1
|
Brownell J, Lee KE, Chasman D, Gangnon R, Bendixsen CG, Barnes K, Grindle K, Pappas T, Bochkov YA, Dresen A, Hou C, Haslam DB, Seroogy CM, Ong IM, Gern JE. Farm animal exposure, respiratory illnesses, and nasal cell gene expression. J Allergy Clin Immunol 2024; 153:1647-1654. [PMID: 38309597 PMCID: PMC11162314 DOI: 10.1016/j.jaci.2024.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 01/19/2024] [Accepted: 01/26/2024] [Indexed: 02/05/2024]
Abstract
BACKGROUND Farm exposures in early life reduce the risks for childhood allergic diseases and asthma. There is less information about how farm exposures relate to respiratory illnesses and mucosal immune development. OBJECTIVE We hypothesized that children raised in farm environments have a lower incidence of respiratory illnesses over the first 2 years of life than nonfarm children. We also analyzed whether farm exposures or respiratory illnesses were related to patterns of nasal cell gene expression. METHODS The Wisconsin Infant Study Cohort included farm (n = 156) and nonfarm (n = 155) families with children followed to age 2 years. Parents reported prenatal farm and other environmental exposures. Illness frequency and severity were assessed using illness diaries and periodic surveys. Nasopharyngeal cell gene expression in a subset of 64 children at age 2 years was compared to farm exposure and respiratory illness history. RESULTS Farm versus nonfarm children had nominally lower rates of respiratory illnesses (rate ratio 0.82 [95% CI, 0.69, 0.97]) with a stepwise reduction in illness rates in children exposed to 0, 1, or ≥2 animal species, but these trends were nonsignificant in a multivariable model. Farm exposures and preceding respiratory illnesses were positively related to nasal cell gene signatures for mononuclear cells and innate and antimicrobial responses. CONCLUSIONS Maternal and infant exposure to farms and farm animals was associated with nonsignificant trends for reduced respiratory illnesses. Nasal cell gene expression in a subset of children suggests that farm exposures and respiratory illnesses in early life are associated with distinct patterns of mucosal immune expression.
Collapse
Affiliation(s)
- Joshua Brownell
- Department of Pediatrics, University of Wisconsin-Madison, Madison, Wis
| | - Kristine E Lee
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, Wis
| | - Deborah Chasman
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, Wis; Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, Wis
| | - Ronald Gangnon
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, Wis
| | - Casper G Bendixsen
- National Farm Medicine Center, Marshfield Clinic Research Institute, Marshfield, Wis
| | - Katherine Barnes
- National Farm Medicine Center, Marshfield Clinic Research Institute, Marshfield, Wis
| | - Kristine Grindle
- Department of Pediatrics, University of Wisconsin-Madison, Madison, Wis
| | - Tressa Pappas
- Department of Pediatrics, University of Wisconsin-Madison, Madison, Wis
| | - Yury A Bochkov
- Department of Pediatrics, University of Wisconsin-Madison, Madison, Wis
| | - Amy Dresen
- Department of Pediatrics, University of Wisconsin-Madison, Madison, Wis
| | - Christine Hou
- Department of Statistics, University of Wisconsin-Madison, Madison
| | - David B Haslam
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
| | | | - Irene M Ong
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, Wis; Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, Wis
| | - James E Gern
- Department of Pediatrics, University of Wisconsin-Madison, Madison, Wis.
| |
Collapse
|
2
|
Hutton E, Scott E, Robson CN, Signoret N, Fascione MA. A systematic review reveals conflicting evidence for the prevalence of antibodies against the sialic acid 'xenoautoantigen' Neu5Gc in humans and the need for a standardised approach to quantification. Front Mol Biosci 2024; 11:1390711. [PMID: 38737334 PMCID: PMC11082328 DOI: 10.3389/fmolb.2024.1390711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 03/26/2024] [Indexed: 05/14/2024] Open
Abstract
Despite an array of hypothesised implications for health, disease, and therapeutic development, antibodies against the non-human sialic acid N-glycolylneuraminic acid (Neu5Gc) remain a subject of much debate. This systematic review of 114 publications aimed to generate a comprehensive overview of published studies in this field, addressing both the reported prevalence of anti-Neu5Gc antibodies in the human population and whether experimental variation accounts for the conflicting reports about the extent of this response. Absolute titres of anti-Neu5Gc antibodies, the reported prevalence of these antibodies, and the individual variation observed within experiments were analysed and grouped according to biological context ('inflammation', 'xenotransplantation', 'biotherapeutic use', 'cancer', and 'healthy populations'), detection method, target epitope selection, and choice of blocking agent. These analyses revealed that the experimental method had a notable impact on both the reported prevalence and absolute titres of anti-Neu5Gc antibodies in the general population, thereby limiting the ability to ascribe reported trends to genuine biological differences or the consequence of experimental design. Overall, this review highlights important knowledge gaps in the study of antibodies against this important xenoautoantigen and the need to establish a standardised method for their quantification if the extent of the importance of Neu5Gc in human health is to be fully understood.
Collapse
Affiliation(s)
- Esme Hutton
- Department of Chemistry, University of York, York, United Kingdom
- Hull York Medical School, University of York, York, United Kingdom
| | - Emma Scott
- Newcastle University, Centre for Cancer, Newcastle University Biosciences Institute, Newcastle, United Kingdom
| | - Craig N. Robson
- Newcastle University, Centre for Cancer, Newcastle University Translational and Clinical Research Institute, Newcastle, United Kingdom
| | | | | |
Collapse
|
3
|
Warren CM, Bartell TR. Sociodemographic inequities in food allergy: Insights on food allergy from birth cohorts. Pediatr Allergy Immunol 2024; 35:e14125. [PMID: 38656700 DOI: 10.1111/pai.14125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/26/2024]
Abstract
A large and growing corpus of epidemiologic studies suggests that the population-level burden of pediatric FA is not equitably distributed across major sociodemographic groups, including race, ethnicity, household income, parental educational attainment, and sex. As is the case for more extensively studied allergic disease states such as asthma and atopic dermatitis epidemiologic data suggest that FA may be more prevalent among certain populations experiencing lower socioeconomic status (SES), particularly those with specific racial and ethnic minority backgrounds living in highly urbanized regions. Emerging data also indicate that these patients may also experience more severe FA-related physical health, psychosocial, and economic outcomes relating to chronic disease management. However, many studies that have identified sociodemographic inequities in FA burden are limited by cross-sectional designs that are subject to numerous biases. Compared with cross-sectional study designs or cohorts established later in life, birth cohorts offer advantages relative to other study designs when investigators seek to understand causal relationships between exposures occurring during the prenatal or postnatal period and the atopic disease status of individuals later in life. Numerous birth cohorts have been established across recent decades, which include evaluation of food allergy-related outcomes, and a subset of these also have measured sociodemographic variables that, together, have the potential to shed light on the existence and possible etiology of sociodemographic inequities in food allergy. This manuscript reports the findings of a comprehensive survey of the current state of this birth cohort literature and draws insights into what is currently known, and what further information can potentially be gleaned from thoughtful examination and further follow-up of ongoing birth cohorts across the globe.
Collapse
Affiliation(s)
- Christopher M Warren
- Center for Food Allergy and Asthma Research, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Tami R Bartell
- Center for Food Allergy and Asthma Research, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Patrick M. Magoon Institute for Healthy Communities, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
| |
Collapse
|
4
|
Lunjani N, Kerbelker T, Mdletshe FB, Hlela C, O’Mahony L. Phenotypes, endotypes and genotypes of atopic dermatitis and allergy in populations of African ancestry on the continent and diaspora. FRONTIERS IN ALLERGY 2024; 4:1203304. [PMID: 38327736 PMCID: PMC10847302 DOI: 10.3389/falgy.2023.1203304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 12/11/2023] [Indexed: 02/09/2024] Open
Abstract
Atopic dermatitis is a complex inflammatory condition characterized by synergist interactions between epidermal and immune related genotypes, skin barrier defects and immune dysregulation as well as microbial dysbiosis. Ethnicity-specific variations in clinical presentation, immune endotypes and genetic susceptibility have been described in diverse populations. We summarize available data with specific consideration of AD in populations of African ancestry. Some highlights include the observation of AD lesions on extensor surfaces, lichen planus-like AD, prurigo type AD and follicular AD in African populations. In addition, a consistent absence of dominant filaggrin gene defects has been reported. The detection of normal filaggrin protein content in AD skin implicates the contribution of alternative mechanisms in the pathogenesis of AD in African patients. Markedly high IgE has been described in paediatric and adult African AD. While Th2, Th22 and Th17 activation in African AD skin shares the same direction as with other populations, it has been noted that the magnitude of activation is dissimilar. Reduced Th17 cytokines have been observed in the circulation of moderate to severe paediatric AD.
Collapse
Affiliation(s)
- N. Lunjani
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Division of Dermatology, University of Cape Town, Cape Town, South Africa
| | - T. Kerbelker
- Department of Peadiatrics, University of Cape Town, Cape Town, South Africa
| | - F. B. Mdletshe
- Division of Otorhinolaryngology, University of Witwatersrand, Johannesburg, South Africa
| | - C. Hlela
- Division of Dermatology, University of Cape Town, Cape Town, South Africa
| | - L. O’Mahony
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Medicine, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
5
|
Reuter S, Raspe J, Taube C. Microbes little helpers and suppliers for therapeutic asthma approaches. Respir Res 2024; 25:29. [PMID: 38218816 PMCID: PMC10787474 DOI: 10.1186/s12931-023-02660-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/28/2023] [Indexed: 01/15/2024] Open
Abstract
Bronchial asthma is a prevalent and increasingly chronic inflammatory lung disease affecting over 300 million people globally. Initially considered an allergic disorder driven by mast cells and eosinophils, asthma is now recognized as a complex syndrome with various clinical phenotypes and immunological endotypes. These encompass type 2 inflammatory endotypes characterized by interleukin (IL)-4, IL-5, and IL-13 dominance, alongside others featuring mixed or non-eosinophilic inflammation. Therapeutic success varies significantly based on asthma phenotypes, with inhaled corticosteroids and beta-2 agonists effective for milder forms, but limited in severe cases. Novel antibody-based therapies have shown promise, primarily for severe allergic and type 2-high asthma. To address this gap, novel treatment strategies are essential for better control of asthma pathology, prevention, and exacerbation reduction. One promising approach involves stimulating endogenous anti-inflammatory responses through regulatory T cells (Tregs). Tregs play a vital role in maintaining immune homeostasis, preventing autoimmunity, and mitigating excessive inflammation after pathogenic encounters. Tregs have demonstrated their ability to control both type 2-high and type 2-low inflammation in murine models and dampen human cell-dependent allergic airway inflammation. Furthermore, microbes, typically associated with disease development, have shown immune-dampening properties that could be harnessed for therapeutic benefits. Both commensal microbiota and pathogenic microbes have demonstrated potential in bacterial-host interactions for therapeutic purposes. This review explores microbe-associated approaches as potential treatments for inflammatory diseases, shedding light on current and future therapeutics.
Collapse
Affiliation(s)
- Sebastian Reuter
- Department of Pulmonary Medicine, University Hospital Essen-Ruhrlandklinik, Tüschener Weg 40, 45239, Essen, Germany.
| | - Jonas Raspe
- Department of Pulmonary Medicine, University Hospital Essen-Ruhrlandklinik, Tüschener Weg 40, 45239, Essen, Germany
| | - Christian Taube
- Department of Pulmonary Medicine, University Hospital Essen-Ruhrlandklinik, Tüschener Weg 40, 45239, Essen, Germany
| |
Collapse
|
6
|
Hale RC, Morais D, Chou J, Stowell SR. The role of glycosylation in clinical allergy and immunology. J Allergy Clin Immunol 2024; 153:55-66. [PMID: 37717626 PMCID: PMC10872775 DOI: 10.1016/j.jaci.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 09/19/2023]
Abstract
While glycans are among the most abundant macromolecules on the cell with widespread functions, their role in immunity has historically been challenging to study. This is in part due to difficulties assimilating glycan analysis into routine approaches used to interrogate immune cell function. Despite this, recent developments have illuminated fundamental roles for glycans in host immunity. The growing field of glycoimmunology continues to leverage new tools and approaches to uncover the function of glycans and glycan-binding proteins in immunity. Here we utilize clinical vignettes to examine key roles of glycosylation in allergy, inborn errors of immunity, and autoimmunity. We will discuss the diverse functions of glycans as epitopes, as modulators of antibody function, and as regulators of immune cell function. Finally, we will highlight immune modulatory therapies that harness the critical role of glycans in the immune system.
Collapse
Affiliation(s)
- Rebecca C Hale
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Mass; Department of Pathology, Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass
| | - Dominique Morais
- Department of Pathology, Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass
| | - Janet Chou
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Mass.
| | - Sean R Stowell
- Department of Pathology, Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass; Harvard Glycomics Center, Harvard Medical School, Boston, Mass.
| |
Collapse
|
7
|
Lunjani N, Ambikan AT, Hlela C, Levin M, Mankahla A, Heldstab‐Kast JI, Boonpiyathad T, Tan G, Altunbulakli C, Gray C, Nadeau KC, Neogi U, Akdis CA, O'Mahony L. Rural and urban exposures shape early life immune development in South African children with atopic dermatitis and nonallergic children. Allergy 2024; 79:65-79. [PMID: 37534631 PMCID: PMC10952395 DOI: 10.1111/all.15832] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/01/2023] [Accepted: 07/04/2023] [Indexed: 08/04/2023]
Abstract
BACKGROUND Immunological traits and functions have been consistently associated with environmental exposures and are thought to shape allergic disease susceptibility and protection. In particular, specific exposures in early life may have more significant effects on the developing immune system, with potentially long-term impacts. METHODS We performed RNA-Seq on peripheral blood mononuclear cells (PBMCs) from 150 children with atopic dermatitis and healthy nonallergic children in rural and urban settings from the same ethnolinguistic AmaXhosa background in South Africa. We measured environmental exposures using questionnaires. RESULTS A distinct PBMC gene expression pattern was observed in those children with atopic dermatitis (132 differentially expressed genes [DEGs]). However, the predominant influences on the immune cell transcriptome were related to early life exposures including animals, time outdoors, and types of cooking and heating fuels. Sample clustering revealed two rural groups (Rural_1 and Rural_2) that separated from the urban group (3413 and 2647 DEGs, respectively). The most significantly regulated pathways in Rural_1 children were related to innate activation of the immune system (e.g., TLR and cytokine signaling), changes in lymphocyte polarization (e.g., TH17 cells), and immune cell metabolism (i.e., oxidative phosphorylation). The Rural_2 group displayed evidence for ongoing lymphocyte activation (e.g., T cell receptor signaling), with changes in immune cell survival and proliferation (e.g., mTOR signaling, insulin signaling). CONCLUSIONS This study highlights the importance of the exposome on immune development in early life and identifies potentially protective (e.g., animal) exposures and potentially detrimental (e.g., pollutant) exposures that impact key immunological pathways.
Collapse
Affiliation(s)
- Nonhlanhla Lunjani
- Division of DermatologyUniversity of Cape TownCape TownSouth Africa
- APC Microbiome IrelandUniversity College CorkCorkIreland
| | - Anoop T. Ambikan
- The Systems Virology Lab, Division of Clinical Microbiology, Department of Laboratory MedicineKarolinska Institute, ANA FuturaStockholmSweden
| | - Carol Hlela
- Division of DermatologyUniversity of Cape TownCape TownSouth Africa
| | - Michael Levin
- Division of Paediatric Allergy, Department of Paediatrics and Child HealthUniversity of Cape TownCape TownSouth Africa
| | - Avumile Mankahla
- The Division of Dermatology, Department of Medicine and PharmacologyWalter Sisulu UniversityMthathaEastern CapeSouth Africa
| | | | - Tadech Boonpiyathad
- Swiss Institute of Allergy and Asthma Research (SIAF), University of ZurichDavosSwitzerland
| | - Ge Tan
- Swiss Institute of Allergy and Asthma Research (SIAF), University of ZurichDavosSwitzerland
| | - Can Altunbulakli
- Swiss Institute of Allergy and Asthma Research (SIAF), University of ZurichDavosSwitzerland
| | - Clive Gray
- Division of ImmunologyUniversity of Cape TownCape TownSouth Africa
| | - Kari C. Nadeau
- Department of Environmental HealthHarvard T.H. Chan School of Public HealthBostonMAUSA
| | - Ujjwal Neogi
- The Systems Virology Lab, Division of Clinical Microbiology, Department of Laboratory MedicineKarolinska Institute, ANA FuturaStockholmSweden
| | - Cezmi A. Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of ZurichDavosSwitzerland
- Christine Kühne‐Center for Allergy Research and EducationDavosSwitzerland
| | - Liam O'Mahony
- APC Microbiome IrelandUniversity College CorkCorkIreland
- Department of MedicineUniversity College CorkCorkIreland
- School of MicrobiologyUniversity College CorkCorkIreland
| |
Collapse
|
8
|
Venter C, Frei R. Nutritional metabolites as biomarker for food intake to improve dietary-based randomized control trials. Allergy 2023; 78:349-350. [PMID: 36415079 DOI: 10.1111/all.15590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/14/2022] [Indexed: 11/24/2022]
Affiliation(s)
- Carina Venter
- Pediatric Allergy and Immunology, Children's Hospital Colorado, University of Colorado, Aurora, Colorado, USA
| | - Remo Frei
- Division of Pediatric Respiratory Medicine and Allergology, Department of Pediatrics, Bern University Hospital, Bern, Switzerland.,Department of BioMedical Research (DBMR), University of Bern, Bern, Switzerland.,Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| |
Collapse
|
9
|
Immune disguise: the mechanisms of Neu5Gc inducing autoimmune and transplant rejection. Genes Immun 2022; 23:175-182. [PMID: 36151402 DOI: 10.1038/s41435-022-00182-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/16/2022] [Accepted: 09/05/2022] [Indexed: 11/08/2022]
Abstract
Organ (stem cell) transplantation is the most effective treatment for advanced organ failure. Neu5Gc (N-hydroxyacetylneuraminic acid) is a pathogenic non-human sialic acid, which is very similar to the molecular structure of Neu5Ac (N-acetylneuraminic acid) in human body. Neu5Gc has the function of "immune disguise", which is the main obstacle to transplantation. Gene knockout such as cytidine monophosphate-N-acetylneuraminidase (CMAH) reduces donor antigenicity, making xenotransplantation from fiction to reality. Exploring the immune disguise event in this emerging field has become a hot topic in the research of transplantation immune tolerance mechanism.
Collapse
|
10
|
Frei R, Heye K, Roduit C. Environmental influences on childhood allergies and asthma - The Farm effect. Pediatr Allergy Immunol 2022; 33:e13807. [PMID: 35754122 PMCID: PMC9327508 DOI: 10.1111/pai.13807] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 12/12/2022]
Abstract
Asthma and allergies are major health problems and exert an enormous socioeconomic burden. Besides genetic predisposition, environmental factors play a crucial role in the development of these diseases in childhood. Multiple worldwide epidemiological studies have shown that children growing up on farms are immune to allergic diseases and asthma. Farm-related exposures shape children's immune homeostasis, via mediators such as N-glycolylneuraminic acid or arabinogalactan, or by diverse environmental microbes. Moreover, nutritional factors, such as breastfeeding or farm milk and food diversity, inducing short-chain fatty acids-producing bacteria in the intestine, contribute to farm-related effects. All farm-related exposures induce an anti-inflammatory response of the innate immunity and increase the differentiation of regulatory T cells and T helper cell type 1. A better understanding of the components of the farm environment, that are protective to the development of allergy and asthma, and their underlying mechanisms, will help to develop new strategies for the prevention of allergy and asthma.
Collapse
Affiliation(s)
- Remo Frei
- Division of Paediatric Respiratory Medicine and Allergology, Department of Pediatrics, Inselspital, Bern University Hospital and Department for BioMedical Research, University of Bern, Bern, Switzerland.,Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| | - Kristina Heye
- Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland.,Children's Hospital of Eastern Switzerland, St Gallen, Switzerland
| | - Caroline Roduit
- Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland.,Children's Hospital of Eastern Switzerland, St Gallen, Switzerland.,University Children's Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
11
|
Celebi Sozener Z, Ozdel Ozturk B, Cerci P, Turk M, Gorgulu Akin B, Akdis M, Altiner S, Ozbey U, Ogulur I, Mitamura Y, Yilmaz I, Nadeau K, Ozdemir C, Mungan D, Akdis CA. Epithelial barrier hypothesis: Effect of the external exposome on the microbiome and epithelial barriers in allergic disease. Allergy 2022; 77:1418-1449. [PMID: 35108405 PMCID: PMC9306534 DOI: 10.1111/all.15240] [Citation(s) in RCA: 155] [Impact Index Per Article: 77.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/25/2022] [Accepted: 01/29/2022] [Indexed: 12/11/2022]
Abstract
Environmental exposure plays a major role in the development of allergic diseases. The exposome can be classified into internal (e.g., aging, hormones, and metabolic processes), specific external (e.g., chemical pollutants or lifestyle factors), and general external (e.g., broader socioeconomic and psychological contexts) domains, all of which are interrelated. All the factors we are exposed to, from the moment of conception to death, are part of the external exposome. Several hundreds of thousands of new chemicals have been introduced in modern life without our having a full understanding of their toxic health effects and ways to mitigate these effects. Climate change, air pollution, microplastics, tobacco smoke, changes and loss of biodiversity, alterations in dietary habits, and the microbiome due to modernization, urbanization, and globalization constitute our surrounding environment and external exposome. Some of these factors disrupt the epithelial barriers of the skin and mucosal surfaces, and these disruptions have been linked in the last few decades to the increasing prevalence and severity of allergic and inflammatory diseases such as atopic dermatitis, food allergy, allergic rhinitis, chronic rhinosinusitis, eosinophilic esophagitis, and asthma. The epithelial barrier hypothesis provides a mechanistic explanation of how these factors can explain the rapid increase in allergic and autoimmune diseases. In this review, we discuss factors affecting the planet's health in the context of the 'epithelial barrier hypothesis,' including climate change, pollution, changes and loss of biodiversity, and emphasize the changes in the external exposome in the last few decades and their effects on allergic diseases. In addition, the roles of increased dietary fatty acid consumption and environmental substances (detergents, airborne pollen, ozone, microplastics, nanoparticles, and tobacco) affecting epithelial barriers are discussed. Considering the emerging data from recent studies, we suggest stringent governmental regulations, global policy adjustments, patient education, and the establishment of individualized control measures to mitigate environmental threats and decrease allergic disease.
Collapse
Affiliation(s)
| | - Betul Ozdel Ozturk
- School of MedicineDepartment of Chest DiseasesDivision of Immunology and Allergic DiseasesAnkara UniversityAnkaraTurkey
| | - Pamir Cerci
- Clinic of Immunology and Allergic DiseasesEskisehir City HospitalEskisehirTurkey
| | - Murat Turk
- Clinic of Immunology and Allergic DiseasesKayseri City HospitalKayseriTurkey
| | - Begum Gorgulu Akin
- Clinic of Immunology and Allergic DiseasesAnkara City HospitalAnkaraTurkey
| | - Mubeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF)University of ZurichDavosSwitzerland
| | - Seda Altiner
- Clinic of Internal Medicine Division of Immunology and Allergic DiseasesKahramanmaras Necip Fazil City HospitalKahramanmarasTurkey
| | - Umus Ozbey
- Department of Nutrition and DietAnkara UniversityAnkaraTurkey
| | - Ismail Ogulur
- Swiss Institute of Allergy and Asthma Research (SIAF)University of ZurichDavosSwitzerland
| | - Yasutaka Mitamura
- Swiss Institute of Allergy and Asthma Research (SIAF)University of ZurichDavosSwitzerland
| | - Insu Yilmaz
- Department of Chest DiseasesDivision of Immunology and Allergic DiseasesErciyes UniversityKayseriTurkey
| | - Kari Nadeau
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University School of MedicineDivision of Pulmonary and Critical Care MedicineDepartment of MedicineStanford UniversityStanfordCaliforniaUSA
| | - Cevdet Ozdemir
- Institute of Child HealthDepartment of Pediatric Basic SciencesIstanbul UniversityIstanbulTurkey
- Istanbul Faculty of MedicineDepartment of PediatricsDivision of Pediatric Allergy and ImmunologyIstanbul UniversityIstanbulTurkey
| | - Dilsad Mungan
- School of MedicineDepartment of Chest DiseasesDivision of Immunology and Allergic DiseasesAnkara UniversityAnkaraTurkey
| | - Cezmi A. Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF)University of ZurichDavosSwitzerland
- Christine Kühne‐Center for Allergy Research and Education (CK‐CARE)DavosSwitzerland
| |
Collapse
|
12
|
Lunjani N, Tan G, Dreher A, Sokolowska M, Groeger D, Warwyzniak M, Altunbulakli C, Westermann P, Basera W, Hobane L, Botha M, Gray C, Mankahla A, Gray C, Nadeau KC, Hlela C, Levin M, O'Mahony L, Akdis CA. Environment-dependent alterations of immune mediators in urban and rural South African children with atopic dermatitis. Allergy 2022; 77:569-581. [PMID: 34086351 DOI: 10.1111/all.14974] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/09/2021] [Accepted: 05/31/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND In order to improve targeted therapeutic approaches for children with atopic dermatitis (AD), novel insights into the molecular mechanisms and environmental exposures that differentially contribute to disease phenotypes are required. We wished to identify AD immunological endotypes in South African children from rural and urban environments. METHODS We measured immunological, socio-economic and environmental factors in healthy children (n = 74) and children with AD (n = 78), in rural and urban settings from the same ethno-linguistic AmaXhosa background in South Africa. RESULTS Circulating eosinophils, monocytes, TARC, MCP-4, IL-16 and allergen-specific IgE levels were elevated, while IL-17A and IL-23 levels were reduced, in children with AD regardless of their location. Independent of AD, children living in a rural environment had the highest levels of TNFα, TNFβ, IL-1α, IL-6, IL-8, IL-21, MCP-1, MIP-1α, MIP-1β, MDC, sICAM1, sVCAM1, VEGFA, VEGFD and Tie2, suggesting a generalized microinflammation or a pattern of trained immunity without any specific TH polarization. In contrast, IL-15, IL-22, Flt1, PIGF and βFGF were highest in urban children. Rural healthy children had the lowest levels of food allergen-specific IgG4. Early life nutritional factors, medications, animal exposures, indoor environment, sunlight exposure, household size, household income and parental education levels were associated with differences in circulating cytokine levels. CONCLUSIONS This study highlights the immunological impact of environmental exposures and socio-economic status in the manifestation of immune endotypes in children with AD living in urban and rural areas, which are important in selecting appropriately matched immunological therapies for treatment of AD.
Collapse
Affiliation(s)
- Nonhlanhla Lunjani
- Swiss Institute of Allergy and Asthma Research (SIAF, University of Zurich, Davos, Switzerland.,Department of Dermatology, University of Cape Town, Cape Town, South Africa.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Ge Tan
- Swiss Institute of Allergy and Asthma Research (SIAF, University of Zurich, Davos, Switzerland.,Functional Genomics Center, University of Zurich, Zurich, Switzerland
| | - Anita Dreher
- Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF, University of Zurich, Davos, Switzerland
| | - David Groeger
- Swiss Institute of Allergy and Asthma Research (SIAF, University of Zurich, Davos, Switzerland.,PrecisionBiotics Ltd, Cork, Ireland
| | - Marcin Warwyzniak
- Swiss Institute of Allergy and Asthma Research (SIAF, University of Zurich, Davos, Switzerland
| | - Can Altunbulakli
- Swiss Institute of Allergy and Asthma Research (SIAF, University of Zurich, Davos, Switzerland
| | - Patrick Westermann
- Swiss Institute of Allergy and Asthma Research (SIAF, University of Zurich, Davos, Switzerland
| | - Wisdom Basera
- Division of Paediatric Allergy, Department of Paediatrics and Child Health, University of Cape Town, South Africa
| | - Lelani Hobane
- Division of Paediatric Allergy, Department of Paediatrics and Child Health, University of Cape Town, South Africa
| | - Maresa Botha
- Division of Paediatric Allergy, Department of Paediatrics and Child Health, University of Cape Town, South Africa
| | - Claudia Gray
- Division of Paediatric Allergy, Department of Paediatrics and Child Health, University of Cape Town, South Africa
| | - Avumile Mankahla
- The Division of Dermatology, Department of Medicine and Pharmacology, Walter Sisulu University, Eastern Cape, South Africa
| | - Clive Gray
- Division of Immunology, University of Cape Town, Cape Town, South Africa
| | - Kari C Nadeau
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University, Stanford, CA, USA
| | - Carol Hlela
- Department of Dermatology, University of Cape Town, Cape Town, South Africa
| | - Michael Levin
- Division of Paediatric Allergy, Department of Paediatrics and Child Health, University of Cape Town, South Africa
| | - Liam O'Mahony
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Medicine, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF, University of Zurich, Davos, Switzerland.,Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland
| |
Collapse
|
13
|
Pali‐Schöll I, Bianchini R, Afify SM, Hofstetter G, Winkler S, Ahlers S, Altemeier T, Mayerhofer H, Hufnagl K, Korath ADJ, Pranger C, Widhalm R, Hann S, Wittek T, Kasper‐Giebl A, Pacios LF, Roth‐Walter F, Vercelli D, von Mutius E, Jensen‐Jarolim E. Secretory protein beta-lactoglobulin in cattle stable dust may contribute to the allergy-protective farm effect. Clin Transl Allergy 2022; 12:e12125. [PMID: 35169442 PMCID: PMC8840802 DOI: 10.1002/clt2.12125] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 01/22/2022] [Accepted: 02/01/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Growing up on a cattle farm and consuming raw cow's milk protects against asthma and allergies. We expect a cattle-specific protein as active component in this farm effect. METHODS Dust was collected from cattle and poultry stables and from mattresses of households. Urine was obtained from cattle, and ambient aerosols were sampled. Samples were analysed for BLG by SDS PAGE/immunoblot and mass spectrometry, and for association with metals by SEC-ICP-MS. PBMC of healthy donors were incubated with BLG +/- zinc, and proliferation and cytokines determined. BALB/c mice were pre-treated intranasally with stable dust extract containing BLG or depleted of BLG, and subsequent allergy response after sensitization was evaluated on antibody and symptom level. RESULTS A major protein in dust from cattle farms and ambient air was identified as BLG. Urine from female and male cattle is a major source of BLG. In dust samples, BLG was associated with zinc. In vitro, zinc-BLG provoked significantly lower proliferation of CD4+ and CD8+ cells while inducing significantly higher levels of IFN-γ and IL-6 than the apo-BLG devoid of zinc. In vivo, pre-treatment of mice with dust extract containing BLG resulted in lower allergy symptom scores to BLG and unrelated Bet v 1 than pre-treatment with extract depleted of BLG. These in vitro and in vivo effects were independent of endotoxin. CONCLUSION The lipocalin BLG is found in large amounts in cattle urine, accumulates in bovine dust samples and is aerosolized around farms. Its association with zinc favorably shapes the human cellular immune response towards Th1-cytokines in vitro. BLG together with zinc in stable dust protects mice from allergic sensitization. BLG with its associated ligands may in an innate manner contribute to the allergy-protective farm effect.
Collapse
Affiliation(s)
- Isabella Pali‐Schöll
- The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University ViennaViennaAustria
- Institute of Pathophysiology and Allergy Research; Center of Physiology, Pathophysiology and Immunology; Medical University ViennaViennaAustria
| | - Rodolfo Bianchini
- The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University ViennaViennaAustria
| | - Sheriene Moussa Afify
- The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University ViennaViennaAustria
- Laboratory Medicine and Immunology DepartmentFaculty of MedicineMenoufia UniversityMenoufiaEgypt
| | - Gerlinde Hofstetter
- The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University ViennaViennaAustria
| | - Simona Winkler
- The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University ViennaViennaAustria
| | - Stella Ahlers
- The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University ViennaViennaAustria
| | - Theresa Altemeier
- The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University ViennaViennaAustria
| | - Hanna Mayerhofer
- The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University ViennaViennaAustria
| | - Karin Hufnagl
- The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University ViennaViennaAustria
| | - Anna D. J. Korath
- The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University ViennaViennaAustria
| | - Christina Pranger
- The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University ViennaViennaAustria
- Institute of Pathophysiology and Allergy Research; Center of Physiology, Pathophysiology and Immunology; Medical University ViennaViennaAustria
| | - Raimund Widhalm
- Institute of Medical GeneticsMedical University of ViennaViennaAustria
- Karl‐Landsteiner Private University for Health SciencesKremsAustria
| | - Stephan Hann
- Division of Analytical Chemistry, Department of Chemistry, University of Natural Resources and Life Sciences, BOKU‐ViennaViennaAustria
| | - Thomas Wittek
- University Clinic for RuminantsUniversity of Veterinary Medicine ViennaViennaAustria
| | - Anne Kasper‐Giebl
- Institute of Chemical Technologies and Analytics, TU‐WienViennaAustria
| | - Luis F. Pacios
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM‐INIA), Campus de Montegancedo UPM and Departmento de Biotecnología‐Biología Vegetal, ETSIAAB, Universidad Politécnica de Madrid (UPM)MadridSpain
| | - Franziska Roth‐Walter
- The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University ViennaViennaAustria
- Institute of Pathophysiology and Allergy Research; Center of Physiology, Pathophysiology and Immunology; Medical University ViennaViennaAustria
| | - Donata Vercelli
- Arizona Respiratory CenterUniversity of Arizona College of MedicineTucsonArizonaUSA
| | - Erika von Mutius
- Asthma and Allergy DepartmentDr. von Hauner Children's HospitalUniversity of MunichMunichGermany
| | - Erika Jensen‐Jarolim
- The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University ViennaViennaAustria
- Institute of Pathophysiology and Allergy Research; Center of Physiology, Pathophysiology and Immunology; Medical University ViennaViennaAustria
| |
Collapse
|
14
|
Xing Y, Wong GWK. Environmental Influences and Allergic Diseases in the Asia-Pacific Region: What Will Happen in Next 30 Years? ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2022; 14:21-39. [PMID: 34983105 PMCID: PMC8724831 DOI: 10.4168/aair.2022.14.1.21] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/14/2021] [Indexed: 12/22/2022]
Abstract
Asia-Pacific is a populous region with remarkable variations in socioeconomic development and environmental exposure among countries. The prevalence rates of asthma and allergic rhinitis appear to have recently reached a plateau in Western countries, whereas they are still increasing in many Asian countries. Given the large population in Asia, even a slight increase in the prevalence rate will translate into an overwhelming number of patients. To reduce the magnitude of the increase in allergic diseases in next few decades in Asia, we must understand the potential factors leading to the occurrence of these disorders and the development of potential preventive strategies. The etiology of allergic disorders is likely due to complex interactions among genetic, epigenetic, and environmental factors for the manifestations of inappropriate immune responses. As urbanization and industrialization inevitably progress in Asia, there is an urgent need to curtail the upcoming waves of the allergy epidemic. Potentially modifiable risk exposure, such as air pollution, should be minimized through timely implementation of effective legislations. Meanwhile, re-introduction of protective factors that were once part of the traditional farming lifestyle might give new insight into primary prevention of allergy.
Collapse
Affiliation(s)
- Yuhan Xing
- Department of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Gary Wing-Kin Wong
- Department of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
15
|
Afify SM, Regner A, Pacios LF, Blokhuis BR, Jensen SA, Redegeld FA, Pali-Schöll I, Hufnagl K, Bianchini R, Guethoff S, Kramer MF, Fiocchi A, Dvorak Z, Jensen-Jarolim E, Roth-Walter F. Micronutritional supplementation with a holoBLG-based FSMP (food for special medical purposes)-lozenge alleviates allergic symptoms in BALB/c mice: Imitating the protective farm effect. Clin Exp Allergy 2021; 52:426-441. [PMID: 34773648 DOI: 10.1111/cea.14050] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/13/2021] [Accepted: 11/10/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND Previously, the protective farm effect was imitated using the whey protein beta-lactoglobulin (BLG) that is spiked with iron-flavonoid complexes. Here, we formulated for clinical translation a lozenge as food for special medical purposes (FSMP) using catechin-iron complexes as ligands for BLG. The lozenge was tested in vitro and in a therapeutical BALB/c mice model. METHODS Binding of iron-catechin into BLG was confirmed by spectroscopy and docking calculations. Serum IgE binding of children allergic or tolerating milk was assessed to loaded (holo-) versus empty (apo-) BLG and for human mast cell degranulation. BLG and Bet v 1 double-sensitized mice were orally treated with the holoBLG or placebo lozenge, and immunologically analysed after systemic allergen challenge. Human PBMCs of pollen allergic subjects were flow cytometrically assessed after stimulation with apoBLG or holoBLG using catechin-iron complexes as ligands. RESULTS One major IgE and T cell epitope were masked by catechin-iron complexes, which impaired IgE binding of milk-allergic children and degranulation of mast cells. In mice, only supplementation with the holoBLG lozenge reduced clinical reactivity to BLG and Bet v 1, promoted Tregs, and suppressed antigen presentation. In allergic subjects, stimulation of PBMCs with holoBLG led to a significant increase of intracellular iron in circulating CD14+ cells with significantly lower expression of HLADR and CD86 compared to their stimulation with apoBLG. CONCLUSION The FSMP lozenge targeted antigen presenting cells and dampened immune activation in human immune cells and allergic mice in an antigen-non-specific manner, thereby conferring immune resilience against allergic symptoms.
Collapse
Affiliation(s)
- Sheriene Moussa Afify
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University of Vienna, Vienna, Austria.,Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.,Laboratory Medicine and Immunology Department, Faculty of Medicine, Menoufia University, Shibin El Kom, Egypt
| | - Andreas Regner
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University of Vienna, Vienna, Austria
| | - Luis F Pacios
- Biotechnology Department, ETSIAAB, Center for Plant Biotechnology and Genomics, CBGP (UPM-INIA), Technical University of Madrid, Madrid, Spain
| | - Bart R Blokhuis
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Sebastian A Jensen
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Frank A Redegeld
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Isabella Pali-Schöll
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University of Vienna, Vienna, Austria.,Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Karin Hufnagl
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University of Vienna, Vienna, Austria
| | - Rodolfo Bianchini
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University of Vienna, Vienna, Austria
| | - Sonja Guethoff
- Bencard Allergie GmbH, Munich, Germany.,Allergy Therapeutics, Worthing, UK
| | - Matthias F Kramer
- Bencard Allergie GmbH, Munich, Germany.,Allergy Therapeutics, Worthing, UK
| | | | - Zdenek Dvorak
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Olomouc, Czech Republic
| | - Erika Jensen-Jarolim
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University of Vienna, Vienna, Austria.,Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.,Biomedical International R+D GmbH, Vienna, Austria
| | - Franziska Roth-Walter
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University of Vienna, Vienna, Austria.,Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
16
|
Wang Z, Lai Z, Zhang X, Huang P, Xie J, Jiang Q, Zhang Q, Chung KF. Altered gut microbiome compositions are associated with the severity of asthma. J Thorac Dis 2021; 13:4322-4338. [PMID: 34422359 PMCID: PMC8339736 DOI: 10.21037/jtd-20-2189] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 05/31/2021] [Indexed: 12/31/2022]
Abstract
Background Despite substantial evidence on the contribution of the diversity of the gut microbiome to the pathogenesis of asthma and allergic diseases, little is known about their relationship with asthma severity and/or clinical phenotypes. We analyzed the difference in composition of the gut microbiome between subjects with asthma and healthy subjects and explored its role in the development of asthma. Methods Fecal samples from 15 subjects with severe asthma (SA), 14 with non-severe asthma (NSA), and 15 healthy subjects were assessed by 16S ribosomal RNA gene sequencing methods to identify the gut bacterial composition. Results Compared with those in the NSA group, patients in the SA group had a higher dose of inhaled corticosteroids, and there were more atopic subjects (60% vs. 35.7%, respectively). No significant differences were found at the phylum level either in operational taxonomic unit numbers or in diversity scores among the SA, NSA, and healthy groups. However, at the family level, the relative abundance of Acidaminococcaceae in the SA group was remarkedly lower than that in the group with healthy subjects (P<0.05). Furthermore, Veillonellaceae and Prevotellaceae were significantly more common in samples from the SA group than in those from the NSA group (P<0.05). In the SA group, positive correlations were observed between the relative abundance of Veillonellaceae and mid-expiratory flow 25% (MEF25%) predicted (r=0.538, P=0.047), as well as between the relative abundance of Acidaminococcaceae and body mass index (r=0642, P=0.010). Principal component analysis suggested that the relative abundances of Acidaminococcaceae and Prevotellaceae were associated with severe asthma. Moreover, we found that class Betaproteobacteria, order Burkholderiales, and family Alcaligenaceae were significantly different among the groups defined by serum immunoglobulin E (IgE) levels. Conclusions Our findings suggest that altered gut microbiome compositions are involved in the severity of asthma and that there are specific bacteria related to different asthma phenotypes in terms of serum IgE levels.
Collapse
Affiliation(s)
- Zhiqiang Wang
- Pulmonary and Critical Care Medicine, Guangzhou Insitute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Hexian Memorial Hospital of PanYu District, Guangzhou, China
| | - Zhengdao Lai
- Pulmonary and Critical Care Medicine, Guangzhou Insitute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Dongguan Institute of Respiratory and Critical Care Medicine, Afliated Dongguan People's Hospital, Southern Medicial University, Dongguan, China
| | - Xiaoxian Zhang
- Pulmonary and Critical Care Medicine, Guangzhou Insitute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Peikai Huang
- Pulmonary and Critical Care Medicine, Guangzhou Insitute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Respiration Medicine, Huizhou Municipal Central Hospital, Huizhou, China
| | - Jiaxing Xie
- Pulmonary and Critical Care Medicine, Guangzhou Insitute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qian Jiang
- Pulmonary and Critical Care Medicine, Guangzhou Insitute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qingling Zhang
- Pulmonary and Critical Care Medicine, Guangzhou Insitute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Kian Fan Chung
- National Heart & Lung Institute, Imperial College London & Biomedical Research Unit, Royal Brompton & Harefield NHS Trust, London, UK
| |
Collapse
|
17
|
Deckers J, Marsland BJ, von Mutius E. Protection against allergies: Microbes, immunity, and the farming effect. Eur J Immunol 2021; 51:2387-2398. [PMID: 34415577 DOI: 10.1002/eji.202048938] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 07/08/2021] [Accepted: 08/17/2021] [Indexed: 12/19/2022]
Abstract
The prevalence of asthma and other allergic diseases has rapidly increased in "Westernized" countries over recent decades. This rapid increase suggests the involvement of environmental factors, behavioral changes or lifestyle, rather than genetic drift. It has become increasingly clear that the microbiome plays a key role in educating the host immune system and, thus, regulation of disease susceptibility. This review will focus on recent advances uncovering immunological and microbial mechanisms that protect against allergies, in particular, within the context of a farming environment. A whole body of epidemiological data disclosed the nature of the protective exposures in a farm. Current evidence points toward an important role of the host microbiome in setting an immunological equilibrium that determines progression toward, or protection against allergic diseases. Conclusive mechanistic insights on how microbial exposures prevent from developing allergic diseases in humans are still lacking but findings from experimental models reveal plausible immunological mechanisms. Gathering further knowledge on these mechanisms and confirming their relevance in humans is of great importance to develop preventive strategies for children at risk of developing allergies.
Collapse
Affiliation(s)
- Julie Deckers
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent (Zwijnaarde), Belgium.,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Benjamin J Marsland
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Erika von Mutius
- Institute for Asthma and Allergy Prevention, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.,German Center for Lung Research, München, Germany.,Dr. von Hauner Children's Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| |
Collapse
|
18
|
Komlósi ZI, van de Veen W, Kovács N, Szűcs G, Sokolowska M, O'Mahony L, Akdis M, Akdis CA. Cellular and molecular mechanisms of allergic asthma. Mol Aspects Med 2021; 85:100995. [PMID: 34364680 DOI: 10.1016/j.mam.2021.100995] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 12/21/2022]
Abstract
Asthma is a chronic disease of the airways, which affects more than 350 million people worldwide. It is the most common chronic disease in children, affecting at least 30 million children and young adults in Europe. Asthma is a complex, partially heritable disease with a marked heterogeneity. Its development is influenced both by genetic and environmental factors. The most common, as well as the most well characterized subtype of asthma is allergic eosinophilic asthma, which is characterized by a type 2 airway inflammation. The prevalence of asthma has substantially increased in industrialized countries during the last 60 years. The mechanisms underpinning this phenomenon are incompletely understood, however increased exposure to various environmental pollutants probably plays a role. Disease inception is thought to be enabled by a disadvantageous shift in the balance between protective and harmful lifestyle and environmental factors, including exposure to protective commensal microbes versus infection with pathogens, collectively leading to airway epithelial cell damage and disrupted barrier integrity. Epithelial cell-derived cytokines are one of the main drivers of the type 2 immune response against innocuous allergens, ultimately leading to infiltration of lung tissue with type 2 T helper (TH2) cells, type 2 innate lymphoid cells (ILC2s), M2 macrophages and eosinophils. This review outlines the mechanisms responsible for the orchestration of type 2 inflammation and summarizes the novel findings, including but not limited to dysregulated epithelial barrier integrity, alarmin release and innate lymphoid cell stimulation.
Collapse
Affiliation(s)
- Zsolt I Komlósi
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvárad Sqr. 4, 1089, Budapest, Hungary.
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF), Hermann-Burchard Strasse 9, CH7265, Davos Wolfgand, Switzerland; Christine Kühne - Center for Allergy Research and Education, Davos, Switzerland
| | - Nóra Kovács
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvárad Sqr. 4, 1089, Budapest, Hungary; Lung Health Hospital, Munkácsy Mihály Str. 70, 2045, Törökbálint, Hungary
| | - Gergő Szűcs
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvárad Sqr. 4, 1089, Budapest, Hungary; Department of Pulmonology, Semmelweis University, Tömő Str. 25-29, 1083, Budapest, Hungary
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF), Hermann-Burchard Strasse 9, CH7265, Davos Wolfgand, Switzerland; Christine Kühne - Center for Allergy Research and Education, Davos, Switzerland
| | - Liam O'Mahony
- Department of Medicine and School of Microbiology, APC Microbiome Ireland, University College Cork, Ireland
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), Hermann-Burchard Strasse 9, CH7265, Davos Wolfgand, Switzerland; Christine Kühne - Center for Allergy Research and Education, Davos, Switzerland
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), Hermann-Burchard Strasse 9, CH7265, Davos Wolfgand, Switzerland; Christine Kühne - Center for Allergy Research and Education, Davos, Switzerland
| |
Collapse
|
19
|
Pivniouk V, Gimenes Junior JA, Honeker LK, Vercelli D. The role of innate immunity in asthma development and protection: Lessons from the environment. Clin Exp Allergy 2021; 50:282-290. [PMID: 31581343 DOI: 10.1111/cea.13508] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/27/2019] [Accepted: 09/21/2019] [Indexed: 12/24/2022]
Abstract
Asthma, a complex, chronic disease characterized by airway inflammation, hyperresponsiveness and remodelling, affects over 300 million people worldwide. While the disease is typically associated with exaggerated allergen-induced type 2 immune responses, these responses are strongly influenced by environmental exposures that stimulate innate immune pathways capable of promoting or protecting from asthma. The dual role played by innate immunity in asthma pathogenesis offers multiple opportunities for both research and clinical interventions and is the subject of this review.
Collapse
Affiliation(s)
- Vadim Pivniouk
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, AZ, USA.,Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | | | - Linnea K Honeker
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, AZ, USA
| | - Donata Vercelli
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, AZ, USA.,Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
20
|
Peters K, Peters M. The Role of Lectin Receptors and Their Ligands in Controlling Allergic Inflammation. Front Immunol 2021; 12:635411. [PMID: 33995354 PMCID: PMC8119883 DOI: 10.3389/fimmu.2021.635411] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 04/16/2021] [Indexed: 01/29/2023] Open
Abstract
More than fifty c-type lectin receptors (CLR) are known and have been identified so far. Moreover, we know the group of galectins and sialic acid-binding immunoglobulin-type lectins that also belong to the carbohydrate-binding receptors of the immune system. Thus, the lectin receptors form the largest receptor family among the pathogen recognition receptors. Similar to the toll-like receptors (TLRs), the CLR do not only recognize foreign but also endogenous molecules. In contrast to TLRs, which have a predominantly activating effect on the immune system, lectin receptors also mediate inhibitory signals. They play an important role in innate and adaptive immunity for the induction, regulation and shaping of the immune response. The hygiene hypothesis links enhanced infection to protection from allergic disease. Yet, the microbial substances that are responsible for mediating this allergy-protective activity still have to be identified. Microbes contain both ligands binding to TLRs and carbohydrates that are recognized by CLR and other lectin receptors. In the current literature, the CLR are often recognized as the ‘bad guys’ in allergic inflammation, because some glycoepitopes of allergens have been shown to bind to CLR, facilitating their uptake and presentation. On the other hand, there are many reports revealing that sugar moieties are involved in immune regulation. In this review, we will summarize what is known about the role of carbohydrate interaction with c-type lectins and other sugar-recognizing receptors in anti-inflammation, with a special focus on the regulation of the allergic immune response.
Collapse
Affiliation(s)
- Karin Peters
- Department of Molecular Immunology, Ruhr-University Bochum, Bochum, Germany
| | - Marcus Peters
- Department of Molecular Immunology, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
21
|
Borchers NS, Santos-Valente E, Toncheva AA, Wehkamp J, Franke A, Gaertner VD, Nordkild P, Genuneit J, Jensen BAH, Kabesch M. Human β-Defensin 2 Mutations Are Associated With Asthma and Atopy in Children and Its Application Prevents Atopic Asthma in a Mouse Model. Front Immunol 2021; 12:636061. [PMID: 33717182 PMCID: PMC7946850 DOI: 10.3389/fimmu.2021.636061] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/14/2021] [Indexed: 11/13/2022] Open
Abstract
Asthma and allergies are complex, chronic inflammatory diseases in which genetic and environmental factors are crucial. Protection against asthma and allergy development in the context of farming environment is established by early animal contact, unpasteurized milk consumption and gut microbiota maturation. The human β-defensin 2 (hBD-2) is a host defense peptide present almost exclusively in epithelial tissues, with pronounced immunomodulatory properties, which has recently been shown to ameliorate asthma and IBD in animal models. We hypothesized that adequate hBD-2 secretion plays a role in the protection against asthma and allergy development and that genetic variations in the complex gene locus coding for hBD-2 may be a risk factor for developing these diseases, if as a consequence, hBD-2 is insufficiently produced. We used MALDI-TOF MS genotyping, sequencing and a RFLP assay to study the genetic variation including mutations, polymorphisms and copy number variations in the locus harboring both genes coding for hBD-2 (DEFB4A and DEFB4B). We administered hBD-2 orally in a mouse model of house dust mite (HDM)-asthma before allergy challenge to explore its prophylactic potential, thereby mimicking a protective farm effect. Despite the high complexity of the region harboring DEFB4A and DEFB4B we identified numerous genetic variants to be associated with asthma and allergy in the GABRIELA Ulm population of 1,238 children living in rural areas, including rare mutations, polymorphisms and a lack of the DEFB4A. Furthermore, we found that prophylactic oral administration of hBD-2 significantly curbed lung resistance and pulmonary inflammation in our HDM mouse model. These data indicate that inadequate genetic capacity for hBD-2 is associated with increased asthma and allergy risk while adequate and early hBD-2 administration (in a mouse model) prevents atopic asthma. This suggests that hBD-2 could be involved in the protective farm effect and may be an excellent candidate to confer protection against asthma development.
Collapse
Affiliation(s)
- Natascha S. Borchers
- Department of Pediatric Pneumology and Allergy, University Children’s Hospital Regensburg (KUNO) at Hospital St. Hedwig of the Order of St. John, Regensburg, Germany
| | - Elisangela Santos-Valente
- Department of Pediatric Pneumology and Allergy, University Children’s Hospital Regensburg (KUNO) at Hospital St. Hedwig of the Order of St. John, Regensburg, Germany
| | - Antoaneta A. Toncheva
- Department of Pediatric Pneumology and Allergy, University Children’s Hospital Regensburg (KUNO) at Hospital St. Hedwig of the Order of St. John, Regensburg, Germany
| | - Jan Wehkamp
- Department of Internal Medicine II, University Hospital Tübingen, University of Tübingen, Tübingen, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology (IKMB), Kiel University, Kiel, Germany
| | - Vincent D. Gaertner
- Department of Pediatric Pneumology and Allergy, University Children’s Hospital Regensburg (KUNO) at Hospital St. Hedwig of the Order of St. John, Regensburg, Germany
- Newborn Research Zürich, University Hospital and University of Zürich, Zürich, Switzerland
| | | | - Jon Genuneit
- Pediatric Epidemiology, Department of Pediatrics, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Benjamin A. H. Jensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael Kabesch
- Department of Pediatric Pneumology and Allergy, University Children’s Hospital Regensburg (KUNO) at Hospital St. Hedwig of the Order of St. John, Regensburg, Germany
| |
Collapse
|
22
|
Steiman CA, Evans MD, Lee KE, Lasarev MR, Gangnon RE, Olson BF, Barnes KL, Bendixsen CG, Seroogy CM, Gern JE. Patterns of farm exposure are associated with reduced incidence of atopic dermatitis in early life. J Allergy Clin Immunol 2020; 146:1379-1386.e6. [PMID: 32650021 PMCID: PMC7721989 DOI: 10.1016/j.jaci.2020.06.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 06/14/2020] [Accepted: 06/22/2020] [Indexed: 02/04/2023]
Abstract
BACKGROUND Farm exposures may reduce the risk of atopic dermatitis (AD) in children, but this is controversial and US data are limited. OBJECTIVE This study was conducted to identify patterns of farm exposure in Wisconsin family farms that modify AD incidence and prevalence in early childhood. METHODS Environmental exposures, health history, and clinical outcomes were prospectively recorded for 111 farm families and 129 non-farm families enrolled in the Wisconsin Infant Study Cohort birth cohort study. Exposures from the prenatal and early postnatal (2-month) visits were evaluated together with parental report of AD diagnosis by a health care provider through age 24 months. Latent class analysis was performed with prenatal and early postnatal farm-exposure variables to assign farm children to 3 classes. RESULTS Overall, children of farm families had reduced AD incidence (P = .03). Within farm families, exposures including poultry (3% vs 28%; P = .003), pig (4% vs 25%; P = .04), feed grain (13% vs 34%; P = .02), and number of animal species were inversely associated with AD incidence. Among the latent class groups, children in families with diverse or more intense farm exposures (classes A and B) had reduced AD incidence, whereas low-exposure (class C) infants had AD incidence similar to that in nonfarm children. CONCLUSIONS Infants in Wisconsin farm families had reduced AD incidence, and patterns of farm exposures further defined AD risk. These findings suggest that exposure to diverse farm animals, feed, and bedding during the prenatal period and in early infancy reduce the risk of early-onset AD, a phenotype associated with multiple other atopic diseases.
Collapse
Affiliation(s)
- Cheryl A Steiman
- University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Michael D Evans
- University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Kristine E Lee
- University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Michael R Lasarev
- University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Ronald E Gangnon
- University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Brent F Olson
- Marshfield Clinic Research Institute, National Farm Medicine Center, Marshfield, Wis
| | - Kathrine L Barnes
- Marshfield Clinic Research Institute, National Farm Medicine Center, Marshfield, Wis
| | - Casper G Bendixsen
- Marshfield Clinic Research Institute, National Farm Medicine Center, Marshfield, Wis
| | | | - James E Gern
- University of Wisconsin School of Medicine and Public Health, Madison, Wis.
| |
Collapse
|
23
|
Prävention von Asthma im Kindesalter. Was bedeutet der Bauernhofeffekt für die Praxis? Monatsschr Kinderheilkd 2020. [DOI: 10.1007/s00112-020-00992-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
24
|
Krishna MT, Mahesh PA, Vedanthan PK, Mehta V, Moitra S, Christopher DJ. Pediatric allergic diseases in the Indian subcontinent-Epidemiology, risk factors and current challenges. Pediatr Allergy Immunol 2020; 31:735-744. [PMID: 32521565 DOI: 10.1111/pai.13306] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/17/2020] [Accepted: 05/18/2020] [Indexed: 12/23/2022]
Abstract
INTRODUCTION India is low-middle-income country (LMIC) with a population of 1.3bn, comprising about 20% of the global population. While the high-income Western countries faced an "allergy epidemic" during the last three decades, there has been a gradual rise in prevalence of allergic diseases in India. METHODS Narrative review. RESULTS AND DISCUSSION Allergic diseases occur as a consequence of a complex interplay between genetic and environmental factors. There are multiple contrasting determinants that are important to consider in India including high levels of air pollution, in particular PM2.5 due to burning of fossil fuels and biomass fuels, diverse aero-biology, tropical climate, cultural and social diversity, religious beliefs/myths, linguistic diversity, literacy level, breastfeeding and weaning, diet (large proportion vegetarian), and high incidence rates of TB, HIV, malaria, filariasis, parasitic infestations, and others, that not only shape the immune system early in life, but also impact on biomarkers relevant to allergic diseases. India has a relatively weak and heterogeneous healthcare framework, and allergology has not yet been recognized as an independent specialty. There are very few post-graduate training programs, and allergic diseases are managed by primary care physicians, organ-based specialists, and general pediatricians. Adrenaline auto-injectors are not available, there is patient unaffordability for inhalers, nasal sprays, and biologics, and this is compounded by poor compliance leading to 40%-50% of asthmatic children having uncontrolled disease and high rates of oral corticosteroid use. Standardized allergen extracts are not available for skin tests and desensitization. This article provides a critical analysis of pediatric allergic diseases in India.
Collapse
Affiliation(s)
- Mamidipudi Thirumala Krishna
- Allergy and Immunology Department, University Hospitals Birmingham NHS Foundation Trust and Institute of Immunology & Immunotherapy, University of Birmingham, Birmingham, UK
| | | | - Pudupakkam K Vedanthan
- Department of Medicine, Division of Allergy and Immunology, The University of Colorado, Aurora, CO, USA
| | - Vinay Mehta
- Allergy, Asthma and Immunology Associates, Lincoln, NE, USA
| | - Saibal Moitra
- Department of Allergy and Immunology, Apollo Gleneagles Hospital, Kolkata, West Bengal, India
| | | |
Collapse
|
25
|
von Mutius E, Smits HH. Primary prevention of asthma: from risk and protective factors to targeted strategies for prevention. Lancet 2020; 396:854-866. [PMID: 32910907 DOI: 10.1016/s0140-6736(20)31861-4] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/03/2020] [Accepted: 07/10/2020] [Indexed: 12/15/2022]
Abstract
Asthma is a complex disease that often starts in childhood. Genomic and environmental factors as well as aberrant immune maturation early in life can contribute to the onset of disease, with great disparity over time and geographical regions. Epidemiological studies have scrutinised environmental exposures and attempted to translate these exposures into prevention strategies. Some approaches for patients with asthma have been successful (eg, smoking ban, the Finnish Asthma Programme), and primary prevention of wheeze in pre-school children (age 0-5 years) by the supplementation of vitamin D or fish oil, or both, to pregnant women seems promising. Several recent prevention initiatives are based on strong asthma-protective environmental microbial exposures associated with traditional rural lifestyles. Preclinical studies with various bacterial lysates, bacterial and dietary metabolites, or helminthic compounds have yielded promising results that await translation into clinical practice. Given the immense societal and individual burden of asthma, there is an urgent need to further develop novel strategies to eradicate the disease.
Collapse
Affiliation(s)
- Erika von Mutius
- Department of Pediatrics, Dr von Hauner Children's Hospital, Ludwig Maximilians University, Munich, Germany; Helmholtz Zentrum Muenchen-German Research Center for Environmental Health, Institute for Asthma and Allergy Prevention, Neuherberg, Germany; Comprehensive Pneumology Center Munich, German Center for Lung Research, Neuherberg, Germany.
| | - Hermelijn H Smits
- Department of Parasitology, Center of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
26
|
Potential role of ovomucin and its peptides in modulation of intestinal health: A review. Int J Biol Macromol 2020; 162:385-393. [PMID: 32569696 PMCID: PMC7305749 DOI: 10.1016/j.ijbiomac.2020.06.148] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/11/2020] [Accepted: 06/16/2020] [Indexed: 01/06/2023]
Abstract
Intestinal dysfunction, which may cause a series of metabolic diseases, has become a worldwide health problem. In the past few years, studies have shown that consumption of poultry eggs has the potential to prevent a variety of metabolic diseases, and increasing attention has been directed to the bioactive proteins and their peptides in poultry eggs. This review mainly focused on the biological activities of an important egg-derived protein named ovomucin. Ovomucin and its derivatives have good anti-inflammatory, antioxidant, immunity-regulating and other biological functions. These activities may affect the physical, biological and immune barriers associated with intestinal health. This paper reviewed the structure and the structure-activity relationship of ovomucin,the potential role of ovomucin and its derivatives in modulation of intestinal health are also summarized. Finally, the potential applications of ovomucin and its peptides as functional food components to prevent and assist in the pretreatment of intestinal health problems are prospected.
Collapse
|
27
|
Nance CL, Deniskin R, Diaz VC, Paul M, Anvari S, Anagnostou A. The Role of the Microbiome in Food Allergy: A Review. CHILDREN-BASEL 2020; 7:children7060050. [PMID: 32466620 PMCID: PMC7346163 DOI: 10.3390/children7060050] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/14/2020] [Accepted: 05/17/2020] [Indexed: 02/06/2023]
Abstract
Food allergies are common and estimated to affect 8% of children and 11% of adults in the United States. They pose a significant burden—physical, economic and social—to those affected. There is currently no available cure for food allergies. Emerging evidence suggests that the microbiome contributes to the development and manifestations of atopic disease. According to the hygiene hypothesis, children growing up with older siblings have a lower incidence of allergic disease compared with children from smaller families, due to their early exposure to microbes in the home. Research has also demonstrated that certain environmental exposures, such as a farming environment, during early life are associated with a diverse bacterial experience and reduced risk of allergic sensitization. Dysregulation in the homeostatic interaction between the host and the microbiome or gut dysbiosis appears to precede the development of food allergy, and the timing of such dysbiosis is critical. The microbiome affects food tolerance via the secretion of microbial metabolites (e.g., short chain fatty acids) and the expression of microbial cellular components. Understanding the biology of the microbiome and how it interacts with the host to maintain gut homeostasis is helpful in developing smarter therapeutic approaches. There are ongoing trials evaluating the benefits of probiotics and prebiotics, for the prevention and treatment of atopic diseases to correct the dysbiosis. However, the routine use of probiotics as an intervention for preventing allergic disease is not currently recommended. A new approach in microbial intervention is to attempt a more general modification of the gut microbiome, such as with fecal microbiota transplantation. Developing targeted bacterial therapies for food allergy may be promising for both the treatment and prevention of food allergy. Similarly, fecal microbiota transplantation is being explored as a potentially beneficial interventional approach. Overall, targeted bacterial therapies for food allergy may be promising for both the treatment and prevention of food allergy.
Collapse
Affiliation(s)
- Christina L. Nance
- Baylor College of Medicine, Section of Pediatric Immunology, Allergy and Retrovirology, Houston, TX 77030 USA; (C.L.N.); (R.D.); (V.C.D.); (M.P.); (S.A.)
- Texas Children’s Hospital, Department of Pediatrics, Section of Immunology, Allergy and Retrovirology, Houston, TX 77030, USA
| | - Roman Deniskin
- Baylor College of Medicine, Section of Pediatric Immunology, Allergy and Retrovirology, Houston, TX 77030 USA; (C.L.N.); (R.D.); (V.C.D.); (M.P.); (S.A.)
- Texas Children’s Hospital, Department of Pediatrics, Section of Immunology, Allergy and Retrovirology, Houston, TX 77030, USA
| | - Veronica C. Diaz
- Baylor College of Medicine, Section of Pediatric Immunology, Allergy and Retrovirology, Houston, TX 77030 USA; (C.L.N.); (R.D.); (V.C.D.); (M.P.); (S.A.)
- Texas Children’s Hospital, Department of Pediatrics, Section of Immunology, Allergy and Retrovirology, Houston, TX 77030, USA
| | - Misu Paul
- Baylor College of Medicine, Section of Pediatric Immunology, Allergy and Retrovirology, Houston, TX 77030 USA; (C.L.N.); (R.D.); (V.C.D.); (M.P.); (S.A.)
- Texas Children’s Hospital, Department of Pediatrics, Section of Immunology, Allergy and Retrovirology, Houston, TX 77030, USA
| | - Sara Anvari
- Baylor College of Medicine, Section of Pediatric Immunology, Allergy and Retrovirology, Houston, TX 77030 USA; (C.L.N.); (R.D.); (V.C.D.); (M.P.); (S.A.)
- Texas Children’s Hospital, Department of Pediatrics, Section of Immunology, Allergy and Retrovirology, Houston, TX 77030, USA
| | - Aikaterini Anagnostou
- Baylor College of Medicine, Section of Pediatric Immunology, Allergy and Retrovirology, Houston, TX 77030 USA; (C.L.N.); (R.D.); (V.C.D.); (M.P.); (S.A.)
- Texas Children’s Hospital, Department of Pediatrics, Section of Immunology, Allergy and Retrovirology, Houston, TX 77030, USA
- Correspondence:
| |
Collapse
|
28
|
Tector AJ, Mosser M, Tector M, Bach JM. The Possible Role of Anti-Neu5Gc as an Obstacle in Xenotransplantation. Front Immunol 2020; 11:622. [PMID: 32351506 PMCID: PMC7174778 DOI: 10.3389/fimmu.2020.00622] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 03/18/2020] [Indexed: 12/20/2022] Open
Abstract
Seventy to ninety percentage of preformed xenoreactive antibodies in human serum bind to the galactose-α(1,3)-galactose Gal epitope, and the creation of Gal knockout (KO) pigs has eliminated hyperacute rejection as a barrier to xenotransplantation. Now other glycan antigens are barriers to move ahead with xenotransplantation, and the N-glycolyl neuraminic acid, Neu5Gc (or Hanganutziu-Deicher antigen), is also a major pig xenoantigen. Humans have anti-Neu5Gc antibodies. Several data indicate a strong immunogenicity of Neu5Gc in humans that may contribute to an important part in antibody-dependent injury to pig xenografts. Pig islets express Neu5Gc, which reacted with diet-derived human antibodies and mice deleted for Neu5Gc reject pancreatic islets from wild-type counterpart. However, Neu5Gc positive heart were not rejected in Neu5Gc KO mice indicating that the role of Neu5Gc-specific antibodies has to be nuanced and depend of the graft situation parameters (organ/tissue, recipient, implication of other glycan antigens). Recently generated Gal/Neu5Gc KO pigs eliminate the expression of Gal and Neu5Gc, and improve the crossmatch of humans with the pig. This review summarizes the current and recent experimental and (pre)clinical data on the Neu5Gc immunogenicity and emphasize of the potential impact of anti-Neu5Gc antibodies in limiting xenotransplantation in humans.
Collapse
Affiliation(s)
- Alfred Joseph Tector
- Department of Surgery, University of Alabama at Birmingham School of Medicine, Birmingham, AL, United States
| | - Mathilde Mosser
- Immuno-Endocrinology Unit (IECM), USC1383, Oniris, INRA, Nantes, France
| | - Matthew Tector
- Department of Surgery, University of Alabama at Birmingham School of Medicine, Birmingham, AL, United States
| | - Jean-Marie Bach
- Immuno-Endocrinology Unit (IECM), USC1383, Oniris, INRA, Nantes, France
| |
Collapse
|
29
|
Hufnagl K, Pali-Schöll I, Roth-Walter F, Jensen-Jarolim E. Dysbiosis of the gut and lung microbiome has a role in asthma. Semin Immunopathol 2020; 42:75-93. [PMID: 32072252 PMCID: PMC7066092 DOI: 10.1007/s00281-019-00775-y] [Citation(s) in RCA: 204] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 12/15/2019] [Indexed: 02/07/2023]
Abstract
Worldwide 300 million children and adults are affected by asthma. The development of asthma is influenced by environmental and other exogenous factors synergizing with genetic predisposition, and shaping the lung microbiome especially during birth and in very early life. The healthy lung microbial composition is characterized by a prevalence of bacteria belonging to the phyla Bacteroidetes, Actinobacteria, and Firmicutes. However, viral respiratory infections are associated with an abundance of Proteobacteria with genera Haemophilus and Moraxella in young children and adult asthmatics. This dysbiosis supports the activation of inflammatory pathways and contributes to bronchoconstriction and bronchial hyperresponsiveness. Exogenous factors can affect the natural lung microbiota composition positively (farming environment) or negatively (allergens, air pollutants). It is evident that also gut microbiota dysbiosis has a high influence on asthma pathogenesis. Antibiotics, antiulcer medications, and other drugs severely impair gut as well as lung microbiota. Resulting dysbiosis and reduced microbial diversity dysregulate the bidirectional crosstalk across the gut-lung axis, resulting in hypersensitivity and hyperreactivity to respiratory and food allergens. Efforts are undertaken to reconstitute the microbiota and immune balance by probiotics and engineered bacteria, but results from human studies do not yet support their efficacy in asthma prevention or treatment. Overall, dysbiosis of gut and lung seem to be critical causes of the increased emergence of asthma.
Collapse
Affiliation(s)
- Karin Hufnagl
- The Interuniversity Messerli Research Institute, Medical University Vienna and University of Veterinary Medicine Vienna, Vienna, Austria
| | - Isabella Pali-Schöll
- The Interuniversity Messerli Research Institute, Medical University Vienna and University of Veterinary Medicine Vienna, Vienna, Austria
| | - Franziska Roth-Walter
- The Interuniversity Messerli Research Institute, Medical University Vienna and University of Veterinary Medicine Vienna, Vienna, Austria
| | - Erika Jensen-Jarolim
- The Interuniversity Messerli Research Institute, Medical University Vienna and University of Veterinary Medicine Vienna, Vienna, Austria. .,Center for Pathophysiology, Infectiology and Immunology, Institute of Pathophysiology and Allergy Research, Medical University Vienna, Währinger G. 18-20, 1090, Vienna, Austria.
| |
Collapse
|
30
|
Perota A, Galli C. N-Glycolylneuraminic Acid (Neu5Gc) Null Large Animals by Targeting the CMP-Neu5Gc Hydroxylase (CMAH). Front Immunol 2019; 10:2396. [PMID: 31681287 PMCID: PMC6803385 DOI: 10.3389/fimmu.2019.02396] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 09/24/2019] [Indexed: 01/05/2023] Open
Abstract
The two major sialic acids described in mammalian cells are the N-glycolylneuraminic acid (Neu5Gc) and the N-acetylneuraminic acid (Neu5Ac). Neu5Gc synthesis starts from the N-acetylneuraminic acid (Neu5Ac) precursor modified by an hydroxylic group addition catalyzed by CMP-Neu5Ac hydroxylase enzyme (CMAH). In humans, CMAH was inactivated by a 92 bp deletion occurred 2-3 million years ago. Few other mammals do not synthetize Neu5Gc, however livestock species used for food production and as a source of biological materials for medical applications carry Neu5Gc. Trace amounts of Neu5Gc are up taken through the diet and incorporated into various tissues including epithelia and endothelia cells. Humans carry "natural," diet-induced Anti-Neu5Gc antibodies and when undertaking medical treatments or receiving transplants or devices that contain animal derived products they can cause immunological reaction affecting pharmacology, immune tolerance, and severe side effect like serum sickness disease (SSD). Neu5Gc null mice have been the main experimental model to study such phenotype. With the recent advances in genome editing, pigs and cattle KO for Neu5Gc have been generated always in association with the αGal KO. These large animals are normal and fertile and provide additional experimental models to study such mutation. Moreover, they will be the base for the development of new therapeutic applications like polyclonal IgG immunotherapy, Bioprosthetic Heart Valves, cells and tissues replacement.
Collapse
Affiliation(s)
- Andrea Perota
- Laboratory of Reproductive Technologies, Avantea, Cremona, Italy
| | - Cesare Galli
- Laboratory of Reproductive Technologies, Avantea, Cremona, Italy.,Fondazione Avantea, Cremona, Italy
| |
Collapse
|
31
|
Vuitton D, Divaret-Chauveau A, Dalphin ML, Laplante JJ, von Mutius E, Dalphin JC. Protection contre l’allergie par l’environnement de la ferme : en 15 ans, qu’avons-nous appris de la cohorte européenne « PASTURE » ? BULLETIN DE L'ACADÉMIE NATIONALE DE MÉDECINE 2019. [DOI: 10.1016/j.banm.2019.05.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
32
|
Deckers J, Lambrecht BN, Hammad H. How a farming environment protects from atopy. Curr Opin Immunol 2019; 60:163-169. [PMID: 31499321 DOI: 10.1016/j.coi.2019.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 08/02/2019] [Indexed: 12/15/2022]
Abstract
It is now well established that the exposure to certain environments such as farms has the potential to protect from the development of allergies later in life. This protection is achieved when repeated exposure to the farming environment occurs early in life, but persists when children spend sufficient amount of time in contact with livestock and hay, and drink unpasteurized milk. The capacity of farm dust to protect from allergy development lies, amongst others, in the microbe composition in the farm. These protective microbes release various metabolites and cell wall components that change farmers' home dust composition, when compared to urbanized home dust. Additionally, they can colonize various barrier sites (skin, lung, intestine) in farmers' children, leading to persistent changes in the way their immune system and their barrier cells respond to environmental allergens.
Collapse
Affiliation(s)
- Julie Deckers
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Technologiepark-Zwijnaarde 71, B-9052 Ghent (Zwijnaarde), Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Bart N Lambrecht
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Technologiepark-Zwijnaarde 71, B-9052 Ghent (Zwijnaarde), Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Department of Respiratory Medicine, Erasmus Medical Center, Rotterdam, The Netherlands.
| | - Hamida Hammad
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Technologiepark-Zwijnaarde 71, B-9052 Ghent (Zwijnaarde), Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| |
Collapse
|
33
|
Frei R, Roduit C, Ferstl R, O'Mahony L, Lauener RP. Exposure of Children to Rural Lifestyle Factors Associated With Protection Against Allergies Induces an Anti-Neu5Gc Antibody Response. Front Immunol 2019; 10:1628. [PMID: 31379833 PMCID: PMC6660244 DOI: 10.3389/fimmu.2019.01628] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 07/01/2019] [Indexed: 11/13/2022] Open
Abstract
Rural lifestyle has been shown to be highly protective against the development of allergies. Contact to farm-animals or pets and early-life consumption of milk products turned out to be important. These exposures provide contact to N-glycolylneuraminic acid (Neu5Gc), a sialic acid naturally expressed in mammalians but not in humans or microbes although both are able to incorporate exogenously provided Neu5Gc and induce thereby an anti-Neu5Gc antibody response. Farmers' children had elevated levels of anti-Neu5Gc antibodies associated with increased contact to Neu5Gc. Farm-related exposures that were associated with protection against allergies such as exposure to farm-animals or pets and consumption of milk were also associated with an antibody response to Neu5Gc in children. Exposure to cats was associated with increased anit-Neu5Gc IgG levels at different timepoints assessed between 1 year of age and school-age. Moreover, consumption of non-pasteurized milk in the first year of life was associated with increased anti-Neu5Gc IgG levels. Neu5Gc-providing exposures that were associated with protection against allergies were reflected in an elevated anti-Neu5Gc IgG level in children. Exposure to Neu5Gc was associated with anti-inflammation and protection of asthma development in children and mice without contribution of anti-Neu5Gc antibodies.
Collapse
Affiliation(s)
- Remo Frei
- Christine Kuehne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland.,Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Zurich, Switzerland
| | - Caroline Roduit
- Christine Kuehne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland.,Children's Hospital, University of Zurich, Zurich, Switzerland.,Children's Hospital of Eastern Switzerland, St. Gallen, Switzerland
| | - Ruth Ferstl
- Christine Kuehne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland.,Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Zurich, Switzerland
| | - Liam O'Mahony
- Departments of Medicine and Microbiology, APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Roger P Lauener
- Christine Kuehne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland.,Children's Hospital of Eastern Switzerland, St. Gallen, Switzerland
| |
Collapse
|
34
|
Dhar C, Sasmal A, Varki A. From "Serum Sickness" to "Xenosialitis": Past, Present, and Future Significance of the Non-human Sialic Acid Neu5Gc. Front Immunol 2019; 10:807. [PMID: 31057542 PMCID: PMC6481270 DOI: 10.3389/fimmu.2019.00807] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/26/2019] [Indexed: 01/01/2023] Open
Abstract
The description of "serum sickness" more than a century ago in humans transfused with animal sera eventually led to identification of a class of human antibodies directed against glycans terminating in the common mammalian sialic acid N-Glycolylneuraminic acid (Neu5Gc), hereafter called "Neu5Gc-glycans." The detection of such glycans in malignant and fetal human tissues initially raised the possibility that it was an oncofetal antigen. However, "serum sickness" antibodies were also noted in various human disease states. These findings spurred further research on Neu5Gc, and the discovery that it is not synthesized in the human body due to a human-lineage specific genetic mutation in the enzyme CMAH. However, with more sensitive techniques Neu5Gc-glycans were detected in smaller quantities on certain human cell types, particularly epithelia and endothelia. The likely explanation is metabolic incorporation of Neu5Gc from dietary sources, especially red meat of mammalian origin. This incorporated Neu5Gc on glycans appears to be the first example of a "xeno-autoantigen," against which varying levels of "xeno-autoantibodies" are present in all humans. The resulting chronic inflammation or "xenosialitis" may have important implications in human health and disease, especially in conditions known to be aggravated by consumption of red meat. In this review, we will cover the early history of the discovery of "serum sickness" antibodies, the subsequent recognition that they were partly directed against Neu5Gc-glycans, the discovery of the genetic defect eliminating Neu5Gc production in humans, and the later recognition that this was not an oncofetal antigen but the first example of a "xeno-autoantigen." Further, we will present comments about implications for disease risks associated with red meat consumption such as cancer and atherosclerosis. We will also mention the potential utility of these anti-Neu5Gc-glycan antibodies in cancer immunotherapy and provide some suggestions and perspectives for the future. Other reviews in this special issue cover many other aspects of this unusual pathological process, for which there appears to be no other described precedent.
Collapse
Affiliation(s)
- Chirag Dhar
- Departments of Medicine and Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, United States.,Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA, United States
| | - Aniruddha Sasmal
- Departments of Medicine and Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, United States.,Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA, United States
| | - Ajit Varki
- Departments of Medicine and Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, United States.,Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
35
|
Kreutzkamp B. Bauernhofkinder: Allergieschutz auch durch Tiere. ALLERGO JOURNAL 2018. [DOI: 10.1007/s15007-018-1548-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
36
|
Sokolowska M, Frei R, Lunjani N, Akdis CA, O'Mahony L. Microbiome and asthma. Asthma Res Pract 2018; 4:1. [PMID: 29318023 PMCID: PMC5755449 DOI: 10.1186/s40733-017-0037-y] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 12/18/2017] [Indexed: 12/14/2022] Open
Abstract
The mucosal immune system is in constant communication with the vast diversity of microbes present on body surfaces. The discovery of novel molecular mechanisms, which mediate host-microbe communication, have highlighted the important roles played by microbes in influencing mucosal immune responses. Dendritic cells, epithelial cells, ILCs, T regulatory cells, effector lymphocytes, NKT cells and B cells can all be influenced by the microbiome. Many of the mechanisms being described are bacterial strain- or metabolite-specific. Microbial dysbiosis in the gut and the lung is increasingly being associated with the incidence and severity of asthma. More accurate endotyping of patients with asthma may be assisted by further analysis of the composition and metabolic activity of an individual’s microbiome. In addition, the efficacy of specific therapeutics may be influenced by the microbiome and novel bacterial-based therapeutics should be considered in future clinical studies.
Collapse
Affiliation(s)
- Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research, University of Zürich, Obere Strasse 22, 7270 Davos, Switzerland.,Christine Kühne - Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| | - Remo Frei
- Swiss Institute of Allergy and Asthma Research, University of Zürich, Obere Strasse 22, 7270 Davos, Switzerland.,Christine Kühne - Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| | - Nonhlanhla Lunjani
- Swiss Institute of Allergy and Asthma Research, University of Zürich, Obere Strasse 22, 7270 Davos, Switzerland.,Christine Kühne - Center for Allergy Research and Education (CK-CARE), Davos, Switzerland.,University of Cape Town, Cape Town, South Africa
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research, University of Zürich, Obere Strasse 22, 7270 Davos, Switzerland.,Christine Kühne - Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| | - Liam O'Mahony
- Swiss Institute of Allergy and Asthma Research, University of Zürich, Obere Strasse 22, 7270 Davos, Switzerland
| |
Collapse
|