1
|
Laffranchi M, Paraboschi EM, Bianchetto-Aguilera F, Tamassia N, Gasperini S, Gardiman E, Piserà A, Del Prete A, Invernizzi P, Gismondi A, Mantovani A, Cassatella MA, Asselta R, Sozzani S. Neutrophils restricted contribution of CCRL2 genetic variants to COVID-19 severity. Heliyon 2025; 11:e41267. [PMID: 39811276 PMCID: PMC11731188 DOI: 10.1016/j.heliyon.2024.e41267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/12/2024] [Accepted: 12/14/2024] [Indexed: 01/02/2025] Open
Abstract
The 3p21.31 locus is the most robust genomic region associated with COVID-19 severity. This locus contains a main chemokine receptor (CKR) cluster. We tested expression quantitative trait loci (eQTL) targeting the 3p21.31 CKR cluster linked to COVID-19 hospitalization in Europeans from the COVID-19 HGI meta-analysis. Among these, CCRL2, a key regulator of neutrophil trafficking, was targeted by neutrophil-restricted eQTLs. We confirmed these eQTLs in an Italian COVID-19 cohort. Haplotype analysis revealed a link between an increased CCRL2 expression and COVID-19 severity and hospitalization. By the exposure of neutrophils to a TLR8 ligand, reflecting a viral infection, we revealed specific chromatin domains within the 3p21.31 locus exclusive to neutrophils. In addition, the identified variants mapped within these regions altered the binding motif of neutrophils-expressed transcription factors. These results support that CCRL2 eQTL variants contribute to the risk of severe COVID-19 by selectively affecting neutrophil functions.
Collapse
Affiliation(s)
- Mattia Laffranchi
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- Istituto Pasteur-Fondazione Cenci Bolognetti, Rome, Italy
| | - Elvezia Maria Paraboschi
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | | | - Nicola Tamassia
- Department of Medicine, Section of General Pathology, University of Verona, 37134, Verona, Italy
| | - Sara Gasperini
- Department of Medicine, Section of General Pathology, University of Verona, 37134, Verona, Italy
| | - Elisa Gardiman
- Department of Medicine, Section of General Pathology, University of Verona, 37134, Verona, Italy
| | - Arianna Piserà
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Annalisa Del Prete
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Pietro Invernizzi
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, European Reference Network on Hepatological Diseases (ERN RARE-LIVER), IRCCS Fondazione San Gerardo Dei Tintori, Monza, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Angela Gismondi
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- Istituto Pasteur-Fondazione Cenci Bolognetti, Rome, Italy
| | - Alberto Mantovani
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- The William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Marco A. Cassatella
- Department of Medicine, Section of General Pathology, University of Verona, 37134, Verona, Italy
| | - Rosanna Asselta
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Silvano Sozzani
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- Istituto Pasteur-Fondazione Cenci Bolognetti, Rome, Italy
| |
Collapse
|
2
|
Thoraval L, Tang-Fichaux M, Guillaume C, Varin-Simon J, Dumortier C, Sergheraert J, Lamret F, Bonhomme M, Laurent F, Josse J, Gangloff SC, Mongaret C, Reffuveille F, Velard F. Cutibacterium acnes strains associated with bone prosthesis infections cannot evade the host immune system. Front Immunol 2024; 15:1468709. [PMID: 39664373 PMCID: PMC11632127 DOI: 10.3389/fimmu.2024.1468709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/31/2024] [Indexed: 12/13/2024] Open
Abstract
Introduction Cutibacterium acnes is a commensal skin bacterium that is involved in bone prosthesis infections (BPIs) and presents low-grade clinical symptoms. C. acnes has been thought to escape the immune system at bone sites. Material and methods Our study was carried out on a laboratory strain and two BPI-related clinical strains, one of which surprisingly induced clinical symptoms of inflammation in the patient. We investigated the ability of these C. acnes strains to trigger in vitro human primary neutrophils (PMN) response through inflammatory mediators measurements (antibody arrays, ELISA, RT-qPCR, zymography) and activation status assessment (flow cytometry), and to induce in vivo PMN recruitment from the bloodstream in mice air-pouch model. PMN-mediated inflammation was also studied in an original in vitro model mimetic of an infected bone site that combine titanium alloy, human primary osteoblasts, human primary neutrophils and C. acnes strains. Results We demonstrated for the first time that both C. acnes planktonic and biofilm cultures, triggered an effective immune response by neutrophils in vitro and their recruitment in vivo. This host response was enhanced when using a strain from a patient with inflammatory signs. In an original infected prosthesis mimetic model, osteoblasts and neutrophils were able to detect C. acnes, but their response to the clinical C. acnes inflammatory strain decreased. Conclusion This work provides the first evidence showing that the immune cell response to pathogenic C. acnes may be tuned by nonimmune cells at the infected site, such as osteoblasts, which may promote bacterial persistence.
Collapse
Affiliation(s)
- Léa Thoraval
- Université de Reims Champagne-Ardenne, BIOS, Reims, France
| | | | | | | | | | - Johan Sergheraert
- Université de Reims Champagne-Ardenne, CHU Reims, BIOS, Pôle de Médecine Bucco-Dentaire, UFR Odontologie, Reims, France
| | - Fabien Lamret
- Université de Reims Champagne-Ardenne, BIOS, Reims, France
| | - Mélanie Bonhomme
- Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Frédéric Laurent
- Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Jérôme Josse
- Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Sophie C. Gangloff
- Université de Reims Champagne-Ardenne, BIOS, UFR Pharmacie, Reims, France
| | - Céline Mongaret
- Université de Reims Champagne-Ardenne, CHU Reims, BIOS, Service Pharmacie, Reims, France
| | - Fany Reffuveille
- Université de Reims Champagne-Ardenne, BIOS, UFR Pharmacie, Reims, France
| | | |
Collapse
|
3
|
Modestino L, Tumminelli M, Mormile I, Cristinziano L, Ventrici A, Trocchia M, Ferrara AL, Palestra F, Loffredo S, Marone G, Rossi FW, de Paulis A, Galdiero MR. Neutrophil exhaustion and impaired functionality in psoriatic arthritis patients. Front Immunol 2024; 15:1448560. [PMID: 39308858 PMCID: PMC11412820 DOI: 10.3389/fimmu.2024.1448560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/21/2024] [Indexed: 09/25/2024] Open
Abstract
Background Neutrophils (polymorphonuclear leukocytes, PMNs) are the most abundant subtype of white blood cells and are among the main actors in the inflammatory response. Psoriatic arthritis (PsA) is a chronic inflammatory disease affecting both the axial and peripheral joints. Typically associated with psoriasis, PsA can also affect multiple systems and organs, including the nails and entheses. Despite the involvement of PMNs in PsA, their specific role in the disease remains poorly understood. This study aimed to characterize the biological functions of PMNs and neutrophil-related mediators in PsA patients. Materials and methods 31 PsA patients and 22 healthy controls (HCs) were prospectively recruited. PMNs were isolated from peripheral blood and subjected to in vitro stimulation with lipopolysaccharide (LPS), N-Formylmethionyl-leucyl-phenylalanine (fMLP), tumor necrosis factor (TNF), phorbol 12-myristate 13-acetate (PMA), or control medium. Highly purified peripheral blood PMNs (>99%) were evaluated for activation status, reactive oxygen species (ROS) production, phagocytic activity, granular enzyme and neutrophil extracellular traps (NETs) release. Serum levels of matrix metalloproteinase-9 (MMP-9), myeloperoxidase (MPO), TNF, interleukin 23 (IL-23), and interleukin 17 (IL-17) were measured by ELISA. Serum Citrullinated histone H3 (CitH3) was measured as a NET biomarker. Results Activated PMNs from PsA patients displayed reduced activation, decreased ROS production, and impaired phagocytic activity upon stimulation with TNF, compared to HCs. PMNs from PsA patients also displayed reduced granular enzyme (MPO) and NET release. Serum analyses revealed elevated levels of MMP-9, MPO, TNF, IL-23, IL-17, and CitH3 in PsA patients compared to HCs. Serum CitH3 levels positively correlated with MPO and TNF concentrations, and IL-17 concentrations were positively correlated with IL-23 levels in PsA patients. These findings indicate that PMNs from PsA patients show reduced in vitro activation and function, and an increased presence of neutrophil-derived mediators (MMP-9, MPO, TNF, IL-23, IL-17, and CitH3) in their serum. Conclusions Taken together, our findings suggest that PMNs from PsA patients exhibit an "exhausted" phenotype, highlighting their plasticity and multifaceted roles in PsA pathophysiology.
Collapse
Affiliation(s)
- Luca Modestino
- Department of Internal Medicine and Clinical Immunology, University Hospital of Naples Federico II, Naples, Italy
| | - Manuela Tumminelli
- Department of Internal Medicine and Clinical Immunology, University Hospital of Naples Federico II, Naples, Italy
| | - Ilaria Mormile
- Department of Internal Medicine and Clinical Immunology, University Hospital of Naples Federico II, Naples, Italy
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, Naples, Italy
| | - Leonardo Cristinziano
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Annagioia Ventrici
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, Naples, Italy
| | - Marialuisa Trocchia
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, Naples, Italy
| | - Anne Lise Ferrara
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, Naples, Italy
| | - Francesco Palestra
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, Naples, Italy
| | - Stefania Loffredo
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- Institute of Experimental Endocrinology and Oncology ‘G. Salvatore’, National Research Council (CNR), Naples, Italy
| | - Francesca Wanda Rossi
- Department of Internal Medicine and Clinical Immunology, University Hospital of Naples Federico II, Naples, Italy
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Amato de Paulis
- Department of Internal Medicine and Clinical Immunology, University Hospital of Naples Federico II, Naples, Italy
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Maria Rosaria Galdiero
- Department of Internal Medicine and Clinical Immunology, University Hospital of Naples Federico II, Naples, Italy
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| |
Collapse
|
4
|
Kamsom C, Edwards SW, Thaosing J, Papalee S, Pientong C, Kurosu T, Phanthanawiboon S. Altered neutrophil responses to dengue virus serotype three: delayed apoptosis is regulated by stabilisation of Mcl-1. Sci Rep 2024; 14:18414. [PMID: 39117747 PMCID: PMC11310306 DOI: 10.1038/s41598-024-68642-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024] Open
Abstract
Dengue is a global health concern, and the host-viral interactions that regulate disease severity are largely unknown. Detrimental effects of neutrophils in this disease have been reported, but the precise mechanisms and functional properties of dengue-activated neutrophils are not fully characterised. Here, we measured the effects of dengue virus serotype 3 (DV3) on neutrophil lifespan and functions. We show that DV3 extends neutrophil survival with a significant proportion of cells surviving for 72 h post-incubation. These effects on neutrophil survival were greater than those observed by adding GM-CSF and TNF-α alone, but these cytokines enhanced survival induced by the virus. Enhanced reactive oxygen species (ROS) generation was observed following incubation with DV3 activation and this ROS production was enhanced by co-incubation with priming agents. In addition, DV triggered the enhanced IL-8 expression by the majority of neutrophils and a low percentage of cells were activated to express MCP-1 (CCL2). A low number of neutrophils showed increased co-expression of the migratory markers, CCR7 and CXCR4 which could promote their migration towards lymph nodes. DV3 significantly upregulated the BCL-XL gene at 3, 12, and 24 h, and the Mcl-1 gene at 12 h, following treatment. We also show that DV3 induces the Mcl-1 protein stabilization similar to GM-CSF. This report sheds new light on the mechanisms by which neutrophils may contribute to the pathology of dengue disease via delayed apoptosis and generation of pro-inflammatory molecules, and raises the possibility that dengue-activated neutrophils may play a role in activating cells of adaptive immunity.
Collapse
Affiliation(s)
- Chatcharin Kamsom
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Steven W Edwards
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Jiraphon Thaosing
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Saitharn Papalee
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Chamsai Pientong
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen, Thailand
| | - Takeshi Kurosu
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | | |
Collapse
|
5
|
Krémer V, Godon O, Bruhns P, Jönsson F, de Chaisemartin L. Isolation methods determine human neutrophil responses after stimulation. Front Immunol 2023; 14:1301183. [PMID: 38077317 PMCID: PMC10704165 DOI: 10.3389/fimmu.2023.1301183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023] Open
Abstract
Studying neutrophils is challenging due to their limited lifespan, inability to proliferate, and resistance to genetic manipulation. Neutrophils can sense various cues, making them susceptible to activation by blood collection techniques, storage conditions, RBC lysis, and the isolation procedure itself. Here we assessed the impact of the five most used methods for neutrophil isolation on neutrophil yield, purity, activation status and responsiveness. We monitored surface markers, reactive oxygen species production, and DNA release as a surrogate for neutrophil extracellular trap (NET) formation. Our results show that neutrophils isolated by negative immunomagnetic selection and density gradient methods, without RBC lysis, resembled untouched neutrophils in whole blood. They were also less activated and more responsive to milder stimuli in functional assays compared to neutrophils obtained using density gradients requiring RBC lysis. Our study highlights the importance of selecting the appropriate method for studying neutrophils, and underscores the need for standardizing isolation protocols to facilitate neutrophil subset characterization and inter-study comparisons.
Collapse
Affiliation(s)
- Vanessa Krémer
- Institut Pasteur, Université Paris-Cité, Institut national de la santé et de la recherche (INSERM) Unité mixte de recherche (UMR)1222, Antibodies in Therapy and Pathology, Paris, France
- Inflammation, Microbiome and Immunosurveillance, INSERM, Université Paris-Saclay, Orsay, France
| | - Ophélie Godon
- Institut Pasteur, Université Paris-Cité, Institut national de la santé et de la recherche (INSERM) Unité mixte de recherche (UMR)1222, Antibodies in Therapy and Pathology, Paris, France
| | - Pierre Bruhns
- Institut Pasteur, Université Paris-Cité, Institut national de la santé et de la recherche (INSERM) Unité mixte de recherche (UMR)1222, Antibodies in Therapy and Pathology, Paris, France
| | - Friederike Jönsson
- Institut Pasteur, Université Paris-Cité, Institut national de la santé et de la recherche (INSERM) Unité mixte de recherche (UMR)1222, Antibodies in Therapy and Pathology, Paris, France
- Centre national de la recherche scientifique (CNRS), Paris, France
| | - Luc de Chaisemartin
- Institut Pasteur, Université Paris-Cité, Institut national de la santé et de la recherche (INSERM) Unité mixte de recherche (UMR)1222, Antibodies in Therapy and Pathology, Paris, France
- Inflammation, Microbiome and Immunosurveillance, INSERM, Université Paris-Saclay, Orsay, France
- L'Assistance Publique - Hôpitaux de Paris (APHP), Bichat Hospital, Immunology Department, Paris, France
| |
Collapse
|
6
|
Modestino L, Cristinziano L, Trocchia M, Ventrici A, Capone M, Madonna G, Loffredo S, Ferrara AL, Romanelli M, Simeone E, Varricchi G, Rossi FW, de Paulis A, Marone G, Ascierto PA, Galdiero MR. Melanoma-derived soluble mediators modulate neutrophil biological properties and the release of neutrophil extracellular traps. Cancer Immunol Immunother 2023; 72:3363-3376. [PMID: 37525065 PMCID: PMC10491523 DOI: 10.1007/s00262-023-03493-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/03/2023] [Indexed: 08/02/2023]
Abstract
Polymorphonuclear neutrophils (PMNs) are the main effector cells in the inflammatory response. The significance of PMN infiltration in the tumor microenvironment remains unclear. Metastatic melanoma is the most lethal skin cancer with an increasing incidence over the last few decades. This study aimed to investigate the role of PMNs and their related mediators in human melanoma. Highly purified human PMNs from healthy donors were stimulated in vitro with conditioned media (CM) derived from the melanoma cell lines SKMEL28 and A375 (melanoma CM), and primary melanocytes as controls. PMN biological properties (chemotaxis, survival, activation, cell tracking, morphology and NET release) were evaluated. We found that the A375 cell line produced soluble factors that promoted PMN chemotaxis, survival, activation and modification of morphological changes and kinetic properties. Furthermore, in both melanoma cell lines CM induced chemotaxis, activation and release of neutrophil extracellular traps (NETs) from PMNs. In contrast, the primary melanocyte CM did not modify the biological behavior of PMNs. In addition, serum levels of myeloperoxidase, matrix metalloprotease-9, CXCL8/IL-8, granulocyte and monocyte colony-stimulating factor and NETs were significantly increased in patients with advanced melanoma compared to healthy controls. Melanoma cell lines produce soluble factors able to "educate" PMNs toward an activated functional state. Patients with metastatic melanoma display increased circulating levels of neutrophil-related mediators and NETs. Further investigations are needed to better understand the role of these "tumor-educated neutrophils" in modifying melanoma cell behavior.
Collapse
Affiliation(s)
- Luca Modestino
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, 80131, Naples, Italy
- WAO Center of Excellence, University of Naples Federico II, 80131, Naples, Italy
| | - Leonardo Cristinziano
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, 80131, Naples, Italy
- WAO Center of Excellence, University of Naples Federico II, 80131, Naples, Italy
| | - Marialuisa Trocchia
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, 80131, Naples, Italy
- WAO Center of Excellence, University of Naples Federico II, 80131, Naples, Italy
| | - Annagioia Ventrici
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, 80131, Naples, Italy
- WAO Center of Excellence, University of Naples Federico II, 80131, Naples, Italy
| | - Mariaelena Capone
- Melanoma, Cancer Immunotherapy, and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS Fondazione "G. Pascale", 80131, Naples, Italy
| | - Gabriele Madonna
- Melanoma, Cancer Immunotherapy, and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS Fondazione "G. Pascale", 80131, Naples, Italy
| | - Stefania Loffredo
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, 80131, Naples, Italy
- WAO Center of Excellence, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council (CNR), 80131, Naples, Italy
| | - Anne Lise Ferrara
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, 80131, Naples, Italy
- WAO Center of Excellence, University of Naples Federico II, 80131, Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council (CNR), 80131, Naples, Italy
| | - Marilena Romanelli
- Melanoma, Cancer Immunotherapy, and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS Fondazione "G. Pascale", 80131, Naples, Italy
| | - Ester Simeone
- Melanoma, Cancer Immunotherapy, and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS Fondazione "G. Pascale", 80131, Naples, Italy
| | - Gilda Varricchi
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, 80131, Naples, Italy
- WAO Center of Excellence, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council (CNR), 80131, Naples, Italy
| | - Francesca Wanda Rossi
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, 80131, Naples, Italy
- WAO Center of Excellence, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy
| | - Amato de Paulis
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, 80131, Naples, Italy
- WAO Center of Excellence, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, 80131, Naples, Italy
- WAO Center of Excellence, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council (CNR), 80131, Naples, Italy
| | - Paolo Antonio Ascierto
- Melanoma, Cancer Immunotherapy, and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS Fondazione "G. Pascale", 80131, Naples, Italy
| | - Maria Rosaria Galdiero
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, 80131, Naples, Italy.
- WAO Center of Excellence, University of Naples Federico II, 80131, Naples, Italy.
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy.
| |
Collapse
|
7
|
CD14 +-Monocytes Exposed to Apolipoprotein CIII Express Tissue Factor. Int J Mol Sci 2023; 24:ijms24032223. [PMID: 36768547 PMCID: PMC9916694 DOI: 10.3390/ijms24032223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Apolipoprotein CIII (ApoCIII) represents a key regulator of plasma lipid metabolism and a recognized risk factor for atherosclerosis and cardiovascular diseases. Beyond the regulation of lipoprotein trafficking, ApoCIII is also involved in endothelial dysfunction and monocyte recruitment related to atherothrombosis. With tissue factor (TF) being the primary initiator of the blood coagulation cascade, we hypothesized that ApoCIII-treated monocytes could express it. Hence, human CD14+-monocytes and autologous neutrophils were incubated with ApoCIII and sera from human subjects containing previously measured ApoCIII amounts. By RT-qPCR and ELISA, CD14+-monocytes, but not neutrophils, were found to show increased mRNA expression and production of TNFα, IL-1β and IL-6 as well as TF mRNA once exposed to ultra-purified ApoCIII. By flow cytometry, CD14+-monocytes were found to rapidly express TF on their cell surface membrane when incubated with either ApoCIII or sera with known concentrations of ApoCIII. Finally, preincubation with specific ApoCIII-neutralizing antibodies significantly reduced the ability of most sera with known concentrations of ApoCIII to upregulate TF protein, other than partially inhibiting cytokine release, in CD14+-monocytes. In sum, herein we demonstrate that ApoCIII activates CD14+-monocytes to express TF. The data identify a potential mechanism which links circulating apolipoproteins with inflammation and atherothrombosis-related processes underlying cardiovascular risk.
Collapse
|
8
|
Reichinger D, Reithofer M, Hohagen M, Drinic M, Tobias J, Wiedermann U, Kleitz F, Jahn-Schmid B, Becker CFW. A Biomimetic, Silaffin R5-Based Antigen Delivery Platform. Pharmaceutics 2022; 15:pharmaceutics15010121. [PMID: 36678751 PMCID: PMC9866965 DOI: 10.3390/pharmaceutics15010121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/22/2022] [Accepted: 12/24/2022] [Indexed: 01/01/2023] Open
Abstract
Nature offers a wide range of evolutionary optimized materials that combine unique properties with intrinsic biocompatibility and that can be exploited as biomimetic materials. The R5 and RRIL peptides employed here are derived from silaffin proteins that play a crucial role in the biomineralization of marine diatom silica shells and are also able to form silica materials in vitro. Here, we demonstrate the application of biomimetic silica particles as a vaccine delivery and adjuvant platform by linking the precipitating peptides R5 and the RRIL motif to a variety of peptide antigens. The resulting antigen-loaded silica particles combine the advantages of biomaterial-based vaccines with the proven intracellular uptake of silica particles. These particles induce NETosis in human neutrophils as well as IL-6 and TNF-α secretion in murine bone marrow-derived dendritic cells.
Collapse
Affiliation(s)
- Daniela Reichinger
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 38, 1090 Vienna, Austria
- Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, Währinger Str. 42, 1090 Vienna, Austria
| | - Manuel Reithofer
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
- Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, Gregor-Mendel-Straße 33, 1180 Vienna, Austria
| | - Mariam Hohagen
- Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, Währinger Str. 42, 1090 Vienna, Austria
- Department of Inorganic Chemistry–Functional Materials, Faculty of Chemistry, University of Vienna, Währinger Str. 42, 1090 Vienna, Austria
| | - Mirjana Drinic
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Kinderspitalgasse 15, 1090 Vienna, Austria
| | - Joshua Tobias
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Kinderspitalgasse 15, 1090 Vienna, Austria
| | - Ursula Wiedermann
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Kinderspitalgasse 15, 1090 Vienna, Austria
| | - Freddy Kleitz
- Department of Inorganic Chemistry–Functional Materials, Faculty of Chemistry, University of Vienna, Währinger Str. 42, 1090 Vienna, Austria
| | - Beatrice Jahn-Schmid
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Christian F. W. Becker
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 38, 1090 Vienna, Austria
- Correspondence:
| |
Collapse
|
9
|
Gardiman E, Bianchetto-Aguilera F, Gasperini S, Tiberio L, Scandola M, Lotti V, Gibellini D, Salvi V, Bosisio D, Cassatella MA, Tamassia N. SARS-CoV-2-Associated ssRNAs Activate Human Neutrophils in a TLR8-Dependent Fashion. Cells 2022; 11:3785. [PMID: 36497044 PMCID: PMC9738506 DOI: 10.3390/cells11233785] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/08/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
COVID-19 disease is characterized by a dysregulation of the innate arm of the immune system. However, the mechanisms whereby innate immune cells, including neutrophils, become activated in patients are not completely understood. Recently, we showed that GU-rich RNA sequences from the SARS-CoV-2 genome (i.e., SCV2-RNA1 and SCV2-RNA2) activate dendritic cells. To clarify whether human neutrophils may also represent targets of SCV2-RNAs, neutrophils were treated with either SCV2-RNAs or, as a control, R848 (a TLR7/8 ligand), and were then analyzed for several functional assays and also subjected to RNA-seq experiments. Results highlight a remarkable response of neutrophils to SCV2-RNAs in terms of TNFα, IL-1ra, CXCL8 production, apoptosis delay, modulation of CD11b and CD62L expression, and release of neutrophil extracellular traps. By RNA-seq experiments, we observed that SCV2-RNA2 promotes a transcriptional reprogramming of neutrophils, characterized by the induction of thousands of proinflammatory genes, similar to that promoted by R848. Furthermore, by using CU-CPT9a, a TLR8-specific inhibitor, we found that SCV2-RNA2 stimulates neutrophils exclusively via TLR8-dependent pathways. In sum, our study proves that single-strand RNAs from the SARS-CoV-2 genome potently activate human neutrophils via TLR8, thus uncovering a potential mechanism whereby neutrophils may contribute to the pathogenesis of severe COVID-19 disease.
Collapse
Affiliation(s)
- Elisa Gardiman
- General Pathology Section, Department of Medicine, University of Verona, 37134 Verona, Italy
| | | | - Sara Gasperini
- General Pathology Section, Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Laura Tiberio
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Matteo Scandola
- General Pathology Section, Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Virginia Lotti
- Microbiology Section, Department of Diagnostic and Public Health, University of Verona, 37134 Verona, Italy
| | - Davide Gibellini
- Microbiology Section, Department of Diagnostic and Public Health, University of Verona, 37134 Verona, Italy
| | - Valentina Salvi
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Daniela Bosisio
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Marco A. Cassatella
- General Pathology Section, Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Nicola Tamassia
- General Pathology Section, Department of Medicine, University of Verona, 37134 Verona, Italy
| |
Collapse
|
10
|
Polak D, Bohle B. Neutrophils-typical atypical antigen presenting cells? Immunol Lett 2022; 247:52-58. [DOI: 10.1016/j.imlet.2022.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/28/2022] [Accepted: 04/28/2022] [Indexed: 11/05/2022]
|
11
|
The PDE4 Inhibitor Tanimilast Restrains the Tissue-Damaging Properties of Human Neutrophils. Int J Mol Sci 2022; 23:ijms23094982. [PMID: 35563373 PMCID: PMC9104715 DOI: 10.3390/ijms23094982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 02/04/2023] Open
Abstract
Neutrophils, the most abundant subset of leukocytes in the blood, play a pivotal role in host response against invading pathogens. However, in respiratory diseases, excessive infiltration and activation of neutrophils can lead to tissue damage. Tanimilast-international non-proprietary name of CHF6001—is a novel inhaled phosphodiesterase 4 (PDE4) inhibitor in advanced clinical development for the treatment of chronic obstructive pulmonary disease (COPD), a chronic inflammatory lung disease where neutrophilic inflammation plays a key pathological role. Human neutrophils from healthy donors were exposed to pro-inflammatory stimuli in the presence or absence of tanimilast and budesonide—a typical inhaled corticosteroid drug-to investigate the modulation of effector functions including adherence to endothelial cells, granule protein exocytosis, release of extracellular DNA traps, cytokine secretion, and cell survival. Tanimilast significantly decreased neutrophil-endothelium adhesion, degranulation, extracellular DNA traps casting, and cytokine secretion. In contrast, it promoted neutrophil survival by decreasing both spontaneous apoptosis and cell death in the presence of pro-survival factors. The present work suggests that tanimilast can alleviate the severe tissue damage caused by massive recruitment and activation of neutrophils in inflammatory diseases such as COPD.
Collapse
|
12
|
Calzetti F, Finotti G, Tamassia N, Bianchetto-Aguilera F, Castellucci M, Canè S, Lonardi S, Cavallini C, Matte A, Gasperini S, Signoretto I, Benedetti F, Bonifacio M, Vermi W, Ugel S, Bronte V, Tecchio C, Scapini P, Cassatella MA. CD66b -CD64 dimCD115 - cells in the human bone marrow represent neutrophil-committed progenitors. Nat Immunol 2022; 23:679-691. [PMID: 35484408 DOI: 10.1038/s41590-022-01189-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 03/15/2022] [Indexed: 12/15/2022]
Abstract
Here we report the identification of human CD66b-CD64dimCD115- neutrophil-committed progenitor cells (NCPs) within the SSCloCD45dimCD34+ and CD34dim/- subsets in the bone marrow. NCPs were either CD45RA+ or CD45RA-, and in vitro experiments showed that CD45RA acquisition was not mandatory for their maturation process. NCPs exclusively generated human CD66b+ neutrophils in both in vitro differentiation and in vivo adoptive transfer experiments. Single-cell RNA-sequencing analysis indicated NCPs fell into four clusters, characterized by different maturation stages and distributed along two differentiation routes. One of the clusters was characterized by an interferon-stimulated gene signature, consistent with the reported expansion of peripheral mature neutrophil subsets that express interferon-stimulated genes in diseased individuals. Finally, comparison of transcriptomic and phenotypic profiles indicated NCPs represented earlier neutrophil precursors than the previously described early neutrophil progenitors (eNePs), proNeus and COVID-19 proNeus. Altogether, our data shed light on the very early phases of neutrophil ontogeny.
Collapse
Affiliation(s)
- Federica Calzetti
- Section of General Pathology, Department of Medicine, University of Verona, Verona, Italy
| | - Giulia Finotti
- Section of General Pathology, Department of Medicine, University of Verona, Verona, Italy
| | - Nicola Tamassia
- Section of General Pathology, Department of Medicine, University of Verona, Verona, Italy
| | | | | | - Stefania Canè
- Section of Immunology, Department of Medicine, University of Verona, Verona, Italy
| | - Silvia Lonardi
- Unit of Pathology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Chiara Cavallini
- Interdepartmental Laboratory of Medical Research, Research Center LURM, University of Verona, Verona, Italy
| | - Alessandro Matte
- Section of Internal Medicine B, Department of Medicine, University of Verona and AOUI Verona, Verona, Italy
| | - Sara Gasperini
- Section of General Pathology, Department of Medicine, University of Verona, Verona, Italy
| | - Ilaria Signoretto
- Section of General Pathology, Department of Medicine, University of Verona, Verona, Italy
| | - Fabio Benedetti
- Section of Hematology and Bone Marrow Transplant Unit, Department of Medicine, University of Verona, Verona, Italy
| | - Massimiliano Bonifacio
- Section of Hematology and Bone Marrow Transplant Unit, Department of Medicine, University of Verona, Verona, Italy
| | - William Vermi
- Unit of Pathology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Stefano Ugel
- Section of Immunology, Department of Medicine, University of Verona, Verona, Italy
| | - Vincenzo Bronte
- Section of Immunology, Department of Medicine, University of Verona, Verona, Italy
| | - Cristina Tecchio
- Section of Hematology and Bone Marrow Transplant Unit, Department of Medicine, University of Verona, Verona, Italy
| | - Patrizia Scapini
- Section of General Pathology, Department of Medicine, University of Verona, Verona, Italy
| | - Marco A Cassatella
- Section of General Pathology, Department of Medicine, University of Verona, Verona, Italy.
| |
Collapse
|
13
|
Pollenus E, Gouwy M, Van den Steen PE. Neutrophils in malaria: the good, the bad or the ugly? Parasite Immunol 2022; 44:e12912. [PMID: 35175636 DOI: 10.1111/pim.12912] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/09/2022] [Accepted: 02/13/2022] [Indexed: 11/30/2022]
Abstract
Neutrophils are the most abundant circulating leukocytes in human peripheral blood. They are often the first cells to respond to an invading pathogen and might therefore play an important role in malaria. Malaria is a globally important disease caused by Plasmodium parasites, responsible for more than 400 000 deaths each year. Most of these deaths are caused by complications, including cerebral malaria, severe malarial anemia, placental malaria, renal injury, metabolic problems and malaria-associated acute respiratory distress syndrome. Neutrophils contribute in the immune defense against malaria, through clearance of parasites via phagocytosis, production of reactive oxygen species and release of neutrophil extracellular traps (NETs). However, Plasmodium parasites diminish antibacterial functions of neutrophils, making patients more susceptible to other infections. Neutrophils might also be involved in the development of malaria complications, for example via the release of toxic granules and NETs. However, technical pitfalls in the determination of the roles of neutrophils have caused contradicting results. Further investigations need to consider these pitfalls, in order to elucidate the role of neutrophils in malaria complications.
Collapse
Affiliation(s)
- Emilie Pollenus
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, University of Leuven, Leuven, Belgium
| | - Mieke Gouwy
- Laboratory of Molecular immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, University of Leuven, Leuven, Belgium
| | - Philippe E Van den Steen
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, University of Leuven, Leuven, Belgium
| |
Collapse
|
14
|
Malengier-Devlies B, Metzemaekers M, Wouters C, Proost P, Matthys P. Neutrophil Homeostasis and Emergency Granulopoiesis: The Example of Systemic Juvenile Idiopathic Arthritis. Front Immunol 2021; 12:766620. [PMID: 34966386 PMCID: PMC8710701 DOI: 10.3389/fimmu.2021.766620] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/23/2021] [Indexed: 12/21/2022] Open
Abstract
Neutrophils are key pathogen exterminators of the innate immune system endowed with oxidative and non-oxidative defense mechanisms. More recently, a more complex role for neutrophils as decision shaping cells that instruct other leukocytes to fine-tune innate and adaptive immune responses has come into view. Under homeostatic conditions, neutrophils are short-lived cells that are continuously released from the bone marrow. Their development starts with undifferentiated hematopoietic stem cells that pass through different immature subtypes to eventually become fully equipped, mature neutrophils capable of launching fast and robust immune responses. During severe (systemic) inflammation, there is an increased need for neutrophils. The hematopoietic system rapidly adapts to this increased demand by switching from steady-state blood cell production to emergency granulopoiesis. During emergency granulopoiesis, the de novo production of neutrophils by the bone marrow and at extramedullary sites is augmented, while additional mature neutrophils are rapidly released from the marginated pools. Although neutrophils are indispensable for host protection against microorganisms, excessive activation causes tissue damage in neutrophil-rich diseases. Therefore, tight regulation of neutrophil homeostasis is imperative. In this review, we discuss the kinetics of neutrophil ontogenesis in homeostatic conditions and during emergency myelopoiesis and provide an overview of the different molecular players involved in this regulation. We substantiate this review with the example of an autoinflammatory disease, i.e. systemic juvenile idiopathic arthritis.
Collapse
Affiliation(s)
- Bert Malengier-Devlies
- Department of Microbiology, Immunology and Transplantation, Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Mieke Metzemaekers
- Department of Microbiology, Immunology and Transplantation, Laboratory of Molecular Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Carine Wouters
- Department of Microbiology, Immunology and Transplantation, Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium.,Division of Pediatric Rheumatology, University Hospitals Leuven, Leuven, Belgium.,European Reference Network for Rare Immunodeficiency, Autoinflammatory and Autoimmune Diseases (RITA) at University Hospital Leuven, Leuven, Belgium
| | - Paul Proost
- Department of Microbiology, Immunology and Transplantation, Laboratory of Molecular Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Patrick Matthys
- Department of Microbiology, Immunology and Transplantation, Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| |
Collapse
|
15
|
Neutrophils in Streptococcus suis Infection: From Host Defense to Pathology. Microorganisms 2021; 9:microorganisms9112392. [PMID: 34835517 PMCID: PMC8624082 DOI: 10.3390/microorganisms9112392] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/11/2021] [Accepted: 11/17/2021] [Indexed: 01/02/2023] Open
Abstract
Streptococcus suis is a swine pathogen and zoonotic agent responsible for economic losses to the porcine industry. Infected animals may develop meningitis, arthritis, endocarditis, sepsis and/or sudden death. The pathogenesis of the infection implies that bacteria breach mucosal host barriers and reach the bloodstream, where they escape immune-surveillance mechanisms and spread throughout the organism. The clinical manifestations are mainly the consequence of an exacerbated inflammation, defined by an exaggerated production of cytokines and recruitment of immune cells. Among them, neutrophils arrive first in contact with the pathogens to combat the infection. Neutrophils initiate and maintain inflammation, by producing cytokines and deploying their arsenal of antimicrobial mechanisms. Furthermore, neutrophilic leukocytosis characterizes S. suis infection, and lesions of infected subjects contain a large number of neutrophils. Therefore, this cell type may play a role in host defense and/or in the exacerbated inflammation. Nevertheless, a limited number of studies addressed the role or functions of neutrophils in the context of S. suis infection. In this review, we will explore the literature about S. suis and neutrophils, from their interaction at a cellular level, to the roles and behaviors of neutrophils in the infected host in vivo.
Collapse
|
16
|
Varricchi G, Modestino L, Poto R, Cristinziano L, Gentile L, Postiglione L, Spadaro G, Galdiero MR. Neutrophil extracellular traps and neutrophil-derived mediators as possible biomarkers in bronchial asthma. Clin Exp Med 2021; 22:285-300. [PMID: 34342773 PMCID: PMC9110438 DOI: 10.1007/s10238-021-00750-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 07/25/2021] [Indexed: 12/21/2022]
Abstract
Neutrophils (PMNs) contain and release a powerful arsenal of mediators, including several granular enzymes, reactive oxygen species (ROS) and neutrophil extracellular traps (NETs). Although airway neutrophilia is associated with severity, poor response to glucocorticoids and exacerbations, the pathophysiological role of neutrophils in asthma remains poorly understood. Twenty-four patients with asthma and 22 healthy controls (HCs) were prospectively recruited. Highly purified peripheral blood neutrophils (> 99%) were evaluated for ROS production and activation status upon stimulation with lipopolysaccharide (LPS), N-formylmethionyl-leucyl-phenylalanine (fMLP) and phorbol 12-myristate 13-acetate (PMA). Plasma levels of myeloperoxidase (MPO), CXCL8, matrix metalloproteinase-9 (MMP-9), granulocyte–monocyte colony-stimulating factor (GM-CSF) and vascular endothelial growth factor (VEGF-A) were measured by ELISA. Plasma concentrations of citrullinated histone H3 (CitH3) and circulating free DNA (dsDNA) were evaluated as NET biomarkers. Activated PMNs from asthmatics displayed reduced ROS production and activation status compared to HCs. Plasma levels of MPO, MMP-9 and CXCL8 were increased in asthmatics compared to HCs. CitH3 and dsDNA plasma levels were increased in asthmatics compared to controls and the CitH3 concentrations were inversely correlated to the % decrease in FEV1/FVC in asthmatics. These findings indicate that neutrophils and their mediators could have an active role in asthma pathophysiology.
Collapse
Affiliation(s)
- Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, 80131, Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, 80131, Naples, Italy
| | - Luca Modestino
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, 80131, Naples, Italy
| | - Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, 80131, Naples, Italy
| | - Leonardo Cristinziano
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, 80131, Naples, Italy
| | - Luca Gentile
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, 80131, Naples, Italy
| | - Loredana Postiglione
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, 80131, Naples, Italy
| | - Giuseppe Spadaro
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, 80131, Naples, Italy
| | - Maria Rosaria Galdiero
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy.
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy.
- World Allergy Organization (WAO) Center of Excellence, 80131, Naples, Italy.
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, 80131, Naples, Italy.
| |
Collapse
|
17
|
Lo LW, Chang CW, Chiang MF, Lin IY, Lin KI. Marginal Zone B Cells Assist With Neutrophil Accumulation to Fight Against Systemic Staphylococcus aureus Infection. Front Immunol 2021; 12:636818. [PMID: 34040603 PMCID: PMC8141640 DOI: 10.3389/fimmu.2021.636818] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 04/13/2021] [Indexed: 12/15/2022] Open
Abstract
In addition to regulating immune responses by producing antibodies that confer humoral immunity, B cells can also affect these responses by producing cytokines. How B cells participate in the clearance of pathogenic infections via functions other than the production of pathogen-specific antibodies is still largely unknown. Marginal zone (MZ) B cells can quickly respond to bacterial invasion by providing the initial round of antibodies. After a bloodborne bacterial infection, neutrophils promptly migrate to the MZ. However, the mechanisms regulating neutrophil accumulation in the MZ during the initial phase of infection also remain obscure. Here, we found that MZ B cell-deficient mice are more susceptible to systemic Staphylococcus aureus (S. aureus) infection compared with wildtype mice. The expression levels of interleukin (IL)-6 and CXCL1/CXCL2 in MZ B cells increased significantly in mice at 3–4 h after infection with S. aureus, then decreased at 24 h post-infection. After systemic S. aureus infection, splenic neutrophils express increased CXCR2 levels. Our results from confocal microscopy imaging of thick-section staining demonstrate that neutrophils in wildtype mice form cell clusters and are in close contact with MZ B cells at 3 h post-infection. This neutrophil cluster formation shortly after infection was diminished in both MZ B cell-deficient mice and IL-6-deficient mice. Blocking the action of CXCL1/CXCL2 by injecting anti-CXCL1 and anti-CXCL2 antibodies 1 h before S. aureus infection significantly suppressed the recruitment of neutrophils to the MZ at 3 h post-infection. Compared with peptidoglycan stimulation alone, peptidoglycan stimulation with neutrophil co-culture further enhanced MZ B-cell activation and differentiation. Using a Förster resonance energy transfer by fluorescence lifetime imaging (FLIM-FRET) analysis, we observed evidence of a direct interaction between neutrophils and MZ B cells after peptidoglycan stimulation. Furthermore, neutrophil depletion in mice resulted in a reduced production of S. aureus-specific immunoglobulin (Ig)M at 24 h post-infection. Together, our results demonstrate that MZ B cells regulate the rapid neutrophil swarming into the spleen during the early phase of systemic S. aureus infection. Interaction with neutrophils assists MZ B cells with their differentiation into IgM-secreting cells and contributes to the clearance of systemic bacterial infections.
Collapse
Affiliation(s)
- Li-Wen Lo
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Chia-Wei Chang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | | | - I-Ying Lin
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Kuo-I Lin
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Genomics Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
18
|
Induction of OCT2 contributes to regulate the gene expression program in human neutrophils activated via TLR8. Cell Rep 2021; 35:109143. [PMID: 34010659 DOI: 10.1016/j.celrep.2021.109143] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/27/2021] [Accepted: 04/26/2021] [Indexed: 12/23/2022] Open
Abstract
The transcription factors (TFs) that regulate inducible genes in activated neutrophils are not yet completely characterized. Herein, we show that the genomic distribution of the histone modification H3K27Ac, as well as PU.1 and C/EBPβ, two myeloid-lineage-determining TFs (LDTFs), significantly changes in human neutrophils treated with R848, a ligand of Toll-like receptor 8 (TLR8). Interestingly, differentially acetylated and LDTF-marked regions reveal an over-representation of OCT-binding motifs that are selectively bound by OCT2/POU2F2. Analysis of OCT2 genomic distribution in primary neutrophils and of OCT2-depletion in HL-60-differentiated neutrophils proves the requirement for OCT2 in contributing to promote, along with nuclear factor κB (NF-κB) and activator protein 1 (AP-1), the TLR8-induced gene expression program in neutrophils. Altogether, our data demonstrate that neutrophils, upon activation via TLR8, profoundly reprogram their chromatin status, ultimately displaying cell-specific, prolonged transcriptome changes. Data also show an unexpected role for OCT2 in amplifying the transcriptional response to TLR8-mediated activation.
Collapse
|
19
|
Tecchio C, Cassatella MA. Uncovering the multifaceted roles played by neutrophils in allogeneic hematopoietic stem cell transplantation. Cell Mol Immunol 2021; 18:905-918. [PMID: 33203938 PMCID: PMC8115169 DOI: 10.1038/s41423-020-00581-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 10/22/2020] [Indexed: 02/07/2023] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (alloHSCT) is a life-saving procedure used for the treatment of selected hematological malignancies, inborn errors of metabolism, and bone marrow failures. The role of neutrophils in alloHSCT has been traditionally evaluated only in the context of their ability to act as a first line of defense against infection. However, recent evidence has highlighted neutrophils as key effectors of innate and adaptive immune responses through a wide array of newly discovered functions. Accordingly, neutrophils are emerging as highly versatile cells that are able to acquire different, often opposite, functional capacities depending on the microenvironment and their differentiation status. Herein, we review the current knowledge on the multiple functions that neutrophils exhibit through the different stages of alloHSCT, from the hematopoietic stem cell (HSC) mobilization in the donor to the immunological reconstitution that occurs in the recipient following HSC infusion. We also discuss the influence exerted on neutrophils by the immunosuppressive drugs delivered in the course of alloHSCT as part of graft-versus-host disease (GVHD) prophylaxis. Finally, the potential involvement of neutrophils in alloHSCT-related complications, such as transplant-associated thrombotic microangiopathy (TA-TMA), acute and chronic GVHD, and cytomegalovirus (CMV) reactivation, is also discussed. Based on the data reviewed herein, the role played by neutrophils in alloHSCT is far greater than a simple antimicrobial role. However, much remains to be investigated in terms of the potential functions that neutrophils might exert during a highly complex procedure such as alloHSCT.
Collapse
Affiliation(s)
- Cristina Tecchio
- Department of Medicine, Section of Hematology and Bone Marrow Transplant Unit, University of Verona, Verona, Italy.
| | | |
Collapse
|
20
|
Lonardi S, Missale F, Calza S, Bugatti M, Vescovi R, Debora B, Uppaluri R, Egloff AM, Mattavelli D, Lombardi D, Benerini Gatta L, Marini O, Tamassia N, Gardiman E, Cassatella MA, Scapini P, Nicolai P, Vermi W. Tumor-associated neutrophils (TANs) in human carcinoma-draining lymph nodes: a novel TAN compartment. Clin Transl Immunology 2021; 10:e1252. [PMID: 33643653 PMCID: PMC7886597 DOI: 10.1002/cti2.1252] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/04/2020] [Accepted: 01/19/2021] [Indexed: 12/21/2022] Open
Abstract
Objectives The role of tumor‐associated neutrophils (TANs) in the nodal spread of cancer cells remains unexplored. The present study evaluates the occurrence and clinical significance of human nodal TANs. Methods The relevance, derivation, phenotype and interactions of nodal TANs were explored via a large immunohistochemical analysis of carcinoma‐draining lymph nodes, and their clinical significance was evaluated on a retrospective cohort of oral squamous cell carcinomas (OSCC). The tumor‐promoting function of nodal TAN was probed in the OSCC TCGA dataset combining TAN and epithelial‐to‐mesenchymal transition (EMT) signatures. Results The pan‐carcinoma screening identified a consistent infiltration (59%) of CD66b+ TANs in tumor‐draining lymph nodes (TDLNs). Microscopic findings, including the occurrence of intra‐lymphatic conjugates of TANs and cancer cells, indicate that TANs migrate through lymphatic vessels. In vitro experiments revealed that OSCC cell lines sustain neutrophil viability and activation via release of GM‐CSF. Moreover, by retrospective analysis, a high CD66b+ TAN density in M‐TDLNs of OSCC (n = 182 patients) predicted a worse prognosis. The analysis of the OSCC‐TCGA dataset unveiled that the expression of a set of neutrophil‐specific genes in the primary tumor (PT) is highly associated with an EMT signature, which predicts nodal spread. Accordingly, in the PT of OSCC cases, CD66b+TANs co‐localised with PDPN+S100A9− EMT‐switched tumor cells in areas of lymphangiogenesis. The pro‐EMT signature is lacking in peripheral blood neutrophils from OSCC patients, suggesting tissue skewing of TANs. Conclusion Our findings are consistent with a novel pro‐tumoral TAN compartment that may promote nodal spread via EMT, through the lymphatics.
Collapse
Affiliation(s)
- Silvia Lonardi
- Section of Pathology Department of Molecular and Translational Medicine University of Brescia Brescia Italy.,ASST- Spedali Civili di Brescia Brescia Italy
| | - Francesco Missale
- Unit of Otorhinolaryngology - Head and Neck Surgery Department of Surgical Specialties Radiological Sciences, and Public Health University of Brescia Brescia Italy.,IRCCS Ospedale Policlinico San Martino Unit of Otorhinolaryngology, Head and Neck Surgery Department of Surgical and Diagnostic Integrated Sciences University of Genoa Genoa Italy
| | - Stefano Calza
- Unit of Biostatistics Department of Molecular and Translational Medicine University of Brescia Brescia Italy.,Department of Medical Epidemiology and Biostatistics Karolinska Institutet Stockholm Sweden.,Big&Open Data Innovation Laboratory University of Brescia Brescia Italy
| | - Mattia Bugatti
- Section of Pathology Department of Molecular and Translational Medicine University of Brescia Brescia Italy.,ASST- Spedali Civili di Brescia Brescia Italy
| | - Raffaella Vescovi
- Section of Pathology Department of Molecular and Translational Medicine University of Brescia Brescia Italy
| | - Bresciani Debora
- Section of Pathology Department of Molecular and Translational Medicine University of Brescia Brescia Italy.,ASST- Spedali Civili di Brescia Brescia Italy
| | - Ravindra Uppaluri
- Department of Surgery/Otolaryngology Brigham and Women's Hospital and Dana-Farber Cancer Institute and Harvard Medical School Boston MA USA
| | - Ann Marie Egloff
- Department of Surgery/Otolaryngology Brigham and Women's Hospital and Dana-Farber Cancer Institute and Harvard Medical School Boston MA USA
| | - Davide Mattavelli
- Unit of Otorhinolaryngology - Head and Neck Surgery Department of Surgical Specialties Radiological Sciences, and Public Health University of Brescia Brescia Italy
| | - Davide Lombardi
- ASST- Spedali Civili di Brescia Brescia Italy.,Unit of Otorhinolaryngology - Head and Neck Surgery Department of Surgical Specialties Radiological Sciences, and Public Health University of Brescia Brescia Italy
| | - Luisa Benerini Gatta
- Section of Pathology Department of Molecular and Translational Medicine University of Brescia Brescia Italy.,ASST- Spedali Civili di Brescia Brescia Italy
| | - Olivia Marini
- Section of General Pathology Department of Medicine University of Verona Verona Italy
| | - Nicola Tamassia
- Section of General Pathology Department of Medicine University of Verona Verona Italy
| | - Elisa Gardiman
- Section of General Pathology Department of Medicine University of Verona Verona Italy
| | - Marco A Cassatella
- Section of General Pathology Department of Medicine University of Verona Verona Italy
| | - Patrizia Scapini
- Section of General Pathology Department of Medicine University of Verona Verona Italy
| | - Piero Nicolai
- ASST- Spedali Civili di Brescia Brescia Italy.,Unit of Otorhinolaryngology - Head and Neck Surgery Department of Surgical Specialties Radiological Sciences, and Public Health University of Brescia Brescia Italy
| | - William Vermi
- Section of Pathology Department of Molecular and Translational Medicine University of Brescia Brescia Italy.,ASST- Spedali Civili di Brescia Brescia Italy.,Department of Pathology and Immunology Washington University Saint Louis MO USA
| |
Collapse
|
21
|
Libreros S, Shay AE, Nshimiyimana R, Fichtner D, Martin MJ, Wourms N, Serhan CN. A New E-Series Resolvin: RvE4 Stereochemistry and Function in Efferocytosis of Inflammation-Resolution. Front Immunol 2021; 11:631319. [PMID: 33643307 PMCID: PMC7902526 DOI: 10.3389/fimmu.2020.631319] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 12/23/2020] [Indexed: 12/26/2022] Open
Abstract
The resolution of the acute inflammatory response is governed by phagocytes actively clearing apoptotic cells and pathogens. Biosynthesis of the specialized pro-resolving mediators (SPMs) is pivotal in the resolution of inflammation via their roles in innate immune cells. Resolvin E4 (RvE4: 5S,15S-dihydroxy-eicosapentaenoic acid) is a newly uncovered member of the E-series resolvins biosynthesized from eicosapentaenoic acid (EPA) recently elucidated in physiologic hypoxia. This new resolvin was termed RvE4 given its ability to increase efferocytosis of apoptotic cells by macrophages. Herein, we report on the total organic synthesis of RvE4 confirming its unique structure, complete stereochemistry assignment and function. This synthetic RvE4 matched the physical properties of biogenic RvE4 material, i.e. ultra-violet (UV) absorbance, chromatographic behavior, and tandem mass spectrometry (MS2) fragmentation, as well as bioactivity. We confirmed RvE4 potent responses with human M2 macrophage efferocytosis of human apoptotic neutrophils and senescent red blood cells. Together, these results provide direct evidence for the assignment of the complete stereochemistry of RvE4 as 5S,15S-dihydroxy-6E,8Z,11Z,13E,17Z-eicosapentaenoic acid and its bioactions in human phagocyte response.
Collapse
Affiliation(s)
- Stephania Libreros
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Ashley E Shay
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Robert Nshimiyimana
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - David Fichtner
- Cayman Chemical, Research and Development Department, Ann Arbor, MI, United States
| | - Michael J Martin
- Cayman Chemical, Research and Development Department, Ann Arbor, MI, United States
| | - Nicholas Wourms
- Cayman Chemical, Research and Development Department, Ann Arbor, MI, United States
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
22
|
Rambault M, Borkute R, Doz-Deblauwe E, Le-Vern Y, Winter N, Dorhoi A, Remot A. Isolation of Bovine Neutrophils by Fluorescence- and Magnetic-Activated Cell Sorting. Methods Mol Biol 2021; 2236:203-217. [PMID: 33237550 DOI: 10.1007/978-1-0716-1060-2_16] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Flow cytometry and magnetic bead technology enable the separation of cell populations with the highest degree of purity. Here, we describe protocols to sort bovine neutrophils from blood, the labeling and sorting, including gating strategies. We also provide advice to preserve neutrophil viability and detail a protocol to measure phagocytosis and oxidative species production.
Collapse
Affiliation(s)
| | - Rachana Borkute
- Institute of Immunology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | | | | | | | - Anca Dorhoi
- Institute of Immunology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany.
- Faculty of Mathematics and Natural Sciences, University of Greifswald, Greifswald, Germany.
| | - Aude Remot
- INRAE, Univ Tours, ISP, Nouzilly, France.
| |
Collapse
|
23
|
Miralda I, Uriarte SM. Periodontal Pathogens' strategies disarm neutrophils to promote dysregulated inflammation. Mol Oral Microbiol 2020; 36:103-120. [PMID: 33128827 PMCID: PMC8048607 DOI: 10.1111/omi.12321] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/16/2020] [Accepted: 10/28/2020] [Indexed: 12/26/2022]
Abstract
Periodontitis is an irreversible, chronic inflammatory disease where inflammophilic pathogenic microbial communities accumulate in the gingival crevice. Neutrophils are a major component of the innate host response against bacterial challenge, and under homeostatic conditions, their microbicidal functions typically protect the host against periodontitis. However, a number of periodontal pathogens developed survival strategies to evade neutrophil microbicidal functions while promoting inflammation, which provides a source of nutrients for bacterial growth. Research on periodontal pathogens has largely focused on a few established species: Tannerella forsythia, Treponema denticola, Fusobacterium nucleatum, Aggregatibacter actinomycetemcomitans, and Porphyromonas gingivalis. However, advances in culture-independent techniques have facilitated the identification of new bacterial species in periodontal lesions, such as the two Gram-positive anaerobes, Filifactor alocis and Peptoanaerobacter stomatis, whose characterization of pathogenic potential has not been fully described. Additionally, there is not a full understanding of the pathogenic mechanisms used against neutrophils by organisms that are abundant in periodontal lesions. This presents a substantial barrier to the development of new approaches to prevent or ameliorate the disease. In this review, we first summarize the neutrophil functions affected by the established periodontal pathogens listed above, denoting unknown areas that still merit a closer look. Then, we review the literature on neutrophil functions and the emerging periodontal pathogens, F. alocis and P. stomatis, comparing the effects of the emerging microbes to that of established pathogens, and speculate on the contribution of these putative pathogens to the progression of periodontal disease.
Collapse
Affiliation(s)
- Irina Miralda
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, USA
| | - Silvia M Uriarte
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, USA
| |
Collapse
|
24
|
Cassatella MA, Scapini P. On the Improper Use of the Term High-Density Neutrophils. Trends Immunol 2020; 41:1059-1061. [PMID: 33160842 DOI: 10.1016/j.it.2020.10.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 01/02/2023]
Abstract
Recent studies have revealed that neutrophils exhibit an unsuspected heterogeneity. In this context, the term high-density neutrophils (HDNs) has recently gained ground to define nothing more than neutrophils displaying an unaltered normal density. Therefore, as discussed here, we argue that the HDNs term must be avoided, as it is confounding and scientifically inappropriate.
Collapse
Affiliation(s)
- Marco A Cassatella
- Department of Medicine, Section of General Pathology, Strada Le Grazie 4, 37138 Verona, University of Verona, Italy.
| | - Patrizia Scapini
- Department of Medicine, Section of General Pathology, Strada Le Grazie 4, 37138 Verona, University of Verona, Italy
| |
Collapse
|
25
|
Reithofer M, Karacs J, Strobl J, Kitzmüller C, Polak D, Seif K, Kamalov M, Becker CFW, Greiner G, Schmetterer K, Stary G, Bohle B, Jahn-Schmid B. Alum triggers infiltration of human neutrophils ex vivo and causes lysosomal destabilization and mitochondrial membrane potential-dependent NET-formation. FASEB J 2020; 34:14024-14041. [PMID: 32860638 PMCID: PMC7589265 DOI: 10.1096/fj.202001413r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/12/2020] [Accepted: 08/17/2020] [Indexed: 01/30/2023]
Abstract
Aluminium salts have been used in vaccines for decades. However, the mechanisms underlying their adjuvant effect are still unclear. Neutrophils, the first immune cells at the injection site, can release cellular DNA together with granular material, so‐called neutrophil extracellular traps (NETs). In mice, NETs apparently play a role in aluminium hydroxide (alum)‐adjuvant immune response to vaccines. Although no experimental data exist, this effect is assumed to be operative also in humans. As a first step to verify this knowledge in humans, we demonstrate that the injection of alum particles into human skin biopsies ex vivo leads to similar tissue infiltration of neutrophils and NET‐formation. Moreover, we characterized the mechanism leading to alum‐induced NET‐release in human neutrophils as rapid, NADPH oxidase‐independent process involving charge, phagocytosis, phagolysosomal rupture, Ca2+‐flux, hyperpolarization of the mitochondrial membrane, and mitochondrial ROS. Extracellular flow and inhibition experiments suggested that no additional energy from oxidative phosphorylation or glycolysis is required for NET‐release. This study suggests a so far unappreciated role for neutrophils in the initial phase of immune responses to alum‐containing vaccines in humans and provides novel insights into bioenergetic requirements of NET‐formation.
Collapse
Affiliation(s)
- Manuel Reithofer
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Jasmine Karacs
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Johanna Strobl
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Claudia Kitzmüller
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Dominika Polak
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Katharina Seif
- Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Meder Kamalov
- Institute of Biological Chemistry, Department of Chemistry, University of Vienna, Vienna, Austria
| | - Christian F W Becker
- Institute of Biological Chemistry, Department of Chemistry, University of Vienna, Vienna, Austria
| | - Georg Greiner
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Klaus Schmetterer
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Georg Stary
- Department of Dermatology, Medical University of Vienna, Vienna, Austria.,Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.,CeMM Research Center for Molecular Medicine, Vienna, Austria
| | - Barbara Bohle
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Beatrice Jahn-Schmid
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
26
|
Braile M, Cristinziano L, Marcella S, Varricchi G, Marone G, Modestino L, Ferrara AL, De Ciuceis A, Scala S, Galdiero MR, Loffredo S. LPS-mediated neutrophil VEGF-A release is modulated by cannabinoid receptor activation. J Leukoc Biol 2020; 109:621-631. [PMID: 32573828 DOI: 10.1002/jlb.3a0520-187r] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/14/2020] [Accepted: 05/28/2020] [Indexed: 12/15/2022] Open
Abstract
Neutrophils (PMNs) are innate immune cells with primary roles in inflammation and in host defense against infections. Both inflammatory and tumor angiogenesis are modulated by a sequential, coordinated production of angiogenic factors such as vascular endothelial growth factors (VEGFs), angiopoietins, hepatocyte growth factor (HGF), and chemokines. These factors are produced by several immune cells, including PMNs. Activation of cannabinoid receptor type-1 (CB1 ) and -2 (CB2 ) has been suggested as a new strategy to modulate in vitro and in vivo angiogenesis. We sought to investigate whether activation of CB1 and CB2 by CB agonists modulate LPS-mediated angiogenic activity of human PMNs. Highly purified PMNs were isolated from buffy coats of healthy donors. Cells were stimulated with CB1 and CB2 agonists/antagonists alone and/or in combination with LPS. Angiogenic factors in cell-free supernatants were measured by ELISA. The modulation of activation markers of PMNs by CB agonists was evaluated by flow cytometry. Angiogenesis in vitro was measured as tube formation by optical microscopy. Endothelial cell permeability was assessed by an in vitro vascular permeability assay. LPS-activated PMNs released VEGF-A, CXCL8, and HGF. Preincubation of PMNs with low concentrations of CB1 and CB2 agonists inhibited VEGF-A release induced by LPS, but did not affect CXCL8 and HGF production. The effects of CB agonists on VEGF-A release induced by LPS were reversed by preincubation with CB antagonists. CB agonists modulated in vitro angiogenesis and endothelial permeability induced by supernatants of LPS-activated PMNs through the reduction of VEGF-A. Neutrophils play a central role in the control of bacterial infections and in the outcome of sepsis. The latter condition is associated with an increase in circulating levels of VEGF-A. We demonstrated that low concentrations of CB agonists inhibit VEGF-A release from LPS-activated PMNs. These results suggest that CB agonists might represent a novel therapeutic strategy in patients with sepsis.
Collapse
Affiliation(s)
- Mariantonia Braile
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Leonardo Cristinziano
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Simone Marcella
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Gilda Varricchi
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy.,CNR Institute of Experimental Endocrinology and Oncology "G. Salvatore", Naples, Italy
| | - Giancarlo Marone
- Department of Public Health, University of Naples Federico II, Italy.,Azienda Ospedaliera Ospedali dei Colli-Monaldi Hospital Pharmacy, Naples, Italy
| | - Luca Modestino
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Anne Lise Ferrara
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Agnese De Ciuceis
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Sara Scala
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Maria Rosaria Galdiero
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy.,CNR Institute of Experimental Endocrinology and Oncology "G. Salvatore", Naples, Italy
| | - Stefania Loffredo
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy.,CNR Institute of Experimental Endocrinology and Oncology "G. Salvatore", Naples, Italy
| |
Collapse
|
27
|
Cassatella MA, Gardiman E, Arruda-Silva F, Bianchetto-Aguilera F, Gasperini S, Bugatti M, Vermi W, Larousserie F, Devergne O, Tamassia N. Human neutrophils activated by TLR8 agonists, with or without IFNγ, synthesize and release EBI3, but not IL-12, IL-27, IL-35, or IL-39. J Leukoc Biol 2020; 108:1515-1526. [PMID: 32480433 DOI: 10.1002/jlb.3ma0520-054r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 05/08/2020] [Indexed: 12/14/2022] Open
Abstract
The IL-12 family of cytokines plays crucial functions in innate and adaptive immunity. These cytokines include heterodimers sharing distinct α (IL-12A, IL-23A, and IL-27A) with two β (IL-12B and Epstein-Barr virus induced gene 3 [EBI3]) chains, respectively, IL-12 (IL-12B plus IL-12A) and IL-23 (IL-12B plus IL-23A) sharing IL-12B, IL-27 (EBI3 plus IL-27A), IL-35 (EBI3 plus IL-12A), and IL-39 (EBI3 plus IL-23A) sharing EBI3. In this context, we have recently reported that highly pure neutrophils incubated with TLR8 agonists produce functional IL-23. Previously, we showed that neutrophils incubated with LPS plus IFNγ for 20 h produce IL-12. Herein, we investigated whether highly pure, TLR8-activated, neutrophils produce EBI3, and in turn IL-27, IL-35, and IL-39, the IL-12 members containing it. We report that neutrophils incubated with TLR8 ligands, TNFα and, to a lesser extent, LPS, produce and release remarkable amounts of EBI3, but not IL-27A, consequently excluding the possibility for an IL-27 production. We also report a series of unsuccessful experiments performed to investigate whether neutrophil-derived EBI3 associates with IL-23A to form IL-39. Furthermore, we show that neutrophils incubated with IFNγ in combination with either TLR8 or TLR4 ligands express/produce neither IL-12, nor IL-35, due to the inability of IFNγ, contrary to previous findings, to activate IL12A transcription. Even IL-27 was undetectable in supernatants harvested from IFNγ plus R848-treated neutrophils, although they were found to accumulate IL27A transcripts. Finally, by immunohistochemistry experiments, EBI3-positive neutrophils were found in discrete pathologies only, including diverticulitis, cholecystitis, Gorham disease, and Bartonella Henselae infection, implying a specific role of neutrophil-derived EBI3 in vivo.
Collapse
Affiliation(s)
- Marco A Cassatella
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | - Elisa Gardiman
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | - Fabio Arruda-Silva
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | | | - Sara Gasperini
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | - Mattia Bugatti
- Department of Molecular and Translational Medicine, Section of Pathology, University of Brescia, Brescia, Italy
| | - William Vermi
- Department of Molecular and Translational Medicine, Section of Pathology, University of Brescia, Brescia, Italy
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Frederique Larousserie
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses, Paris, France
- Département de Pathologie, Hôpital Cochin, AP-HP, Université de Paris, Paris, France
| | - Odile Devergne
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses, Paris, France
| | - Nicola Tamassia
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| |
Collapse
|
28
|
Allegra A, Musolino C, Tonacci A, Pioggia G, Casciaro M, Gangemi S. Clinico-Biological Implications of Modified Levels of Cytokines in Chronic Lymphocytic Leukemia: A Possible Therapeutic Role. Cancers (Basel) 2020; 12:cancers12020524. [PMID: 32102441 PMCID: PMC7072434 DOI: 10.3390/cancers12020524] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/08/2020] [Accepted: 02/22/2020] [Indexed: 12/19/2022] Open
Abstract
B-cell chronic lymphocytic leukemia (B-CLL) is the main cause of mortality among hematologic diseases in Western nations. B-CLL is correlated with an intense alteration of the immune system. The altered functions of innate immune elements and adaptive immune factors are interconnected in B-CLL and are decisive for its onset, evolution, and therapeutic response. Modifications in the cytokine balance could support the growth of the leukemic clone via a modulation of cellular proliferation and apoptosis, as some cytokines have been reported to be able to affect the life of B-CLL cells in vivo. In this review, we will examine the role played by cytokines in the cellular dynamics of B-CLL patients, interpret the contradictions sometimes present in the literature regarding their action, and evaluate the possibility of manipulating their production in order to intervene in the natural history of the disease.
Collapse
Affiliation(s)
- Alessandro Allegra
- Division of Haematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (A.A.); (C.M.)
| | - Caterina Musolino
- Division of Haematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (A.A.); (C.M.)
| | - Alessandro Tonacci
- Clinical Physiology Institute, National Research Council of Italy (IFC-CNR), 56124 Pisa, Italy;
| | - Giovanni Pioggia
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 98164 Messina, Italy;
| | - Marco Casciaro
- Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy;
| | - Sebastiano Gangemi
- Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy;
- Correspondence:
| |
Collapse
|
29
|
Mursalin MH, Coburn PS, Livingston E, Miller FC, Astley R, Flores-Mireles AL, Callegan MC. Bacillus S-Layer-Mediated Innate Interactions During Endophthalmitis. Front Immunol 2020; 11:215. [PMID: 32117322 PMCID: PMC7028758 DOI: 10.3389/fimmu.2020.00215] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 01/27/2020] [Indexed: 12/14/2022] Open
Abstract
Bacillus endophthalmitis is a severe intraocular infection. Hallmarks of Bacillus endophthalmitis include robust inflammation and rapid loss of vision. We reported that the absence of Bacillus surface layer protein (SLP) significantly blunted endophthalmitis severity. Here, we further investigated SLP in the context of Bacillus-retinal cell interactions and innate immune pathways to explore the mechanisms by which SLP contributes to intraocular inflammation. We compared phenotypes of Wild-type (WT) and SLP deficient (ΔslpA) Bacillus thuringiensis by analyzing bacterial adherence to and phagocytosis by human retinal Muller cells and phagocytosis by mouse neutrophils. Innate immune receptor activation by the Bacillus envelope and purified SLP was analyzed using TLR2/4 reporter cell lines. A synthetic TLR2/4 inhibitor was used as a control for this receptor activation. To induce endophthalmitis, mouse eyes were injected intravitreally with 100 CFU WT or ΔslpA B. thuringiensis. A group of WT infected mice was treated intravitreally with a TLR2/4 inhibitor at 4 h postinfection. At 10 h postinfection, infected eyes were analyzed for viable bacteria, inflammation, and retinal function. We observed that B. thuringiensis SLPs contributed to retinal Muller cell adherence, and protected this pathogen from Muller cell- and neutrophil-mediated phagocytosis. We found that B. thuringiensis envelope activated TLR2 and, surprisingly, TLR4, suggesting the presence of a surface-associated TLR4 agonist in Bacillus. Further investigation showed that purified SLP from B. thuringiensis activated TLR4, as well as TLR2 in vitro. Growth of WT B. thuringiensis was significantly higher and caused greater inflammation in untreated eyes than in eyes treated with the TLR2/4 inhibitor. Retinal function analysis also showed greater retention of A-wave and B-wave function in infected eyes treated with the TLR2/4 inhibitor. The TLR2/4 inhibitor was not antibacterial in vitro, and did not cause inflammation when injected into uninfected eyes. Taken together, these results suggest a potential role for Bacillus SLP in host-bacterial interactions, as well as in endophthalmitis pathogenesis via TLR2- and TLR4-mediated pathways.
Collapse
Affiliation(s)
- Md Huzzatul Mursalin
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Phillip S. Coburn
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Dean McGee Eye Institute, Oklahoma City, OK, United States
| | - Erin Livingston
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Frederick C. Miller
- Department of Cell Biology and Department of Family and Preventive Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Roger Astley
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Dean McGee Eye Institute, Oklahoma City, OK, United States
| | - Ana L. Flores-Mireles
- Department of Biological Sciences, University of Notre Dame, South Bend, IN, United States
| | - Michelle C. Callegan
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Dean McGee Eye Institute, Oklahoma City, OK, United States
| |
Collapse
|
30
|
Mandelli GE, Missale F, Bresciani D, Benerini Gatta L, Scapini P, Caveggion E, Roca E, Bugatti M, Monti M, Cristinelli L, Belotti S, Simeone C, Calza S, Melocchi L, Vermi W. Tumor Infiltrating Neutrophils Are Enriched in Basal-Type Urothelial Bladder Cancer. Cells 2020; 9:cells9020291. [PMID: 31991796 PMCID: PMC7072276 DOI: 10.3390/cells9020291] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/16/2020] [Accepted: 01/23/2020] [Indexed: 01/19/2023] Open
Abstract
Background: Urothelial bladder cancers (UBCs) are distinct in two main molecular subtypes, namely basal and luminal type. Subtypes are also diverse in term of immune contexture, providing a rationale for patient selection to immunotherapy. Methods: By digital microscopy analysis of a muscle-invasive BC (MIBC) cohort, we explored the density and clinical significance of CD66b+ tumor-associated-neutrophils (TAN) and CD3+ T cells. Bioinformatics analysis of UBC datasets and gene expression analysis of UBC cell lines were additionally performed. Results: Basal type BC contained a significantly higher density of CD66b+ TAN compared to the luminal type. This finding was validated on TCGA, GSE32894 and GSE124305 datasets by computing a neutrophil signature. Of note, basal-type MIBC display a significantly higher level of chemokines (CKs) attracting neutrophils. Moreover, pro-inflammatory stimuli significantly up-regulate CXCL1, CXCL2 and CXCL8 in 5637 and RT4 UBC cell lines and induce neutrophil chemotaxis. In term of survival, a high density of T cells and TAN was significantly associated to a better outcome, with TAN density showing a more limited statistical power and following a non-linear predicting model. Conclusions: TAN are recruited in basal type MIBC by pro-inflammatory CKs. This finding establishes a groundwork for a better understanding of the UBC immunity and its relevance.
Collapse
Affiliation(s)
- Giulio Eugenio Mandelli
- Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, 25125 Brescia, Italy; (G.E.M.); (F.M.); (D.B.); (L.B.G.); (M.B.); (M.M.)
| | - Francesco Missale
- Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, 25125 Brescia, Italy; (G.E.M.); (F.M.); (D.B.); (L.B.G.); (M.B.); (M.M.)
- IRCCS Ospedale Policlinico San Martino, 16121 Genova, Italy
- Department of Otorhinolaryngology, Head and Neck Surgery—University of Genoa, 16121 Genova, Italy
| | - Debora Bresciani
- Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, 25125 Brescia, Italy; (G.E.M.); (F.M.); (D.B.); (L.B.G.); (M.B.); (M.M.)
| | - Luisa Benerini Gatta
- Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, 25125 Brescia, Italy; (G.E.M.); (F.M.); (D.B.); (L.B.G.); (M.B.); (M.M.)
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, 25100 Brescia, Italy; (E.R.); (L.C.); (S.B.); (C.S.)
| | - Patrizia Scapini
- Section of General Pathology, Department of Medicine, University of Verona, 37134 Verona, Italy; (P.S.); (E.C.)
| | - Elena Caveggion
- Section of General Pathology, Department of Medicine, University of Verona, 37134 Verona, Italy; (P.S.); (E.C.)
| | - Elisa Roca
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, 25100 Brescia, Italy; (E.R.); (L.C.); (S.B.); (C.S.)
- ASST Spedali Civili di Brescia, 25100 Brescia, Italy
| | - Mattia Bugatti
- Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, 25125 Brescia, Italy; (G.E.M.); (F.M.); (D.B.); (L.B.G.); (M.B.); (M.M.)
- ASST Spedali Civili di Brescia, 25100 Brescia, Italy
| | - Matilde Monti
- Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, 25125 Brescia, Italy; (G.E.M.); (F.M.); (D.B.); (L.B.G.); (M.B.); (M.M.)
| | - Luca Cristinelli
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, 25100 Brescia, Italy; (E.R.); (L.C.); (S.B.); (C.S.)
- ASST Spedali Civili di Brescia, 25100 Brescia, Italy
| | - Sandra Belotti
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, 25100 Brescia, Italy; (E.R.); (L.C.); (S.B.); (C.S.)
- ASST Spedali Civili di Brescia, 25100 Brescia, Italy
| | - Claudio Simeone
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, 25100 Brescia, Italy; (E.R.); (L.C.); (S.B.); (C.S.)
- ASST Spedali Civili di Brescia, 25100 Brescia, Italy
| | - Stefano Calza
- Unit of Biostatistics, Department of Molecular and Translational Medicine, University of Brescia, 25125 Brescia, Italy;
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Laura Melocchi
- Department of Pathology, Fondazione Poliambulanza, 25100 Brescia, Italy;
| | - William Vermi
- Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, 25125 Brescia, Italy; (G.E.M.); (F.M.); (D.B.); (L.B.G.); (M.B.); (M.M.)
- ASST Spedali Civili di Brescia, 25100 Brescia, Italy
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63130, USA
- Correspondence: ; Tel.: +39-030-399-8425
| |
Collapse
|
31
|
Cristinziano L, Modestino L, Loffredo S, Varricchi G, Braile M, Ferrara AL, de Paulis A, Antonelli A, Marone G, Galdiero MR. Anaplastic Thyroid Cancer Cells Induce the Release of Mitochondrial Extracellular DNA Traps by Viable Neutrophils. THE JOURNAL OF IMMUNOLOGY 2020; 204:1362-1372. [PMID: 31959732 DOI: 10.4049/jimmunol.1900543] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 12/18/2019] [Indexed: 12/13/2022]
Abstract
Neutrophils are key effector cells that orchestrate inflammatory responses in the tumor microenvironment. Although neutrophil extracellular DNA traps (NETs) entrap and kill pathogens, they also contribute to chronic inflammation and cancer progression. Thyroid cancer (TC) is the most frequently occurring cancer of the endocrine system, accounting for 70% of deaths due to endocrine tumors. Although anaplastic TC (ATC) is rare among TCs, it is highly lethal. We demonstrated in a recent study that tumor-infiltrating neutrophil density correlated with TC size. Moreover, TC-derived soluble mediators modulate the human neutrophil phenotype. Our study aimed to investigate the involvement of NETs in human TC. Highly purified neutrophils from healthy donors were primed in vitro with a papillary TC or ATC cell line conditioned medium (CM) or with a normal thyroid CM as control. NET release was quantified using a High-Content Imaging System. Neutrophil viability was assessed by flow cytometry. Fluorescence microscopy, flow cytometry, and PCR were performed to determine the mitochondrial origin of ATC-induced NETs. ATC CM-primed neutrophils were cocultured with ATC cells to determine the effects exerted by NETs on cell proliferation. ATC CM induce NET release, whereas papillary TC or normal thyroid CM did not. ATC CM-induced NET production occurred in a reactive oxygen species-dependent and cell death-independent manner and was associated with mitochondrial reactive oxygen species production; the NETs contained mitochondrial DNA. ATC CM-primed neutrophils promoted ATC cell proliferation in a NET-dependent manner.
Collapse
Affiliation(s)
- Leonardo Cristinziano
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy.,Center for Basic and Clinical Immunology Research, University of Naples Federico II, 80131 Naples, Italy.,World Allergy Organization Center of Excellence, University of Naples Federico II, 80131 Naples, Italy
| | - Luca Modestino
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy.,Center for Basic and Clinical Immunology Research, University of Naples Federico II, 80131 Naples, Italy.,World Allergy Organization Center of Excellence, University of Naples Federico II, 80131 Naples, Italy
| | - Stefania Loffredo
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy.,Center for Basic and Clinical Immunology Research, University of Naples Federico II, 80131 Naples, Italy.,World Allergy Organization Center of Excellence, University of Naples Federico II, 80131 Naples, Italy.,Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore," National Research Council, 80131 Naples, Italy; and
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy.,Center for Basic and Clinical Immunology Research, University of Naples Federico II, 80131 Naples, Italy.,World Allergy Organization Center of Excellence, University of Naples Federico II, 80131 Naples, Italy.,Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore," National Research Council, 80131 Naples, Italy; and
| | - Mariantonia Braile
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy.,Center for Basic and Clinical Immunology Research, University of Naples Federico II, 80131 Naples, Italy.,World Allergy Organization Center of Excellence, University of Naples Federico II, 80131 Naples, Italy
| | - Anne Lise Ferrara
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy.,Center for Basic and Clinical Immunology Research, University of Naples Federico II, 80131 Naples, Italy.,World Allergy Organization Center of Excellence, University of Naples Federico II, 80131 Naples, Italy
| | - Amato de Paulis
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy.,Center for Basic and Clinical Immunology Research, University of Naples Federico II, 80131 Naples, Italy.,World Allergy Organization Center of Excellence, University of Naples Federico II, 80131 Naples, Italy
| | - Alessandro Antonelli
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy.,Center for Basic and Clinical Immunology Research, University of Naples Federico II, 80131 Naples, Italy.,World Allergy Organization Center of Excellence, University of Naples Federico II, 80131 Naples, Italy.,Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore," National Research Council, 80131 Naples, Italy; and
| | - Maria Rosaria Galdiero
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; .,Center for Basic and Clinical Immunology Research, University of Naples Federico II, 80131 Naples, Italy.,World Allergy Organization Center of Excellence, University of Naples Federico II, 80131 Naples, Italy.,Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore," National Research Council, 80131 Naples, Italy; and
| |
Collapse
|
32
|
Wang Y, Jönsson F. Expression, Role, and Regulation of Neutrophil Fcγ Receptors. Front Immunol 2019; 10:1958. [PMID: 31507592 PMCID: PMC6718464 DOI: 10.3389/fimmu.2019.01958] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/02/2019] [Indexed: 12/31/2022] Open
Abstract
Neutrophils are best known for their critical role in host defense, for which they utilize multiple innate immune mechanisms, including microbe-associated pattern recognition, phagocytosis, production of reactive oxygen species, and the release of potent proteases, mediators, antimicrobials, and neutrophil extracellular traps. Beyond their well-established contribution to innate immunity, neutrophils were more recently reported to interact with various other cell types, including cells from the adaptive immune system, thereby enabling neutrophils to tune the overall immune response of the host. Neutrophils express different receptors for IgG antibodies (Fcγ receptors), which facilitate the engulfment of IgG-opsonized microbes and trigger cell activation upon cross-linking of several receptors. Indeed, FcγRs (via IgG antibodies) confer neutrophils with a key feature of the adaptive immunity: an antigen-specific cell response. This review summarizes the expression and function of FcγRs on human neutrophils in health and disease and how they are affected by polymorphisms in the FCGR loci. Additionally, we will discuss the role of neutrophils in providing help to marginal zone B cells for the production of antibodies, which in turn may trigger neutrophil effector functions when engaging FcγRs.
Collapse
Affiliation(s)
- Yu Wang
- Unit of Antibodies in Therapy and Pathology, Institut Pasteur, UMR 1222 INSERM, Paris, France
- Université Diderot Paris VII, PSL University, Paris, France
| | - Friederike Jönsson
- Unit of Antibodies in Therapy and Pathology, Institut Pasteur, UMR 1222 INSERM, Paris, France
| |
Collapse
|
33
|
Silvestre-Roig C, Fridlender ZG, Glogauer M, Scapini P. Neutrophil Diversity in Health and Disease. Trends Immunol 2019; 40:565-583. [PMID: 31160207 PMCID: PMC7185435 DOI: 10.1016/j.it.2019.04.012] [Citation(s) in RCA: 323] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/26/2019] [Accepted: 04/28/2019] [Indexed: 12/17/2022]
Abstract
New evidence has challenged the outdated dogma that neutrophils are a homogeneous population of short-lived cells. Although neutrophil subpopulations with distinct functions have been reported under homeostatic and pathological conditions, a full understanding of neutrophil heterogeneity and plasticity is currently lacking. We review here current knowledge of neutrophil heterogeneity and diversity, highlighting the need for deep genomic, phenotypic, and functional profiling of the identified neutrophil subpopulations to determine whether these cells truly represent bona fide novel neutrophil subsets. We suggest that progress in understanding neutrophil heterogeneity will allow the identification of clinically relevant neutrophil subpopulations that may be used in the diagnosis of specific diseases and lead to the development of new therapeutic approaches.
Collapse
Affiliation(s)
- Carlos Silvestre-Roig
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany
| | - Zvi G Fridlender
- Institute of Pulmonary Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Michael Glogauer
- Faculty of Dentistry, University of Toronto, and Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Patrizia Scapini
- Department of Medicine, Section of General Pathology, School of Medicine, University of Verona, Verona, Italy.
| |
Collapse
|
34
|
Cassatella MA, Östberg NK, Tamassia N, Soehnlein O. Biological Roles of Neutrophil-Derived Granule Proteins and Cytokines. Trends Immunol 2019; 40:648-664. [PMID: 31155315 DOI: 10.1016/j.it.2019.05.003] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/03/2019] [Accepted: 05/03/2019] [Indexed: 12/30/2022]
Abstract
Neutrophils, the most abundant white blood cells in human circulation, entertain intense interactions with other leukocyte subsets, platelets, and stromal cells. Molecularly, such interactions are typically communicated through proteins generated during granulopoiesis, stored in granules, or produced on demand. Here, we provide an overview of the mammalian regulation of granule protein production in the bone marrow and the de novo synthesis of cytokines by neutrophils recruited to tissues. In addition, we discuss some of the known biological roles of these protein messengers, and how neutrophil-borne granule proteins and cytokines can synergize to modulate inflammation and tumor development. Decoding the neutrophil interactome is important for therapeutically neutralizing individual proteins to putatively dampen inflammation, or for delivering modified neutrophil-borne proteins to boost host defense.
Collapse
Affiliation(s)
| | - Nataliya K Östberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Nicola Tamassia
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | - Oliver Soehnlein
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Department of Medicine, Karolinska Institutet, Stockholm, Sweden; Institute for Cardiovascular Prevention (IPEK), Klinikum der LMU, München, Germany; German Centre for Cardiovascular Research (DZHK), Partner site, Munich, Germany.
| |
Collapse
|
35
|
Chapman EA, Lyon M, Simpson D, Mason D, Beynon RJ, Moots RJ, Wright HL. Caught in a Trap? Proteomic Analysis of Neutrophil Extracellular Traps in Rheumatoid Arthritis and Systemic Lupus Erythematosus. Front Immunol 2019; 10:423. [PMID: 30915077 PMCID: PMC6421309 DOI: 10.3389/fimmu.2019.00423] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/18/2019] [Indexed: 12/22/2022] Open
Abstract
Neutrophil Extracellular Traps (NETs) are implicated in the development of auto-immunity in diseases such as rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE) through the externalization of intracellular neoepitopes e.g., dsDNA and nuclear proteins in SLE and citrullinated peptides in RA. The aim of this work was to use quantitative proteomics to identify and measure NET proteins produced by neutrophils from healthy controls, and from patients with RA and SLE to determine if NETs can be differentially-generated to expose different sets of neoepitopes. Ultra-pure neutrophils (>99%) from healthy individuals (n = 3) and patients with RA or SLE (n = 6 each) were incubated ± PMA (50 nM, PKC super-activator) or A23187 (3.8 μM, calcium ionophore) for 4 h. NETs were liberated by nuclease digestion and concentrated onto Strataclean beads prior to on-bead digestion with trypsin. Data-dependent LC-MS/MS analyses were conducted on a QExactive HF quadrupole-Orbitrap mass spectrometer, and label-free protein quantification was carried out using Progenesis QI. PMA-induced NETs were decorated with annexins, azurocidin and histone H3, whereas A23187-induced NETs were decorated with granule proteins including CAMP/LL37, CRISP3, lipocalin and MMP8, histones H1.0, H1.4, and H1.5, interleukin-8, protein-arginine deiminase-4 (PADI4), and α-enolase. Four proteins were significantly different between PMA-NETs from RA and SLE neutrophils (p < 0.05): RNASE2 was higher in RA, whereas MPO, leukocyte elastase inhibitor and thymidine phosphorylase were higher in SLE. For A23187-NETs, six NET proteins were higher in RA (p < 0.05), including CAMP/LL37, CRISP3, interleukin-8, MMP8; Thirteen proteins were higher in SLE, including histones H1.0, H2B, and H4. This work provides the first, direct comparison of NOX2-dependent (PMA) and NOX2-independent (A23187) NETs using quantitative proteomics, and the first direct comparison of RA and SLE NETs using quantitative proteomics. We show that it is the nature of the stimulant rather than neutrophil physiology that determines NET protein profiles in disease, since stimulation of NETosis in either a NOX2-dependent or a NOX2-independent manner generates broadly similar NET proteins irrespective of the disease background. We also use our proteomics pipeline to identify an extensive range of post-translationally modified proteins in RA and SLE, including histones and granule proteins, many of which are known targets of auto-antibodies in each disease.
Collapse
Affiliation(s)
- Elinor A Chapman
- Department of Musculoskeletal Biology I, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Max Lyon
- Department of Musculoskeletal Biology I, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Deborah Simpson
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom.,Centre for Proteome Research, University of Liverpool, Liverpool, United Kingdom
| | - David Mason
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom.,Centre for Cell Imaging, University of Liverpool, Liverpool, United Kingdom
| | - Robert J Beynon
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom.,Centre for Proteome Research, University of Liverpool, Liverpool, United Kingdom
| | - Robert J Moots
- Department of Musculoskeletal Biology I, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom.,University of Liverpool and Aintree University Hospital, Members of Liverpool Health Partners, Liverpool, United Kingdom
| | - Helen L Wright
- Department of Musculoskeletal Biology I, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
36
|
Piacenza L, Trujillo M, Radi R. Reactive species and pathogen antioxidant networks during phagocytosis. J Exp Med 2019; 216:501-516. [PMID: 30792185 PMCID: PMC6400530 DOI: 10.1084/jem.20181886] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/04/2019] [Accepted: 02/04/2019] [Indexed: 11/23/2022] Open
Abstract
The generation of phagosomal cytotoxic reactive species (i.e., free radicals and oxidants) by activated macrophages and neutrophils is a crucial process for the control of intracellular pathogens. The chemical nature of these species, the reactions they are involved in, and the subsequent effects are multifaceted and depend on several host- and pathogen-derived factors that influence their production rates and catabolism inside the phagosome. Pathogens rely on an intricate and synergistic antioxidant armamentarium that ensures their own survival by detoxifying reactive species. In this review, we discuss the generation, kinetics, and toxicity of reactive species generated in phagocytes, with a focus on the response of macrophages to internalized pathogens and concentrating on Mycobacterium tuberculosis and Trypanosoma cruzi as examples of bacterial and parasitic infection, respectively. The ability of pathogens to deal with host-derived reactive species largely depends on the competence of their antioxidant networks at the onset of invasion, which in turn can tilt the balance toward pathogen survival, proliferation, and virulence over redox-dependent control of infection.
Collapse
Affiliation(s)
- Lucía Piacenza
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Madia Trujillo
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Rafael Radi
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
37
|
Tamassia N, Arruda‐Silva F, Wright HL, Moots RJ, Gardiman E, Bianchetto‐Aguilera F, Gasperini S, Capone M, Maggi L, Annunziato F, Edwards SW, Cassatella MA. Human neutrophils activated via TLR8 promote Th17 polarization through IL‐23. J Leukoc Biol 2019; 105:1155-1165. [DOI: 10.1002/jlb.ma0818-308r] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 02/16/2019] [Accepted: 02/17/2019] [Indexed: 12/14/2022] Open
Affiliation(s)
- Nicola Tamassia
- Department of MedicineSection of General PathologyUniversity of Verona Verona Italy
| | - Fabio Arruda‐Silva
- Department of MedicineSection of General PathologyUniversity of Verona Verona Italy
- CAPES FoundationMinistry of Education of Brazil Brasilia DF Brazil
| | - Helen L. Wright
- Institute of Integrative BiologyUniversity of Liverpool Liverpool United Kindom
| | - Robert J. Moots
- Institute of Ageing and Chronic DiseaseUniversity of Liverpool Liverpool United Kindom
| | - Elisa Gardiman
- Department of MedicineSection of General PathologyUniversity of Verona Verona Italy
| | | | - Sara Gasperini
- Department of MedicineSection of General PathologyUniversity of Verona Verona Italy
| | - Manuela Capone
- Department of Experimental and Clinical Medicine and DENOTHE CenterUniversity of Florence Firenze Italy
| | - Laura Maggi
- Department of Experimental and Clinical Medicine and DENOTHE CenterUniversity of Florence Firenze Italy
| | - Francesco Annunziato
- Department of Experimental and Clinical Medicine and DENOTHE CenterUniversity of Florence Firenze Italy
| | - Steven W. Edwards
- Institute of Integrative BiologyUniversity of Liverpool Liverpool United Kindom
| | - Marco A. Cassatella
- Department of MedicineSection of General PathologyUniversity of Verona Verona Italy
| |
Collapse
|
38
|
Mariotti B, Servaas NH, Rossato M, Tamassia N, Cassatella MA, Cossu M, Beretta L, van der Kroef M, Radstake TRDJ, Bazzoni F. The Long Non-coding RNA NRIR Drives IFN-Response in Monocytes: Implication for Systemic Sclerosis. Front Immunol 2019; 10:100. [PMID: 30804934 PMCID: PMC6371048 DOI: 10.3389/fimmu.2019.00100] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/14/2019] [Indexed: 12/23/2022] Open
Abstract
TLR4 activation initiates a signaling cascade leading to the production of type I IFNs and of the downstream IFN-stimulated genes (ISGs). Recently, a number of IFN-induced long non-coding RNAs (lncRNAs) that feed-back regulate the IFN response have been identified. Dysregulation of this process, collectively known as the "Interferon (IFN) Response," represents a common molecular basis in the development of autoimmune and autoinflammatory disorders. Concurrently, alteration of lncRNA profile has been described in several type I IFN-driven autoimmune diseases. In particular, both TLR activation and the upregulation of ISGs in peripheral blood mononuclear cells have been identified as possible contributors to the pathogenesis of systemic sclerosis (SSc), a connective tissue disease characterized by vascular abnormalities, immune activation, and fibrosis. However, hitherto, a potential link between specific lncRNA and the presence of a type I IFN signature remains unclear in SSc. In this study, we identified, by RNA sequencing, a group of lncRNAs related to the IFN and anti-viral response consistently modulated in a type I IFN-dependent manner in human monocytes in response to TLR4 activation by LPS. Remarkably, these lncRNAs were concurrently upregulated in a total of 46 SSc patients in different stages of their disease as compared to 18 healthy controls enrolled in this study. Among these lncRNAs, Negative Regulator of the IFN Response (NRIR) was found significantly upregulated in vivo in SSc monocytes, strongly correlating with the IFN score of SSc patients. Weighted Gene Co-expression Network Analysis showed that NRIR-specific modules, identified in the two datasets, were enriched in "type I IFN" and "viral response" biological processes. Protein coding genes common to the two distinct NRIR modules were selected as putative NRIR target genes. Fifteen in silico-predicted NRIR target genes were experimentally validated in NRIR-silenced monocytes. Remarkably, induction of CXCL10 and CXCL11, two IFN-related chemokines associated with SSc pathogenesis, was reduced in NRIR-knockdown monocytes, while their plasmatic level was increased in SSc patients. Collectively, our data show that NRIR affects the expression of ISGs and that dysregulation of NRIR in SSc monocytes may account, at least in part, for the type I IFN signature present in SSc patients.
Collapse
Affiliation(s)
- Barbara Mariotti
- General Pathology Section, Department of Medicine, University of Verona, Verona, Italy
| | - Nila Hendrika Servaas
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, Netherlands
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Marzia Rossato
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, Netherlands
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Nicola Tamassia
- General Pathology Section, Department of Medicine, University of Verona, Verona, Italy
| | - Marco A. Cassatella
- General Pathology Section, Department of Medicine, University of Verona, Verona, Italy
| | - Marta Cossu
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, Netherlands
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Lorenzo Beretta
- Scleroderma Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano, Referral Center for Systemic Autoimmune Diseases, Milan, Italy
| | - Maarten van der Kroef
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, Netherlands
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Timothy R. D. J. Radstake
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, Netherlands
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Flavia Bazzoni
- General Pathology Section, Department of Medicine, University of Verona, Verona, Italy
| |
Collapse
|
39
|
Chokesuwattanaskul S, Phelan MM, Edwards SW, Wright HL. A robust intracellular metabolite extraction protocol for human neutrophil metabolic profiling. PLoS One 2018; 13:e0209270. [PMID: 30571714 PMCID: PMC6301625 DOI: 10.1371/journal.pone.0209270] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 12/03/2018] [Indexed: 01/31/2023] Open
Abstract
Neutrophils are phagocytic innate immune cells that play essential roles in host defence, but are also implicated in inflammatory diseases such as rheumatoid arthritis (RA) where they contribute to systemic inflammation and joint damage. Transcriptomic analysis of neutrophils has revealed significant changes in gene expression in neutrophils activated in vitro by cytokines and in vivo during inflammation in RA. However, there are no reports on the global metabolomic changes that occur as a consequence of this activation. The aim of this study was to establish protocols for the study of changes in the metabolome of human neutrophils using 1H NMR spectroscopy. Sample preparation and spectral analysis protocols were optimised using neutrophils isolated by Ficoll-Paque, with decreased washing steps and inclusion of a heat-shock step to quench metabolite turnover. Cells were incubated ± PMA for 15 min in HEPES-free media and samples were analysed by NMR using a 700 MHz NMR Avance IIIHD Bruker NMR spectrometer equipped with a TCI cryoprobe. Chenomx, Bruker TopSpin and AMIX software were used to process spectra and identify metabolites. Principal Component Analysis (PCA) and signalling pathway analysis was carried out using Metaboanalyst. Cell number and number of scans (NS) were optimised as >3.6 million cells and 512 NS. 327 spectral bins were defined in the neutrophil spectra, of which 287 (87.7%) were assigned to 110 metabolites that included: amino acids, peptides and analogues; carbohydrates, carbonyls and alcohols; nucleotides, nucleosides and analogues; lipids and lipid-like molecules; benzenoids; and other organic compounds. 43 metabolites changed at least 1.5 fold (increase or decrease) after the addition of PMA for 5 or 15 min. Pathway analysis revealed that PMA affected nicotinate and nicotinamide metabolism, aminoacyl-tRNA biosynthesis and glycolysis, suggesting a redirection of glucose metabolism from glycolysis to the pentose phosphate pathway and production of NADPH for activation of the NADPH oxidase and subsequent respiratory burst. We have developed protocols for the study of human neutrophils by 1H NMR spectroscopy. Importantly, this methodology has sufficient sensitivity and reproducibility to detect changes in metabolite abundance from cell numbers typically collected from clinical samples or experiments with multiple assay conditions.
Collapse
Affiliation(s)
- Susama Chokesuwattanaskul
- Biochemistry Department, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Marie M. Phelan
- Biochemistry Department, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- HLS Technology Directorate, University of Liverpool, Liverpool, United Kingdom
| | - Steven W. Edwards
- Biochemistry Department, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Helen L. Wright
- Department of Musculoskeletal Biology I, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
40
|
Neutrophils promote T-cell-mediated inflammation in allergy. J Allergy Clin Immunol 2018; 143:1923-1925.e3. [PMID: 30578884 DOI: 10.1016/j.jaci.2018.11.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 11/14/2018] [Accepted: 11/30/2018] [Indexed: 11/21/2022]
|
41
|
Tamassia N, Bianchetto-Aguilera F, Arruda-Silva F, Gardiman E, Gasperini S, Calzetti F, Cassatella MA. Cytokine production by human neutrophils: Revisiting the "dark side of the moon". Eur J Clin Invest 2018; 48 Suppl 2:e12952. [PMID: 29772063 DOI: 10.1111/eci.12952] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 05/10/2018] [Indexed: 12/17/2022]
Abstract
Polymorphonuclear neutrophils are the most numerous leucocytes present in human blood, and function as crucial players in innate immune responses. Neutrophils are indispensable for the defence towards microbes, as they effectively counter them by releasing toxic enzymes, by synthetizing reactive oxygen species and by producing inflammatory mediators. Interestingly, recent findings have highlighted an important role of neutrophils also as promoters of the resolution of inflammation process, indicating that their biological functions go well beyond simple pathogen killing. Consistently, data from the last decades have highlighted that neutrophils may even contribute to the development of adaptive immunity by performing previously unanticipated functions, including the capacity to extend their survival, directly interact with other leucocytes or cell types, and produce and release a variety of cytokines. In this article, we will summarize the main features of, as well as emphasize some important concepts on, the production of cytokines by human neutrophils.
Collapse
Affiliation(s)
- Nicola Tamassia
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | | | - Fabio Arruda-Silva
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy.,CAPES Foundation, Ministry of Education of Brazil, Brasilia, Brazil
| | - Elisa Gardiman
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | - Sara Gasperini
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | - Federica Calzetti
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | - Marco A Cassatella
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| |
Collapse
|
42
|
Galdiero MR, Varricchi G, Loffredo S, Bellevicine C, Lansione T, Ferrara AL, Iannone R, di Somma S, Borriello F, Clery E, Triassi M, Troncone G, Marone G. Potential involvement of neutrophils in human thyroid cancer. PLoS One 2018; 13:e0199740. [PMID: 29953504 PMCID: PMC6023126 DOI: 10.1371/journal.pone.0199740] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 06/13/2018] [Indexed: 12/25/2022] Open
Abstract
Background Neutrophil functions have long been regarded as limited to acute inflammation and the defense against microbes. The role(s) of neutrophils in cancer remain poorly understood. Neutrophils infiltrate tumors and are key effector cells in the orchestration of inflammatory responses. Thyroid cancer (TC) is the most recurrent endocrine malignant tumor and is responsible for 70% of deaths due to endocrine cancers. No studies are so far available on the role of neutrophils in TC. Objective Our purpose was to study the involvement of tumor-associated neutrophils in TC. Methods Highly purified human neutrophils (>99%) from healthy donors were stimulated in vitro with conditioned media derived from TC cell lines TPC1 and 8505c (TC-CMs). Neutrophil functions (e.g., chemotaxis, activation, plasticity, survival, gene expression, and protein release) were evaluated. Results TC-derived soluble factors promoted neutrophil chemotaxis and survival. Neutrophil chemotaxis toward a TC-CM was mediated, at least in part, by CXCL8/IL-8, and survival was mediated by granulocyte-macrophage colony-stimulating factor (GM-CSF). In addition, each TC-CM induced morphological changes and activation of neutrophils (e.g., CD11b and CD66b upregulation and CD62L shedding) and modified neutrophils’ kinetic properties. Furthermore, each TC-CM induced production of reactive oxygen species, expression of proinflammatory and angiogenic mediators (CXCL8/IL-8, VEGF-A, and TNF-α), and a release of matrix metalloproteinase 9 (MMP-9). Moreover, in TC patients, tumor-associated neutrophils correlated with larger tumor size. Conclusions TC cell lines produce soluble factors able to “educate” neutrophils toward an activated functional state. These data will advance the understanding of the molecular and cellular mechanisms of innate immunity in TC.
Collapse
Affiliation(s)
- Maria Rosaria Galdiero
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- WAO Center of Excellence, University of Naples Federico II, Naples, Italy
- * E-mail: (MRG); (GM)
| | - Gilda Varricchi
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- WAO Center of Excellence, University of Naples Federico II, Naples, Italy
| | - Stefania Loffredo
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- WAO Center of Excellence, University of Naples Federico II, Naples, Italy
| | - Claudio Bellevicine
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Tiziana Lansione
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- WAO Center of Excellence, University of Naples Federico II, Naples, Italy
| | - Anne Lise Ferrara
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- WAO Center of Excellence, University of Naples Federico II, Naples, Italy
| | - Raffaella Iannone
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- WAO Center of Excellence, University of Naples Federico II, Naples, Italy
| | - Sarah di Somma
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- WAO Center of Excellence, University of Naples Federico II, Naples, Italy
| | - Francesco Borriello
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- WAO Center of Excellence, University of Naples Federico II, Naples, Italy
- Department of Medicine, Division of Infectious Diseases, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Eduardo Clery
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Maria Triassi
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Giancarlo Troncone
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- WAO Center of Excellence, University of Naples Federico II, Naples, Italy
- Institute of Experimental Endocrinology and Oncology “Gaetano Salvatore” (IEOS), National Research Council (CNR), Naples, Italy
- * E-mail: (MRG); (GM)
| |
Collapse
|
43
|
Polak D, Hafner C, Briza P, Kitzmüller C, Elbe-Bürger A, Samadi N, Gschwandtner M, Pfützner W, Zlabinger GJ, Jahn-Schmid B, Bohle B. A novel role for neutrophils in IgE-mediated allergy: Evidence for antigen presentation in late-phase reactions. J Allergy Clin Immunol 2018; 143:1143-1152.e4. [PMID: 29920351 DOI: 10.1016/j.jaci.2018.06.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 05/18/2018] [Accepted: 06/01/2018] [Indexed: 01/07/2023]
Abstract
BACKGROUND Neutrophils and allergen-specific T cells accumulate in patients with allergic late-phase reactions (LPRs). Their presence is associated with severe inflammation. Cytokines, such as GM-CSF, IFN-γ, and IL-3, which are typically found in patients with allergic LPRs, have been proposed to convert neutrophils into antigen-presenting cells (APCs). OBJECTIVE We sought to assess the antigen-processing and antigen-presenting capacities of neutrophils from allergic patients. METHODS Neutrophils were isolated from peripheral blood of donors with birch pollen allergy and stimulated with GM-CSF, IFN-γ, and IL-3. The viability and expression of HLA-DR, CD80, and CD86 were assessed by using flow cytometry. HLA-DM expression was analyzed by means of immunoblotting. Allergen uptake was studied after fluorescence labeling of the major birch pollen allergen Bet v 1. Bet v 1 was digested with neutrophilic endolysosomal extracts, and the resulting fragments were sequenced by using mass spectrometry. Neutrophils were used as APCs in coculture experiments with autologous HLA-DR-restricted and Bet v 1-specific T-cell clones reactive with epitopes in different regions of the allergen. In all experiments monocytes were used for comparison. Fluids from suction blisters formed on top of LPRs induced by using intradermal allergen injection were assessed for HLA-DR+ neutrophils by using flow cytometry. RESULTS The cytokines significantly enhanced the survival, allergen uptake, and expression of HLA-DM and HLA-DR on neutrophils. Neutrophils rapidly degraded Bet v 1 into fragments containing all relevant T-cell epitopes. Cytokine-activated, allergen-pulsed neutrophils induced proliferative and cytokine responses of Bet v 1-specific T cells irrespective of epitope specificity, confirming that they fully processed and presented the allergen. HLA-DR+ neutrophils were detected in patients with cutaneous allergic LPRs. CONCLUSION Neutrophils can serve as APCs for local allergen-specific effector T cells in patients with allergic LPRs.
Collapse
Affiliation(s)
- Dominika Polak
- Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Christine Hafner
- Department of Dermatology, University Hospital St Pölten, Karl Landsteiner University of Health Sciences, St. Pölten, Austria
| | - Peter Briza
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Claudia Kitzmüller
- Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | | | - Nazanin Samadi
- Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Maria Gschwandtner
- Department of Dermatology, Research Division of Biology and Pathobiology of the Skin, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Pfützner
- Department of Dermatology and Allergology, Philipps University Marburg, Marburg, Germany
| | | | - Beatrice Jahn-Schmid
- Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Barbara Bohle
- Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
44
|
Wang H, Li ZY, Jiang WX, Liao B, Zhai GT, Wang N, Zhen Z, Ruan JW, Long XB, Wang H, Liu WH, Liang GT, Xu WM, Kato A, Liu Z. The activation and function of IL-36γ in neutrophilic inflammation in chronic rhinosinusitis. J Allergy Clin Immunol 2018; 141:1646-1658. [DOI: 10.1016/j.jaci.2017.12.972] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 11/25/2017] [Accepted: 12/06/2017] [Indexed: 11/28/2022]
|
45
|
Tamassia N, Arruda-Silva F, Calzetti F, Lonardi S, Gasperini S, Gardiman E, Bianchetto-Aguilera F, Gatta LB, Girolomoni G, Mantovani A, Vermi W, Cassatella MA. A Reappraisal on the Potential Ability of Human Neutrophils to Express and Produce IL-17 Family Members In Vitro: Failure to Reproducibly Detect It. Front Immunol 2018; 9:795. [PMID: 29719541 PMCID: PMC5913333 DOI: 10.3389/fimmu.2018.00795] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 04/03/2018] [Indexed: 12/20/2022] Open
Abstract
Neutrophils are known to perform a series of effector functions that are crucial for the innate and adaptive responses, including the synthesis and secretion of a variety of cytokines. In light of the controversial data in the literature, the main objective of this study was to more in-depth reevaluate the capacity of human neutrophils to express and produce cytokines of the IL-17 family in vitro. By reverse transcription quantitative real-time PCR, protein measurement via commercial ELISA, immunohistochemistry (IHC) and immunofluorescence (IF), flow cytometry, immunoblotting, chromatin immunoprecipitation (ChIP), and ChIP-seq experiments, we found that highly pure (>99.7%) populations of human neutrophils do not express/produce IL-17A, IL-17F, IL-17AF, or IL-17B mRNA/protein upon incubation with a variety of agonists. Similar findings were observed by analyzing neutrophils isolated from active psoriatic patients. In contrast with published studies, IL-17A and IL-17F mRNA expression/production was not even found when neutrophils were incubated with extremely high concentrations of IL-6 plus IL-23, regardless of their combination with inactivated hyphae or conidia from Aspergillus fumigatus. Consistently, no deposition of histone marks for active (H3K27Ac) and poised (H3K4me1) genomic regulatory elements was detected at the IL-17A and IL-17F locus of resting and IL-6 plus IL-23-stimulated neutrophils, indicating a closed chromatin conformation. Concurrent experiments revealed that some commercial anti-IL-17A and anti-IL-17B antibodies (Abs), although staining neutrophils either spotted on cytospin slides or present in inflamed tissue samples by IHC/IF, do not recognize intracellular protein having the molecular weight corresponding to IL-17A or IL-17B, respectively, in immunoblotting experiments of whole neutrophil lysates. By contrast, the same Abs were found to more specifically recognize other intracellular proteins of neutrophils, suggesting that their ability to positively stain neutrophils in cytospin preparations and, eventually, tissue samples derives from IL-17A- or IL-17B-independent detections. In sum, our data confirm and extend, also at epigenetic level, previous findings on the inability of highly purified populations of human neutrophils to express/produce IL-17A, IL-17B, and IL-17F mRNAs/proteins in vitro, at least under the experimental conditions herein tested. Data also provide a number of justifications explaining, in part, why it is possible to false positively detect IL-17A+-neutrophils.
Collapse
Affiliation(s)
- Nicola Tamassia
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | - Fabio Arruda-Silva
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy.,CAPES Foundation, Ministry of Education of Brazil, Brasilia, Brazil
| | - Federica Calzetti
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | - Silvia Lonardi
- Department of Molecular and Translational Medicine, Section of Pathology, University of Brescia, Brescia, Italy
| | - Sara Gasperini
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | - Elisa Gardiman
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | | | - Luisa Benerini Gatta
- Department of Molecular and Translational Medicine, Section of Pathology, University of Brescia, Brescia, Italy
| | - Giampiero Girolomoni
- Department of Medicine, Section of Dermatology and Venereology, University of Verona, Verona, Italy
| | - Alberto Mantovani
- Humanitas Clinical and Research Center, Rozzano, Italy.,Humanitas University, Pieve Emanuele, Italy.,The William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - William Vermi
- Department of Molecular and Translational Medicine, Section of Pathology, University of Brescia, Brescia, Italy
| | - Marco A Cassatella
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| |
Collapse
|
46
|
Wilkinson AN, Gartlan KH, Kelly G, Samson LD, Olver SD, Avery J, Zomerdijk N, Tey SK, Lee JS, Vuckovic S, Hill GR. Granulocytes Are Unresponsive to IL-6 Due to an Absence of gp130. THE JOURNAL OF IMMUNOLOGY 2018; 200:3547-3555. [DOI: 10.4049/jimmunol.1701191] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 03/09/2018] [Indexed: 12/25/2022]
|
47
|
Revisiting the role of interleukin-8 in chronic lymphocytic leukemia. Sci Rep 2017; 7:15714. [PMID: 29146966 PMCID: PMC5691131 DOI: 10.1038/s41598-017-15953-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/03/2017] [Indexed: 11/23/2022] Open
Abstract
The proliferation and survival of malignant B cells in chronic lymphocytic leukemia (CLL) depend on signals from the microenvironment in lymphoid tissues. Among a plethora of soluble factors, IL-8 has been considered one of the most relevant to support CLL B cell progression in an autocrine fashion, even though the expression of IL-8 receptors, CXCR1 and CXCR2, on leukemic B cells has not been reported. Here we show that circulating CLL B cells neither express CXCR1 or CXCR2 nor they respond to exogenous IL-8 when cultured in vitro alone or in the presence of monocytes/nurse-like cells. By intracellular staining and ELISA we show that highly purified CLL B cells do not produce IL-8 spontaneously or upon activation through the B cell receptor. By contrast, we found that a minor proportion (<0.5%) of contaminating monocytes in enriched suspensions of leukemic cells might be the actual source of IL-8 due to their strong capacity to release this cytokine. Altogether our results indicate that CLL B cells are not able to secrete or respond to IL-8 and highlight the importance of methodological details in in vitro experiments.
Collapse
|
48
|
Arruda-Silva F, Bianchetto-Aguilera F, Gasperini S, Polletti S, Cosentino E, Tamassia N, Cassatella MA. Human Neutrophils Produce CCL23 in Response to Various TLR-Agonists and TNFα. Front Cell Infect Microbiol 2017; 7:176. [PMID: 28553619 PMCID: PMC5427542 DOI: 10.3389/fcimb.2017.00176] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 04/24/2017] [Indexed: 12/29/2022] Open
Abstract
CCL23, also known as myeloid progenitor inhibitory factor (MPIF)-1, macrophage inflammatory protein (MIP)-3, or CKβ8, is a member of the CC chemokine subfamily exerting its effects via CCR1 binding. By doing so, CCL23 selectively recruits resting T lymphocytes and monocytes, inhibits proliferation of myeloid progenitor cells and promotes angiogenesis. Previously, we and other groups have reported that human neutrophils are able to produce chemokines upon appropriate activation, including CCR1-binding CCL2, CCL3, and CCL4. Herein, we demonstrate that human neutrophils display the capacity to also express and release CCL23 when stimulated by R848 and, to a lesser extent, by other pro-inflammatory agonists, including LPS, Pam3CSK4, and TNFα. Notably, we show that, on a per cell basis, R848-activated neutrophils produce higher levels of CCL23 than autologous CD14+-monocytes activated under similar experimental conditions. By contrast, we found that, unlike CD14+-monocytes, neutrophils do not produce CCL23 in response to IL-4, thus indicating that they express CCL23 in a stimulus-specific fashion. Finally, we show that the production of CCL23 by R848-stimulated neutrophils is negatively modulated by IFNα, which instead enhances that of CCL2. Together, data extend our knowledge on the chemokines potentially produced by neutrophils. The ability of human neutrophils to produce CCL23 further supports the notion on the neutrophil capacity of orchestrating the recruitment of different cell types to the inflamed sites, in turn contributing to the control of the immune response.
Collapse
Affiliation(s)
- Fabio Arruda-Silva
- Section of General Pathology, Department of Medicine, University of VeronaVerona, Italy
| | | | - Sara Gasperini
- Section of General Pathology, Department of Medicine, University of VeronaVerona, Italy
| | - Sara Polletti
- Humanitas Clinical and Research CenterMilan, Italy.,Department of Biomedical Sciences, Humanitas UniversityMilan, Italy
| | - Emanuela Cosentino
- Functional Genomic Lab, Department of Biotechnology, University of VeronaVerona, Italy
| | - Nicola Tamassia
- Section of General Pathology, Department of Medicine, University of VeronaVerona, Italy
| | - Marco A Cassatella
- Section of General Pathology, Department of Medicine, University of VeronaVerona, Italy
| |
Collapse
|
49
|
|