1
|
Ait Bamai Y, Miyashita C, Ikeda A, Yamazaki K, Kobayashi S, Itoh S, Saijo Y, Ito Y, Yoshioka E, Sato Y, Kishi R, Kamijima M, Yamazaki S, Ohya Y, Yaegashi N, Hashimoto K, Mori C, Ito S, Yamagata Z, Inadera H, Nakayama T, Sobue T, Shima M, Nakamura H, Suganuma N, Kusuhara K, Katoh T. Prenatal risk factors of indoor environment and incidence of childhood eczema in the Japan Environment and Children's Study. ENVIRONMENTAL RESEARCH 2024; 252:118871. [PMID: 38582425 DOI: 10.1016/j.envres.2024.118871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 04/08/2024]
Abstract
The quality of indoor environment is a risk factor for early childhood eczema and atopic dermatitis; however, its influence during pregnancy on childhood eczema in Japan has not been investigated. In this study, we aimed to determine the indoor environmental factors that are associated with eczema in children up to 3 years of age, using national birth cohort data from the Japan Environment and Children's Study (JECS). Information on indoor environments and eczema symptoms until 3 years of age was collected using self-administered questionnaires to the mothers. A total of 71,883 and 58,639 mother-child pairs at 1.5- and 3-years-old, respectively, were included in the former analyses. To account for prenatal indoor risk factors, 17,568 (1.5-years-old) and 7063 (3-years-old) children without indoor mold and/or ETS exposure were included in the final analysis. A higher mold index, gas heater use, parquet flooring use, and frequent insecticide use showed significantly increased risks for childhood eczema up to 3 years of age. These associations were consistent after stratification analysis among children whose parents did not have a history of allergies. The updated WHO guidelines on indoor air quality should be implemented based on recent findings regarding the effects of prenatal exposure to indoor dampness on health effects of children further in life, including asthma, respiratory effects, eczema, and other immunological effects.
Collapse
Affiliation(s)
- Yu Ait Bamai
- Center for Environmental and Health Sciences, Hokkaido University, Japan.
| | - Chihiro Miyashita
- Center for Environmental and Health Sciences, Hokkaido University, Japan
| | - Atsuko Ikeda
- Center for Environmental and Health Sciences, Hokkaido University, Japan; Faculty of Health Sciences, Hokkaido University, Japan
| | - Keiko Yamazaki
- Center for Environmental and Health Sciences, Hokkaido University, Japan
| | - Sumitaka Kobayashi
- Center for Environmental and Health Sciences, Hokkaido University, Japan; Division of Epidemiological Research for Chemical Disorders, National Institute of Occupational Safety and Health, Kawasaki, Japan
| | - Sachiko Itoh
- Center for Environmental and Health Sciences, Hokkaido University, Japan
| | - Yasuaki Saijo
- Division of Public Health and Epidemiology, Department of Social Medicine, Asahikawa Medical University, Japan
| | - Yoshiya Ito
- Faculty of Nursing, Japanese Red Cross Hokkaido College of Nursing, Japan
| | - Eiji Yoshioka
- Division of Public Health and Epidemiology, Department of Social Medicine, Asahikawa Medical University, Japan
| | - Yukihiro Sato
- Division of Public Health and Epidemiology, Department of Social Medicine, Asahikawa Medical University, Japan
| | - Reiko Kishi
- Center for Environmental and Health Sciences, Hokkaido University, Japan.
| | | | - Shin Yamazaki
- National Institute for Environmental Studies, Tsukuba, Japan
| | - Yukihiro Ohya
- National Center for Child Health and Development, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | - Koichi Kusuhara
- University of Occupational and Environmental Health, Kitakyushu, Japan
| | | |
Collapse
|
2
|
Katsarou S, Makris M, Vakirlis E, Gregoriou S. The Role of Tight Junctions in Atopic Dermatitis: A Systematic Review. J Clin Med 2023; 12:jcm12041538. [PMID: 36836073 PMCID: PMC9967084 DOI: 10.3390/jcm12041538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/31/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
BACKGROUND Tight junctions are transmembrane proteins that regulate the permeability of water, solutes including ions, and water-soluble molecules. The objective of this systematic review is to focus on the current knowledge regarding the role of tight junctions in atopic dermatitis and the possible impact on their therapeutic potential. METHODS A literature search was performed in PubMed, Google Scholar, and Cochrane library between 2009 and 2022. After evaluation of the literature and taking into consideration their content, 55 articles were finally included. RESULTS TJs' role in atopic dermatitis extends from a microscopic scale to having macroscopic effects, such as increased susceptibility to pathogens and infections and worsening of atopic dermatitis features. Impaired TJ barrier function and skin permeability in AD lesions is correlated with cldn-1 levels. Th2 inflammation inhibits the expression of cldn-1 and cldn-23. Scratching has also been reported to decrease cldn-1 expression. Dysfunctional TJs' interaction with Langerhans cells could increase allergen penetration. Susceptibility to cutaneous infections in AD patients could also be affected by TJ cohesion. CONCLUSIONS Dysfunction of TJs and their components, especially claudins, have a significant role in the pathogenesis and vicious circle of inflammation in AD. Discovering more basic science data regarding TJ functionality may be the key for the use of specific/targeted therapies in order to improve epidermal barrier function in AD.
Collapse
Affiliation(s)
- Spyridoula Katsarou
- 1st Department of Dermatology and Venereology, Medical School, National and Kapodistrian University of Athens, Andreas Syggros Hospital, 11528 Athens, Greece
- Correspondence:
| | - Michael Makris
- 2nd Department of Dermatology and Venereology, Medical School, National and Kapodistrian University of Athens, Attikon University Hospital, Allergy Unit, 12461 Athens, Greece
| | - Efstratios Vakirlis
- 1st Department of Dermatology and Venereology, Medical School, Aristotle University, 54124 Thessaloniki, Greece
| | - Stamatios Gregoriou
- 1st Department of Dermatology and Venereology, Medical School, National and Kapodistrian University of Athens, Andreas Syggros Hospital, 11528 Athens, Greece
| |
Collapse
|
3
|
Xia Y, Cao H, Zheng J, Chen L. Claudin-1 Mediated Tight Junction Dysfunction as a Contributor to Atopic March. Front Immunol 2022; 13:927465. [PMID: 35844593 PMCID: PMC9277052 DOI: 10.3389/fimmu.2022.927465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 05/27/2022] [Indexed: 11/16/2022] Open
Abstract
Atopic march refers to the phenomenon wherein the occurrence of asthma and food allergy tends to increase after atopic dermatitis. The mechanism underlying the progression of allergic inflammation from the skin to gastrointestinal (GI) tract and airways has still remained elusive. Impaired skin barrier was proposed as a risk factor for allergic sensitization. Claudin-1 protein forms tight junctions and is highly expressed in the epithelium of the skin, airways, and GI tract, thus, the downregulation of claudin-1 expression level caused by CLDN-1 gene polymorphism can mediate common dysregulation of epithelial barrier function in these organs, potentially leading to allergic sensitization at various sites. Importantly, in patients with atopic dermatitis, asthma, and food allergy, claudin-1 expression level was significantly downregulated in the skin, bronchial and intestinal epithelium, respectively. Knockdown of claudin-1 expression level in mouse models of atopic dermatitis and allergic asthma exacerbated allergic inflammation, proving that downregulation of claudin-1 expression level contributes to the pathogenesis of allergic diseases. Therefore, we hypothesized that the tight junction dysfunction mediated by downregulation of claudin-1 expression level contributes to atopic march. Further validation with clinical data from patients with atopic march or mouse models of atopic march is needed. If this hypothesis can be fully confirmed, impaired claudin-1 expression level may be a risk factor and likely a diagnostic marker for atopic march. Claudin-1 may serve as a valuable target to slowdown or block the progression of atopic march.
Collapse
|
4
|
Kader HA, Azeem M, Jwayed SA, Al-Shehhi A, Tabassum A, Ayoub MA, Hetta HF, Waheed Y, Iratni R, Al-Dhaheri A, Muhammad K. Current Insights into Immunology and Novel Therapeutics of Atopic Dermatitis. Cells 2021; 10:cells10061392. [PMID: 34200009 PMCID: PMC8226506 DOI: 10.3390/cells10061392] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 02/07/2023] Open
Abstract
Atopic dermatitis (AD) is one of the most prevalent inflammatory disease among non-fatal skin diseases, affecting up to one fifth of the population in developed countries. AD is characterized by recurrent pruritic and localized eczema with seasonal fluctuations. AD initializes the phenomenon of atopic march, during which infant AD patients are predisposed to progressive secondary allergies such as allergic rhinitis, asthma, and food allergies. The pathophysiology of AD is complex; onset of the disease is caused by several factors, including strong genetic predisposition, disrupted epidermal barrier, and immune dysregulation. AD was initially characterized by defects in the innate immune system and a vigorous skewed adaptive Th2 response to environmental agents; there are compelling evidences that the disorder involves multiple immune pathways. Symptomatic palliative treatment is the only strategy to manage the disease and restore skin integrity. Researchers are trying to more precisely define the contribution of different AD genotypes and elucidate the role of various immune axes. In this review, we have summarized the current knowledge about the roles of innate and adaptive immune responsive cells in AD. In addition, current and novel treatment strategies for the management of AD are comprehensively described, including some ongoing clinical trials and promising therapeutic agents. This information will provide an asset towards identifying personalized targets for better therapeutic outcomes.
Collapse
Affiliation(s)
- Hidaya A. Kader
- Department of Biology, College of Science, UAE University, Al Ain 15551, United Arab Emirates; (H.A.K.); (S.A.J.); (A.A.-S.); (M.A.A.); (R.I.)
| | - Muhammad Azeem
- Department of Pathology, University of Würzburg, 97080 Würzburg, Germany;
| | - Suhib A. Jwayed
- Department of Biology, College of Science, UAE University, Al Ain 15551, United Arab Emirates; (H.A.K.); (S.A.J.); (A.A.-S.); (M.A.A.); (R.I.)
| | - Aaesha Al-Shehhi
- Department of Biology, College of Science, UAE University, Al Ain 15551, United Arab Emirates; (H.A.K.); (S.A.J.); (A.A.-S.); (M.A.A.); (R.I.)
| | - Attia Tabassum
- Department of Dermatology, Mayo Hospital, Lahore 54000, Pakistan;
| | - Mohammed Akli Ayoub
- Department of Biology, College of Science, UAE University, Al Ain 15551, United Arab Emirates; (H.A.K.); (S.A.J.); (A.A.-S.); (M.A.A.); (R.I.)
| | - Helal F. Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt;
| | - Yasir Waheed
- Foundation University Medical College, Foundation University Islamabad, Islamabad 44000, Pakistan;
| | - Rabah Iratni
- Department of Biology, College of Science, UAE University, Al Ain 15551, United Arab Emirates; (H.A.K.); (S.A.J.); (A.A.-S.); (M.A.A.); (R.I.)
| | - Ahmed Al-Dhaheri
- Department of Dermatology, Tawam Hospital, Al Ain 15551, United Arab Emirates;
| | - Khalid Muhammad
- Department of Biology, College of Science, UAE University, Al Ain 15551, United Arab Emirates; (H.A.K.); (S.A.J.); (A.A.-S.); (M.A.A.); (R.I.)
- Correspondence:
| |
Collapse
|
5
|
Luger T, Amagai M, Dreno B, Dagnelie MA, Liao W, Kabashima K, Schikowski T, Proksch E, Elias PM, Simon M, Simpson E, Grinich E, Schmuth M. Atopic dermatitis: Role of the skin barrier, environment, microbiome, and therapeutic agents. J Dermatol Sci 2021; 102:142-157. [PMID: 34116898 DOI: 10.1016/j.jdermsci.2021.04.007] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 02/06/2023]
Abstract
Atopic dermatitis (AD) is a chronic, inflammatory skin disorder characterized by eczematous and pruritic skin lesions. In recent decades, the prevalence of AD has increased worldwide, most notably in developing countries. The enormous progress in our understanding of the complex composition and functions of the epidermal barrier allows for a deeper appreciation of the active role that the skin barrier plays in the initiation and maintenance of skin inflammation. The epidermis forms a physical, chemical, immunological, neuro-sensory, and microbial barrier between the internal and external environment. Not only lesional, but also non-lesional areas of AD skin display many morphological, biochemical and functional differences compared with healthy skin. Supporting this notion, genetic defects affecting structural proteins of the skin barrier, including filaggrin, contribute to an increased risk of AD. There is evidence to suggest that natural environmental allergens and man-made pollutants are associated with an increased likelihood of developing AD. A compromised epidermal barrier predisposes the skin to increased permeability of these compounds. Numerous topical and systemic therapies for AD are currently available or in development; while anti-inflammatory therapy is central to the treatment of AD, some existing and novel therapies also appear to exert beneficial effects on skin barrier function. Further research on the skin barrier, particularly addressing epidermal differentiation and inflammation, lipid metabolism, and the role of bacterial communities for skin barrier function, will likely expand our understanding of the complex etiology of AD and lead to identification of novel targets and the development of new therapies.
Collapse
Affiliation(s)
- Thomas Luger
- Department of Dermatology, University of Münster, Münster, Germany.
| | - Masayuki Amagai
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan; Laboratory for Skin Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Brigitte Dreno
- Dermatology Department, Nantes University, CHU Nantes, CIC 1413, CRCINA, Nantes, France
| | - Marie-Ange Dagnelie
- Dermatology Department, Nantes University, CHU Nantes, CIC 1413, CRCINA, Nantes, France
| | - Wilson Liao
- Department of Dermatology, University of California, San Francisco, CA, United States
| | - Kenji Kabashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tamara Schikowski
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | | | - Peter M Elias
- San Francisco VA Medical Center, University of California, San Francisco, CA, United States
| | - Michel Simon
- UDEAR, Inserm, University of Toulouse, U1056, Toulouse, France
| | - Eric Simpson
- Department of Dermatology, Oregon Health & Science University, Portland, OR, United States
| | - Erin Grinich
- Department of Dermatology, Oregon Health & Science University, Portland, OR, United States
| | - Matthias Schmuth
- Department of Dermatology, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
6
|
Claudin-1 decrease impacts epidermal barrier function in atopic dermatitis lesions dose-dependently. Sci Rep 2020; 10:2024. [PMID: 32029783 PMCID: PMC7004991 DOI: 10.1038/s41598-020-58718-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 01/17/2020] [Indexed: 12/15/2022] Open
Abstract
The transmembrane protein claudin-1 is a major component of epidermal tight junctions (TJs), which create a dynamic paracellular barrier in the epidermis. Claudin-1 downregulation has been linked to atopic dermatitis (AD) pathogenesis but variable levels of claudin-1 have also been observed in healthy skin. To elucidate the impact of different levels of claudin-1 in healthy and diseased skin we determined claudin-1 levels in AD patients and controls and correlated them to TJ and skin barrier function. We observed a strikingly broad range of claudin-1 levels with stable TJ and overall skin barrier function in healthy and non-lesional skin. However, a significant decrease in TJ barrier function was detected in lesional AD skin where claudin-1 levels were further reduced. Investigations on reconstructed human epidermis expressing different levels of claudin-1 revealed that claudin-1 levels correlated with inside-out and outside-in barrier function, with a higher coherence for smaller molecular tracers. Claudin-1 decrease induced keratinocyte-autonomous IL-1β expression and fostered inflammatory epidermal responses to non-pathogenic Staphylococci. In conclusion, claudin-1 decrease beyond a threshold level results in TJ and epidermal barrier function impairment and induces inflammation in human epidermis. Increasing claudin-1 levels might improve barrier function and decrease inflammation and therefore be a target for AD treatment.
Collapse
|
7
|
Prenatal mold exposure is associated with development of atopic dermatitis in infants through allergic inflammation. JORNAL DE PEDIATRIA (VERSÃO EM PORTUGUÊS) 2020. [DOI: 10.1016/j.jpedp.2018.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
8
|
Lee E, Choi KY, Kang MJ, Lee SY, Yoon J, Cho HJ, Jung S, Lee SH, Suh DI, Shin YH, Kim KW, Ahn K, Hong SJ. Prenatal mold exposure is associated with development of atopic dermatitis in infants through allergic inflammation. J Pediatr (Rio J) 2020; 96:125-131. [PMID: 30243937 PMCID: PMC9432247 DOI: 10.1016/j.jped.2018.07.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 07/06/2018] [Accepted: 07/30/2018] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Mold exposure in early life may be associated with development of atopic dermatitis; however, studies of this link are inconclusive and evidence for the underlying mechanism(s) is lacking. This study identified the association between the time of mold exposure and development of atopic dermatitis and investigated the underlying mechanisms. METHOD The association between atopic dermatitis and mold exposure was examined in the Cohort for Childhood Origin of Asthma and Allergic Diseases birth cohort study (n=1446). Atopic dermatitis was diagnosed at 1 year of age by pediatric allergists. Exposure to mold was assessed by questionnaire. The Illumina MiSeq platform was used to examine the environmental mycobiome in 20 randomly selected healthy infants and 20 infants with atopic dermatitis at 36 weeks of gestation. RESULTS Prenatal, but not postnatal, mold exposure was significantly associated with atopic dermatitis (adjusted odds ratio, 1.36; 95% confidence interval, 1.01-1.83). Levels of total serum IgE at 1 year of age were higher in infants with atopic dermatitis exposed to mold during pregnancy than in healthy infants not exposed to mold during pregnancy (p=0.021). The relative abundance of uncultured Ascomycota was higher in infants with atopic dermatitis than in healthy infants. The relative abundance of uncultured Ascomycota correlated with total serum IgE levels at 1 year of age (r=0.613, p<0.001). CONCLUSION Indoor mold exposure during the fetal period is associated with development of atopic dermatitis via IgE-mediated allergic inflammation. Avoidance of mold exposure during this critical period might prevent the development of atopic dermatitis.
Collapse
Affiliation(s)
- Eun Lee
- Chonnam National University Hospital, Chonnam National University Medical School, Department of Pediatrics, Gwangju, Republic of Korea
| | - Kil Yong Choi
- Pusan National University, Department of Environmental Engineering, Busan, Republic of Korea
| | - Mi-Jin Kang
- University of Ulsan College of Medicine, Asan Institute for Life Sciences, Seoul, Republic of Korea
| | - So-Yeon Lee
- University of Ulsan College of Medicine, Childhood Asthma and Atopy Center, Department of Pediatrics, Seoul, Republic of Korea
| | - Jisun Yoon
- Mediplex Sejong Hospital, Department of Pediatrics, Incheon, Republic of Korea
| | - Hyun-Ju Cho
- International St. Mary's Hospital, Catholic Kwandong University, Department of Pediatrics, Incheon, Republic of Korea
| | - Sungsu Jung
- University of Ulsan College of Medicine, Childhood Asthma and Atopy Center, Department of Pediatrics, Seoul, Republic of Korea
| | - Si Hyeon Lee
- University of Ulsan College of Medicine, Asan Institute for Life Sciences, Seoul, Republic of Korea
| | - Dong In Suh
- Seoul National University College of Medicine, Department of Pediatrics, Seoul, Republic of Korea
| | - Youn Ho Shin
- CHA Medical Center, CHA University School of Medicine, Department of Pediatrics, Seoul, Republic of Korea
| | - Kyung Won Kim
- Severance Children's Hospital, College of Medicine, Yonsei University, Department of Pediatrics, Seoul, Republic of Korea
| | - Kangmo Ahn
- Sungkyunkwan University School of Medicine, Samsung Medical Center, Department of Pediatrics, Seoul, Republic of Korea
| | - Soo-Jong Hong
- University of Ulsan College of Medicine, Childhood Asthma and Atopy Center, Department of Pediatrics, Seoul, Republic of Korea.
| |
Collapse
|
9
|
Gür Çetinkaya P, Şahiner ÜM. Childhood atopic dermatitis: current developments, treatment approaches, and future expectations. Turk J Med Sci 2019; 49:963-984. [PMID: 31408293 PMCID: PMC7018348 DOI: 10.3906/sag-1810-105] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Atopic dermatitis (AD) is the most common chronic inflammatory skin disorder of childhood. Underlying factors that contribute to AD are impaired epithelial barrier, alterations in the lipid composition of the skin, immunological imbalance including increased Th2/Th1 ratio, proinflammatory cytokines, decreased T regulatory cells, genetic mutations, and epigenetic alterations. Atopic dermatitis is a multifactorial disease with a particularly complicated pathophysiology. Discoveries to date may be considered the tip of the iceberg, and the increasing number of studies in this field indicate that there are many points to be elucidated in AD pathophysiology. In this review, we aimed to illustrate the current understanding of the underlying pathogenic mechanisms in AD, to evaluate available treatment options with a focus on recently discovered therapeutic agents, and to determine the personal, familial, and economic burdens of the disease, which are frequently neglected issues in AD. Currently available therapies only provide transient solutions and cannot fully cure the disease. However, advances in the understanding of the pathogenic mechanisms of the disease have led to the production of new treatment options, while ongoing drug trials also have had promising results.
Collapse
Affiliation(s)
- Pınar Gür Çetinkaya
- Division of Pediatric Allergy and Asthma Unit, Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Ümit Murat Şahiner
- Division of Pediatric Allergy and Asthma Unit, Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|
10
|
Takahashi S, Ishida A, Kubo A, Kawasaki H, Ochiai S, Nakayama M, Koseki H, Amagai M, Okada T. Homeostatic pruning and activity of epidermal nerves are dysregulated in barrier-impaired skin during chronic itch development. Sci Rep 2019; 9:8625. [PMID: 31197234 PMCID: PMC6565750 DOI: 10.1038/s41598-019-44866-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 05/24/2019] [Indexed: 12/19/2022] Open
Abstract
The epidermal barrier is thought to protect sensory nerves from overexposure to environmental stimuli, and barrier impairment leads to pathological conditions associated with itch, such as atopic dermatitis (AD). However, it is not known how the epidermal barrier continuously protects nerves for the sensory homeostasis during turnover of the epidermis. Here we show that epidermal nerves are contained underneath keratinocyte tight junctions (TJs) in normal human and mouse skin, but not in human AD samples or mouse models of chronic itch caused by epidermal barrier impairment. By intravital imaging of the mouse skin, we found that epidermal nerve endings were frequently extended and retracted, and occasionally underwent local pruning. Importantly, the epidermal nerve pruning took place rapidly at intersections with newly forming TJs in the normal skin, whereas this process was disturbed during chronic itch development. Furthermore, aberrant Ca2+ increases in epidermal nerves were induced in association with the disturbed pruning. Finally, TRPA1 inhibition suppressed aberrant Ca2+ increases in epidermal nerves and itch. These results suggest that epidermal nerve endings are pruned through interactions with keratinocytes to stay below the TJ barrier, and that disruption of this mechanism may lead to aberrant activation of epidermal nerves and pathological itch.
Collapse
Affiliation(s)
- Sonoko Takahashi
- Laboratory for Tissue Dynamics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan.,Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa, 230-0045, Japan
| | - Azusa Ishida
- Laboratory for Tissue Dynamics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan.,Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa, 230-0045, Japan
| | - Akiharu Kubo
- Department of Dermatology, Keio University School of Medicine, Shinjuku-ku, Tokyo, 160-8582, Japan.,Laboratory for Skin Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Hiroshi Kawasaki
- Department of Dermatology, Keio University School of Medicine, Shinjuku-ku, Tokyo, 160-8582, Japan.,Laboratory for Skin Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan.,Disease Biology Group, RIKEN Medical Sciences Innovation Hub Program, Yokohama, Kanagawa, 230-0045, Japan
| | - Sotaro Ochiai
- Laboratory for Tissue Dynamics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Manabu Nakayama
- Department of Frontier Research and Development, Kazusa DNA Research Institute, Kisarazu, Chiba, 292-0818, Japan
| | - Haruhiko Koseki
- Disease Biology Group, RIKEN Medical Sciences Innovation Hub Program, Yokohama, Kanagawa, 230-0045, Japan.,Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Masayuki Amagai
- Department of Dermatology, Keio University School of Medicine, Shinjuku-ku, Tokyo, 160-8582, Japan.,Laboratory for Skin Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Takaharu Okada
- Laboratory for Tissue Dynamics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan. .,Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa, 230-0045, Japan. .,JST, PRESTO, Kawaguchi, Saitama, 332-0012, Japan.
| |
Collapse
|
11
|
Deng Z, Chen M, Xie H, Jian D, Xu S, Peng Q, Sha K, Liu Y, Zhang Y, Shi W, Li J. Claudin reduction may relate to an impaired skin barrier in rosacea. J Dermatol 2019; 46:314-321. [PMID: 30714633 DOI: 10.1111/1346-8138.14792] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 01/03/2019] [Indexed: 12/28/2022]
Affiliation(s)
- Zhili Deng
- Department of Dermatology Xiangya Hospital Central South University Changsha China
- Center for Molecular Medicine Xiangya Hospital Central South University Changsha China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province Central South University Changsha China
| | - Mengting Chen
- Department of Dermatology Xiangya Hospital Central South University Changsha China
- Center for Molecular Medicine Xiangya Hospital Central South University Changsha China
| | - Hongfu Xie
- Department of Dermatology Xiangya Hospital Central South University Changsha China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province Central South University Changsha China
| | - Dan Jian
- Department of Dermatology Xiangya Hospital Central South University Changsha China
| | - San Xu
- Department of Dermatology Xiangya Hospital Central South University Changsha China
- Center for Molecular Medicine Xiangya Hospital Central South University Changsha China
| | - Qinqin Peng
- Department of Dermatology Xiangya Hospital Central South University Changsha China
- Center for Molecular Medicine Xiangya Hospital Central South University Changsha China
| | - Ke Sha
- Department of Dermatology Xiangya Hospital Central South University Changsha China
- Center for Molecular Medicine Xiangya Hospital Central South University Changsha China
| | - Yingzi Liu
- Department of Dermatology Xiangya Hospital Central South University Changsha China
- Center for Molecular Medicine Xiangya Hospital Central South University Changsha China
| | - Yiya Zhang
- Department of Dermatology Xiangya Hospital Central South University Changsha China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province Central South University Changsha China
| | - Wei Shi
- Department of Dermatology Xiangya Hospital Central South University Changsha China
| | - Ji Li
- Department of Dermatology Xiangya Hospital Central South University Changsha China
- Center for Molecular Medicine Xiangya Hospital Central South University Changsha China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province Central South University Changsha China
| |
Collapse
|
12
|
Ghosh D, Bernstein JA, Khurana Hershey GK, Rothenberg ME, Mersha TB. Leveraging Multilayered "Omics" Data for Atopic Dermatitis: A Road Map to Precision Medicine. Front Immunol 2018; 9:2727. [PMID: 30631320 PMCID: PMC6315155 DOI: 10.3389/fimmu.2018.02727] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 11/05/2018] [Indexed: 12/14/2022] Open
Abstract
Atopic dermatitis (AD) is a complex multifactorial inflammatory skin disease that affects ~280 million people worldwide. About 85% of AD cases begin in childhood, a significant portion of which can persist into adulthood. Moreover, a typical progression of children with AD to food allergy, asthma or allergic rhinitis has been reported (“allergic march” or “atopic march”). AD comprises highly heterogeneous sub-phenotypes/endotypes resulting from complex interplay between intrinsic and extrinsic factors, such as environmental stimuli, and genetic factors regulating cutaneous functions (impaired barrier function, epidermal lipid, and protease abnormalities), immune functions and the microbiome. Though the roles of high-throughput “omics” integrations in defining endotypes are recognized, current analyses are primarily based on individual omics data and using binary clinical outcomes. Although individual omics analysis, such as genome-wide association studies (GWAS), can effectively map variants correlated with AD, the majority of the heritability and the functional relevance of discovered variants are not explained or known by the identified variants. The limited success of singular approaches underscores the need for holistic and integrated approaches to investigate complex phenotypes using trans-omics data integration strategies. Integrating omics layers (e.g., genome, epigenome, transcriptome, proteome, metabolome, lipidome, exposome, microbiome), which often have complementary and synergistic effects, might provide the opportunity to capture the flow of information underlying AD disease manifestation. Overlapping genes/candidates derived from multiple omics types include FLG, SPINK5, S100A8, and SERPINB3 in AD pathogenesis. Overlapping pathways include macrophage, endothelial cell and fibroblast activation pathways, in addition to well-known Th1/Th2 and NFkB activation pathways. Interestingly, there was more multi-omics overlap at the pathway level than gene level. Further analysis of multi-omics overlap at the tissue level showed that among 30 tissue types from the GTEx database, skin and esophagus were significantly enriched, indicating the biological interconnection between AD and food allergy. The present work explores multi-omics integration and provides new biological insights to better define the biological basis of AD etiology and confirm previously reported AD genes/pathways. In this context, we also discuss opportunities and challenges introduced by “big omics data” and their integration.
Collapse
Affiliation(s)
- Debajyoti Ghosh
- Division of Immunology, Allergy & Rheumatology, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Jonathan A Bernstein
- Division of Immunology, Allergy & Rheumatology, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Gurjit K Khurana Hershey
- Division of Asthma Research, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, United States
| | - Marc E Rothenberg
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, United States
| | - Tesfaye B Mersha
- Division of Asthma Research, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
13
|
Yokouchi M, Kubo A. Maintenance of tight junction barrier integrity in cell turnover and skin diseases. Exp Dermatol 2018; 27:876-883. [DOI: 10.1111/exd.13742] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/29/2018] [Accepted: 07/13/2018] [Indexed: 02/01/2023]
Affiliation(s)
- Mariko Yokouchi
- Department of Dermatology; Keio University School of Medicine; Tokyo Japan
- Nerima General Hospital; Tokyo Japan
| | - Akiharu Kubo
- Department of Dermatology; Keio University School of Medicine; Tokyo Japan
| |
Collapse
|
14
|
Staphylococcus aureus enhances the tight junction barrier integrity in healthy nasal tissue, but not in nasal polyps. J Allergy Clin Immunol 2018. [PMID: 29518417 DOI: 10.1016/j.jaci.2018.01.046] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Sugita K, Steer CA, Martinez-Gonzalez I, Altunbulakli C, Morita H, Castro-Giner F, Kubo T, Wawrzyniak P, Rückert B, Sudo K, Nakae S, Matsumoto K, O'Mahony L, Akdis M, Takei F, Akdis CA. Type 2 innate lymphoid cells disrupt bronchial epithelial barrier integrity by targeting tight junctions through IL-13 in asthmatic patients. J Allergy Clin Immunol 2018; 141:300-310.e11. [DOI: 10.1016/j.jaci.2017.02.038] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 01/09/2017] [Accepted: 02/16/2017] [Indexed: 12/25/2022]
|
16
|
Schleimer RP, Berdnikovs S. Etiology of epithelial barrier dysfunction in patients with type 2 inflammatory diseases. J Allergy Clin Immunol 2017; 139:1752-1761. [PMID: 28583447 DOI: 10.1016/j.jaci.2017.04.010] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/21/2017] [Accepted: 04/21/2017] [Indexed: 12/11/2022]
Abstract
Epithelial barriers of the skin, gastrointestinal tract, and airway serve common critical functions, such as maintaining a physical barrier against environmental insults and allergens and providing a tissue interface balancing the communication between the internal and external environments. We now understand that in patients with allergic disease, regardless of tissue location, the homeostatic balance of the epithelial barrier is skewed toward loss of differentiation, reduced junctional integrity, and impaired innate defense. Importantly, epithelial dysfunction characterized by these traits appears to pre-date atopy and development of allergic disease. Despite our growing appreciation of the centrality of barrier dysfunction in initiation of allergic disease, many important questions remain to be answered regarding mechanisms disrupting normal barrier function. Although our external environment (proteases, allergens, and injury) is classically thought of as a principal contributor to barrier disruption associated with allergic sensitization, there is a need to better understand contributions of the internal environment (hormones, diet, and circadian clock). Systemic drivers of disease, such as alterations of the endocrine system, metabolism, and aberrant control of developmental signaling, are emerging as new players in driving epithelial dysfunction and allergic predisposition at various barrier sites. Identifying such central mediators of epithelial dysfunction using both systems biology tools and causality-driven laboratory experimentation will be essential in building new strategic interventions to prevent or reverse the process of barrier loss in allergic patients.
Collapse
Affiliation(s)
- Robert P Schleimer
- Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Sergejs Berdnikovs
- Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Ill.
| |
Collapse
|
17
|
Czarnowicki T, Krueger JG, Guttman-Yassky E. Novel concepts of prevention and treatment of atopic dermatitis through barrier and immune manipulations with implications for the atopic march. J Allergy Clin Immunol 2017; 139:1723-1734. [PMID: 28583445 DOI: 10.1016/j.jaci.2017.04.004] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 04/07/2017] [Accepted: 04/13/2017] [Indexed: 12/16/2022]
Abstract
Skin barrier abnormalities have been suggested to play an essential role in initiation of early atopic dermatitis (AD). Antigen penetration through a compromised barrier likely leads to increased innate immune responses, antigen-presenting cell stimulation, and priming of overt cutaneous disease. In a TH2-promoting environment, T-cell/B-cell interactions occurring in regional lymph nodes lead to excessive IgE switch. Concurrent redistribution of memory T cells into the circulation not only leads to exacerbation of AD through T-cell skin infiltration but also spreads beyond the skin to initiate the atopic march, which includes food allergy, asthma, and allergic rhinitis. Possible primary interventions to prevent AD are focusing on improving skin barrier integrity, including supplementing barrier function with moisturizers. As for secondary prophylaxis in children with established AD, this can be stratified into prevention of disease exacerbations by using proactive approaches (with either topical corticosteroids or topical calcineurin inhibitors) in mild AD cases or the prevention of other atopic disorders that will probably mandate systemic immunosuppression in severe AD cases.
Collapse
Affiliation(s)
- Tali Czarnowicki
- Department of Dermatology and the Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY; Laboratory for Investigative Dermatology, Rockefeller University, New York, NY
| | - James G Krueger
- Department of Dermatology and the Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY; Laboratory for Investigative Dermatology, Rockefeller University, New York, NY
| | - Emma Guttman-Yassky
- Department of Dermatology and the Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY; Laboratory for Investigative Dermatology, Rockefeller University, New York, NY.
| |
Collapse
|
18
|
The Skin as a Route of Allergen Exposure: Part I. Immune Components and Mechanisms. Curr Allergy Asthma Rep 2017; 17:6. [PMID: 28185161 DOI: 10.1007/s11882-017-0674-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE OF REVIEW To highlight recent contributions in the literature that enhance our understanding of the cutaneous immune response to allergen. RECENT FINDINGS Defects in skin barrier function in infancy set the stage for the development of atopic dermatitis (AD) and allergy. Both genetic and environmental factors can contribute to damage of the stratum corneum (SC), with activation of specific protease enzymes under high pH conditions playing a key role. Immune cells and mediators in the dermis and epidermis impair SC repair mechanisms and support allergy development. In barrier-disrupted skin, type 2 innate lymphoid cells (ILC2s), mast cells (MCs), and basophils have been shown to promote AD and pathogenic Th2 responses in murine models. Skin barrier disruption favors induction of systemic Th2-associated inflammatory pathways. A better understanding of the ontogeny and regulation of these complex networks in infant skin is needed to guide future strategies for allergy treatment and prevention.
Collapse
|
19
|
Nomura T, Kabashima K. Advances in atopic dermatitis in 2015. J Allergy Clin Immunol 2017; 138:1548-1555. [PMID: 27931536 DOI: 10.1016/j.jaci.2016.10.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 07/31/2016] [Accepted: 10/12/2016] [Indexed: 12/15/2022]
Abstract
This review aims to highlight recently published articles on atopic dermatitis (AD). Updated are the insights into epidemiology, pathology, diagnostics, and therapy. Epidemiologic studies have revealed a positive correlation between AD and systemic conditions, such as rheumatoid arthritis, inflammatory bowel disease, and neonatal adiposity. Pathologic findings highlight the involvement of novel barrier factors (desmoplakin and claudin), novel immune cell subsets (pathogenic effector TH2 cells and group 2 innate lymphoid cells), and differential skewing of helper T cells (eg, TH17 dominance in Asians with AD). As diagnostics, noninvasive examinations of the transepidermal water loss of neonates, the density of epidermal Staphylococcus species, and the gut flora might prognosticate the onset of AD. As for therapy, various methods are proposed, including conventional (petrolatum and UV) and molecule-oriented regimens targeting Janus kinase, signal transducer and activator of transcription 3, extracellular signal-regulated kinase, sirtuin 1, or aryl hydrocarbon receptor.
Collapse
Affiliation(s)
- Takashi Nomura
- Department of Dermatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Department of Experimental Therapeutics, Institute for Advancement of Clinical and Translational Science (iACT), Kyoto University Hospital, Kyoto, Japan.
| | - Kenji Kabashima
- Department of Dermatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Singapore Immunology Network (SIgN) and Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore; PRESTO, Japan Science and Technology Agency, Saitama, Japan
| |
Collapse
|
20
|
Abstract
Atopic dermatitis (AD) is increasingly recognized as a complex, inflammatory skin disease involving interplay of multiple elements. This article notes key advances in understanding of immune dysregulation, skin barrier dysfunction, environmental, genetic, and microbial influences orchestrating disease pathogenesis, and the relevance of therapeutic interventions in each area. Accumulating evidence and the discovery of new T-cell subsets has matured AD as a multiple-cytokine-axes-driven disorder, evolved from the widely held belief of it being a biphasic Th1/Th2 disease. These new insights have led to active trials testing multiple, targeted therapeutics with better efficacy and safety-profiles.
Collapse
Affiliation(s)
- Kunal Malik
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA; Laboratory of Investigative Dermatology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA; SUNY Downstate College of Medicine, 450 Clarkson Avenue, Brooklyn, NY 11203, USA
| | - Kerry D Heitmiller
- University of Maryland School of Medicine, 655 West Baltimore South, Baltimore, MD 21201, USA
| | - Tali Czarnowicki
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA; Laboratory of Investigative Dermatology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
21
|
Wawrzyniak P, Wawrzyniak M, Wanke K, Sokolowska M, Bendelja K, Rückert B, Globinska A, Jakiela B, Kast JI, Idzko M, Akdis M, Sanak M, Akdis CA. Regulation of bronchial epithelial barrier integrity by type 2 cytokines and histone deacetylases in asthmatic patients. J Allergy Clin Immunol 2017; 139:93-103. [DOI: 10.1016/j.jaci.2016.03.050] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 03/04/2016] [Accepted: 03/16/2016] [Indexed: 12/11/2022]
|
22
|
Bäsler K, Brandner JM. Tight junctions in skin inflammation. Pflugers Arch 2016; 469:3-14. [DOI: 10.1007/s00424-016-1903-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/01/2016] [Accepted: 11/07/2016] [Indexed: 12/27/2022]
|
23
|
The role of tight junctions in skin barrier function and dermal absorption. J Control Release 2016; 242:105-118. [DOI: 10.1016/j.jconrel.2016.08.007] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 07/28/2016] [Accepted: 08/04/2016] [Indexed: 12/12/2022]
|
24
|
Abstract
PURPOSE OF REVIEW The review will examine recent advances in our understanding of atopic dermatitis and how these mechanisms provide a framework for new approaches to the management of this common skin disease. RECENT FINDINGS The mechanisms by which epithelial skin barrier and immune responses contribute to the complex clinical phenotypes found in atopic dermatitis are being elucidated. Atopic dermatitis often precedes food allergy because reduced skin barrier function allows environmental food allergens to penetrate the skin leading to systemic allergen sensitization. There is increasing evidence that atopic dermatitis is a systemic disease. New treatments are focused on intervention in polarized immune responses leading to allergic diseases. This includes antagonism of IL-4 and IL-13 effects. Prevention strategies involve maintaining normal skin barrier function with emollients to prevent allergens and microbes from penetrating the skin. SUMMARY Recent work on the pathogenesis of atopic dermatitis has important implications for its clinical management, including the development of effective barrier creams and biologicals targeting specific polarized immune pathways resulting in skin inflammation.
Collapse
Affiliation(s)
- Donald Y M Leung
- Edelstein Family Chair of Pediatric Allergy-Immunology, National Jewish Health, Denver, Colorado, USA and Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The 2nd Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
25
|
Molecular Mechanisms of Cutaneous Inflammatory Disorder: Atopic Dermatitis. Int J Mol Sci 2016; 17:ijms17081234. [PMID: 27483258 PMCID: PMC5000632 DOI: 10.3390/ijms17081234] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/21/2016] [Accepted: 07/26/2016] [Indexed: 02/06/2023] Open
Abstract
Atopic dermatitis (AD) is a multifactorial inflammatory skin disease resulting from interactions between genetic susceptibility and environmental factors. The pathogenesis of AD is poorly understood, and the treatment of recalcitrant AD is still challenging. There is accumulating evidence for new gene polymorphisms related to the epidermal barrier function and innate and adaptive immunity in patients with AD. Newly-found T cells and dendritic cell subsets, cytokines, chemokines and signaling pathways have extended our understanding of the molecular pathomechanism underlying AD. Genetic changes caused by environmental factors have been shown to contribute to the pathogenesis of AD. We herein present a review of the genetics, epigenetics, barrier dysfunction and immunological abnormalities in AD with a focus on updated molecular biology.
Collapse
|
26
|
Lee E, Lee SH, Kwon JW, Kim YH, Cho HJ, Yang SI, Jung YH, Kim HY, Seo JH, Kim BJ, Kim HB, Lee SY, Kwon HJ, Hong SJ. Atopic dermatitis phenotype with early onset and high serum IL-13 is linked to the new development of bronchial hyperresponsiveness in school children. Allergy 2016; 71:692-700. [PMID: 26797819 DOI: 10.1111/all.12844] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2016] [Indexed: 02/04/2023]
Abstract
BACKGROUND Atopic dermatitis (AD) is characterized by a heterogeneous clinical spectrum, and some forms of AD are associated with the initial steps of allergic march. The aims of this study were to determine AD phenotypes in school-age children and investigate their associations with the allergic march in each cluster. METHODS We included 242 children (6-8 years) with current AD from the Children's HEalth and Environmental Research study, a 4-year prospective follow-up study with 2-year survey intervals. Latent class analysis was used. Serum IL-13 and thymic stromal lymphopoietin (TSLP) levels at the time of enrollment were measured using ELISA. RESULTS We identified four current AD phenotypes in children, characterized as 'early onset with low atopy' (26.4% of the sample; group 1), 'early onset with high atopy and high eosinophil percentages' (48.3%; group 2), 'late onset with low atopy' (9.9%; group 3), and 'late onset with high atopy and normal eosinophils' (15.3%; group 4). Although groups 2 and 4 demonstrated high atopic burden, children in group 2 showed the persistence of AD and eosinophilia associated with a high prevalence of new cases of bronchial hyper-responsiveness and asthma symptoms during follow-up. The serum IL-13 level was significantly increased in the early-onset AD groups, but there was no significant difference in the serum TSLP levels across all four groups. CONCLUSION An allergic march-associated AD phenotype exists that is characterized by early onset of AD with its persistence, increased serum IL-13 levels, high atopy, and a persistently increased blood eosinophil percentage.
Collapse
Affiliation(s)
- E. Lee
- Department of Pediatrics; Childhood Asthma and Atopy Center; Environmental Health Center; Asan Medical Center; University of Ulsan College of Medicine; Seoul Korea
| | - S. H. Lee
- Asan Institute for Life Sciences; University of Ulsan College of Medicine; Seoul Korea
| | - J. W. Kwon
- Department of Pediatrics; Seoul National University Bundang Hospital; Seongnam Korea
| | - Y. H. Kim
- Department of Pediatrics; Childhood Asthma and Atopy Center; Environmental Health Center; Asan Medical Center; University of Ulsan College of Medicine; Seoul Korea
| | - H. J. Cho
- Department of Pediatrics; Childhood Asthma and Atopy Center; Environmental Health Center; Asan Medical Center; University of Ulsan College of Medicine; Seoul Korea
| | - S. I. Yang
- Department of Pediatrics; Hallym University Sacred Heart Hospital; Anyang Korea
| | - Y. H. Jung
- Department of Pediatrics; CHA University School of Medicine; Seongnam Korea
| | - H. Y. Kim
- Department of Pediatrics; Pusan National University Yangsan Hospital; Yangsan Seoul Korea
| | - J. H. Seo
- Department of Pediatrics; Korea Cancer Center Hospital; Seoul Korea
| | - B. J. Kim
- Department of Environmental Health; University of Cincinnati College of Medicine; Cincinnati OH USA
| | - H. B. Kim
- Department of Pediatrics; Sanggye Paik Hospital; Inje University College of Medicine; Seoul Korea
| | - S. Y. Lee
- Department of Pediatrics; Hallym University Sacred Heart Hospital; Anyang Korea
| | - H. J. Kwon
- Department of Preventive Medicine; Dankook University College of Medicine; Cheonan Korea
| | - S. J. Hong
- Department of Pediatrics; Childhood Asthma and Atopy Center; Environmental Health Center; Asan Medical Center; University of Ulsan College of Medicine; Seoul Korea
| |
Collapse
|
27
|
Sweerus K, Lachowicz-Scroggins M, Gordon E, LaFemina M, Huang X, Parikh M, Kanegai C, Fahy JV, Frank JA. Claudin-18 deficiency is associated with airway epithelial barrier dysfunction and asthma. J Allergy Clin Immunol 2016; 139:72-81.e1. [PMID: 27215490 DOI: 10.1016/j.jaci.2016.02.035] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 01/28/2016] [Accepted: 02/17/2016] [Indexed: 11/28/2022]
Abstract
BACKGROUND Epithelial barrier dysfunction and increased permeability may contribute to antigen sensitization and disease progression in asthma. Claudin-18.1 is the only known lung-specific tight junction protein, but its contribution to airway barrier function or asthma is unclear. OBJECTIVES We sought to test the hypotheses that claudin-18 is a determinant of airway epithelial barrier function that is downregulated by IL-13 and that claudin-18 deficiency results in increased aeroantigen sensitization and airway hyperresponsiveness. METHODS Claudin-18.1 mRNA levels were measured in airway epithelial brushings from healthy controls and patients with asthma. In patients with asthma, claudin-18 levels were compared with a three-gene-mean marker of TH2 inflammation. Airway epithelial permeability changes due to claudin-18 deficiency were measured in 16HBE cells and claudin-18 null mice. The effect of IL-13 on claudin expression was determined in primary human airway epithelial cells and in mice. Airway hyperresponsiveness and serum IgE levels were compared in claudin-18 null and wild-type mice following aspergillus sensitization. RESULTS Epithelial brushings from patients with asthma (n = 67) had significantly lower claudin-18 mRNA levels than did those from healthy controls (n = 42). Claudin-18 levels were lowest among TH2-high patients with asthma. Loss of claudin-18 was sufficient to impair epithelial barrier function in 16HBE cells and in mouse airways. IL-13 decreased claudin-18 expression in primary human cells and in mice. Claudin-18 null mice had significantly higher serum IgE levels and increased airway responsiveness following intranasal aspergillus sensitization. CONCLUSIONS These data support the hypothesis that claudin-18 is an essential contributor to the airway epithelial barrier to aeroantigens. Furthermore, TH2 inflammation suppresses claudin-18 expression, potentially promoting sensitization and airway hyperresponsiveness.
Collapse
Affiliation(s)
- Kelly Sweerus
- Division of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of California, San Francisco, Calif; San Francisco VA Medical Center and Northern California Institute for Research and Education, San Francisco, Calif
| | - Marrah Lachowicz-Scroggins
- Division of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of California, San Francisco, Calif; Sandler Asthma Basic Research Center, University of California San Francisco, San Francisco, Calif
| | - Erin Gordon
- Division of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of California, San Francisco, Calif
| | - Michael LaFemina
- Division of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of California, San Francisco, Calif; San Francisco VA Medical Center and Northern California Institute for Research and Education, San Francisco, Calif
| | - Xiaozhu Huang
- Division of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of California, San Francisco, Calif; Sandler Asthma Basic Research Center, University of California San Francisco, San Francisco, Calif
| | - Mihir Parikh
- Division of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of California, San Francisco, Calif; San Francisco VA Medical Center and Northern California Institute for Research and Education, San Francisco, Calif
| | - Cindy Kanegai
- Division of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of California, San Francisco, Calif
| | - John V Fahy
- Division of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of California, San Francisco, Calif; Sandler Asthma Basic Research Center, University of California San Francisco, San Francisco, Calif
| | - James A Frank
- Division of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of California, San Francisco, Calif; San Francisco VA Medical Center and Northern California Institute for Research and Education, San Francisco, Calif.
| |
Collapse
|
28
|
Wawrzyniak P, Akdis CA, Finkelman FD, Rothenberg ME. Advances and highlights in mechanisms of allergic disease in 2015. J Allergy Clin Immunol 2016; 137:1681-1696. [PMID: 27090934 DOI: 10.1016/j.jaci.2016.02.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 02/03/2016] [Accepted: 02/17/2016] [Indexed: 01/08/2023]
Abstract
This review highlights some of the advances in mechanisms of allergic disease, particularly anaphylaxis, including food allergy, drug hypersensitivity, atopic dermatitis (AD), allergic conjunctivitis, and airway diseases. During the last year, a mechanistic advance in food allergy was achieved by focusing on mechanisms of allergen sensitization. Novel biomarkers and treatment for mastocytosis were presented in several studies. Novel therapeutic approaches in the treatment of atopic dermatitis and psoriasis showed that promising supplementation of the infant's diet in the first year of life with immunoactive prebiotics might have a preventive role against early development of AD and that therapeutic approaches to treat AD in children might be best directed to the correction of a TH2/TH1 imbalance. Several studies were published emphasizing the role of the epithelial barrier in patients with allergic diseases. An impaired skin barrier as a cause for sensitization to food allergens in children and its relationship to filaggrin mutations has been an important development. Numerous studies presented new approaches for improvement of epithelial barrier function and novel biologicals used in the treatment of inflammatory skin and eosinophilic diseases. In addition, novel transcription factors and signaling molecules that can develop as new possible therapeutic targets have been reported.
Collapse
Affiliation(s)
- Paulina Wawrzyniak
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland, Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland, Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland.
| | - Fred D Finkelman
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, University of Cincinnati College of Medicine, and the Department of Medicine, Cincinnati Veterans Affairs Medical Center, Cincinnati, Ohio
| | - Marc E Rothenberg
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio
| |
Collapse
|