1
|
Douillard V, Dos Santos Brito Silva N, Bourguiba-Hachemi S, Naslavsky MS, Scliar MO, Duarte YAO, Zatz M, Passos-Bueno MR, Limou S, Gourraud PA, Launay É, Castelli EC, Vince N. Optimal population-specific HLA imputation with dimension reduction. HLA 2024; 103:e15282. [PMID: 37950640 DOI: 10.1111/tan.15282] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/29/2023] [Accepted: 10/14/2023] [Indexed: 11/13/2023]
Abstract
Human genomics has quickly evolved, powering genome-wide association studies (GWASs). SNP-based GWASs cannot capture the intense polymorphism of HLA genes, highly associated with disease susceptibility. There are methods to statistically impute HLA genotypes from SNP-genotypes data, but lack of diversity in reference panels hinders their performance. We evaluated the accuracy of the 1000 Genomes data as a reference panel for imputing HLA from admixed individuals of African and European ancestries, focusing on (a) the full dataset, (b) 10 replications from 6 populations, and (c) 19 conditions for the custom reference panels. The full dataset outperformed smaller models, with a good F1-score of 0.66 for HLA-B. However, custom models outperformed the multiethnic or population models of similar size (F1-scores up to 0.53, against up to 0.42). We demonstrated the importance of using genetically specific models for imputing populations, which are currently underrepresented in public datasets, opening the door to HLA imputation for every genetic population.
Collapse
Affiliation(s)
- Venceslas Douillard
- Nantes Université, INSERM, Ecole Centrale Nantes, Center for Research in Transplantation and Translational Immunology, Nantes, France
| | - Nayane Dos Santos Brito Silva
- Nantes Université, INSERM, Ecole Centrale Nantes, Center for Research in Transplantation and Translational Immunology, Nantes, France
- São Paulo State University, Molecular Genetics and Bioinformatics Laboratory, School of Medicine, Botucatu, Brazil
| | - Sonia Bourguiba-Hachemi
- Nantes Université, INSERM, Ecole Centrale Nantes, Center for Research in Transplantation and Translational Immunology, Nantes, France
| | - Michel S Naslavsky
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, Brazil
- Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
- Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Marilia O Scliar
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, Brazil
| | - Yeda A O Duarte
- Medical-Surgical Nursing Department, School of Nursing, University of São Paulo, São Paulo, Brazil
- Epidemiology Department, Public Health School, University of São Paulo, São Paulo, Brazil
| | - Mayana Zatz
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, Brazil
- Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | - Maria Rita Passos-Bueno
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, Brazil
- Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | - Sophie Limou
- Nantes Université, INSERM, Ecole Centrale Nantes, Center for Research in Transplantation and Translational Immunology, Nantes, France
| | - Pierre-Antoine Gourraud
- Nantes Université, INSERM, Ecole Centrale Nantes, Center for Research in Transplantation and Translational Immunology, Nantes, France
| | - Élise Launay
- Nantes Université, INSERM, Ecole Centrale Nantes, Center for Research in Transplantation and Translational Immunology, Nantes, France
- Department of Pediatrics and Pediatric Emergency, Hôpital Femme Enfant Adolescent, CHU de Nantes, Nantes, France
| | - Erick C Castelli
- São Paulo State University, Molecular Genetics and Bioinformatics Laboratory, School of Medicine, Botucatu, Brazil
| | - Nicolas Vince
- Nantes Université, INSERM, Ecole Centrale Nantes, Center for Research in Transplantation and Translational Immunology, Nantes, France
| |
Collapse
|
2
|
Silva NSB, Bourguiba-Hachemi S, Douillard V, Koskela S, Degenhardt F, Clancy J, Limou S, Meyer D, Masotti C, Knorst S, Naslavsky MS, Franke A, Castelli EC, Gourraud PA, Vince N. 18th International HLA and Immunogenetics Workshop: Report on the SNP-HLA Reference Consortium (SHLARC) component. HLA 2024; 103:e15293. [PMID: 37947386 DOI: 10.1111/tan.15293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/24/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023]
Abstract
The SNP-HLA Reference Consortium (SHLARC), a component of the 18th International HLA and Immunogenetics Workshop, is aimed at collecting diverse and extensive human leukocyte antigen (HLA) data to create custom reference panels and enhance HLA imputation techniques. Genome-wide association studies (GWAS) have significantly contributed to identifying genetic associations with various diseases. The HLA genomic region has emerged as the top locus in GWAS, particularly in immune-related disorders. However, the limited information provided by single nucleotide polymorphisms (SNPs), the hallmark of GWAS, poses challenges, especially in the HLA region, where strong linkage disequilibrium (LD) spans several megabases. HLA imputation techniques have been developed using statistical inference in response to these challenges. These techniques enable the prediction of HLA alleles from genotyped GWAS SNPs. Here we present the SHLARC activities, a collaborative effort to create extensive, and multi-ethnic reference panels to enhance HLA imputation accuracy.
Collapse
Affiliation(s)
- Nayane S B Silva
- Center for Research in Transplantation and Translational Immunology, Nantes Université, INSERM, Ecole Centrale Nantes, Nantes, France
- Molecular Genetics and Bioinformatics Laboratory, School of Medicine, São Paulo State University - Unesp, Botucatu, Brazil
| | - Sonia Bourguiba-Hachemi
- Center for Research in Transplantation and Translational Immunology, Nantes Université, INSERM, Ecole Centrale Nantes, Nantes, France
| | - Venceslas Douillard
- Center for Research in Transplantation and Translational Immunology, Nantes Université, INSERM, Ecole Centrale Nantes, Nantes, France
| | - Satu Koskela
- Finnish Red Cross Blood Service Biobank, Helsinki, Finland
| | - Frauke Degenhardt
- Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel, University Hospital Schleswig Holstein - Campus Kiel, Kiel, Germany
| | - Jonna Clancy
- Finnish Red Cross Blood Service Biobank, Helsinki, Finland
| | - Sophie Limou
- Center for Research in Transplantation and Translational Immunology, Nantes Université, INSERM, Ecole Centrale Nantes, Nantes, France
| | - Diogo Meyer
- Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | - Cibele Masotti
- Molecular Oncology Center, Hospital Sírio-Libanês, São Paulo, Brazil
| | - Stefan Knorst
- Molecular Oncology Center, Hospital Sírio-Libanês, São Paulo, Brazil
| | - Michel Satya Naslavsky
- Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel, University Hospital Schleswig Holstein - Campus Kiel, Kiel, Germany
| | - Erick C Castelli
- Molecular Genetics and Bioinformatics Laboratory, School of Medicine, São Paulo State University - Unesp, Botucatu, Brazil
| | - Pierre-Antoine Gourraud
- Center for Research in Transplantation and Translational Immunology, Nantes Université, INSERM, Ecole Centrale Nantes, Nantes, France
| | - Nicolas Vince
- Center for Research in Transplantation and Translational Immunology, Nantes Université, INSERM, Ecole Centrale Nantes, Nantes, France
| |
Collapse
|
3
|
Mabelane T, Masekela R, Dandara C, Hadebe S. Immunogenetics and pharmacogenetics of allergic asthma in Africa. FRONTIERS IN ALLERGY 2023; 4:1165311. [PMID: 37228580 PMCID: PMC10203899 DOI: 10.3389/falgy.2023.1165311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/20/2023] [Indexed: 05/27/2023] Open
Abstract
Asthma is a common chronic condition in children and in an African setting is often highly prevalent in urban areas as compared to rural areas. Asthma is a heritable disease and the genetic risk is often exacerbated by unique localised environmental factors. The Global Initiative for Asthma (GINA) recommendation for the control of asthma includes inhaled corticosteroids (ICS) alone or together with short-acting β2-agonists (SABA) or long-acting β2-agonists (LABA). While these drugs can relieve asthma symptoms, there is evidence of reduced efficacy in people of African ancestry. Whether this is due to immunogenetics, genomic variability in drug metabolising genes (pharmacogenetics) or genetics of asthma-related traits is not well defined. Pharmacogenetic evidence of first-line asthma drugs in people of African ancestry is lacking and is further compounded by the lack of representative genetic association studies in the continent. In this review, we will discuss the paucity of data related to the pharmacogenetics of asthma drugs in people of African ancestry, mainly drawing from African American data. We will further discuss how this gap can be bridged to improve asthma health outcomes in Africa.
Collapse
Affiliation(s)
- Tshegofatso Mabelane
- Department of Medicine, Sefako Makgatho Health Science University, Ga-Rankuwa, South Africa
| | - Refiloe Masekela
- Department of Paediatrics, Nelson Mandela School of Medicine, Inkosi Albert Luthuli Hospital, University of KwaZulu-Natal, Durban, South Africa
| | - Collet Dandara
- Division of Human Genetics, Department of Pathology, Faculty of Health Sciences and Institute of Infectious Diseases Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Platform for Pharmacogenomics Research and Translation, South African Medical Research Council, Cape Town, South Africa
| | - Sabelo Hadebe
- Division of Immunology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
4
|
Shi F, Zhang Y, Qiu C. Gene polymorphisms in asthma: a narrative review. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:711. [PMID: 35845533 PMCID: PMC9279821 DOI: 10.21037/atm-22-2170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 06/20/2022] [Indexed: 01/10/2023]
Abstract
Background and Objective Asthma is a heterogeneous disease caused by interactions between genetic and environmental factors. Genome-wide association studies (GWAS) have revealed that genetic variation plays a crucial role in the occurrence and development of asthma. The objective is to systematically review the existing literature on the association between gene polymorphisms and asthma to better understand the relationship between genetic factors and the occurrence and development of asthma. Methods We used keywords "asthma" and "gene polymorphism" with their combinations to search for relevant literature published from 2000 to 2021 in the PubMed database and the foreign medical literature retrieval service (FMRS). All articles included in the review are English. Then, we summarized the information pertaining to the genetic factors related to asthma susceptibility. Key Content and Findings This study summarized the information on 10 gene variants related to the risk of asthma published over the past 20 years, which will assist in further understanding the role of genetic variants in the risk of asthma. Conclusion Dozens of candidate genes have been identified that were associated with asthma risk. Asthmatics existed specific gene variation performed different response to therapy. Personalized therapy based on genotypic profiling would be an important direction in the future. However, it remains a great challenge for us to explore the relationship between gene polymorphisms and pathophysiological mechanism of asthma.
Collapse
Affiliation(s)
- Fei Shi
- Department of Emergency Medicine, Shenzhen People’s Hospital (The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology), Shenzhen, China
| | - Yu Zhang
- Department of Emergency Medicine, Shenzhen People’s Hospital (The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology), Shenzhen, China
| | - Chen Qiu
- Shenzhen Institute of Respiratory Diseases, Shenzhen People’s Hospital (The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology), Shenzhen, China
| |
Collapse
|
5
|
Fawcett KA, Demidov G, Shrine N, Paynton ML, Ossowski S, Sayers I, Wain LV, Hollox EJ. Exome-wide analysis of copy number variation shows association of the human leukocyte antigen region with asthma in UK Biobank. BMC Med Genomics 2022; 15:119. [PMID: 35597955 PMCID: PMC9124406 DOI: 10.1186/s12920-022-01268-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/10/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The role of copy number variants (CNVs) in susceptibility to asthma is not well understood. This is, in part, due to the difficulty of accurately measuring CNVs in large enough sample sizes to detect associations. The recent availability of whole-exome sequencing (WES) in large biobank studies provides an unprecedented opportunity to study the role of CNVs in asthma. METHODS We called common CNVs in 49,953 individuals in the first release of UK Biobank WES using ClinCNV software. CNVs were tested for association with asthma in a stage 1 analysis comprising 7098 asthma cases and 36,578 controls from the first release of sequencing data. Nominally-associated CNVs were then meta-analysed in stage 2 with an additional 17,280 asthma cases and 115,562 controls from the second release of UK Biobank exome sequencing, followed by validation and fine-mapping. RESULTS Five of 189 CNVs were associated with asthma in stage 2, including a deletion overlapping the HLA-DQA1 and HLA-DQB1 genes, a duplication of CHROMR/PRKRA, deletions within MUC22 and TAP2, and a duplication in FBRSL1. The HLA-DQA1, HLA-DQB1, MUC22 and TAP2 genes all reside within the human leukocyte antigen (HLA) region on chromosome 6. In silico analyses demonstrated that the deletion overlapping HLA-DQA1 and HLA-DQB1 is likely to be an artefact arising from under-mapping of reads from non-reference HLA haplotypes, and that the CHROMR/PRKRA and FBRSL1 duplications represent presence/absence of pseudogenes within the HLA region. Bayesian fine-mapping of the HLA region suggested that there are two independent asthma association signals. The variants with the largest posterior inclusion probability in the two credible sets were an amino acid change in HLA-DQB1 (glutamine to histidine at residue 253) and a multi-allelic amino acid change in HLA-DRB1 (presence/absence of serine, glycine or leucine at residue 11). CONCLUSIONS At least two independent loci characterised by amino acid changes in the HLA-DQA1, HLA-DQB1 and HLA-DRB1 genes are likely to account for association of SNPs and CNVs in this region with asthma. The high divergence of haplotypes in the HLA can give rise to spurious CNVs, providing an important, cautionary tale for future large-scale analyses of sequencing data.
Collapse
Affiliation(s)
- Katherine A Fawcett
- Department of Health Sciences, University of Leicester, Leicester, LE1 7RH, UK.
| | - German Demidov
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Nick Shrine
- Department of Health Sciences, University of Leicester, Leicester, LE1 7RH, UK
| | - Megan L Paynton
- Department of Health Sciences, University of Leicester, Leicester, LE1 7RH, UK
| | - Stephan Ossowski
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Ian Sayers
- Translational Medical Sciences, NIHR Respiratory Biomedical Research Centre, School of Medicine, Biodiscovery Institute, University of Nottingham, University Park, Nottingham, UK
| | - Louise V Wain
- Department of Health Sciences, University of Leicester, Leicester, LE1 7RH, UK
- Leicester Respiratory Biomedical Research Centre, National Institute for Health Research, Glenfield Hospital, Leicester, LE3 9QP, UK
| | - Edward J Hollox
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| |
Collapse
|
6
|
Valencia A, Vergara C, Thio CL, Vince N, Douillard V, Grifoni A, Cox AL, Johnson EO, Kral AH, Goedert JJ, Mangia A, Piazzolla V, Mehta SH, Kirk GD, Kim AY, Lauer GM, Chung RT, Price JC, Khakoo SI, Alric L, Cramp ME, Donfield SM, Edlin BR, Busch MP, Alexander G, Rosen HR, Murphy EL, Wojcik GL, Carrington M, Gourraud PA, Sette A, Thomas DL, Duggal P. Trans-ancestral fine-mapping of MHC reveals key amino acids associated with spontaneous clearance of hepatitis C in HLA-DQβ1. Am J Hum Genet 2022; 109:299-310. [PMID: 35090584 PMCID: PMC8874224 DOI: 10.1016/j.ajhg.2022.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 12/14/2021] [Indexed: 12/27/2022] Open
Abstract
Spontaneous clearance of acute hepatitis C virus (HCV) infection is associated with single nucleotide polymorphisms (SNPs) on the MHC class II. We fine-mapped the MHC region in European (n = 1,600; 594 HCV clearance/1,006 HCV persistence) and African (n = 1,869; 340 HCV clearance/1,529 HCV persistence) ancestry individuals and evaluated HCV peptide binding affinity of classical alleles. In both populations, HLA-DQβ1Leu26 (p valueMeta = 1.24 × 10-14) located in pocket 4 was negatively associated with HCV spontaneous clearance and HLA-DQβ1Pro55 (p valueMeta = 8.23 × 10-11) located in the peptide binding region was positively associated, independently of HLA-DQβ1Leu26. These two amino acids are not in linkage disequilibrium (r2 < 0.1) and explain the SNPs and classical allele associations represented by rs2647011, rs9274711, HLA-DQB1∗03:01, and HLA-DRB1∗01:01. Additionally, HCV persistence classical alleles tagged by HLA-DQβ1Leu26 had fewer HCV binding epitopes and lower predicted binding affinities compared to clearance alleles (geometric mean of combined IC50 nM of persistence versus clearance; 2,321 nM versus 761.7 nM, p value = 1.35 × 10-38). In summary, MHC class II fine-mapping revealed key amino acids in HLA-DQβ1 explaining allelic and SNP associations with HCV outcomes. This mechanistic advance in understanding of natural recovery and immunogenetics of HCV might set the stage for much needed enhancement and design of vaccine to promote spontaneous clearance of HCV infection.
Collapse
Affiliation(s)
- Ana Valencia
- Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; Universidad Pontificia Bolivariana, Medellín, Antioquia 050031, Colombia
| | - Candelaria Vergara
- Johns Hopkins University, Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Chloe L Thio
- Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Nicolas Vince
- Université de Nantes, CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes 44000, France
| | - Venceslas Douillard
- Université de Nantes, CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes 44000, France
| | - Alba Grifoni
- Center for infectious Diseases and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Andrea L Cox
- Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Eric O Johnson
- GenOmics, Bioinformatics, and Translational Research Center, RTI International, Research Triangle Park, NC 27709, USA
| | - Alex H Kral
- GenOmics, Bioinformatics, and Translational Research Center, RTI International, Research Triangle Park, NC 27709, USA
| | - James J Goedert
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alessandra Mangia
- Liver Unit, Medical Sciences Department, Fondazione "Casa Sollievo della Sofferenza" IRCCS, 71013 San Giovanni Rotondo, Italy
| | - Valeria Piazzolla
- Liver Unit, Medical Sciences Department, Fondazione "Casa Sollievo della Sofferenza" IRCCS, 71013 San Giovanni Rotondo, Italy
| | - Shruti H Mehta
- Johns Hopkins University, Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Gregory D Kirk
- Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; Johns Hopkins University, Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Arthur Y Kim
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Georg M Lauer
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Raymond T Chung
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Jennifer C Price
- Division of Gastroenterology, Department of Medicine, School of Medicine, University of California, San Francisco, CA 94143, USA
| | - Salim I Khakoo
- University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK
| | - Laurent Alric
- Internal Medicine-Department of Digestive Diseases, Rangueil Hospital, Toulouse University, 1, 31400 Toulouse, France
| | | | | | - Brian R Edlin
- SUNY Downstate College of Medicine, Brooklyn, NY 11203, USA
| | - Michael P Busch
- University of California San Francisco and Vitalant Research Institute, San Francisco, CA 94118, USA
| | - Graeme Alexander
- UCL Institute for Liver and Digestive Health, The Royal Free Hospital, Pond St, Hampstead, London NW3 2QG, UK
| | | | - Edward L Murphy
- University of California San Francisco and Vitalant Research Institute, San Francisco, CA 94118, USA
| | - Genevieve L Wojcik
- Johns Hopkins University, Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Mary Carrington
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA; Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA; Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Pierre-Antoine Gourraud
- Université de Nantes, CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes 44000, France
| | - Alessandro Sette
- Center for infectious Diseases and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92093, USA
| | - David L Thomas
- Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Priya Duggal
- Johns Hopkins University, Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| |
Collapse
|
7
|
Suarez-Pajes E, Díaz-García C, Rodríguez-Pérez H, Lorenzo-Salazar JM, Marcelino-Rodríguez I, Corrales A, Zheng X, Callero A, Perez-Rodriguez E, Garcia-Robaina JC, González-Montelongo R, Flores C, Guillen-Guio B. Targeted analysis of genomic regions enriched in African ancestry reveals novel classical HLA alleles associated with asthma in Southwestern Europeans. Sci Rep 2021; 11:23686. [PMID: 34880287 PMCID: PMC8654850 DOI: 10.1038/s41598-021-02893-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 11/24/2021] [Indexed: 12/30/2022] Open
Abstract
Despite asthma has a considerable genetic component, an important proportion of genetic risks remain unknown, especially for non-European populations. Canary Islanders have the largest African genetic ancestry observed among Southwestern Europeans and the highest asthma prevalence in Spain. Here we examined broad chromosomal regions previously associated with an excess of African genetic ancestry in Canary Islanders, with the aim of identifying novel risk variants associated with asthma susceptibility. In a two-stage cases-control study, we revealed a variant within HLA-DQB1 significantly associated with asthma risk (rs1049213, meta-analysis p = 1.30 × 10–7, OR [95% CI] = 1.74 [1.41–2.13]) previously associated with asthma and broad allergic phenotype. Subsequent fine-mapping analyses of classical HLA alleles revealed a novel allele significantly associated with asthma protection (HLA-DQA1*01:02, meta-analysis p = 3.98 × 10–4, OR [95% CI] = 0.64 [0.50–0.82]) that had been linked to infectious and autoimmune diseases, and peanut allergy. HLA haplotype analyses revealed a novel haplotype DQA1*01:02-DQB1*06:04 conferring asthma protection (meta-analysis p = 4.71 × 10–4, OR [95% CI] = 0.47 [0.29– 0.73]).
Collapse
Affiliation(s)
- Eva Suarez-Pajes
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Claudio Díaz-García
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Héctor Rodríguez-Pérez
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Jose M Lorenzo-Salazar
- Genomics Division, Instituto Tecnológico Y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
| | - Itahisa Marcelino-Rodríguez
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Almudena Corrales
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain.,CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Xiuwen Zheng
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Ariel Callero
- Allergy Unit, Hospital Universitario N.S. de Candelaria, Santa Cruz de Tenerife, Spain
| | - Eva Perez-Rodriguez
- Allergy Unit, Hospital Universitario N.S. de Candelaria, Santa Cruz de Tenerife, Spain
| | - Jose C Garcia-Robaina
- Allergy Unit, Hospital Universitario N.S. de Candelaria, Santa Cruz de Tenerife, Spain
| | | | - Carlos Flores
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain. .,Genomics Division, Instituto Tecnológico Y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain. .,CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain.
| | - Beatriz Guillen-Guio
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain. .,Department of Health Sciences, University of Leicester, Leicester, UK.
| |
Collapse
|
8
|
Douillard V, Castelli EC, Mack SJ, Hollenbach JA, Gourraud PA, Vince N, Limou S. Approaching Genetics Through the MHC Lens: Tools and Methods for HLA Research. Front Genet 2021; 12:774916. [PMID: 34925459 PMCID: PMC8677840 DOI: 10.3389/fgene.2021.774916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/08/2021] [Indexed: 01/11/2023] Open
Abstract
The current SARS-CoV-2 pandemic era launched an immediate and broad response of the research community with studies both about the virus and host genetics. Research in genetics investigated HLA association with COVID-19 based on in silico, population, and individual data. However, they were conducted with variable scale and success; convincing results were mostly obtained with broader whole-genome association studies. Here, we propose a technical review of HLA analysis, including basic HLA knowledge as well as available tools and advice. We notably describe recent algorithms to infer and call HLA genotypes from GWAS SNPs and NGS data, respectively, which opens the possibility to investigate HLA from large datasets without a specific initial focus on this region. We thus hope this overview will empower geneticists who were unfamiliar with HLA to run MHC-focused analyses following the footsteps of the Covid-19|HLA & Immunogenetics Consortium.
Collapse
Affiliation(s)
- Venceslas Douillard
- Centre de Recherche en Transplantation et Immunologie, CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, Université de Nantes, Nantes, France
| | | | - Steven J. Mack
- Division of Allergy, Immunology and Bone Marrow Transplantation, Department of Pediatrics, School of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Jill A. Hollenbach
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, United States
| | - Pierre-Antoine Gourraud
- Centre de Recherche en Transplantation et Immunologie, CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, Université de Nantes, Nantes, France
| | - Nicolas Vince
- Centre de Recherche en Transplantation et Immunologie, CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, Université de Nantes, Nantes, France
| | - Sophie Limou
- Centre de Recherche en Transplantation et Immunologie, CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, Université de Nantes, Nantes, France
- Ecole Centrale de Nantes, Department of Computer Sciences and Mathematics in Biology, Nantes, France
| |
Collapse
|
9
|
Miller RL, Grayson MH, Strothman K. Advances in asthma: New understandings of asthma's natural history, risk factors, underlying mechanisms, and clinical management. J Allergy Clin Immunol 2021; 148:1430-1441. [PMID: 34655640 DOI: 10.1016/j.jaci.2021.10.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/11/2021] [Accepted: 10/11/2021] [Indexed: 10/20/2022]
Abstract
The last 2 years yielded a proliferation of high-quality asthma research. These include new understandings of the incidence and natural history of asthma, findings on the effects of exposure to air pollution, allergens, and intake of acetaminophen, soy isoflavones, and polyunsaturated fatty acids, and exposure to microbial products. The past 2 years have benefited from great strides in determining potential mechanisms of asthma development and asthma exacerbations. These novel understandings led to identification and development of exciting new avenues for potential therapeutic intervention. Finally, there has been significant progress made in the development of tools to facilitate the diagnosis of asthma and measurement of airway physiology and in precision diagnostic approaches. Asthma guidelines were updated and new insights into the pharmacologic management of patients, including biologics, were reported. We review the most notable advances in the natural history of asthma, risk factors for the development of asthma, underlying mechanisms, diagnostic approaches, and treatments. Although greater knowledge of the mechanisms underlying responses and nonresponses to novel therapeutics and across asthma phenotypes would be beneficial, the progress over just the past 2 years has been immense and impactful.
Collapse
Affiliation(s)
- Rachel L Miller
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY.
| | - Mitchell H Grayson
- Division of Allergy and Immunology, Department of Pediatrics, Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, Ohio; Center for Clinical and Translational Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Kasey Strothman
- Division of Allergy and Immunology, Department of Pediatrics, Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, Ohio
| |
Collapse
|
10
|
Cooper PJ, Ster IC, Chico ME, Vaca M, Barreto ML, Strachan DP. Patterns of allergic sensitization and factors associated with emergence of sensitization in the rural tropics early in the life course: findings of an Ecuadorian birth cohort. FRONTIERS IN ALLERGY 2021; 2:687073. [PMID: 34888545 PMCID: PMC7612078 DOI: 10.3389/falgy.2021.687073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Introduction There are limited data on emergence of allergic sensitization (or atopy) during childhood in tropical regions. Methods We followed a birth cohort of 2404 newborns to 8 years in tropical Ecuador and collected: risk factor data by maternal questionnaires periodically from birth; atopy was measured by skin prick test reactivity (SPT) to aeroallergens in parents, and aeroallergens and food allergens in children at 2, 3, 5, and 8 years; and stool samples for soil-transmitted helminths (STH) from children periodically to 8 years and from parents and household members at the time of recruitment of cohort children. Data on risk factors were measured either at birth or repeatedly (time-varying) from birth to 8 years. Longitudinal repeated-measures analyses were done using generalized estimating equations to estimate an the age-dependent risk of positive SPT (SPT+) to any allergen or mite during early childhood to school age. Results SPT+ to any allergen was present in 29.0% of fathers and 24.8% of mothers, and in cohort children increased with age, initially to mite but later to cockroach, reaching 14.8% to any allergen (10.7% mite and 5.3% cockroach) at 8 years. Maternal SPT+, particularly presence of polysensitization (OR 2.04, 95% CI 1.49-2.77) significantly increased the risk of SPT+ during childhood, while household overcrowding at birth decreased the risk (OR 0.84, 95% CI 0.72-0.98). For mite sensitization, maternal polysensitization increased (OR 2.14, 95% CI 1.40-3.27) but rural residence (OR 0.69, 95% CI 0.50-0.94) and birth order (3rd -4th vs. 1st - 2nd: OR 0.71, 95% CI 0.52-0.98) decreased the risk. Time-varying exposures to agricultural activities (OR 0.77, 95% CI 0.60-0.98) and STH parasites (OR 0.70, 95% CI 0.64-0.91) during childhood decreased while anthelmintics increased the childhood risk (OR 1.47, 95% CI 1.05-2.05) of mite sensitization. Conclusion Our data showed the emergence of allergic sensitization, primarily to mite and cockroach allergens, during childhood in tropical Ecuador. A role for both antenatal and postnatal factors acting as potential determinants of SPT+ emergence was observed.
Collapse
Affiliation(s)
- Philip J Cooper
- Institute of Infection and Immunity, St George's University of London, London, UK.,Escuela de Medicina, Universidad Internacional del Ecuador, Quito, Ecuador.,Fundacion Ecuatoriana Para Investigacion en Salud, Quito, Ecuador
| | - Irina Chis Ster
- Institute of Infection and Immunity, St George's University of London, London, UK
| | - Martha E Chico
- Fundacion Ecuatoriana Para Investigacion en Salud, Quito, Ecuador
| | - Maritza Vaca
- Fundacion Ecuatoriana Para Investigacion en Salud, Quito, Ecuador
| | - Mauricio L Barreto
- Center for Data and Knowledge Integration for Health (CIDACS)-FIOCRUZ, Salvador, Brazil
| | - David P Strachan
- Population Health Research Institute, St George's University of London, London, UK
| |
Collapse
|
11
|
Gheerbrant H, Guillien A, Vernet R, Lupinek C, Pison C, Pin I, Demenais F, Nadif R, Bousquet J, Pickl WF, Valenta R, Bouzigon E, Siroux V. Associations between specific IgE sensitization to 26 respiratory allergen molecules and HLA class II alleles in the EGEA cohort. Allergy 2021; 76:2575-2586. [PMID: 33742477 DOI: 10.1111/all.14820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/27/2021] [Accepted: 02/09/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Allergy, the most frequent immune disorder affecting 30% of the world's population, is the consequence of immunoglobin E (IgE) sensitization to allergens. Among the genetic factors suspected to be involved in allergy, the HLA class-II genomic region is a strong candidate. OBJECTIVE To assess the association between HLA class-II alleles and specific IgE (sIgE) sensitization to a large number of respiratory allergen molecules. METHODS The analysis relied on 927 participants of the EGEA cohort, including 497 asthmatics. The study focuses on 26 aeroallergens recognized by sIgE in at least 5% of the study population (determined with the MEDALL chip with sIgE ≥ 0.3 ISU) and 23 imputed HLA class-II alleles. For each sIgE sensitization and HLA class-II allele, we fitted a logistic regression model accounting for familial dependence and adjusted for gender, age, and genetic principal components. p-values were corrected for multiple comparisons (False Discovery Rate). RESULTS Most of the 19 statistically significant associations observed regard pollen allergens (mugwort Art v 1, olive tree Ole e 1, timothy grass Phl p 2, Phl p 5 and plantain Pla l 1), three were mold allergen (Alternaria Alt a 1), and a single one regards house dust mite allergen (Der p 7). No association was observed with pet allergens. The strongest associations were found with mugwort Art v 1 (OR = 5.42 (95%CI, 3.30; 8.88), 4.14 (2.65; 6.47), 3.16 (1.88; 5.31) with DQB1*05:01, DQA1*01:01 and DRB1*01:01, respectively). CONCLUSION Our results support the important role of HLA class-II alleles as immune response genes predisposing their carriers for sensitization to various major pollen allergens.
Collapse
Affiliation(s)
- Hubert Gheerbrant
- Service Hospitalier Universitaire Pneumologie Physiologie Centre Hospitalier Universitaire Grenoble Alpes Grenoble France
- Inserm CNRS IAB Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health University Grenoble Alpes Grenoble France
| | - Alicia Guillien
- Inserm CNRS IAB Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health University Grenoble Alpes Grenoble France
| | - Raphaël Vernet
- UMRS 1124 INSERM Group of Genomic Epidemiology of Multifactorial Diseases Université de Paris Paris France
| | - Christian Lupinek
- Division of Immunopathology Department of Pathophysiology and Allergy Research Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | - Christophe Pison
- Service Hospitalier Universitaire Pneumologie Physiologie Centre Hospitalier Universitaire Grenoble Alpes Grenoble France
- Inserm 1055 Laboratoire de Bioénergétique Fondamentale et Appliquée Grenoble France
| | - Isabelle Pin
- Inserm CNRS IAB Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health University Grenoble Alpes Grenoble France
- Department of Pediatrics Grenoble‐Alpes University Hospital Grenoble France
| | - Florence Demenais
- UMRS 1124 INSERM Group of Genomic Epidemiology of Multifactorial Diseases Université de Paris Paris France
| | - Rachel Nadif
- Université Paris‐Saclay UVSQ Univ. Paris‐Sud Inserm Équipe d'Épidémiologie respiratoire intégrative CESP Villejuif France
| | - Jean Bousquet
- Arnaud de Villeneuve University Hospital and Inserm Montpellier France
| | - Winfried F. Pickl
- Institute of Immunology Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | - Rudolf Valenta
- Division of Immunopathology Department of Pathophysiology and Allergy Research Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
- NRC Institute of Immunology FMBA of Russia Moscow Russia
- Laboratory for Immunopathology Department of Clinical Immunology and Allergy Sechenov First Moscow State Medical University Moscow Russia
- Karl Landsteiner University of Health Sciences Krems Austria
| | - Emmanuelle Bouzigon
- UMRS 1124 INSERM Group of Genomic Epidemiology of Multifactorial Diseases Université de Paris Paris France
| | - Valérie Siroux
- Inserm CNRS IAB Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health University Grenoble Alpes Grenoble France
| |
Collapse
|
12
|
Vince N, Douillard V, Geffard E, Meyer D, Castelli EC, Mack SJ, Limou S, Gourraud PA. SNP-HLA Reference Consortium (SHLARC): HLA and SNP data sharing for promoting MHC-centric analyses in genomics. Genet Epidemiol 2020; 44:733-740. [PMID: 32681667 PMCID: PMC7540691 DOI: 10.1002/gepi.22334] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 06/19/2020] [Accepted: 07/03/2020] [Indexed: 12/19/2022]
Abstract
Genome‐wide associations studies have repeatedly identified the major histocompatibility complex genomic region (6p21.3) as key in immune pathologies. Researchers have also aimed to extend the biological interpretation of associations by focusing directly on human leukocyte antigen (HLA) polymorphisms and their combination as haplotypes. To circumvent the effort and high costs of HLA typing, statistical solutions have been developed to infer HLA alleles from single‐nucleotide polymorphism (SNP) genotyping data. Though HLA imputation methods have been developed, no unified effort has yet been undertaken to share large and diverse imputation models, or to improve methods. By training the HIBAG software on SNP + HLA data generated by the Consortium on Asthma among African‐ancestry Populations in the Americas (CAAPA) to create reference panels, we highlighted the importance of (a) the number of individuals in reference panels, with a twofold increase in accuracy (from 10 to 100 individuals) and (b) the number of SNPs, with a 1.5‐fold increase in accuracy (from 500 to 24,504 SNPs). Results showed improved accuracy with CAAPA compared to the African American models available in HIBAG, highlighting the need for precise population‐matching. The SNP‐HLA Reference Consortium is an international endeavor to gather data, enhance HLA imputation and broaden access to highly accurate imputation models for the immunogenomics community.
Collapse
Affiliation(s)
- Nicolas Vince
- Centre de Recherche en Transplantation et Immunologie, ITUN, UMR 1064, Université de Nantes, CHU Nantes, Inserm, Nantes, France
| | - Venceslas Douillard
- Centre de Recherche en Transplantation et Immunologie, ITUN, UMR 1064, Université de Nantes, CHU Nantes, Inserm, Nantes, France
| | - Estelle Geffard
- Centre de Recherche en Transplantation et Immunologie, ITUN, UMR 1064, Université de Nantes, CHU Nantes, Inserm, Nantes, France
| | | | - Erick C Castelli
- UNESP-Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
| | - Steven J Mack
- Department of Pediatrics, University of California, San Francisco, UCSF Benioff Children's Hospital Oakland, Oakland, California
| | - Sophie Limou
- Centre de Recherche en Transplantation et Immunologie, ITUN, UMR 1064, Université de Nantes, CHU Nantes, Inserm, Nantes, France.,Ecole Centrale de Nantes, Nantes, France
| | - Pierre-Antoine Gourraud
- Centre de Recherche en Transplantation et Immunologie, ITUN, UMR 1064, Université de Nantes, CHU Nantes, Inserm, Nantes, France
| |
Collapse
|