Riggioni
- Pediatric Allergy and Clinical Immunology Service, Institut de Reserca Sant Joan de Deú, Barcelona, Spain
| | - Graham Roberts
- The David Hide Asthma and Allergy Research Centre, St Mary's Hospital, Newport, Isle of Wight, UK.,NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK.,Paediatric Allergy and Respiratory Medicine (MP803), Clinical & Experimental Sciences & Human Development in Health Academic Units University of Southampton Faculty of Medicine & University Hospital Southampton, Southampton, UK
| | | | - Mohamed H Shamji
- Immunomodulation and Tolerance Group; Allergy and Clinical Immunology, Section of Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, London, UK.,the MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| | - Gunter J Sturm
- Department of Dermatology and Venerology, Medical University of Graz, Graz, Austria
| | | |
Collapse
|
39
|
Thoms F, Haas S, Erhart A, Nett CS, Rüfenacht S, Graf N, Strods A, Patil G, Leenadevi T, Fontaine MC, Toon LA, Jennings GT, Senti G, Kündig TM, Bachmann MF. Immunization of Cats against Fel d 1 Results in Reduced Allergic Symptoms of Owners. Viruses 2020; 12:v12030288. [PMID: 32155887 PMCID: PMC7150904 DOI: 10.3390/v12030288] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/20/2020] [Accepted: 02/26/2020] [Indexed: 12/23/2022] Open
Abstract
An innovative approach was tested to treat cat allergy in humans by vaccinating cats with Fel-CuMV (HypoCatTM), a vaccine against the major cat allergen Fel d 1 based on virus-like particles derived from cucumber mosaic virus (CuMV-VLPs). Upon vaccination, cats develop neutralizing antibodies against the allergen Fel d 1, which reduces the level of reactive allergen, thus lowering the symptoms or even preventing allergic reactions in humans. The combined methodological field study included ten cat-allergic participants who lived together with their cats (n = 13), that were immunized with Fel-CuMV. The aim was to determine methods for measuring a change in allergic symptoms. A home-based provocation test (petting time and organ specific symptom score (OSSS)) and a general weekly (or monthly) symptom score (G(W)SS) were used to assess changes in allergic symptoms. The petting time until a pre-defined level of allergic symptoms was reached increased already early after vaccination of the cats and was apparent over the course of the study. In addition, the OSSS after provocation and G(W)SS recorded a persistent reduction in symptoms over the study period and could serve for long-term assessment. Hence, the immunization of cats with HypoCatTM (Fel-CuMV) may have a positive impact on the cat allergy of the owner, and changes could be assessed by the provocation test as well as G(W)SS.
Collapse
Affiliation(s)
- Franziska Thoms
- Department of Dermatology, Zurich University Hospital, Wagistrasse 12, 8952 Schlieren/Zurich, Switzerland; (F.T.); (S.H.); (G.T.J.)
- HypoPet AG, Moussonstrasse 2, 8091 Zurich, Switzerland
| | - Stefanie Haas
- Department of Dermatology, Zurich University Hospital, Wagistrasse 12, 8952 Schlieren/Zurich, Switzerland; (F.T.); (S.H.); (G.T.J.)
- HypoPet AG, Moussonstrasse 2, 8091 Zurich, Switzerland
| | - Aline Erhart
- Clinical Trials Center Zurich, University Hospital Zurich, Moussonstrasse 2, 8044 Zurich, Switzerland;
| | - Claudia S. Nett
- vetderm.ch, Ennetseeklink für Kleintiere, Rothusstrasse 2, 6331 Hünenberg, Switzerland;
| | - Silvia Rüfenacht
- dermaVet, Tierklinik Aarau West AG, Muhenstrasse 56, 5036 Oberentfelden, Switzerland;
| | - Nicole Graf
- Graf Biostatistics, Amelenweg 5, 8400 Winterthur, Switzerland;
| | - Arnis Strods
- Benchmark Animal Health, Benchmark Holdings Plc, 8 Smithy Wood Dr, Sheffield S35 1QN, UK; (A.S.); (G.P.); (T.L.); (M.C.F.); (L.A.T.)
| | - Gauravraj Patil
- Benchmark Animal Health, Benchmark Holdings Plc, 8 Smithy Wood Dr, Sheffield S35 1QN, UK; (A.S.); (G.P.); (T.L.); (M.C.F.); (L.A.T.)
| | - Thonur Leenadevi
- Benchmark Animal Health, Benchmark Holdings Plc, 8 Smithy Wood Dr, Sheffield S35 1QN, UK; (A.S.); (G.P.); (T.L.); (M.C.F.); (L.A.T.)
| | - Michael C. Fontaine
- Benchmark Animal Health, Benchmark Holdings Plc, 8 Smithy Wood Dr, Sheffield S35 1QN, UK; (A.S.); (G.P.); (T.L.); (M.C.F.); (L.A.T.)
| | - Lindsey A. Toon
- Benchmark Animal Health, Benchmark Holdings Plc, 8 Smithy Wood Dr, Sheffield S35 1QN, UK; (A.S.); (G.P.); (T.L.); (M.C.F.); (L.A.T.)
| | - Gary T. Jennings
- Department of Dermatology, Zurich University Hospital, Wagistrasse 12, 8952 Schlieren/Zurich, Switzerland; (F.T.); (S.H.); (G.T.J.)
- HypoPet AG, Moussonstrasse 2, 8091 Zurich, Switzerland
| | - Gabriela Senti
- Director Research and Education, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland;
| | - Thomas M. Kündig
- Department of Dermatology, University Hospital Zurich, Gloriastrasse 31, 8091 Zurich, Switzerland;
| | - Martin F. Bachmann
- Department of Immunology, Inselspital, University of Bern, Salihaus 2, 3007 Bern, Switzerland
- Jenner Institute, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7BN, UK
- Correspondence:
| |
Collapse
|
40
|
Immunization of Cats against Fel d 1 Results in Reduced Allergic Symptoms of Owners. Viruses 2020. [PMID: 32155887 DOI: 10.3390/v12030288.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
An innovative approach was tested to treat cat allergy in humans by vaccinating cats with Fel-CuMV (HypoCatTM), a vaccine against the major cat allergen Fel d 1 based on virus-like particles derived from cucumber mosaic virus (CuMV-VLPs). Upon vaccination, cats develop neutralizing antibodies against the allergen Fel d 1, which reduces the level of reactive allergen, thus lowering the symptoms or even preventing allergic reactions in humans. The combined methodological field study included ten cat-allergic participants who lived together with their cats (n = 13), that were immunized with Fel-CuMV. The aim was to determine methods for measuring a change in allergic symptoms. A home-based provocation test (petting time and organ specific symptom score (OSSS)) and a general weekly (or monthly) symptom score (G(W)SS) were used to assess changes in allergic symptoms. The petting time until a pre-defined level of allergic symptoms was reached increased already early after vaccination of the cats and was apparent over the course of the study. In addition, the OSSS after provocation and G(W)SS recorded a persistent reduction in symptoms over the study period and could serve for long-term assessment. Hence, the immunization of cats with HypoCatTM (Fel-CuMV) may have a positive impact on the cat allergy of the owner, and changes could be assessed by the provocation test as well as G(W)SS.
Collapse
|
41
|
Huang H, Curin M, Banerjee S, Chen K, Garmatiuk T, Resch‐Marat Y, Carvalho‐Queiroz C, Blatt K, Gafvelin G, Grönlund H, Valent P, Campana R, Focke‐Tejkl M, Valenta R, Vrtala S. A hypoallergenic peptide mix containing T cell epitopes of the clinically relevant house dust mite allergens. Allergy 2019; 74:2461-2478. [PMID: 31228873 PMCID: PMC7078969 DOI: 10.1111/all.13956] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 04/29/2019] [Accepted: 05/01/2019] [Indexed: 12/31/2022]
Abstract
Background In the house dust mite (HDM) Dermatophagoides pteronyssinus, Der p 1, 2, 5, 7, 21, and 23 have been identified as the most important allergens. The aim of this study was to define hypoallergenic peptides derived from the sequences of the six allergens and to use the peptides and the complete allergens to study antibody, T cell, and cytokine responses in sensitized and nonsensitized subjects. Methods IgE reactivity of HDM‐allergic and non‐HDM‐sensitized individuals to 15 HDM allergens was established using ImmunoCAP ISAC technology. Thirty‐three peptides covering the sequences of the six HDM allergens were synthesized. Allergens and peptides were tested for IgE and IgG reactivity by ELISA and ImmunoCAP, respectively. Allergenic activity was determined by basophil activation. CD4+ T cell and cytokine responses were determined in PBMC cultures by CFSE dilution and Luminex technology, respectively. Results House dust mite allergics showed IgE reactivity only to complete allergens, whereas 31 of the 33 peptides lacked relevant IgE reactivity and allergenic activity. IgG antibodies of HDM‐allergic and nonsensitized subjects were directed against peptide epitopes and higher allergen‐specific IgG levels were found in HDM allergics. PBMC from HDM‐allergics produced higher levels of IL‐5 whereas non‐HDM‐sensitized individuals mounted higher levels of IFN‐gamma, IL‐17, pro‐inflammatory cytokines, and IL‐10. Conclusion IgG antibodies in HDM‐allergic patients recognize peptide epitopes which are different from the epitopes recognized by IgE. This may explain why naturally occurring allergen‐specific IgG antibodies do not protect against IgE‐mediated allergic inflammation. A mix of hypoallergenic peptides containing T cell epitopes of the most important HDM allergens was identified.
Collapse
Affiliation(s)
- Huey‐Jy Huang
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | - Mirela Curin
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | - Srinita Banerjee
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | - Kuan‐Wei Chen
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | - Tetiana Garmatiuk
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | - Yvonne Resch‐Marat
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | - Claudia Carvalho‐Queiroz
- Department of Clinical Neuroscience, Therapeutic Immune Design Unit Karolinska Institutet Stockholm Sweden
| | - Katharina Blatt
- Division of Hematology&Hemostaseology, Department of Internal Medicine I Medical University of Vienna Vienna Austria
| | - Guro Gafvelin
- Department of Clinical Neuroscience, Therapeutic Immune Design Unit Karolinska Institutet Stockholm Sweden
| | - Hans Grönlund
- Department of Clinical Neuroscience, Therapeutic Immune Design Unit Karolinska Institutet Stockholm Sweden
| | - Peter Valent
- Division of Hematology&Hemostaseology, Department of Internal Medicine I Medical University of Vienna Vienna Austria
| | - Raffaela Campana
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | - Margarete Focke‐Tejkl
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | - Rudolf Valenta
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
- NRC Institute of Immunology FMBA of Russia Moscow Russia
- Department of Clinical Immunology and Allergy, Laboratory for Immunopathology Sechenov First Moscow State Medical University Moscow Russia
| | - Susanne Vrtala
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| |
Collapse
|
42
|
Gherasim A, Jacob A, Schoettel F, Domis N, de Blay F. Efficacy of air cleaners in asthmatics allergic to cat in ALYATEC ® environmental exposure chamber. Clin Exp Allergy 2019; 50:160-169. [PMID: 31596983 DOI: 10.1111/cea.13511] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 09/20/2019] [Accepted: 09/25/2019] [Indexed: 01/01/2023]
Abstract
BACKGROUND Air cleaners have been promoted for respiratory allergic disease prevention, but there is no clear clinical proof of their efficacy in allergic asthma. OBJECTIVE To examine the efficacy of a new air cleaner on early and late asthmatic responses in cat-allergic patients. METHODS This randomized, cross-over, double-blind placebo-controlled study enrolled 24 cat-asthmatic patients with GINA 1 asthma. At baseline, participants were exposed to 40 ng/m3 of airborne cat allergen for a maximum of 2 hours in ALYATEC® environmental exposure chamber (EEC). All participants were subsequently randomized into two groups that were exposed to cat allergen, either with active then placebo air cleaners or with placebo then active air cleaners with a 3-week interval in the EEC. This study was registered under number (NCT03928561). RESULTS Fewer patients experienced an EAR with active air cleaners (seven patients; 29.17%) than placebo (21 patients; 87.50%). The response incidence was lower with active than with placebo air cleaners. A Cox model demonstrated a significant treatment effect (hazard ratio, 0.10; P = .002). Active air cleaners also prevented late asthmatic response: four patients (16.67%) had a late asthmatic response with active air cleaners compared to 11 patients (45.83%) with placebo (Prescott test P = .002). Active air cleaners also decreased the maximal severity of bronchial response (FEV1 decrease of 17.24% with active vs 25.62% with placebo air cleaners; P = .001). CONCLUSIONS Our present results demonstrated that Intense Pure Air XL® air cleaners significantly prevented early and late asthmatic responses among cat-allergic asthmatics during cat allergen exposure in the ALYATEC® EEC.
Collapse
Affiliation(s)
- Alina Gherasim
- ALYATEC® Environmental Exposure Chamber, 1 place de l'Hôpital, Strasbourg, France
| | - Audrey Jacob
- ALYATEC® Environmental Exposure Chamber, 1 place de l'Hôpital, Strasbourg, France
| | - Florian Schoettel
- ALYATEC® Environmental Exposure Chamber, 1 place de l'Hôpital, Strasbourg, France
| | - Nathalie Domis
- ALYATEC® Environmental Exposure Chamber, 1 place de l'Hôpital, Strasbourg, France
| | - Frederic de Blay
- ALYATEC® Environmental Exposure Chamber, 1 place de l'Hôpital, Strasbourg, France.,Chest Diseases Department, Strasbourg University Hospital, Strasbourg, France.,Federation of translational medicine EA 3070, University of Strasbourg, Strasbourg, France
| |
Collapse
|
43
|
Rudulier CD, Tonti E, James E, Kwok WW, Larché M. Modulation of CRTh2 expression on allergen-specific T cells following peptide immunotherapy. Allergy 2019; 74:2157-2166. [PMID: 31077596 PMCID: PMC6817377 DOI: 10.1111/all.13867] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 02/15/2019] [Accepted: 03/01/2019] [Indexed: 12/28/2022]
Abstract
Background Allergen immunotherapy using synthetic peptide T‐cell epitopes (Cat‐PAD) from the major cat allergen Fel d 1 has been shown, in allergen exposure studies, to significantly reduce symptoms of allergic rhinoconjunctivitis in cat‐allergic subjects. However, the immunological mechanisms underlying clinical benefit remain only partially understood. Since previous studies of whole allergen immunotherapy demonstrated a reduction in the frequency of allergen‐specific (MHC II tetramer+) CD4+ T cells expressing the chemokine receptor CRTh2, we assessed the impact of Cat‐PAD on the frequency and functional phenotype of Fel d 1‐specific CD4+ T cells. Methods Using before and after treatment samples from subjects enrolled in a randomized, double‐blind, placebo‐controlled trial of Cat‐PAD, we employed Fel d 1 MHC II tetramers and flow cytometry to analyze the expression of chemokine receptors CCR3, CCR4, CCR5, CXCR3, and CRTh2, together with markers of memory phenotype (CD27 and CCR7) on Fel d 1‐specific CD4+ T cells. Results No statistically significant change in the frequency of Fel d 1‐specific CD4+ T cells, nor in their expression of chemokine receptors or memory phenotype, was observed. However, a significant reduction in cell surface expression of CRTh2 was observed between the placebo and active groups (P = 0.047). Conclusions Peptide immunotherapy with Cat‐PAD does not significantly alter the frequency or phenotype of Fel d 1‐CD4+ T cells, but may decrease their expression of CRTh2.
Collapse
Affiliation(s)
- Christopher D. Rudulier
- Department of Medicine, Division of Clinical Immunology & Allergy McMaster University Hamilton Ontario Canada
| | - Elena Tonti
- Department of Medicine, Division of Clinical Immunology & Allergy McMaster University Hamilton Ontario Canada
| | - Eddie James
- Benaroya Research Institute at Virginia Mason Seattle Washington
| | - William W. Kwok
- Benaroya Research Institute at Virginia Mason Seattle Washington
| | - Mark Larché
- Department of Medicine, Division of Clinical Immunology & Allergy McMaster University Hamilton Ontario Canada
- Department of Medicine, Division of Respirology Firestone Institute for Respiratory Health, The Research Institute at St. Joe’s Hamilton Ontario Canada
| |
Collapse
|
44
|
Ellis AK, Frankish CW, Armstrong K, Steacy L, Tenn MW, Pawsey S, Hafner RP. Persistence of the clinical effect of grass allergen peptide immunotherapy after the second and third grass pollen seasons. J Allergy Clin Immunol 2019; 145:610-618.e9. [PMID: 31568796 DOI: 10.1016/j.jaci.2019.09.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/26/2019] [Accepted: 09/04/2019] [Indexed: 01/07/2023]
Abstract
BACKGROUND Grass allergen peptides are in development for the treatment of grass pollen-induced allergic rhinoconjunctivitis. A previous randomized, placebo-controlled study demonstrated that grass allergen peptides significantly improved total rhinoconjunctivitis symptom scores (TRSSs) after posttreatment challenge (PTC) to rye grass in an environmental exposure unit after 1 intervening grass pollen season (GPS1). OBJECTIVE We sought to evaluate the efficacy/safety of 4 dosing regimens of grass allergen peptides after a second (GPS2) and third (GPS3) intervening GPS in the environmental exposure unit. METHODS Eligible subjects who were randomized in the parent study (GPS1) during the first year of recruitment were invited to participate in GPS2 and GPS3, which took place 1 and 2 years after treatment cessation, respectively. Participants were not treated further, and both participants and study personnel remained blinded. The primary efficacy end point was the change in mean TRSS (reported every 30 minutes) from GPS1 baseline to the follow-up PTC calculated across all time points over days 2 to 4 for GPS2 and across hours 1 to 3 over days 2 to 4 for GPS3. Secondary efficacy end points and safety were also assessed. RESULTS One hundred twenty-two and 85 participants were enrolled in GPS2 and GPS3, respectively. A numerically greater, but not statistically significant improvement from baseline in mean TRSS at PTC was observed in the group receiving one 6-nmol intradermal injection every 2 weeks for 14 weeks group compared with the placebo at GPS2 (-6.0 vs -3.6, P = .0535) and GPS3 (-6.2 vs -3.6, P = .1128). Similar findings were observed for the group receiving one 6-nmol intradermal injection every 2 weeks for 14 weeks at GPS3 (-6.4 vs -3.6, P = .0759). No adverse safety signals were detected. CONCLUSION Treatment with grass allergen peptides led to an improvement in allergic rhinoconjunctivitis symptoms after 3 intervening GPSs, corresponding to up to 2 years off treatment.
Collapse
Affiliation(s)
- Anne K Ellis
- Departments of Medicine and Biomedical & Molecular Sciences, Queen's University, Kingston, Ontario, Canada; Allergy Research Unit, Kingston General Health Research Institute, Kingston, Ontario, Canada.
| | | | | | - Lisa Steacy
- Allergy Research Unit, Kingston General Health Research Institute, Kingston, Ontario, Canada
| | - Mark W Tenn
- Departments of Medicine and Biomedical & Molecular Sciences, Queen's University, Kingston, Ontario, Canada; Allergy Research Unit, Kingston General Health Research Institute, Kingston, Ontario, Canada
| | | | | |
Collapse
|
45
|
Entwicklung der subkutanen Allergen-Immuntherapie (Teil 2): präventive Aspekte der SCIT und Innovationen. ALLERGO JOURNAL 2019. [DOI: 10.1007/s15007-019-1847-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
46
|
Development of subcutaneous allergen immunotherapy (part 2): preventive aspects and innovations. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s40629-019-0097-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
47
|
Klimek L, Brehler R, Hamelmann E, Kopp M, Ring J, Treudler R, Jakob T, Worm M, Pfaar O. Entwicklung der subkutanen Allergen-Immuntherapie (Teil 1): von den Anfängen zu immunologisch orientierten Therapiekonzepten. ALLERGO JOURNAL 2019. [DOI: 10.1007/s15007-019-1819-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
48
|
Evolution of subcutaneous allergen immunotherapy (part 1): from first developments to mechanism-driven therapy concepts. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s40629-019-0092-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
49
|
Abstract
PURPOSE OF REVIEW Cat allergy can manifest as allergic rhinitis, conjunctivitis and/or asthma. With widespread cat ownership and exposure, cat allergy has emerged as a major cause of morbidity. Cat allergen immunotherapy is a potential disease modifying treatment for patients with cat allergy. We examine evidence on the effectiveness, cost-effectiveness and safety of cat allergen immunotherapy and consider the clinical contexts in which it should be prescribed. RECENT FINDINGS The European Association of Allergy and Clinical Immunology systematic reviews on allergic rhinitis and asthma along with the accompanying guidelines on allergic rhinitis were used as primary sources of evidence. Subcutaneous immunotherapy (SCIT) and sublingual immunotherapy (SLIT) are most common routes of administration for allergen immunotherapy (AIT). A limited number of high-quality studies related to cat dander have shown mixed results in improvements in ocular and nasal symptoms, asthma symptoms, peak expiratory flow rate and medication use scores with subcutaneous immunotherapy. Two studies examining cat dander and cat-related allergy response with sublingual immunotherapy have shown mixed results in terms of symptomatic response. One randomized trial examining intralymphatic immunotherapy has shown a positive symptom response and a favourable safety profile. Although studies have reported mixed results regarding safety of SCIT, adverse events have been reported more commonly with SCIT than SLIT. SUMMARY There is a limited body of high-quality evidence on the effectiveness and safety of cat AIT and no high-quality data on its cost-effectiveness. The available evidence on effectiveness is mixed based on studying a limited array of immunological, physiological and patient-reported outcome measures. Based on this evidence and extrapolating on the wider evidence base in AIT, it is likely that some patients may benefit from this modality of treatment, particularly those with moderate-to-severe disease who are inadequately controlled on allergen avoidance measures and pharmacotherapy and those who are monosensitized to Felix Domesticus 1. Further evidence is, however, required from larger trials before more definitive advice can be offered.
Collapse
|
50
|
Glycosylated nanostructures in sublingual immunotherapy induce long-lasting tolerance in LTP allergy mouse model. Sci Rep 2019; 9:4043. [PMID: 30858392 PMCID: PMC6411722 DOI: 10.1038/s41598-019-40114-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 02/08/2019] [Indexed: 12/25/2022] Open
Abstract
An effective specific immunotherapy should contain elements to generate specific recognition (T-cell peptides) and to modulate the immunological response towards a Th1/Treg pattern by enhancing dendritic cells (DCs). We propose a novel sublingual immunotherapy for peach allergy, using systems, that combine Prup3-T-cell peptides with mannose dendrons (D1ManPrup3 and D4ManPrup3). Peach anaphylactic mice were treated 1, 2 and 5 nM concentrations. Tolerance was assessed one/five weeks after finishing treatment by determining in vivo/in vitro parameters after challenge with Prup3. Only mice receiving D1ManPrup3 at 2 nM were protected from anaphylaxis (no temperature changes, decrease in Prup3-sIgE and -sIgG1 antibody levels, and secreting cells) compared to PBS-treated mice. Moreover, an increase of Treg-cells and regulatory cytokines (IL-10+/IFN-γ+) in CD4+-T-cells and DCs were found. These changes were maintained at least five weeks after stopping treatment. D1ManPrup3 is an effective new approach of immunotherapy inducing protection from anaphylaxis which persists after finishing treatment.
Collapse
|