1
|
Karaaslan BG, Demirkale ZH, Turan I, Aydemir S, Meric Z, Taskin Z, Kilinc OC, Burtecene N, Topcu B, Yucel E, Aydogmus C, Cokugras H, Kiykim A. Evaluation of T-cell repertoire by flow cytometric analysis in primary immunodeficiencies with DNA repair defects. Scand J Immunol 2025; 101:e70003. [PMID: 39967281 PMCID: PMC11836546 DOI: 10.1111/sji.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 01/07/2025] [Accepted: 01/13/2025] [Indexed: 02/20/2025]
Abstract
The group of patients with DNA-repair-defects increases susceptibility to infections due to impaired repertoire diversity. In this context, we aimed to investigate the TCRvβ-repertoire by flow cytometric analysis and its correlation with clinical entities in a group of IEI patients with DNA repair defects. Peripheral lymphocyte subset and TCRvβ-repertoire analyses were performed by flow cytometric analysis. The aim was to explore the changing TCR-Vβ-repertoire that can predict some clinical entities by investigating the repertoire using flow-cytometric-analysis-based TCR-Vβ and its interaction with clinical entities in a group of IEI patients with DNA repair defects. TCR-repertoire of the patients with DNA-repair-defects and healthy controls was analysed with flow-cytometer. The potential of flow-cytometric analysis of the TCR repertoire as a practical and easily accessible clinical prediction method was investigated. Thirty-nine-IEI patients with DNA-repair-defects and 15 age-matched healthy-controls were included in this study. Peripheral lymphocyte subset and TCR-Vβ repertoire analyses were performed by flow cytometry. Compared to the control group, 9 out of 24 clones (37.5%) exhibited a statistically significant reduction, while only 3 clones showed a statistically significant increase (p < 0.05). Preferential use of vβ-genes was associated with some clinical entities. Lower TCR-vβ-9 and TCR-vβ23, higher TCR-vβ7.2 were found in the patients with pneumonia (n = 13) (p = 0.018, p = 0.044 p = 0.032). AT patients with pneumonia had lower TCR-vβ-9 clone than patients without pneumonia (p = 0.008). Skewed proliferation of most TCR-vβ clones was seen DNA-repair-defects, especially AT. In addition, this study showed that preferential use of TCR-vβ genes could be predictive for some clinical entities.
Collapse
Affiliation(s)
- Betul Gemici Karaaslan
- Cerrahpasa School of Medicine, Department of Pediatric Immunology and AllergyIstanbul University‐CerrahpasaIstanbulTürkiye
| | - Zeynep Hizli Demirkale
- Istanbul Medical Faculty, Department of Pediatric Immunology and AllergyIstanbul UniversityIstanbulTürkiye
| | - Isilay Turan
- Department of Pediatric Immunology and AllergyBasaksehir Cam and Sakura City HospitalIstanbulTürkiye
| | - Sezin Aydemir
- Cerrahpasa School of Medicine, Department of Pediatric Immunology and AllergyIstanbul University‐CerrahpasaIstanbulTürkiye
| | - Zeynep Meric
- Cerrahpasa School of Medicine, Department of Pediatric Immunology and AllergyIstanbul University‐CerrahpasaIstanbulTürkiye
| | - Zuleyha Taskin
- Cerrahpasa School of MedicineIstanbul University‐CerrahpasaIstanbulTürkiye
| | - Ozgur Can Kilinc
- Cerrahpasa School of MedicineIstanbul University‐CerrahpasaIstanbulTürkiye
| | - Nihan Burtecene
- Cerrahpasa School of Medicine, Department of Pediatric Immunology and AllergyIstanbul University‐CerrahpasaIstanbulTürkiye
| | - Birol Topcu
- Department of BiostatisticsTekirdag Namik Kemal UniversityTekirdagTürkiye
| | - Esra Yucel
- Istanbul Medical Faculty, Department of Pediatric Immunology and AllergyIstanbul UniversityIstanbulTürkiye
| | - Cigdem Aydogmus
- Department of Pediatric Immunology and AllergyBasaksehir Cam and Sakura City HospitalIstanbulTürkiye
| | - Haluk Cokugras
- Cerrahpasa School of Medicine, Department of Pediatric Immunology and AllergyIstanbul University‐CerrahpasaIstanbulTürkiye
| | - Ayca Kiykim
- Cerrahpasa School of Medicine, Department of Pediatric Immunology and AllergyIstanbul University‐CerrahpasaIstanbulTürkiye
| |
Collapse
|
2
|
Lee JH. ATM in immunobiology: From lymphocyte development to cancer immunotherapy. Transl Oncol 2025; 52:102268. [PMID: 39752906 PMCID: PMC11754496 DOI: 10.1016/j.tranon.2024.102268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/14/2024] [Accepted: 12/30/2024] [Indexed: 01/25/2025] Open
Abstract
Ataxia Telangiectasia Mutated (ATM) is a protein kinase traditionally known for its role in DNA damage response and cell cycle regulation. However, emerging research has revealed its multifaceted and crucial functions in the immune system. This comprehensive review explores the diverse roles of ATM in immune regulation, from lymphocyte development to its involvement in cancer immunotherapy. The review describes ATM's critical functions in V(D)J recombination and class switch recombination, highlighting its importance in adaptive immunity. It examines ATM's role in innate immunity, particularly in NF-κB signaling and cytokine production. Furthermore, the review analyzes the impact of ATM deficiency on oxidative stress and mitochondrial function in immune cells, providing insights into the immunological defects observed in Ataxia Telangiectasia (A-T). The article explores ATM's significance in maintaining hematopoietic stem cell function and its implications for bone marrow transplantation and gene therapy. Additionally, it addresses ATM's involvement in inflammation and immune senescence, linking DNA damage response to age-related immune decline. Finally, this review highlights the emerging role of ATM in cancer immunotherapy, where its inhibition shows promise in enhancing immune checkpoint blockade therapy. This review synthesizes current knowledge on ATM's functions in the immune system, offering insights into the pathophysiology of ATM-related disorders and potential therapeutic strategies for immune-related conditions and cancer immunotherapy.
Collapse
Affiliation(s)
- Ji-Hoon Lee
- Department of Biological Sciences, Research Center of Ecomimetics, Chonnam National University, Gwangju 61186, South Korea.
| |
Collapse
|
3
|
Tiet MY, Guțu BI, Springall-Jeggo P, Coman D, Willemsen M, Van Os N, Doria M, Donath H, Schubert R, Dineen RA, Biagiotti S, Prayle AP, Group ATBW, Hensiek AE, Horvath R. Biomarkers in Ataxia-Telangiectasia: a Systematic Review. J Neurol 2025; 272:110. [PMID: 39812834 PMCID: PMC11735505 DOI: 10.1007/s00415-024-12766-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 10/24/2024] [Accepted: 10/26/2024] [Indexed: 01/16/2025]
Abstract
Ataxia-Telangiectasia (A-T) is a very rare multisystem disease of DNA repair, associated with progressive disabling neurological symptoms, respiratory failure, immunodeficiency and cancer predisposition, leading to premature death. There are no curative treatments available for A-T but clinical trials have begun. A major limiting factor in effectively evaluating therapies for A-T is the lack of suitable outcome measures and biomarkers. We have performed a systematic review to collect the information currently available on biomarkers for A-T both in patients and preclinical studies. We have identified 56 reports discussing potential A-T biomarkers in both pre-clinical models and patients. These studies report on diagnostic biomarkers but prognostic biomarkers and responsive markers of clinical status are currently lacking. Some biomarkers of neurodegeneration in A-T show promise, including non-invasive neuroimaging biomarkers. Some biomarkers of oxidative stress and responsive markers to radiotherapy and steroid treatment have potential value in clinical trials. The formation of the A-T biomarker working group with international experts is an important step forward to facilitate the sharing of materials, data and expertise with the common goal of finding effective biomarkers for A-T.
Collapse
Affiliation(s)
- M Y Tiet
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, University of Cambridge, Robinson Way, Cambridge, CB2 0PY, UK
| | - B-I Guțu
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, University of Cambridge, Robinson Way, Cambridge, CB2 0PY, UK
| | | | - D Coman
- Queensland Children's Hospital, 501 Stanley Street, South Brisbane, Australia
| | - M Willemsen
- Department of Pediatrics, Pediatric Neurology, Radboud University Medical Centre, Amalia Children's Hospital, Nijmegen, Netherlands
| | - N Van Os
- Department of Pediatrics, Pediatric Neurology, Radboud University Medical Centre, Amalia Children's Hospital, Nijmegen, Netherlands
| | - M Doria
- Primary Immunodeficiency Unit, Bambino Gesù Children's Hospital, Rome, Italy
| | - H Donath
- Division of Pneumology, Allergology, Infectiology and Gastroenterology, Department of Children and Adolescent Medicine, University Hospital, Goethe University, Frankfurt, Germany
| | - R Schubert
- Division of Pneumology, Allergology, Infectiology and Gastroenterology, Department of Children and Adolescent Medicine, University Hospital, Goethe University, Frankfurt, Germany
| | - R A Dineen
- Mental Health and Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham, UK
| | - S Biagiotti
- Department of Biomolecular Sciences, University of Urbino, Urbino, Italy
| | - A P Prayle
- NIHR Nottingham Biomedical Research Centre, Nottingham, UK
- Division of Child Health, Obstetrics and Gynaecology, University of Nottingham, Nottingham, UK
| | | | - A E Hensiek
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, University of Cambridge, Robinson Way, Cambridge, CB2 0PY, UK
| | - R Horvath
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, University of Cambridge, Robinson Way, Cambridge, CB2 0PY, UK.
| |
Collapse
|
4
|
Collyer J, Rajan DS. Ataxia telangiectasia. Semin Pediatr Neurol 2024; 52:101169. [PMID: 39622612 DOI: 10.1016/j.spen.2024.101169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/29/2024] [Accepted: 10/29/2024] [Indexed: 12/07/2024]
Abstract
Ataxia telangiectasia (AT) is a rare neurocutaneous syndrome that results from biallelic pathogenic variants in the ataxia telangiectasia mutated (ATM) gene, named for its characteristic cerebellar ataxia in the early toddler years and variable oculocutaneous telangiectasias in the school age years. While its name only hints at neurologic and cutaneous manifestations, this multisystemic disorder also has important immunologic, oncologic, respiratory, and endocrinologic implications. This article will review the function of the ATM gene, the neurologic manifestations of AT, non-neurologic complications, mimickers of AT (including other disorders of defective DNA repair), and the realm of therapeutic research for AT.
Collapse
Affiliation(s)
- John Collyer
- UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA.
| | - Deepa S Rajan
- UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA.
| |
Collapse
|
5
|
Nair AG, Leon-Ponte M, Kim VHD, Sussman G, Ehrhardt GR, Grunebaum E. Characterizing CD38 expression in terminally differentiated B cells using variable lymphocyte receptor B tetramers. Front Immunol 2024; 15:1451232. [PMID: 39575239 PMCID: PMC11579616 DOI: 10.3389/fimmu.2024.1451232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/30/2024] [Indexed: 11/24/2024] Open
Abstract
Introduction CD38 is an ectoenzyme receptor found on hematopoietic cells and its expression is used in the flow cytometric analysis of sub-populations of circulating B cells among peripheral blood mononuclear cells (PBMC) to aid in diagnosing patients with different antibody production defects (AbD). Monoclonal antibodies derived from the sea lamprey Variable Lymphocyte Receptor B (VLRB) are emerging as an alternative to conventional mammalian antibodies. We hypothesized that VLRB MM3 (V-CD38) which specifically recognizes CD38 in a manner correlating with its enzymatic activity could identify terminally differentiated B cells in human PBMC. Here we investigate the ability of V-CD38 as a tool to diagnose patients with diverse immune abnormalities including AbD. Methods The expression of CD38 on CD3-CD19+CD27+ plasmablasts and CD3-CD19+IgMhiCD27- transitional B cells in PBMC was analyzed by flow cytometry using V-CD38 and compared with a commercial conventional antibody to CD38 (C-CD38). Results A highly significant correlation (p<0.001, r=0.99) between the percentages of plasmablasts recognized by V-CD38 and C-CD38 was observed among 36 healthy controls (HC), 7 patients with AbD and 24 allergic individuals (AI). The use of V-CD38 enabled improved gating of the CD38 expressing cells (CD38+), aiding in the observation that patients with AbD had significantly lower (p=0.002) CD38+ plasmablasts (0.13%±0.13%) than HC (0.52%±0.57%). Only 61.3% of the transitional B cells detected by C-CD38 were also recognized by V-CD38 (r=0.95, p<0.001) among the 67 participants. AI had significantly reduced V-CD38 and C-CD38 transitional cells compared to HC (p=0.026 and p=0.012, respectively). Conclusions V-CD38 is a novel reagent that can assess B cells in human PBMC.
Collapse
Affiliation(s)
- Arundhati G. Nair
- Developmental and Stem Cell Biology Program, Hospital for Sick Children, Toronto, ON, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Matilde Leon-Ponte
- Developmental and Stem Cell Biology Program, Hospital for Sick Children, Toronto, ON, Canada
| | - Vy HD Kim
- Division of Immunology and Allergy, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Gordon Sussman
- Division of Clinical Immunology and Allergy, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | | | - Eyal Grunebaum
- Developmental and Stem Cell Biology Program, Hospital for Sick Children, Toronto, ON, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Division of Immunology and Allergy, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
6
|
Jenni R, Klaa H, Khamessi O, Chikhaoui A, Najjar D, Ghedira K, Kraoua I, Turki I, Yacoub-Youssef H. Clinical and genetic spectrum of Ataxia Telangiectasia Tunisian patients: Bioinformatic analysis unveil mechanisms of ATM variants pathogenicity. Int J Biol Macromol 2024; 278:134444. [PMID: 39098699 DOI: 10.1016/j.ijbiomac.2024.134444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/28/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
Ataxia Telangiectasia (AT) is a rare multisystemic neurodegenerative disease caused by biallelic mutations in the ATM gene. Few clinical studies on AT disease have been conducted in Tunisia, however, the mutational landscape is still undefined. Our aim is to determine the clinical and genetic spectrum of AT Tunisian patients and to explore the potential underlying mechanism of variant pathogenicity. Sanger sequencing was performed for nine AT patients. A comprehensive computational analysis was conducted to evaluate the possible pathogenic effect of ATM identified variants. Genetic screening of ATM gene has identified nine different variants from which six have not been previously reported. In silico analysis has predicted a pathogenic effect of identified mutations. This was corroborated by a structural bioinformatics study based on molecular modeling and docking for novel missense mutations. Our findings suggest a profound impact of identified mutations not only on the ATM protein stability, but also on the ATM-ligand interactions. Our study characterizes the mutational landscape of AT Tunisian patients which will allow to set up genetic counseling and prenatal diagnosis for families at risk and expand the spectrum of ATM variants worldwide. Furthermore, understanding the mechanism that underpin variant pathogenicity could provide further insights into disease pathogenesis.
Collapse
Affiliation(s)
- Rim Jenni
- Laboratory of Biomedical Genomics and Oncogenetics (LR16IPT05), Institut Pasteur de Tunis, University Tunis El Manar, Tunis 1002, Tunisia.
| | - Hedia Klaa
- LR18SP04 and Department of Child and Adolescent Neurology, National Institute Mongi Ben Hmida of Neurology, 1007 Tunis, Tunisia.
| | - Oussema Khamessi
- Laboratory of Bioinformatics, Biomathematics and Biostatistics (BIMS), Institut Pasteur de Tunis (IPT), University of Tunis El Manar, Tunis, Tunisia; Institut de Biotechnologie de Sidi Thabet, Université de la Manouba, Ariana BP-66, Manouba 2010, Tunisia.
| | - Asma Chikhaoui
- Laboratory of Biomedical Genomics and Oncogenetics (LR16IPT05), Institut Pasteur de Tunis, University Tunis El Manar, Tunis 1002, Tunisia.
| | - Dorra Najjar
- Laboratory of Biomedical Genomics and Oncogenetics (LR16IPT05), Institut Pasteur de Tunis, University Tunis El Manar, Tunis 1002, Tunisia.
| | - Kais Ghedira
- Laboratory of Bioinformatics, Biomathematics and Biostatistics (BIMS), Institut Pasteur de Tunis (IPT), University of Tunis El Manar, Tunis, Tunisia.
| | - Ichraf Kraoua
- LR18SP04 and Department of Child and Adolescent Neurology, National Institute Mongi Ben Hmida of Neurology, 1007 Tunis, Tunisia.
| | - Ilhem Turki
- LR18SP04 and Department of Child and Adolescent Neurology, National Institute Mongi Ben Hmida of Neurology, 1007 Tunis, Tunisia.
| | - Houda Yacoub-Youssef
- Laboratory of Biomedical Genomics and Oncogenetics (LR16IPT05), Institut Pasteur de Tunis, University Tunis El Manar, Tunis 1002, Tunisia.
| |
Collapse
|
7
|
Graafen L, Heinze A, Albinger N, Salzmann-Manrique E, Ganß F, Hünecke S, Cappel C, Wölke S, Donath H, Trischler J, Theilen TM, Heller C, Königs C, Ehl S, Bader P, Klingebiel T, Klusmann JH, Zielen S, Schubert R, Ullrich E. Immune profiling and functional analysis of NK and T cells in ataxia telangiectasia. Front Immunol 2024; 15:1377955. [PMID: 39165363 PMCID: PMC11333214 DOI: 10.3389/fimmu.2024.1377955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 06/21/2024] [Indexed: 08/22/2024] Open
Abstract
Ataxia telangiectasia (AT) is a rare autosomal-recessive disorder characterized by profound neurodegeneration, combined immunodeficiency, and an increased risk for malignant diseases. Treatment options for AT are limited, and the long-term survival prognosis for patients remains grim, primarily due to the emergence of chronic respiratory pathologies, malignancies, and neurological complications. Understanding the dysregulation of the immune system in AT is fundamental for the development of novel treatment strategies. In this context, we performed a retrospective longitudinal immunemonitoring of lymphocyte subset distribution in a cohort of AT patients (n = 65). Furthermore, we performed FACS analyses of peripheral blood mononuclear cells from a subgroup of 12 AT patients to examine NK and T cells for the expression of activating and functional markers. We observed reduced levels of peripheral blood CD3+CD8+ cytotoxic T cells, CD3+CD4+ T helper cells, and CD19+ B cells, whereas the amount of CD3--CD56+ NK cells and CD3+CD56+ NKT-like cells was similar compared with age-matched controls. Notably, there was no association between the age-dependent kinetic of T-, B-, or NK-cell counts and the occurrence of malignancy in AT patients. Additionally, our results indicate an altered NK- and T-cell response to cytokine stimulation in AT with increased levels of TRAIL, FasL, and CD16 expression in NK cells, as well as an elevated activation level of T cells in AT with notably higher expression levels of IFN-γ, CD107a, TRAIL, and FasL. Together, these findings imply function alterations in AT lymphocytes, specifically in T and NK cells, shedding light on potential pathways for innovative therapies.
Collapse
Affiliation(s)
- Lea Graafen
- Department of Pediatrics, Goethe University Frankfurt, Frankfurt am Main, Germany
- Department of Pediatrics, Experimental Immnology and Cell Therapy, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Annekathrin Heinze
- Department of Pediatrics, Goethe University Frankfurt, Frankfurt am Main, Germany
- Department of Pediatrics, Experimental Immnology and Cell Therapy, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Nawid Albinger
- Department of Pediatrics, Goethe University Frankfurt, Frankfurt am Main, Germany
- Department of Pediatrics, Experimental Immnology and Cell Therapy, Goethe University Frankfurt, Frankfurt am Main, Germany
| | | | - Franziska Ganß
- Department of Pediatrics, Goethe University Frankfurt, Frankfurt am Main, Germany
- Department of Pediatrics, Experimental Immnology and Cell Therapy, Goethe University Frankfurt, Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
| | - Sabine Hünecke
- Department of Pediatrics, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Claudia Cappel
- Department of Pediatrics, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Sandra Wölke
- Department of Pediatrics, Goethe University Frankfurt, Frankfurt am Main, Germany
- Department of Pediatrics, Division of Pneumology, Allergology, Infectious Diseases and Gastroenterology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Helena Donath
- Department of Pediatrics, Goethe University Frankfurt, Frankfurt am Main, Germany
- Department of Pediatrics, Division of Pneumology, Allergology, Infectious Diseases and Gastroenterology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Jordis Trischler
- Department of Pediatrics, Goethe University Frankfurt, Frankfurt am Main, Germany
- Department of Pediatrics, Division of Pneumology, Allergology, Infectious Diseases and Gastroenterology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Till-Martin Theilen
- Department of Pediatric Surgery and Urology, Goethe University Frankfurt, Frankfurt, Germany
| | - Christine Heller
- Department of Pediatrics, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Christoph Königs
- Department of Pediatrics, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Stephan Ehl
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Peter Bader
- Department of Pediatrics, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Thomas Klingebiel
- Department of Pediatrics, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Jan-Henning Klusmann
- Department of Pediatrics, Goethe University Frankfurt, Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
| | - Stefan Zielen
- Department of Pediatrics, Goethe University Frankfurt, Frankfurt am Main, Germany
- Department of Pediatrics, Division of Pneumology, Allergology, Infectious Diseases and Gastroenterology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Ralf Schubert
- Department of Pediatrics, Goethe University Frankfurt, Frankfurt am Main, Germany
- Department of Pediatrics, Division of Pneumology, Allergology, Infectious Diseases and Gastroenterology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Evelyn Ullrich
- Department of Pediatrics, Goethe University Frankfurt, Frankfurt am Main, Germany
- Department of Pediatrics, Experimental Immnology and Cell Therapy, Goethe University Frankfurt, Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK) Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany
| |
Collapse
|
8
|
Rozenbaum M, Fluss R, Marcu-Malina V, Sarouk I, Meir A, Elitzur S, Zinger T, Jacob-Hirsch J, Saar EG, Rechavi G, Jacoby E. Genotoxicity Associated with Retroviral CAR Transduction of ATM-Deficient T Cells. Blood Cancer Discov 2024; 5:267-275. [PMID: 38747501 PMCID: PMC11215369 DOI: 10.1158/2643-3230.bcd-23-0268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/26/2024] [Accepted: 05/08/2024] [Indexed: 07/02/2024] Open
Abstract
Somatic variants in DNA damage response genes such as ATM are widespread in hematologic malignancies. ATM protein is essential for double-strand DNA break repair. Germline ATM deficiencies underlie ataxia-telangiectasia (A-T), a disease manifested by radiosensitivity, immunodeficiency, and predisposition to lymphoid malignancies. Patients with A-T diagnosed with malignancies have poor tolerance to chemotherapy or radiation. In this study, we investigated chimeric antigen receptor (CAR) T cells using primary T cells from patients with A-T (ATM-/-), heterozygote donors (ATM+/-), and healthy donors. ATM-/- T cells proliferate and can be successfully transduced with CARs, though functional impairment of ATM-/- CAR T-cells was observed. Retroviral transduction of the CAR in ATM-/- T cells resulted in high rates of chromosomal lesions at CAR insertion sites, as confirmed by next-generation long-read sequencing. This work suggests that ATM is essential to preserve genome integrity of CAR T-cells during retroviral manufacturing, and its lack poses a risk of chromosomal translocations and potential leukemogenicity. Significance: CAR T-cells are clinically approved genetically modified cells, but the control of genome integrity remains largely uncharacterized. This study demonstrates that ATM deficiency marginally impairs CAR T-cell function and results in high rates of chromosomal aberrations after retroviral transduction, which may be of concern in patients with DNA repair deficiencies.
Collapse
Affiliation(s)
- Meir Rozenbaum
- Cell Therapy Lab, Sheba Medical Center, Tel Hashomer, Israel.
| | - Reut Fluss
- Cancer Research Center, Sheba Medical Center, Tel Hashomer, Israel.
- Wohl Centre for Translational Medicine, Sheba Medical Center, Tel Hashomer, Israel.
| | | | - Ifat Sarouk
- National A-T Center, Pediatric Pulmonology Unit, The Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel Hashomer, Israel.
| | - Amilia Meir
- Cell Therapy Lab, Sheba Medical Center, Tel Hashomer, Israel.
| | - Sarah Elitzur
- Department of Pediatric Hematology-Oncology, Schneider Children’s Medical Center, Petah Tikva, Israel.
- Faculty of Medicinal & Health Sciences, Tel Aviv University, Tel Aviv, Israel.
| | - Tal Zinger
- Cancer Research Center, Sheba Medical Center, Tel Hashomer, Israel.
| | - Jasmine Jacob-Hirsch
- Cancer Research Center, Sheba Medical Center, Tel Hashomer, Israel.
- Wohl Centre for Translational Medicine, Sheba Medical Center, Tel Hashomer, Israel.
| | - Efrat G. Saar
- Cancer Research Center, Sheba Medical Center, Tel Hashomer, Israel.
- Wohl Centre for Translational Medicine, Sheba Medical Center, Tel Hashomer, Israel.
| | - Gideon Rechavi
- Cancer Research Center, Sheba Medical Center, Tel Hashomer, Israel.
- Wohl Centre for Translational Medicine, Sheba Medical Center, Tel Hashomer, Israel.
- Faculty of Medicinal & Health Sciences, Tel Aviv University, Tel Aviv, Israel.
| | - Elad Jacoby
- Cell Therapy Lab, Sheba Medical Center, Tel Hashomer, Israel.
- Faculty of Medicinal & Health Sciences, Tel Aviv University, Tel Aviv, Israel.
- Division of Pediatric Hematology and Oncology, The Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel Hashomer, Israel.
| |
Collapse
|
9
|
Fasshauer M, Dinges S, Staudacher O, Völler M, Stittrich A, von Bernuth H, Wahn V, Krüger R. Monogenic Inborn Errors of Immunity with impaired IgG response to polysaccharide antigens but normal IgG levels and normal IgG response to protein antigens. Front Pediatr 2024; 12:1386959. [PMID: 38933494 PMCID: PMC11203071 DOI: 10.3389/fped.2024.1386959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
In patients with severe and recurrent infections, minimal diagnostic workup to test for Inborn Errors of Immunity (IEI) includes a full blood count, IgG, IgA and IgM. Vaccine antibodies against tetanus toxoid are also frequently measured, whereas testing for anti-polysaccharide IgG antibodies and IgG subclasses is not routinely performed by primary care physicians. This basic approach may cause a significant delay in diagnosing monogenic IEI that can present with an impaired IgG response to polysaccharide antigens with or without IgG subclass deficiency at an early stage. Our article reviews genetically defined IEI, that may initially present with an impaired IgG response to polysaccharide antigens, but normal or only slightly decreased IgG levels and normal responses to protein or conjugate vaccine antigens. We summarize clinical, genetic, and immunological findings characteristic for these IEI. This review may help clinicians to identify patients that require extended immunologic and genetic evaluations despite unremarkable basic immunologic findings. We recommend the inclusion of anti-polysaccharide IgG antibodies as part of the initial routine work-up for possible IEI.
Collapse
Affiliation(s)
- Maria Fasshauer
- Immuno Deficiency Center Leipzig, Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiency Diseases, Hospital St. Georg, Leipzig, Germany
| | - Sarah Dinges
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin, Germany
| | - Olga Staudacher
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin, Germany
| | - Mirjam Völler
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin, Germany
| | - Anna Stittrich
- Department of Human Genetics, Labor Berlin - Charité Vivantes GmbH, Berlin, Germany
| | - Horst von Bernuth
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin, Germany
- Department of Immunology, Labor Berlin - Charité VivantesGmbH, Berlin, Germany
- Berlin Institute of Health (BIH), Charité - Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Berlin, Germany
| | - Volker Wahn
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin, Germany
| | - Renate Krüger
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin, Germany
| |
Collapse
|
10
|
Covino DA, Desimio MG, Giovinazzo A, de Oliveira BSP, Merolle M, Marazziti D, Pellegrini M, Doria M. Absence of ATM leads to altered NK cell function in mice. Clin Immunol 2024; 263:110233. [PMID: 38697554 DOI: 10.1016/j.clim.2024.110233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/28/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
Ataxia-telangiectasia (A-T) is a rare disorder caused by genetic defects of A-T mutated (ATM) kinase, a key regulator of stress response, and characterized by neurodegeneration, immunodeficiency, and high incidence of cancer. Here we investigated NK cells in a mouse model of A-T (Atm-/-) showing that they are strongly impaired at killing tumor cells due to a block of early signaling events. On the other hand, in Atm-/- littermates with thymic lymphoma NK cell cytotoxicity is enhanced as compared with ATM-proficient mice, possibly via tumor-produced TNF-α. Results also suggest that expansion of exhausted NKG2D+ NK cells in Atm-/- mice is driven by low-level expression of stress-inducible NKG2D ligands, whereas development of thymoma expressing the high-affinity MULT1 ligand is associated with NKG2D down-regulation on NK cells. These results expand our understanding of immunodeficiency in A-T and encourage exploring NK cell biology in A-T patients in the attempt to identify cancer predictive biomarkers and novel therapeutic targets.
Collapse
Affiliation(s)
- Daniela Angela Covino
- Research Unit of Primary Immunodeficiencies, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Maria Giovanna Desimio
- Research Unit of Primary Immunodeficiencies, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Alessandro Giovinazzo
- Institute of Biochemistry and Cell Biology, IBBC-CNR, Monterotondo Scalo, 00015 Rome, Italy
| | | | - Matilde Merolle
- Institute of Biochemistry and Cell Biology, IBBC-CNR, Monterotondo Scalo, 00015 Rome, Italy
| | - Daniela Marazziti
- Institute of Biochemistry and Cell Biology, IBBC-CNR, Monterotondo Scalo, 00015 Rome, Italy
| | - Manuela Pellegrini
- Institute of Biochemistry and Cell Biology, IBBC-CNR, Monterotondo Scalo, 00015 Rome, Italy
| | - Margherita Doria
- Research Unit of Primary Immunodeficiencies, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| |
Collapse
|
11
|
Takada S, Weitering TJ, van Os NJH, Du L, Pico-Knijnenburg I, Kuipers TB, Mei H, Salzer E, Willemsen MAAP, Weemaes CMR, Pan-Hammarstrom Q, van der Burg M. Causative mechanisms and clinical impact of immunoglobulin deficiencies in ataxia telangiectasia. J Allergy Clin Immunol 2024; 153:1392-1405. [PMID: 38280573 DOI: 10.1016/j.jaci.2023.12.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/07/2023] [Accepted: 12/19/2023] [Indexed: 01/29/2024]
Abstract
BACKGROUND Ataxia telangiectasia (AT) is characterized by cerebellar ataxia, telangiectasia, immunodeficiency, and increased cancer susceptibility and is caused by mutations in the ataxia telangiectasia mutated (ATM) gene. The immunodeficiency comprises predominantly immunoglobulin deficiency, mainly IgA and IgG2, with a variable severity. So far, the exact mechanisms underlying the immunoglobulin deficiency, especially the variable severity, remain unelucidated. OBJECTIVE We characterized the clinical impact of immunoglobulin deficiencies in AT and elucidated their mechanisms in AT. METHODS We analyzed long-term immunoglobulin levels, immunophenotyping, and survival time in our cohort (n = 87, median age 16 years; maximum 64 years). Somatic hypermutation and class-switch junctions in B cells were analyzed by next-generation sequencing. Furthermore, an in vitro class-switching induction assay was performed, followed by RNA sequencing, to assess the effect of ATM inhibition. RESULTS Only the hyper-IgM AT phenotype significantly worsened survival time, while IgA or IgG2 deficiencies did not. The immunoglobulin levels showed predominantly decreased IgG2 and IgA. Moreover, flow cytometric analysis demonstrated reduced naive B and T lymphocytes and a deficiency of class-switched IgG2 and IgA memory B cells. Somatic hypermutation frequencies were lowered in IgA- and IgG2-deficient patients, indicating hampered germinal center reaction. In addition, the microhomology of switch junctions was elongated, suggesting alternative end joining during class-switch DNA repair. The in vitro class switching and proliferation were negatively affected by ATM inhibition. RNA sequencing analysis showed that ATM inhibitor influenced expression of germinal center reaction genes. CONCLUSION Immunoglobulin deficiency in AT is caused by disturbed development of class-switched memory B cells. ATM deficiency affects both germinal center reaction and choice of DNA-repair pathway in class switching.
Collapse
Affiliation(s)
- Sanami Takada
- Department of Pediatrics, Laboratory for Pediatric Immunology, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, The Netherlands
| | - Thomas J Weitering
- Department of Pediatrics, Laboratory for Pediatric Immunology, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, The Netherlands
| | - Nienke J H van Os
- Department of Pediatric Neurology, Amalia Children's Hospital, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Likun Du
- Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden
| | - Ingrid Pico-Knijnenburg
- Department of Pediatrics, Laboratory for Pediatric Immunology, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, The Netherlands
| | - Thomas B Kuipers
- Sequencing Analysis Support Core Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Hailiang Mei
- Sequencing Analysis Support Core Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Elisabeth Salzer
- Department of Pediatrics, Laboratory for Pediatric Immunology, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, The Netherlands
| | - Michèl A A P Willemsen
- Department of Pediatric Neurology, Amalia Children's Hospital, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Corry M R Weemaes
- Department of Pediatrics, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Qiang Pan-Hammarstrom
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mirjam van der Burg
- Department of Pediatrics, Laboratory for Pediatric Immunology, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
12
|
Lindahl H, Svensson E, Danielsson A, Puschmann A, Svenningson P, Tesi B, Paucar M. The clinical spectrum of ataxia telangiectasia in a cohort in Sweden. Heliyon 2024; 10:e26073. [PMID: 38404774 PMCID: PMC10884802 DOI: 10.1016/j.heliyon.2024.e26073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/11/2024] [Accepted: 02/07/2024] [Indexed: 02/27/2024] Open
Abstract
Ataxia telangiectasia (A-T), caused by biallelic variants in the ATM gene, is a multisystemic and severe syndrome characterized by progressive ataxia, telangiectasia, hyperkinesia, immunodeficiency, increased risk of malignancy, and typically death before the age of 30. In this retrospective study we describe the phenotype of 14 pediatric and adult A-T patients evaluated at the Karolinska University Hospital in Sweden during the last 12 years. Most of the patients in this cohort were severely affected by ataxia and wheelchair use started at a median age of 9 years. One patient died before the age of 30 years, but five patients had survived beyond this age. Four patients received prophylactic immunoglobulin replacement therapy due to hypogammaglobulinemia and respiratory complications ranged from mild to moderate severity. Three patients developed type 2 diabetes in young adulthood and nine patients (64%) had a history of elevated liver function tests. Four patients were diagnosed with cancer at ages 7, 41, 47, and 49 years. All the ATM variants in these patients were previously reported as pathogenic except one, c.6040G > A, which results in a p.Glu2014Lys missense variant. With increased life expectancy, A-T complications such as diabetes type 2 and liver disease may become more common. Despite having severe neurological presentations, the A-T patients in this case series had relatively mild infectious and respiratory complications.
Collapse
Affiliation(s)
- Hannes Lindahl
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Eva Svensson
- Department of Pediatric Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Annika Danielsson
- Department of Pediatric Neurology, Sachska Children's Hospital, Stockholm, Sweden
| | - Andreas Puschmann
- Neurology, Department of Clinical Sciences Lund, Lund University, Sweden
- Skane University Hospital, Lund, Sweden
- SciLifeLab National Research Infrastructure, Sweden
| | - Per Svenningson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Bianca Tesi
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Martin Paucar
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
13
|
Weitering TJ, Willemsen MAAP, Taylor AMR, Weemaes CMR, van der Burg M, Berghuis D. Early Diagnosis of Ataxia Telangiectasia Through Newborn Screening for SCID: a Case Report Highlighting the Dilemma of Pre-emptive HSCT. J Clin Immunol 2023; 43:1770-1773. [PMID: 37624468 DOI: 10.1007/s10875-023-01571-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Affiliation(s)
- T J Weitering
- Willem-Alexander Children's Hospital, Laboratory for Pediatric Immunology, Leiden University Medical Center, Leiden, the Netherlands
| | - M A A P Willemsen
- Department of Neurology - Pediatric Neurology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - A M R Taylor
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - C M R Weemaes
- Department of Pediatrics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - M van der Burg
- Willem-Alexander Children's Hospital, Laboratory for Pediatric Immunology, Leiden University Medical Center, Leiden, the Netherlands
| | - Dagmar Berghuis
- Willem-Alexander Children's Hospital, Department of Pediatrics, Division of Pediatric Immunology and Stem Cell Transplantation, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands.
| |
Collapse
|
14
|
Shao L, Wang H, Xu J, Qi M, Yu Z, Zhang J. Ataxia-telangiectasia in China: a case report of a novel ATM variant and literature review. Front Neurol 2023; 14:1228810. [PMID: 37564729 PMCID: PMC10411728 DOI: 10.3389/fneur.2023.1228810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/04/2023] [Indexed: 08/12/2023] Open
Abstract
Background Ataxia-telangiectasia (A-T) is a multisystem genetic disorder involving ataxia, oculocutaneous telangiectasia, and immunodeficiency caused by biallelic pathogenic variants in the ATM gene. To date, most ATM variants have been reported in the Caucasian population, and few studies have focused on the genotype-phenotype correlation of A-T in the Chinese population. We herein present a Chinese patient with A-T who carries compound heterozygous variants in the ATM gene and conducted a literature review for A-T in China. Case presentation A 7-year-old Chinese girl presented with growth retardation, ataxia, medium ocular telangiectasia, cerebellar atrophy, and elevated serum alpha-fetoprotein (AFP) level, which supported the suspicion of A-T. Notably, the serum levels of immunoglobulins were all normal, ruling out immunodeficiency. Exome sequencing and Sanger sequencing revealed two likely pathogenic ATM variants, namely NM_000051.4: c.4195dup (p.Thr1399Asnfs*15) and c.6006 + 1G>T (p.?), which were inherited from her father and mother, respectively. From the Chinese literature review, we found that there was a marked delay in the diagnosis of A-T, and 38.9% (7/18) of A-T patients did not suffer from immunodeficiency in China. No genotype-phenotype correlation was observed in this group of A-T patients. Conclusion These results extend the genotype spectrum of A-T in the Chinese population and imply that the diagnosis of A-T in China should be improved.
Collapse
Affiliation(s)
- Li Shao
- Department of Child Healthcare, Jinhua Maternity and Child Health Care Hospital, Jinhua, Zhejiang, China
| | - Haoyi Wang
- Hangzhou D.A. Medical Laboratory, Hangzhou, Zhejiang, China
- Central Laboratory, Precision Diagnosis and Treatment Center of Jinhua City, Jinhua, Zhejiang, China
| | - Jianbo Xu
- Department of Laboratory Medicine, Jinhua Maternity and Child Health Care Hospital, Jinhua, Zhejiang, China
| | - Ming Qi
- Hangzhou D.A. Medical Laboratory, Hangzhou, Zhejiang, China
- Department of Cell Biology and Medical Genetics, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhaonan Yu
- Hangzhou D.A. Medical Laboratory, Hangzhou, Zhejiang, China
- Medical College of Tianjin University, Tianjin, China
| | - Jing Zhang
- Department of Child Healthcare, Jinhua Maternity and Child Health Care Hospital, Jinhua, Zhejiang, China
| |
Collapse
|
15
|
Aditi, McKinnon PJ. Genome integrity and inflammation in the nervous system. DNA Repair (Amst) 2022; 119:103406. [PMID: 36148701 PMCID: PMC9844216 DOI: 10.1016/j.dnarep.2022.103406] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 01/19/2023]
Abstract
Preservation of genomic integrity is crucial for nervous system development and function. DNA repair deficiency results in several human diseases that are characterized by both neurodegeneration and neuroinflammation. Recent research has highlighted a role for compromised genomic integrity as a key factor driving neuropathology and triggering innate immune signaling to cause inflammation. Here we review the mechanisms by which DNA damage engages innate immune signaling and how this may promote neurological disease. We also consider the contributions of different neural cell types towards DNA damage-driven neuroinflammation. A deeper knowledge of genome maintenance mechanisms that prevent aberrant immune activation in neural cells will guide future therapies to ameliorate neurological disease.
Collapse
Affiliation(s)
- Aditi
- Center for Pediatric Neurological Disease Research, St. Jude Pediatric Translational Neuroscience Initiative, Dept. Cell & Mol. Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Peter J McKinnon
- Center for Pediatric Neurological Disease Research, St. Jude Pediatric Translational Neuroscience Initiative, Dept. Cell & Mol. Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
16
|
van Schouwenburg PA, van der Burg M, IJspeert H. NGS-Based B-Cell Receptor Repertoire AnalysisRepertoire analyses in the Context of Inborn Errors of Immunity. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2453:169-190. [PMID: 35622327 DOI: 10.1007/978-1-0716-2115-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Inborn errors of immunity (IEI) are genetic defects that can affect both the innate and the adaptive immune system. Patients with IEI usually present with recurrent infections, but many also suffer from immune dysregulation, autoimmunity, and malignancies.Inborn errors of the immune system can cause defects in the development and selection of the B-cell receptor (BCR ) repertoire. Patients with IEI can have a defect in one of the key processes of immune repertoire formation like V(D)J recombination, somatic hypermutation (SHM), class switch recombination (CSR), or (pre-)BCR signalling and proliferation. However, also other genetic defects can lead to quantitative and qualitative differences in the immune repertoire.In this chapter, we will give an overview of protocols that can be used to study the immune repertoire in patients with IEI, provide considerations to take into account before setting up experiments, and discuss analysis of the immune repertoire data using Antigen Receptor Galaxy (ARGalaxy).
Collapse
Affiliation(s)
- Pauline A van Schouwenburg
- Department of Pediatrics, Laboratory for Pediatric Immunology, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, The Netherlands
| | - Mirjam van der Burg
- Department of Pediatrics, Laboratory for Pediatric Immunology, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, The Netherlands
| | - Hanna IJspeert
- Department of Immunology, Laboratory Medical Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.
- Academic Center for Rare Immunological Diseases (RIDC), Erasmus University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
17
|
Cirillo E, Polizzi A, Soresina A, Prencipe R, Giardino G, Cancrini C, Finocchi A, Rivalta B, Dellepiane RM, Baselli LA, Montin D, Trizzino A, Consolini R, Azzari C, Ricci S, Lodi L, Quinti I, Milito C, Leonardi L, Duse M, Carrabba M, Fabio G, Bertolini P, Coccia P, D'Alba I, Pession A, Conti F, Zecca M, Lunardi C, Bianco ML, Presti S, Sciuto L, Micheli R, Bruzzese D, Lougaris V, Badolato R, Plebani A, Chessa L, Pignata C. Progressive Depletion of B and T Lymphocytes in Patients with Ataxia Telangiectasia: Results of the Italian Primary Immunodeficiency Network. J Clin Immunol 2022; 42:783-797. [PMID: 35257272 PMCID: PMC9166859 DOI: 10.1007/s10875-022-01234-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 02/20/2022] [Indexed: 11/30/2022]
Abstract
Ataxia telangiectasia (AT) is a rare neurodegenerative genetic disorder due to bi-allelic mutations in the Ataxia Telangiectasia Mutated (ATM) gene. The aim of this paper is to better define the immunological profile over time, the clinical immune-related manifestations at diagnosis and during follow-up, and to attempt a genotype-phenotype correlation of an Italian cohort of AT patients. Retrospective data of 69 AT patients diagnosed between December 1984 and November 2019 were collected from the database of the Italian Primary Immunodeficiency Network. Patients were classified at diagnosis as lymphopenic (Group A) or non-lymphopenic (Group B). Fifty eight out of 69 AT patients (84%) were genetically characterized and distinguished according to the type of mutations in truncating/truncating (TT; 27 patients), non-truncating (NT)/T (28 patients), and NT/NT (5 patients). In 3 patients, only one mutation was detected. Data on age at onset and at diagnosis, cellular and humoral compartment at diagnosis and follow-up, infectious diseases, signs of immune dysregulation, cancer, and survival were analyzed and compared to the genotype. Lymphopenia at diagnosis was related per se to earlier age at onset. Progressive reduction of cellular compartment occurred during the follow-up with a gradual reduction of T and B cell number. Most patients of Group A carried bi-allelic truncating mutations, had a more severe B cell lymphopenia, and a reduced life expectancy. A trend to higher frequency of interstitial lung disease, immune dysregulation, and malignancy was noted in Group B patients. Lymphopenia at the onset and the T/T genotype are associated with a worst clinical course. Several mechanisms may underlie the premature and progressive immune decline in AT subjects.
Collapse
Affiliation(s)
- Emilia Cirillo
- Department of Translational Medical Sciences, Pediatric Section, Federico II University of Naples, via S. Pansini, 5-80131, Naples, Italy
| | - Agata Polizzi
- Department of Educational Sciences, University of Catania, Catania, Italy
| | - Annarosa Soresina
- Department of Clinical and Experimental Sciences, University of Brescia and Department of Pediatrics, ASST-Spedali Civili Di Brescia, Brescia, Italy
| | - Rosaria Prencipe
- Department of Translational Medical Sciences, Pediatric Section, Federico II University of Naples, via S. Pansini, 5-80131, Naples, Italy
| | - Giuliana Giardino
- Department of Translational Medical Sciences, Pediatric Section, Federico II University of Naples, via S. Pansini, 5-80131, Naples, Italy
| | - Caterina Cancrini
- Unit of Immunology and Infectious Diseases, Academic Department of Pediatrics, Bambino Gesù Children's Hospital, Rome, Italy
| | - Andrea Finocchi
- Unit of Immunology and Infectious Diseases, Academic Department of Pediatrics, Bambino Gesù Children's Hospital, Rome, Italy
| | - Beatrice Rivalta
- Unit of Immunology and Infectious Diseases, Academic Department of Pediatrics, Bambino Gesù Children's Hospital, Rome, Italy
| | - Rosa M Dellepiane
- Departments of Pediatrics, Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Lucia A Baselli
- Departments of Pediatrics, Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Davide Montin
- Division of Pediatric Immunology and Rheumatology, Department of Public Health and Pediatrics Regina Margherita Children Hospital, University of Turin, Turin, Italy
| | - Antonino Trizzino
- Department of Pediatric Hematology and Oncology, ARNAS Civico Di Cristina and Benfratelli Hospital, Palermo, Italy
| | - Rita Consolini
- Section of Pediatrics Immunology and Rheumatology, Department of Pediatrics, University of Pisa, Pisa, Italy
| | - Chiara Azzari
- Division of Pediatric Immunology, Department of Health Sciences, University of Florence and Meyer Children's Hospital, Florence, Italy
| | - Silvia Ricci
- Division of Pediatric Immunology, Department of Health Sciences, University of Florence and Meyer Children's Hospital, Florence, Italy
| | - Lorenzo Lodi
- Division of Pediatric Immunology, Department of Health Sciences, University of Florence and Meyer Children's Hospital, Florence, Italy
| | - Isabella Quinti
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Cinzia Milito
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Lucia Leonardi
- Department of Pediatrics, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Marzia Duse
- Department of Pediatrics, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Maria Carrabba
- Department of Internal Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giovanna Fabio
- Department of Internal Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Patrizia Bertolini
- Pediatric Hematology Oncology Unit, Azienda Ospedaliero Universitaria of Parma, Parma, Italy
| | - Paola Coccia
- Division of Pediatric Hematology and Oncology, Ospedale G. Salesi, Ancona, Italy
| | - Irene D'Alba
- Division of Pediatric Hematology and Oncology, Ospedale G. Salesi, Ancona, Italy
| | - Andrea Pession
- Unit of Pediatrics, IRCCS Azienda Ospedaliero-Universitaria, Bologna, Italy
| | - Francesca Conti
- Unit of Pediatrics, IRCCS Azienda Ospedaliero-Universitaria, Bologna, Italy
| | - Marco Zecca
- Pediatric Hematology/Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | | | - Manuela Lo Bianco
- Department of Educational Sciences, University of Catania, Catania, Italy
| | - Santiago Presti
- Department of Educational Sciences, University of Catania, Catania, Italy
| | - Laura Sciuto
- Department of Educational Sciences, University of Catania, Catania, Italy
| | - Roberto Micheli
- Department of Clinical and Experimental Sciences, University of Brescia and Department of Pediatrics, ASST-Spedali Civili Di Brescia, Brescia, Italy
| | - Dario Bruzzese
- Department of Public Health, Federico II University of Naples, Naples, Italy
| | - Vassilios Lougaris
- Department of Clinical and Experimental Sciences, University of Brescia and Department of Pediatrics, ASST-Spedali Civili Di Brescia, Brescia, Italy
| | - Raffaele Badolato
- Department of Clinical and Experimental Sciences, University of Brescia and Department of Pediatrics, ASST-Spedali Civili Di Brescia, Brescia, Italy
| | - Alessandro Plebani
- Department of Clinical and Experimental Sciences, University of Brescia and Department of Pediatrics, ASST-Spedali Civili Di Brescia, Brescia, Italy
| | | | - Claudio Pignata
- Department of Translational Medical Sciences, Pediatric Section, Federico II University of Naples, via S. Pansini, 5-80131, Naples, Italy.
| |
Collapse
|
18
|
Pastorczak A, Attarbaschi A, Bomken S, Borkhardt A, van der Werff ten Bosch J, Elitzur S, Gennery AR, Hlavackova E, Kerekes A, Křenová Z, Mlynarski W, Szczepanski T, Wassenberg T, Loeffen J. Consensus Recommendations for the Clinical Management of Hematological Malignancies in Patients with DNA Double Stranded Break Disorders. Cancers (Basel) 2022; 14:2000. [PMID: 35454905 PMCID: PMC9029535 DOI: 10.3390/cancers14082000] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 12/03/2022] Open
Abstract
Patients with double stranded DNA repair disorders (DNARDs) (Ataxia Telangiectasia (AT) and Nijmegen Breakage syndrome (NBS)) are at a very high risk for developing hematological malignancies in the first two decades of life. The most common neoplasms are T-cell lymphoblastic malignancies (T-cell ALL and T-cell LBL) and diffuse large B cell lymphoma (DLBCL). Treatment of these patients is challenging due to severe complications of the repair disorder itself (e.g., congenital defects, progressive movement disorders, immunological disturbances and progressive lung disease) and excessive toxicity resulting from chemotherapeutic treatment. Frequent complications during treatment for malignancies are deterioration of pre-existing lung disease, neurological complications, severe mucositis, life threating infections and feeding difficulties leading to significant malnutrition. These complications make modifications to commonly used treatment protocols necessary in almost all patients. Considering the rarity of DNARDs it is difficult for individual physicians to obtain sufficient experience in treating these vulnerable patients. Therefore, a team of experts assembled all available knowledge and translated this information into best available evidence-based treatment recommendations.
Collapse
Affiliation(s)
- Agata Pastorczak
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, 91-738 Lodz, Poland;
| | - Andishe Attarbaschi
- Department of Pediatrics, Pediatric Hematology and Oncology, St. Anna Children’s Hospital, Medical University of Vienna, 1090 Vienna, Austria;
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Simon Bomken
- Great North Children’s Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE7 7DN, UK; (S.B.); (A.R.G.)
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Arndt Borkhardt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, University Children’s Hospital, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany;
| | - Jutte van der Werff ten Bosch
- Department of Pediatric Hematology, Oncology and Immunology, University Hospital Brussels, 1090 Jette Brussels, Belgium;
| | - Sarah Elitzur
- Pediatric Hematology-Oncology, Schneider Children’s Medical Center, Petach Tikvah 4920235, Israel;
| | - Andrew R. Gennery
- Great North Children’s Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE7 7DN, UK; (S.B.); (A.R.G.)
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Eva Hlavackova
- Department of Pediatric Oncology, University Hospital and Faculty of Medicine, Masaryk University, 662 63 Brno, Czech Republic; (E.H.); (Z.K.)
- Department of Clinical Immunology and Allergology, St. Anne’s University Hospital in Brno, Faculty of Medicine, Masaryk University, 662 63 Brno, Czech Republic;
| | - Arpád Kerekes
- Department of Clinical Immunology and Allergology, St. Anne’s University Hospital in Brno, Faculty of Medicine, Masaryk University, 662 63 Brno, Czech Republic;
| | - Zdenka Křenová
- Department of Pediatric Oncology, University Hospital and Faculty of Medicine, Masaryk University, 662 63 Brno, Czech Republic; (E.H.); (Z.K.)
| | - Wojciech Mlynarski
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, 91-738 Lodz, Poland;
| | - Tomasz Szczepanski
- Department of Pediatric Hematology and Oncology, Medical University of Silesia (SUM), 41-800 Zabrze, Poland;
| | - Tessa Wassenberg
- Department of Neurology and Child Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands;
| | - Jan Loeffen
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands;
| |
Collapse
|
19
|
Rawat A, Tyagi R, Chaudhary H, Pandiarajan V, Jindal AK, Suri D, Gupta A, Sharma M, Arora K, Bal A, Madaan P, Saini L, Sahu JK, Ogura Y, Kato T, Imai K, Nonoyama S, Singh S. Unusual clinical manifestations and predominant stopgain ATM gene variants in a single centre cohort of ataxia telangiectasia from North India. Sci Rep 2022; 12:4036. [PMID: 35260754 PMCID: PMC8904522 DOI: 10.1038/s41598-022-08019-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 03/01/2022] [Indexed: 11/09/2022] Open
Abstract
Germline ATM gene variations result in phenotypic heterogeneity characterized by a variable degree of disease severity. We retrospectively collected clinical, genetic, and immunological data of 26 cases with A-T. Clinical manifestations included oculocutaneous telangiectasia (100%), ataxia (100%), fever, loose stools or infection (67%), cerebellar atrophy (50%), nystagmus (8%), dysarthria (15.38%), and visual impairment (8%). Genetic analysis confirmed ATM gene variations in 16 unrelated cases. The most common type of variation was stopgain variants (56%). Immunoglobulin profile indicated reduced IgA, IgG, and IgM in 94%, 50%, and 20% cases, respectively. T cell lymphopenia was observed in 80% of cases among those investigated. Unusual presentations included an EBV-associated smooth muscle tumour located in the liver in one case and Hyper IgM syndrome-like presentation in two cases. Increased immunosenescence was observed in T-cell subsets (CD4+CD57+ and CD8+CD57+). T-cell receptor excision circles (TRECs) were reduced in 3/8 (37.50%) cases.
Collapse
Affiliation(s)
- Amit Rawat
- Allergy and Immunology Laboratory, Department of Pediatrics, Advanced Pediatric Centre, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India.
| | - Rahul Tyagi
- Allergy and Immunology Laboratory, Department of Pediatrics, Advanced Pediatric Centre, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Himanshi Chaudhary
- Allergy and Immunology Laboratory, Department of Pediatrics, Advanced Pediatric Centre, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Vignesh Pandiarajan
- Allergy and Immunology Laboratory, Department of Pediatrics, Advanced Pediatric Centre, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Ankur Kumar Jindal
- Allergy and Immunology Laboratory, Department of Pediatrics, Advanced Pediatric Centre, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Deepti Suri
- Allergy and Immunology Laboratory, Department of Pediatrics, Advanced Pediatric Centre, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Anju Gupta
- Allergy and Immunology Laboratory, Department of Pediatrics, Advanced Pediatric Centre, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Madhubala Sharma
- Allergy and Immunology Laboratory, Department of Pediatrics, Advanced Pediatric Centre, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Kanika Arora
- Allergy and Immunology Laboratory, Department of Pediatrics, Advanced Pediatric Centre, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Amanjit Bal
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Priyanka Madaan
- Pediatric Neurology Unit, Department of Pediatrics, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Lokesh Saini
- Pediatric Neurology Unit, Department of Pediatrics, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Jitendra Kumar Sahu
- Pediatric Neurology Unit, Department of Pediatrics, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Yumi Ogura
- National Defense Medical College (Japan), Saitama, Japan
| | - Tamaki Kato
- National Defense Medical College (Japan), Saitama, Japan
| | - Kohsuke Imai
- National Defense Medical College (Japan), Saitama, Japan.,Tokyo Medical and Dental University, Tokyo, Japan
| | | | - Surjit Singh
- Allergy and Immunology Laboratory, Department of Pediatrics, Advanced Pediatric Centre, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| |
Collapse
|
20
|
Zampella J, Cohen B. Consideration of underlying immunodeficiency in refractory or recalcitrant warts: A review of the literature. SKIN HEALTH AND DISEASE 2022; 2:e98. [PMID: 35665206 PMCID: PMC9060099 DOI: 10.1002/ski2.98] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/12/2022] [Accepted: 01/16/2022] [Indexed: 11/16/2022]
Abstract
Although the exact mechanisms have yet to be elucidated, it is clear that cellular immunity plays a role in clearance of human papillomavirus (HPV) infections as it relates to the development of warts. Patients with extensive, recalcitrant, or treatment‐refractory warts may have an underlying immune system impairment at the root of HPV susceptibility. Early recognition of genetic disorders associated with immunologic defects that allow for recalcitrant HPV infection may expedite appropriate treatment for patients. Early recognition is often pivotal in preventing subsequent morbidity and/or mortality that may arise from inborn errors of immunity, such as WHIM (Warts, Hypogammaglobulinemia, Infections, Myelokathexis) syndrome. Among these, cervical cancer is one of the most common malignancies associated with HPV, can be fatal if not treated early, and is seen more frequently in patients with underlying immune deficiencies. A review of diseases with susceptibility to HPV provides clues to understanding the pathophysiology of warts. We also present diagnostic guidance to facilitate the recognition of inborn errors of immunity in patients with extensive and/or recalcitrant HPV infections.
Collapse
Affiliation(s)
- J. Zampella
- Ronald O. Perelman Department of Dermatology NYU Grossman School of Medicine New York New York USA
| | - B. Cohen
- Division of Pediatric Dermatology Johns Hopkins University School of Medicine Baltimore Maryland USA
| |
Collapse
|
21
|
Chen K, Wang P, Chen J, Ying Y, Chen Y, Gilson E, Lu Y, Ye J. Loss of atm in Zebrafish as a Model of Ataxia-Telangiectasia Syndrome. Biomedicines 2022; 10:392. [PMID: 35203601 PMCID: PMC8962326 DOI: 10.3390/biomedicines10020392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 11/16/2022] Open
Abstract
Ataxia-telangiectasia mutated (ATM) is a key DNA damage signaling kinase that is mutated in humans with ataxia-telangiectasia (A-T) syndrome. This syndrome is characterized by neurodegeneration, immune abnormality, cancer predisposition, and premature aging. To better understand the function of ATM in vivo, we engineered a viable zebrafish model with a mutated atm gene. Zebrafish atm loss-of-function mutants show characteristic features of A-T-like motor disturbance, including coordination disorders, immunodeficiency, and tumorigenesis. The immunological disorder of atm homozygote fish is linked to the developmental blockade of hematopoiesis, which occurs at the adulthood stage and results in a decrease in infection defense but, with little effect on wound healing. Malignant neoplasms found in atm mutant fish were mainly nerve sheath tumors and myeloid leukemia, which rarely occur in A-T patients or Atm-/- mice. These results underscore the importance of atm during immune cell development. This zebrafish A-T model opens up a pathway to an improved understanding of the molecular basis of tumorigenesis in A-T and the cellular role of atm.
Collapse
Affiliation(s)
- Kehua Chen
- Department of Geriatrics, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200001, China; (K.C.); (P.W.); (J.C.); (Y.Y.)
- Medical Center on Aging of Ruijin Hospital, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200001, China
- International Laboratory in Hematology and Cancer, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China; (Y.C.); (E.G.)
| | - Peng Wang
- Department of Geriatrics, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200001, China; (K.C.); (P.W.); (J.C.); (Y.Y.)
- Medical Center on Aging of Ruijin Hospital, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200001, China
- International Laboratory in Hematology and Cancer, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China; (Y.C.); (E.G.)
| | - Jingrun Chen
- Department of Geriatrics, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200001, China; (K.C.); (P.W.); (J.C.); (Y.Y.)
- Medical Center on Aging of Ruijin Hospital, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200001, China
| | - Yiling Ying
- Department of Geriatrics, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200001, China; (K.C.); (P.W.); (J.C.); (Y.Y.)
- Medical Center on Aging of Ruijin Hospital, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200001, China
- International Laboratory in Hematology and Cancer, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China; (Y.C.); (E.G.)
| | - Yi Chen
- International Laboratory in Hematology and Cancer, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China; (Y.C.); (E.G.)
| | - Eric Gilson
- International Laboratory in Hematology and Cancer, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China; (Y.C.); (E.G.)
- Faculty of Medicine, University Côte d’Azur, CNRS, INSERM, IRCAN, 06107 Nice, France
- Department of Medical Genetics, CHU, 06107 Nice, France
| | - Yiming Lu
- Department of Geriatrics, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200001, China; (K.C.); (P.W.); (J.C.); (Y.Y.)
- Medical Center on Aging of Ruijin Hospital, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200001, China
- International Laboratory in Hematology and Cancer, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China; (Y.C.); (E.G.)
| | - Jing Ye
- Department of Geriatrics, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200001, China; (K.C.); (P.W.); (J.C.); (Y.Y.)
- Medical Center on Aging of Ruijin Hospital, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200001, China
- International Laboratory in Hematology and Cancer, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China; (Y.C.); (E.G.)
| |
Collapse
|
22
|
Fang M, Su Z, Abolhassani H, Zhang W, Jiang C, Cheng B, Luo L, Wu J, Wang S, Lin L, Wang X, Wang L, Aghamohammadi A, Li T, Zhang X, Hammarström L, Liu X. T Cell Repertoire Abnormality in Immunodeficiency Patients with DNA Repair and Methylation Defects. J Clin Immunol 2022; 42:375-393. [PMID: 34825286 PMCID: PMC8821531 DOI: 10.1007/s10875-021-01178-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/01/2021] [Indexed: 12/25/2022]
Abstract
Both DNA damage response and methylation play a crucial role in antigen receptor recombination by creating a diverse repertoire in developing lymphocytes, but how their defects relate to T cell repertoire and phenotypic heterogeneity of immunodeficiency remains obscure. We studied the TCR repertoire in patients with the mutation in different genes (ATM, DNMT3B, ZBTB24, RAG1, DCLRE1C, and JAK3) and uncovered distinct characteristics of repertoire diversity. We propose that early aberrancies in thymus T cell development predispose to the heterogeneous phenotypes of the immunodeficiency spectrum. Shorter CDR3 lengths in ATM-deficient patients, resulting from a decreased number of nucleotide insertions during VDJ recombination in the pre-selected TCR repertoire, as well as the increment of CDR3 tyrosine residues, lead to the enrichment of pathology-associated TCRs, which may contribute to the phenotypes of ATM deficiency. Furthermore, patients with DNMT3B and ZBTB24 mutations who exhibit discrepant phenotypes present longer CDR3 lengths and reduced number of known pathology-associated TCRs.
Collapse
Affiliation(s)
- Mingyan Fang
- BGI-Shenzhen, Shenzhen, 518083, China
- Division of Clinical Immunology at the Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, 141 86, Stockholm, Sweden
| | - Zheng Su
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, The University of New South Wales, Sydney, NSW, Australia
| | - Hassan Abolhassani
- Division of Clinical Immunology at the Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, 141 86, Stockholm, Sweden
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Wei Zhang
- BGI-Shenzhen, Shenzhen, 518083, China
- Department of Computer Science, City University of Hong Kong, Hong Kong, 999077, China
| | | | | | - Lihua Luo
- BGI-Shenzhen, Shenzhen, 518083, China
| | | | | | - Liya Lin
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Xie Wang
- BGI-Shenzhen, Shenzhen, 518083, China
| | | | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Tao Li
- BGI-Shenzhen, Shenzhen, 518083, China
| | | | - Lennart Hammarström
- BGI-Shenzhen, Shenzhen, 518083, China.
- Division of Clinical Immunology at the Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, 141 86, Stockholm, Sweden.
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden.
| | - Xiao Liu
- BGI-Shenzhen, Shenzhen, 518083, China.
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
| |
Collapse
|
23
|
Moeini Shad T, Yazdani R, Amirifar P, Delavari S, Heidarzadeh Arani M, Mahdaviani SA, Sadeghi-Shabestari M, Aghamohammadi A, Rezaei N, Abolhassani H. Atypical Ataxia Presentation in Variant Ataxia Telangiectasia: Iranian Case-Series and Review of the Literature. Front Immunol 2022; 12:779502. [PMID: 35095854 PMCID: PMC8795590 DOI: 10.3389/fimmu.2021.779502] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 12/23/2021] [Indexed: 11/13/2022] Open
Abstract
Ataxia-telangiectasia (AT) is a rare autosomal recessive neurodegenerative multisystem disorder. A minority of AT patients can present late-onset atypical presentations due to unknown mechanisms. The demographic, clinical, immunological and genetic data were collected by direct interview and examining the Iranian AT patients with late-onset manifestations. We also conducted a systematic literature review for reported atypical AT patients. We identified three Iranian AT patients (3/249, 1.2% of total registry) with later age at ataxia onset and slower neurologic progression despite elevated alpha-fetoprotein levels, history of respiratory infections, and immunological features of the syndrome. Of note, all patients developed autoimmunity in which a decrease of naïve T cells and regulatory T cells were observed. The literature searches also summarized data from 73 variant AT patients with atypical presentation indicating biallelic mild mutations mainly lead to an atypical phenotype with an increased risk of cancer. Variant AT patients present with milder phenotype or atypical form of classical symptoms causing under- or mis- diagnosis. Although missense mutations are more frequent, an atypical presentation can be associated with deleterious mutations due to unknown modifying factors.
Collapse
Affiliation(s)
- Tannaz Moeini Shad
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Parisa Amirifar
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Samaneh Delavari
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | | | - Seyed Alireza Mahdaviani
- Pediatric Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.,Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| |
Collapse
|
24
|
Blanchard-Rohner G, Peirolo A, Coulon L, Korff C, Horvath J, Burkhard PR, Gumy-Pause F, Ranza E, Jandus P, Dibra H, Taylor AMR, Fluss J. Childhood-Onset Movement Disorders Can Mask a Primary Immunodeficiency: 6 Cases of Classical Ataxia-Telangiectasia and Variant Forms. Front Immunol 2022; 13:791522. [PMID: 35154108 PMCID: PMC8831727 DOI: 10.3389/fimmu.2022.791522] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/07/2022] [Indexed: 02/02/2023] Open
Abstract
Ataxia-telangiectasia (A-T) is a neurodegenerative and primary immunodeficiency disorder (PID) characterized by cerebellar ataxia, oculocutaneous telangiectasia, immunodeficiency, progressive respiratory failure, and an increased risk of malignancies. It demands specialized care tailored to the individual patient’s needs. Besides the classical ataxia-telangiectasia (classical A-T) phenotype, a variant phenotype (variant A-T) exists with partly overlapping but some distinctive disease characteristics. Here we present a case series of 6 patients with classical A-T and variant A-T, which illustrates the phenotypic variability of A-T that can present in childhood with prominent extrapyramidal features, with or without cerebellar ataxia. We report the clinical data, together with a detailed genotype description, immunological analyses, and related expression of the ATM protein. We show that the presence of some residual ATM kinase activity leads to the clinical phenotype variant A-T that differs from the classical A-T. Our data illustrate that the diagnosis of the variant form of A-T can be delayed and difficult, while early recognition of the variant form as well as the classical A-T is a prerequisite for providing a correct prognosis and appropriate rehabilitation and support, including the avoidance of diagnostic X-ray procedures, given the increased risk of malignancies and the higher risk for side effects of subsequent cancer treatment.
Collapse
Affiliation(s)
- Geraldine Blanchard-Rohner
- Paediatric Immunology and Vaccinology Unit, Division of General Pediatrics, Department of Pediatrics, Gynecology and Obstetrics, Geneva University Hospitals, University of Geneva, Geneva, Switzerland
- *Correspondence: Geraldine Blanchard-Rohner,
| | - Anna Peirolo
- Department of Clinical and Experimental Sciences, University of Brescia, ASST Spedali Civili, Brescia, Italy
| | - Ludivine Coulon
- Division of General Pediatrics, Department of Pediatrics, Gynecology and Obstetrics, Geneva University Hospitals, University of Geneva, Geneva, Switzerland
| | - Christian Korff
- Pediatric Neurology Unit, Department of Pediatrics, Gynecology and Obstetrics, Geneva University Hospitals, University of Geneva, Geneva, Switzerland
| | - Judit Horvath
- Department of Neurology, University Hospitals of Geneva, Geneva, Switzerland
| | - Pierre R. Burkhard
- Department of Neurology, University Hospitals of Geneva, Geneva, Switzerland
| | - Fabienne Gumy-Pause
- Division of Pediatric Oncology and Hematology, Department of Women, Child and Adolescent Medicine, Geneva University Hospitals, Geneva, Switzerland
- CANSEARCH Research Platform for Pediatric Oncology and Hematology, Department of Pediatrics, Gynaecology and Obstetrics, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Emmanuelle Ranza
- Medigenome, Swiss Institute of Genomic Medicine, Geneva, Switzerland
| | - Peter Jandus
- Division of Immunology and Allergology, University Hospitals and Medical Faculty of Geneva, Geneva, Switzerland
| | - Harpreet Dibra
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | | | - Joel Fluss
- Pediatric Neurology Unit, Department of Pediatrics, Gynecology and Obstetrics, Geneva University Hospitals, University of Geneva, Geneva, Switzerland
| |
Collapse
|
25
|
Sepúlveda-Yáñez JH, Alvarez Saravia D, Pilzecker B, van Schouwenburg PA, van den Burg M, Veelken H, Navarrete MA, Jacobs H, Koning MT. Tandem Substitutions in Somatic Hypermutation. Front Immunol 2022; 12:807015. [PMID: 35069591 PMCID: PMC8781386 DOI: 10.3389/fimmu.2021.807015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/16/2021] [Indexed: 11/13/2022] Open
Abstract
Upon antigen recognition, activation-induced cytosine deaminase initiates affinity maturation of the B-cell receptor by somatic hypermutation (SHM) through error-prone DNA repair pathways. SHM typically creates single nucleotide substitutions, but tandem substitutions may also occur. We investigated incidence and sequence context of tandem substitutions by massive parallel sequencing of V(D)J repertoires in healthy human donors. Mutation patterns were congruent with SHM-derived single nucleotide mutations, delineating initiation of the tandem substitution by AID. Tandem substitutions comprised 5,7% of AID-induced mutations. The majority of tandem substitutions represents single nucleotide juxtalocations of directly adjacent sequences. These observations were confirmed in an independent cohort of healthy donors. We propose a model where tandem substitutions are predominantly generated by translesion synthesis across an apyramidinic site that is typically created by UNG. During replication, apyrimidinic sites transiently adapt an extruded configuration, causing skipping of the extruded base. Consequent strand decontraction leads to the juxtalocation, after which exonucleases repair the apyramidinic site and any directly adjacent mismatched base pairs. The mismatch repair pathway appears to account for the remainder of tandem substitutions. Tandem substitutions may enhance affinity maturation and expedite the adaptive immune response by overcoming amino acid codon degeneracies or mutating two adjacent amino acid residues simultaneously.
Collapse
Affiliation(s)
- Julieta H Sepúlveda-Yáñez
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
- School of Medicine, University of Magallanes, Punta Arenas, Chile
| | | | - Bas Pilzecker
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands
- Division of Tumor Biology and Immunology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | | | - Mirjam van den Burg
- Department of Pediatrics, Leiden University Medical Center, Leiden, Netherlands
| | - Hendrik Veelken
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Heinz Jacobs
- Division of Tumor Biology and Immunology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Marvyn T Koning
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
26
|
Jończyk-Potoczna K, Potoczny J, Szczawińska-Popłonyk A. Imaging in children with ataxia-telangiectasia-The radiologist's approach. Front Pediatr 2022; 10:988645. [PMID: 36186632 PMCID: PMC9523007 DOI: 10.3389/fped.2022.988645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Ataxia-telangiectasia (A-T) is a syndromic inborn error of immunity (IEI) characterized by genomic instability, defective reparation of the DNA double-strand breaks, and hypersensitivity to ionizing radiation disturbing cellular homeostasis. The role of imaging diagnostics and the conscious choice of safe and advantageous imaging technique, as well as its correct interpretation, are crucial in the diagnostic process and monitoring of children with A-T. This study aimed at defining the role of a radiologist in the early diagnosis of A-T, as well as in detecting and tracking disease complications associated with infections, inflammation, lymphoproliferation, organ-specific immunopathology, and malignancy. Based on our single-center experience, retrospective analysis of investigations using ionizing radiation-free techniques, ultrasound (US), and Magnetic Resonance Imaging (MRI), was performed on regularly followed-up 11 pediatric A-T patients, 6 girls and 5 boys, aged from 2 to 18 years, with the longest period of observation coming to over 13 years. Our attention was especially drawn to the abnormalities that were observed in the US and MRI examinations of the lungs, abdominal cavity, and lymph nodes. The abdominal US showed no abnormalities in organ dimensions or echostructure in 4 out of 11 children studied, yet in the other 7, during follow-up examinations, hepato- and/or splenomegaly, mesenteric, visceral, and paraaortic lymphadenopathy were observable. In 2 patients, focal changes in the liver and spleen were shown, and in one patient progressive abdominal lymphadenopathy corresponded with the diagnosis of non-Hodgkin lymphoma (NHL). The lung US revealed multiple subpleural consolidations and B line artifacts related to the interstitial-alveolar syndrome in 5 patients, accompanied by pleural effusion in one of them. The MRI investigation of the lung enabled the detection of lymphatic nodal masses in the mediastinum, with concomitant airway lesions characteristic of bronchiectasis and focal parenchymal consolidations in one A-T patient with chronic respiratory failure. This patient also manifested organomegaly and granulomatous liver disease in abdominal MRI examination. Our study shows that the use of modern US capabilities and MRI is safe and efficient, thereby serving as a recommended advantageous imaging diagnostic tool in monitoring children with IEI and DNA instability syndromes.
Collapse
Affiliation(s)
- Katarzyna Jończyk-Potoczna
- Department of Pediatric Radiology, Institute of Pediatrics, Pozna University of Medical Sciences, Poznań, Poland
| | - Jakub Potoczny
- Department of Radiology, Greater Poland Cancer Center, Poznań, Poland
| | - Aleksandra Szczawińska-Popłonyk
- Department of Pediatric Pneumonology, Allergy and Clinical Immunology, Institute of Pediatrics, Poznań University of Medical Sciences, Poznań, Poland
| |
Collapse
|
27
|
Szczawińska-Popłonyk A, Tąpolska-Jóźwiak K, Schwartzmann E, Pietrucha B. Infections and immune dysregulation in ataxia-telangiectasia children with hyper-IgM and non-hyper-IgM phenotypes: A single-center experience. Front Pediatr 2022; 10:972952. [PMID: 36340711 PMCID: PMC9631935 DOI: 10.3389/fped.2022.972952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 09/28/2022] [Indexed: 11/23/2022] Open
Abstract
Ataxia-telangiectasia (A-T) is a severe syndromic neurodegenerative inborn error of immunity characterized by DNA reparation defect, chromosomal instability, and hypersensitivity to ionizing radiation, thereby predisposing affected individuals to malignant transformation. While the leading disease symptomatology is associated with progressively debilitating cerebellar ataxia accompanied by central and peripheral nervous system dysfunctions, A-T is a multisystemic disorder manifesting with the heterogeneity of phenotypic features. These include airway and interstitial lung disease, chronic liver disease, endocrine abnormalities, and cutaneous and deep-organ granulomatosis. The impaired thymic T cell production, defective B cell development and antibody production, as well as bone marrow failure, contribute to a combined immunodeficiency predisposing to infectious complications, immune dysregulation, and organ-specific immunopathology, with the A-T hyper-IgM (HIGM) phenotype determining the more severe disease course. This study aimed to clarify the immunodeficiency and associated immune dysregulation as well as organ-specific immunopathology in children with A-T. We also sought to determine whether the hyper-IgM and non-hyper-IgM phenotypes play a discriminatory role and have prognostic significance in anticipating the clinical course and outcome of the disease. We retrospectively reviewed the medical records of twelve A-T patients, aged from two to eighteen years. The patients' infectious history, organ-specific symptomatology, and immunological workup including serum alpha-fetoprotein, immunoglobulin isotypes, IgG subclasses, and lymphocyte compartments were examined. For further comparative analysis, all the subjects were divided into two groups, HIGM A-T and non-HIGM A-T. The clinical evaluation of the study group showed that recurrent respiratory tract infections due to viral and bacterial pathogens and a chronic obstructive airway disease along with impaired humoral immunity, in particular complete IgA deficiency, were noted in all the A-T patients, with both HIGM and non-HIGM phenotypes. The most important features with the discriminatory role between groups, were autoimmune disorders, observable four times more frequently in HIGM than in non-HIGM A-T. Two patients with the HIGM A-T phenotype were deceased due to liver failure and chronic Epstein-Barr virus (EBV) infection. It may therefore be assumed that the HIGM form of A-T is associated with more profound T cell dysfunction, defective immunoglobulin class switching, chronic EBV expansion, and poorer prognosis.
Collapse
Affiliation(s)
- Aleksandra Szczawińska-Popłonyk
- Department of Pediatric Pneumonology, Allergy and Clinical Immunology, Institute of Pediatrics, Poznań University of Medical Sciences, Poznań, Poland
| | - Katarzyna Tąpolska-Jóźwiak
- Department of Pediatric Pneumonology, Allergy and Clinical Immunology, Institute of Pediatrics, Poznań University of Medical Sciences, Poznań, Poland
| | - Eyal Schwartzmann
- Poznań University of Medical Sciences, Medical Student, Poznań, Poland
| | - Barbara Pietrucha
- Department of Immunology, Children's Memorial Health Institute, Warsaw, Poland
| |
Collapse
|
28
|
Carsetti R, Corrente F, Capponi C, Mirabella M, Cascioli S, Palomba P, Bertaina V, Pagliara D, Colucci M, Piano Mortari E. Comprehensive phenotyping of human peripheral blood B lymphocytes in pathological conditions. Cytometry A 2021; 101:140-149. [PMID: 34851033 PMCID: PMC9299869 DOI: 10.1002/cyto.a.24518] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/14/2021] [Accepted: 11/11/2021] [Indexed: 12/13/2022]
Abstract
Several diseases are associated with alterations of the B-cell compartment. Knowing how to correctly identify by flow cytometry the distribution of B-cell populations in the peripheral blood is important to help in the early diagnosis. In the accompanying article we describe how to identify the different B-cell subsets in the peripheral blood of healthy donors. Here we show a few examples of diseases that cause dysregulation of the B-cell compartment.
Collapse
Affiliation(s)
- Rita Carsetti
- Diagnostic Immunology Research Unit, Multimodal Medicine Research Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.,Microbiology and Diagnostic Immunology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Francesco Corrente
- Microbiology and Diagnostic Immunology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Claudia Capponi
- Microbiology and Diagnostic Immunology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Mattia Mirabella
- Microbiology and Diagnostic Immunology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Simona Cascioli
- Research Laboratories, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Patrizia Palomba
- Microbiology and Diagnostic Immunology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Valentina Bertaina
- Department of Pediatric Hematology/Oncology and Cell Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Daria Pagliara
- Department of Pediatric Hematology/Oncology and Cell Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Manuela Colucci
- Renal Diseases Research Unit, Genetic and Rare Diseases Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Eva Piano Mortari
- Diagnostic Immunology Research Unit, Multimodal Medicine Research Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
29
|
Dalmasso B, Pastorino L, Nathan V, Shah NN, Palmer JM, Howlie M, Johansson PA, Freedman ND, Carter BD, Beane-Freeman L, Hicks B, Molven A, Helgadottir H, Sankar A, Tsao H, Stratigos AJ, Helsing P, Van Doorn R, Gruis NA, Visser M, Wadt KAW, Mann G, Holland EA, Nagore E, Potrony M, Puig S, Menin C, Peris K, Fargnoli MC, Calista D, Soufir N, Harland M, Bishop T, Kanetsky PA, Elder DE, Andreotti V, Vanni I, Bruno W, Höiom V, Tucker MA, Yang XR, Andresen PA, Adams DJ, Landi MT, Hayward NK, Goldstein AM, Ghiorzo P. Germline ATM variants predispose to melanoma: a joint analysis across the GenoMEL and MelaNostrum consortia. Genet Med 2021; 23:2087-2095. [PMID: 34262154 PMCID: PMC8553617 DOI: 10.1038/s41436-021-01240-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 01/12/2023] Open
Abstract
PURPOSE Ataxia-Telangiectasia Mutated (ATM) has been implicated in the risk of several cancers, but establishing a causal relationship is often challenging. Although ATM single-nucleotide polymorphisms have been linked to melanoma, few functional alleles have been identified. Therefore, ATM impact on melanoma predisposition is unclear. METHODS From 22 American, Australian, and European sites, we collected 2,104 familial, multiple primary (MPM), and sporadic melanoma cases who underwent ATM genotyping via panel, exome, or genome sequencing, and compared the allele frequency (AF) of selected ATM variants classified as loss-of-function (LOF) and variants of uncertain significance (VUS) between this cohort and the gnomAD non-Finnish European (NFE) data set. RESULTS LOF variants were more represented in our study cohort than in gnomAD NFE, both in all (AF = 0.005 and 0.002, OR = 2.6, 95% CI = 1.56-4.11, p < 0.01), and familial + MPM cases (AF = 0.0054 and 0.002, OR = 2.97, p < 0.01). Similarly, VUS were enriched in all (AF = 0.046 and 0.033, OR = 1.41, 95% CI = 1.6-5.09, p < 0.01) and familial + MPM cases (AF = 0.053 and 0.033, OR = 1.63, p < 0.01). In a case-control comparison of two centers that provided 1,446 controls, LOF and VUS were enriched in familial + MPM cases (p = 0.027, p = 0.018). CONCLUSION This study, describing the largest multicenter melanoma cohort investigated for ATM germline variants, supports the role of ATM as a melanoma predisposition gene, with LOF variants suggesting a moderate-risk.
Collapse
Affiliation(s)
- B Dalmasso
- IRCCS Ospedale Policlinico San Martino, Genetics of Rare Cancers, Genoa, Italy.
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy.
| | - L Pastorino
- IRCCS Ospedale Policlinico San Martino, Genetics of Rare Cancers, Genoa, Italy
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | - V Nathan
- Oncogenomics Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - N N Shah
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - J M Palmer
- Oncogenomics Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - M Howlie
- Oncogenomics Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - P A Johansson
- Oncogenomics Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - N D Freedman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - B D Carter
- American Cancer Society, Atlanta, GA, USA
| | - L Beane-Freeman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - B Hicks
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - A Molven
- Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - H Helgadottir
- Department of Oncology Pathology, Karolinska Institutet and Karolinska University Hospital Solna, Stockholm, Sweden
| | - A Sankar
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - H Tsao
- Wellman Center for Photomedicine, Department of Dermatology, MGH Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| | - A J Stratigos
- First Department of Dermatology-Venereology, Andreas Sygros Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - P Helsing
- Department of Dermatology, Oslo University Hospital, Oslo, Norway
| | - R Van Doorn
- Department Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | - N A Gruis
- Department Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | - M Visser
- Department Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | - K A W Wadt
- Department of Clinical Genetics, University Hospital of Copenhagen, Copenhagen, Denmark
| | - G Mann
- Centre for Cancer Research, Westmead Institute for Medical Research, University of Sydney, Westmead, Australia
| | - E A Holland
- Centre for Cancer Research, Westmead Institute for Medical Research, University of Sydney, Westmead, Australia
| | - E Nagore
- Department of Dermatology, Instituto Valenciano de Oncologia, Valencia, Spain
| | - M Potrony
- Biochemistry and Molecular Genetics Department, Melanoma Unit, Hospital Clínic de Barcelona, IDIBAPS, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - S Puig
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
- Dermatology Department, Melanoma Unit, HospitalClínic de Barcelona, IDIBAPS, Universitat de Barcelona, Barcelona, Spain
| | - C Menin
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - K Peris
- Institute of Dermatology, Catholic University of the Sacred Heart, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - M C Fargnoli
- Dermatology, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - D Calista
- Dermatology Unit, Maurizio Bufalini Hospital, Cesena, Italy
| | - N Soufir
- Dépatement de Génétique Moléculaire, Hôpital Bichat-Claude Bernard, Paris, France
| | - M Harland
- Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - T Bishop
- Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - P A Kanetsky
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - D E Elder
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - V Andreotti
- IRCCS Ospedale Policlinico San Martino, Genetics of Rare Cancers, Genoa, Italy
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | - I Vanni
- IRCCS Ospedale Policlinico San Martino, Genetics of Rare Cancers, Genoa, Italy
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | - W Bruno
- IRCCS Ospedale Policlinico San Martino, Genetics of Rare Cancers, Genoa, Italy
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | - V Höiom
- Department of Oncology Pathology, Karolinska Institutet and Karolinska University Hospital Solna, Stockholm, Sweden
| | - M A Tucker
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - X R Yang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - P A Andresen
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - D J Adams
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - M T Landi
- Divison of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - N K Hayward
- Oncogenomics Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - A M Goldstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - P Ghiorzo
- IRCCS Ospedale Policlinico San Martino, Genetics of Rare Cancers, Genoa, Italy
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| |
Collapse
|
30
|
Zielen S, Duecker RP, Woelke S, Donath H, Bakhtiar S, Buecker A, Kreyenberg H, Huenecke S, Bader P, Mahlaoui N, Ehl S, El-Helou SM, Pietrucha B, Plebani A, van der Flier M, van Aerde K, Kilic SS, Reda SM, Kostyuchenko L, McDermott E, Galal N, Pignata C, Pérez JLS, Laws HJ, Niehues T, Kutukculer N, Seidel MG, Marques L, Ciznar P, Edgar JDM, Soler-Palacín P, von Bernuth H, Krueger R, Meyts I, Baumann U, Kanariou M, Grimbacher B, Hauck F, Graf D, Granado LIG, Prader S, Reisli I, Slatter M, Rodríguez-Gallego C, Arkwright PD, Bethune C, Deripapa E, Sharapova SO, Lehmberg K, Davies EG, Schuetz C, Kindle G, Schubert R. Simple Measurement of IgA Predicts Immunity and Mortality in Ataxia-Telangiectasia. J Clin Immunol 2021; 41:1878-1892. [PMID: 34477998 PMCID: PMC8604875 DOI: 10.1007/s10875-021-01090-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 06/25/2021] [Indexed: 11/29/2022]
Abstract
Patients with ataxia-telangiectasia (A-T) suffer from progressive cerebellar ataxia, immunodeficiency, respiratory failure, and cancer susceptibility. From a clinical point of view, A-T patients with IgA deficiency show more symptoms and may have a poorer prognosis. In this study, we analyzed mortality and immunity data of 659 A-T patients with regard to IgA deficiency collected from the European Society for Immunodeficiencies (ESID) registry and from 66 patients with classical A-T who attended at the Frankfurt Goethe-University between 2012 and 2018. We studied peripheral B- and T-cell subsets and T-cell repertoire of the Frankfurt cohort and survival rates of all A-T patients in the ESID registry. Patients with A-T have significant alterations in their lymphocyte phenotypes. All subsets (CD3, CD4, CD8, CD19, CD4/CD45RA, and CD8/CD45RA) were significantly diminished compared to standard values. Patients with IgA deficiency (n = 35) had significantly lower lymphocyte counts compared to A-T patients without IgA deficiency (n = 31) due to a further decrease of naïve CD4 T-cells, central memory CD4 cells, and regulatory T-cells. Although both patient groups showed affected TCR-ß repertoires compared to controls, no differences could be detected between patients with and without IgA deficiency. Overall survival of patients with IgA deficiency was significantly diminished. For the first time, our data show that patients with IgA deficiency have significantly lower lymphocyte counts and subsets, which are accompanied with reduced survival, compared to A-T patients without IgA deficiency. IgA, a simple surrogate marker, is indicating the poorest prognosis for classical A-T patients. Both non-interventional clinical trials were registered at clinicaltrials.gov 2012 (Susceptibility to infections in ataxia-telangiectasia; NCT02345135) and 2017 (Susceptibility to Infections, tumor risk and liver disease in patients with ataxia-telangiectasia; NCT03357978)
Collapse
Affiliation(s)
- Stefan Zielen
- Division of Allergology, Pulmonology and Cystic Fibrosis, Department for Children and Adolescents, Goethe University, Frankfurt, Germany
| | - Ruth Pia Duecker
- Division of Allergology, Pulmonology and Cystic Fibrosis, Department for Children and Adolescents, Goethe University, Frankfurt, Germany.
| | - Sandra Woelke
- Division of Allergology, Pulmonology and Cystic Fibrosis, Department for Children and Adolescents, Goethe University, Frankfurt, Germany
| | - Helena Donath
- Division of Allergology, Pulmonology and Cystic Fibrosis, Department for Children and Adolescents, Goethe University, Frankfurt, Germany
| | - Sharhzad Bakhtiar
- Division for Stem Cell Transplantation, Immunology and Intensive Care Unit, Department for Children and Adolescents, Goethe University, Frankfurt, Germany
| | - Aileen Buecker
- Division of Allergology, Pulmonology and Cystic Fibrosis, Department for Children and Adolescents, Goethe University, Frankfurt, Germany
| | - Hermann Kreyenberg
- Division for Stem Cell Transplantation, Immunology and Intensive Care Unit, Department for Children and Adolescents, Goethe University, Frankfurt, Germany
| | - Sabine Huenecke
- Division for Stem Cell Transplantation, Immunology and Intensive Care Unit, Department for Children and Adolescents, Goethe University, Frankfurt, Germany
| | - Peter Bader
- Division for Stem Cell Transplantation, Immunology and Intensive Care Unit, Department for Children and Adolescents, Goethe University, Frankfurt, Germany
| | - Nizar Mahlaoui
- Pediatric Immunology-Hematology and Rheumatology Unit, French National Reference Center for Primary Immune Deficiencies (CEREDIH), Necker Children's University Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Stephan Ehl
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sabine M El-Helou
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- RESIST - Cluster of Excellence 2155 To Hanover Medical School, Satellite Center Freiburg, Freiburg, Germany
- Department of Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
| | - Barbara Pietrucha
- Department of Immunology, The Children's Memorial Health Institute, Av. Dzieci Polskich 20, 04-730, Warsaw, Poland
| | - Alessandro Plebani
- Pediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, University of Brescia and ASST-Spedali Civili di Brescia, Brescia, Italy
| | - Michiel van der Flier
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Koen van Aerde
- Department of Pediatrics, Amalia's Children Hospital, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Sara S Kilic
- Department of Pediatric Immunology and Rheumatology, the School of Medicine, Uludag University, Bursa, Turkey
| | - Shereen M Reda
- Department of Pediatrics, Children's Hospital, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Larysa Kostyuchenko
- Center of Pediatric Immunology, Western Ukrainian Specialized Children's Medical Centre, Lviv, Ukraine
| | - Elizabeth McDermott
- Clinical Immunology and Allergy Unit, Nottingham University Hospitals, Nottingham, UK
| | - Nermeen Galal
- Department of Pediatrics, Cairo University Specialized Pediatric Hospital, Cairo, Egypt
| | - Claudio Pignata
- Department of Translational Medical Sciences, Section of Pediatrics, Federico II University, Naples, Italy
| | - Juan Luis Santos Pérez
- Infectious Diseases and Immunodeficiencies Unit, Service of Pediatrics, Hospital Universitario Virgen de Las Nieves, Granada, Spain
| | - Hans-Juergen Laws
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Center of Child and Adolescent Health, Heinrich-Heine University, Duesseldorf, Germany
| | - Tim Niehues
- Centre for Child and Adolescent Health, Helios Klinikum Krefeld, Krefeld, Germany
| | - Necil Kutukculer
- Faculty of Medicine, Department of Pediatric Immunology, Ege University, Izmir, Turkey
| | - Markus G Seidel
- Research Unit for Pediatric Hematology and Immunology, Division of Pediatric Hemato-Oncology, Department of Pediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria
| | - Laura Marques
- Pediatric Department, Infectious Diseases and Immunodeficiencies Unit, Porto Hospital Center, Porto, Portugal
| | - Peter Ciznar
- Pediatric Department, Faculty of Medicine, Children University Hospital in Bratislava, Comenius University in Bratislava, Bratislava, Slovakia
| | | | - Pere Soler-Palacín
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall D'Hebron Research Institute, Hospital Universitari Vall D'Hebron, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
| | - Horst von Bernuth
- Department of Pediatric Pneumology, Immunology and Intensive Care, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Department of Immunology, Labor Berlin Charité - Vivantes GmbH, Berlin, Germany
- Berlin Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Renate Krueger
- Department of Pediatric Pneumology, Immunology and Intensive Care, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Isabelle Meyts
- Department of Pediatrics, University Hospitals Leuven, and the Laboratory for Inborn Errors of Immunity, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Ulrich Baumann
- Department of Paediatric Pulmonology, Allergy and Neonatology, Hannover Medical School, Hannover, Germany
| | - Maria Kanariou
- Department of Immunology and Histocompatibility, Centre for Primary Immunodeficiencies, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Bodo Grimbacher
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- RESIST - Cluster of Excellence 2155 To Hanover Medical School, Satellite Center Freiburg, Freiburg, Germany
- DZIF-German Center for Infection Research, Satellite Center Freiburg, Freiburg, Germany; Centre for Integrative Biological Signalling Studies, Albert-Ludwigs University, Freiburg, Germany
| | - Fabian Hauck
- Department of Pediatrics, Dr. Von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Dagmar Graf
- MVZ Dr. Reising-Ackermann Und Kollegen, Leipzig, Germany
| | - Luis Ignacio Gonzalez Granado
- Primary Immunodeficiencies Unit, Pediatrics, Hospital 12 Octubre, Complutense University School of Medicine, Madrid, Spain
| | - Seraina Prader
- Division of Immunology and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Ismail Reisli
- Department of Pediatrics, Division of Pediatric Immunology and Allergy, Meram Medical Faculty, Necmettin Erbakan University, Konya, Turkey
| | - Mary Slatter
- Primary Immunodeficiency Group, Paediatric Immunology and Haematopoietic Stem Cell Transplantation, Translational and Clinical Research Institute, Great North Childrens' Hospital, Newcastle University, Newcastle upon Tyne, UK
| | - Carlos Rodríguez-Gallego
- Department of Immunology, Dr. Negrin University Hospital of Gran Canaria, University Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
| | - Peter D Arkwright
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester and Royal Manchester Children's Hospital, Manchester, UK
| | | | - Elena Deripapa
- National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Svetlana O Sharapova
- Research Department, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk region, Minsk, Belarus
| | - Kai Lehmberg
- Division for Pediatric Stem Cell Transplantation and Immunology, Clinic for Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - E Graham Davies
- Great Ormond Street Hospital and UCL Great Ormond Street Institute of Child Health, London, UK
| | - Catharina Schuetz
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Gerhard Kindle
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- FREEZE Biobank, Center for Biobanking, Medical Center and Faculty of Medicine, University of Freiburg, Breisacher Str. 115, 79106, Freiburg, Germany
| | - Ralf Schubert
- Division of Allergology, Pulmonology and Cystic Fibrosis, Department for Children and Adolescents, Goethe University, Frankfurt, Germany
| |
Collapse
|
31
|
Sato D, Moriya K, Nakano T, Miyagawa C, Katayama S, Niizuma H, Sasahara Y, Kure S. Refractory T-cell/histiocyte-rich large B-cell lymphoma in a patient with ataxia-telangiectasia caused by novel compound heterozygous variants in ATM. Int J Hematol 2021; 114:735-741. [PMID: 34424493 DOI: 10.1007/s12185-021-03203-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/26/2021] [Accepted: 08/02/2021] [Indexed: 10/20/2022]
Abstract
Ataxia-telangiectasia (A-T) is an autosomal recessive chromosomal breakage syndrome caused by mutation of the ATM (A-T mutated) gene, which encodes a protein kinase that has a major role in the cellular response to DNA damage. Approximately, 10% of A-T patients develop lymphoid malignancies. Deaths caused by extreme sensitivity to chemotherapy for malignancy have been reported, and cancer treatment in A-T is extraordinarily difficult, needing careful monitoring and individualized protocols. We report the case of a 12-year-old girl with A-T diagnosed at the age of 3 in association with IgA deficiency and recurrent pulmonary infections. Sanger sequencing revealed compound heterozygosity of the ATM gene, which bore two novel mutations. At the age of 12, she developed stage IV T-cell/histiocyte-rich large B-cell lymphoma. The tumor was resistant to chemotherapy, and she unfortunately died of cardiac insufficiency and multiple organ failure induced by rapid progression of the disease. The treatment approach for children with A-T and advanced-stage B-non-Hodgkin lymphoma must be refined.
Collapse
Affiliation(s)
- Daichi Sato
- Department of Pediatrics, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Japan
| | - Kunihiko Moriya
- Department of Pediatrics, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Japan.
| | - Tomohiro Nakano
- Department of Pediatrics, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Japan
| | - Chihiro Miyagawa
- Department of Pediatrics, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Japan
| | - Saori Katayama
- Department of Pediatrics, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Japan
| | - Hidetaka Niizuma
- Department of Pediatrics, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Japan
| | - Yoji Sasahara
- Department of Pediatrics, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Japan
| | - Shigeo Kure
- Department of Pediatrics, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Japan
| |
Collapse
|
32
|
Desimio MG, Finocchi A, Di Matteo G, Di Cesare S, Giancotta C, Conti F, Chessa L, Piane M, Montin D, Dellepiane M, Rossi P, Cancrini C, Doria M. Altered NK-cell compartment and dysfunctional NKG2D/NKG2D-ligand axis in patients with ataxia-telangiectasia. Clin Immunol 2021; 230:108802. [PMID: 34298181 DOI: 10.1016/j.clim.2021.108802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/25/2021] [Accepted: 07/17/2021] [Indexed: 11/15/2022]
Abstract
Ataxia-telangiectasia (A-T) is a multisystem disorder caused by biallelic pathogenic variants in the gene encoding A-T mutated (ATM) kinase, a master regulator of the DNA damage response (DDR) pathway. Most A-T patients show cellular and/or humoral immunodeficiency that has been associated with cancer risk and reduced survival, but NK cells have not been thoroughly studied. Here we investigated NK cells of A-T patients with a special focus on the NKG2D receptor that triggers cytotoxicity upon engagement by its ligands (NKG2DLs) commonly induced via the DDR pathway on infected, transformed, and variously stressed cells. Using flow cytometry, we examined the phenotype and function of NK cells in 6 A-T patients as compared with healthy individuals. NKG2D expression was evaluated also by western blotting and RT-qPCR; plasma soluble NKG2DLs (sMICA, sMICB, sULBP1, ULBP2) were measured by ELISA. Results showed that A-T NK cells were skewed towards the CD56neg anergic phenotype and displayed decreased expression of NKG2D and perforin. NKG2D was reduced at the protein but not at the mRNA level and resulted in impaired NKG2D-mediated cytotoxicity in 4/6 A-T patients. Moreover, in A-T plasma we found 24-fold and 2-fold increase of sMICA and sULBP1, respectively, both inversely correlated with NKG2D expression. Overall, NK cells are disturbed in A-T patients showing reduced NKG2D expression, possibly caused by persistent engagement of its ligands, that may contribute to susceptibility to cancer and infections and represent novel targets for therapeutic interventions.
Collapse
Affiliation(s)
- Maria Giovanna Desimio
- Research Unit of Primary Immunodeficiencies, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Andrea Finocchi
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Gigliola Di Matteo
- Research Unit of Primary Immunodeficiencies, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy; Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Silvia Di Cesare
- Research Unit of Primary Immunodeficiencies, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy; Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Carmela Giancotta
- Research Unit of Primary Immunodeficiencies, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Francesca Conti
- Research Unit of Primary Immunodeficiencies, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Maria Piane
- Department of Clinical and Molecular Medicine, Sapienza University, Rome, Italy
| | - Davide Montin
- Pediatric Immunology and Rheumatology, Regina Margherita Children's Hospital, Turin, Italy
| | - Marta Dellepiane
- Department of Public Health and Pediatrics, University of Turin, Turin, Italy
| | - Paolo Rossi
- Research Unit of Primary Immunodeficiencies, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy; Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Caterina Cancrini
- Research Unit of Primary Immunodeficiencies, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy; Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Margherita Doria
- Research Unit of Primary Immunodeficiencies, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| |
Collapse
|
33
|
Tiet MY, Horvath R, Hensiek AE. Ataxia telangiectasia: what the neurologist needs to know. Pract Neurol 2021; 20:404-414. [PMID: 32958592 DOI: 10.1136/practneurol-2019-002253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2020] [Indexed: 11/04/2022]
Abstract
Ataxia telangiectasia is an autosomal recessive DNA repair disorder characterised by complex neurological symptoms, with an elevated risk of malignancy, immunodeficiency and other systemic complications. Patients with variant ataxia telangiectasia-with some preserved ataxia telangiectasia-mutated (ATM) kinase activity-have a milder and often atypical phenotype, which can lead to long delays in diagnosis. Clinicians need to be aware of the spectrum of clinical presentations of ataxia telangiectasia, especially given the implications for malignancy surveillance and management. Here, we review the phenotypes of ataxia telangiectasia, illustrated with case reports and videos, and discuss its pathological mechanisms, diagnosis and management.
Collapse
Affiliation(s)
- May Yung Tiet
- Department of Clinical Neurosciences, Addenbrookes Hospital, Cambridge, UK
| | - Rita Horvath
- Department of Clinical Neurosciences, Addenbrookes Hospital, Cambridge, UK
| | - Anke E Hensiek
- Department of Clinical Neurosciences, Addenbrookes Hospital, Cambridge, UK .,National Adult Clinic for Ataxia Telangiectasia, Papworth Hospital NHS Foundation Trust, Cambridge, UK
| |
Collapse
|
34
|
Duecker RP, Gronau L, Baer PC, Zielen S, Schubert R. Survival and Functional Immune Reconstitution After Haploidentical Stem Cell Transplantation in Atm-Deficient Mice. Front Immunol 2021; 12:693897. [PMID: 34267759 PMCID: PMC8276263 DOI: 10.3389/fimmu.2021.693897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/16/2021] [Indexed: 11/13/2022] Open
Abstract
Hematopoietic stem cell transplantation (HSCT) has been proposed as a promising therapeutic opportunity to improve immunity and prevent hematologic malignancies in Ataxia-telangiectasia (A-T). However, experience in the transplantation strategy for A-T patients is still scarce. The aim of this study was to investigate whether different approaches of HSCT are feasible in regard to graft versus host response and sufficient concerning functional immune reconstitution. Atm-deficient mice were treated with a clinically relevant non-myeloablative host-conditioning regimen and transplanted with CD90.2-depleted, green fluorescent protein (GFP)-expressing, and ataxia telangiectasia mutated (ATM)-competent bone marrow donor cells in a syngeneic, haploidentical or allogeneic setting. Like syngeneic HSCT, haploidentical HSCT, but not allogeneic HSCT extended the lifespan of Atm-deficient mice through the reduction of thymic tumors and normalized T-cell numbers. Donor-derived splenocytes isolated from transplanted Atm-deficient mice filled the gap of cell loss in the naïve T-cell population and raised CD4 cell functionality up to wild-type level. Interestingly, HSCT using heterozygous donor cells let to a significantly improved survival of Atm-deficient mice and increased CD4 cell numbers as well as CD4 cell functionality equivalent to HSCT using with wild-type donor cells. Our data provided evidence that haploidentical HSCT could be a feasible strategy for A-T, possibly even if the donor is heterozygous for ATM. However, this basic research cannot substitute any research in humans.
Collapse
Affiliation(s)
- Ruth Pia Duecker
- Division for Allergy, Pneumology and Cystic Fibrosis, Department for Children and Adolescence, Goethe-University, Frankfurt am Main, Germany
| | - Lucia Gronau
- Division for Allergy, Pneumology and Cystic Fibrosis, Department for Children and Adolescence, Goethe-University, Frankfurt am Main, Germany
| | - Patrick C. Baer
- Division of Nephrology, Department of Internal Medicine III, Goethe-University, Frankfurt am Main, Germany
| | - Stefan Zielen
- Division for Allergy, Pneumology and Cystic Fibrosis, Department for Children and Adolescence, Goethe-University, Frankfurt am Main, Germany
| | - Ralf Schubert
- Division for Allergy, Pneumology and Cystic Fibrosis, Department for Children and Adolescence, Goethe-University, Frankfurt am Main, Germany
| |
Collapse
|
35
|
Weitering TJ, Melsen JE, van Ostaijen-Ten Dam MM, Weemaes CMR, Schilham MW, van der Burg M. Normal Numbers of Stem Cell Memory T Cells Despite Strongly Reduced Naive T Cells Support Intact Memory T Cell Compartment in Ataxia Telangiectasia. Front Immunol 2021; 12:686333. [PMID: 34248969 PMCID: PMC8264762 DOI: 10.3389/fimmu.2021.686333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/26/2021] [Indexed: 11/22/2022] Open
Abstract
Ataxia Telangiectasia (AT) is a rare inherited disorder characterized by progressive cerebellar ataxia, chromosomal instability, cancer susceptibility and immunodeficiency. AT is caused by mutations in the ATM gene, which is involved in multiple processes linked to DNA double strand break repair. Immunologically, ATM mutations lead to hampered V(D)J recombination and consequently reduced numbers of naive B and T cells. In addition, class switch recombination is disturbed resulting in antibody deficiency causing common, mostly sinopulmonary, bacterial infections. Yet, AT patients in general have no clinical T cell associated infections and numbers of memory T cells are usually normal. In this study we investigated the naive and memory T cell compartment in five patients with classical AT and compared them with five healthy controls using a 24-color antibody panel and spectral flow cytometry. Multidimensional analysis of CD4 and CD8 TCRαβ+ cells revealed that early naive T cell populations, i.e. CD4+CD31+ recent thymic emigrants and CD8+CCR7++CD45RA++ T cells, were strongly reduced in AT patients. However, we identified normal numbers of stem cell memory T cells expressing CD95, which are antigen-experienced T cells that can persist for decades because of their self-renewal capacity. We hypothesize that the presence of stem cell memory T cells explains why AT patients have an intact memory T cell compartment. In line with this novel finding, memory T cells of AT patients were normal in number and expressed chemokine receptors, activating and inhibitory receptors in comparable percentages as controls. Comparing memory T cell phenotypes by Boolean gating revealed similar diversity indices in AT compared to controls. We conclude that AT patients have a fully developed memory T cell compartment despite strongly reduced naive T cells. This could be explained by the presence of normal numbers of stem cell memory T cells in the naive T cell compartment, which support the maintenance of the memory T cells. The identification of stem cell memory T cells via our spectral flow cytometric approach is highly relevant for better understanding of T cell immunity in AT. Moreover, it provides possibilities for further research on this recently identified T cell population in other inborn errors of immunity.
Collapse
Affiliation(s)
- Thomas J Weitering
- Laboratory for Pediatric Immunology, Department of Pediatrics, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, Netherlands
| | - Janine E Melsen
- Laboratory for Pediatric Immunology, Department of Pediatrics, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, Netherlands
| | - Monique M van Ostaijen-Ten Dam
- Laboratory for Pediatric Immunology, Department of Pediatrics, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, Netherlands
| | - Corry M R Weemaes
- Department of Pediatrics, Radboudumc Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, Netherlands
| | - Marco W Schilham
- Laboratory for Pediatric Immunology, Department of Pediatrics, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, Netherlands
| | - Mirjam van der Burg
- Laboratory for Pediatric Immunology, Department of Pediatrics, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
36
|
Neurofilament light chain: A novel blood biomarker in patients with ataxia telangiectasia. Eur J Paediatr Neurol 2021; 32:93-97. [PMID: 33878608 DOI: 10.1016/j.ejpn.2021.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 12/13/2022]
Abstract
AIM Neurofilament light chain (NfL) is recognized as a blood biomarker in several neurodegenerative disorders, but its possible relevance in Ataxia Telangiectasia (A-T) has not been examined. The aim of this study was to investigate the biomarker potential of blood NfL concentrations in patients with A-T. METHOD Blood (serum/plasma) NfL concentrations were measured in a Dutch and an American cohort of patients with A-T and compared to control values. Additionally, correlations between NfL concentrations and disease phenotype (classic versus variant A-T) were studied. RESULTS In total 40 (23 Dutch and 17 American) patients with A-T (32 patients with classic A-T and 7 patients with variant A-T) and 17 age- and gender-matched (to the American cohort) healthy controls were included in this study. Blood (serum/plasma) NfL concentrations in patients with classic A-T and age ≤ 12 years were elevated compared to age matched controls. Patients with classic A-T > 12 years also had higher blood (serum/plasma) NfL concentrations (here: compared to age-dependent reference values found in the literature). Patients with classic A-T had higher blood (serum/plasma) NfL concentrations than patients with the variant phenotype. CONCLUSION Blood (serum/plasma) NfL concentrations are elevated in patients with classic A-T and appear to correlate with the disease phenotype (classic versus variant). Therefore, blood (serum/plasma) NfL may be a promising biomarker in A-T.
Collapse
|
37
|
ATM: Translating the DNA Damage Response to Adaptive Immunity. Trends Immunol 2021; 42:350-365. [PMID: 33663955 DOI: 10.1016/j.it.2021.02.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/22/2021] [Accepted: 02/01/2021] [Indexed: 12/20/2022]
Abstract
ATM is often dubbed the master regulator of the DNA double stranded break (DSB) response. Since proper induction and repair of DNA DSBs forms the core of immunological diversity, it is surprising that patients with ataxia telangiectasia generally have a mild immunodeficiency in contrast to other DSB repair syndromes. In this review, we address this discrepancy by delving into the functions of ATM in DSB repair and cell cycle control and translate these to adaptive immunity. We conclude that ATM, despite its myriad functions, is not an absolute requirement for acquiring sufficient levels of immunological diversity to prevent severe viral and opportunistic infections. There is, however, a more clinically pronounced antibody deficiency in ataxia telangiectasia due to disturbed class switch recombination.
Collapse
|
38
|
Ogulur I, Ertuzun T, Kocamis B, Kendir Demirkol Y, Uyar E, Kiykim A, Baser D, Yesil G, Akturk H, Somer A, Ozen A, Karakoc-Aydiner E, Muftuoglu M, Baris S. Parents of ataxia-telangiectasia patients display a distinct cellular immune phenotype mimicking ATM-mutated patients. Pediatr Allergy Immunol 2021; 32:349-357. [PMID: 33012025 DOI: 10.1111/pai.13387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 06/30/2020] [Accepted: 09/25/2020] [Indexed: 01/29/2023]
Abstract
BACKGROUND Heterozygous relatives of ataxia-telangiectasia (AT) patients are at an increased risk for certain AT-related manifestations. We also show that there is an increase of infection frequency in parents of AT patients. Thus, we hypothesized that the parents might exhibit immune alterations similar to their affected children. METHODS Lymphocyte phenotyping to enumerate T- and B-cell subsets was performed. Functional analyses included in vitro quantified γ-H2AX, poly (ADP-ribose) polymerase (PARP) and caspase-9 proteins. Chromosomal instability was determined by comet assay. RESULTS We analyzed 20 AT patients (14F/6M), 31 parents (16F/15M), and 35 age-matched healthy controls. The AT patients' parents exhibited low frequency of naive CD4+ T- (n = 14, 45%) and recent thymic emigrants (n = 11, 35%) in comparison with the age-matched healthy donors. Interestingly, parents with low naive T cells also demonstrated high rate of recurrent infections (9/14, 64%). In comparison with age-matched controls, parents who had recurrent infections and low naive T cells showed significantly higher baseline γ-H2AX levels and H2 O2 -induced DNA damage as well as increased cleaved caspase-9 and PARP proteins. CONCLUSION Parents of AT patients could present with recurrent infections and display cellular defects that mimic AT patients. The observed immunological changes could be associated with increased DNA double-strand breaks.
Collapse
Affiliation(s)
- Ismail Ogulur
- Division of Pediatric Allergy-Immunology, Faculty of Medicine, Marmara University, Istanbul, Turkey.,Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey
| | - Tugce Ertuzun
- Department of Molecular Biology and Genetics, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey.,Department of Medical Biotechnology, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Burcu Kocamis
- Division of Pediatric Allergy-Immunology, Faculty of Medicine, Marmara University, Istanbul, Turkey
| | - Yasemin Kendir Demirkol
- Department of Pediatric Genetics, Umraniye Education and Research Hospital, Health Science University, Istanbul, Turkey
| | - Emel Uyar
- Division of Pediatric Allergy-Immunology, Faculty of Medicine, Marmara University, Istanbul, Turkey
| | - Ayca Kiykim
- Division of Pediatric Allergy-Immunology, Faculty of Medicine, Marmara University, Istanbul, Turkey
| | - Dilek Baser
- Division of Pediatric Allergy-Immunology, Faculty of Medicine, Marmara University, Istanbul, Turkey
| | - Gozde Yesil
- Department of Genetic, Bezmialem Vakıf University, Istanbul, Turkey
| | - Hacer Akturk
- Division of Pediatric Infections, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Ayper Somer
- Division of Pediatric Infections, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Ahmet Ozen
- Division of Pediatric Allergy-Immunology, Faculty of Medicine, Marmara University, Istanbul, Turkey.,Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey
| | - Elif Karakoc-Aydiner
- Division of Pediatric Allergy-Immunology, Faculty of Medicine, Marmara University, Istanbul, Turkey.,Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey
| | - Meltem Muftuoglu
- Department of Molecular Biology and Genetics, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey.,Department of Medical Biotechnology, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Safa Baris
- Division of Pediatric Allergy-Immunology, Faculty of Medicine, Marmara University, Istanbul, Turkey.,Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey
| |
Collapse
|
39
|
Heidarzadeh Arani M, ArefNezhad R, Fathgharib J, Aghamohammadi A, Motedayyen H. Clinical complications and their management in a child with ataxia-telangiectasia (A-T): A case report study. Clin Case Rep 2021; 9:556-559. [PMID: 33505696 PMCID: PMC7813114 DOI: 10.1002/ccr3.3581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 10/24/2020] [Accepted: 11/05/2020] [Indexed: 12/24/2022] Open
Abstract
Ataxia-telangiectasia (A-T) is known as an uncommon autosomal recessive disorder associated with recurrent infections and other clinical complications. The management of its complications can improve life quality of patients.
Collapse
Affiliation(s)
| | - Reza ArefNezhad
- Research and Development DepartmentExir Azma Salam Iranian InstituteTehranIran
- Department of AnatomySchool of MedicineShiraz University of Medical SciencesShirazIran
| | - Javad Fathgharib
- Department of PediatricsFaculty of MedicineKashan University of Medical SciencesKashanIran
| | - Asghar Aghamohammadi
- Research Center for ImmuynodeficiencyTehran University of Medical SciencesTehranIran
| | - Hossein Motedayyen
- Autoimmune Diseases Research CenterKashan University of Medical SciencesKashanIran
| |
Collapse
|
40
|
Cutaneous and systemic granulomatosis in ataxia-telangiectasia: a clinico-pathological study. Postepy Dermatol Alergol 2020; 37:760-765. [PMID: 33240017 PMCID: PMC7675092 DOI: 10.5114/ada.2020.100485] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/25/2019] [Indexed: 12/14/2022] Open
Abstract
Introduction The development of granulomas is a well-recognized manifestation of immunodeficiency in ataxia-telangiectasia (A-T), resulting from lymphocyte developmental abnormalities, impaired immunosurveillance, and inappropriate innate immune response-driven inflammation. Aim To better understand pathological and immunological phenomena involved in development of cutaneous and visceral granulomatosis observable in patients with ataxia-telangiectasia. Material and methods We retrospectively reviewed medical records of eight A-T children, aged from 2 to 13 years, with regard to clinical, immunological and histopathological features of cutaneous and visceral granulomatosis. Results In four out of eight A-T patients studied, cutaneous granulomas clinically presented as skin nodules and ulcerated erythematous plaques disseminated on the face, and on trauma-prone areas of upper and lower extremities. Visceral granulomatosis had a severe clinical course and involved the lungs, the spleen, the liver and the larynx. Histologically, cutaneous and laryngeal granulomas showed extensive cellular infiltrations containing T lymphocytes with predominating CD8+ phenotype and with CD68+ histiocytes. The immunological profile with the hyper-IgM phenotype, markedly reduced numbers of B and naive CD4+ and CD8+ T cells with predominating IgM-only memory B cells and skewed repertoire of a T cell receptor was observable in patients with skin and visceral granulomatosis. Conclusions In the setting of combined immunodeficiency in A-T, cutaneous and systemic granulomatosis reflects a granulomatous reaction pattern, as a result of inappropriate immune regulation.
Collapse
|
41
|
Sharma R, Lewis S, Wlodarski MW. DNA Repair Syndromes and Cancer: Insights Into Genetics and Phenotype Patterns. Front Pediatr 2020; 8:570084. [PMID: 33194896 PMCID: PMC7644847 DOI: 10.3389/fped.2020.570084] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 09/18/2020] [Indexed: 12/15/2022] Open
Abstract
DNA damage response is essential to human physiology. A broad spectrum of pathologies are displayed by individuals carrying monoallelic or biallelic loss-of-function mutations in DNA damage repair genes. DNA repair syndromes with biallelic disturbance of essential DNA damage response pathways manifest early in life with multi-systemic involvement and a high propensity for hematologic and solid cancers, as well as bone marrow failure. In this review, we describe classic biallelic DNA repair cancer syndromes arising from faulty single- and double-strand DNA break repair, as well as dysfunctional DNA helicases. These clinical entities include xeroderma pigmentosum, constitutional mismatch repair deficiency, ataxia telangiectasia, Nijmegen breakage syndrome, deficiencies of DNA ligase IV, NHEJ/Cernunnos, and ERCC6L2, as well as Bloom, Werner, and Rothmund-Thompson syndromes. To give an in-depth understanding of these disorders, we provide historical overview and discuss the interplay between complex biology and heterogeneous clinical manifestations.
Collapse
Affiliation(s)
- Richa Sharma
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, United States
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Sara Lewis
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Marcin W. Wlodarski
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, United States
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
42
|
Amirifar P, Ranjouri MR, Lavin M, Abolhassani H, Yazdani R, Aghamohammadi A. Ataxia-telangiectasia: epidemiology, pathogenesis, clinical phenotype, diagnosis, prognosis and management. Expert Rev Clin Immunol 2020; 16:859-871. [PMID: 32791865 DOI: 10.1080/1744666x.2020.1810570] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Ataxia-telangiectasia (A-T) is a rare autosomal recessive syndrome characterized by progressive cerebellar ataxia, oculocutaneous telangiectasia, variable immunodeficiency, radiosensitivity, and cancer predisposition. Mutations cause A-T in the ataxia telangiectasia mutated (ATM) gene encoding a serine/threonine-protein kinase. AREAS COVERED The authors reviewed the literature on PubMed, Web of Science, and Scopus databases to collect comprehensive data related to A-T. This review aims to discuss various update aspects of A-T, including epidemiology, pathogenesis, clinical manifestations, diagnosis, prognosis, and management. EXPERT OPINION A-T as a congenital disorder has phenotypic heterogeneity, and the severity of symptoms in different patients depends on the severity of mutations. This review provides a comprehensive overview of A-T, although some relevant questions about pathogenesis remain unanswered, probably owing to the phenotypic heterogeneity of this monogenic disorder. The presence of various clinical and immunologic manifestations in A-T indicates that the identification of the role of defective ATM in phenotype can be helpful in the better management and treatment of patients in the future.
Collapse
Affiliation(s)
- Parisa Amirifar
- Medical Genetics Department, School of Medicine, Tehran University of Medical Sciences , Tehran, Iran.,Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science , Tehran, Iran
| | - Mohammad Reza Ranjouri
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science , Tehran, Iran.,Molecular Medicine and Genetics Department, School of Medicine, Zanjan University of Medical Sciences , Zanjan, Iran
| | - Martin Lavin
- University of Queensland Centre for Clinical Research (UQCCR), University of Queensland , L, Australia
| | - Hassan Abolhassani
- Research Center for Primary Immunodeficiencies, Iran University of Medical Science , Tehran, Iran.,Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge , Stockholm, Sweden
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science , Tehran, Iran
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science , Tehran, Iran
| |
Collapse
|
43
|
Moeini Shad T, Yousefi B, Amirifar P, Delavari S, Rae W, Kokhaei P, Abolhassani H, Aghamohammadi A, Yazdani R. Variable Abnormalities in T and B Cell Subsets in Ataxia Telangiectasia. J Clin Immunol 2020; 41:76-88. [PMID: 33052516 DOI: 10.1007/s10875-020-00881-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/29/2020] [Indexed: 01/03/2023]
Abstract
BACKGROUND Ataxia-telangiectasia (AT) is a rare genetic condition, caused by biallelic deleterious variants in the ATM gene, and has variable immunological abnormalities. This study aimed to examine immunologic parameters reflecting cell development, activation, proliferation, and class switch recombination (CSR) and determine their relationship to the clinical phenotype in AT patients. METHODS In this study, 40 patients with a confirmed diagnosis of AT from the Iranian immunodeficiency registry center and 28 age-sex matched healthy controls were enrolled. We compared peripheral B and T cell subsets and T cell proliferation response to CD3/CD28 stimulation in AT patients with and without CSR defects using flow cytometry. RESULTS A significant decrease in naïve, transitional, switched memory, and IgM only memory B cells, along with a sharp increase in the marginal zone-like and CD21low B cells was observed in the patients. We also found CD4+ and CD8+ naïve, central memory, and terminally differentiated effector memory CD4+ (TEMRA) T cells were decreased. CD4+ and CD8+ effector memory, CD8+ TEMRA, and CD4+ regulatory T cells were significantly elevated in our patients. CD4+ T cell proliferation was markedly impaired compared to the healthy controls. Moreover, immunological investigations of 15 AT patients with CSR defect revealed a significant reduction in the marginal zone, switched memory, and more intense defects in IgM only memory B cells, CD4+ naïve and central memory T cells. CONCLUSION The present study revealed that patients with AT have a broad spectrum of cellular and humoral deficiencies. Therefore, a detailed evaluation of T and B cell subsets increases understanding of the disease in patients and the risk of infection.
Collapse
Affiliation(s)
- Tannaz Moeini Shad
- Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran.,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahman Yousefi
- Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Parisa Amirifar
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Samaneh Delavari
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - William Rae
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, UK.,Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK
| | - Parviz Kokhaei
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran.,Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital Solna and Karolinska Institutet, Stockholm, Sweden
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Primary Immunodeficiencies, Iran University of Medical Sciences, Tehran, Iran.,Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
44
|
Mensah KA, Chen JW, Schickel JN, Isnardi I, Yamakawa N, Vega-Loza A, Anolik JH, Gatti RA, Gelfand EW, Montgomery RR, Horowitz MC, Craft JE, Meffre E. Impaired ATM activation in B cells is associated with bone resorption in rheumatoid arthritis. Sci Transl Med 2020; 11:11/519/eaaw4626. [PMID: 31748230 DOI: 10.1126/scitranslmed.aaw4626] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 10/22/2019] [Indexed: 12/21/2022]
Abstract
Patients with rheumatoid arthritis (RA) may display atypical CD21-/lo B cells in their blood, but the implication of this observation remains unclear. We report here that the group of patients with RA and elevated frequencies of CD21-/lo B cells shows decreased ataxia telangiectasia-mutated (ATM) expression and activation in B cells compared with other patients with RA and healthy donor controls. In agreement with ATM involvement in the regulation of V(D)J recombination, patients with RA who show defective ATM function displayed a skewed B cell receptor (BCR) Igκ repertoire, which resembled that of patients with ataxia telangiectasia (AT). This repertoire was characterized by increased Jκ1 and decreased upstream Vκ gene segment usage, suggesting improper secondary recombination processes and selection. In addition, altered ATM function in B cells was associated with decreased osteoprotegerin and increased receptor activator of nuclear factor κB ligand (RANKL) production. These changes favor bone loss and correlated with a higher prevalence of erosive disease in patients with RA who show impaired ATM function. Using a humanized mouse model, we also show that ATM inhibition in vivo induces an altered Igκ repertoire and RANKL production by immature B cells in the bone marrow, leading to decreased bone density. We conclude that dysregulated ATM function in B cells promotes bone erosion and the emergence of circulating CD21-/lo B cells, thereby contributing to RA pathophysiology.
Collapse
Affiliation(s)
- Kofi A Mensah
- Section of Rheumatology, Allergy, and Clinical Immunology, Yale University School of Medicine, New Haven, CT 06511, USA.,Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Jeff W Chen
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Jean-Nicolas Schickel
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511, USA
| | | | - Natsuko Yamakawa
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Andrea Vega-Loza
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Jennifer H Anolik
- Division of Rheumatology, Allergy, and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Richard A Gatti
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Erwin W Gelfand
- Department of Pediatrics, National Jewish Health, University of Colorado, Denver, CO 80113, USA
| | - Ruth R Montgomery
- Section of Rheumatology, Allergy, and Clinical Immunology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Mark C Horowitz
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Joe E Craft
- Section of Rheumatology, Allergy, and Clinical Immunology, Yale University School of Medicine, New Haven, CT 06511, USA.,Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Eric Meffre
- Section of Rheumatology, Allergy, and Clinical Immunology, Yale University School of Medicine, New Haven, CT 06511, USA. .,Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511, USA
| |
Collapse
|
45
|
Verstegen RHJ, Kusters MAA. Inborn Errors of Adaptive Immunity in Down Syndrome. J Clin Immunol 2020; 40:791-806. [PMID: 32638194 DOI: 10.1007/s10875-020-00805-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 06/10/2020] [Indexed: 12/15/2022]
Abstract
Down syndrome fits an immunophenotype of combined immunodeficiency with immunodysregulation, manifesting with increased susceptibility to infections, autoimmunity, autoinflammatory diseases, and hematologic malignancies. Qualitative and quantitative alterations in innate and adaptive immunity are found in most individuals with Down syndrome. However, there is substantial heterogeneity and no correlation between immunophenotype and clinical presentation. Previously, it was thought that the immunological changes in Down syndrome were caused by precocious aging. We emphasize in this review that the immune system in Down syndrome is intrinsically different from the very beginning. The overexpression of specific genes located on chromosome 21 contributes to immunodeficiency and immunodysregulation, but gene expression differs between genes located on chromosome 21 and depends on tissue and cell type. In addition, trisomy 21 results in gene dysregulation of the whole genome, reflecting the complex nature of this syndrome in comparison to well-known inborn errors of immunity that result from monogenic germline mutations. In this review, we provide an updated overview focusing on inborn errors of adaptive immunity in Down syndrome.
Collapse
Affiliation(s)
- Ruud H J Verstegen
- Division of Clinical Pharmacology and Toxicology, Department of Paediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada. .,Division of Rheumatology, Department of Paediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada.
| | - Maaike A A Kusters
- Department of Immunology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.,University College London Great Ormond Street Institute of Child Health, London, UK
| |
Collapse
|
46
|
Wölke S, Donath H, Bakhtiar S, Trischler J, Schubert R, Zielen S. Immune competence and respiratory symptoms in patients with ataxia telangiectasia: A prospective follow-up study. Clin Immunol 2020; 217:108491. [PMID: 32504779 DOI: 10.1016/j.clim.2020.108491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 04/26/2020] [Accepted: 05/30/2020] [Indexed: 01/03/2023]
Abstract
Ataxia telangiectasia is a multi-system disorder characterized by progressive cerebellar ataxia, malignancies, chronic pulmonary disease and immunodeficiency. The aim of our study was to determine the immune competence and prevalence of respiratory infections and/or chronic cough in classical A-T patients compared to age-matched healthy controls. STUDY DESIGN We recruited 20 classical A-T not treated by immunoglobulins and 21 healthy age-matched control patients. The caregivers were advised to keep a daily diary with the following items (daytime and nighttime cough, runny nose, fever), number of cold episodes, number of antibiotic treatments. RESULTS Patients with A-T showed significant differences compared to healthy controls in symptom score, daytime and nighttime cough, days with symptoms and missed days in kindergarten/school. Severe infections with hospitalization occurred rarely. Respiratory symptoms did not correlate with immunoglobulin levels in A-T patients. CONCLUSIONS Mild symptoms like chronic cough were present in A-T patients, possibly indicating ongoing silent crippling disease.
Collapse
Affiliation(s)
- Sandra Wölke
- Department for Children and Adolescents, Division of Allergology, Pulmonology and Cystic fibrosis, Goethe University, Frankfurt, Germany
| | - Helena Donath
- Department for Children and Adolescents, Division of Allergology, Pulmonology and Cystic fibrosis, Goethe University, Frankfurt, Germany
| | - Shahrzad Bakhtiar
- Department for Children and Adolescents, Division for Stem Cell Transplantation and Immunology, Goethe University, Frankfurt, Germany
| | - Jordis Trischler
- Department for Children and Adolescents, Division of Allergology, Pulmonology and Cystic fibrosis, Goethe University, Frankfurt, Germany
| | - Ralf Schubert
- Department for Children and Adolescents, Division of Allergology, Pulmonology and Cystic fibrosis, Goethe University, Frankfurt, Germany
| | - Stefan Zielen
- Department for Children and Adolescents, Division of Allergology, Pulmonology and Cystic fibrosis, Goethe University, Frankfurt, Germany.
| |
Collapse
|
47
|
Human genetic dissection of papillomavirus-driven diseases: new insight into their pathogenesis. Hum Genet 2020; 139:919-939. [PMID: 32435828 DOI: 10.1007/s00439-020-02183-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/11/2020] [Indexed: 02/07/2023]
Abstract
Human papillomaviruses (HPVs) infect mucosal or cutaneous stratified epithelia. There are 5 genera and more than 200 types of HPV, each with a specific tropism and virulence. HPV infections are typically asymptomatic or result in benign tumors, which may be disseminated or persistent in rare cases, but a few oncogenic HPVs can cause cancers. This review deals with the human genetic and immunological basis of interindividual clinical variability in the course of HPV infections of the skin and mucosae. Typical epidermodysplasia verruciformis (EV) is characterized by β-HPV-driven flat wart-like and pityriasis-like cutaneous lesions and non-melanoma skin cancers in patients with inborn errors of EVER1-EVER2-CIB1-dependent skin-intrinsic immunity. Atypical EV is associated with other infectious diseases in patients with inborn errors of T cells. Severe cutaneous or anogenital warts, including anogenital cancers, are also driven by certain α-, γ-, μ or ν-HPVs in patients with inborn errors of T lymphocytes and antigen-presenting cells. The genetic basis of HPV diseases at other mucosal sites, such as oral multifocal epithelial hyperplasia or juvenile recurrent respiratory papillomatosis (JRRP), remains poorly understood. The human genetic dissection of HPV-driven lesions will clarify the molecular and cellular basis of protective immunity to HPVs, and should lead to novel diagnostic, preventive, and curative approaches in patients.
Collapse
|
48
|
Prencipe R, Cirillo E, Giardino G, Gallo V, Menotta M, Magnani M, Barone MV, Palamaro L, Scalia G, Del Vecchio L, Pignata C. In Ataxia-Telangiectasia, Oral Betamethasone Administration Ameliorates Lymphocytes Functionality through Modulation of the IL-7/IL-7Rα Axis Paralleling the Neurological Behavior: A Comparative Report of Two Cases. Immunol Invest 2020; 50:295-303. [PMID: 32397775 DOI: 10.1080/08820139.2020.1761379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ataxia-Telangiectasia (A-T) is characterized by cerebellar neurodegeneration and immunodeficiency. Recent studies suggest that very low glucocorticoids (GCs) doses may help improve A-T neurological phenotype in some patients. Interestingly, in GCs studies an unexpected improvement of lymphocytes proliferation in some A-T patients has been observed. GCs are able to upregulate IL-7 Rα expression and rescue it from the recycling. In this study, we compared several immunological functions, including PBMC proliferative responses, cell activation events and IL-7/IL-7 Rα axis functionality, with the neurological behavior during an in-vivo GCs treatment between the most Responder patient to GC and the Non-Responder at all. During in-vivo GC treatment, we observed an increase of lymphocyte proliferation upon stimulation with PHA or IL-7 only in the Responder. This finding paralleled the increase in the surface expression of IL-7 R and up-regulation of the CD69 T-cell activation marker. Internalization and recycling of IL-7 R occurred properly only in the Responder. Microarray analysis revealed a remarkable difference in the DE-genes levels among Responder and Non-Responder, mostly concerning miRNAs and Multiple Complex families. Our findings suggest that the improvement of lymphocyte functionality, which correlates to the neurological behavior, is mediated through an effect of GCs on the IL-7/IL-7 Rα axis.
Collapse
Affiliation(s)
- Rosaria Prencipe
- Department of Translational Medical Sciences-Section of Pediatrics, Federico II University , Naples, Italy
| | - Emilia Cirillo
- Department of Translational Medical Sciences-Section of Pediatrics, Federico II University , Naples, Italy
| | - Giuliana Giardino
- Department of Translational Medical Sciences-Section of Pediatrics, Federico II University , Naples, Italy
| | - Vera Gallo
- Department of Translational Medical Sciences-Section of Pediatrics, Federico II University , Naples, Italy
| | - Michele Menotta
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo" , Urbino, Italy
| | - Mauro Magnani
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo" , Urbino, Italy
| | - Maria Vittoria Barone
- Department of Translational Medical Sciences-Section of Pediatrics, Federico II University , Naples, Italy
| | - Loredana Palamaro
- Department of Translational Medical Sciences-Section of Pediatrics, Federico II University , Naples, Italy
| | - Giulia Scalia
- Department of Biochemistry and Medical Biotechnology-CEINGE, Federico II University , Naples, Italy
| | - Luigi Del Vecchio
- Department of Biochemistry and Medical Biotechnology-CEINGE, Federico II University , Naples, Italy
| | - Claudio Pignata
- Department of Translational Medical Sciences-Section of Pediatrics, Federico II University , Naples, Italy
| |
Collapse
|
49
|
McGrath-Morrow SA, Ndeh R, Helmin KA, Khuder B, Rothblum-Oviatt C, Collaco JM, Wright J, Reyfman PA, Lederman HM, Singer BD. DNA methylation and gene expression signatures are associated with ataxia-telangiectasia phenotype. Sci Rep 2020; 10:7479. [PMID: 32366930 PMCID: PMC7198504 DOI: 10.1038/s41598-020-64514-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/13/2020] [Indexed: 12/19/2022] Open
Abstract
People with ataxia-telangiectasia (A-T) display phenotypic variability with regard to progression of immunodeficiency, sino-pulmonary disease, and neurologic decline. To determine the association between differential gene expression, epigenetic state, and phenotypic variation among people with A-T, we performed transcriptional and genome-wide DNA methylation profiling in patients with mild and classic A-T progression as well as healthy controls. RNA and genomic DNA were isolated from peripheral blood mononuclear cells for transcriptional and DNA methylation profiling with RNA-sequencing and modified reduced representation bisulfite sequencing, respectively. We identified 555 genes that were differentially expressed among the control, mild A-T, and classic A-T groups. Genome-wide DNA methylation profiling revealed differential promoter methylation in cis with 146 of these differentially expressed genes. Functional enrichment analysis identified significant enrichment in immune, growth, and apoptotic pathways among the methylation-regulated genes. Regardless of clinical phenotype, all A-T participants exhibited downregulation of critical genes involved in B cell function (PAX5, CD79A, CD22, and FCRL1) and upregulation of several genes associated with senescence and malignancy, including SERPINE1. These findings indicate that gene expression differences may be associated with phenotypic variability and suggest that DNA methylation regulates expression of critical immune response genes in people with A-T.
Collapse
Affiliation(s)
- Sharon A McGrath-Morrow
- Eudowood Division of Pediatric Respiratory Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| | - Roland Ndeh
- Eudowood Division of Pediatric Respiratory Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Kathryn A Helmin
- Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Basil Khuder
- Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - Joseph M Collaco
- Eudowood Division of Pediatric Respiratory Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jennifer Wright
- Eudowood Division of Pediatric, Allergy and Immunology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Paul A Reyfman
- Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Howard M Lederman
- Eudowood Division of Pediatric, Allergy and Immunology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Benjamin D Singer
- Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
50
|
Renzi S, Langenberg-Ververgaert KPS, Waespe N, Ali S, Bartram J, Michaeli O, Upton J, Cada M. Primary immunodeficiencies and their associated risk of malignancies in children: an overview. Eur J Pediatr 2020; 179:689-697. [PMID: 32162064 DOI: 10.1007/s00431-020-03619-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/05/2020] [Accepted: 02/24/2020] [Indexed: 12/01/2022]
Abstract
Primary immunodeficiency disorders represent a heterogeneous spectrum of diseases, predisposing to recurrent infections, allergy, and autoimmunity. While an association between primary immunodeficiency disorders and increased risk of cancer has been suggested since the 1970s, renewed attention has been given to this topic in the last decade, largely in light of the availability of large registries as well as advances in next generation sequencing. In this narrative review, we will give an insight of the primary immunodeficiencies that are commonly responsible for the greater number of cancers in the primary immunodeficiency disorders population. We will describe clinical presentations, underlying genetic lesions (if known), molecular mechanisms for carcinogenesis, as well as some management considerations. We will also comment on the future directions and challenges related to this topic.Conclusion: The awareness of the association between several primary immunodeficiencies and cancer is crucial to provide the best care for these patients.What is Known: • Patients with primary immunodeficiency have an increased risk of malignancy. The type of malignancy is highly dependent on the specific primary immunodeficiency disorder.What is New: • Survival in patients with primary immunodeficiency disorders has been improving, and conversely also their lifetime risk of malignancy. • International collaboration and multinational registries are needed to improve our knowledge and therapeutic strategies.
Collapse
Affiliation(s)
- Samuele Renzi
- Division of Haematology/Oncology, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, M5G1X8, Canada. .,University of Toronto, Toronto, Ontario, Canada.
| | | | - Nicolas Waespe
- Division of Haematology/Oncology, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, M5G1X8, Canada.,Swiss Childhood Cancer Registry, Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland.,CANSEARCH Research Laboratory, Department of Pediatrics, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Salah Ali
- Division of Haematology/Oncology, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, M5G1X8, Canada.,University of Toronto, Toronto, Ontario, Canada
| | - Jack Bartram
- Division of Haematology/Oncology, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, M5G1X8, Canada.,Department of Haematology, Great Ormond Street Hospital for Children, London, UK
| | - Orli Michaeli
- Division of Haematology/Oncology, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, M5G1X8, Canada.,University of Toronto, Toronto, Ontario, Canada
| | - Julia Upton
- University of Toronto, Toronto, Ontario, Canada.,Division of Immunology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Michaela Cada
- Division of Haematology/Oncology, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, M5G1X8, Canada.,University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|