1
|
Arman Bilir Ö, Karaatmaca B, Ok Bozkaya İ, Kanbur ŞM, Kaçar D, Metin A, Özbek NY. Haematopoietic stem cell transplantation in children with inborn errors of immunity: A single centre experience. Scand J Immunol 2025; 101:e13431. [PMID: 39781591 DOI: 10.1111/sji.13431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/18/2024] [Accepted: 12/08/2024] [Indexed: 01/12/2025]
Abstract
This study retrospectively analyzed the outcomes of 61 pediatric patients with inborn errors of immunity (IEI) who underwent hematopoietic stem cell transplantation (HSCT) between 2011 and 2023. Patients were categorized into primary immunodeficiency disorders (PIDD), primary immune dysregulation disorders (PIRD), and congenital defects of phagocyte number or function (CDP). Median ages at diagnosis and HSCT were 9 and 30 months, respectively. With a median follow-up of 51 months, the overall survival (OS) was 70%, with a 100-day post-transplant OS of 80%. Transplant-related mortality (TRM) was 29%, with rates of 42%, 22.5%, and 27% for PIRD, PIDD, and CDP, respectively. This study highlights the importance of early diagnosis and HSCT in improving survival for IEI patients, while also emphasizing the need for continuous improvements in transplant protocols to minimize TRM and enhance quality of life.
Collapse
Affiliation(s)
- Özlem Arman Bilir
- Department of Pediatric Hematology Oncology & Bone Marrow Transplantation Unit, University of Health Sciences Ankara Bilkent City Hospital, Ankara, Turkey
| | - Betül Karaatmaca
- Department of Pediatric Allergy and Immunology, University of Health Sciences Ankara Bilkent City Hospital, Ankara, Turkey
| | - İkbal Ok Bozkaya
- Department of Pediatric Hematology Oncology & Bone Marrow Transplantation Unit, Ankara Bilkent City Hospital, Ankara, Turkey
| | - Şerife Mehtap Kanbur
- Department of Pediatric Hematology Oncology & Bone Marrow Transplantation Unit, Ankara Bilkent City Hospital, Ankara, Turkey
| | - Dilek Kaçar
- Department of Pediatric Hematology Oncology & Bone Marrow Transplantation Unit, University of Health Sciences Ankara Bilkent City Hospital, Ankara, Turkey
| | - Ayşe Metin
- Department of Pediatric Allergy and Immunology, University of Health Sciences Ankara Bilkent City Hospital, Ankara, Turkey
| | - Namık Yaşar Özbek
- Department of Pediatric Hematology Oncology & Bone Marrow Transplantation Unit, University of Health Sciences Ankara Bilkent City Hospital, Ankara, Turkey
| |
Collapse
|
2
|
Abraham RS, Basu A, Heimall JR, Dunn E, Yip A, Kapadia M, Kapoor N, Satter LF, Buckley R, O'Reilly R, Cuvelier GDE, Chandra S, Bednarski J, Chaudhury S, Moore TB, Haines H, Dávila Saldaña BJ, Chellapandian D, Rayes A, Chen K, Caywood E, Chandrakasan S, Lugt MTV, Ebens C, Teira P, Shereck E, Miller H, Aquino V, Eissa H, Yu LC, Gillio A, Madden L, Knutsen A, Shah AJ, DeSantes K, Barnum J, Broglie L, Joshi AY, Kleiner G, Dara J, Prockop S, Martinez C, Mousallem T, Oved J, Burroughs L, Marsh R, Torgerson TR, Leiding JW, Pai SY, Kohn DB, Pulsipher MA, Griffith LM, Notarangelo LD, Cowan MJ, Puck J, Dvorak CC, Haddad E. Relevance of lymphocyte proliferation to PHA in severe combined immunodeficiency (SCID) and T cell lymphopenia. Clin Immunol 2024; 261:109942. [PMID: 38367737 PMCID: PMC11018339 DOI: 10.1016/j.clim.2024.109942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/05/2024] [Accepted: 02/10/2024] [Indexed: 02/19/2024]
Abstract
Severe combined immunodeficiency (SCID) is characterized by a severe deficiency in T cell numbers. We analyzed data collected (n = 307) for PHA-based T cell proliferation from the PIDTC SCID protocol 6901, using either a radioactive or flow cytometry method. In comparing the two groups, a smaller number of the patients tested by flow cytometry had <10% of the lower limit of normal proliferation as compared to the radioactive method (p = 0.02). Further, in patients with CD3+ T cell counts between 51 and 300 cells/μL, there was a higher proliferative response with the PHA flow assay compared to the 3H-T assay (p < 0.0001), suggesting that the method of analysis influences the resolution and interpretation of PHA results. Importantly, we observed many SCID patients with profound T cell lymphopenia having normal T cell proliferation when assessed by flow cytometry. We recommend this test be considered only as supportive in the diagnosis of typical SCID.
Collapse
Affiliation(s)
- Roshini S Abraham
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, OH, USA.
| | - Amrita Basu
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, OH, USA
| | - Jennifer R Heimall
- Division of Allergy and Immunology, Children's Hospital of Philadelphia, PA, USA
| | - Elizabeth Dunn
- Division of Allergy, Immunology, and Blood and Marrow Transplantation, Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Alison Yip
- Division of Allergy, Immunology, and Blood and Marrow Transplantation, Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Malika Kapadia
- Division of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Department of Pediatrics, Harvard University Medical School, Boston, MA, USA
| | - Neena Kapoor
- Transplantation and Cellular Therapy Program, Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Lisa Forbes Satter
- Pediatrics, Immunology, Allergy and Rheumatology, Baylor College of Medicine, Houston, TX, USA
| | - Rebecca Buckley
- Departments of Pediatrics and Immunology, Duke University Medical Center, Durham, NC, USA
| | - Richard O'Reilly
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Geoffrey D E Cuvelier
- Manitoba Blood and Marrow Transplant Program, CancerCare Manitoba, Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB, Canada
| | - Sharat Chandra
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Division of Bone Marrow Transplantation and Immune Deficiency, Cancer and Blood Disease Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jeffrey Bednarski
- Division of Hematology and Oncology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Sonali Chaudhury
- Division of Hematology, Oncology, and Stem Cell Transplantation, Ann & Robert H. Lurie Children's Hospital of Chicago-Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Theodore B Moore
- Division of Hematology/Oncology, Mattel Children's Hospital at UCLA, Los Angeles, CA, USA
| | - Hilary Haines
- Division of Pediatric Hematology-Oncology and Bone Marrow Transplant, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Blachy J Dávila Saldaña
- Division of Blood and Marrow Transplantation, Children's National Hospital-George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | | | - Ahmad Rayes
- Division of Pediatric Hematology and Oncology, Intermountain Primary Childrens Hospital, Huntsman Cancer Institute, Spencer Fox Eccles School of Medicine at the University of Utah, Salt Lake City, UT, USA
| | - Karin Chen
- Department of Pediatrics, University of Washington-Seattle Children's Hospital, Seattle, WA, USA
| | - Emi Caywood
- Nemours Children's Health Delaware, Thomas Jefferson University, Wilmington, DE, USA
| | - Shanmuganathan Chandrakasan
- Bone Marrow Transplantation Program, Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Christen Ebens
- Division of Pediatric Blood and Marrow Transplantation & Cellular Therapy, University of Minnesota, Minneapolis, MN, USA
| | - Pierre Teira
- Pediatric Immunology and Rheumatology Division, CHU Sainte-Justine, Department of Pediatrics, University of Montreal, Montreal, QC, Canada
| | - Evan Shereck
- Division of Pediatric Hematology/Oncology, Oregon Health and Science University, Portland, OR, USA
| | | | - Victor Aquino
- Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hesham Eissa
- Division of Pediatric Hematology-Oncology-BMT, University of Colorado, Aurora, CO, USA
| | - Lolie C Yu
- Division of Pediatric Hematology-Oncology/HSCT, LSUHSC and Children's Hospital, New Orleans, LA, USA
| | - Alfred Gillio
- Institute for Pediatric Cancer and Blood Disorders, Hackensack University Medical Center, Hackensack, NJ, USA
| | - Lisa Madden
- Pediatric Blood and Marrow Transplantation Program, Texas Transplant Institute, Methodist Children's Hospital, San Antonio, TX, USA
| | - Alan Knutsen
- Department of Pediatrics, Pediatric Allergy and Immunology Division, Saint Louis University, St Louis, MO, USA
| | - Ami J Shah
- Division of Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford School of Medicine Pediatric Stem Cell Transplantation, Stanford University, Stanford, CA, USA
| | - Kenneth DeSantes
- American Family Children's Hospital, University of Wisconsin, Madison, WI, USA
| | - Jessie Barnum
- UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Larisa Broglie
- Division of Pediatric Hematology, Oncology, and Blood and Marrow Transplantation, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Avni Y Joshi
- Division of Pediatric and Adult Allergy and Immunology, Mayo Clinic, Rochester, MN, USA
| | - Gary Kleiner
- Division of Pediatric Allergy and Immunology, Department of Pediatrics, Holtz Children's Hospital at Jackson Memorial Hospital, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jasmeen Dara
- Division of Allergy, Immunology, and Blood and Marrow Transplantation, Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Susan Prockop
- Division of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Department of Pediatrics, Harvard University Medical School, Boston, MA, USA
| | - Caridad Martinez
- Pediatrics, Immunology, Allergy and Rheumatology, Baylor College of Medicine, Houston, TX, USA
| | - Talal Mousallem
- Departments of Pediatrics and Immunology, Duke University Medical Center, Durham, NC, USA
| | - Joseph Oved
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lauri Burroughs
- Department of Pediatrics, University of Washington-Seattle Children's Hospital, Seattle, WA, USA
| | - Rebecca Marsh
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Division of Bone Marrow Transplantation and Immune Deficiency, Cancer and Blood Disease Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Pharming Healthcare Inc, Warren, NJ, USA
| | - Troy R Torgerson
- Department of Pediatrics, University of Washington-Seattle Children's Hospital, Seattle, WA, USA
| | - Jennifer W Leiding
- Division of Allergy and Immunology, Department of Pediatrics, Johns Hopkins University Baltimore, MD and Institute for Clinical and Translational Research, Johns Hopkins All Childrens Hospital, St. Petersburg, FL, USA
| | - Sung Yun Pai
- Immune Deficiency Cellular Therapy Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Donald B Kohn
- Department of Pediatrics, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, USA
| | - Michael A Pulsipher
- Division of Pediatric Hematology and Oncology, Intermountain Primary Childrens Hospital, Huntsman Cancer Institute, Spencer Fox Eccles School of Medicine at the University of Utah, Salt Lake City, UT, USA
| | - Linda M Griffith
- Division of Allergy, Immunology, and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Morton J Cowan
- Division of Allergy, Immunology, and Blood and Marrow Transplantation, Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Jennifer Puck
- Division of Allergy, Immunology, and Blood and Marrow Transplantation, Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Christopher C Dvorak
- Division of Allergy, Immunology, and Blood and Marrow Transplantation, Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Elie Haddad
- Pediatric Immunology and Rheumatology Division, CHU Sainte-Justine, Department of Pediatrics, University of Montreal, Montreal, QC, Canada
| |
Collapse
|
3
|
Chandrasekaran P, Han Y, Zerbe CS, Heller T, DeRavin SS, Kreuzberg SA, Marciano BE, Siu Y, Jones DR, Abraham RS, Stephens MC, Tsou AM, Snapper S, Conlan S, Subramanian P, Quinones M, Grou C, Calderon V, Deming C, Leiding JW, Arnold DE, Logan BR, Griffith LM, Petrovic A, Mousallem TI, Kapoor N, Heimall JR, Barnum JL, Kapadia M, Wright N, Rayes A, Chandra S, Broglie LA, Chellapandian D, Deal CL, Grunebaum E, Lim SS, Mallhi K, Marsh RA, Murguia-Favela L, Parikh S, Touzot F, Cowan MJ, Dvorak CC, Haddad E, Kohn DB, Notarangelo LD, Pai SY, Puck JM, Pulsipher MA, Torgerson TR, Kang EM, Malech HL, Segre JA, Bryant CE, Holland SM, Falcone EL. Intestinal microbiome and metabolome signatures in patients with chronic granulomatous disease. J Allergy Clin Immunol 2023; 152:1619-1633.e11. [PMID: 37659505 PMCID: PMC11279821 DOI: 10.1016/j.jaci.2023.07.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 07/18/2023] [Accepted: 07/27/2023] [Indexed: 09/04/2023]
Abstract
BACKGROUND Chronic granulomatous disease (CGD) is caused by defects in any 1 of the 6 subunits forming the nicotinamide adenine dinucleotide phosphate oxidase complex 2 (NOX2), leading to severely reduced or absent phagocyte-derived reactive oxygen species production. Almost 50% of patients with CGD have inflammatory bowel disease (CGD-IBD). While conventional IBD therapies can treat CGD-IBD, their benefits must be weighed against the risk of infection. Understanding the impact of NOX2 defects on the intestinal microbiota may lead to the identification of novel CGD-IBD treatments. OBJECTIVE We sought to identify microbiome and metabolome signatures that can distinguish individuals with CGD and CGD-IBD. METHODS We conducted a cross-sectional observational study of 79 patients with CGD, 8 pathogenic variant carriers, and 19 healthy controls followed at the National Institutes of Health Clinical Center. We profiled the intestinal microbiome (amplicon sequencing) and stool metabolome, and validated our findings in a second cohort of 36 patients with CGD recruited through the Primary Immune Deficiency Treatment Consortium. RESULTS We identified distinct intestinal microbiome and metabolome profiles in patients with CGD compared to healthy individuals. We observed enrichment for Erysipelatoclostridium spp, Sellimonas spp, and Lachnoclostridium spp in CGD stool samples. Despite differences in bacterial alpha and beta diversity between the 2 cohorts, several taxa correlated significantly between both cohorts. We further demonstrated that patients with CGD-IBD have a distinct microbiome and metabolome profile compared to patients without CGD-IBD. CONCLUSION Intestinal microbiome and metabolome signatures distinguished patients with CGD and CGD-IBD, and identified potential biomarkers and therapeutic targets.
Collapse
Affiliation(s)
| | - Yu Han
- Division of Molecular Genetics and Pathology, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, Md; Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Md
| | - Christa S Zerbe
- Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Md
| | - Theo Heller
- Translational Hepatology Section, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Md
| | - Suk See DeRavin
- Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Md
| | - Samantha A Kreuzberg
- Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Md
| | - Beatriz E Marciano
- Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Md
| | - Yik Siu
- Department of Biochemistry and Molecular Pharmacology, New York University Langone Health, New York, NY
| | - Drew R Jones
- Department of Biochemistry and Molecular Pharmacology, New York University Langone Health, New York, NY
| | - Roshini S Abraham
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minn; Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, Ohio
| | | | - Amy M Tsou
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, and Department of Pediatrics, Harvard Medical School, Boston, Mass; Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medical College, New York, NY
| | - Scott Snapper
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, and Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Sean Conlan
- National Human Genome Research Institute (NHGRI), NIH, Bethesda, Md
| | - Poorani Subramanian
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, NIAID, NIH, Bethesda, Md
| | - Mariam Quinones
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, NIAID, NIH, Bethesda, Md
| | - Caroline Grou
- Bioinformatics Core, Montreal Clinical Research Institute (IRCM), Montreal, Quebec, Canada
| | - Virginie Calderon
- Bioinformatics Core, Montreal Clinical Research Institute (IRCM), Montreal, Quebec, Canada
| | - Clayton Deming
- National Human Genome Research Institute (NHGRI), NIH, Bethesda, Md
| | - Jennifer W Leiding
- Division of Allergy and Immunology, Department of Pediatrics, Johns Hopkins University, Baltimore, Md
| | - Danielle E Arnold
- Immune Deficiency-Cellular Therapy Program, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Md
| | - Brent R Logan
- Division of Biostatistics, Institute for Health and Equity, Medical College of Wisconsin, Milwaukee, Wis
| | - Linda M Griffith
- Division of Allergy, Immunology, and Transplantation, NIAID, NIH, Bethesda, Md
| | - Aleksandra Petrovic
- Department of Pediatrics, University of Washington School of Medicine and Seattle Children's Hospital and Research Center, Seattle, Wash
| | - Talal I Mousallem
- Department of Pediatrics, Duke University Medical Center, Durham, NC
| | - Neena Kapoor
- Division of Hematology, Oncology, and Blood and Marrow Transplantation, Children's Hospital Los Angeles, Los Angeles, Calif
| | - Jennifer R Heimall
- Division of Allergy and Immunology, Children's Hospital of Philadelphia and Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa
| | - Jessie L Barnum
- Division of Blood and Marrow Transplantation and Cellular Therapies, University of Pittsburgh Medical Center (UPMC) and Children's Hospital of Pittsburgh, Pittsburgh, Pa
| | - Malika Kapadia
- Department of Pediatrics, Harvard University Medical School, Boston, Mass
| | - Nicola Wright
- Section of Hematology/Immunology, Alberta Children's Hospital, University of Calgary, Calgary, Alberta, Canada
| | - Ahmad Rayes
- Intermountain Primary Children's Hospital, University of Utah, Salt Lake City, Utah
| | - Sharat Chandra
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Larisa A Broglie
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wis
| | - Deepak Chellapandian
- Center for Cell and Gene Therapy for Non-Malignant Conditions, Johns Hopkins All Children's Hospital, St Petersburg, Fla
| | - Christin L Deal
- Division of Allergy and Immunology, UPMC, Children's Hospital of Pittsburgh, Pittsburgh, Pa
| | - Eyal Grunebaum
- Division of Immunology and Allergy, Department of Pediatrics, Hospital for Sick Children, Toronto, Ontario, Canada; Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Stephanie Si Lim
- Department of Pediatrics, John A. Burns School of Medicine, University of Hawai'i at Mānoa, Honolulu, Hawaii; University of Hawai'i Cancer Center, University of Hawai'i at Mānoa, Honolulu, Hawaii
| | | | - Rebecca A Marsh
- Cincinnati Children's Hospital Medical Center, and University of Cincinnati, Cincinnati, Ohio
| | - Luis Murguia-Favela
- Section of Hematology/Immunology, Alberta Children's Hospital, University of Calgary, Calgary, Alberta, Canada
| | - Suhag Parikh
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Ga
| | - Fabien Touzot
- Department of Pediatrics, CHU Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada; Department of Microbiology, Infectious Diseases, and Immunology, Université de Montréal, Montreal, Quebec, Canada
| | - Morton J Cowan
- University of California San Francisco Benioff Children's Hospital, San Francisco, Calif
| | - Christopher C Dvorak
- University of California San Francisco Benioff Children's Hospital, San Francisco, Calif
| | - Elie Haddad
- Department of Pediatrics, CHU Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada; Department of Microbiology, Infectious Diseases, and Immunology, Université de Montréal, Montreal, Quebec, Canada
| | - Donald B Kohn
- Microbiology, Immunology, & Molecular Genetics, University of California, Los Angeles, Calif
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Md
| | - Sung-Yun Pai
- Immune Deficiency-Cellular Therapy Program, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Md
| | - Jennifer M Puck
- University of California San Francisco Benioff Children's Hospital, San Francisco, Calif
| | - Michael A Pulsipher
- Division of Pediatric Hematology and Oncology, Intermountain Primary Children's Hospital, Huntsman Cancer Institute at the University of Utah Spencer Fox Eccles School of Medicine, Salt Lake City, Utah
| | | | - Elizabeth M Kang
- Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Md
| | - Harry L Malech
- Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Md
| | - Julia A Segre
- National Human Genome Research Institute (NHGRI), NIH, Bethesda, Md
| | - Clare E Bryant
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Steven M Holland
- Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Md
| | - Emilia Liana Falcone
- Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Md; Department of Microbiology, Infectious Diseases, and Immunology, Université de Montréal, Montreal, Quebec, Canada; Center for Immunity, Inflammation and Infectious Diseases, IRCM, Montreal, Quebec, Canada; Department of Medicine, Université de Montréal, Montreal, Quebec, Canada.
| |
Collapse
|
4
|
Ferreira CS, Francisco Junior RDS, Gerber AL, Guimarães APDC, de Carvalho FAA, Dos Reis BCS, Pinto-Mariz F, de Souza MS, de Vasconcelos ZFM, Goudouris ES, Vasconcelos ATR. Genetic screening in a Brazilian cohort with inborn errors of immunity. BMC Genom Data 2023; 24:47. [PMID: 37592284 PMCID: PMC10433585 DOI: 10.1186/s12863-023-01148-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 08/07/2023] [Indexed: 08/19/2023] Open
Abstract
BACKGROUND Inherited genetic defects in immune system-related genes can result in Inborn Errors of Immunity (IEI), also known as Primary Immunodeficiencies (PID). Diagnosis of IEI disorders is challenging due to overlapping clinical manifestations. Accurate identification of disease-causing germline variants is crucial for appropriate treatment, prognosis, and genetic counseling. However, genetic sequencing is challenging in low-income countries like Brazil. This study aimed to perform genetic screening on patients treated within Brazil's public Unified Health System to identify candidate genetic variants associated with the patient's phenotype. METHODS Thirteen singleton unrelated patients from three hospitals in Rio de Janeiro were enrolled in this study. Genomic DNA was extracted from the peripheral blood lymphocytes of each patient, and whole exome sequencing (WES) analyses were conducted using Illumina NextSeq. Germline genetic variants in IEI-related genes were prioritized using a computational framework considering their molecular consequence in coding regions; minor allele frequency ≤ 0.01; pathogenicity classification based on American College of Medical Genetics and Genomics and the Association for Molecular Pathology (ACMG/AMP) guidelines gathered from the VarSome clinical database; and IEI-related phenotype using the Franklin tool. The genes classification into IEI categories follows internationally recognized guidelines informed by the International Union of Immunological Societies Expert Committee. Additional methods for confirmation of the variant included Sanger sequencing, phasing analysis, and splice site prediction. RESULTS A total of 16 disease-causing variants in nine genes, encompassing six different IEI categories, were identified. X-Linked Agammaglobulinemia, caused by BTK variations, emerged as the most prevalent IEI disorder in the cohort. However, pathogenic and likely pathogenic variants were also reported in other known IEI-related genes, namely CD40LG, CARD11, WAS, CYBB, C6, and LRBA. Interestingly, two patients with suspected IEI exhibited pathogenic variants in non-IEI-related genes, ABCA12 and SLC25A13, potentially explaining their phenotypes. CONCLUSIONS Genetic screening through WES enabled the detection of potentially harmful variants associated with IEI disorders. These findings contribute to a better understanding of patients' clinical manifestations by elucidating the genetic basis underlying their phenotypes.
Collapse
Affiliation(s)
- Cristina Santos Ferreira
- Bioinformatics Laboratory-LABINFO, National Laboratory of Scientific Computation LNCC/MCTIC, Av. Getúlio Vargas, 333, Quitandinha CEP: 25651-075, Petrópolis, Rio de Janeiro, Brazil
| | - Ronaldo da Silva Francisco Junior
- Bioinformatics Laboratory-LABINFO, National Laboratory of Scientific Computation LNCC/MCTIC, Av. Getúlio Vargas, 333, Quitandinha CEP: 25651-075, Petrópolis, Rio de Janeiro, Brazil
| | - Alexandra Lehmkuhl Gerber
- Bioinformatics Laboratory-LABINFO, National Laboratory of Scientific Computation LNCC/MCTIC, Av. Getúlio Vargas, 333, Quitandinha CEP: 25651-075, Petrópolis, Rio de Janeiro, Brazil
| | - Ana Paula de Campos Guimarães
- Bioinformatics Laboratory-LABINFO, National Laboratory of Scientific Computation LNCC/MCTIC, Av. Getúlio Vargas, 333, Quitandinha CEP: 25651-075, Petrópolis, Rio de Janeiro, Brazil
| | - Flavia Amendola Anisio de Carvalho
- Allergy and Immunology Service of Institute of Women, Children and Adolescents' Health Fernandes Figueira (IFF/FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - Bárbara Carvalho Santos Dos Reis
- Allergy and Immunology Service of Institute of Women, Children and Adolescents' Health Fernandes Figueira (IFF/FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - Fernanda Pinto-Mariz
- Allergy and Immunology Service of the Martagão Gesteira Institute for Childcare and Pediatrics (IPPMG) - Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Monica Soares de Souza
- Allergy and Immunology Sector of the Pediatric Service of the Federal Hospital of Rio de Janeiro State (HFSE) - Ministry of Health, Rio de Janeiro, RJ, Brazil
| | - Zilton Farias Meira de Vasconcelos
- Laboratory of High Complexity of the Institute of Women, Children and Adolescents' Health Fernandes Figueira (IFF/FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - Ekaterini Simões Goudouris
- Allergy and Immunology Service of the Martagão Gesteira Institute for Childcare and Pediatrics (IPPMG) - Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Ana Tereza Ribeiro Vasconcelos
- Bioinformatics Laboratory-LABINFO, National Laboratory of Scientific Computation LNCC/MCTIC, Av. Getúlio Vargas, 333, Quitandinha CEP: 25651-075, Petrópolis, Rio de Janeiro, Brazil.
| |
Collapse
|
5
|
Cuvelier GDE, Logan BR, Prockop SE, Buckley RH, Kuo CY, Griffith LM, Liu X, Yip A, Hershfield MS, Ayoub PG, Moore TB, Dorsey MJ, O'Reilly RJ, Kapoor N, Pai SY, Kapadia M, Ebens CL, Forbes Satter LR, Burroughs LM, Petrovic A, Chellapandian D, Heimall J, Shyr DC, Rayes A, Bednarski JJ, Chandra S, Chandrakasan S, Gillio AP, Madden L, Quigg TC, Caywood EH, Dávila Saldaña BJ, DeSantes K, Eissa H, Goldman FD, Rozmus J, Shah AJ, Vander Lugt MT, Thakar MS, Parrott RE, Martinez C, Leiding JW, Torgerson TR, Pulsipher MA, Notarangelo LD, Cowan MJ, Dvorak CC, Haddad E, Puck JM, Kohn DB. Outcomes following treatment for ADA-deficient severe combined immunodeficiency: a report from the PIDTC. Blood 2022; 140:685-705. [PMID: 35671392 PMCID: PMC9389638 DOI: 10.1182/blood.2022016196] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/21/2022] [Indexed: 11/20/2022] Open
Abstract
Adenosine deaminase (ADA) deficiency causes ∼13% of cases of severe combined immune deficiency (SCID). Treatments include enzyme replacement therapy (ERT), hematopoietic cell transplant (HCT), and gene therapy (GT). We evaluated 131 patients with ADA-SCID diagnosed between 1982 and 2017 who were enrolled in the Primary Immune Deficiency Treatment Consortium SCID studies. Baseline clinical, immunologic, genetic characteristics, and treatment outcomes were analyzed. First definitive cellular therapy (FDCT) included 56 receiving HCT without preceding ERT (HCT); 31 HCT preceded by ERT (ERT-HCT); and 33 GT preceded by ERT (ERT-GT). Five-year event-free survival (EFS, alive, no need for further ERT or cellular therapy) was 49.5% (HCT), 73% (ERT-HCT), and 75.3% (ERT-GT; P < .01). Overall survival (OS) at 5 years after FDCT was 72.5% (HCT), 79.6% (ERT-HCT), and 100% (ERT-GT; P = .01). Five-year OS was superior for patients undergoing HCT at <3.5 months of age (91.6% vs 68% if ≥3.5 months, P = .02). Active infection at the time of HCT (regardless of ERT) decreased 5-year EFS (33.1% vs 68.2%, P < .01) and OS (64.7% vs 82.3%, P = .02). Five-year EFS (90.5%) and OS (100%) were best for matched sibling and matched family donors (MSD/MFD). For patients treated after the year 2000 and without active infection at the time of FDCT, no difference in 5-year EFS or OS was found between HCT using a variety of transplant approaches and ERT-GT. This suggests alternative donor HCT may be considered when MSD/MFD HCT and GT are not available, particularly when newborn screening identifies patients with ADA-SCID soon after birth and before the onset of infections. This trial was registered at www.clinicaltrials.gov as #NCT01186913 and #NCT01346150.
Collapse
Affiliation(s)
- Geoffrey D E Cuvelier
- Manitoba Blood and Marrow Transplant Program, CancerCare Manitoba, University of Manitoba, Winnipeg, MB, Canada
| | - Brent R Logan
- Division of Biostatistics, Medical College of Wisconsin, Milwaukee, WI
| | - Susan E Prockop
- Stem Cell Transplant Service, Dana Farber Cancer Institute/Boston Children's Hospital, Boston, MA
| | | | - Caroline Y Kuo
- Division of Allergy, Immunology, Rheumatology, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - Linda M Griffith
- Division of Allergy, Immunology and Transplantation, National Institutes of Allergy, National Institutes of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD
| | - Xuerong Liu
- Division of Biostatistics, Medical College of Wisconsin, Milwaukee, WI
| | - Alison Yip
- University of California San Francisco Benioff Children's Hospital, San Francisco, CA
| | | | - Paul G Ayoub
- Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA
| | - Theodore B Moore
- Department of Pediatric Hematology-Oncology, Mattel Children's Hospital, University of California, Los Angeles, CA
| | - Morna J Dorsey
- University of California San Francisco Benioff Children's Hospital, San Francisco, CA
| | - Richard J O'Reilly
- Stem Cell Transplantation and Cellular Therapy, MSK Kids, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Neena Kapoor
- Division of Hematology, Oncology and Blood and Marrow Transplant, Children's Hospital, Los Angeles, CA
| | - Sung-Yun Pai
- Immune Deficiency Cellular Therapy Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Malika Kapadia
- Boston Children's Hospital, Dana-Farber Cancer Institute, Boston, MA
| | - Christen L Ebens
- Division of Pediatric Blood and Marrow Transplant and Cellular Therapy, MHealth Fairview Masonic Children's Hospital, Minneapolis, MN
| | - Lisa R Forbes Satter
- Immunology, Allergy and Retrovirology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX
| | - Lauri M Burroughs
- Fred Hutchinson Cancer Research Center, University of Washington, Department of Pediatrics and Seattle Children's Hospital, Seattle, WA
| | - Aleksandra Petrovic
- Fred Hutchinson Cancer Research Center, University of Washington, Department of Pediatrics and Seattle Children's Hospital, Seattle, WA
| | - Deepak Chellapandian
- Center for Cell and Gene Therapy for Non-Malignant Conditions, Johns Hopkins All Children's Hospital, St Petersburg, FL
| | - Jennifer Heimall
- Division of Allergy and Immunology, Children's Hospital of Philadelphia, Department of Pediatrics, Perelman School of Medicine at University of Pennsylvania, Philadelphia, PA
| | - David C Shyr
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Lucile Packard Children's Hospital, Stanford School of Medicine, Palo Alto, CA
| | - Ahmad Rayes
- Primary Children's Hospital, University of Utah, Salt Lake City, UT
| | | | - Sharat Chandra
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | | | - Alfred P Gillio
- Children's Cancer Institute, Hackensack University Medical Center, Hackensack, NJ
| | - Lisa Madden
- Methodist Children's Hospital of South Texas, San Antonio, TX
| | - Troy C Quigg
- Pediatric Blood and Marrow Transplant and Cellular Therapy Program, Helen DeVos Children's Hospital, Michigan State University College of Human Medicine, Grand Rapids, MI
| | - Emi H Caywood
- Nemours Children's Health, Thomas Jefferson University, Wilmington, DE
| | | | - Kenneth DeSantes
- Division of Pediatric Hematology-Oncology & Bone Marrow Transplant, University of Wisconsin, American Family Children's Hospital, Madison, WI
| | - Hesham Eissa
- Division of Pediatric Hematology-Oncology-BMT, Aurora, CO
| | - Frederick D Goldman
- Division of Pediatric Hematology and Oncology and Bone Marrow Transplant, University of Alabama at Birmingham, Birmingham, AL
| | - Jacob Rozmus
- British Columbia Children's Hospital, Vancouver, BC, Canada
| | - Ami J Shah
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Lucile Packard Children's Hospital, Stanford School of Medicine, Palo Alto, CA
| | - Mark T Vander Lugt
- Blood and Marrow Transplant Program, University of Michigan, Ann Arbor, MI
| | - Monica S Thakar
- Fred Hutchinson Cancer Research Center, University of Washington, Department of Pediatrics and Seattle Children's Hospital, Seattle, WA
| | | | - Caridad Martinez
- Hematology/Oncology/BMT, Texas Children's Hospital, Baylor College of Medicine, Houston, TX
| | - Jennifer W Leiding
- Division of Allergy and Immunology, Johns Hopkins University, St Petersburg, FL
| | | | - Michael A Pulsipher
- Division of Pediatric Hematology and Oncology, Intermountain Primary Children's Hospital, Huntsman Cancer Institute at the University of Utah Spencer Fox Eccles School of Medicine, Salt Lake City, UT
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD; and
| | - Morton J Cowan
- University of California San Francisco Benioff Children's Hospital, San Francisco, CA
| | - Christopher C Dvorak
- University of California San Francisco Benioff Children's Hospital, San Francisco, CA
| | - Elie Haddad
- Department of Pediatrics, Centre Hospitalier Universitaire (CHU) Sainte-Justine, University of Montreal, Montreal, QC, Canada
| | - Jennifer M Puck
- University of California San Francisco Benioff Children's Hospital, San Francisco, CA
| | - Donald B Kohn
- Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA
| |
Collapse
|
6
|
Mauracher AA, Henrickson SE. Leveraging Systems Immunology to Optimize Diagnosis and Treatment of Inborn Errors of Immunity. FRONTIERS IN SYSTEMS BIOLOGY 2022; 2:910243. [PMID: 37670772 PMCID: PMC10477056 DOI: 10.3389/fsysb.2022.910243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Inborn errors of immunity (IEI) are monogenic disorders that can cause diverse symptoms, including recurrent infections, autoimmunity and malignancy. While many factors have contributed, the increased availability of next-generation sequencing has been central in the remarkable increase in identification of novel monogenic IEI over the past years. Throughout this phase of disease discovery, it has also become evident that a given gene variant does not always yield a consistent phenotype, while variants in seemingly disparate genes can lead to similar clinical presentations. Thus, it is increasingly clear that the clinical phenotype of an IEI patient is not defined by genetics alone, but is also impacted by a myriad of factors. Accordingly, we need methods to amplify our current diagnostic algorithms to better understand mechanisms underlying the variability in our patients and to optimize treatment. In this review, we will explore how systems immunology can contribute to optimizing both diagnosis and treatment of IEI patients by focusing on identifying and quantifying key dysregulated pathways. To improve mechanistic understanding in IEI we must deeply evaluate our rare IEI patients using multimodal strategies, allowing both the quantification of altered immune cell subsets and their functional evaluation. By studying representative controls and patients, we can identify causative pathways underlying immune cell dysfunction and move towards functional diagnosis. Attaining this deeper understanding of IEI will require a stepwise strategy. First, we need to broadly apply these methods to IEI patients to identify patterns of dysfunction. Next, using multimodal data analysis, we can identify key dysregulated pathways. Then, we must develop a core group of simple, effective functional tests that target those pathways to increase efficiency of initial diagnostic investigations, provide evidence for therapeutic selection and contribute to the mechanistic evaluation of genetic results. This core group of simple, effective functional tests, targeting key pathways, can then be equitably provided to our rare patients. Systems biology is thus poised to reframe IEI diagnosis and therapy, fostering research today that will provide streamlined diagnosis and treatment choices for our rare and complex patients in the future, as well as providing a better understanding of basic immunology.
Collapse
Affiliation(s)
- Andrea A. Mauracher
- Division of Allergy and Immunology, Department of Pediatrics, Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Sarah E. Henrickson
- Division of Allergy and Immunology, Department of Pediatrics, Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
7
|
Xu B, Wang J, Meng X, Bao B. Bibliometrics and Visual Analysis of Adult-onset Still Disease (1976–2020). Front Public Health 2022; 10:884780. [PMID: 35784223 PMCID: PMC9240422 DOI: 10.3389/fpubh.2022.884780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/13/2022] [Indexed: 12/02/2022] Open
Abstract
Background Adult-onset Still Disease (AoSD) is a rare disorder without standardized diagnostic criteria. People are paying more and more attention to its research. At present, no published studies have assessed the AoSD field using bibliometric tools. This study aimed to analyze research hotspots and frontiers through bibliometrics to provide a scientific and accurate reference for new and existing researchers. Methods Data were obtained from the Web of Science core database and analyzed by CiteSpace, VOSviewer, and Microsoft Excel. Results Involving 86 countries and regions, a total of 11,121 authors published 2,199 articles in 676 journals. These studies were published from 1976 to 2020. The United States published the most related articles (397). The United States, France, Italy, and Germany were the top four countries with a high H-index. Authors and institutions with high number of published articles and high citations are mainly located in France and Italy. High-frequency keywords include classification, criteria, diagnosis, and therapy method. Keyword clustering covers the connection between AoSD and rheumatoid arthritis, disease diagnosis, classification, and risk factors. Conclusions The research on AoSD focuses on the diagnosis and differential diagnosis of the disease. Targeted therapy will become a research hotspot in the future, and relevant clinical research needs to appropriately expand the sample size and improve the credibility of the conclusions. The data reported in this study can serve as a useful resource for researchers studying AoSD.
Collapse
Affiliation(s)
- Bowen Xu
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Jian Wang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Department of Nephrology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoying Meng
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Xiaoying Meng
| | - Binghao Bao
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Binghao Bao
| |
Collapse
|
8
|
Perazzio SF, Palmeira P, Moraes-Vasconcelos D, Rangel-Santos A, de Oliveira JB, Andrade LEC, Carneiro-Sampaio M. A Critical Review on the Standardization and Quality Assessment of Nonfunctional Laboratory Tests Frequently Used to Identify Inborn Errors of Immunity. Front Immunol 2021; 12:721289. [PMID: 34858394 PMCID: PMC8630704 DOI: 10.3389/fimmu.2021.721289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 10/05/2021] [Indexed: 12/24/2022] Open
Abstract
Inborn errors of immunity (IEI), which were previously termed primary immunodeficiency diseases, represent a large and growing heterogeneous group of diseases that are mostly monogenic. In addition to increased susceptibility to infections, other clinical phenotypes have recently been associated with IEI, such as autoimmune disorders, severe allergies, autoinflammatory disorders, benign lymphoproliferative diseases, and malignant manifestations. The IUIS 2019 classification comprises 430 distinct defects that, although rare individually, represent a group affecting a significant number of patients, with an overall prevalence of 1:1,200-2,000 in the general population. Early IEI diagnosis is critical for appropriate therapy and genetic counseling, however, this process is deeply dependent on accurate laboratory tests. Despite the striking importance of laboratory data for clinical immunologists, several IEI-relevant immunoassays still lack standardization, including standardized protocols, reference materials, and external quality assessment programs. Moreover, well-established reference values mostly remain to be determined, especially for early ages, when the most severe conditions manifest and diagnosis is critical for patient survival. In this article, we intend to approach the issue of standardization and quality control of the nonfunctional diagnostic tests used for IEI, focusing on those frequently utilized in clinical practice. Herein, we will focus on discussing the issues of nonfunctional immunoassays (flow cytometry, enzyme-linked immunosorbent assays, and turbidimetry/nephelometry, among others), as defined by the pure quantification of proteins or cell subsets without cell activation or cell culture-based methods.
Collapse
Affiliation(s)
- Sandro Félix Perazzio
- Division of Rheumatology, Universidade Federal de São Paulo, Sao Paulo, Brazil
- Immunology Division, Fleury Medicine and Health Laboratory, Sao Paulo, Brazil
| | - Patricia Palmeira
- Laboratório de Investigação Médica (LIM-36), Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP), Sao Paulo, Brazil
| | - Dewton Moraes-Vasconcelos
- Laboratório de Investigação Médica (LIM-56), Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP), Sao Paulo, Brazil
| | - Andréia Rangel-Santos
- Laboratório de Investigação Médica (LIM-36), Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP), Sao Paulo, Brazil
| | | | - Luis Eduardo Coelho Andrade
- Division of Rheumatology, Universidade Federal de São Paulo, Sao Paulo, Brazil
- Immunology Division, Fleury Medicine and Health Laboratory, Sao Paulo, Brazil
| | - Magda Carneiro-Sampaio
- Laboratório de Investigação Médica (LIM-36), Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP), Sao Paulo, Brazil
- Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo (FMUSP), Sao Paulo, Brazil
| |
Collapse
|
9
|
Martín-Nalda A, Fortuny C, Rey L, Bunney TD, Alsina L, Esteve-Solé A, Bull D, Anton MC, Basagaña M, Casals F, Deyá A, García-Prat M, Gimeno R, Juan M, Martinez-Banaclocha H, Martinez-Garcia JJ, Mensa-Vilaró A, Rabionet R, Martin-Begue N, Rudilla F, Yagüe J, Estivill X, García-Patos V, Pujol RM, Soler-Palacín P, Katan M, Pelegrín P, Colobran R, Vicente A, Arostegui JI. Severe Autoinflammatory Manifestations and Antibody Deficiency Due to Novel Hypermorphic PLCG2 Mutations. J Clin Immunol 2020; 40:987-1000. [PMID: 32671674 PMCID: PMC7505877 DOI: 10.1007/s10875-020-00794-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 05/20/2020] [Indexed: 01/28/2023]
Abstract
Autoinflammatory diseases (AIDs) were first described as clinical disorders characterized by recurrent episodes of seemingly unprovoked sterile inflammation. In the past few years, the identification of novel AIDs expanded their phenotypes toward more complex clinical pictures associating vasculopathy, autoimmunity, or immunodeficiency. Herein, we describe two unrelated patients suffering since the neonatal period from a complex disease mainly characterized by severe sterile inflammation, recurrent bacterial infections, and marked humoral immunodeficiency. Whole-exome sequencing detected a novel, de novo heterozygous PLCG2 variant in each patient (p.Ala708Pro and p.Leu845_Leu848del). A clear enhanced PLCγ2 activity for both variants was demonstrated by both ex vivo calcium responses of the patient's B cells to IgM stimulation and in vitro assessment of PLC activity. These data supported the autoinflammation and PLCγ2-associated antibody deficiency and immune dysregulation (APLAID) diagnosis in both patients. Immunological evaluation revealed a severe decrease of immunoglobulins and B cells, especially class-switched memory B cells, with normal T and NK cell counts. Analysis of bone marrow of one patient revealed a reduced immature B cell fraction compared with controls. Additional investigations showed that both PLCG2 variants activate the NLRP3-inflammasome through the alternative pathway instead of the canonical pathway. Collectively, the evidences here shown expand APLAID diversity toward more severe phenotypes than previously reported including dominantly inherited agammaglobulinemia, add novel data about its genetic basis, and implicate the alternative NLRP3-inflammasome activation pathway in the basis of sterile inflammation.
Collapse
Affiliation(s)
- Andrea Martín-Nalda
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Spain
| | - Claudia Fortuny
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Department of Pediatrics, Hospital Sant Joan de Deu, Esplugues, Spain
- Institut de Recerca Hospital Sant Joan de Déu, Universitat de Barcelona, Esplugues, Spain
| | - Lourdes Rey
- Department of Pediatrics, Hospital Alvaro Cunqueiro, Vigo, Spain
| | - Tom D Bunney
- Institute of Structural and Molecular Biology, University College London, London, UK
| | - Laia Alsina
- Institut de Recerca Hospital Sant Joan de Déu, Universitat de Barcelona, Esplugues, Spain
- Department of Allergy and Clinical Immunology Clinical Immunology and Primary, Immunodeficiencies Unit, Hospital Sant Joan de Déu, Esplugues, Spain
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Barcelona, Spain
| | - Ana Esteve-Solé
- Institut de Recerca Hospital Sant Joan de Déu, Universitat de Barcelona, Esplugues, Spain
- Department of Allergy and Clinical Immunology Clinical Immunology and Primary, Immunodeficiencies Unit, Hospital Sant Joan de Déu, Esplugues, Spain
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Barcelona, Spain
| | - Daniel Bull
- ARUK Drug Discovery Institute, University College London, London, UK
| | - Maria Carmen Anton
- Department of Immunology-CDB (esc 4-pl 0), Hospital Clínic, Villarroel, 170, 08036, Barcelona, Spain
| | - María Basagaña
- Allergy Section, Hospital Universitari Germans Trias i Pujol, Autonomous University of Barcelona, Badalona, Spain
| | - Ferran Casals
- Genomics Core Facility, Experimental and Health Sciences Department, Universitat Pompeu Fabra, Barcelona, Spain
| | - Angela Deyá
- Institut de Recerca Hospital Sant Joan de Déu, Universitat de Barcelona, Esplugues, Spain
- Department of Allergy and Clinical Immunology Clinical Immunology and Primary, Immunodeficiencies Unit, Hospital Sant Joan de Déu, Esplugues, Spain
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Barcelona, Spain
| | - Marina García-Prat
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Spain
| | - Ramon Gimeno
- Department of Immunology, Hospital del Mar, Institut Mar d'Investigacions Mèdiques, Barcelona, Spain
| | - Manel Juan
- Department of Immunology-CDB (esc 4-pl 0), Hospital Clínic, Villarroel, 170, 08036, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- School of Medicine, Universitat de Barcelona, Barcelona, Spain
| | - Helios Martinez-Banaclocha
- Instituto Murciano de Investigación Biosanitaria IMIB-Arrixaca, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Juan J Martinez-Garcia
- Instituto Murciano de Investigación Biosanitaria IMIB-Arrixaca, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Anna Mensa-Vilaró
- Department of Immunology-CDB (esc 4-pl 0), Hospital Clínic, Villarroel, 170, 08036, Barcelona, Spain
| | - Raquel Rabionet
- Institut de Recerca Hospital Sant Joan de Déu, Universitat de Barcelona, Esplugues, Spain
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, IBUB, IRJSD, CIBERER, Barcelona, Spain
| | - Nieves Martin-Begue
- Department of Pediatric Ophthalmology, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca, Barcelona, Spain
| | - Francesc Rudilla
- Histocompatibility and Immunogenetics Laboratory, Blood and Tissue Bank, Barcelona, Spain
- Transfusional Medicine Group, Vall d'Hebron Research Institute, Autonomous University of Barcelona, Barcelona, Spain
| | - Jordi Yagüe
- Department of Immunology-CDB (esc 4-pl 0), Hospital Clínic, Villarroel, 170, 08036, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- School of Medicine, Universitat de Barcelona, Barcelona, Spain
| | - Xavier Estivill
- Quantitative Genomic Medicine Laboratories (qGenomics), Esplugues del Llobregat, Barcelona, Catalonia, Spain
| | - Vicente García-Patos
- Department of Pediatric Dermatology, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca, Barcelona, Spain
| | - Ramon M Pujol
- Department of Dermatology, Hospital del Mar, Institut Mar d'Investigacions Mèdiques, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Pere Soler-Palacín
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Spain
- Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Matilda Katan
- Institute of Structural and Molecular Biology, University College London, London, UK
| | - Pablo Pelegrín
- Instituto Murciano de Investigación Biosanitaria IMIB-Arrixaca, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Roger Colobran
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Spain
- Immunology Division, Department of Clinical and Molecular Genetics, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute, Barcelona, Spain
- Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona, Barcelona, Spain
| | - Asun Vicente
- Department of Pediatric Dermatology, Hospital Sant Joan de Deu, Esplugues, Spain
| | - Juan I Arostegui
- Department of Immunology-CDB (esc 4-pl 0), Hospital Clínic, Villarroel, 170, 08036, Barcelona, Spain.
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain.
- School of Medicine, Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
10
|
Primary Immunodeficiency: New Approaches in Genetic Diagnosis, and Constructing Targeted Therapies. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2020; 7:839-841. [PMID: 30832894 DOI: 10.1016/j.jaip.2018.12.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 12/26/2018] [Indexed: 02/07/2023]
|
11
|
Burroughs LM, Petrovic A, Brazauskas R, Liu X, Griffith LM, Ochs HD, Bleesing JJ, Edwards S, Dvorak CC, Chaudhury S, Prockop SE, Quinones R, Goldman FD, Quigg TC, Chandrakasan S, Smith AR, Parikh S, Dávila Saldaña BJ, Thakar MS, Phelan R, Shenoy S, Forbes LR, Martinez C, Chellapandian D, Shereck E, Miller HK, Kapoor N, Barnum JL, Chong H, Shyr DC, Chen K, Abu-Arja R, Shah AJ, Weinacht KG, Moore TB, Joshi A, DeSantes KB, Gillio AP, Cuvelier GDE, Keller MD, Rozmus J, Torgerson T, Pulsipher MA, Haddad E, Sullivan KE, Logan BR, Kohn DB, Puck JM, Notarangelo LD, Pai SY, Rawlings DJ, Cowan MJ. Excellent outcomes following hematopoietic cell transplantation for Wiskott-Aldrich syndrome: a PIDTC report. Blood 2020; 135:2094-2105. [PMID: 32268350 PMCID: PMC7273831 DOI: 10.1182/blood.2019002939] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 03/20/2020] [Indexed: 01/14/2023] Open
Abstract
Wiskott-Aldrich syndrome (WAS) is an X-linked disease caused by mutations in the WAS gene, leading to thrombocytopenia, eczema, recurrent infections, autoimmune disease, and malignancy. Hematopoietic cell transplantation (HCT) is the primary curative approach, with the goal of correcting the underlying immunodeficiency and thrombocytopenia. HCT outcomes have improved over time, particularly for patients with HLA-matched sibling and unrelated donors. We report the outcomes of 129 patients with WAS who underwent HCT at 29 Primary Immune Deficiency Treatment Consortium centers from 2005 through 2015. Median age at HCT was 1.2 years. Most patients (65%) received myeloablative busulfan-based conditioning. With a median follow-up of 4.5 years, the 5-year overall survival (OS) was 91%. Superior 5-year OS was observed in patients <5 vs ≥5 years of age at the time of HCT (94% vs 66%; overall P = .0008). OS was excellent regardless of donor type, even in cord blood recipients (90%). Conditioning intensity did not affect OS, but was associated with donor T-cell and myeloid engraftment after HCT. Specifically, patients who received fludarabine/melphalan-based reduced-intensity regimens were more likely to have donor myeloid chimerism <50% early after HCT. In addition, higher platelet counts were observed among recipients who achieved full (>95%) vs low-level (5%-49%) donor myeloid engraftment. In summary, HCT outcomes for WAS have improved since 2005, compared with prior reports. HCT at a younger age continues to be associated with superior outcomes supporting the recommendation for early HCT. High-level donor myeloid engraftment is important for platelet reconstitution after either myeloablative or busulfan-containing reduced intensity conditioning. (This trial was registered at www.clinicaltrials.gov as #NCT02064933.).
Collapse
Affiliation(s)
- Lauri M Burroughs
- Fred Hutchinson Cancer Research Center, Seattle, WA
- Department of Pediatrics, University of Washington-Seattle Children's Hospital, Seattle, WA
| | - Aleksandra Petrovic
- Fred Hutchinson Cancer Research Center, Seattle, WA
- Department of Pediatrics, University of Washington-Seattle Children's Hospital, Seattle, WA
| | - Ruta Brazauskas
- Division of Biostatistics, Medical College of Wisconsin, Milwaukee, WI
| | - Xuerong Liu
- Division of Biostatistics, Medical College of Wisconsin, Milwaukee, WI
| | - Linda M Griffith
- Division of Allergy, Immunology, and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Hans D Ochs
- Department of Pediatrics, University of Washington-Seattle Children's Hospital, Seattle, WA
| | - Jack J Bleesing
- Division of Bone Marrow Transplantation and Immune Deficiency, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH
| | - Stephanie Edwards
- Division of Bone Marrow Transplantation and Immune Deficiency, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH
| | - Christopher C Dvorak
- Pediatric Allergy, Immunology, and Blood and Marrow Transplant Division, University of California, San Francisco Benioff Children's Hospital, San Francisco, CA
| | - Sonali Chaudhury
- Division of Hematology, Oncology, and Stem Cell Transplantation, Ann & Robert H. Lurie Children's Hospital of Chicago-Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Susan E Prockop
- Bone Marrow Transplant Service, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ralph Quinones
- Pediatric Bone Marrow Transplant (BMT) and Cellular Therapy Section, Department of Pediatrics, The University of Colorado School of Medicine, Aurora, CO
| | - Frederick D Goldman
- Department of Pediatrics, The University of Alabama at Birmingham, Birmingham, AL
| | - Troy C Quigg
- Texas Transplant Institute, Methodist Children's Hospital, San Antonio, TX
| | | | - Angela R Smith
- Division of Pediatric Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN
| | | | - Blachy J Dávila Saldaña
- Division of Blood and Marrow Transplantation, Children's National Hospital-George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Monica S Thakar
- Center for Blood and Marrow Transplant Research-Division of Pediatric Hematology, Oncology, and Blood and Marrow Transplantation, Medical College of Wisconsin, Milwaukee, WI
| | - Rachel Phelan
- Center for Blood and Marrow Transplant Research-Division of Pediatric Hematology, Oncology, and Blood and Marrow Transplantation, Medical College of Wisconsin, Milwaukee, WI
| | - Shalini Shenoy
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO
| | - Lisa R Forbes
- Department of Pediatrics, Baylor College of Medicine Section of Immunology, Allergy, and Retrovirology, Texas Children's Hospital, Baylor, TX
| | - Caridad Martinez
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital Cancer Center, Baylor, TX
| | - Deepak Chellapandian
- Blood and Marrow Transplant, Johns Hopkins All Children's Hospital, St. Petersburg, FL
| | - Evan Shereck
- Division of Pediatric Hematology/Oncology, Oregon Health and Science University, Portland, OR
| | | | - Neena Kapoor
- Transplantation and Cellular Therapy Program, Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | | | - Hey Chong
- UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA
| | - David C Shyr
- Division of Pediatric Hematology/Oncology, Primary Children's Hospital, University of Utah School of Medicine, Salt Lake City, UT
| | - Karin Chen
- Division of Allergy and Immunology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT
| | | | - Ami J Shah
- Division of Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford School of Medicine Pediatric Stem Cell Transplantation, Stanford University, Stanford, CA
| | - Katja G Weinacht
- Division of Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford School of Medicine Pediatric Stem Cell Transplantation, Stanford University, Stanford, CA
| | - Theodore B Moore
- Department of Pediatrics, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA
| | - Avni Joshi
- Mayo Clinic Children's Center, Rochester, MN
| | - Kenneth B DeSantes
- American Family Children's Hospital, University of Wisconsin, Madison, WI
| | - Alfred P Gillio
- Institute for Pediatric Cancer and Blood Disorders, Hackensack University Medical Center, Hackensack, NJ
| | | | - Michael D Keller
- Division of Allergy & Immunology, Children's National Hospital, Washington, DC
- GW Cancer Center, George Washington University, Washington, DC
| | - Jacob Rozmus
- Children's & Women's Health Centre of British Columbia, Vancouver, BC, Canada
| | - Troy Torgerson
- Department of Pediatrics, University of Washington-Seattle Children's Hospital, Seattle, WA
| | - Michael A Pulsipher
- Transplantation and Cellular Therapy Program, Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Elie Haddad
- Pediatric Immunology and Rheumatology Division, CHU Sainte-Justine, Department of Pediatrics, University of Montreal, Montreal, QC, Canada
| | - Kathleen E Sullivan
- Allergy and Immunology, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Brent R Logan
- Division of Biostatistics, Medical College of Wisconsin, Milwaukee, WI
| | - Donald B Kohn
- Department of Pediatrics, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA
| | - Jennifer M Puck
- Pediatric Allergy, Immunology, and Blood and Marrow Transplant Division, University of California, San Francisco Benioff Children's Hospital, San Francisco, CA
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Sung-Yun Pai
- Division of Hematology-Oncology, Boston Children's Hospital, Boston, MA; and
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - David J Rawlings
- Department of Pediatrics, University of Washington-Seattle Children's Hospital, Seattle, WA
| | - Morton J Cowan
- Pediatric Allergy, Immunology, and Blood and Marrow Transplant Division, University of California, San Francisco Benioff Children's Hospital, San Francisco, CA
| |
Collapse
|
12
|
Heropolitanska-Pliszka E, Berk K, Maciejczyk M, Sawicka-Powierza J, Bernatowska E, Wolska-Kusnierz B, Pac M, Dabrowska-Leonik N, Piatosa B, Lewandowicz-Uszynska A, Karpinska J, Zalewska A, Mikoluc B. Systemic Redox Imbalance in Patients with Chronic Granulomatous Disease. J Clin Med 2020; 9:jcm9051397. [PMID: 32397350 PMCID: PMC7290492 DOI: 10.3390/jcm9051397] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/04/2020] [Accepted: 05/07/2020] [Indexed: 12/11/2022] Open
Abstract
The aim of our study was to evaluate redox status, enzymatic and non-enzymatic antioxidant barriers, oxidative damage of proteins, lipids and DNA, as well as concentration of coenzyme Q10 and vitamins A and E in patients with chronic granulomatous disease (CGD). The study was performed on fifteen Caucasian individuals (median age 24 years and seven months) diagnosed with CGD. The mutation in the NCF1 gene was confirmed in ten patients, and in the CYBB gene in five patients. We demonstrated high levels of total oxidant status (TOS) and oxidative stress index (OSI), lipids (↑8-isoprostanes (8-isoP), ↑4-hydroxynonenal (4-HNE)), proteins (↑advanced oxidation protein products (AOPP)) and DNA (↑8-hydroxy-2’-deoxyguanosine (8-OHdG)) oxidation products in CGD individuals as compared to sex- and age-matched healthy controls. We showed enhanced serum enzymatic activity of catalase (CAT) and superoxide dismutase-1 (SOD) and significantly decreased coenzyme Q10 concentration. Our study confirmed redox disturbances and increased oxidative damage in CGD patients, and indicated the need to compare redox imbalance depending on the type of mutation and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity. The question regarding effectiveness of antioxidant therapy in patients with CGD is open, and the need to establish guidelines in this area remains to be addressed.
Collapse
Affiliation(s)
- Edyta Heropolitanska-Pliszka
- Clinical Immunology the Children’s Memorial Health Institute, al. Dzieci Polskich 20, 04-730 Warsaw, Poland; (E.H.-P.); (E.B.); (B.W.-K.); (M.P.); (N.D.-L.)
| | - Klaudia Berk
- Department of Physiology, Medical University of Bialystok, ul. Mickiewicza 2c, 15-233 Bialystok, Poland;
| | - Mateusz Maciejczyk
- Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, ul. Mickiewicza 2c, 15-233 Bialystok, Poland;
| | | | - Ewa Bernatowska
- Clinical Immunology the Children’s Memorial Health Institute, al. Dzieci Polskich 20, 04-730 Warsaw, Poland; (E.H.-P.); (E.B.); (B.W.-K.); (M.P.); (N.D.-L.)
| | - Beata Wolska-Kusnierz
- Clinical Immunology the Children’s Memorial Health Institute, al. Dzieci Polskich 20, 04-730 Warsaw, Poland; (E.H.-P.); (E.B.); (B.W.-K.); (M.P.); (N.D.-L.)
| | - Malgorzata Pac
- Clinical Immunology the Children’s Memorial Health Institute, al. Dzieci Polskich 20, 04-730 Warsaw, Poland; (E.H.-P.); (E.B.); (B.W.-K.); (M.P.); (N.D.-L.)
| | - Nel Dabrowska-Leonik
- Clinical Immunology the Children’s Memorial Health Institute, al. Dzieci Polskich 20, 04-730 Warsaw, Poland; (E.H.-P.); (E.B.); (B.W.-K.); (M.P.); (N.D.-L.)
| | - Barbara Piatosa
- Histocompatibility Laboratory, Children’s Memorial Health Institute, al. Dzieci Polskich 20, 04-730 Warsaw, Poland;
| | - Aleksandra Lewandowicz-Uszynska
- 3rd Department and Clinic of Pediatrics, Immunology and Rheumatology of Developmental Age, Wroclaw Medical University, ul. Koszarowa 5, 50-367 Wrocław, Poland;
| | - Joanna Karpinska
- Institute of Chemistry, University of Bialystok, ul. Ciołkowskiego. 1K, 15-245 Białystok, Poland;
| | - Anna Zalewska
- Experimental Dentistry Laboratory, Medical University of Bialystok, ul. Szpitalna 37, 15-295 Bialystok, Poland;
| | - Bozena Mikoluc
- Department of Pediatrics, Rheumatology, Immunology and Metabolic Bone Diseases, Waszyngtona 17, 15-274 Bialystok, Poland
- Correspondence: ; Tel.: +48-85-7450-622; Fax: +48-85-7450-642
| |
Collapse
|
13
|
Chan AY, Leiding JW, Liu X, Logan BR, Burroughs LM, Allenspach EJ, Skoda-Smith S, Uzel G, Notarangelo LD, Slatter M, Gennery AR, Smith AR, Pai SY, Jordan MB, Marsh RA, Cowan MJ, Dvorak CC, Craddock JA, Prockop SE, Chandrakasan S, Kapoor N, Buckley RH, Parikh S, Chellapandian D, Oshrine BR, Bednarski JJ, Cooper MA, Shenoy S, Davila Saldana BJ, Forbes LR, Martinez C, Haddad E, Shyr DC, Chen K, Sullivan KE, Heimall J, Wright N, Bhatia M, Cuvelier GDE, Goldman FD, Meyts I, Miller HK, Seidel MG, Vander Lugt MT, Bacchetta R, Weinacht KG, Andolina JR, Caywood E, Chong H, de la Morena MT, Aquino VM, Shereck E, Walter JE, Dorsey MJ, Seroogy CM, Griffith LM, Kohn DB, Puck JM, Pulsipher MA, Torgerson TR. Hematopoietic Cell Transplantation in Patients With Primary Immune Regulatory Disorders (PIRD): A Primary Immune Deficiency Treatment Consortium (PIDTC) Survey. Front Immunol 2020; 11:239. [PMID: 32153572 PMCID: PMC7046837 DOI: 10.3389/fimmu.2020.00239] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 01/29/2020] [Indexed: 12/20/2022] Open
Abstract
Primary Immune Regulatory Disorders (PIRD) are an expanding group of diseases caused by gene defects in several different immune pathways, such as regulatory T cell function. Patients with PIRD develop clinical manifestations associated with diminished and exaggerated immune responses. Management of these patients is complicated; oftentimes immunosuppressive therapies are insufficient, and patients may require hematopoietic cell transplant (HCT) for treatment. Analysis of HCT data in PIRD patients have previously focused on a single gene defect. This study surveyed transplanted patients with a phenotypic clinical picture consistent with PIRD treated in 33 Primary Immune Deficiency Treatment Consortium centers and European centers. Our data showed that PIRD patients often had immunodeficient and autoimmune features affecting multiple organ systems. Transplantation resulted in resolution of disease manifestations in more than half of the patients with an overall 5-years survival of 67%. This study, the first to encompass disorders across the PIRD spectrum, highlights the need for further research in PIRD management.
Collapse
Affiliation(s)
- Alice Y Chan
- Division of Pediatric Allergy, Immunology, BMT, Benioff Children's Hospital, University of California, San Francisco, San Francisco, CA, United States
| | - Jennifer W Leiding
- Department of Pediatrics, Johns Hopkins All Children's Hospital, University of South Florida, St. Petersburg, FL, United States
| | - Xuerong Liu
- Division of Biostatistics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Brent R Logan
- Division of Biostatistics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Lauri M Burroughs
- Department of Pediatrics, Fred Hutchinson Cancer Research Center, Seattle Children's Hospital, University of Washington School of Medicine, Seattle, WA, United States
| | - Eric J Allenspach
- Department of Pediatrics, Seattle Children's Hospital, University of Washington School of Medicine, Seattle, WA, United States
| | - Suzanne Skoda-Smith
- Department of Pediatrics, Seattle Children's Hospital, University of Washington School of Medicine, Seattle, WA, United States
| | - Gulbu Uzel
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Luigi D Notarangelo
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Mary Slatter
- Primary Immunodeficiency Group, Paediatric Immunology and Haematopoietic Stem Cell Transplantation, Translational and Clinical Research Institute, Great North Childrens' Hospital, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Andrew R Gennery
- Primary Immunodeficiency Group, Paediatric Immunology and Haematopoietic Stem Cell Transplantation, Translational and Clinical Research Institute, Great North Childrens' Hospital, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Angela R Smith
- Pediatric Blood and Marrow Transplant, University of Minnesota, Minneapolis, MN, United States
| | - Sung-Yun Pai
- Division of Pediatric Hematology-Oncology, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Michael B Jordan
- Division of Bone Marrow Transplantation and Immune Deficiency, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, United States
| | - Rebecca A Marsh
- Division of Bone Marrow Transplantation and Immune Deficiency, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, United States
| | - Morton J Cowan
- Division of Pediatric Allergy, Immunology, BMT, Benioff Children's Hospital, University of California, San Francisco, San Francisco, CA, United States
| | - Christopher C Dvorak
- Division of Pediatric Allergy, Immunology, BMT, Benioff Children's Hospital, University of California, San Francisco, San Francisco, CA, United States
| | - John A Craddock
- Texas Children's Cancer Center, Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, United States
| | - Susan E Prockop
- Stem Cell Transplant and Cellular Therapy Service, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Shanmuganathan Chandrakasan
- Division of Bone Marrow Transplant, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, United States
| | - Neena Kapoor
- Section of Transplantation and Cellular Therapy, Cancer and Blood Disease Institute, Keck School of Medicine, Children's Hospital Los Angeles, University of Southern California, Los Angeles, CA, United States
| | - Rebecca H Buckley
- Departments of Pediatrics and Immunology, Duke University School of Medicine, Durham, NC, United States
| | - Suhag Parikh
- Departments of Pediatrics and Immunology, Duke University School of Medicine, Durham, NC, United States
| | - Deepak Chellapandian
- Cancer and Blood Disorders Institute, Blood and Marrow Transplant Program, Johns Hopkins All Children's Hospital, St. Petersburg, FL, United States
| | - Benjamin R Oshrine
- Cancer and Blood Disorders Institute, Blood and Marrow Transplant Program, Johns Hopkins All Children's Hospital, St. Petersburg, FL, United States
| | - Jeffrey J Bednarski
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
| | - Megan A Cooper
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
| | - Shalini Shenoy
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
| | - Blachy J Davila Saldana
- Division of Blood and Marrow Transplantation, Children's National Health System, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Lisa R Forbes
- Department of Pediatrics, Immunology, Allergy, and Retrovirology Baylor College of Medicine, Texas Children's Hospital William T. Shearer Center for Human Immunobiology, Houston, TX, United States
| | - Caridad Martinez
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital Cancer Center, Houston, TX, United States
| | - Elie Haddad
- Department of Pediatrics, University of Montreal, Montreal, QC, Canada
| | - David C Shyr
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Karin Chen
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Kathleen E Sullivan
- Children's Hospital of Philadelphia, Perelman School of Medicine at University of Pennsylvania, Philadelphia, PA, United States
| | - Jennifer Heimall
- Children's Hospital of Philadelphia, Perelman School of Medicine at University of Pennsylvania, Philadelphia, PA, United States
| | - Nicola Wright
- Department of Pediatrics, Alberta Children's Hospital, University of Calgary, Calgary, AB, Canada
| | - Monica Bhatia
- Pediatric Stem Cell Transplantation, Columbia University College of Physicians and Surgeons, New York, NY, United States
| | - Geoffrey D E Cuvelier
- Manitoba Blood and Marrow Transplant Program, CancerCare Manitoba, University of Manitoba, Winnipeg, MB, Canada
| | - Frederick D Goldman
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Isabelle Meyts
- Laboratory of Inborn Errors of Immunity, Department of Immunology, Microbiology and Transplantation, KU Leuven, Leuven, Belgium.,Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
| | | | - Markus G Seidel
- Research Unit for Pediatric Hematology and Immunology, Department of Pediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria
| | - Mark T Vander Lugt
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, United States
| | - Rosa Bacchetta
- Division of Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford School of Medicine, Stanford, CA, United States
| | - Katja G Weinacht
- Division of Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford School of Medicine, Stanford, CA, United States
| | - Jeffrey R Andolina
- Department of Pediatrics, Golisano Children's Hospital, University of Rochester Medical Center, Rochester, NY, United States
| | - Emi Caywood
- Nemours/Alfred I duPont Hospital for Children, Wilmington, DE, United States
| | - Hey Chong
- UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, United States
| | - Maria Teresa de la Morena
- Department of Pediatrics, Seattle Children's Hospital, University of Washington School of Medicine, Seattle, WA, United States
| | - Victor M Aquino
- Department of Pediatrics, University of Texas Southwestern Medical Center Dallas, Dallas, TX, United States
| | - Evan Shereck
- Department of Pediatrics, Oregon Health & Science University, Portland, OR, United States
| | - Jolan E Walter
- Division of Allergy and Immunology, Department of Pediatrics, Morsani College of Medicine, University of South Florida, St. Petersburg, FL, United States.,Division of Allergy and Immunology, Department of Pediatrics, Johns Hopkins All Children's Hospital, St. Petersburg, FL, United States.,Division of Allergy and Immunology, Department of Pediatrics, Massachusetts General Hospital for Children, Boston, MA, United States
| | - Morna J Dorsey
- Division of Pediatric Allergy, Immunology, BMT, Benioff Children's Hospital, University of California, San Francisco, San Francisco, CA, United States
| | - Christine M Seroogy
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Linda M Griffith
- Division of Allergy, Immunology and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Donald B Kohn
- Department of Pediatrics, David Geffen School of Medicine at University of California, Los Angeles, CA, United States
| | - Jennifer M Puck
- Division of Pediatric Allergy, Immunology, BMT, Benioff Children's Hospital, University of California, San Francisco, San Francisco, CA, United States
| | - Michael A Pulsipher
- Section of Transplantation and Cellular Therapy, Cancer and Blood Disease Institute, Keck School of Medicine, Children's Hospital Los Angeles, University of Southern California, Los Angeles, CA, United States
| | - Troy R Torgerson
- Allen Institute for Immunology and Department of Pediatrics, University of Washington, Seattle, WA, United States
| |
Collapse
|
14
|
Marsh RA, Leiding JW, Logan BR, Griffith LM, Arnold DE, Haddad E, Falcone EL, Yin Z, Patel K, Arbuckle E, Bleesing JJ, Sullivan KE, Heimall J, Burroughs LM, Skoda-Smith S, Chandrakasan S, Yu LC, Oshrine BR, Cuvelier GDE, Thakar MS, Chen K, Teira P, Shenoy S, Phelan R, Forbes LR, Chellapandian D, Dávila Saldaña BJ, Shah AJ, Weinacht KG, Joshi A, Boulad F, Quigg TC, Dvorak CC, Grossman D, Torgerson T, Graham P, Prasad V, Knutsen A, Chong H, Miller H, de la Morena MT, DeSantes K, Cowan MJ, Notarangelo LD, Kohn DB, Stenger E, Pai SY, Routes JM, Puck JM, Kapoor N, Pulsipher MA, Malech HL, Parikh S, Kang EM. Chronic Granulomatous Disease-Associated IBD Resolves and Does Not Adversely Impact Survival Following Allogeneic HCT. J Clin Immunol 2019; 39:653-667. [PMID: 31376032 PMCID: PMC6754755 DOI: 10.1007/s10875-019-00659-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 06/10/2019] [Indexed: 10/26/2022]
Abstract
INTRODUCTION Inflammatory bowel disease (IBD) affects approximately 1/3 of patients with chronic granulomatous disease (CGD). Comprehensive investigation of the effect of allogeneic hematopoietic cell transplantation (HCT) on CGD IBD and the impact of IBD on transplant outcomes is lacking. METHODS We collected data retrospectively from 145 patients with CGD who had received allogeneic HCT at 26 Primary Immune Deficiency Treatment Consortium (PIDTC) centers between January 1, 2005 and June 30, 2016. RESULTS Forty-nine CGD patients with IBD and 96 patients without IBD underwent allogeneic HCT. Eighty-nine percent of patients with IBD and 93% of patients without IBD engrafted (p = 0.476). Upper gastrointestinal acute GVHD occurred in 8.5% of patients with IBD and 3.5% of patients without IBD (p = 0.246). Lower gastrointestinal acute GVHD occurred in 10.6% of patients with IBD and 11.8% of patients without IBD (p = 0.845). The cumulative incidence of acute GVHD grades II-IV was 30% (CI 17-43%) in patients with IBD and 20% (CI 12-29%) in patients without IBD (p = 0.09). Five-year overall survival was equivalent for patients with and without IBD: 80% [CI 66-89%] and 83% [CI 72-90%], respectively (p = 0.689). All 33 surviving evaluable patients with a history of IBD experienced resolution of IBD by 2 years following allogeneic HCT. CONCLUSIONS In this cohort, allogeneic HCT was curative for CGD-associated IBD. IBD should not contraindicate HCT, as it does not lead to an increased risk of mortality. This study is registered at clinicaltrials.gov NCT02082353.
Collapse
Affiliation(s)
- Rebecca A Marsh
- Department of Pediatrics, University of Cincinnati, and Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jennifer W Leiding
- Division of Allergy and Immunology, Department of Pediatrics, Johns Hopkins-All Children's Hospital, University of South Florida, St. Petersburg, FL, USA
| | - Brent R Logan
- Division of Biostatistics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Linda M Griffith
- Division of Allergy, Immunology, and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Danielle E Arnold
- Allergy and Immunology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Elie Haddad
- Immunology-Rheumatology Division, Department of Pediatrics, University of Montreal, Montreal, QC, Canada
| | - E Liana Falcone
- Division of Immunity and Viral Infections, Institut de Recherches Cliniques de Montréal, Montréal, QC, Canada; and Department of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Ziyan Yin
- Division of Biostatistics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Kadam Patel
- Division of Biostatistics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Erin Arbuckle
- Department of Pediatrics, Duke University, Durham, NC, USA
| | - Jack J Bleesing
- Department of Pediatrics, University of Cincinnati, and Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kathleen E Sullivan
- Allergy and Immunology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jennifer Heimall
- Allergy and Immunology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lauri M Burroughs
- Fred Hutchinson Cancer Research Center, Seattle Children's Hospital, The University of Washington School of Medicine, Seattle, WA, USA
| | | | - Shanmuganathan Chandrakasan
- Division of Bone Marrow Transplant, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
| | - Lolie C Yu
- Division of Hematology/Oncology and Hematopoietic Stem Cell Transplantation, The Center for Cancer and Blood Disorders, Children's Hospital/Louisiana State University Medical Center, New Orleans, LA, USA
| | - Benjamin R Oshrine
- Cancer and Blood Disorders Institute, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - Geoffrey D E Cuvelier
- Manitoba Blood and Marrow Transplant Program, CancerCare Manitoba, University of Manitoba, Winnipeg, MB, Canada
| | - Monica S Thakar
- Fred Hutchinson Cancer Research Center, Seattle Children's Hospital, The University of Washington School of Medicine, Seattle, WA, USA
| | - Karin Chen
- Division of Allergy and Immunology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Pierre Teira
- CHU Sainte-Justine, Hematology-Oncology Division, Department of Pediatrics, University of Montreal, Montreal, QC, Canada
| | - Shalini Shenoy
- Division of Pediatric Hematology/Oncology/Bone Marrow Transplantation, Washington University School of Medicine and St. Louis Children's Hospital, St. Louis, MO, USA
| | - Rachel Phelan
- Pediatric Blood and Marrow Transplant Program, Division of Hematology, Oncology, and Blood and Marrow Transplantation, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Lisa R Forbes
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA, and Section of Allergy, Immunology and Retrovirology, Texas Children's Hospital William T. Shearer Center for Human Immunobiology, Houston, TX, USA
| | - Deepak Chellapandian
- Blood and Marrow Transplant Program, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - Blachy J Dávila Saldaña
- Division of Blood and Marrow Transplantation, Children's National Medical Center, Washington, DC, USA, and Department of Pediatrics, The George Washington University, Washington, DC, USA
| | - Ami J Shah
- Division of Stem Cell Transplantation and Regenerative Medicine, Stanford School of Medicine, Lucille Packard Children's Hospital, Palo Alto, CA, USA
| | - Katja G Weinacht
- Division of Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford School of Medicine, Stanford, CA, USA
| | - Avni Joshi
- Division of Pediatric Allergy and Immunology, Mayo Clinic, Rochester, MN, USA
| | - Farid Boulad
- Department of Pediatrics, BMT Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Troy C Quigg
- Texas Transplant Institute, Methodist Children's Hospital, San Antonio, TX, USA
| | - Christopher C Dvorak
- Pediatric Allergy, Immunology, and Blood and Marrow Transplant Division, San Francisco Benioff Children's Hospital, San Francisco, CA, USA
| | - Debi Grossman
- Genetic Immunotherapy Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Troy Torgerson
- Department of Pediatrics, Divisions of Immunology/Rheumatology, University of Washington and Seattle Children's Hospital, Seattle, WA, USA
| | - Pamela Graham
- Genetic Immunotherapy Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Vinod Prasad
- Division of Pediatric Blood and Marrow Transplant, Duke University Medical Center, Durham, NC, USA
| | - Alan Knutsen
- Pediatric Allergy and Immunology, Cardinal Glennon Children's Medical Center, Saint Louis University, St. Louis, MO, USA
| | - Hey Chong
- UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Holly Miller
- Center for Cancer and Blood Disorders, Phoenix Children's Hospital, Phoenix, AZ, USA
| | - M Teresa de la Morena
- Department of Pediatrics/Immunology, University of Washington and Seattle Children's Hospital, Seattle, WA, USA
| | - Kenneth DeSantes
- American Family Children's Hospital, University of Wisconsin, Madison, WI, USA
| | - Morton J Cowan
- Pediatric Allergy, Immunology, and Blood and Marrow Transplant Division, San Francisco Benioff Children's Hospital, San Francisco, CA, USA
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Donald B Kohn
- David Geffen School of Medicine at University of California, Los Angeles, CA, USA
| | - Elizabeth Stenger
- Aflac Center and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University, Atlanta, GA, USA
| | - Sung-Yun Pai
- Hematology-Oncology, Boston Children's Hospital, Boston, MA, USA
| | - John M Routes
- Division of Allergy and Immunology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jennifer M Puck
- Pediatric Allergy, Immunology, and Blood and Marrow Transplant Division, San Francisco Benioff Children's Hospital, San Francisco, CA, USA
| | - Neena Kapoor
- Blood and Marrow Transplant Program, Division of Hematology, Oncology and Blood and Marrow Transplantation, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Michael A Pulsipher
- Blood and Marrow Transplant Program, Division of Hematology, Oncology and Blood and Marrow Transplantation, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Harry L Malech
- Genetic Immunotherapy Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Suhag Parikh
- Division of Pediatric Blood and Marrow Transplant, Duke University, Durham, NC, USA
| | - Elizabeth M Kang
- Genetic Immunotherapy Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
15
|
van der Burg M, Mahlaoui N, Gaspar HB, Pai SY. Universal Newborn Screening for Severe Combined Immunodeficiency (SCID). Front Pediatr 2019; 7:373. [PMID: 31620409 PMCID: PMC6759820 DOI: 10.3389/fped.2019.00373] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 08/30/2019] [Indexed: 11/22/2022] Open
Abstract
Patients with severe combined immunodeficiency (SCID) are born with profound deficiency of functional T-lymphocytes. Early detection and diagnosis would allow for prompt institution of isolation from infection and referral for definitive treatment with allogeneic hematopoietic stem cell transplantation. Universal newborn screening for SCID, using an assay to detect T-cell receptor excision circles (TREC) in dried blood spots (DBS), is now being performed in all states in the United States. In this review, we discuss the development and outcomes of TREC screening, and continued challenges to implementation.
Collapse
Affiliation(s)
- Mirjam van der Burg
- Laboratory for Immunology, Department of Pediatrics, Leiden University Medical Center, Leiden, Netherlands
| | - Nizar Mahlaoui
- Centre de Référence Déficits Immunitaires Héréditaires, Hôpital Universitaire Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Hubert Bobby Gaspar
- Molecular and Cellular Immunology, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Sung-Yun Pai
- Division of Hematology-Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
16
|
Focus on Chronic Variable Immunodeficiency for Primary Care Practitioners, the Gatekeepers to Optimal Health Outcomes for Primary Immunodeficiency Syndromes. CURRENT PEDIATRICS REPORTS 2019. [DOI: 10.1007/s40124-019-00202-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Abstract
Purpose of Review
This review sought to assess the extent and causes of suboptimal healthcare outcomes for chronic variable immunodeficiency (CVID).
Recent Findings
Significant improvements in diagnostic technology and treatment protocols over time were found, leading to reduced morbidity and mortality for those accessing therapies. Treatments continue to be largely non-curative with financing (mainly insurance coverage) an obstacle. Symptom recognition by primary care practitioners (PCP) remains a gating factor to treatment and a widespread and persistent barrier to optimal health outcomes.
Summary
CVID is a subtype of primary immunodeficiency (PIDD) associated with under-diagnosis. It has emerged as a health issue more prevalent than historically known. No symptom-recognition framework for early detection of CVID has been generally accepted; those proposed for primary immunodeficiencies have shown low sensitivity, low specificity or both. Positive trends in cases diagnosed have been aided by awareness campaigns and international collaborations. However, treatments for CVID will not realize full potential without effective, accepted frameworks for timely identification in the clinic.
Collapse
|
17
|
Jin YY, Wu J, Chen TX, Chen J. When WAS Gene Diagnosis Is Needed: Seeking Clues Through Comparison Between Patients With Wiskott-Aldrich Syndrome and Idiopathic Thrombocytopenic Purpura. Front Immunol 2019; 10:1549. [PMID: 31354712 PMCID: PMC6634258 DOI: 10.3389/fimmu.2019.01549] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 06/21/2019] [Indexed: 12/31/2022] Open
Abstract
Background: Wiskott-Aldrich syndrome (WAS) is a rare and severe X-linked disorder with variable clinical phenotypes correlating with the type of mutations in the WAS gene. The syndrome is difficult to differentiate from idiopathic thrombocytopenic purpura (ITP) before genetic diagnosis. We retrospectively reviewed patients suspected to have WAS who were referred to our hospital from 2004 to 2016 and compared the clinical features and laboratory examination of genetically confirmed WAS patients and of patients diagnosed with ITP in order to seek some clues to distinguish WAS and ITP before genetic diagnosis. Methods: Seventy-eight children suspected to have WAS from 78 unrelated families were enrolled in this study. The clinical data and laboratory examination of children were reviewed in the present study. The distribution of lymphocyte subsets from peripheral blood was examined by how cytometry. WASP mutations were identified by direct sequencing of PCR-amplified genomic DNA. Results: Forty-two patients were finally diagnosed with WAS genetically. The median onset age of these patients was 1 month (range: 1 day−10 months). The median diagnosis lag was 4.6 months (range: 0 months−9.42 years). Fifteen patients (35.71%) had positive family histories. More than half of the patients (n = 23, 54.76%) had diarrhea. Twenty-three (54.76%) had pneumonia, 7 with severe symptoms. Major bleeding events included skin spots or petechiae (n = 27, 64.29%), per-rectal bleeding (n = 21, 50.00%), epistaxis (n = 7, 16.67%) and intracranial bleeding (n = 2, 4.76%). Twenty-nine patients (69.05%) had eczema, and one patient had a drug allergy. Three patients had autoimmune diseases, among whom 2 had autoimmune hemolytic anemia and one had autoimmune hemolytic anemia and IgA nephropathy. A total of 42 mutations in WASP were identified, including 19 novel mutations. Eight patients received hematopoietic stem cell transplantation (HSCT) and all survived. Compared with the 30 patients diagnosed with ITP, the WAS patients had higher EOS counts and elevated IgE level, increased NK cell numbers but fewer CD8+T lymphocytes. Conclusion: The WAS gene diagnosis should be considered in all males with ITP-like features, especially for patients with a very early onset age, decreased MPV (<6.5 fl), higher EOS counts and elevated IgE level, increased NK cell number, diminished CD8+T lymphocyte count.
Collapse
Affiliation(s)
- Ying-Ying Jin
- Department of Rheumatology/Immunology, Children's National Medical Center, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Wu
- Division of Immunology, Institute of Pediatric Translational Medicine, Children's National Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tong-Xin Chen
- Department of Rheumatology/Immunology, Children's National Medical Center, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Division of Immunology, Institute of Pediatric Translational Medicine, Children's National Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ji Chen
- Department of Dermatology, Children's National Medical Center, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
18
|
Transplantation of Hematopoietic Stem Cells for Primary Immunodeficiencies in Brazil: Challenges in Treating Rare Diseases in Developing Countries. J Clin Immunol 2018; 38:917-926. [PMID: 30470982 DOI: 10.1007/s10875-018-0564-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 10/18/2018] [Indexed: 12/21/2022]
Abstract
The results of hematopoietic stem cell transplant (HSCT) for primary immunodeficiency diseases (PID) have been improving over time. Unfortunately, developing countries do not experience the same results. This first report of Brazilian experience of HSCT for PID describes the development and results in the field. We included data from transplants in 221 patients, performed at 11 centers which participated in the Brazilian collaborative group, from July 1990 to December 2015. The majority of transplants were concentrated in one center (n = 123). The median age at HSCT was 22 months, and the most common diseases were severe combined immunodeficiency (SCID) (n = 67) and Wiskott-Aldrich syndrome (WAS) (n = 67). Only 15 patients received unconditioned transplants. Cumulative incidence of GVHD grades II to IV was 23%, and GVHD grades III to IV was 10%. The 5-year overall survival was 71.6%. WAS patients had better survival compared to other diseases. Most deaths (n = 53) occurred in the first year after transplantation mainly due to infection (55%) and GVHD (13%). Although transplant for PID patients in Brazil has evolved since its beginning, we still face some challenges like delayed diagnosis and referral, severe infections before transplant, a limited number of transplant centers with expertise, and resources for more advanced techniques. Measures like newborn screening for SCID may hasten the diagnosis and ameliorate patients' conditions at the moment of transplant.
Collapse
|
19
|
Haddad E, Logan BR, Griffith LM, Buckley RH, Parrott RE, Prockop SE, Small TN, Chaisson J, Dvorak CC, Murnane M, Kapoor N, Abdel-Azim H, Hanson IC, Martinez C, Bleesing JJH, Chandra S, Smith AR, Cavanaugh ME, Jyonouchi S, Sullivan KE, Burroughs L, Skoda-Smith S, Haight AE, Tumlin AG, Quigg TC, Taylor C, Dávila Saldaña BJ, Keller MD, Seroogy CM, Desantes KB, Petrovic A, Leiding JW, Shyr DC, Decaluwe H, Teira P, Gillio AP, Knutsen AP, Moore TB, Kletzel M, Craddock JA, Aquino V, Davis JH, Yu LC, Cuvelier GDE, Bednarski JJ, Goldman FD, Kang EM, Shereck E, Porteus MH, Connelly JA, Fleisher TA, Malech HL, Shearer WT, Szabolcs P, Thakar MS, Vander Lugt MT, Heimall J, Yin Z, Pulsipher MA, Pai SY, Kohn DB, Puck JM, Cowan MJ, O'Reilly RJ, Notarangelo LD. SCID genotype and 6-month posttransplant CD4 count predict survival and immune recovery. Blood 2018; 132:1737-1749. [PMID: 30154114 PMCID: PMC6202916 DOI: 10.1182/blood-2018-03-840702] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 08/20/2018] [Indexed: 12/26/2022] Open
Abstract
The Primary Immune Deficiency Treatment Consortium (PIDTC) performed a retrospective analysis of 662 patients with severe combined immunodeficiency (SCID) who received a hematopoietic cell transplantation (HCT) as first-line treatment between 1982 and 2012 in 33 North American institutions. Overall survival was higher after HCT from matched-sibling donors (MSDs). Among recipients of non-MSD HCT, multivariate analysis showed that the SCID genotype strongly influenced survival and immune reconstitution. Overall survival was similar for patients with RAG, IL2RG, or JAK3 defects and was significantly better compared with patients with ADA or DCLRE1C mutations. Patients with RAG or DCLRE1C mutations had poorer immune reconstitution than other genotypes. Although survival did not correlate with the type of conditioning regimen, recipients of reduced-intensity or myeloablative conditioning had a lower incidence of treatment failure and better T- and B-cell reconstitution, but a higher risk for graft-versus-host disease, compared with those receiving no conditioning or immunosuppression only. Infection-free status and younger age at HCT were associated with improved survival. Typical SCID, leaky SCID, and Omenn syndrome had similar outcomes. Landmark analysis identified CD4+ and CD4+CD45RA+ cell counts at 6 and 12 months post-HCT as biomarkers predictive of overall survival and long-term T-cell reconstitution. Our data emphasize the need for patient-tailored treatment strategies depending upon the underlying SCID genotype. The prognostic significance of CD4+ cell counts as early as 6 months after HCT emphasizes the importance of close follow-up of immune reconstitution to identify patients who may need additional intervention to prevent poor long-term outcome.
Collapse
Affiliation(s)
- Elie Haddad
- Pediatric Immunology and Rheumatology Division, CHU Sainte-Justine, University of Montreal, Montreal, QC, Canada
| | - Brent R Logan
- Division of Biostatistics, Medical College of Wisconsin, Milwaukee, WI
| | - Linda M Griffith
- Division of Allergy, Immunology, and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | | | | | - Susan E Prockop
- Department of Pediatrics, Bone Marrow Transplant Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Trudy N Small
- Department of Pediatrics, Bone Marrow Transplant Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jessica Chaisson
- Department of Pediatrics, Bone Marrow Transplant Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Christopher C Dvorak
- Pediatric Allergy, Immunology, and Blood and Marrow Transplant Division, University of California, San Francisco Benioff Children's Hospital, San Francisco, CA
| | - Megan Murnane
- Pediatric Allergy, Immunology, and Blood and Marrow Transplant Division, University of California, San Francisco Benioff Children's Hospital, San Francisco, CA
| | - Neena Kapoor
- Blood and Marrow Transplant Program, Division of Hematology, Oncology and Blood and Marrow Transplantation, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Hisham Abdel-Azim
- Blood and Marrow Transplant Program, Division of Hematology, Oncology and Blood and Marrow Transplantation, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | | | - Caridad Martinez
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston, TX
| | - Jack J H Bleesing
- Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Sharat Chandra
- Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Angela R Smith
- Division of Pediatric Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN
| | | | - Soma Jyonouchi
- Allergy and Immunology, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Kathleen E Sullivan
- Allergy and Immunology, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Lauri Burroughs
- Fred Hutchinson Cancer Research Center, Seattle, WA
- Seattle Children's Hospital, Seattle, WA
| | | | - Ann E Haight
- Aflac Cancer and Blood Disorders Center, Emory/Children's Healthcare of Atlanta, Atlanta, GA
| | - Audrey G Tumlin
- Aflac Cancer and Blood Disorders Center, Emory/Children's Healthcare of Atlanta, Atlanta, GA
| | - Troy C Quigg
- Texas Transplant Institute, Methodist Children's Hospital, San Antonio, TX
| | - Candace Taylor
- Texas Transplant Institute, Methodist Children's Hospital, San Antonio, TX
| | - Blachy J Dávila Saldaña
- Division of Blood and Marrow Transplantation, Children's National Health System, George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Michael D Keller
- Division of Blood and Marrow Transplantation, Children's National Health System, George Washington University School of Medicine and Health Sciences, Washington, DC
| | | | - Kenneth B Desantes
- American Family Children's Hospital, University of Wisconsin, Madison, WI
| | - Aleksandra Petrovic
- Blood and Marrow Transplant, John Hopkins All Children's Hospital, St. Petersburg, FL
| | - Jennifer W Leiding
- Blood and Marrow Transplant, John Hopkins All Children's Hospital, St. Petersburg, FL
- Division of Allergy and Immunology, Department of Pediatrics, University of South Florida, St. Petersburg, FL
| | - David C Shyr
- Department of Pediatrics, Primary Children's Hospital, University of Utah, Salt Lake City, UT
| | - Hélène Decaluwe
- Pediatric Immunology and Rheumatology Division, CHU Sainte-Justine, University of Montreal, Montreal, QC, Canada
| | - Pierre Teira
- Pediatric Immunology and Rheumatology Division, CHU Sainte-Justine, University of Montreal, Montreal, QC, Canada
| | - Alfred P Gillio
- Institute for Pediatric Cancer and Blood Disorders, Hackensack University Medical Center, Hackensack, NJ
| | - Alan P Knutsen
- Pediatric Allergy and Immunology, Saint Louis University, Cardinal Glennon Children's Medical Center, St. Louis, MO
| | - Theodore B Moore
- Pediatrics, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA
| | - Morris Kletzel
- Division of Hematology, Oncology, and Stem Cell Transplantation, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - John A Craddock
- Children's Hospital of Colorado, University of Colorado School of Medicine, Aurora, CO
| | - Victor Aquino
- Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Jeffrey H Davis
- Pediatrics, British Columbia Children's Hospital, Vancouver, BC, Canada
| | - Lolie C Yu
- Division of Hematology/Oncology and Hematopoietic Stem Cell Transplantation, The Center for Cancer and Blood Disorders, Children's Hospital/Louisiana State University Medical Center, New Orleans, LA
| | - Geoffrey D E Cuvelier
- Manitoba Blood and Marrow Transplant Program, CancerCare Manitoba, University of Manitoba, Winnipeg, MB, Canada
| | | | - Frederick D Goldman
- Department of Pediatrics, The University of Alabama at Birmingham, Birmingham, AL
| | - Elizabeth M Kang
- Genetic Immunotherapy Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Evan Shereck
- Division of Pediatric Hematology/Oncology, Oregon Health and Science University, Portland, OR
| | - Matthew H Porteus
- Pediatric Stem Cell Transplantation, Stanford University, Stanford, CA
| | | | - Thomas A Fleisher
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Harry L Malech
- Genetic Immunotherapy Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | | | | | - Monica S Thakar
- Pediatric Blood and Marrow Transplant Program, Division of Hematology, Oncology, and Blood Marrow Transplantation, Medical College of Wisconsin, Milwaukee, WI
| | - Mark T Vander Lugt
- Pediatric Hematology/Oncology, University of Michigan, Ann Arbor, MI; and
| | - Jennifer Heimall
- Allergy and Immunology, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Ziyan Yin
- Division of Biostatistics, Medical College of Wisconsin, Milwaukee, WI
| | - Michael A Pulsipher
- Blood and Marrow Transplant Program, Division of Hematology, Oncology and Blood and Marrow Transplantation, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Sung-Yun Pai
- Hematology-Oncology, Boston Children's Hospital, Boston, MA
| | - Donald B Kohn
- Pediatrics, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA
| | - Jennifer M Puck
- Pediatric Allergy, Immunology, and Blood and Marrow Transplant Division, University of California, San Francisco Benioff Children's Hospital, San Francisco, CA
| | - Morton J Cowan
- Pediatric Allergy, Immunology, and Blood and Marrow Transplant Division, University of California, San Francisco Benioff Children's Hospital, San Francisco, CA
| | - Richard J O'Reilly
- Department of Pediatrics, Bone Marrow Transplant Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|
20
|
Meehan C, Bonfim C, Dasso JF, Costa-Carvalho BT, Condino-Neto A, Walter J. IN TIME: THE VALUE AND GLOBAL IMPLICATIONSOF NEWBORN SCREENING FORSEVERE COMBINED IMMUNODEFICIENCY. REVISTA PAULISTA DE PEDIATRIA : ORGAO OFICIAL DA SOCIEDADE DE PEDIATRIA DE SAO PAULO 2018; 36:388-397. [PMID: 30540106 PMCID: PMC6322803 DOI: 10.1590/1984-0462/;2018;36;4;00020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Indexed: 01/06/2023]
Affiliation(s)
- Cristina Meehan
- Division of Allergy and Immunology, Children’s Research Institute,
University of South Florida, St. Petersburg, FL, United States
| | - Carmem Bonfim
- Clinics Hospital, Universidade Federal do Paraná, Curitiba, PR,
Brazil
| | - Joseph F. Dasso
- Division of Allergy and Immunology, Children’s Research Institute,
University of South Florida, St. Petersburg, FL, United States
- Department of Biology, University of Tampa, Tampa, FL, United
States
| | - Beatriz Tavares Costa-Carvalho
- Division of Allergy, Clinical Immunology and Rheumatology,
Department of Pediatrics, Universidade Federal de São Paulo, São Paulo, SP,
Brazil
| | - Antonio Condino-Neto
- Department of Immunology, Institute of Biomedical Sciences,
Universidade de São Paulo, São Paulo, SP, Brazil
| | - Jolan Walter
- Division of Allergy and Immunology, Children’s Research Institute,
University of South Florida, St. Petersburg, FL, United States
- Division of Allergy and Immunology, Johns Hopkins All Children’s
Hospital, St. Petersburg, FL, United States
- Division of Pediatric Allergy and Immunology, Massachusetts General
Hospital, Boston, MA, United States
| |
Collapse
|
21
|
Yi ES, Choi YB, Lee NH, Lee JW, Sung KW, Koo HH, Kang ES, Kim YJ, Yoo KH. Allogeneic Hematopoietic Cell Transplantation in Patients with Primary Immunodeficiencies in Korea: Eleven-Year Experience in a Single Center. J Clin Immunol 2018; 38:757-766. [PMID: 30151618 DOI: 10.1007/s10875-018-0542-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 08/16/2018] [Indexed: 12/30/2022]
Abstract
PURPOSE We aimed to report our single-center experience of allogeneic hematopoietic cell transplantation (HCT), which has been the only curative option for certain patients with lethal primary immunodeficiencies (PIDs). METHODS We summarized the results of HCT performed for patients with PIDs for 11 consecutive years from 2006 to 2016 at Samsung Medical Center, Seoul, Korea. Twenty-six patients with PIDs received HCT. Most had chronic granulomatous disease (42.3%), Wiskott Aldrich syndrome (15.4%), or severe combined immunodeficiency (11.5%). RESULTS Nine patients (34.6%) received HCT during the former half period and 17 patients (65.4%) during the latter half period. Donor types were categorized as: matched sibling donor (n = 5), unrelated donor (n = 17), and familial mismatched donor (FMMD) (n = 4). Unrelated HCT and FMMD transplantation were increasingly performed in the latter half period compared to the first (5 vs. 16, P = 0.034). Five patients experienced initial engraftment failure, but all of them were eventually engrafted after additional HCTs. The 3-year probability of overall survival was 72.0%. Seven patients (26.9%) died, and the causes of death were bacterial sepsis (n = 4), pneumonia (n = 1), chronic graft-versus-host disease (GVHD) (n = 1), and diffuse alveolar hemorrhage (n = 1). Two patients with bacterial sepsis and a patient with pneumonia also had chronic GVHD. Unrelated HCT and use of methotrexate were associated with poor outcome. Complete chimerism was attained in 85.0% at 1 year after HCT. CONCLUSION PID candidates have been increasingly identified for allogeneic HCT in Korea, and the majority of them could be cured by HCT. Establishment of a systematic registry of PID patients for HCT is needed.
Collapse
Affiliation(s)
- Eun Sang Yi
- Division of Hematology and Oncology, Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.,Department of Pediatrics, Korea University Guro Hospital, Korea University College of Medicine, Seoul, South Korea
| | - Young Bae Choi
- Department of Pediatrics, Chungbuk National University Hospital, Cheongju, South Korea
| | - Na Hee Lee
- Department of Pediatrics, Cha Bundang Medical Centre, Cha University, Seongnam, South Korea
| | - Ji Won Lee
- Division of Hematology and Oncology, Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Ki Woong Sung
- Division of Hematology and Oncology, Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Hong Hoe Koo
- Division of Hematology and Oncology, Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Eun-Sook Kang
- Departments of laboratory Medicine & Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Yae-Jean Kim
- Division of Pediatric Infectious Diseases and Immunodeficiency, Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Keon Hee Yoo
- Division of Hematology and Oncology, Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea. .,Department of Health Science and Technology, SAIHST, Sungkyunkwan University, Seoul, South Korea. .,Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, Seoul, South Korea.
| |
Collapse
|
22
|
PROMIDISα: A T-cell receptor α signature associated with immunodeficiencies caused by V(D)J recombination defects. J Allergy Clin Immunol 2018; 143:325-334.e2. [PMID: 29906526 DOI: 10.1016/j.jaci.2018.05.028] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 04/17/2018] [Accepted: 05/25/2018] [Indexed: 01/08/2023]
Abstract
BACKGROUND V(D)J recombination ensures the diversity of the adaptive immune system. Although its complete defect causes severe combined immunodeficiency (ie, T-B- severe combined immunodeficiency), its suboptimal activity is associated with a broad spectrum of immune manifestations, such as late-onset combined immunodeficiency and autoimmunity. The earliest molecular diagnosis of these patients is required to adopt the best therapy strategy, particularly when it involves a myeloablative conditioning regimen for hematopoietic stem cell transplantation. OBJECTIVE We aimed at developing biomarkers based on analysis of the T-cell receptor (TCR) α repertoire to assist in the diagnosis of patients with primary immunodeficiencies with V(D)J recombination and DNA repair deficiencies. METHODS We used flow cytometric (fluorescence-activated cell sorting) analysis to quantify TCR-Vα7.2-expressing T lymphocytes in peripheral blood and developed PROMIDISα, a multiplex RT-PCR/next-generation sequencing assay, to evaluate a subset of the TCRα repertoire in T lymphocytes. RESULTS The combined fluorescence-activated cell sorting and PROMIDISα analyses revealed specific signatures in patients with V(D)J recombination-defective primary immunodeficiencies or ataxia telangiectasia/Nijmegen breakage syndromes. CONCLUSION Analysis of the TCRα repertoire is particularly appropriate in a prospective way to identify patients with partial immune defects caused by suboptimal V(D)J recombination activity, a DNA repair defect, or both. It also constitutes a valuable tool for the retrospective in vivo functional validation of variants identified through exome or panel sequencing. Its broader implementation might be of interest to assist early diagnosis of patients presenting with hypomorphic DNA repair defects inclined to experience acute toxicity during prehematopoietic stem cell transplantation conditioning.
Collapse
|
23
|
B-cell differentiation and IL-21 response in IL2RG/JAK3 SCID patients after hematopoietic stem cell transplantation. Blood 2018; 131:2967-2977. [PMID: 29728406 DOI: 10.1182/blood-2017-10-809822] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 04/26/2018] [Indexed: 12/21/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplant (HSCT) typically results in donor T-cell engraftment and function in patients with severe combined immunodeficiency (SCID), but humoral immunity, particularly when using donors other than matched siblings, is variable. B-cell function after HSCT for SCID depends on the genetic cause, the use of pre-HSCT conditioning, and whether donor B-cell chimerism is achieved. Patients with defects in IL2RG or JAK3 undergoing HSCT without conditioning often have poor B-cell function post-HSCT, perhaps as a result of impairment of IL-21 signaling in host-derived B cells. To investigate the effect of pre-HSCT conditioning on B-cell function, and the relationship of in vitro B-cell function to clinical humoral immune status, we analyzed 48 patients with IL2RG/JAK3 SCID who were older than 2 years after HSCT with donors other than matched siblings. T follicular helper cells (TFH) developed in these patients with kinetics similar to healthy young children; thus, poor B-cell function could not be attributed to a failure of TFH development. In vitro differentiation of B cells into plasmablasts and immunoglobulin secretion in response to IL-21 strongly correlated with the use of conditioning, donor B-cell engraftment, freedom from immunoglobulin replacement, and response to tetanus vaccine. Patients receiving immunoglobulin replacement who had normal serum immunoglobulin M showed poor response to IL-21 in vitro, similar to those with low serum IgM. In vitro response of B cells to IL-21 may predict clinically relevant humoral immune function in patients with IL2RG/JAK3 SCID after HSCT.
Collapse
|
24
|
Utility of DNA, RNA, Protein, and Functional Approaches to Solve Cryptic Immunodeficiencies. J Clin Immunol 2018; 38:307-319. [PMID: 29671115 DOI: 10.1007/s10875-018-0499-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 04/05/2018] [Indexed: 12/12/2022]
Abstract
PURPOSE We report a female infant identified by newborn screening for severe combined immunodeficiencies (NBS SCID) with T cell lymphopenia (TCL). The patient had persistently elevated alpha-fetoprotein (AFP) with IgA deficiency, and elevated IgM. Gene sequencing for a SCID panel was uninformative. We sought to determine the cause of the immunodeficiency in this infant. METHODS We performed whole-exome sequencing (WES) on the patient and parents to identify a genetic diagnosis. Based on the WES result, we developed a novel flow cytometric panel for rapid assessment of DNA repair defects using blood samples. We also performed whole transcriptome sequencing (WTS) on fibroblast RNA from the patient and father for abnormal transcript analysis. RESULTS WES revealed a pathogenic paternally inherited indel in ATM. We used the flow panel to assess several proteins in the DNA repair pathway in lymphocyte subsets. The patient had absent phosphorylation of ATM, resulting in absent or aberrant phosphorylation of downstream proteins, including γH2AX. However, ataxia-telangiectasia (AT) is an autosomal recessive condition, and the abnormal functional data did not correspond with a single ATM variant. WTS revealed in-frame reciprocal fusion transcripts involving ATM and SLC35F2 indicating a chromosome 11 inversion within 11q22.3, of maternal origin. Inversion breakpoints were identified within ATM intron 16 and SLC35F2 intron 7. CONCLUSIONS We identified a novel ATM-breaking chromosome 11 inversion in trans with a pathogenic indel (compound heterozygote) resulting in non-functional ATM protein, consistent with a diagnosis of AT. Utilization of several molecular and functional assays allowed successful resolution of this case.
Collapse
|
25
|
Clinical Manifestations and Pathophysiological Mechanisms of the Wiskott-Aldrich Syndrome. J Clin Immunol 2018. [PMID: 29086100 DOI: 10.1007/s10875-017-0453-z)] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The Wiskott-Aldrich syndrome (WAS) is a rare X-linked disorder originally described by Dr. Alfred Wiskott in 1937 and Dr. Robert Aldrich in 1954 as a familial disease characterized by infections, bleeding tendency, and eczema. Today, it is well recognized that the syndrome has a wide clinical spectrum ranging from mild, isolated thrombocytopenia to full-blown presentation that can be complicated by life-threatening hemorrhages, immunodeficiency, atopy, autoimmunity, and cancer. The pathophysiology of classic and emerging features is being elucidated by clinical studies, but remains incompletely defined, which hinders the application of targeted therapies. At the same time, progress of hematopoietic stem cell transplantation and gene therapy offer optimistic prospects for treatment options aimed at the replacement of the defective lymphohematopoietic system that have the potential to provide a cure for this rare and polymorphic disease.
Collapse
|
26
|
Clinical Manifestations and Pathophysiological Mechanisms of the Wiskott-Aldrich Syndrome. J Clin Immunol 2017; 38:13-27. [PMID: 29086100 DOI: 10.1007/s10875-017-0453-z] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 10/13/2017] [Indexed: 02/07/2023]
Abstract
The Wiskott-Aldrich syndrome (WAS) is a rare X-linked disorder originally described by Dr. Alfred Wiskott in 1937 and Dr. Robert Aldrich in 1954 as a familial disease characterized by infections, bleeding tendency, and eczema. Today, it is well recognized that the syndrome has a wide clinical spectrum ranging from mild, isolated thrombocytopenia to full-blown presentation that can be complicated by life-threatening hemorrhages, immunodeficiency, atopy, autoimmunity, and cancer. The pathophysiology of classic and emerging features is being elucidated by clinical studies, but remains incompletely defined, which hinders the application of targeted therapies. At the same time, progress of hematopoietic stem cell transplantation and gene therapy offer optimistic prospects for treatment options aimed at the replacement of the defective lymphohematopoietic system that have the potential to provide a cure for this rare and polymorphic disease.
Collapse
|
27
|
Immune reconstitution and survival of 100 SCID patients post-hematopoietic cell transplant: a PIDTC natural history study. Blood 2017; 130:2718-2727. [PMID: 29021228 DOI: 10.1182/blood-2017-05-781849] [Citation(s) in RCA: 169] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 09/20/2017] [Indexed: 02/07/2023] Open
Abstract
The Primary Immune Deficiency Treatment Consortium (PIDTC) is enrolling children with severe combined immunodeficiency (SCID) to a prospective natural history study. We analyzed patients treated with allogeneic hematopoietic cell transplantation (HCT) from 2010 to 2014, including 68 patients with typical SCID and 32 with leaky SCID, Omenn syndrome, or reticular dysgenesis. Most (59%) patients were diagnosed by newborn screening or family history. The 2-year overall survival was 90%, but was 95% for those who were infection-free at HCT vs 81% for those with active infection (P = .009). Other factors, including the diagnosis of typical vs leaky SCID/Omenn syndrome, diagnosis via family history or newborn screening, use of preparative chemotherapy, or the type of donor used, did not impact survival. Although 1-year post-HCT median CD4 counts and freedom from IV immunoglobulin were improved after the use of preparative chemotherapy, other immunologic reconstitution parameters were not affected, and the potential for late sequelae in extremely young infants requires additional evaluation. After a T-cell-replete graft, landmark analysis at day +100 post-HCT revealed that CD3 < 300 cells/μL, CD8 < 50 cells/μL, CD45RA < 10%, or a restricted Vβ T-cell receptor repertoire (<13 of 24 families) were associated with the need for a second HCT or death. In the modern era, active infection continues to pose the greatest threat to survival for SCID patients. Although newborn screening has been effective in diagnosing SCID patients early in life, there is an urgent need to identify validated approaches through prospective trials to ensure that patients proceed to HCT infection free. The trial was registered at www.clinicaltrials.gov as #NCT01186913.
Collapse
|
28
|
Tegtmeyer D, Seidl M, Gerner P, Baumann U, Klemann C. Inflammatory bowel disease caused by primary immunodeficiencies-Clinical presentations, review of literature, and proposal of a rational diagnostic algorithm. Pediatr Allergy Immunol 2017; 28:412-429. [PMID: 28513998 DOI: 10.1111/pai.12734] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/12/2017] [Indexed: 02/07/2023]
Abstract
Inflammatory bowel diseases (IBD) including Crohn's disease (CD) and ulcerative colitis have a multifactorial pathogenesis with complex interactions between polygenetic predispositions and environmental factors. However, IBD can also be caused by monogenic diseases, such as primary immunodeficiencies (PID). Recently, an increasing number of these altogether rare diseases have been described to present often primarily, or solely, as IBD. Early recognition of these conditions enables adaption of therapies and thus directly benefits the course of IBDs. Here, we discuss the different clinical presentations in IBD and characteristic features of patient's history, clinical findings, and diagnostic results indicative for a causative PID. Possible predictors are early onset of disease, necessity of parenteral nutrition, failure to respond to standard immunosuppressive therapy, parental consanguinity, increased susceptibility for infections, certain histopathologic findings, and blood tests that are atypical for classic IBD. We illustrate this with exemplary case studies of IBD due to NEMO deficiency, chronic granulomatous disease, common variable immunodeficiency, CTLA-4 and LRBA deficiency. Taking these factors into account, we propose a diagnostic pathway to enable early diagnosis of IBD due to PID.
Collapse
Affiliation(s)
- Daniel Tegtmeyer
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany.,University Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maximilian Seidl
- Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Institute for Surgical Pathology, Medical Center - University of Freiburg, Freiburg, Germany
| | - Patrick Gerner
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Ulrich Baumann
- Department of Pediatric Pneumology, Allergy and Neonatology, Hannover Medical School, Hannover, Germany
| | - Christian Klemann
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Pediatric Pneumology, Allergy and Neonatology, Hannover Medical School, Hannover, Germany.,Center of Pediatric Surgery, Hannover Medical School, Hannover, Germany
| |
Collapse
|
29
|
Heimall J, Buckley RH, Puck J, Fleisher TA, Gennery AR, Haddad E, Neven B, Slatter M, Roderick S, Baker KS, Dietz AC, Duncan C, Griffith LM, Notarangelo L, Pulsipher MA, Cowan MJ. Recommendations for Screening and Management of Late Effects in Patients with Severe Combined Immunodeficiency after Allogenic Hematopoietic Cell Transplantation: A Consensus Statement from the Second Pediatric Blood and Marrow Transplant Consortium International Conference on Late Effects after Pediatric HCT. Biol Blood Marrow Transplant 2017; 23:1229-1240. [PMID: 28479164 PMCID: PMC6015789 DOI: 10.1016/j.bbmt.2017.04.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 04/28/2017] [Indexed: 12/30/2022]
Abstract
Severe combined immunodeficiency (SCID) is effectively treated with hematopoietic cell transplantation (HCT), with overall survival approaching 90% in contemporary reports. However, survivors are at risk for developing late complications because of the variable durability of high-quality immune function, underlying genotype of SCID, comorbidities due to infections in the pretransplantation and post-transplantation periods, and use of conditioning before transplantation. An international group of transplantation experts was convened in 2016 to review the current knowledge of late effects seen in SCID patients after HCT and to develop recommendations for screening and monitoring for late effects. This report provides recommendations for screening and management of pediatric and adult SCID patients treated with HCT.
Collapse
Affiliation(s)
- Jennifer Heimall
- Division of Allergy and Immunology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| | - Rebecca H Buckley
- Departments of Pediatrics and Immunology, Duke University Medical Center, Durham, North Carolina
| | - Jennifer Puck
- Department of Pediatrics, Allergy, Immunology, and Blood and Marrow Transplant Division, University of California San Francisco, San Francisco California, California
| | - Thomas A Fleisher
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, Maryland
| | - Andrew R Gennery
- Department of Paediatric Immunology, Newcastle upon Tyne, United Kingdom Institute of Cellular Medicine, Newcastle upon Tyne University, Newcastle upon Tyne, United Kingdom
| | - Elie Haddad
- Department of Pediatrics, Department of Microbiology, Infection and Immunology, University of Montreal, CHU Sainte-Justine, Montreal, Quebec, Canada
| | - Benedicte Neven
- Department of Immunology, Bone Marrow Transplantation, Hospital Necker Enfants Malades, Paris, France
| | - Mary Slatter
- Department of Paediatric Immunology, Newcastle upon Tyne, United Kingdom Institute of Cellular Medicine, Newcastle upon Tyne University, Newcastle upon Tyne, United Kingdom
| | - Skinner Roderick
- Great North Children's Hospital and Northern Institute of Cancer Research, Newcastle upon Tyne, United Kingdom
| | - K Scott Baker
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Andrew C Dietz
- Children's Center for Cancer and Blood Diseases, Children's Hospital Los Angeles, Los Angeles, California
| | - Christine Duncan
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
| | - Linda M Griffith
- Division of Allergy, Immunology and Transplantation, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland
| | - Luigi Notarangelo
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland
| | - Michael A Pulsipher
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
| | - Morton J Cowan
- Department of Pediatrics, Allergy, Immunology, and Blood and Marrow Transplant Division, University of California San Francisco, San Francisco California, California
| |
Collapse
|
30
|
Invasive Fungal Infection in Primary Immunodeficiencies Other Than Chronic Granulomatous Disease. CURRENT FUNGAL INFECTION REPORTS 2017. [DOI: 10.1007/s12281-017-0273-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
31
|
Dorsey MJ, Dvorak CC, Cowan MJ, Puck JM. Treatment of infants identified as having severe combined immunodeficiency by means of newborn screening. J Allergy Clin Immunol 2017; 139:733-742. [PMID: 28270365 PMCID: PMC5385855 DOI: 10.1016/j.jaci.2017.01.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 01/20/2017] [Accepted: 01/20/2017] [Indexed: 12/30/2022]
Abstract
Severe combined immunodeficiency (SCID) is characterized by severely impaired T-cell development and is fatal without treatment. Newborn screening (NBS) for SCID permits identification of affected infants before development of opportunistic infections and other complications. Substantial variation exists between treatment centers with regard to pretransplantation care, and transplantation protocols for NBS identified infants with SCID, as well as infants with other T-lymphopenic disorders detected by using NBS. We developed approaches to management based on the study of infants identified by means of NBS for SCID who received care at the University of California, San Francisco (UCSF). From August 2010 through October 2016, 32 patients with NBS-identified SCID and leaky SCID from California and other states were treated, and 42 patients with NBS-identified non-SCID T-cell lymphopenia were followed. Our center's approach supports successful outcomes; systematic review of our practice provides a framework for diagnosis and management, recognizing that more data will continue to shape best practices.
Collapse
Affiliation(s)
- Morna J Dorsey
- Department of Pediatrics, Division of Allergy, Immunology, and Bone Marrow Transplantation, University of California, San Francisco, Calif.
| | - Christopher C Dvorak
- Department of Pediatrics, Division of Allergy, Immunology, and Bone Marrow Transplantation, University of California, San Francisco, Calif
| | - Morton J Cowan
- Department of Pediatrics, Division of Allergy, Immunology, and Bone Marrow Transplantation, University of California, San Francisco, Calif
| | - Jennifer M Puck
- Department of Pediatrics, Division of Allergy, Immunology, and Bone Marrow Transplantation, University of California, San Francisco, Calif
| |
Collapse
|
32
|
Cowan MJ. The Primary Immune Deficiency Treatment Consortium: how can it improve definitive therapy for PID? Expert Rev Clin Immunol 2016; 12:1007-9. [PMID: 27454438 DOI: 10.1080/1744666x.2016.1216317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Morton J Cowan
- a UCSF Department of Pediatrics , Allergy, Immunology, and Blood and Marrow Transplant Division , San Francisco , CA , USA
| |
Collapse
|