1
|
Gu S, Wang R, Zhang W, Wen C, Chen C, Liu S, Lei Q, Zhang P, Zeng S. The production, function, and clinical applications of IL-33 in type 2 inflammation-related respiratory diseases. Front Immunol 2024; 15:1436437. [PMID: 39301028 PMCID: PMC11410612 DOI: 10.3389/fimmu.2024.1436437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/22/2024] [Indexed: 09/22/2024] Open
Abstract
Epithelial-derived IL-33 (Interleukin-33), as a member of alarm signals, is a chemical substance produced under harmful stimuli that can promote innate immunity and activate adaptive immune responses. Type 2 inflammation refers to inflammation primarily mediated by Type 2 helper T cells (Th2), Type 2 innate lymphoid cells (ILC2), and related cytokines. Type 2 inflammation manifests in various forms in the lungs, with diseases such as asthma and chronic obstructive pulmonary disease chronic obstructive pulmonary disease (COPD) closely associated with Type 2 inflammation. Recent research suggests that IL-33 has a promoting effect on Type 2 inflammation in the lungs and can be regarded as an alarm signal for Type 2 inflammation. This article provides an overview of the mechanisms and related targets of IL-33 in the development of lung diseases caused by Type 2 inflammation, and summarizes the associated treatment methods. Analyzing lung diseases from a new perspective through the alarm of Type 2 inflammation helps to gain a deeper understanding of the pathogenesis of these related lung diseases. This, in turn, facilitates a better understanding of the latest treatment methods and potential therapeutic targets for diseases, with the expectation that targeting lL-33 can propose new strategies for disease prevention.
Collapse
Affiliation(s)
- Shiyao Gu
- Department of Anesthesiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Ruixuan Wang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wantian Zhang
- Department of Anesthesiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Cen Wen
- Department of Anesthesiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Chunhua Chen
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Su Liu
- Department of Anesthesiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Qian Lei
- Department of Anesthesiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Peng Zhang
- Department of Anesthesiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Si Zeng
- Department of Anesthesiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
2
|
Gogoi M, Clark PA, Ferreira ACF, Rodriguez Rodriguez N, Heycock M, Ko M, Murphy JE, Chen V, Luan SL, Jolin HE, McKenzie ANJ. ILC2-derived LIF licences progress from tissue to systemic immunity. Nature 2024; 632:885-892. [PMID: 39112698 PMCID: PMC11338826 DOI: 10.1038/s41586-024-07746-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 06/24/2024] [Indexed: 08/17/2024]
Abstract
Migration and homing of immune cells are critical for immune surveillance. Trafficking is mediated by combinations of adhesion and chemokine receptors that guide immune cells, in response to chemokine signals, to specific locations within tissues and the lymphatic system to support tissue-localized immune reactions and systemic immunity1,2. Here we show that disruption of leukaemia inhibitory factor (LIF) production from group 2 innate lymphoid cells (ILC2s) prevents immune cells leaving the lungs to migrate to the lymph nodes (LNs). In the absence of LIF, viral infection leads to plasmacytoid dendritic cells (pDCs) becoming retained in the lungs where they improve tissue-localized, antiviral immunity, whereas chronic pulmonary allergen challenge leads to marked immune cell accumulation and the formation of tertiary lymphoid structures in the lung. In both cases immune cells fail to migrate to the lymphatics, leading to highly compromised LN reactions. Mechanistically, ILC2-derived LIF induces the production of the chemokine CCL21 from lymphatic endothelial cells lining the pulmonary lymphatic vessels, thus licensing the homing of CCR7+ immune cells (including dendritic cells) to LNs. Consequently, ILC2-derived LIF dictates the egress of immune cells from the lungs to regulate tissue-localized versus systemic immunity and the balance between allergen and viral responsiveness in the lungs.
Collapse
Affiliation(s)
- Mayuri Gogoi
- MRC Laboratory of Molecular Biology, Cambridge, UK.
| | | | | | | | | | - Michelle Ko
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | - Victor Chen
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Shi-Lu Luan
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | | |
Collapse
|
3
|
Hargitai R, Parráková L, Szatmári T, Monfort-Lanzas P, Galbiati V, Audouze K, Jornod F, Staal YCM, Burla S, Chary A, Gutleb AC, Lumniczky K, Vandebriel RJ, Gostner JM. Chemical respiratory sensitization-Current status of mechanistic understanding, knowledge gaps and possible identification methods of sensitizers. FRONTIERS IN TOXICOLOGY 2024; 6:1331803. [PMID: 39135743 PMCID: PMC11317441 DOI: 10.3389/ftox.2024.1331803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 05/27/2024] [Indexed: 08/15/2024] Open
Abstract
Respiratory sensitization is a complex immunological process eventually leading to hypersensitivity following re-exposure to the chemical. A frequent consequence is occupational asthma, which may occur after long latency periods. Although chemical-induced respiratory hypersensitivity has been known for decades, there are currently no comprehensive and validated approaches available for the prospective identification of chemicals that induce respiratory sensitization, while the expectations of new approach methodologies (NAMs) are high. A great hope is that due to a better understanding of the molecular key events, new methods can be developed now. However, this is a big challenge due to the different chemical classes to which respiratory sensitizers belong, as well as because of the complexity of the response and the late manifestation of symptoms. In this review article, the current information on respiratory sensitization related processes is summarized by introducing it in the available adverse outcome pathway (AOP) concept. Potentially useful models for prediction are discussed. Knowledge gaps and gaps of regulatory concern are identified.
Collapse
Affiliation(s)
- Rita Hargitai
- Unit of Radiation Medicine, Department of Radiobiology and Radiohygiene, National Centre for Public Health and Pharmacy (NCPHP), Budapest, Hungary
| | - Lucia Parráková
- Biochemical Immunotoxicology Group, Institute of Medical Biochemistry, Medical University of Innsbruck (MUI), Innsbruck, Austria
| | - Tünde Szatmári
- Unit of Radiation Medicine, Department of Radiobiology and Radiohygiene, National Centre for Public Health and Pharmacy (NCPHP), Budapest, Hungary
| | - Pablo Monfort-Lanzas
- Biochemical Immunotoxicology Group, Institute of Medical Biochemistry, Medical University of Innsbruck (MUI), Innsbruck, Austria
- Institute of Bioinformatics, Medical University of Innsbruck (MUI), Innsbruck, Austria
| | - Valentina Galbiati
- Laboratory of Toxicology, Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università Degli Studi di Milano (UNIMI), Milano, Italy
| | | | | | - Yvonne C. M. Staal
- Centre for Health Protection, National Institute of Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Sabina Burla
- Luxembourg Institute of Science and Technology (LIST), Belvaux, Luxembourg
| | - Aline Chary
- Luxembourg Institute of Science and Technology (LIST), Belvaux, Luxembourg
| | - Arno C. Gutleb
- Luxembourg Institute of Science and Technology (LIST), Belvaux, Luxembourg
| | - Katalin Lumniczky
- Unit of Radiation Medicine, Department of Radiobiology and Radiohygiene, National Centre for Public Health and Pharmacy (NCPHP), Budapest, Hungary
| | - Rob J. Vandebriel
- Centre for Health Protection, National Institute of Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Johanna M. Gostner
- Biochemical Immunotoxicology Group, Institute of Medical Biochemistry, Medical University of Innsbruck (MUI), Innsbruck, Austria
| |
Collapse
|
4
|
Szeto AC, Clark PA, Ferreira AC, Heycock M, Griffiths EL, Jou E, Mannion J, Luan SL, Storrar S, Knolle MD, Kozik P, Jolin HE, Fallon PG, McKenzie AN. Mef2d potentiates type-2 immune responses and allergic lung inflammation. Science 2024; 384:eadl0370. [PMID: 38935708 PMCID: PMC7616247 DOI: 10.1126/science.adl0370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 05/02/2024] [Indexed: 06/29/2024]
Abstract
Innate lymphoid cells (ILCs) and adaptive T lymphocytes promote tissue homeostasis and protective immune responses. Their production depends on the transcription factor GATA3, which is further elevated specifically in ILC2s and T helper 2 cells to drive type-2 immunity during tissue repair, allergic disorders, and anti-helminth immunity. The control of this crucial up-regulation is poorly understood. Using CRISPR screens in ILCs we identified previously unappreciated myocyte-specific enhancer factor 2d (Mef2d)-mediated regulation of GATA3-dependent type-2 lymphocyte differentiation. Mef2d-deletion from ILC2s and/or T cells specifically protected against an allergen lung challenge. Mef2d repressed Regnase-1 endonuclease expression to enhance IL-33 receptor production and IL-33 signaling and acted downstream of calcium-mediated signaling to translocate NFAT1 to the nucleus to promote type-2 cytokine-mediated immunity.
Collapse
Affiliation(s)
- Aydan C.H. Szeto
- MRC Laboratory
of Molecular Biology,
Cambridge, CB2 0QH, United Kingdom
| | - Paula A. Clark
- MRC Laboratory
of Molecular Biology,
Cambridge, CB2 0QH, United Kingdom
| | - Ana C.F. Ferreira
- MRC Laboratory
of Molecular Biology,
Cambridge, CB2 0QH, United Kingdom
| | - Morgan Heycock
- MRC Laboratory
of Molecular Biology,
Cambridge, CB2 0QH, United Kingdom
| | - Emma L. Griffiths
- MRC Laboratory
of Molecular Biology,
Cambridge, CB2 0QH, United Kingdom
| | - Eric Jou
- MRC Laboratory
of Molecular Biology,
Cambridge, CB2 0QH, United Kingdom
| | - Jonathan Mannion
- MRC Laboratory
of Molecular Biology,
Cambridge, CB2 0QH, United Kingdom
- Cambridge
University Hospitals,
Cambridge, CB2 0QQ, United Kingdom
| | - Shi-Lu Luan
- MRC Laboratory
of Molecular Biology,
Cambridge, CB2 0QH, United Kingdom
| | - Sophie Storrar
- MRC Laboratory
of Molecular Biology,
Cambridge, CB2 0QH, United Kingdom
| | - Martin D. Knolle
- MRC Laboratory
of Molecular Biology,
Cambridge, CB2 0QH, United Kingdom
- Cambridge
University Hospitals,
Cambridge, CB2 0QQ, United Kingdom
| | - Patrycja Kozik
- MRC Laboratory
of Molecular Biology,
Cambridge, CB2 0QH, United Kingdom
| | - Helen E. Jolin
- MRC Laboratory
of Molecular Biology,
Cambridge, CB2 0QH, United Kingdom
| | | | | |
Collapse
|
5
|
Hurrell BP, Shen S, Li X, Sakano Y, Kazemi MH, Quach C, Shafiei-Jahani P, Sakano K, Ghiasi H, Akbari O. Piezo1 channels restrain ILC2s and regulate the development of airway hyperreactivity. J Exp Med 2024; 221:e20231835. [PMID: 38530239 PMCID: PMC10965393 DOI: 10.1084/jem.20231835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/16/2024] [Accepted: 02/22/2024] [Indexed: 03/27/2024] Open
Abstract
Mechanosensitive ion channels sense force and pressure in immune cells to drive the inflammatory response in highly mechanical organs. Here, we report that Piezo1 channels repress group 2 innate lymphoid cell (ILC2)-driven type 2 inflammation in the lungs. Piezo1 is induced on lung ILC2s upon activation, as genetic ablation of Piezo1 in ILC2s increases their function and exacerbates the development of airway hyperreactivity (AHR). Conversely, Piezo1 agonist Yoda1 reduces ILC2-driven lung inflammation. Mechanistically, Yoda1 inhibits ILC2 cytokine secretion and proliferation in a KLF2-dependent manner, as we found that Piezo1 engagement reduces ILC2 oxidative metabolism. Consequently, in vivo Yoda1 treatment reduces the development of AHR in experimental models of ILC2-driven allergic asthma. Human-circulating ILC2s express and induce Piezo1 upon activation, as Yoda1 treatment of humanized mice reduces human ILC2-driven AHR. Our studies define Piezo1 as a critical regulator of ILC2s, and we propose the potential of Piezo1 activation as a novel therapeutic approach for the treatment of ILC2-driven allergic asthma.
Collapse
Affiliation(s)
- Benjamin P. Hurrell
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Stephen Shen
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Xin Li
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yoshihiro Sakano
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Mohammad Hossein Kazemi
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Christine Quach
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Pedram Shafiei-Jahani
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kei Sakano
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Homayon Ghiasi
- Department of Surgery, Center for Neurobiology and Vaccine Development, Ophthalmology Research, Cedars-Sinai Burns and Allen Research Institute, Los Angeles, CA, USA
| | - Omid Akbari
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
6
|
Ver Heul AM, Mack M, Zamidar L, Tamari M, Yang TL, Trier AM, Kim DH, Janzen-Meza H, Van Dyken SJ, Hsieh CS, Karo JM, Sun JC, Kim BS. RAG suppresses group 2 innate lymphoid cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.23.590767. [PMID: 38712036 PMCID: PMC11071423 DOI: 10.1101/2024.04.23.590767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Antigen specificity is the central trait distinguishing adaptive from innate immune function. Assembly of antigen-specific T cell and B cell receptors occurs through V(D)J recombination mediated by the Recombinase Activating Gene endonucleases RAG1 and RAG2 (collectively called RAG). In the absence of RAG, mature T and B cells do not develop and thus RAG is critically associated with adaptive immune function. In addition to adaptive T helper 2 (Th2) cells, group 2 innate lymphoid cells (ILC2s) contribute to type 2 immune responses by producing cytokines like Interleukin-5 (IL-5) and IL-13. Although it has been reported that RAG expression modulates the function of innate natural killer (NK) cells, whether other innate immune cells such as ILC2s are affected by RAG remains unclear. We find that in RAG-deficient mice, ILC2 populations expand and produce increased IL-5 and IL-13 at steady state and contribute to increased inflammation in atopic dermatitis (AD)-like disease. Further, we show that RAG modulates ILC2 function in a cell-intrinsic manner independent of the absence or presence of adaptive T and B lymphocytes. Lastly, employing multiomic single cell analyses of RAG1 lineage-traced cells, we identify key transcriptional and epigenomic ILC2 functional programs that are suppressed by a history of RAG expression. Collectively, our data reveal a novel role for RAG in modulating innate type 2 immunity through suppression of ILC2s.
Collapse
Affiliation(s)
- Aaron M. Ver Heul
- Division of Allergy and Immunology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Madison Mack
- Immunology & Inflammation Research Therapeutic Area, Sanofi, Cambridge, MA 02141, USA
| | - Lydia Zamidar
- Kimberly and Eric J. Waldman Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Mark Lebwohl Center for Neuroinflammation and Sensation, Icahn School of Medicine at Mount Sinai, New York, NY 10019, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Masato Tamari
- Kimberly and Eric J. Waldman Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Mark Lebwohl Center for Neuroinflammation and Sensation, Icahn School of Medicine at Mount Sinai, New York, NY 10019, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ting-Lin Yang
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Anna M. Trier
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Do-Hyun Kim
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63130, USA
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Hannah Janzen-Meza
- Division of Allergy and Immunology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Steven J. Van Dyken
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Chyi-Song Hsieh
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jenny M. Karo
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Immunology and Microbial Pathogenesis Program, Graduate School of Medical Sciences, Weill Cornell Medical College, New York, NY 10065, USA
| | - Joseph C. Sun
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Immunology and Microbial Pathogenesis Program, Graduate School of Medical Sciences, Weill Cornell Medical College, New York, NY 10065, USA
| | - Brian S. Kim
- Kimberly and Eric J. Waldman Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Mark Lebwohl Center for Neuroinflammation and Sensation, Icahn School of Medicine at Mount Sinai, New York, NY 10019, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Allen Discovery Center for Neuroimmune Interactions, Icahn School of Medicine at Mount Sinai 10019
| |
Collapse
|
7
|
Varricchi G, Brightling CE, Grainge C, Lambrecht BN, Chanez P. Airway remodelling in asthma and the epithelium: on the edge of a new era. Eur Respir J 2024; 63:2301619. [PMID: 38609094 PMCID: PMC11024394 DOI: 10.1183/13993003.01619-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/15/2024] [Indexed: 04/14/2024]
Abstract
Asthma is a chronic, heterogeneous disease of the airways, often characterised by structural changes known collectively as airway remodelling. In response to environmental insults, including pathogens, allergens and pollutants, the epithelium can initiate remodelling via an inflammatory cascade involving a variety of mediators that have downstream effects on both structural and immune cells. These mediators include the epithelial cytokines thymic stromal lymphopoietin, interleukin (IL)-33 and IL-25, which facilitate airway remodelling through cross-talk between epithelial cells and fibroblasts, and between mast cells and airway smooth muscle cells, as well as through signalling with immune cells such as macrophages. The epithelium can also initiate airway remodelling independently of inflammation in response to the mechanical stress present during bronchoconstriction. Furthermore, genetic and epigenetic alterations to epithelial components are believed to influence remodelling. Here, we review recent advances in our understanding of the roles of the epithelium and epithelial cytokines in driving airway remodelling, facilitated by developments in genetic sequencing and imaging techniques. We also explore how new and existing therapeutics that target the epithelium and epithelial cytokines could modify airway remodelling.
Collapse
Affiliation(s)
- Gilda Varricchi
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), School of Medicine, University of Naples Federico II, WAO Center of Excellence, Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy
- G. Varricchi and C.E. Brightling contributed equally
| | - Christopher E. Brightling
- Institute for Lung Health, NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
- G. Varricchi and C.E. Brightling contributed equally
| | - Christopher Grainge
- School of Medicine and Public Health, University of Newcastle, Callaghan, Australia
| | - Bart N. Lambrecht
- Center for Inflammation Research, Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium
| | - Pascal Chanez
- Department of Respiratory Diseases, Aix-Marseille University, Marseille, France
| |
Collapse
|
8
|
Menzella F, Munari S, Corsi L, Tonin S, Cestaro W, Ballarin A, Floriani A, Dartora C, Senna G. Tezepelumab: patient selection and place in therapy in severe asthma. J Int Med Res 2024; 52:3000605241246740. [PMID: 38676539 PMCID: PMC11056094 DOI: 10.1177/03000605241246740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/21/2024] [Indexed: 04/29/2024] Open
Abstract
Asthma is a disease characterised by heterogeneous and multifaceted airway inflammation. Despite the availability of effective treatments, a substantial percentage of patients with the type 2 (T2)-high, but mainly the T2-low, phenotype complain of persistent symptoms, airflow limitation, and poor response to treatments. Currently available biologicals target T2 cytokines, but no monoclonal antibodies or other specific therapeutic options are available for non-T2 asthma. However, targeted therapy against alarmins is radically changing this perspective. The development of alarmin-targeted therapies, of which tezepelumab (TZP) is the first example, may offer broad action on inflammatory pathways as well as an enhanced therapeutic effect on epithelial dysfunction. In this regard, TZP demonstrated positive results not only in patients with severe T2 asthma but also those with non-allergic, non-eosinophilic disease. Therefore, it is necessary to identify clinical features of patients who can benefit from an upstream targeted therapy such as anti-thymic stromal lymphopoietin. The aims of this narrative review are to understand the role of alarmins in asthma pathogenesis and epithelial dysfunction, examine the rationale underlying the indication of TZP treatment in severe asthma, summarise the results of clinical studies, and recognise the specific characteristics of patients potentially eligible for TZP treatment.
Collapse
Affiliation(s)
- Francesco Menzella
- Pulmonology Unit, S. Valentino Hospital, Montebelluna (TV), AULSS2 Marca Trevigiana, Italy
- Pulmonology and Otolaryngology Multidisciplinary Unit, S. Valentino Hospital, Montebelluna (TV), AULSS2 Marca Trevigiana, Italy
| | - Sara Munari
- Pulmonology and Otolaryngology Multidisciplinary Unit, S. Valentino Hospital, Montebelluna (TV), AULSS2 Marca Trevigiana, Italy
- Otolaryngology Unit, S. Valentino Hospital, Montebelluna (TV), AULSS2 Marca Trevigiana, Italy
| | - Lorenzo Corsi
- Pulmonology Unit, S. Valentino Hospital, Montebelluna (TV), AULSS2 Marca Trevigiana, Italy
- Pulmonology and Otolaryngology Multidisciplinary Unit, S. Valentino Hospital, Montebelluna (TV), AULSS2 Marca Trevigiana, Italy
| | - Silvia Tonin
- Pulmonology Unit, S. Valentino Hospital, Montebelluna (TV), AULSS2 Marca Trevigiana, Italy
- Pulmonology and Otolaryngology Multidisciplinary Unit, S. Valentino Hospital, Montebelluna (TV), AULSS2 Marca Trevigiana, Italy
| | - Walter Cestaro
- Pulmonology and Otolaryngology Multidisciplinary Unit, S. Valentino Hospital, Montebelluna (TV), AULSS2 Marca Trevigiana, Italy
- Otolaryngology Unit, S. Valentino Hospital, Montebelluna (TV), AULSS2 Marca Trevigiana, Italy
| | - Andrea Ballarin
- Pulmonology Unit, S. Valentino Hospital, Montebelluna (TV), AULSS2 Marca Trevigiana, Italy
| | - Ariel Floriani
- Pulmonology Unit, S. Valentino Hospital, Montebelluna (TV), AULSS2 Marca Trevigiana, Italy
| | - Cristina Dartora
- Pulmonology Unit, S. Valentino Hospital, Montebelluna (TV), AULSS2 Marca Trevigiana, Italy
| | - Gianenrico Senna
- Asthma Center and Allergy Unit, University of Verona & AOUI Verona, Policlinico GB Rossi, Verona, Italy
| |
Collapse
|
9
|
Falduto GH, Schwartz DM. CRACing the role of calcium signaling in ILC2s. Cell Calcium 2024; 117:102835. [PMID: 37984027 DOI: 10.1016/j.ceca.2023.102835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023]
Affiliation(s)
- Guido H Falduto
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA, United States of America.
| | - Daniella M Schwartz
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA, United States of America
| |
Collapse
|
10
|
Ikuta K, Asahi T, Cui G, Abe S, Takami D. Control of the Development, Distribution, and Function of Innate-Like Lymphocytes and Innate Lymphoid Cells by the Tissue Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1444:111-127. [PMID: 38467976 DOI: 10.1007/978-981-99-9781-7_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Recently, considerable attention has been directed toward innate-like T cells (ITCs) and innate lymphoid cells (ILCs) owing to their indispensable contributions to immune responses, tissue homeostasis, and inflammation. Innate-like T cells include NKT cells, MAIT cells, and γδ T cells, whereas ILCs include NK cells, type 1 ILCs (ILC1s), type 2 ILCs (ILC2s), and type 3 ILCs (ILC3s). Many of these ITCs and ILCs are distributed to specific tissues and remain tissue-resident, while others, such as NK cells and some γδ T cells, circulate through the bloodstream. Nevertheless, recent research has shed light on novel subsets of innate immune cells that exhibit characteristics intermediate between tissue-resident and circulating states under normal and pathological conditions. The local microenvironment frequently influences the development, distribution, and function of these innate immune cells. This review aims to consolidate the current knowledge on the functional heterogeneity of ITCs and ILCs, shaped by local environmental cues, with particular emphasis on IL-15, which governs the activities of the innate immune cells involved in type 1 immune responses.
Collapse
Affiliation(s)
- Koichi Ikuta
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan.
| | - Takuma Asahi
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Guangwei Cui
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Shinya Abe
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Daichi Takami
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
11
|
Takami D, Abe S, Shimba A, Asahi T, Cui G, Tani-Ichi S, Hara T, Miyata K, Ikutani M, Takatsu K, Oike Y, Ikuta K. Lung group 2 innate lymphoid cells differentially depend on local IL-7 for their distribution, activation, and maintenance in innate and adaptive immunity-mediated airway inflammation. Int Immunol 2023; 35:513-530. [PMID: 37493250 DOI: 10.1093/intimm/dxad029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/24/2023] [Indexed: 07/27/2023] Open
Abstract
Interleukin-7 (IL-7) is a cytokine critical for the development and maintenance of group 2 innate lymphoid cells (ILC2s). ILC2s are resident in peripheral tissues such as the intestine and lung. However, whether IL-7 produced in the lung plays a role in the maintenance and function of lung ILC2s during airway inflammation remains unknown. IL-7 was expressed in bronchoalveolar epithelial cells and lymphatic endothelial cells (LECs). To investigate the role of local IL-7 in lung ILC2s, we generated two types of IL-7 conditional knockout (IL-7cKO) mice: Sftpc-Cre (SPC-Cre) IL-7cKO mice specific for bronchial epithelial cells and type 2 alveolar epithelial cells and Lyve1-Cre IL-7cKO mice specific for LECs. In steady state, ILC2s were located near airway epithelia, although lung ILC2s were unchanged in the two lines of IL-7cKO mice. In papain-induced airway inflammation dependent on innate immunity, lung ILC2s localized near bronchia via CCR4 expression, and eosinophil infiltration and type 2 cytokine production were reduced in SPC-Cre IL-7cKO mice. In contrast, in house dust mite (HDM)-induced airway inflammation dependent on adaptive immunity, lung ILC2s localized near lymphatic vessels via their CCR2 expression 2 weeks after the last challenge. Furthermore, lung ILC2s were decreased in Lyve1-Cre IL-7cKO mice in the HDM-induced inflammation because of decreased cell survival and proliferation. Finally, administration of anti-IL-7 antibody attenuated papain-induced inflammation by suppressing the activation of ILC2s. Thus, this study demonstrates that IL-7 produced by bronchoalveolar epithelial cells and LECs differentially controls the activation and maintenance of lung ILC2s, where they are localized in airway inflammation.
Collapse
Affiliation(s)
- Daichi Takami
- Department of Virus Research, Laboratory of Immune Regulation, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Shinya Abe
- Department of Virus Research, Laboratory of Immune Regulation, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Akihiro Shimba
- Department of Virus Research, Laboratory of Immune Regulation, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Takuma Asahi
- Department of Virus Research, Laboratory of Immune Regulation, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
- Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Guangwei Cui
- Department of Virus Research, Laboratory of Immune Regulation, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Shizue Tani-Ichi
- Department of Virus Research, Laboratory of Immune Regulation, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Takahiro Hara
- Department of Virus Research, Laboratory of Immune Regulation, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Keishi Miyata
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Masashi Ikutani
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8511, Japan
| | - Kiyoshi Takatsu
- Toyama Prefectural Institute for Pharmaceutical Research, Toyama 930-8501, Japan
| | - Yuichi Oike
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Koichi Ikuta
- Department of Virus Research, Laboratory of Immune Regulation, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| |
Collapse
|
12
|
Liu Y, Zhang J, Leng G, Hu J, Wang W, Deng G, Ma Y, Sha S. Mycobacterium tuberculosis Rv1987 protein attenuates inflammatory response and consequently alters microbiota in mouse lung. Front Cell Infect Microbiol 2023; 13:1256866. [PMID: 38029253 PMCID: PMC10646435 DOI: 10.3389/fcimb.2023.1256866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Healthy lung microbiota plays an important role in preventing Mycobacterium tuberculosis (Mtb) infections by activating immune cells and stimulating production of T-helper cell type 1 cytokines. The dynamic stability of lung microbiota relies mostly on lung homeostasis. In our previous studies, we found that Mtb virulence factor, Rv1987 protein, can mediate host immune response and enhance mycobacterial survival in host lung. However, the alteration of lung microbiota and the contribution of lung microbiota dysbiosis to mycobacterial evasion in this process are not clear so far. Methods M. smegmatis which does not contain the ortholog of Rv1987 protein was selected as a model strain to study the effects of Rv1987 on host lung microbiota. The lung microbiota, immune state and metabolites of mice infected by M. smegmatis overexpressing Rv1987 protein (MS1987) were detected and analyzed. Results The results showed that Rv1987 inhibited inflammatory response in mouse lung and anaerobic bacteria and Proteobacteria, Bacteroidota, Actinobacteriota and Acidobacteriota bacteria were enriched in the lung tissues correspondingly. The immune alterations and microbiota dysbiosis affected host metabolic profiles, and some of significantly altered bacteria in MS1987-infected mouse lung, such as Delftia acidovorans, Ralstonia pickettii and Escherichia coli, led to anti-inflammatory responses in mouse lung. The secretory metabolites of these altered bacteria also influenced mycobacterial growth and biofilm formation directly. Conclusion All these results suggested that Rv1987 can attenuate inflammatory response and alter microbiota in the lung, which in turn facilitates mycobacterial survival in the host.
Collapse
Affiliation(s)
- Yingying Liu
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, Liaoning, China
| | - Jiaqi Zhang
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, Liaoning, China
| | - Guangxian Leng
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, Liaoning, China
| | - Junxing Hu
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, Liaoning, China
| | - Wenzhen Wang
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, Liaoning, China
| | - Guoying Deng
- Department of Microbiology, Dalian Medical University, Dalian, Liaoning, China
| | - Yufang Ma
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, Liaoning, China
- Department of Microbiology, Dalian Medical University, Dalian, Liaoning, China
| | - Shanshan Sha
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
13
|
Yazici D, Ogulur I, Pat Y, Babayev H, Barletta E, Ardicli S, Bel Imam M, Huang M, Koch J, Li M, Maurer D, Radzikowska U, Satitsuksanoa P, Schneider SR, Sun N, Traidl S, Wallimann A, Wawrocki S, Zhakparov D, Fehr D, Ziadlou R, Mitamura Y, Brüggen MC, van de Veen W, Sokolowska M, Baerenfaller K, Nadeau K, Akdis M, Akdis CA. The epithelial barrier: The gateway to allergic, autoimmune, and metabolic diseases and chronic neuropsychiatric conditions. Semin Immunol 2023; 70:101846. [PMID: 37801907 DOI: 10.1016/j.smim.2023.101846] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 09/27/2023] [Indexed: 10/08/2023]
Abstract
Since the 1960 s, our health has been compromised by exposure to over 350,000 newly introduced toxic substances, contributing to the current pandemic in allergic, autoimmune and metabolic diseases. The "Epithelial Barrier Theory" postulates that these diseases are exacerbated by persistent periepithelial inflammation (epithelitis) triggered by exposure to a wide range of epithelial barrier-damaging substances as well as genetic susceptibility. The epithelial barrier serves as the body's primary physical, chemical, and immunological barrier against external stimuli. A leaky epithelial barrier facilitates the translocation of the microbiome from the surface of the afflicted tissues to interepithelial and even deeper subepithelial locations. In turn, opportunistic bacterial colonization, microbiota dysbiosis, local inflammation and impaired tissue regeneration and remodelling follow. Migration of inflammatory cells to susceptible tissues contributes to damage and inflammation, initiating and aggravating many chronic inflammatory diseases. The objective of this review is to highlight and evaluate recent studies on epithelial physiology and its role in the pathogenesis of chronic diseases in light of the epithelial barrier theory.
Collapse
Affiliation(s)
- Duygu Yazici
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Ismail Ogulur
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Yagiz Pat
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Huseyn Babayev
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Elena Barletta
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland; Swiss Institute of Bioinformatics (SIB), Davos, Switzerland
| | - Sena Ardicli
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Manal Bel Imam
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Mengting Huang
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Jana Koch
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland; Swiss Institute of Bioinformatics (SIB), Davos, Switzerland
| | - Manru Li
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Debbie Maurer
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Urszula Radzikowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland; Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland
| | | | - Stephan R Schneider
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Na Sun
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland; National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Stephan Traidl
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland; Division of Immunodermatology and Allergy Research, Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany
| | - Alexandra Wallimann
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Sebastian Wawrocki
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Damir Zhakparov
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Danielle Fehr
- Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland; Faculty of Medicine, University of Zurich, Zurich, Switzerland; Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Reihane Ziadlou
- Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland; Faculty of Medicine, University of Zurich, Zurich, Switzerland; Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Yasutaka Mitamura
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Marie-Charlotte Brüggen
- Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland; Faculty of Medicine, University of Zurich, Zurich, Switzerland; Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland; Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland; Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland
| | - Katja Baerenfaller
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland; Swiss Institute of Bioinformatics (SIB), Davos, Switzerland
| | - Kari Nadeau
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Mubeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland; Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland.
| |
Collapse
|
14
|
Howard E, Hurrell BP, Helou DG, Shafiei-Jahani P, Hasiakos S, Painter J, Srikanth S, Gwack Y, Akbari O. Orai inhibition modulates pulmonary ILC2 metabolism and alleviates airway hyperreactivity in murine and humanized models. Nat Commun 2023; 14:5989. [PMID: 37752127 PMCID: PMC10522697 DOI: 10.1038/s41467-023-41065-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/22/2023] [Indexed: 09/28/2023] Open
Abstract
Ca2+ entry via Ca2+ release-activated Ca2+ (CRAC) channels is a predominant mechanism of intracellular Ca2+ elevation in immune cells. Here we show the immunoregulatory role of CRAC channel components Orai1 and Orai2 in Group 2 innate lymphoid cells (ILC2s), that play crucial roles in the induction of type 2 inflammation. We find that blocking or genetic ablation of Orai1 and Orai2 downregulates ILC2 effector function and cytokine production, consequently ameliorating the development of ILC2-mediated airway inflammation in multiple murine models. Mechanistically, ILC2 metabolic and mitochondrial homeostasis are inhibited and lead to the upregulation of reactive oxygen species production. We confirm our findings in human ILC2s, as blocking Orai1 and Orai2 prevents the development of airway hyperreactivity in humanized mice. Our findings have a broad impact on the basic understanding of Ca2+ signaling in ILC2 biology, providing potential insights into the development of therapies for the treatment of allergic and atopic inflammatory diseases.
Collapse
Affiliation(s)
- Emily Howard
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Benjamin P Hurrell
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Doumet Georges Helou
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Pedram Shafiei-Jahani
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Spyridon Hasiakos
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Jacob Painter
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sonal Srikanth
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Yousang Gwack
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Omid Akbari
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
15
|
Thio CLP, Chang YJ. The modulation of pulmonary group 2 innate lymphoid cell function in asthma: from inflammatory mediators to environmental and metabolic factors. Exp Mol Med 2023; 55:1872-1884. [PMID: 37696890 PMCID: PMC10545775 DOI: 10.1038/s12276-023-01021-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/21/2023] [Accepted: 03/29/2023] [Indexed: 09/13/2023] Open
Abstract
A dysregulated type 2 immune response is one of the fundamental causes of allergic asthma. Although Th2 cells are undoubtedly central to the pathogenesis of allergic asthma, the discovery of group 2 innate lymphoid cells (ILC2s) has added another layer of complexity to the etiology of this chronic disease. Through their inherent innate type 2 responses, ILC2s not only contribute to the initiation of airway inflammation but also orchestrate the recruitment and activation of other members of innate and adaptive immunity, further amplifying the inflammatory response. Moreover, ILC2s exhibit substantial cytokine plasticity, as evidenced by their ability to produce type 1- or type 17-associated cytokines under appropriate conditions, underscoring their potential contribution to nonallergic, neutrophilic asthma. Thus, understanding the mechanisms of ILC2 functions is pertinent. In this review, we present an overview of the current knowledge on ILC2s in asthma and the regulatory factors that modulate lung ILC2 functions in various experimental mouse models of asthma and in humans.
Collapse
Affiliation(s)
| | - Ya-Jen Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei City, 115, Taiwan.
- Institute of Translational Medicine and New Drug Development, China Medical University, Taichung City, 404, Taiwan.
| |
Collapse
|
16
|
LeSuer WE, Kienzl M, Ochkur SI, Schicho R, Doyle AD, Wright BL, Rank MA, Krupnick AS, Kita H, Jacobsen EA. Eosinophils promote effector functions of lung group 2 innate lymphoid cells in allergic airway inflammation in mice. J Allergy Clin Immunol 2023; 152:469-485.e10. [PMID: 37028525 PMCID: PMC10503660 DOI: 10.1016/j.jaci.2023.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 03/22/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023]
Abstract
BACKGROUND Group 2 innate lymphoid cells (ILC2s) are critical mediators of type 2 respiratory inflammation, releasing IL-5 and IL-13 and promoting the pulmonary eosinophilia associated with allergen provocation. Although ILC2s have been shown to promote eosinophil activities, the role of eosinophils in group 2 innate lymphoid cell (ILC2) responses is less well defined. OBJECTIVE We sought to investigate the role of eosinophils in activation of ILC2s in models of allergic asthma and in vitro. METHODS Inducible eosinophil-deficient mice were exposed to allergic respiratory inflammation models of asthma, such as ovalbumin or house dust mite challenge, or to innate models of type 2 airway inflammation, such as inhalation of IL-33. Eosinophil-specific IL-4/13-deficient mice were used to address the specific roles for eosinophil-derived cytokines. Direct cell interactions between ILC2s and eosinophils were assessed by in vitro culture experiments. RESULTS Targeted depletion of eosinophils resulted in significant reductions of total and IL-5+ and IL-13+ lung ILC2s in all models of respiratory inflammation. This correlated with reductions in IL-13 levels and mucus in the airway. Eosinophil-derived IL-4/13 was necessary for both eosinophil and ILC2 accumulation in lung in allergen models. In vitro, eosinophils released soluble mediators that induced ILC2 proliferation and G protein-coupled receptor-dependent chemotaxis of ILC2s. Coculture of ILC2s and IL-33-activated eosinophils resulted in transcriptome changes in both ILC2s and eosinophils, suggesting potential novel reciprocal interactions. CONCLUSION These studies demonstrate that eosinophils play a reciprocal role in ILC2 effector functions as part of both adaptive and innate type 2 pulmonary inflammatory events.
Collapse
Affiliation(s)
- William E LeSuer
- Division of Allergy, Asthma, and Clinical Immunology, Mayo Clinic Arizona, Scottsdale, Ariz
| | - Melanie Kienzl
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Sergei I Ochkur
- Division of Allergy, Asthma, and Clinical Immunology, Mayo Clinic Arizona, Scottsdale, Ariz
| | - Rudolf Schicho
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Alfred D Doyle
- Division of Allergy, Asthma, and Clinical Immunology, Mayo Clinic Arizona, Scottsdale, Ariz
| | - Benjamin L Wright
- Division of Allergy, Asthma, and Clinical Immunology, Mayo Clinic Arizona, Scottsdale, Ariz; Division of Pulmonology, Phoenix Children's Hospital, Phoenix, Ariz
| | - Matthew A Rank
- Division of Allergy, Asthma, and Clinical Immunology, Mayo Clinic Arizona, Scottsdale, Ariz; Division of Pulmonology, Phoenix Children's Hospital, Phoenix, Ariz
| | | | - Hirohito Kita
- Division of Allergy, Asthma, and Clinical Immunology, Mayo Clinic Arizona, Scottsdale, Ariz; Department of Immunology, Mayo Clinic Arizona, Scottsdale, Ariz
| | - Elizabeth A Jacobsen
- Division of Allergy, Asthma, and Clinical Immunology, Mayo Clinic Arizona, Scottsdale, Ariz; Department of Immunology, Mayo Clinic Arizona, Scottsdale, Ariz.
| |
Collapse
|
17
|
Jou E. Type 1 and type 2 cytokine-mediated immune orchestration in the tumour microenvironment and their therapeutic potential. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:474-497. [PMID: 37455828 PMCID: PMC10345208 DOI: 10.37349/etat.2023.00146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/25/2023] [Indexed: 07/18/2023] Open
Abstract
Cancer remains the second leading cause of death worldwide despite modern breakthroughs in medicine, and novel treatments are urgently needed. The revolutionary success of immune checkpoint inhibitors in the past decade serves as proof of concept that the immune system can be effectively harnessed to treat cancer. Cytokines are small signalling proteins with critical roles in orchestrating the immune response and have become an attractive target for immunotherapy. Type 1 immune cytokines, including interferon γ (IFNγ), interleukin-12 (IL-12), and tumour necrosis factor α (TNFα), have been shown to have largely tumour suppressive roles in part through orchestrating anti-tumour immune responses mediated by natural killer (NK) cells, CD8+ T cells and T helper 1 (Th1) cells. Conversely, type 2 immunity involving group 2 innate lymphoid cells (ILC2s) and Th2 cells are involved in tissue regeneration and wound repair and are traditionally thought to have pro-tumoural effects. However, it is found that the classical type 2 immune cytokines IL-4, IL-5, IL-9, and IL-13 may have conflicting roles in cancer. Similarly, type 2 immunity-related cytokines IL-25 and IL-33 with recently characterised roles in cancer may either promote or suppress tumorigenesis in a context-dependent manner. Furthermore, type 1 cytokines IFNγ and TNFα have also been found to have pro-tumoural effects under certain circumstances, further complicating the overall picture. Therefore, the dichotomy of type 1 and type 2 cytokines inhibiting and promoting tumours respectively is not concrete, and attempts of utilising these for cancer immunotherapy must take into account all available evidence. This review provides an overview summarising the current understanding of type 1 and type 2 cytokines in tumour immunity and discusses the prospects of harnessing these for immunotherapy in light of previous and ongoing clinical trials.
Collapse
Affiliation(s)
- Eric Jou
- Queens’ College, University of Cambridge, CB3 9ET Cambridge, UK
- MRC Laboratory of Molecular Biology, CB2 0QH Cambridge, UK
| |
Collapse
|
18
|
Sun F, Zou W, Shi H, Chen Z, Ma D, Lin M, Wang K, Huang Y, Zheng X, Tan C, Chen M, Tu C, Wang Z, Wu J, Wu W, Liu J. Interleukin-33 increases type 2 innate lymphoid cell count and their activation in eosinophilic asthma. Clin Transl Allergy 2023; 13:e12265. [PMID: 37357549 PMCID: PMC10234174 DOI: 10.1002/clt2.12265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/08/2023] [Accepted: 03/16/2023] [Indexed: 06/27/2023] Open
Abstract
BACKGROUND Interleukin-33 (IL-33) exacerbates asthma probably through type 2 innate lymphoid cells (ILC2s). Nevertheless, the association between eosinophilic asthma (EA) and ILC2s remains obscure, and the mechanisms by which IL-33 affects ILC2s are yet to be clarified. METHODS ILC2s were evaluated in peripheral blood mononuclear cells, induced sputum, and bronchoalveolar lavage fluid obtained from patients with EA. Confocal microscopy was performed to locate ILC2s in lung tissue and the mRNA expression of ILC2-related genes was also evaluated in the EA model. The proliferation of ILC2s isolated from humans and mice was assessed following IL-33 or anti-IL-33 stimulation. RESULTS The counts, activation, and mRNA expression of relevant genes in ILC2s were higher in PBMCs and airways of patients with EA. In addition, ILC2 cell counts correlated with Asthma control test, blood eosinophil count, Fractional exhaled nitric oxide level, and predicted eosinophilic airway inflammation. IL-33 induced stronger proliferation of ILC2s and increased their density around blood vessels in the lungs of mice with EA. Moreover, IL-33 treatment increased the counts and activation of ILC2s and lung inflammatory scores, whereas anti-IL-33 antibody significantly reversed these effects in EA mice. Finally, IL-33 enhanced PI3K and AKT protein expression in ILC2s, whereas inhibition of the PI3K/AKT pathway decreased IL-5 and IL-13 production by ILC2s in EA. CONCLUSIONS ILC2s, especially activated ILC2s, might be critical markers of EA. IL-33 can induce and activate ILC2s in the lungs via the PI3K/AKT pathway in EA. Thus, using anti-IL-33 antibody could be a part of an effective treatment strategy for EA.
Collapse
Affiliation(s)
- Fengfei Sun
- Department of Pulmonary and Critical Care Medicinethe Fifth Affiliated Hospital of Sun Yat‐sen UniversityZhuhaiChina
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imagingthe Fifth Affiliated Hospital of Sun Yat‐sen UniversityZhuhaiChina
| | - Wei Zou
- Department of Pulmonary and Critical Care Medicinethe Fifth Affiliated Hospital of Sun Yat‐sen UniversityZhuhaiChina
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imagingthe Fifth Affiliated Hospital of Sun Yat‐sen UniversityZhuhaiChina
| | - Honglei Shi
- Department of Pulmonary and Critical Care Medicinethe Fifth Affiliated Hospital of Sun Yat‐sen UniversityZhuhaiChina
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imagingthe Fifth Affiliated Hospital of Sun Yat‐sen UniversityZhuhaiChina
| | - Zehu Chen
- Department of Pulmonary and Critical Care Medicinethe Fifth Affiliated Hospital of Sun Yat‐sen UniversityZhuhaiChina
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imagingthe Fifth Affiliated Hospital of Sun Yat‐sen UniversityZhuhaiChina
| | - Donghai Ma
- Department of Pulmonary and Critical Care Medicinethe Fifth Affiliated Hospital of Sun Yat‐sen UniversityZhuhaiChina
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imagingthe Fifth Affiliated Hospital of Sun Yat‐sen UniversityZhuhaiChina
| | - Minmin Lin
- Department of Pulmonary and Critical Care Medicinethe Fifth Affiliated Hospital of Sun Yat‐sen UniversityZhuhaiChina
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imagingthe Fifth Affiliated Hospital of Sun Yat‐sen UniversityZhuhaiChina
| | - Kongqiu Wang
- Department of Pulmonary and Critical Care Medicinethe Fifth Affiliated Hospital of Sun Yat‐sen UniversityZhuhaiChina
| | - Yiying Huang
- Department of Pulmonary and Critical Care Medicinethe Fifth Affiliated Hospital of Sun Yat‐sen UniversityZhuhaiChina
| | - Xiaobin Zheng
- Department of Pulmonary and Critical Care Medicinethe Fifth Affiliated Hospital of Sun Yat‐sen UniversityZhuhaiChina
| | - Cuiyan Tan
- Department of Pulmonary and Critical Care Medicinethe Fifth Affiliated Hospital of Sun Yat‐sen UniversityZhuhaiChina
| | - Meizhu Chen
- Department of Pulmonary and Critical Care Medicinethe Fifth Affiliated Hospital of Sun Yat‐sen UniversityZhuhaiChina
| | - Changli Tu
- Department of Pulmonary and Critical Care Medicinethe Fifth Affiliated Hospital of Sun Yat‐sen UniversityZhuhaiChina
| | - Zhenguo Wang
- Department of Pulmonary and Critical Care Medicinethe Fifth Affiliated Hospital of Sun Yat‐sen UniversityZhuhaiChina
| | - Jian Wu
- Department of Pulmonary and Critical Care Medicinethe Fifth Affiliated Hospital of Sun Yat‐sen UniversityZhuhaiChina
| | - Weiming Wu
- Department of Pulmonary and Critical Care Medicinethe Fifth Affiliated Hospital of Sun Yat‐sen UniversityZhuhaiChina
| | - Jing Liu
- Department of Pulmonary and Critical Care Medicinethe Fifth Affiliated Hospital of Sun Yat‐sen UniversityZhuhaiChina
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imagingthe Fifth Affiliated Hospital of Sun Yat‐sen UniversityZhuhaiChina
- Department of Allergythe Fifth Affiliated Hospital of Sun Yat‐sen UniversityZhuhaiChina
| |
Collapse
|
19
|
Theofani E, Tsitsopoulou A, Morianos I, Semitekolou M. Severe Asthmatic Responses: The Impact of TSLP. Int J Mol Sci 2023; 24:ijms24087581. [PMID: 37108740 PMCID: PMC10142872 DOI: 10.3390/ijms24087581] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/13/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Asthma is a chronic inflammatory disease that affects the lower respiratory system and includes several categories of patients with varying features or phenotypes. Patients with severe asthma (SA) represent a group of asthmatics that are poorly responsive to medium-to-high doses of inhaled corticosteroids and additional controllers, thus leading in some cases to life-threatening disease exacerbations. To elaborate on SA heterogeneity, the concept of asthma endotypes has been developed, with the latter being characterized as T2-high or low, depending on the type of inflammation implicated in disease pathogenesis. As SA patients exhibit curtailed responses to standard-of-care treatment, biologic therapies are prescribed as adjunctive treatments. To date, several biologics that target specific downstream effector molecules involved in disease pathophysiology have displayed superior efficacy only in patients with T2-high, eosinophilic inflammation, suggesting that upstream mediators of the inflammatory cascade could constitute an attractive therapeutic approach for difficult-to-treat asthma. One such appealing therapeutic target is thymic stromal lymphopoietin (TSLP), an epithelial-derived cytokine with critical functions in allergic diseases, including asthma. Numerous studies in both humans and mice have provided major insights pertinent to the role of TSLP in the initiation and propagation of asthmatic responses. Undoubtedly, the magnitude of TSLP in asthma pathogenesis is highlighted by the fact that the FDA recently approved tezepelumab (Tezspire), a human monoclonal antibody that targets TSLP, for SA treatment. Nevertheless, further research focusing on the biology and mode of function of TSLP in SA will considerably advance disease management.
Collapse
Affiliation(s)
- Efthymia Theofani
- Cellular Immunology Laboratory, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Aikaterini Tsitsopoulou
- Cellular Immunology Laboratory, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Ioannis Morianos
- Host Defense and Fungal Pathogenesis Lab, School of Medicine, University of Crete, 71110 Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, 71300 Heraklion, Greece
| | - Maria Semitekolou
- Laboratory of Immune Regulation and Tolerance, School of Medicine, University of Crete, 71110 Heraklion, Greece
| |
Collapse
|
20
|
Identification of two migratory colon ILC2 populations differentially expressing IL-17A and IL-5/IL-13. SCIENCE CHINA. LIFE SCIENCES 2023; 66:67-80. [PMID: 35881219 DOI: 10.1007/s11427-022-2127-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/12/2022] [Indexed: 02/04/2023]
Abstract
Group 2 innate lymphoid cells (ILC2s) play important tissue resident roles in anti-parasite immunity, allergic immune response, tissue homeostasis, and tumor immunity. ILC2s are considered tissue resident cells with little proliferation at steady state. Recent studies have shown that a subset of small intestinal ILC2s could leave their residing tissues, circulate and migrate to different organs, including lung, liver, mesenteric LN and spleen, upon activation. However, it remains unknown whether other ILC populations with migratory behavior exist. In this study, we find two major colon ILC2 populations with potential to migrate to the lung in response to IL-25 stimulation. One subset expresses IL-17A and resembles inflammatory ILC2s (iILC2s) but lacks CD27 expression, whereas the other expresses CD27 but not IL-17A. In addition, the IL-17A+ ILC2s express lower levels of CD127, CD25, and ST2 than CD27+ ILC2s, which express higher levels of IL-5 and IL-13. Surprisingly, we found that both colon ILC2 populations still maintained their colonic features of preferential expression of IL-17A and CD27, IL-5/IL-13, respectively. Together, our study identifies two migratory colon ILC2 subsets with unique surface markers and cytokine profiles which are critical in regulating lung and colon immunity and homeostasis.
Collapse
|
21
|
Jin J, Wan Y, Shu Q, Liu J, Lai D. Knowledge mapping and research trends of IL-33 from 2004 to 2022: a bibliometric analysis. Front Immunol 2023; 14:1158323. [PMID: 37153553 PMCID: PMC10157155 DOI: 10.3389/fimmu.2023.1158323] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/30/2023] [Indexed: 05/09/2023] Open
Abstract
Background IL-33 has been studied widely but its comprehensive and systematic bibliometric analysis is yet available. The present study is to summarize the research progress of IL-33 through bibliometric analysis. Methods The publications related to IL-33 were identified and selected from the Web of Science Core Collection (WoSCC) database on 7 December 2022. The downloaded data was analyzed with bibliometric package in R software. CiteSpace and VOSviewer were used to conduct IL-33 bibliometric and knowledge mapping analysis. Results From 1 January 2004 to 7 December 2022, 4711 articles on IL-33 research published in 1009 academic journals by 24652 authors in 483 institutions from 89 countries were identified. The number of articles had grown steadily over this period. The United States of America(USA) and China are the major contributors in the field of research while University of Tokyo and University of Glasgow are the most active institutions. The most prolific journal is Frontiers in Immunology, while the Journal of Immunity is the top 1 co-cited journal. Andrew N. J. Mckenzie published the most significant number of articles and Jochen Schmitz was co-cited most. The major fields of these publications are immunology, cell biology, and biochemistry & molecular biology. After analysis, the high-frequency keywords of IL-33 research related to molecular biology (sST2, IL-1), immunological effects (type 2 immunity, Th2 cells), and diseases (asthma, cancer, cardiovascular diseases). Among these, the involvement of IL-33 in the regulation of type 2 inflammation has strong research potential and is a current research hotspot. Conclusion The present study quantifies and identifies the current research status and trends of IL-33 using bibliometric and knowledge mapping analysis. This study may offer the direction of IL-33-related research for scholars.
Collapse
Affiliation(s)
- Jingyi Jin
- Department of Neonatal Surgery, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yantong Wan
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Qiang Shu
- Department of Thoracic and Cardiovascular Surgery, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Jinghua Liu
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- *Correspondence: Dengming Lai, ; Jinghua Liu,
| | - Dengming Lai
- Department of Neonatal Surgery, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
- *Correspondence: Dengming Lai, ; Jinghua Liu,
| |
Collapse
|
22
|
Michieletto MF, Tello-Cajiao JJ, Mowel WK, Chandra A, Yoon S, Joannas L, Clark ML, Jimenez MT, Wright JM, Lundgren P, Williams A, Thaiss CA, Vahedi G, Henao-Mejia J. Multiscale 3D genome organization underlies ILC2 ontogenesis and allergic airway inflammation. Nat Immunol 2023; 24:42-54. [PMID: 36050414 PMCID: PMC10134076 DOI: 10.1038/s41590-022-01295-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 07/18/2022] [Indexed: 01/06/2023]
Abstract
Innate lymphoid cells (ILCs) are well-characterized immune cells that play key roles in host defense and tissue homeostasis. Yet, how the three-dimensional (3D) genome organization underlies the development and functions of ILCs is unknown. Herein, we carried out an integrative analysis of the 3D genome structure, chromatin accessibility and gene expression in mature ILCs. Our results revealed that the local 3D configuration of the genome is rewired specifically at loci associated with ILC biology to promote their development and functional differentiation. Importantly, we demonstrated that the ontogenesis of ILC2s and the progression of allergic airway inflammation are determined by a unique local 3D configuration of the region containing the ILC-lineage-defining factor Id2, which is characterized by multiple interactions between the Id2 promoter and distal regulatory elements bound by the transcription factors GATA-3 and RORα, unveiling the mechanism whereby the Id2 expression is specifically controlled in group 2 ILCs.
Collapse
Affiliation(s)
- Michaël F Michieletto
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John J Tello-Cajiao
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Walter K Mowel
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Aditi Chandra
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sora Yoon
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Leonel Joannas
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Megan L Clark
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Monica T Jimenez
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jasmine M Wright
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Patrick Lundgren
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Adam Williams
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Christoph A Thaiss
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Golnaz Vahedi
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. .,Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. .,Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Jorge Henao-Mejia
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. .,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. .,Division of Protective Immunity, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
23
|
Poto R, Gambardella AR, Marone G, Schroeder JT, Mattei F, Schiavoni G, Varricchi G. Basophils from allergy to cancer. Front Immunol 2022; 13:1056838. [PMID: 36578500 PMCID: PMC9791102 DOI: 10.3389/fimmu.2022.1056838] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/21/2022] [Indexed: 12/14/2022] Open
Abstract
Human basophils, first identified over 140 years ago, account for just 0.5-1% of circulating leukocytes. While this scarcity long hampered basophil studies, innovations during the past 30 years, beginning with their isolation and more recently in the development of mouse models, have markedly advanced our understanding of these cells. Although dissimilarities between human and mouse basophils persist, the overall findings highlight the growing importance of these cells in health and disease. Indeed, studies continue to support basophils as key participants in IgE-mediated reactions, where they infiltrate inflammatory lesions, release pro-inflammatory mediators (histamine, leukotriene C4: LTC4) and regulatory cytokines (IL-4, IL-13) central to the pathogenesis of allergic diseases. Studies now report basophils infiltrating various human cancers where they play diverse roles, either promoting or hampering tumorigenesis. Likewise, this activity bears remarkable similarity to the mounting evidence that basophils facilitate wound healing. In fact, both activities appear linked to the capacity of basophils to secrete IL-4/IL-13, with these cytokines polarizing macrophages toward the M2 phenotype. Basophils also secrete several angiogenic factors (vascular endothelial growth factor: VEGF-A, amphiregulin) consistent with these activities. In this review, we feature these newfound properties with the goal of unraveling the increasing importance of basophils in these diverse pathobiological processes.
Collapse
Affiliation(s)
- Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy,Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy,World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
| | - Adriana Rosa Gambardella
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy,Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy,World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy,Institute of Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (CNR), Naples, Italy
| | - John T. Schroeder
- Department of Medicine, Division of Allergy and Clinical Immunology, Johns Hopkins Asthma and Allergy Center, Johns Hopkins University, Baltimore, MD, United States
| | - Fabrizio Mattei
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Giovanna Schiavoni
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy,*Correspondence: Gilda Varricchi, ; Giovanna Schiavoni,
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy,World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy,Institute of Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (CNR), Naples, Italy,*Correspondence: Gilda Varricchi, ; Giovanna Schiavoni,
| |
Collapse
|
24
|
Huang X, Yu H, Xie C, Zhou YL, Chen MM, Shi HL, Tang WF, Dong JC, Luo QL. Louki Zupa decoction attenuates the airway inflammation in acute asthma mice induced by ovalbumin through IL-33/ST2-NF-κB/GSK3β/mTOR signalling pathway. PHARMACEUTICAL BIOLOGY 2022; 60:1520-1532. [PMID: 35952388 PMCID: PMC9377271 DOI: 10.1080/13880209.2022.2104327] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/23/2022] [Accepted: 07/15/2022] [Indexed: 05/20/2023]
Abstract
CONTEXT Asthma is a common respiratory system disease. Louki Zupa decoction (LKZP), a traditional Chinese medicine, presents a promising efficacy against lung diseases. OBJECTIVE To investigate the pathogenic mechanism of asthma and reveal the intervention mechanism of LKZP. MATERIALS AND METHODS Forty-eight female Balb/c mice were randomly divided into 6 groups: normal control group (NC), ovalbumin (OVA)/saline asthma model group, OVA/LL group, OVA/LM group, OVA/LH group and OVA/DEX group (n = 8 per group). The asthmatic mice were modelled through intraperitoneal injecting and neutralizing OVA. LKZP decoction was administrated by gavage at the challenge stage for seven consecutive days (2.1, 4.2 and 8.4 g/kg/day). We investigated the change in lung function, airway inflammation, mucus secretion and TH-1/TH-2-related cytokines. We further verify the activated status of the IL-33/ST2/NF-κB/GSK3β/mTOR signalling pathway. RESULTS LKZP was proved to improve asthmatic symptoms, as evidenced by the down-regulated airway resistance by 36%, 58% and 53% (p < 0.01, p < 0.001 vs. OVA/saline group), up-regulated lung compliance by 102%, 114% and 111%, decreased airway inflammation and mucus secretion by 33%, 40% and 33% (p < 0.001 vs. OVA/saline group). Moreover, the content of cytokines in BALF related to airway allergy (such as IgE) and T helper 1/T helper 2 cells (like IL-2, IL-4, IL-5, IL-13, TNF-α and IFN-γ), were also markedly reduced by 13-65% on LKZP intervention groups compared with model group. Mechanistic research revealed that the IL-33/ST2-NF-κB/GSK3β/mTOR signalling pathway was activated in the OVA/saline group and LKZP significantly down-regulated this pathway. DISCUSSION AND CONCLUSION LKZP improves lung function, airway inflammation, mucus secretion and correct immune imbalance by intervening with the IL-33/ST2-NF-κB/GSK3β/mTOR signalling pathway, presenting a promising therapeutic choice for asthma.
Collapse
Affiliation(s)
- Xi Huang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Integrative Medicine, Fudan University, Shanghai, China
| | - Hang Yu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Integrative Medicine, Fudan University, Shanghai, China
| | - Cong Xie
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Integrative Medicine, Fudan University, Shanghai, China
| | - Yao-Long Zhou
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Integrative Medicine, Fudan University, Shanghai, China
| | - Meng-Meng Chen
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Integrative Medicine, Fudan University, Shanghai, China
| | - Han-Lin Shi
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Integrative Medicine, Fudan University, Shanghai, China
| | - Wei-Feng Tang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Integrative Medicine, Fudan University, Shanghai, China
| | - Jing-Cheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Integrative Medicine, Fudan University, Shanghai, China
| | - Qing-Li Luo
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Integrative Medicine, Fudan University, Shanghai, China
- CONTACT Qing-Li Luo
| |
Collapse
|
25
|
Stanbery AG, Shuchi Smita, Jakob von Moltke, Tait Wojno ED, Ziegler SF. TSLP, IL-33, and IL-25: Not just for allergy and helminth infection. J Allergy Clin Immunol 2022; 150:1302-1313. [PMID: 35863509 PMCID: PMC9742339 DOI: 10.1016/j.jaci.2022.07.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/16/2022] [Accepted: 07/08/2022] [Indexed: 12/14/2022]
Abstract
The release of cytokines from epithelial and stromal cells is critical for the initiation and maintenance of tissue immunity. Three such cytokines, thymic stromal lymphopoietin, IL-33, and IL-25, are important regulators of type 2 immune responses triggered by parasitic worms and allergens. In particular, these cytokines activate group 2 innate lymphoid cells, TH2 cells, and myeloid cells, which drive hallmarks of type 2 immunity. However, emerging data indicate that these tissue-associated cytokines are not only involved in canonical type 2 responses but are also important in the context of viral infections, cancer, and even homeostasis. Here, we provide a brief review of the roles of thymic stromal lymphopoietin, IL-33, and IL-25 in diverse immune contexts, while highlighting their relative contributions in tissue-specific responses. We also emphasize a biologically motivated framework for thinking about the integration of multiple immune signals, including the 3 featured in this review.
Collapse
Affiliation(s)
| | - Shuchi Smita
- Department of Immunology, University of Washington, Seattle, Wash
| | - Jakob von Moltke
- Department of Immunology, University of Washington, Seattle, Wash
| | | | - Steven F Ziegler
- Department of Immunology, University of Washington, Seattle, Wash; Benaroya Research Institute, Seattle, Wash.
| |
Collapse
|
26
|
Venegas Garrido C, Mukherjee M, Bhalla A, Nair P. Airway autoimmunity, asthma exacerbations, and response to biologics. Clin Exp Allergy 2022; 52:1365-1378. [PMID: 35993511 DOI: 10.1111/cea.14220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/16/2022] [Indexed: 01/26/2023]
Abstract
Biologic therapies in asthma are indicated in severe disease, and they are directed against specific inflammatory modulators that contribute to pathogenesis and severity. Currently approved biologics target T2 cytokines (IgE, IL-5, IL-4/IL-13, and TLSP) and have demonstrated efficacy in clinical outcomes such as exacerbation rate and oral corticosteroid dose reductions, blood and airway eosinophil depletion, and lung function improvement. However, a proportion of these patients may show inadequate responses to biologics, with either initial lack of improvement or clinical and functional worsening after an optimal initial response. Exacerbations while on a biologic may be due to several reasons, including imprecise identification of the dominant effector pathway contributing to severity, additional inflammatory pathways that are not targeted by the biologic, inaccuracies of the biomarker used to guide therapy, inadequate dosing schedules, intercurrent airway infections, anti-drug neutralizing antibodies, and a novel phenomenon of autoimmune responses in the airways interfering with the effectiveness of the monoclonal antibodies. This review, illustrated using case scenarios, describes the underpinnings of airway autoimmune responses in driving exacerbations while patients are being treated with biologics, device a strategy to evaluate such exacerbations, an algorithm to switch between biologics, and perhaps to consider two biologics concurrently.
Collapse
Affiliation(s)
- Carmen Venegas Garrido
- Firestone Institute for Respiratory Health, St Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada.,Division of Respirology, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Manali Mukherjee
- Firestone Institute for Respiratory Health, St Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada.,Division of Respirology, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Anurag Bhalla
- Division of Respirology, Department of Medicine, Western University, London, Ontario, Canada
| | - Parameswaran Nair
- Firestone Institute for Respiratory Health, St Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada.,Division of Respirology, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
27
|
Emerging Effects of IL-33 on COVID-19. Int J Mol Sci 2022; 23:ijms232113656. [PMID: 36362440 PMCID: PMC9658128 DOI: 10.3390/ijms232113656] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/27/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Since the start of COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), more than 6 million people have lost their lives worldwide directly or indirectly. Despite intensified efforts to clarify the immunopathology of COVID-19, the key factors and processes that trigger an inflammatory storm and lead to severe clinical outcomes in patients remain unclear. As an inflammatory storm factor, IL-33 is an alarmin cytokine, which plays an important role in cell damage or infection. Recent studies have shown that serum IL-33 is upregulated in COVID-19 patients and is strongly associated with poor outcomes. Increased IL-33 levels in severe infections may result from an inflammatory storm caused by strong interactions between activated immune cells. However, the effects of IL-33 in COVID-19 and the underlying mechanisms remain to be fully elucidated. In this review, we systematically discuss the biological properties of IL-33 under pathophysiological conditions and its regulation of immune cells, including neutrophils, innate lymphocytes (ILCs), dendritic cells, macrophages, CD4+ T cells, Th17/Treg cells, and CD8+ T cells, in COVID-19 phagocytosis. The aim of this review is to explore the potential value of the IL-33/immune cell pathway as a new target for early diagnosis, monitoring of severe cases, and clinical treatment of COVID-19.
Collapse
|
28
|
Duchesne M, Okoye I, Lacy P. Epithelial cell alarmin cytokines: Frontline mediators of the asthma inflammatory response. Front Immunol 2022; 13:975914. [PMID: 36311787 PMCID: PMC9616080 DOI: 10.3389/fimmu.2022.975914] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/20/2022] [Indexed: 12/02/2022] Open
Abstract
The exposure of the airway epithelium to external stimuli such as allergens, microbes, and air pollution triggers the release of the alarmin cytokines IL-25, IL-33 and thymic stromal lymphopoietin (TSLP). IL-25, IL-33 and TSLP interact with their ligands, IL-17RA, IL1RL1 and TSLPR respectively, expressed by hematopoietic and non-hematopoietic cells including dendritic cells, ILC2 cells, endothelial cells, and fibroblasts. Alarmins play key roles in driving type 2-high, and to a lesser extent type 2-low responses, in asthma. In addition, studies in which each of these three alarmins were targeted in allergen-challenged mice showed decreased chronicity of type-2 driven disease. Consequently, ascertaining the mechanism of activity of these upstream mediators has implications for understanding the outcome of targeted therapies designed to counteract their activity and alleviate downstream type 2-high and low effector responses. Furthermore, identifying the factors which shift the balance between the elicitation of type 2-high, eosinophilic asthma and type-2 low, neutrophilic-positive/negative asthma by alarmins is essential. In support of these efforts, observations from the NAVIGATOR trial imply that targeting TSLP in patients with tezepelumab results in reduced asthma exacerbations, improved lung function and control of the disease. In this review, we will discuss the mechanisms surrounding the secretion of IL-25, IL-33, and TSLP from the airway epithelium and how this influences the allergic airway cascade. We also review in detail how alarmin-receptor/co-receptor interactions modulate downstream allergic inflammation. Current strategies which target alarmins, their efficacy and inflammatory phenotype will be discussed.
Collapse
|
29
|
Guo H, Bossila EA, Ma X, Zhao C, Zhao Y. Dual Immune Regulatory Roles of Interleukin-33 in Pathological Conditions. Cells 2022; 11:cells11203237. [PMID: 36291105 PMCID: PMC9600220 DOI: 10.3390/cells11203237] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 11/20/2022] Open
Abstract
Interleukin-33 (IL-33), a member of the IL-1 cytokine family and a multifunctional cytokine, plays critical roles in maintaining host homeostasis and in pathological conditions, such as allergy, infectious diseases, and cancer, by acting on multiple types of immune cells and promoting type 1 and 2 immune responses. IL-33 is rapidly released by immune and non-immune cells upon stimulation by stress, acting as an “alarmin” by binding to its receptor, suppression of tumorigenicity 2 (ST2), to trigger downstream signaling pathways and activate inflammatory and immune responses. It has been recognized that IL-33 displays dual-functioning immune regulatory effects in many diseases and has both pro- and anti-tumorigenic effects, likely depending on its primary target cells, IL-33/sST2 expression levels, cellular context, and the cytokine microenvironment. Herein, we summarize our current understanding of the biological functions of IL-33 and its roles in the pathogenesis of various conditions, including inflammatory and autoimmune diseases, infections, cancers, and cases of organ transplantation. We emphasize the nature of context-dependent dual immune regulatory functions of IL-33 in many cells and diseases and review systemic studies to understand the distinct roles of IL-33 in different cells, which is essential to the development of more effective diagnoses and therapeutic approaches for IL-33-related diseases.
Collapse
Affiliation(s)
- Han Guo
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101499, China
| | - Elhusseny A. Bossila
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101499, China
- Biotechnology Department, Faculty of Agriculture Al-Azhar University, Cairo 11311, Egypt
| | - Xinran Ma
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101499, China
| | - Chenxu Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101499, China
| | - Yong Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101499, China
- Beijing Institute for Stem Cell and Regeneration, Beijing 100101, China
- Correspondence: ; Tel.: +86-10-64807302; Fax: +86-10-64807313
| |
Collapse
|
30
|
Jou E, Rodriguez-Rodriguez N, McKenzie ANJ. Emerging roles for IL-25 and IL-33 in colorectal cancer tumorigenesis. Front Immunol 2022; 13:981479. [PMID: 36263033 PMCID: PMC9573978 DOI: 10.3389/fimmu.2022.981479] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/15/2022] [Indexed: 12/31/2022] Open
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer-related death worldwide, and is largely refractory to current immunotherapeutic interventions. The lack of efficacy of existing cancer immunotherapies in CRC reflects the complex nature of the unique intestinal immune environment, which serves to maintain barrier integrity against pathogens and harmful environmental stimuli while sustaining host-microbe symbiosis during homeostasis. With their expression by barrier epithelial cells, the cytokines interleukin-25 (IL-25) and IL-33 play key roles in intestinal immune responses, and have been associated with inappropriate allergic reactions, autoimmune diseases and cancer pathology. Studies in the past decade have begun to uncover the important roles of IL-25 and IL-33 in shaping the CRC tumour immune microenvironment, where they may promote or inhibit tumorigenesis depending on the specific CRC subtype. Notably, both IL-25 and IL-33 have been shown to act on group 2 innate lymphoid cells (ILC2s), but can also stimulate an array of other innate and adaptive immune cell types. Though sometimes their functions can overlap they can also produce distinct phenotypes dependent on the differential distribution of their receptor expression. Furthermore, both IL-25 and IL-33 modulate pathways previously known to contribute to CRC tumorigenesis, including angiogenesis, tumour stemness, invasion and metastasis. Here, we review our current understanding of IL-25 and IL-33 in CRC tumorigenesis, with specific focus on dissecting their individual function in the context of distinct subtypes of CRC, and the potential prospects for targeting these pathways in CRC immunotherapy.
Collapse
Affiliation(s)
- Eric Jou
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | | | | |
Collapse
|
31
|
Chauché C, Rasid O, Donachie A, McManus CM, Löser S, Campion T, Richards J, Smyth DJ, McSorley HJ, Maizels RM. Suppression of airway allergic eosinophilia by Hp-TGM, a helminth mimic of TGF-β. Immunology 2022; 167:197-211. [PMID: 35758054 PMCID: PMC9885513 DOI: 10.1111/imm.13528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/20/2022] [Indexed: 02/02/2023] Open
Abstract
Type 2-high asthma is a chronic inflammatory disease of the airways which is increasingly prevalent in countries where helminth parasite infections are rare, and characterized by T helper 2 (Th2)-dependent accumulation of eosinophils in the lungs. Regulatory cytokines such as TGF-β can restrain inflammatory reactions, dampen allergic Th2 responses, and control eosinophil activation. The murine helminth parasite Heligmosomoides polygyrus releases a TGF-β mimic (Hp-TGM) that replicates the biological and functional properties of TGF-β despite bearing no structural similarity to the mammalian protein. Here, we investigated if Hp-TGM could alleviate allergic airway inflammation in mice exposed to Alternaria alternata allergen, house dust mite (HDM) extract or alum-adjuvanted ovalbumin protein (OVA). Intranasal administration of Hp-TGM during Alternaria exposure sharply reduced airway and lung tissue eosinophilia along with bronchoalveolar lavage fluid IL-5 and lung IL-33 cytokine levels at 24 h. The protective effect of Hp-TGM on airway eosinophilia was also obtained in the longer T-cell mediated models of HDM or OVA sensitisation with significant inhibition of eotaxin-1, IL-4 and IL-13 responses depending on the model and time-point. Hp-TGM was also protective when administered parenterally either when given at the time of allergic sensitisation or during airway allergen challenge. This project has taken the first steps in identifying the role of Hp-TGM in allergic asthma and highlighted its ability to control lung inflammation and allergic pathology. Future research will investigate the mode of action of Hp-TGM against airway allergic eosinophilia, and further explore its potential to be developed as a biotherapeutic in allergic asthma.
Collapse
Affiliation(s)
- Caroline Chauché
- Wellcome Centre for Integrative ParasitologyInstitute of Infection, Immunity and Inflammation, University of GlasgowGlasgowUK,Centre for Inflammation ResearchUniversity of Edinburgh, Queen's Medical Research InstituteEdinburghUK
| | - Orhan Rasid
- Wellcome Centre for Integrative ParasitologyInstitute of Infection, Immunity and Inflammation, University of GlasgowGlasgowUK
| | - Anne‐Marie Donachie
- Wellcome Centre for Integrative ParasitologyInstitute of Infection, Immunity and Inflammation, University of GlasgowGlasgowUK
| | - Caitlin M. McManus
- Wellcome Centre for Integrative ParasitologyInstitute of Infection, Immunity and Inflammation, University of GlasgowGlasgowUK
| | - Stephan Löser
- Wellcome Centre for Integrative ParasitologyInstitute of Infection, Immunity and Inflammation, University of GlasgowGlasgowUK
| | - Tiffany Campion
- Wellcome Centre for Integrative ParasitologyInstitute of Infection, Immunity and Inflammation, University of GlasgowGlasgowUK
| | - Josh Richards
- Wellcome Centre for Integrative ParasitologyInstitute of Infection, Immunity and Inflammation, University of GlasgowGlasgowUK,Division of Cell Signalling and ImmunologySchool of Life Sciences, Wellcome Trust Building, University of DundeeDundeeUK
| | - Danielle J. Smyth
- Wellcome Centre for Integrative ParasitologyInstitute of Infection, Immunity and Inflammation, University of GlasgowGlasgowUK,Division of Cell Signalling and ImmunologySchool of Life Sciences, Wellcome Trust Building, University of DundeeDundeeUK
| | - Henry J. McSorley
- Division of Cell Signalling and ImmunologySchool of Life Sciences, Wellcome Trust Building, University of DundeeDundeeUK
| | - Rick M. Maizels
- Wellcome Centre for Integrative ParasitologyInstitute of Infection, Immunity and Inflammation, University of GlasgowGlasgowUK
| |
Collapse
|
32
|
Zhang J, Chen J, Richardson JP, Francis-Newton NJ, Lai PF, Jenkins K, Major MR, Key RE, Stewart ME, Firth-Clark S, Lloyd SM, Newton GK, Perrior TR, Garrod DR, Robinson C. Targeting an Initiator Allergen Provides Durable and Expansive Protection against House Dust Mite Allergy. ACS Pharmacol Transl Sci 2022; 5:735-751. [PMID: 36110379 PMCID: PMC9469500 DOI: 10.1021/acsptsci.2c00022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Indexed: 11/30/2022]
Abstract
Whereas treatment of allergic diseases such as asthma relies largely on the targeting of dysregulated effector pathways, the conceptually attractive alternative of preventing them by a pharmaceutical, at-source intervention has been stymied until now by uncertainties about suitable targets and the challenges facing drug design. House dust mites (HDMs) are globally significant triggers of allergy. Group 1 HDM allergens, exemplified by Der p 1, are cysteine proteases. Their degradome has a strong disease linkage that underlies their status as risk and initiator allergens acting directly and through bystander effects on other allergens. Our objective was to test whether target-selective inhibitors of group 1 HDM allergens might provide a viable route to novel therapies. Using structure-directed design to optimize a series of pyruvamides, we undertook the first examination of whether pharmaceutically developable inhibitors of group 1 allergens might offer protection against HDM exposure. Developability criteria included durable inhibition of clinically relevant signals after a single aerosolized dose of the drug. The compounds suppressed acute airway responses of rats and mice when challenged with an HDM extract representing the HDM allergome. Inhibitory effects operated through a miscellany of downstream pathways involving, among others, IL-33, thymic stromal lymphopoietin, chemokines, and dendritic cells. IL-13 and eosinophil recruitment, indices of Th2 pathway activation, were strongly attenuated. The surprisingly expansive benefits arising from a unique at-source intervention suggest a novel approach to multiple allergic diseases in which HDMs play prominent roles and encourage exploration of these pharmaceutically developable molecules in a clinical setting.
Collapse
Affiliation(s)
- Jihui Zhang
- Institute
for Infection & Immunity, St. George’s,
University of London, Cranmer Terrace, London SW17 0RE, United
Kingdom
| | - Jie Chen
- Institute
for Infection & Immunity, St. George’s,
University of London, Cranmer Terrace, London SW17 0RE, United
Kingdom
| | - Jonathan P. Richardson
- Institute
for Infection & Immunity, St. George’s,
University of London, Cranmer Terrace, London SW17 0RE, United
Kingdom
| | - Nicola-Jane Francis-Newton
- Institute
for Infection & Immunity, St. George’s,
University of London, Cranmer Terrace, London SW17 0RE, United
Kingdom
| | - Pei F. Lai
- Institute
for Infection & Immunity, St. George’s,
University of London, Cranmer Terrace, London SW17 0RE, United
Kingdom
| | - Kerry Jenkins
- Domainex
Ltd., Chesterford Research Park, Little Chesterford, Saffron Walden CB10 1XL, United Kingdom
| | - Meriel R. Major
- Domainex
Ltd., Chesterford Research Park, Little Chesterford, Saffron Walden CB10 1XL, United Kingdom
| | - Rebekah E. Key
- Domainex
Ltd., Chesterford Research Park, Little Chesterford, Saffron Walden CB10 1XL, United Kingdom
| | - Mark E. Stewart
- Domainex
Ltd., Chesterford Research Park, Little Chesterford, Saffron Walden CB10 1XL, United Kingdom
| | - Stuart Firth-Clark
- Domainex
Ltd., Chesterford Research Park, Little Chesterford, Saffron Walden CB10 1XL, United Kingdom
| | - Steven M. Lloyd
- Domainex
Ltd., Chesterford Research Park, Little Chesterford, Saffron Walden CB10 1XL, United Kingdom
| | - Gary K. Newton
- Domainex
Ltd., Chesterford Research Park, Little Chesterford, Saffron Walden CB10 1XL, United Kingdom
| | - Trevor R. Perrior
- Domainex
Ltd., Chesterford Research Park, Little Chesterford, Saffron Walden CB10 1XL, United Kingdom
| | - David R. Garrod
- Faculty
of Biology, Medicine and Health, University
of Manchester, Manchester M13 9PL, United Kingdom
| | - Clive Robinson
- Institute
for Infection & Immunity, St. George’s,
University of London, Cranmer Terrace, London SW17 0RE, United
Kingdom
| |
Collapse
|
33
|
Kim SR. Viral Infection and Airway Epithelial Immunity in Asthma. Int J Mol Sci 2022; 23:9914. [PMID: 36077310 PMCID: PMC9456547 DOI: 10.3390/ijms23179914] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 12/19/2022] Open
Abstract
Viral respiratory tract infections are associated with asthma development and exacerbation in children and adults. In the course of immune responses to viruses, airway epithelial cells are the initial platform of innate immunity against viral invasion. Patients with severe asthma are more vulnerable than those with mild to moderate asthma to viral infections. Furthermore, in most cases, asthmatic patients tend to produce lower levels of antiviral cytokines than healthy subjects, such as interferons produced from immune effector cells and airway epithelial cells. The epithelial inflammasome appears to contribute to asthma exacerbation through overactivation, leading to self-damage, despite its naturally protective role against infectious pathogens. Given the mixed and complex immune responses in viral-infection-induced asthma exacerbation, this review examines the diverse roles of airway epithelial immunity and related potential therapeutic targets and discusses the mechanisms underlying the heterogeneous manifestations of asthma exacerbations.
Collapse
Affiliation(s)
- So Ri Kim
- Division of Respiratory Medicine and Allergy, Department of Internal Medicine, Medical School of Jeonbuk National University, 20 Geonji-ro, Deokjin-gu, Jeonju 54907, Korea
| |
Collapse
|
34
|
Liu SH, Kazemi S, Karrer G, Bellaire A, Weckwerth W, Damkjaer J, Hoffmann O, Epstein MM. Influence of the environment on ragweed pollen and their sensitizing capacity in a mouse model of allergic lung inflammation. FRONTIERS IN ALLERGY 2022; 3:854038. [PMID: 35991309 PMCID: PMC9390857 DOI: 10.3389/falgy.2022.854038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 07/01/2022] [Indexed: 11/23/2022] Open
Abstract
Common ragweed (Ambrosia artemisiifolia) is an invasive plant with allergenic pollen. Due to environmental changes, ragweed pollen (RWP) airborne concentrations are predicted to quadruple in Europe by 2050 and more than double allergic sensitization of Europeans by 2060. We developed an experimental RWP model of allergy in BALB/c mice to evaluate how the number of RWP and how RWP collected from different geographical environments influence disease. We administered RWP six times over 3 weeks intranasally to the mice and then evaluated disease parameters 72 h later or allowed the mice to recover for at least 90 days before rechallenging them with RWP to elicit a disease relapse. Doses over 300 pollen grains induced lung eosinophilia. Higher doses of 3,000 and 30,000 pollen grains increased both eosinophils and neutrophils and induced disease relapses. RWP harvested from diverse geographical regions induced a spectrum of allergic lung disease from mild inflammation to moderate eosinophilic and severe mixed eosinophilic-neutrophilic lung infiltrates. After a recovery period, mice rechallenged with pollen developed a robust disease relapse. We found no correlation between Amb a 1 content, the major immunodominant allergen, endotoxin content, or RWP structure with disease severity. These results demonstrate that there is an environmental impact on RWP with clinical consequences that may underlie the increasing sensitization rates and the severity of pollen-induced disease exacerbation in patients. The multitude of diverse environmental factors governing distinctive patterns of disease induced by RWP remains unclear. Further studies are necessary to elucidate how the environment influences the complex interaction between RWP and human health.
Collapse
Affiliation(s)
- Shu-Hua Liu
- Laboratory of Experimental Allergy, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Sahar Kazemi
- Laboratory of Experimental Allergy, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Gerhard Karrer
- Institute of Botany, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Anke Bellaire
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Wolfram Weckwerth
- Department of Functional and Evolutionary Ecology, Molecular Systems Biology, University of Vienna, Vienna, Austria
- Vienna Metabolomics Center (VIME), University of Vienna, Vienna, Austria
| | | | - Oskar Hoffmann
- Division of Pharmacology & Toxicology, Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Michelle M. Epstein
- Laboratory of Experimental Allergy, Department of Dermatology, Medical University of Vienna, Vienna, Austria
- *Correspondence: Michelle M. Epstein
| |
Collapse
|
35
|
Badrani JH, Strohm AN, Lacasa L, Civello B, Cavagnero K, Haung YA, Amadeo M, Naji LH, Lund SJ, Leng A, Kim H, Baum RE, Khorram N, Mondal M, Seumois G, Pilotte J, Vanderklish PW, McGee HM, Doherty TA. RNA-binding protein RBM3 intrinsically suppresses lung innate lymphoid cell activation and inflammation partially through CysLT1R. Nat Commun 2022; 13:4435. [PMID: 35908044 PMCID: PMC9338970 DOI: 10.1038/s41467-022-32176-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 07/19/2022] [Indexed: 11/09/2022] Open
Abstract
Innate lymphoid cells (ILC) promote lung inflammation in asthma through cytokine production. RNA-binding proteins (RBPs) are critical post-transcriptional regulators, although less is known about RBPs in ILC biology. Here, we demonstrate that RNA-binding motif 3 (RBM3) is highly expressed in lung ILCs and is further induced by alarmins TSLP and IL-33. Rbm3-/- and Rbm3-/-Rag2-/- mice exposed to asthma-associated Alternaria allergen develop enhanced eosinophilic lung inflammation and ILC activation. IL-33 stimulation studies in vivo and in vitro show that RBM3 suppressed lung ILC responses. Further, Rbm3-/- ILCs from bone marrow chimeric mice display increased ILC cytokine production suggesting an ILC-intrinsic suppressive function of RBM3. RNA-sequencing of Rbm3-/- lung ILCs demonstrates increased expression of type 2/17 cytokines and cysteinyl leukotriene 1 receptor (CysLT1R). Finally, Rbm3-/-Cyslt1r-/- mice show dependence on CysLT1R for accumulation of ST2+IL-17+ ILCs. Thus, RBM3 intrinsically regulates lung ILCs during allergen-induced type 2 inflammation that is partially dependent on CysLT1R.
Collapse
Affiliation(s)
- Jana H. Badrani
- grid.266100.30000 0001 2107 4242Divison of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, CA USA
| | - Allyssa N. Strohm
- grid.266100.30000 0001 2107 4242Divison of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, CA USA ,Veterans Affairs San Diego Health Care System, La Jolla, CA USA
| | - Lee Lacasa
- grid.266100.30000 0001 2107 4242Divison of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, CA USA
| | - Blake Civello
- grid.266100.30000 0001 2107 4242Divison of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, CA USA
| | - Kellen Cavagnero
- grid.266100.30000 0001 2107 4242Divison of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, CA USA
| | - Yung-An Haung
- grid.266100.30000 0001 2107 4242Divison of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, CA USA ,grid.145695.a0000 0004 1798 0922Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Michael Amadeo
- grid.266100.30000 0001 2107 4242Divison of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, CA USA
| | - Luay H. Naji
- grid.266100.30000 0001 2107 4242Divison of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, CA USA
| | - Sean J. Lund
- grid.266100.30000 0001 2107 4242Divison of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, CA USA
| | - Anthea Leng
- grid.266100.30000 0001 2107 4242Divison of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, CA USA
| | - Hyojoung Kim
- grid.266100.30000 0001 2107 4242Divison of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, CA USA
| | - Rachel E. Baum
- grid.266100.30000 0001 2107 4242Divison of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, CA USA
| | - Naseem Khorram
- grid.266100.30000 0001 2107 4242Divison of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, CA USA
| | - Monalisa Mondal
- grid.185006.a0000 0004 0461 3162La Jolla Institute, La Jolla, CA USA
| | - Grégory Seumois
- grid.185006.a0000 0004 0461 3162La Jolla Institute, La Jolla, CA USA
| | - Julie Pilotte
- grid.214007.00000000122199231The Scripps Research Institute, La Jolla, CA USA
| | | | - Heather M. McGee
- grid.266100.30000 0001 2107 4242Divison of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, CA USA ,grid.250671.70000 0001 0662 7144NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute, La Jolla, CA USA ,grid.410425.60000 0004 0421 8357Departments of Radiation Oncology and Immuno-Oncology, City of Hope, Duarte, CA USA ,Department of Molecular Medicine, La Jolla, CA USA
| | - Taylor A. Doherty
- grid.266100.30000 0001 2107 4242Divison of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, CA USA ,Veterans Affairs San Diego Health Care System, La Jolla, CA USA
| |
Collapse
|
36
|
Yeoh WJ, Vu VP, Krebs P. IL-33 biology in cancer: An update and future perspectives. Cytokine 2022; 157:155961. [PMID: 35843125 DOI: 10.1016/j.cyto.2022.155961] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 05/03/2022] [Accepted: 07/01/2022] [Indexed: 12/14/2022]
Abstract
Interleukin-33 (IL-33) is a member of the IL-1 family of cytokines that is constitutively expressed in the nucleus of epithelial, endothelial and fibroblast-like cells. Upon cell stress, damage or necrosis, IL-33 is released into the cytoplasm to exert its prime role as an alarmin by binding to its specific receptor moiety, ST2. IL-33 exhibits pleiotropic function in inflammatory diseases and particularly in cancer. IL-33 may play a dual role as both a pro-tumorigenic and anti-tumorigenic cytokine, dependent on tumor and cellular context, expression levels, bioactivity and the nature of the inflammatory environment. In this review, we discuss the differential contribution of IL-33 to malignant or inflammatory conditions, its multifaceted effects on the tumor microenvironment, while providing possible explanations for the discrepant findings described in the literature. Additionally, we examine the emerging and divergent functions of IL-33 in the nucleus, and aspects of IL-33 biology that are currently under-addressed.
Collapse
Affiliation(s)
- Wen Jie Yeoh
- Institute of Pathology, University of Bern, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Switzerland
| | - Vivian P Vu
- Institute of Pathology, University of Bern, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Switzerland
| | - Philippe Krebs
- Institute of Pathology, University of Bern, Bern, Switzerland.
| |
Collapse
|
37
|
Asaoka M, Kabata H, Fukunaga K. Heterogeneity of ILC2s in the Lungs. Front Immunol 2022; 13:918458. [PMID: 35757740 PMCID: PMC9222554 DOI: 10.3389/fimmu.2022.918458] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/17/2022] [Indexed: 11/13/2022] Open
Abstract
Group 2 innate lymphoid cells (ILC2s) are GATA3-expressing type 2 cytokine-producing innate lymphocytes that are present in various organs throughout the body. Basically, ILC2s are tissue-resident cells associated with a variety of pathological conditions in each tissue. Differences in the tissue-specific properties of ILC2s are formed by the post-natal tissue environment; however, diversity exists among ILC2s within each localized tissue due to developmental timing and activation. Diversity between steady-state and activated ILC2s in mice and humans has been gradually clarified with the advancement of single-cell RNA-seq technology. Another layer of complexity is that ILC2s can acquire other ILC-like functions, depending on their tissue environment. Further, ILC2s with immunological memory and exhausted ILC2s are both present in tissues, and the nature of ILC2s varies with senescence. To clarify how ILC2s affect human diseases, research should be conducted with a comprehensive understanding of ILC2s, taking into consideration the diversity of ILC2s rather than a snapshot of a single section. In this review, we summarize the current understanding of the heterogeneity of ILC2s in the lungs and highlight a novel field of immunology.
Collapse
Affiliation(s)
- Masato Asaoka
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hiroki Kabata
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Koichi Fukunaga
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
38
|
Huang K, Li F, Wang X, Yan B, Wang M, Li S, Yu W, Liu X, Wang C, Jin J, Zhang L. Clinical and cytokine patterns of uncontrolled asthma with and without comorbid chronic rhinosinusitis: a cross-sectional study. Respir Res 2022; 23:119. [PMID: 35546400 PMCID: PMC9092818 DOI: 10.1186/s12931-022-02028-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 04/15/2022] [Indexed: 11/10/2022] Open
Abstract
Background Asthma is significantly related to chronic rhinosinusitis (CRS) both in prevalence and severity. However, the clinical patterns of uncontrolled asthma with and without comorbid CRS are still unclear. This study aimed to explore the clinical characteristics and cytokine patterns of patients with uncontrolled asthma, with and without comorbid CRS.
Methods 22 parameters associated with demographic characteristics, CRS comorbidity, severity of airflow obstruction and airway inflammation, and inflammation type of asthma were collected and assessed in 143 patients with uncontrolled asthma. Different clusters were explored using two-step cluster analysis. Sputum samples were collected for assessment of Th1/Th2/Th17 and epithelium-derived cytokines. Results Comorbid CRS was identified as the most important variable for prediction of different clusters, followed by pulmonary function parameters and blood eosinophil level. Three clusters of patients were determined: Cluster 1 (n = 46) characterized by non-atopic patients with non-eosinophilic asthma without CRS, demonstrating moderate airflow limitation; Cluster 2 (n = 54) characterized by asthma patients with mild airflow limitation and CRS, demonstrating higher levels of blood eosinophils and immunoglobulin E (IgE) than cluster 1; Cluster 3 (n = 43) characterized by eosinophilic asthma patients with severe airflow limitation and CRS (46.5% with nasal polyps), demonstrating worst lung function, lowest partial pressure of oxygen (PaO2), and highest levels of eosinophils, fraction of exhaled nitric oxide (FeNO) and IgE. Sputum samples from Cluster 3 showed significantly higher levels of Interleukin (IL)-5, IL-13, IL-33, and tumor necrosis factor (TNF)-α than the other two clusters; and remarkably elevated IL-4, IL-17 and interferon (IFN)-γ compared with cluster 2. The levels of IL-10 and IL-25 were not significantly different among the three clusters. Conclusions Uncontrolled asthma may be endotyped into three clusters characterized by CRS comorbidity and inflammatory cytokine patterns. Furthermore, a united-airways approach may be especially necessary for management of asthma patients with Type 2 features. Supplementary Information The online version contains supplementary material available at 10.1186/s12931-022-02028-3.
Collapse
Affiliation(s)
- Kai Huang
- Department of Respiratory and Critical Care Medicine, Beijing Tongren Hospital, Capital Medical University, No. 1, DongJiaoMinXiang, DongCheng District, Beijing, 100730, China
| | - Fangyuan Li
- Department of Respiratory and Critical Care Medicine, Beijing Tongren Hospital, Capital Medical University, No. 1, DongJiaoMinXiang, DongCheng District, Beijing, 100730, China
| | - Xuechen Wang
- Department of Respiratory and Critical Care Medicine, Beijing Tongren Hospital, Capital Medical University, No. 1, DongJiaoMinXiang, DongCheng District, Beijing, 100730, China
| | - Bing Yan
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, 100005, China
| | - Ming Wang
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, 100005, China
| | - Shuling Li
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Wenling Yu
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Xiaofang Liu
- Department of Respiratory and Critical Care Medicine, Beijing Tongren Hospital, Capital Medical University, No. 1, DongJiaoMinXiang, DongCheng District, Beijing, 100730, China
| | - Chengshuo Wang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, No. 1, DongJiaoMinXiang, DongCheng District, Beijing, 100730, China
| | - Jianmin Jin
- Department of Respiratory and Critical Care Medicine, Beijing Tongren Hospital, Capital Medical University, No. 1, DongJiaoMinXiang, DongCheng District, Beijing, 100730, China. .,Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, 100005, China.
| | - Luo Zhang
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, 100005, China. .,Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, No. 1, DongJiaoMinXiang, DongCheng District, Beijing, 100730, China. .,Department of Allergy, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China. .,Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
39
|
Williams TC, Loo SL, Nichol KS, Reid AT, Veerati PC, Esneau C, Wark PAB, Grainge CL, Knight DA, Vincent T, Jackson CL, Alton K, Shimkets RA, Girkin JL, Bartlett NW. IL-25 blockade augments antiviral immunity during respiratory virus infection. Commun Biol 2022; 5:415. [PMID: 35508632 PMCID: PMC9068710 DOI: 10.1038/s42003-022-03367-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 04/13/2022] [Indexed: 12/12/2022] Open
Abstract
IL-25 is implicated in the pathogenesis of viral asthma exacerbations. However, the effect of IL-25 on antiviral immunity has yet to be elucidated. We observed abundant expression and colocalization of IL-25 and IL-25 receptor at the apical surface of uninfected airway epithelial cells and rhinovirus infection increased IL-25 expression. Analysis of immune transcriptome of rhinovirus-infected differentiated asthmatic bronchial epithelial cells (BECs) treated with an anti-IL-25 monoclonal antibody (LNR125) revealed a re-calibrated response defined by increased type I/III IFN and reduced expression of type-2 immune genes CCL26, IL1RL1 and IL-25 receptor. LNR125 treatment also increased type I/III IFN expression by coronavirus infected BECs. Exogenous IL-25 treatment increased viral load with suppressed innate immunity. In vivo LNR125 treatment reduced IL-25/type 2 cytokine expression and increased IFN-β expression and reduced lung viral load. We define a new immune-regulatory role for IL-25 that directly inhibits virus induced airway epithelial cell innate anti-viral immunity.
Collapse
Affiliation(s)
- Teresa C Williams
- The University of Newcastle and Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Su-Ling Loo
- The University of Newcastle and Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Kristy S Nichol
- The University of Newcastle and Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Andrew T Reid
- The University of Newcastle and Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Punnam C Veerati
- The University of Newcastle and Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Camille Esneau
- The University of Newcastle and Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Peter A B Wark
- The University of Newcastle and Hunter Medical Research Institute, Newcastle, NSW, Australia
- Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, NSW, Australia
| | - Christopher L Grainge
- The University of Newcastle and Hunter Medical Research Institute, Newcastle, NSW, Australia
- Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, NSW, Australia
| | - Darryl A Knight
- The University of Newcastle and Hunter Medical Research Institute, Newcastle, NSW, Australia
- UBC Providence Health Care Research Institute, Vancouver, BC, Canada
- Department of Anaesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Thomas Vincent
- Abeome Corporation/Lanier Biotherapeutics, Athens, GA, USA
| | | | - Kirby Alton
- Abeome Corporation/Lanier Biotherapeutics, Athens, GA, USA
| | | | - Jason L Girkin
- The University of Newcastle and Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Nathan W Bartlett
- The University of Newcastle and Hunter Medical Research Institute, Newcastle, NSW, Australia.
| |
Collapse
|
40
|
Hurrell BP, Helou DG, Shafiei-Jahani P, Howard E, Painter JD, Quach C, Akbari O. Cannabinoid receptor 2 engagement promotes group 2 innate lymphoid cell expansion and enhances airway hyperreactivity. J Allergy Clin Immunol 2022; 149:1628-1642.e10. [PMID: 34673048 PMCID: PMC9013728 DOI: 10.1016/j.jaci.2021.09.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 09/10/2021] [Accepted: 09/17/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Cannabinoids modulate the activation of immune cells and physiologic processes in the lungs. Group 2 innate lymphoid cells (ILC2s) are central players in type 2 asthma, but how cannabinoids modulate ILC2 activation remains to be elucidated. OBJECTIVE Our goal was to investigate the effects of cannabinoids on ILC2s and their role in asthma. METHODS A combination of cannabinoid receptor (CB)2 knockout (KO) mice, CB2 antagonist and agonist were used in the mouse models of IL-33, IL-25, and Alternaria alternata ILC2-dependent airway inflammation. RNA sequencing was performed to assess transcriptomic changes in ILC2s, and humanized mice were used to assess the role of CB2 signaling in human ILC2s. RESULTS We provide evidence that CB2 signaling in ILC2s is important for the development of ILC2-driven airway inflammation in both mice and human. We showed that both naive and activated murine pulmonary ILC2s express CB2. CB2 signaling did not affect ILC2 homeostasis at steady state, but strikingly it stimulated ILC2 proliferation and function upon activation. As a result, ILC2s lacking CB2 induced lower lung inflammation, as we made similar observations using a CB2 antagonist. Conversely, CB2 agonism remarkably exacerbated ILC2-driven airway hyperreactivity and lung inflammation. Mechanistically, transcriptomic and protein analysis revealed that CB2 signaling induced cyclic adenosine monophosphate-response element binding protein (CREB) phosphorylation in ILC2s. Human ILC2s expressed CB2, as CB2 antagonism and agonism showed opposing effects on ILC2 effector function and development of airway hyperreactivity in humanized mice. CONCLUSION Collectively, our results define CB2 signaling in ILC2s as an important modulator of airway inflammation.
Collapse
Affiliation(s)
- Benjamin P Hurrell
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, Calif
| | - Doumet Georges Helou
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, Calif
| | - Pedram Shafiei-Jahani
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, Calif
| | - Emily Howard
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, Calif
| | - Jacob D Painter
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, Calif
| | - Christine Quach
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, Calif
| | - Omid Akbari
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, Calif.
| |
Collapse
|
41
|
Williams CM, Roy S, Sun W, Furuya AM, Wijesundara DK, Furuya Y. LUNG group 2 innate lymphoid cells as a new adjuvant target to enhance intranasal vaccine efficacy against influenza. Clin Transl Immunology 2022; 11:e1381. [PMID: 35356066 PMCID: PMC8958247 DOI: 10.1002/cti2.1381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 03/05/2022] [Accepted: 03/07/2022] [Indexed: 11/12/2022] Open
Abstract
Group 2 innate lymphoid cells (ILC2) are a relatively new class of innate immune cells. Lung ILC2 are early responders that secrete type 2 cytokines in response to danger ‘alarmin’ signals such as interleukin (IL)‐33 and thymic stromal lymphopoietin. Being an early source of type 2 cytokines, ILC2 are a critical regulator of type 2 immune cells of both innate and adaptive immune responses. The immune regulatory functions of ILC2 were mostly investigated in diseases where T helper 2 inflammation predominates. However, in recent years, it has been appreciated that the role of ILC2 extends to other pathological conditions such as cancer and viral infections. In this review, we will focus on the potential role of lung ILC2 in the induction of mucosal immunity against influenza virus infection and discuss the potential utility of ILC2 as a target for mucosal vaccination.
Collapse
Affiliation(s)
- Clare M Williams
- Department of Immunology and Microbial Disease Albany Medical College Albany NY USA
| | - Sreeja Roy
- Department of Immunology and Microbial Disease Albany Medical College Albany NY USA
| | - Wei Sun
- Department of Immunology and Microbial Disease Albany Medical College Albany NY USA
| | | | - Danushka K Wijesundara
- The School of Chemistry and Molecular Biosciences The Australian Institute for Bioengineering and Nanotechnology The University of Queensland Brisbane QLD Australia
| | - Yoichi Furuya
- Department of Immunology and Microbial Disease Albany Medical College Albany NY USA
| |
Collapse
|
42
|
Lin YC, Lin YC, Tsai ML, Tsai YG, Kuo CH, Hung CH. IL-33 regulates M1/M2 chemokine expression via mitochondrial redox-related mitophagy in human monocytes. Chem Biol Interact 2022; 359:109915. [PMID: 35339432 DOI: 10.1016/j.cbi.2022.109915] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 02/12/2022] [Accepted: 03/21/2022] [Indexed: 11/27/2022]
Abstract
Interleukin (IL)-33 is an epithelial-derived cytokine that enhances T helper (Th) 2 responses. Allergens and other agents induce IL-33 in asthma. Excessive production of reactive oxygen species (ROS) leads to airway inflammation. Mitophagy is the selective degradation of mitochondria by autophagy and often occurs in defective mitochondria, followed by ROS production. In the present study, we examined the effects of IL-33 on ROS production and mitophagy in human monocytes, and the detailed mechanisms were investigated. Human monocyte cell line THP-1 was pretreated with different concentrations of IL-33. ROS production was measured by flow cytometry. Mitochondrial involvement and the mitophagy and intercellular pathway activation were evaluated by quantitative real-time PCR, western blotting, and confocal microscopy, and cytokine/chemokine concentrations were detected by ELISA. The data showed that IL-33 alone could induce ROS expression in THP-1 cells. The expression of complex II and V mRNA was increased in the presence of IL-33. The mitophagy-related proteins PINK1, Parkin, and LC3 were regulated by IL-33 through the AMPK pathway. IL-33 significantly decreased M1-related cytokines CXCL-10 and TNF-α production and significantly increased M2-related cytokine CCL-22 production. In conclusion, IL-33 induces ROS production and subsequently influences mitophagy through AMPK activation, altering the macrophage-polarization phenotype of monocytes.
Collapse
Affiliation(s)
- Yi-Ching Lin
- Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Doctoral Degree Program of Toxicology, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Laboratory Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Chih Lin
- Department of Medical Humanities and Education, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Division of Allergology, Immunology and Rheumatology, Department of Internal Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Mei-Lan Tsai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Pediatrics, Faculty of Pediatrics, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Giien Tsai
- Department of Pediatrics, Changhua Christian Children Hospital, Changhua, Taiwan; School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; School of Medicine, Chung Shan Medical University, Taichung, Taiwan.
| | - Chao-Hung Kuo
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung, Taiwan; Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Chih-Hsing Hung
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Pediatrics, Faculty of Pediatrics, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Taiwan; Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Pediatrics, Kaohsiung Municipal Siaogang Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
43
|
Gandhi VD, Cephus JY, Norlander AE, Chowdhury NU, Zhang J, Ceneviva ZJ, Tannous E, Polosukhin VV, Putz ND, Wickersham N, Singh A, Ware LB, Bastarache JA, Shaver CM, Chu HW, Peebles RS, Newcomb DC. Androgen receptor signaling promotes Treg suppressive function during allergic airway inflammation. J Clin Invest 2022; 132:e153397. [PMID: 35025767 PMCID: PMC8843736 DOI: 10.1172/jci153397] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 01/04/2022] [Indexed: 11/23/2022] Open
Abstract
Women have higher prevalence of asthma compared with men. In asthma, allergic airway inflammation is initiated by IL-33 signaling through ST2, leading to increased IL-4, IL-5, and IL-13 production and eosinophil infiltration. Foxp3+ Tregs suppress and ST2+ Tregs promote allergic airway inflammation. Clinical studies showed that the androgen dehydroepiandrosterone (DHEA) reduced asthma symptoms in patients, and mouse studies showed that androgen receptor (AR) signaling decreased allergic airway inflammation. Yet the impact of AR signaling on lung Tregs remains unclear. Using AR-deficient and Foxp3 fate-mapping mice, we determined that AR signaling increased Treg suppression during Alternaria extract (Alt Ext; allergen) challenge by stabilizing Foxp3+ Tregs and limiting the number of ST2+ ex-Tregs and IL-13+ Th2 cells and ex-Tregs. AR signaling also decreased Alt Ext-induced ST2+ Tregs in mice by limiting expression of Gata2, a transcription factor for ST2, and by decreasing Alt Ext-induced IL-33 production from murine airway epithelial cells. We confirmed our findings in human cells where 5α-dihydrotestosterone (DHT), an androgen, decreased IL-33-induced ST2 expression in lung Tregs and decreased Alt Ext-induced IL-33 secretion in human bronchial epithelial cells. Our findings showed that AR signaling stabilized Treg suppressive function, providing a mechanism for the sex difference in asthma.
Collapse
Affiliation(s)
| | | | | | - Nowrin U. Chowdhury
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | | | | | | | | | | | - Amrit Singh
- Prevention of Organ Failure (PROOF) Centre of Excellence, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | - Hong Wei Chu
- National Jewish Medical Center, Denver, Colorado, USA
| | - R. Stokes Peebles
- Department of Medicine and
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Dawn C. Newcomb
- Department of Medicine and
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
44
|
Zhang X, Chen Z, Zuo S, Sun H, Li X, Lu X, Xing Z, Chen M, Liu J, Xiao G, He Y. Endothelin-A Receptor Antagonist Alleviates Allergic Airway Inflammation via the Inhibition of ILC2 Function. Front Immunol 2022; 13:835953. [PMID: 35222426 PMCID: PMC8873101 DOI: 10.3389/fimmu.2022.835953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/25/2022] [Indexed: 11/13/2022] Open
Abstract
Allergic airway inflammation is a universal airway disease that is driven by hyperresponsiveness to inhaled allergens. Group 2 innate lymphoid cells (ILC2s) produce copious amounts of type 2 cytokines, which lead to allergic airway inflammation. Here, we discovered that both peripheral blood of human and mouse lung ILC2s express the endothelin-A receptor (ETAR), and the expression level of ETAR was dramatically induced upon interleukin-33 (IL-33) treatment. Subsequently, both preventive and therapeutic effects of BQ123, an ETAR antagonist, on allergic airway inflammation were observed, which were associated with decreased proliferation and type 2 cytokine productions by ILC2s. Furthermore, ILC2s from BQ123 treatment were found to be functionally impaired in response to an interleukin IL-33 challenged. And BQ123 treatment also affected the phosphorylation level of the extracellular signal-regulated kinase (ERK), as well as the level of GATA binding protein 3 (GATA3) in activated ILC2s. Interestingly, after BQ123 treatment, both mouse and human ILC2s in vitro exhibited decreased function and downregulation of ERK signaling and GATA3 stability. These observations imply that ETAR is an important regulator of ILC2 function and may be involved in ILC2-driven pulmonary inflammation. Therefore, blocking ETAR may be a promising therapeutic strategy for allergic airway inflammation.
Collapse
Affiliation(s)
- Xiaogang Zhang
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Ziyang Chen
- Department of Neurosurgery Affiliated Dongguan Hospital, Southern Medical University, Dongguan, China
| | - Shaowen Zuo
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Hengbiao Sun
- Department of Clinical Laboratory, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, China
| | - Xinyao Li
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiao Lu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhe Xing
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Meiqi Chen
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jingping Liu
- Department of Clinical Laboratory, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, China
| | - Gang Xiao
- Department of Clinical Laboratory, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, China
| | - Yumei He
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Proteomics, Southern Medical University, Guangzhou, China
| |
Collapse
|
45
|
Jin J, Sunusi S, Lu H. Group 2 innate lymphoid cells (ILC2s) are important in typical type 2 immune-mediated diseases and an essential therapeutic target. J Int Med Res 2022; 50:3000605211053156. [PMID: 35048721 PMCID: PMC8796086 DOI: 10.1177/03000605211053156] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The prevalence rate of allergic diseases, such as asthma, atopic rhinitis (AR), and atopic dermatitis (AD), has been significantly increasing over the years because of environmental changes. Type 2 immunity is mediated by allergic inflammation initiated by an innate immune response. This response is orchestrated by type 2 cytokines (interleukin [IL]-4, IL-5, IL-9, and IL-13) together with other cells. The dendritic cell [DC]-T helper 2 (Th2) cell axis is the conventional type 2 immune pathway, and is currently known as the group 2 innate lymphoid cell (ILC2)-DC-Th2 axis that mediates type 2 inflammation. ILC2s strongly mediate type 2 inflammation in allergic diseases. ILC2s are activated by epithelial cell-derived cytokines, such as IL-25 and IL-33, and thymic stromal lymphopoietin. Additionally, ILC2s are activated by mast cell lipid inflammatory mediators, such as cysteinyl leukotrienes and prostaglandin D2. ILC2s produce a large amount of type 2 cytokines. The important role of ILC2s in the pathogenesis of type 2-mediated disease has resulted in ILC2-derived cytokines being a target for therapeutic development. In this review, we discuss type 2 immunity, mainly the ILC2-DC-Th2 axis, and other immune cells, the dominant role of ILC2s in asthma, AR, and AD, and therapeutic targets against type 2 cytokines.
Collapse
Affiliation(s)
- Jie Jin
- Department of Pediatrics, The Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Sadik Sunusi
- Department of Pediatrics, The Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Hongyan Lu
- Department of Pediatrics, The Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu Province, China
| |
Collapse
|
46
|
Zhu G, Cai H, Ye L, Mo Y, Zhu M, Zeng Y, Song X, Yang C, Gao X, Wang J, Jin M. Small Proline-Rich Protein 3 Regulates IL-33/ILC2 Axis to Promote Allergic Airway Inflammation. Front Immunol 2022; 12:758829. [PMID: 35126350 PMCID: PMC8810634 DOI: 10.3389/fimmu.2021.758829] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 12/28/2021] [Indexed: 12/14/2022] Open
Abstract
Small proline-rich proteins (SPRRs), components of cornified cell envelope precursors, have recently been found to participate in airway diseases. However, their role in allergic airway inflammatory conditions remains unknown. Here, we explored the expression of SPRR3 in house dust mite (HDM)-sensitized/challenged mice and attempted to elucidate the regulatory role of SPRR3 in allergic airway inflammation. SPRR3 was identified via bioinformatics analysis of Gene Expression Omnibus (GEO) databases and further confirmed to be upregulated in the lungs of asthmatic mice. Knockdown of SPRR3 via the intratracheal route significantly inhibited eosinophils in bronchoalveolar lavage fluid (BALF) and suppressed the expressions of type 2 cytokines (IL-4, IL-5, and IL-13) in BALF and lung tissues. Further, SPRR3 knockdown reduced the expression of IL-33 and further attenuated the activation of the PI3K/AKT/NF-κB signaling pathway in the recruitment of group 2 innate lymphoid cells (ILC2s) to inhibit allergic airway inflammation. In vitro, SPRR3 siRNA could alleviate HDM-induced inflammatory responses in BEAS-2B cells. This study reveals the regulatory role of SPRR3 in allergic airway inflammation, identifying this protein as a potential novel therapeutic target for asthma.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Jian Wang
- *Correspondence: Meiling Jin, ; Jian Wang,
| | | |
Collapse
|
47
|
Kabata H, Motomura Y, Kiniwa T, Kobayashi T, Moro K. ILCs and Allergy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1365:75-95. [DOI: 10.1007/978-981-16-8387-9_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
48
|
The IL-33-ILC2 pathway protects from amebic colitis. Mucosal Immunol 2022; 15:165-175. [PMID: 34400793 PMCID: PMC8732277 DOI: 10.1038/s41385-021-00442-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/16/2021] [Accepted: 07/25/2021] [Indexed: 02/07/2023]
Abstract
Entamoeba histolytica is a pathogenic protozoan parasite that causes intestinal colitis, diarrhea, and in some cases, liver abscess. Through transcriptomics analysis, we observed that E. histolytica infection was associated with increased expression of IL-33 mRNA in both the human and murine colon. IL-33, the IL-1 family cytokine, is released after cell injury to alert the immune system of tissue damage. Treatment with recombinant IL-33 protected mice from amebic infection and intestinal tissue damage; moreover, blocking IL-33 signaling made mice more susceptible to amebiasis. IL-33 limited the recruitment of inflammatory immune cells and decreased the pro-inflammatory cytokine IL-6 in the cecum. Type 2 immune responses were upregulated by IL-33 treatment during amebic infection. Interestingly, administration of IL-33 protected RAG2-/- mice but not RAG2-/-γc-/- mice, demonstrating that IL-33-mediated protection required the presence of innate lymphoid cells (ILCs). IL-33 induced recruitment of ILC2 but not ILC1 and ILC3 in RAG2-/- mice. At baseline and after amebic infection, there was a significantly higher IL13+ILC2s in C57BL/J mice, which are naturally resistant to amebiasis, than CBA/J mice. Adoptive transfer of ILC2s to RAG2-/-γc-/- mice restored IL-33-mediated protection. These data reveal that the IL-33-ILC2 pathway is an important host defense mechanism against amebic colitis.
Collapse
|
49
|
Wu M, Yang J, Liu T, Xuan P, Bu B, Xu X, Wu R. Effect of Src tyrosine kinase on a rat model of asthma. Exp Ther Med 2021; 23:172. [PMID: 35069853 PMCID: PMC8764580 DOI: 10.3892/etm.2021.11095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 10/01/2021] [Indexed: 11/30/2022] Open
Abstract
Src tyrosine kinase is a protein encoded by the Src gene. The present study aimed to determine the role of Src protein kinase in asthma using small interfering RNA (siRNA) technology. Several Src siRNAs were designed and the most effective siRNA pair was selected. A rat model of asthma was established using ovalbumin, and the rats were treated with Src siRNA, empty vector or phosphate-buffered saline (PBS). A non-asthmatic control group was also established. The rats were clinically observed and Src mRNA and protein levels were measured by reverse transcription-quantitative PCR and western blot analysis, respectively. Pathological observation of the lung tissue, counting of white blood cells (WBCs) and eosinophils (EOSs) and analysis of the concentrations of IL-5, IL-33 and IFN-γ in the bronchoalveolar lavage fluid were performed. The expression levels of Src mRNA in the control, PBS, empty vector and siRNA groups were 110±30.7x103, 253±55.4x103, 254±41.3x103 and 180±50.9x103, respectively. Histochemical analysis of the lung tissue of rats in the siRNA group exhibited a relatively complete lung structure and little damage to the alveolar cavity. Src protein expression and IL-5, IL-33 levels, WBC and EOS levels were positively correlated with Src mRNA expression, while the IFN-γ concentration was negatively correlated with Src mRNA expression. These results indicate that Src knockdown inhibits the release of tracheal inflammatory factors and significantly alleviates asthma in rats. In conclusion, the present study utilized a gene transfer technique to interfere with the expression of Src in rats, which decreased the levels of IL-5, IL-33, WBCs and EOSs and increased the level of IFN-γ; these changes effectively ameliorated the condition of the trachea in asthmatic rats.
Collapse
Affiliation(s)
- Min Wu
- Department of Respiratory and Critical Medicine, The Third Affiliated Hospital of Baotou Medical College, Baotou, Inner Mongolia Autonomous Region 14010, P.R. China
| | - Jingping Yang
- Department of Respiratory and Critical Medicine, The Third Affiliated Hospital of Baotou Medical College, Baotou, Inner Mongolia Autonomous Region 14010, P.R. China
| | - Tao Liu
- Department of Respiratory and Critical Medicine, The Third Affiliated Hospital of Baotou Medical College, Baotou, Inner Mongolia Autonomous Region 14010, P.R. China
| | - Pengfei Xuan
- Department of Respiratory and Critical Medicine, The Third Affiliated Hospital of Baotou Medical College, Baotou, Inner Mongolia Autonomous Region 14010, P.R. China
| | - Baoying Bu
- Department of Respiratory and Critical Medicine, The Third Affiliated Hospital of Baotou Medical College, Baotou, Inner Mongolia Autonomous Region 14010, P.R. China
| | - Xiyuan Xu
- Department of Respiratory and Critical Medicine, The Third Affiliated Hospital of Baotou Medical College, Baotou, Inner Mongolia Autonomous Region 14010, P.R. China
| | - Rina Wu
- Department of Respiratory and Critical Medicine, The Third Affiliated Hospital of Baotou Medical College, Baotou, Inner Mongolia Autonomous Region 14010, P.R. China
| |
Collapse
|
50
|
Abe Y, Suga Y, Fukushima K, Ohata H, Niitsu T, Nabeshima H, Nagahama Y, Kida H, Kumanogoh A. Advances and Challenges of Antibody Therapeutics for Severe Bronchial Asthma. Int J Mol Sci 2021; 23:ijms23010083. [PMID: 35008504 PMCID: PMC8744863 DOI: 10.3390/ijms23010083] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
Asthma is a disease that consists of three main components: airway inflammation, airway hyperresponsiveness, and airway remodeling. Persistent airway inflammation leads to the destruction and degeneration of normal airway tissues, resulting in thickening of the airway wall, decreased reversibility, and increased airway hyperresponsiveness. The progression of irreversible airway narrowing and the associated increase in airway hyperresponsiveness are major factors in severe asthma. This has led to the identification of effective pharmacological targets and the recognition of several biomarkers that enable a more personalized approach to asthma. However, the efficacies of current antibody therapeutics and biomarkers are still unsatisfactory in clinical practice. The establishment of an ideal phenotype classification that will predict the response of antibody treatment is urgently needed. Here, we review recent advancements in antibody therapeutics and novel findings related to the disease process for severe asthma.
Collapse
Affiliation(s)
- Yuko Abe
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; (Y.A.); (Y.S.); (H.O.); (T.N.); (A.K.)
- Laboratory of Host Defense, World Premier Institute Immunology Frontier Research Center (WPI-IFReC), Osaka University, Osaka 565-0871, Japan; (H.N.); (Y.N.)
| | - Yasuhiko Suga
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; (Y.A.); (Y.S.); (H.O.); (T.N.); (A.K.)
| | - Kiyoharu Fukushima
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; (Y.A.); (Y.S.); (H.O.); (T.N.); (A.K.)
- Laboratory of Host Defense, World Premier Institute Immunology Frontier Research Center (WPI-IFReC), Osaka University, Osaka 565-0871, Japan; (H.N.); (Y.N.)
- Department of Host Defense, Research Institute for Microbial Diseases (RIMD), Osaka University, Osaka 565-0871, Japan
- Correspondence: ; Tel./Fax: +81-6-6879-3831
| | - Hayase Ohata
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; (Y.A.); (Y.S.); (H.O.); (T.N.); (A.K.)
| | - Takayuki Niitsu
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; (Y.A.); (Y.S.); (H.O.); (T.N.); (A.K.)
- Laboratory of Host Defense, World Premier Institute Immunology Frontier Research Center (WPI-IFReC), Osaka University, Osaka 565-0871, Japan; (H.N.); (Y.N.)
| | - Hiroshi Nabeshima
- Laboratory of Host Defense, World Premier Institute Immunology Frontier Research Center (WPI-IFReC), Osaka University, Osaka 565-0871, Japan; (H.N.); (Y.N.)
- Department of Host Defense, Research Institute for Microbial Diseases (RIMD), Osaka University, Osaka 565-0871, Japan
| | - Yasuharu Nagahama
- Laboratory of Host Defense, World Premier Institute Immunology Frontier Research Center (WPI-IFReC), Osaka University, Osaka 565-0871, Japan; (H.N.); (Y.N.)
- Department of Host Defense, Research Institute for Microbial Diseases (RIMD), Osaka University, Osaka 565-0871, Japan
| | - Hiroshi Kida
- Department of Respiratory Medicine, National Hospital Organization, Osaka Toneyama Medical Centre, 5-1-1 Toneyama, Toyonaka, Osaka 560-0852, Japan;
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; (Y.A.); (Y.S.); (H.O.); (T.N.); (A.K.)
- Department of Immunopathology, World Premier Institute Immunology Frontier Research Center (WPI-IFReC), Osaka University, Osaka 565-0871, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|