1
|
Baller EB, Luo AC, Schindler MK, Cooper EC, Pecsok MK, Cieslak MC, Martin ML, Bar-Or A, Elahi A, Perrone CM, Reid D, Spangler BC, Satterthwaite TD, Shinohara RT. Association of Anxiety with Uncinate Fasciculus Lesion Burden in Multiple Sclerosis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.10.08.24315108. [PMID: 39417125 PMCID: PMC11482984 DOI: 10.1101/2024.10.08.24315108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Importance Multiple sclerosis (MS) is an immune-mediated neurological disorder that affects 2.4 million people world-wide, and up to 60% experience anxiety. Objective We investigated how anxiety in MS is associated with white matter lesion burden in the uncinate fasciculus (UF). Design Retrospective case-control study of participants who received research-quality 3-tesla (3T) neuroimaging as part of MS clinical care from 2010-2018. Analyses were performed from June 1st to September 30th, 2024. Setting Single-center academic medical specialty MS clinic. Participants Participants were identified from the electronic medical record. All participants were diagnosed by an MS specialist and completed research-quality MRI at 3T. After excluding participants with poor image quality, 372 were stratified into three groups which were balanced for age and sex: 1) MS without anxiety (MS+noA, n=99); 2) MS with mild anxiety (MS+mildA, n=249); and 3) MS with severe anxiety (MS+severeA, n=24). Exposure Anxiety diagnosis and anxiolytic medication. Main Outcome and Measure We first evaluated whether MS+severeA patients had greater lesion burden in the UF than MS+noA. Next, we examined whether increasing anxiety severity was associated with greater UF lesion burden. Generalized additive models were employed, with the burden of lesions (e.g. proportion of fascicle impacted) within the UF as the outcome measure and sex and spline of age as covariates. Results UF burden was higher in MS+severeA as compared to MS+noA (T=2.02, P=0.045, Cohen's f 2=0.19). A dose-response effect was also found, where higher mean UF burden was associated with higher anxiety severity (T=2.08, P=0.038, Cohen's f 2=0.10). Conclusions and Relevance We demonstrate that overall lesion burden in UF was associated with the presence and severity of anxiety in patients with MS. Future studies linking white matter lesion burden in UF with treatment prognosis are warranted.
Collapse
Affiliation(s)
- Erica B. Baller
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA USA
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Philadelphia, PA USA
| | - Audrey C. Luo
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA USA
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Philadelphia, PA USA
| | - Matthew K. Schindler
- Department of Neurology, University of Pennsylvania, Philadelphia, PA USA
- Center for Neuroinflammation and Neurotherapeutics, University of Pennsylvania, Philadelphia, PA USA
| | - Elena C. Cooper
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA USA
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Philadelphia, PA USA
| | - Margaret K. Pecsok
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA USA
| | - Matthew C. Cieslak
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA USA
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Philadelphia, PA USA
| | - Melissa Lynne Martin
- Penn Statistics in Imaging and Visualization Center (PennSIVE), Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA USA
| | - Amit Bar-Or
- Department of Neurology, University of Pennsylvania, Philadelphia, PA USA
- Center for Neuroinflammation and Neurotherapeutics, University of Pennsylvania, Philadelphia, PA USA
| | - Ameena Elahi
- Department of Information Services, University of Pennsylvania, Philadelphia, PA USA
| | - Christopher M. Perrone
- Department of Neurology, University of Pennsylvania, Philadelphia, PA USA
- Center for Neuroinflammation and Neurotherapeutics, University of Pennsylvania, Philadelphia, PA USA
| | - Donovan Reid
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA USA
| | - Bailey C. Spangler
- Penn Statistics in Imaging and Visualization Center (PennSIVE), Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA USA
| | - Theodore D. Satterthwaite
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA USA
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Philadelphia, PA USA
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA USA
| | - Russell T. Shinohara
- Penn Statistics in Imaging and Visualization Center (PennSIVE), Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA USA
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA USA
| |
Collapse
|
2
|
Mahajan A, Stoub T, Gonzalez DA, Stebbins G, Gray G, Warner‐Rosen T, Sugar D, Pylypyuk C, Yu M, Comella C. Understanding Anxiety in Cervical Dystonia: An Imaging Study. Mov Disord Clin Pract 2024; 11:1008-1012. [PMID: 38747154 PMCID: PMC11329561 DOI: 10.1002/mdc3.14070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/03/2024] [Accepted: 04/29/2024] [Indexed: 08/18/2024] Open
Abstract
BACKGROUND Anxiety may precede motor symptoms in cervical dystonia (CD) and is associated with an earlier onset of dystonia. Our understanding of anxiety in CD is inadequate. OBJECTIVE To investigate brain networks associated with anxiety in CD. METHODS Twenty-six subjects with idiopathic CD underwent MRI Brain without contrast. Correlational tractography was derived using Diffusion MRI connectometry. Quantitative Anisotropy (QA) was used in deterministic diffusion fiber tracking. Correlational tractography was then used to correlate QA with State-Trait Anxiety Inventory (STAI) state (STAI-S) and trait (STAI-T) subscales. RESULTS Connectometry analysis showed direct correlation between state anxiety and QA in tracts from amygdala to thalamus/ pulvinar bilaterally, and trait anxiety and QA in tracts from amygdala to motor cortex, sensorimotor cortex and parietal association area bilaterally (FDR ≤0.05). CONCLUSION Our efforts to map anxiety to brain networks in CD highlight the role of the amygdala in the pathophysiology of anxiety in CD.
Collapse
Affiliation(s)
- Abhimanyu Mahajan
- Gardner Family Center For Parkinson's Disease and Movement DisordersUniversity of CincinnatiCincinnatiOhioUSA
| | - Travis Stoub
- Department of Neurological SciencesRush University Medical CenterChicagoIllinoisUSA
| | - David A. Gonzalez
- Department of Neurological SciencesRush University Medical CenterChicagoIllinoisUSA
| | - Glenn Stebbins
- Department of Neurological SciencesRush University Medical CenterChicagoIllinoisUSA
| | - Gabrielle Gray
- Department of Neurological SciencesRush University Medical CenterChicagoIllinoisUSA
| | - Tila Warner‐Rosen
- Department of Neurological SciencesRush University Medical CenterChicagoIllinoisUSA
| | - Dana Sugar
- Division of Movement disorders, Department of NeurologyUniversity of New MexicoAlbuquerqueNew MexicoUSA
| | - Caroline Pylypyuk
- Department of Neurological SciencesRush University Medical CenterChicagoIllinoisUSA
| | - Mandy Yu
- Department of Neurological SciencesRush University Medical CenterChicagoIllinoisUSA
| | - Cynthia Comella
- Department of Neurological SciencesRush University Medical CenterChicagoIllinoisUSA
| |
Collapse
|
3
|
Aggarwal N, Tromp DP, Blackford JU, Pine DS, Roseboom PH, Williams LE, Kalin NH. Sex-Specific Distributed White Matter Microarchitectural Alterations in Preadolescent Youths With Anxiety Disorders: A Mega-Analytic Study. Am J Psychiatry 2024; 181:299-309. [PMID: 38476042 PMCID: PMC11129321 DOI: 10.1176/appi.ajp.20221048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
OBJECTIVE Anxiety disorders are among the most common psychiatric disorders in youths and emerge during childhood. This is also a period of rapid white matter (WM) development, which is critical for efficient neuronal communication. Previous work in preadolescent children with anxiety disorders demonstrated anxiety disorder-related reductions in WM microstructural integrity (fractional anisotropy [FA]) in the uncinate fasciculus (UF), the major WM tract facilitating prefrontal cortical-limbic structural connectivity. Importantly, this association was found only in boys with anxiety disorders. To confirm this finding and more comprehensively understand WM changes in childhood anxiety, this mega-analytic study characterizes WM alterations related to anxiety disorders and sex in the largest sample of preadolescent children to date. METHODS Diffusion tensor imaging data from published studies of preadolescent children with anxiety disorders and healthy volunteers (ages 8-12) (N=198) were combined with a new data set (N=97) for a total sample of 165 children with anxiety disorders and 132 healthy volunteers. Children with anxiety disorders met DSM-5 criteria for current generalized, separation, and/or social anxiety disorder. Analyses of tractography and voxel-wise data assessed between-group differences (anxiety disorder vs. healthy volunteer), effects of sex, and their interaction. RESULTS Tract-based and voxel-wise analyses confirmed a significant reduction in UF FA in boys but not girls with anxiety disorders. Results also demonstrated other significant widespread anxiety disorder-related WM alterations specifically in boys, including in multiple commissural, association, projection, and brainstem regions. CONCLUSIONS In addition to confirming male-specific anxiety disorder-related reductions in UF FA, the results demonstrate that anxiety disorders in boys and not girls are associated with broadly distributed WM alterations across the brain. These findings support further studies focused on understanding the extent to which WM alterations in boys with anxiety disorders are involved in pathophysiological processes that mediate anxiety disorders. The findings also suggest the possibility that WM microarchitecture could serve as a novel treatment target for childhood anxiety disorders.
Collapse
Affiliation(s)
- Nakul Aggarwal
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI 53719, United States
| | - Do P.M. Tromp
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI 53719, United States
| | - Jennifer U. Blackford
- Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Daniel S. Pine
- Section on Developmental and Affective Neuroscience, National Institute of Mental Health, Bethesda, MD 20814, United States
| | - Patrick H. Roseboom
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI 53719, United States
| | - Lisa E. Williams
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI 53719, United States
| | - Ned H. Kalin
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI 53719, United States
| |
Collapse
|
4
|
Saar-Ashkenazy R, Guez J, Jacob Y, Veksler R, Cohen JE, Shelef I, Friedman A, Benifla M. White-matter correlates of anxiety: The contribution of the corpus-callosum to the study of anxiety and stress-related disorders. Int J Methods Psychiatr Res 2023; 32:e1955. [PMID: 36448238 DOI: 10.1002/mpr.1955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/04/2022] [Accepted: 10/21/2022] [Indexed: 12/03/2022] Open
Abstract
OBJECTIVES Traumatic stress has been associated with increased risk for brain alterations and development of anxiety disorders. Studies conducted in posttraumatic patients have shown white-mater volume and diffusion alterations in the corpus-callosum. Decreased cognitive performance has been demonstrated in acute stress disorder and posttraumatic patients. However, whether cognitive alterations result from stress related neuropathology or reflect a predisposition is not known. In the current study, we examined in healthy controls, whether individual differences in anxiety are associated with those cognitive and brain alterations reported in stress related pathologies. METHODS Twenty healthy volunteers were evaluated for anxiety using the state-trait inventory (STAI), and were tested for memory performance. Brain imaging was employed to extract volumetric and diffusion characteristics of the corpus-callosum. RESULTS Significant correlations were found between trait anxiety and all three diffusion parameters (fractional-anisotropy, mean and radial-diffusivity). Associative-memory performance and corpus-callosum volume were also significantly correlated. CONCLUSION We suggest that cognitive and brain alterations, as tested in the current work and reported in stress related pathologies, are present early and possibly persist throughout life. Our findings support the hypothesis that individual differences in trait anxiety predispose individuals towards negative cognitive outcomes and brain alterations, and potentially to stress related disorders.
Collapse
Affiliation(s)
- Rotem Saar-Ashkenazy
- Faculty of Social-Work, Ashkelon Academic College, Ashkelon, Israel
- Department of Brain and Cognitive Neuroscience, The Zlotowski Center for Neuroscience Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Jonathan Guez
- Department of Psychology, Achva Academic College, Beer-Tuvia Regional Council, Shikmim, Israel
- Beer-Sheva Mental Health Center, Shikmim, Israel
| | - Yael Jacob
- Department of Psychiatry, Depression and Anxiety Center for Discovery and Treatment, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ronel Veksler
- Department of Physiology and Cell Biology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Jonathan E Cohen
- Sharett Institute of Oncology and The Wohl Institute for Translational Medicine, Hadassah Medical Center, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ilan Shelef
- Department of Radiology, Soroka University Medical Center, Beer-Sheva, Israel
| | - Alon Friedman
- Department of Brain and Cognitive Neuroscience, The Zlotowski Center for Neuroscience Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Department of Physiology and Cell Biology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Mony Benifla
- Department of Pediatric Neurosurgery, Rambam Health Care Campus, Haifa, Israel
| |
Collapse
|
5
|
Margoni M, Preziosa P, Rocca MA, Filippi M. Depressive symptoms, anxiety and cognitive impairment: emerging evidence in multiple sclerosis. Transl Psychiatry 2023; 13:264. [PMID: 37468462 PMCID: PMC10356956 DOI: 10.1038/s41398-023-02555-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/21/2023] Open
Abstract
Neuropsychiatric abnormalities may be broadly divided in two categories: disorders of mood, affect, and behavior and abnormalities affecting cognition. Among these conditions, clinical depression, anxiety and neurocognitive disorders are the most common in multiple sclerosis (MS), with a substantial impact on patients' quality of life and adherence to treatments. Such manifestations may occur from the earliest phases of the disease but become more frequent in MS patients with a progressive disease course and more severe clinical disability. Although the pathogenesis of these neuropsychiatric manifestations has not been fully defined yet, brain structural and functional abnormalities, consistently observed with magnetic resonance imaging (MRI), together with genetic and immunologic factors, have been suggested to be key players. Even though the detrimental clinical impact of such manifestations in MS patients is a matter of crucial importance, at present, they are often overlooked in the clinical setting. Moreover, the efficacy of pharmacologic and non-pharmacologic approaches for their amelioration has been poorly investigated, with the majority of studies showing marginal or no beneficial effect of different therapeutic approaches, possibly due to the presence of multiple and heterogeneous underlying pathological mechanisms and intrinsic methodological limitations. A better evaluation of these manifestations in the clinical setting and improvements in the understanding of their pathophysiology may offer the potential to develop tools for differentiating these mechanisms in individual patients and ultimately provide a principled basis for treatment selection. This review provides an updated overview regarding the pathophysiology of the most common neuropsychiatric symptoms in MS, the clinical and MRI characteristics that have been associated with mood disorders (i.e., depression and anxiety) and cognitive impairment, and the treatment approaches currently available or under investigation.
Collapse
Affiliation(s)
- Monica Margoni
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Preziosa
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Maria A Rocca
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
6
|
Glenn DE, Merenstein JL, Bennett IJ, Michalska KJ. Anxiety symptoms and puberty interactively predict lower cingulum microstructure in preadolescent Latina girls. Sci Rep 2022; 12:20755. [PMID: 36456602 PMCID: PMC9713745 DOI: 10.1038/s41598-022-24803-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022] Open
Abstract
Preadolescence is a period of increased vulnerability for anxiety, especially among Latina girls. Reduced microstructure (fractional anisotropy; FA) of white matter tracts between limbic and prefrontal regions may underlie regulatory impairments in anxiety. However, developmental research on the association between anxiety and white matter microstructure is mixed, possibly due to interactive influences with puberty. In a sample of 39 Latina girls (8-13 years), we tested whether pubertal stage moderated the association between parent- and child-reported anxiety symptoms and FA in the cingulum and uncinate fasciculus. Parent- but not child-reported anxiety symptoms predicted lower cingulum FA, and this effect was moderated by pubertal stage, such that this association was only significant for prepubertal girls. Neither anxiety nor pubertal stage predicted uncinate fasciculus FA. These findings suggest that anxiety is associated with disruptions in girls' cingulum white matter microstructure and that this relationship undergoes maturational changes during puberty.
Collapse
Affiliation(s)
- Dana E Glenn
- Department of Psychology, University of California, Riverside, 900 University Avenue, Riverside, CA, 92521, USA.
| | - Jenna L Merenstein
- Department of Psychology, University of California, Riverside, 900 University Avenue, Riverside, CA, 92521, USA
- Brain Imaging and Analysis Center, Duke University, Durham, NC, USA
| | - Ilana J Bennett
- Department of Psychology, University of California, Riverside, 900 University Avenue, Riverside, CA, 92521, USA
| | - Kalina J Michalska
- Department of Psychology, University of California, Riverside, 900 University Avenue, Riverside, CA, 92521, USA
| |
Collapse
|
7
|
Luttenbacher I, Phillips A, Kazemi R, Hadipour AL, Sanghvi I, Martinez J, Adamson MM. Transdiagnostic role of glutamate and white matter damage in neuropsychiatric disorders: A Systematic Review. J Psychiatr Res 2022; 147:324-348. [PMID: 35151030 DOI: 10.1016/j.jpsychires.2021.12.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/08/2021] [Accepted: 12/19/2021] [Indexed: 12/09/2022]
Abstract
Neuropsychiatric disorders including generalized anxiety disorder (GAD), obsessive-compulsive disorder (OCD), major depressive disorder (MDD), bipolar disorder (BD), and schizophrenia (SZ) have been considered distinct categories of diseases despite their overlapping characteristics and symptomatology. We aimed to provide an in-depth review elucidating the role of glutamate/Glx and white matter (WM) abnormalities in these disorders from a transdiagnostic perspective. The PubMed online database was searched for studies published between 2010 and 2021. After careful screening, 401 studies were included. The findings point to decreased levels of glutamate in the Anterior Cingulate Cortex in both SZ and BD, whereas Glx is elevated in the Hippocampus in SZ and MDD. With regard to WM abnormalities, the Corpus Callosum and superior Longitudinal Fascicle were the most consistently identified brain regions showing decreased fractional anisotropy (FA) across all the reviewed disorders, except GAD. Additionally, the Uncinate Fasciculus displayed decreased FA in all disorders, except OCD. Decreased FA was also found in the inferior Longitudinal Fasciculus, inferior Fronto-Occipital Fasciculus, Thalamic Radiation, and Corona Radiata in SZ, BD, and MDD. Decreased FA in the Fornix and Corticospinal Tract were found in BD and SZ patients. The Cingulum and Anterior Limb of Internal Capsule exhibited decreased FA in MDD and SZ patients. The results suggest a gradual increase in severity from GAD to SZ defined by the number of brain regions with WM abnormality which may be partially caused by abnormal glutamate levels. WM damage could thus be considered a potential marker of some of the main neuropsychiatric disorders.
Collapse
Affiliation(s)
- Ines Luttenbacher
- Department of Social & Behavioral Sciences, University of Amsterdam, Amsterdam, Netherlands; Rehabilitation Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Angela Phillips
- Rehabilitation Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA; Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Reza Kazemi
- Department of Cognitive Psychology, Institute for Cognitive Science Studies, Tehran, Iran
| | - Abed L Hadipour
- Department of Cognitive Sciences, University of Messina, Messina, Italy
| | - Isha Sanghvi
- Rehabilitation Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA; Department of Neuroscience, University of Southern California, Los Angeles, CA, USA
| | - Julian Martinez
- Rehabilitation Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA; Palo Alto University, Palo Alto, CA, USA
| | - Maheen M Adamson
- Rehabilitation Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA; Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
8
|
Aggarwal N, Williams LE, Tromp DPM, Pine DS, Kalin NH. A dynamic relation between whole-brain white matter microstructural integrity and anxiety symptoms in preadolescent females with pathological anxiety. Transl Psychiatry 2022; 12:57. [PMID: 35136030 PMCID: PMC8825837 DOI: 10.1038/s41398-022-01827-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 11/09/2022] Open
Abstract
Pathological anxiety typically emerges during preadolescence and has been linked to alterations in white matter (WM) pathways. Because myelination is critical for efficient neuronal communication, characterizing associations between WM microstructure and symptoms may provide insights into pathophysiological mechanisms associated with childhood pathological anxiety. This longitudinal study examined 182 girls enrolled between the ages of 9-11 that were treatment-naïve at study entry: healthy controls (n = 49), subthreshold-anxiety disorders (AD) (n = 82), or meeting DSM-5 criteria for generalized, social, and/or separation ADs (n = 51), as determined through structured clinical interview. Anxiety severity was assessed with the Clinical Global Impression Scale and Screen for Child Anxiety and Related Emotional Disorders (SCARED). Participants (n = 182) underwent clinical, behavioral, and diffusion tensor imaging (DTI) assessments at study entry, and those with pathological anxiety (subthreshold-AD and AD, n = 133) were followed longitudinally for up to 3 additional years. Cross-sectional ANCOVAs (182 scans) examining control, subthreshold-AD, and AD participants found no significant relations between anxiety and DTI measurements. However, in longitudinal analyses of girls with pathological anxiety (343 scans), linear mixed-effects models demonstrated that increases in anxiety symptoms (SCARED scores) were associated with reductions in whole-brain fractional anisotropy, independent of age (Std. β (95% CI) = -0.06 (-0.09 to -0.03), F(1, 46.24) = 11.90, P = 0.001). Using a longitudinal approach, this study identified a dynamic, within-participant relation between whole-brain WM microstructural integrity and anxiety in girls with pathological anxiety. Given the importance of WM microstructure in modulating neural communication, this finding suggests the possibility that WM development could be a viable target in the treatment of anxiety-related psychopathology.
Collapse
Affiliation(s)
- Nakul Aggarwal
- Department of Psychiatry, University of Wisconsin-Madison, 6001 Research Park Boulevard, Madison, WI, 53719, USA.
| | - Lisa E. Williams
- grid.14003.360000 0001 2167 3675Department of Psychiatry, University of Wisconsin-Madison, 6001 Research Park Boulevard, Madison, WI 53719 USA
| | - Do P. M. Tromp
- grid.14003.360000 0001 2167 3675Department of Psychiatry, University of Wisconsin-Madison, 6001 Research Park Boulevard, Madison, WI 53719 USA
| | - Daniel S. Pine
- grid.416868.50000 0004 0464 0574Section on Developmental and Affective Neuroscience, National Institute of Mental Health, Bethesda, MD 20814 USA
| | - Ned H. Kalin
- grid.14003.360000 0001 2167 3675Department of Psychiatry, University of Wisconsin-Madison, 6001 Research Park Boulevard, Madison, WI 53719 USA
| |
Collapse
|
9
|
Demnitz-King H, Göehre I, Marchant NL. The neuroanatomical correlates of repetitive negative thinking: A systematic review. Psychiatry Res Neuroimaging 2021; 316:111353. [PMID: 34390952 DOI: 10.1016/j.pscychresns.2021.111353] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 07/30/2021] [Accepted: 07/30/2021] [Indexed: 12/18/2022]
Abstract
Repetitive negative thinking (RNT) is a cognitive process characterised by intrusive, repetitive, and difficult-to-disengage-from negative thoughts. Heightened RNT levels are prevalent across clinical disorders and have been associated with ill-health (e.g. cardiovascular disease), even at lower, non-clinical levels. Identifying the neuroanatomical correlates of RNT could help characterise structural alterations that transcend diagnostic boundaries and further understanding of the pathogenesis of clinical disorders. We therefore conducted a systematic review to investigate associations between RNT and brain morphology. Following title/abstract and full-text screening, 24 studies were included. We found evidence that RNT severity is associated with grey and white matter volumes/microstructure, particularly in the dorsolateral prefrontal cortex, anterior cingulate cortex and superior longitudinal fasciculus, regions heavily implicated in cognitive control, and emotional processing and regulation. However, inconsistent associations, potentially due to the heterogeneity of included studies (e.g. methodological differences, type of RNT assessed), preclude specific conclusions being reached regarding any one region's association with RNT. Further, given the defuse nature of thoughts, it may be that RNT is associated with distributed brain regions operating within large-scale networks, rather than with a single structure. High quality longitudinal studies, investigating structural networks, are required to confirm the neuroanatomical basis of RNT and elucidate the direction of relationships.
Collapse
Affiliation(s)
- Harriet Demnitz-King
- Division of Psychiatry, Faculty of Brain Sciences, University College London, 6th Floor, Maple House, 149 Tottenham Court Road, London, United Kingdom.
| | - Isabelle Göehre
- Division of Psychiatry, Faculty of Brain Sciences, University College London, 6th Floor, Maple House, 149 Tottenham Court Road, London, United Kingdom; Division of Clinical Psychology and Psychological Treatment, Department of Psychology, Ludwig-Maximilians-University Munich, Leopoldstr. 13, 80802, Munich, Germany
| | - Natalie L Marchant
- Division of Psychiatry, Faculty of Brain Sciences, University College London, 6th Floor, Maple House, 149 Tottenham Court Road, London, United Kingdom
| |
Collapse
|
10
|
Guo X, Yang F, Fan L, Gu Y, Ma J, Zhang J, Liao M, Zhai T, Zhang Y, Li L, Su L, Dai Z. Disruption of functional and structural networks in first-episode, drug-naïve adolescents with generalized anxiety disorder. J Affect Disord 2021; 284:229-237. [PMID: 33618206 DOI: 10.1016/j.jad.2021.01.088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/11/2021] [Accepted: 01/31/2021] [Indexed: 02/01/2023]
Abstract
BACKGROUND Individuals with generalized anxiety disorder (GAD) tend to worry exaggeratedly and uncontrollably about various daily routines. Previous studies have demonstrated that the GAD patients exhibited widespread alternations in both functional networks (FN) and structural networks (SN). However, the simultaneous alternations of the topological organization of FN, SN, as well as their couplings in GAD still remain unknown. METHODS Using multimodal approach, we constructed FN from resting-state functional magnetic imaging (R-fMRI) data and SN from diffusion magnetic resonance imaging (dMRI) data of 32 adolescent GAD patients and 25 healthy controls (HC). Graph theory analysis was employed to investigate the topological properties of FN, SN, and FN-SN coupling. RESULTS Compared to HC, the GAD patients showed disruptions in global (i.e., decreased clustering coefficient, global, and local efficiency) and subnetwork (i.e., reduced intermodular connections, rich club, and feeder connections) levels in FN. Abnormal global level properties (i.e., increased characteristic path length and reduced global efficiency) were also observed in SN. Altered FN-SN couplings in normalized characteristic path length and feeder connections were identified in the GAD patients. The identified network measures were correlated with anxiety severity in the GAD patients. LIMITATIONS The sample size of the current study is small and the cross-sectional nature can not infer causal relationship. CONCLUSIONS Our findings identified GAD-related topological alternations in both FN and SN, together with the couplings between FN and SN, providing us with a novel perspective for understanding the pathophysiological mechanisms of GAD.
Collapse
Affiliation(s)
- Xiaotong Guo
- Department of Psychology, Sun Yat-sen University, Guangzhou, China
| | - Fan Yang
- Guangdong mental health center, Guangdong general hospital & Guangdong academy of medical sciences, Guangzhou, China
| | - Linlin Fan
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, United States
| | - Yue Gu
- Department of Psychology, Sun Yat-sen University, Guangzhou, China
| | - Junji Ma
- Department of Psychology, Sun Yat-sen University, Guangzhou, China
| | - Jinbo Zhang
- Department of Psychology, Sun Yat-sen University, Guangzhou, China
| | - Mei Liao
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China..
| | - Tianyi Zhai
- Department of Psychiatry, Guangzhou Huiai Hospital, Guangzhou, China
| | - Yan Zhang
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Lingjiang Li
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Linyan Su
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhengjia Dai
- Department of Psychology, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
11
|
Li T, Ma J, Hong S, Luo Y, Li X, Li T, Jiang L. Childhood ischaemic stroke in the basal ganglia can lead to fine motor and anxiety disorders: a retrospective analysis and follow-up of 109 cases. BMC Neurol 2021; 21:84. [PMID: 33610173 PMCID: PMC7896398 DOI: 10.1186/s12883-021-02112-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 02/12/2021] [Indexed: 11/28/2022] Open
Abstract
Background Stroke in children easily causes long-term dysfunction. Whether the prognoses of motor and anxiety disorders are related to the affected stroke area has not been reported. Methods One hundred nine cases of children with ischaemic stroke were reviewed and divided into three groups: lenticular nucleus lesions only (lenticular nucleus group), lenticular nucleus and caudate head lesions (caudate head group), and lenticular nucleus and thalamus lesions (thalamus group). Overall prognosis was evaluated by the mRS score. The SCAS-P was used to evaluate anxiety in children aged ≥6 years. Results mRS scores were ≤ 2 points (mean: 0.62), no significant difference among groups. 3/21 (14.2%) patients in the caudate head group changed handedness, which is significantly higher than other groups. Patients with lesions in thalamus group had significantly higher SCAS-P scores. Conclusions The overall prognosis of children with basal ganglia ischaemic stroke is good. However, hand preference changes and anxiety disorders may develop. Patients in the caudate head groups are more likely to suffer from fine motor disorders and changes in handedness. Patients within the thalamus group are more prone to anxiety than patients in the other groups. Anxiety disorders should be noted in children with basal ganglia stroke.
Collapse
Affiliation(s)
- Tianyi Li
- Department of Neurology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Jiannan Ma
- Department of Neurology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China.
| | - Siqi Hong
- Department of Neurology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Yuanyuan Luo
- Department of Neurology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Xiujuan Li
- Department of Neurology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Tingsong Li
- Department of Neurology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Li Jiang
- Department of Neurology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China.
| |
Collapse
|
12
|
Todeva-Radneva A, Paunova R, Kandilarova S, St Stoyanov D. The Value of Neuroimaging Techniques in the Translation and Transdiagnostic Validation of Psychiatric Diagnoses - Selective Review. Curr Top Med Chem 2021; 20:540-553. [PMID: 32003690 DOI: 10.2174/1568026620666200131095328] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/09/2019] [Accepted: 12/12/2019] [Indexed: 01/05/2023]
Abstract
Psychiatric diagnosis has long been perceived as more of an art than a science since its foundations lie within the observation, and the self-report of the patients themselves and objective diagnostic biomarkers are lacking. Furthermore, the diagnostic tools in use not only stray away from the conventional medical framework but also remain invalidated with evidence-based concepts. However, neuroscience, as a source of valid objective knowledge has initiated the process of a paradigm shift underlined by the main concept of psychiatric disorders being "brain disorders". It is also a bridge closing the explanatory gap among the different fields of medicine via the translation of the knowledge within a multidisciplinary framework. The contemporary neuroimaging methods, such as fMRI provide researchers with an entirely new set of tools to reform the current status quo by creating an opportunity to define and validate objective biomarkers that can be translated into clinical practice. Combining multiple neuroimaging techniques with the knowledge of the role of genetic factors, neurochemical imbalance and neuroinflammatory processes in the etiopathophysiology of psychiatric disorders is a step towards a comprehensive biological explanation of psychiatric disorders and a final differentiation of psychiatry as a well-founded medical science. In addition, the neuroscientific knowledge gained thus far suggests a necessity for directional change to exploring multidisciplinary concepts, such as multiple causality and dimensionality of psychiatric symptoms and disorders. A concomitant viewpoint transition of the notion of validity in psychiatry with a focus on an integrative validatory approach may facilitate the building of a collaborative bridge above the wall existing between the scientific fields analyzing the mind and those studying the brain.
Collapse
Affiliation(s)
- Anna Todeva-Radneva
- Department of Psychiatry and Medical Psychology and Scientific Research Institute, The Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Rositsa Paunova
- Department of Psychiatry and Medical Psychology and Scientific Research Institute, The Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Sevdalina Kandilarova
- Department of Psychiatry and Medical Psychology and Scientific Research Institute, The Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Drozdstoy St Stoyanov
- Department of Psychiatry and Medical Psychology and Scientific Research Institute, The Medical University of Plovdiv, Plovdiv, Bulgaria
| |
Collapse
|
13
|
Yang F, Zhang J, Fan L, Liao M, Wang Y, Chen C, Zhai T, Zhang Y, Li L, Su L, Dai Z. White matter structural network disturbances in first-episode, drug-naïve adolescents with generalized anxiety disorder. J Psychiatr Res 2020; 130:394-404. [PMID: 32889357 DOI: 10.1016/j.jpsychires.2020.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/12/2020] [Accepted: 08/09/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Previous studies have suggested that individuals with generalized anxiety disorder (GAD) would show inefficient whole-brain communication and dysconnectivity in the fronto-parietal-subcortical sub-networks in the white matter (WM) structural network. However, these hypotheses have yet to be tested. METHODS Individual WM structural networks were constructed based on diffusion MRI data and deterministic tractography in 34 first-episode, medication-naïve adolescents with GAD and 27 healthy controls (HCs). Graph theory was applied to investigate the topological organization alterations of the structural network. RESULTS GAD patients showed disrupted small-world configurations (i.e., increased path length and decreased clustering coefficient) and hub organization (i.e., less connection strength in the feeder and local connections). A decreased connection strength was found in a GAD-related sub-network (mainly involving the frontal-subcortical circuits), which was able to distinguish GAD patients from HCs with higher accuracy (area under the curve of 0.96, sensitivity of 94%, specificity of 89%) than clinical scores and other topological alternations. LIMITATIONS The current study just compared GAD patients with HCs based on a small sample, leaving whether the alternations found here are specific to GAD still an open question. Future studies are recommended to recruit patients with other anxiety disorders (e.g., social anxiety disorder) and/or comorbid mood disorders to identify the GAD-specific WM alterations using a larger sample. CONCLUSIONS Our findings highlight the disruption of the topological organization of the whole-brain WM structural network (especially the frontal-subcortical circuits) in GAD, and suggest the potential of using structural connectivity of the GAD-related sub-network as a biomarker for GAD patients.
Collapse
Affiliation(s)
- Fan Yang
- Guangdong Mental Health Center, Guangdong General Hospital & Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jinbo Zhang
- Department of Psychology, Sun Yat-sen University, Guangzhou, China
| | - Linlin Fan
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, United States
| | - Mei Liao
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yuyin Wang
- Department of Psychology, Sun Yat-sen University, Guangzhou, China
| | - Chang Chen
- Department of Psychology, Sun Yat-sen University, Guangzhou, China
| | - Tianyi Zhai
- Department of Psychiatry, Guangzhou Huiai Hospital, Guangzhou, China
| | - Yan Zhang
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Lingjiang Li
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Linyan Su
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhengjia Dai
- Department of Psychology, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
14
|
Won E, Kim YK. Neuroinflammation-Associated Alterations of the Brain as Potential Neural Biomarkers in Anxiety Disorders. Int J Mol Sci 2020; 21:ijms21186546. [PMID: 32906843 PMCID: PMC7555994 DOI: 10.3390/ijms21186546] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/30/2020] [Accepted: 09/02/2020] [Indexed: 02/06/2023] Open
Abstract
Stress-induced changes in the immune system, which lead to neuroinflammation and consequent brain alterations, have been suggested as possible neurobiological substrates of anxiety disorders, with previous literature predominantly focusing on panic disorder, agoraphobia, and generalized anxiety disorder, among the anxiety disorders. Anxiety disorders have frequently been associated with chronic stress, with chronically stressful situations being reported to precipitate the onset of anxiety disorders. Also, chronic stress has been reported to lead to hypothalamic–pituitary–adrenal axis and autonomic nervous system disruption, which may in turn induce systemic proinflammatory conditions. Preliminary evidence suggests anxiety disorders are also associated with increased inflammation. Systemic inflammation can access the brain, and enhance pro-inflammatory cytokine levels that have been shown to precipitate direct and indirect neurotoxic effects. Prefrontal and limbic structures are widely reported to be influenced by neuroinflammatory conditions. In concordance with these findings, various imaging studies on panic disorder, agoraphobia, and generalized anxiety disorder have reported alterations in structure, function, and connectivity of prefrontal and limbic structures. Further research is needed on the use of inflammatory markers and brain imaging in the early diagnosis of anxiety disorders, along with the possible efficacy of anti-inflammatory interventions on the prevention and treatment of anxiety disorders.
Collapse
Affiliation(s)
- Eunsoo Won
- Department of Psychiatry, CHA Bundang Medical Center, CHA University, Seongnam 13496, Korea;
| | - Yong-Ku Kim
- Department of Psychiatry, Korea University Ansan Hospital, Korea University College of Medicine, Ansan 15355, Korea
- Correspondence: ; Tel.: +82-31-412-5140; Fax: +82-31-412-5144
| |
Collapse
|
15
|
Kolesar TA, Bilevicius E, Wilson AD, Kornelsen J. Systematic review and meta-analyses of neural structural and functional differences in generalized anxiety disorder and healthy controls using magnetic resonance imaging. NEUROIMAGE-CLINICAL 2019; 24:102016. [PMID: 31835287 PMCID: PMC6879983 DOI: 10.1016/j.nicl.2019.102016] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 08/22/2019] [Accepted: 09/27/2019] [Indexed: 12/18/2022]
Abstract
PFC-amygdala FC is altered in GAD, indicating top-down processing deficits. GAD had reduced activity for emotion regulation and working memory in the culmen. Salience, default, and central executive nodes have altered structure and function.
Objective To compare structure, functional connectivity (FC) and task-based neural differences in subjects with generalized anxiety disorder (GAD) compared to healthy controls (HC). Methods The Embase, Ovid Medline, PsycINFO, Scopus, and Web of Science databases were searched from inception until March 12, 2018. Two reviewers independently screened titles, abstracts, and full-text articles. Data were extracted from records directly contrasting GAD and HC that included structure (connectivity and local indices such as volume, etc.), FC, or task-based magnetic resonance imaging data. Meta-analyses were conducted, as applicable, using AES-SDM software. Results The literature search produced 4,645 total records, of which 85 met the inclusion criteria for the systematic review. Records included structural (n = 35), FC (n = 33), and task-based (n = 42) findings. Meta-analyses were conducted on voxel-based morphometry and task-based results. Discussion The systematic review confirms and extends findings from previous reviews. Although few whole-brain resting state studies were conducted, key nodes of resting state networks have altered physiology: the hippocampus (default network), ACC and amygdala (salience network), have reduced volume, and the dlPFC (central executive network) and ACC have reduced FC with the amygdala in GAD. Nodes in the sensorimotor network are also altered with greater pre- and postcentral volume, reduced supplementary motor area volume, and reduced FC in anterior and increased FC in posterior cerebellum. Conclusions Despite limitations due to sample size, the meta-analyses highly agree with the systematic review and provide evidence of widely distributed neural differences in subjects with GAD, compared to HC. Further research optimized for meta-analyses would greatly improve large-scale comparisons.
Collapse
Affiliation(s)
- Tiffany A Kolesar
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada
| | - Elena Bilevicius
- Department of Psychology, University of Manitoba, Winnipeg, MB, Canada
| | - Alyssia D Wilson
- Department of Internal Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Jennifer Kornelsen
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada; Department of Internal Medicine, University of Manitoba, Winnipeg, MB, Canada; Department of Radiology, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
16
|
Abstract
BACKGROUND Excessive worry is a defining feature of generalized anxiety disorder and is present in a wide range of other psychiatric conditions. Therefore, individualized predictions of worry propensity could be highly relevant in clinical practice, with respect to the assessment of worry symptom severity at the individual level. METHODS We applied a multivariate machine learning approach to predict dispositional worry based on microstructural integrity of white matter (WM) tracts. RESULTS We demonstrated that the machine learning model was able to decode individual dispositional worry scores from microstructural properties in widely distributed WM tracts (mean absolute error = 10.46, p < 0.001; root mean squared error = 12.82, p < 0.001; prediction R2 = 0.17, p < 0.001). WM tracts that contributed to worry prediction included the posterior limb of internal capsule, anterior corona radiate, and cerebral peduncle, as well as the corticolimbic pathways (e.g. uncinate fasciculus, cingulum, and fornix) already known to be critical for emotion processing and regulation. CONCLUSIONS The current work thus elucidates potential neuromarkers for clinical assessment of worry symptoms across a wide range of psychiatric disorders. In addition, the identification of widely distributed pathways underlying worry propensity serves to better improve the understanding of the neurobiological mechanisms associated with worry.
Collapse
Affiliation(s)
- Chunliang Feng
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
- College of Information Science and Technology, Beijing Normal University, Beijing 100875, China
| | - Zaixu Cui
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104, USA
| | - Dazhi Cheng
- Department of Pediatric Neurology, Capital Institute of Pediatrics, Beijing 100020, China
| | - Rui Xu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Ruolei Gu
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
17
|
Psychiatric disorders in multiple sclerosis. J Neurol 2019; 268:45-60. [PMID: 31197511 DOI: 10.1007/s00415-019-09426-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 01/04/2023]
Abstract
BACKGROUND Multiple sclerosis (MS) is characterized by a large spectrum of symptoms, involving all functional systems. Psychiatric symptoms are common in people with MS (pwMS) having an important impact on quality of life and on some features of MS (fatigue, sleep, disability, adherence to disease-modifying drugs). The main psychiatric disturbances in MS are depressive, bipolar, anxiety, schizophrenic and obsessive-compulsive syndromes. METHODS Literature search for original articles and review in the databases, including PubMed and Scopus from 1959 to 2019. RESULTS AND CONCLUSION Studies answering the aim of this review were selected and reported. Epidemiological and clinical aspects of psychiatric syndromes (PS) in MS as well as self-report diagnostic scales and radiological correlates of PS in MS are described. Moreover, some radiological studies about primary psychiatric disorders (PD) are reported to underline how gray matter atrophy, white matter abnormalities and corpus callosum involvement in these diseases, as features in common with MS, may explain the more frequent occurrence of PD in MS than in the general population.
Collapse
|
18
|
Madonna D, Delvecchio G, Soares JC, Brambilla P. Structural and functional neuroimaging studies in generalized anxiety disorder: a systematic review. ACTA ACUST UNITED AC 2019; 41:336-362. [PMID: 31116259 PMCID: PMC6804309 DOI: 10.1590/1516-4446-2018-0108] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 08/16/2018] [Indexed: 01/04/2023]
Abstract
OBJECTIVES Brain imaging studies carried out in patients suffering from generalized anxiety disorder (GAD) have contributed to better characterize the pathophysiological mechanisms underlying this disorder. The present study reviews the available functional and structural brain imaging evidence on GAD, and suggests further strategies for investigations in this field. METHODS A systematic literature review was performed in PubMed, PsycINFO, and Google Scholar, aiming to identify original research evaluating GAD patients with the use of structural and functional magnetic resonance imaging as well as diffusion tensor imaging. RESULTS The available studies have shown impairments in ventrolateral and dorsolateral prefrontal cortex, anterior cingulate, posterior parietal regions, and amygdala in both pediatric and adult GAD patients, mostly in the right hemisphere. However, the literature is often tentative, given that most studies have employed small samples and included patients with comorbidities or in current use of various medications. Finally, different methodological aspects, such as the type of imaging equipment used, also complicate the generalizability of the findings. CONCLUSIONS Longitudinal neuroimaging studies with larger samples of both juvenile and adult GAD patients, as well as at risk individuals and unaffected relatives, should be carried out in order to shed light on the specific biological signature of GAD.
Collapse
Affiliation(s)
- Domenico Madonna
- Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Universitá di Milano, Milano, Italy.,Dipartimento di Neuroscienze e Salute Mentale, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Giuseppe Delvecchio
- Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Universitá di Milano, Milano, Italy
| | - Jair C Soares
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Sciences Center at Houston, Houston, TX, USA
| | - Paolo Brambilla
- Dipartimento di Neuroscienze e Salute Mentale, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy.,Department of Psychiatry and Behavioral Sciences, University of Texas Health Sciences Center at Houston, Houston, TX, USA
| |
Collapse
|
19
|
Wang W, Peng Z, Wang X, Wang P, Li Q, Wang G, Chen F, Chen X, Liu S. Disrupted interhemispheric resting-state functional connectivity and structural connectivity in first-episode, treatment-naïve generalized anxiety disorder. J Affect Disord 2019; 251:280-286. [PMID: 30953893 DOI: 10.1016/j.jad.2019.03.082] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 03/25/2019] [Accepted: 03/29/2019] [Indexed: 12/25/2022]
Abstract
BACKGROUND Aberrant functional and structural connectivity are considered to be involved in the underlying neural mechanism of generalized anxiety disorder (GAD). However, alterations in functional and structural interactions between the bilateral hemispheres are rarely examined. The current study aimed to characterized interhemispheric resting-state functional connectivity and white matter microstructural integrity of the corpus callosum in patients with GAD. METHODS Resting-state Blood oxygen level-dependent and diffusion tensor image were acquired for patients with GAD and healthy subjects. The two groups were matched in age, gender, education years. The voxel-mirrored homotopic connectivity (VMHC) of whole brain and white matter integrity of the corpus callosum (CC) were compared between the two groups. Their correlations with clinical measures were further performed. RESULTS Compare to controls, decreased resting-state VMHC were found in the precentral gyrus, middle cingulate gyrus and insula/putamen in patients with GAD. No regions of increased VMHC were detected in GAD. Compared to controls, GAD patients showed decreased fractional anisotropy (FA) values in CC2. In GAD group, further Pearson's correlation analyses showed that VMHC of the midcingulate gyrus positively correlated with FA of CC2, FA of CC2 negatively correlated with anxiety severity. Further mediation analyses demonstrated that attenuated VMHC in bilateral midcingulate gyrus partly mediated the association between white matter integrity of CC2 sub-region and anxiety severity. CONCLUSION Our findings suggested impairment of interhemispheric coordination in GAD. Moreover, disrupted interhemispheric connectivity correlated with anxiety severity in GAD. Our findings provided a novel clue about the neural mechanism of GAD, and may contribute to further deep exploration and treatment of GAD. LIMITATIONS The study was lack of comparison with non-GAD anxiety disorders.
Collapse
Affiliation(s)
- Wei Wang
- Department of Radilogy, Changzheng Hospital, The Navy Military Medical University, No.415 Fengyang Road, Huangpu District, Shanghai 200003, China; 71282 Hospital, Baoding 071052, China
| | - Zhaohui Peng
- Department of Radilogy, Changzheng Hospital, The Navy Military Medical University, No.415 Fengyang Road, Huangpu District, Shanghai 200003, China; Department of Radilogy, The 960th Hospital of the PLA Joint Logistice Support Force, Jinan, Shandong Province 250031, China
| | - Xiang Wang
- Department of Radilogy, Changzheng Hospital, The Navy Military Medical University, No.415 Fengyang Road, Huangpu District, Shanghai 200003, China
| | - Peng Wang
- Department of Radilogy, Changzheng Hospital, The Navy Military Medical University, No.415 Fengyang Road, Huangpu District, Shanghai 200003, China
| | - Qingchu Li
- Department of Radilogy, Changzheng Hospital, The Navy Military Medical University, No.415 Fengyang Road, Huangpu District, Shanghai 200003, China
| | - Gang Wang
- The Second Community Healthcare Service Center of Zhengzhou Road, Luoyang 471000, China
| | - Fangni Chen
- Department of Radilogy, Changzheng Hospital, The Navy Military Medical University, No.415 Fengyang Road, Huangpu District, Shanghai 200003, China
| | | | - Shiyuan Liu
- Department of Radilogy, Changzheng Hospital, The Navy Military Medical University, No.415 Fengyang Road, Huangpu District, Shanghai 200003, China.
| |
Collapse
|
20
|
Tromp DPM, Williams LE, Fox AS, Oler JA, Roseboom PH, Rogers GM, Benson BE, Alexander AL, Pine DS, Kalin NH. Altered Uncinate Fasciculus Microstructure in Childhood Anxiety Disorders in Boys But Not Girls. Am J Psychiatry 2019; 176:208-216. [PMID: 30654645 PMCID: PMC6661168 DOI: 10.1176/appi.ajp.2018.18040425] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
OBJECTIVE Anxiety disorders are common, can result in lifelong suffering, and frequently begin before adolescence. Evidence from adults suggests that altered prefrontal-limbic connectivity is a pathophysiological feature of anxiety disorders. More specifically, in adults with anxiety disorders, decreased fractional anisotropy (FA), a measure of white matter integrity, has been observed in the uncinate fasciculus, the major tract that connects limbic and prefrontal regions. Because of the early onset of anxiety disorders and the increased incidence in anxiety disorders in females during their reproductive years, it is important to understand whether the reduction in uncinate fasciculus FA exists in children with anxiety disorders and the extent to which this alteration is sex related. To address these issues, the authors assessed FA in the uncinate fasciculus in unmedicated boys and girls with anxiety disorders. METHODS FA measures were derived from diffusion tensor images that were acquired from 98 unmedicated children (ages 8-12); 52 met criteria for generalized anxiety disorder, separation anxiety disorder, social anxiety disorder, or anxiety disorder not otherwise specified, and 46 were matched control subjects. RESULTS Tract-based results demonstrated that children with anxiety disorders have significant reductions in uncinate fasciculus FA. A significant sex-by-group interaction and post hoc testing revealed that this effect was evident only in boys. No other main effects or sex-by-group interactions were found for other white matter tracts. CONCLUSIONS These findings provide evidence of uncinate fasciculus white matter alterations in boys with anxiety disorders. The data demonstrate that anxiety disorder-related alterations in prefrontal-limbic structural connectivity are present early in life, are not related to psychotropic medication exposure, and are sex specific. Building on these findings, future research has the potential to provide insights into the genesis and sexual dimorphism of the pathophysiology that leads to anxiety disorders, as well as to identify sex-specific early-life treatment targets.
Collapse
Affiliation(s)
- Do P M Tromp
- The Department of Psychiatry (Tromp, Williams, Oler, Roseboom, Rogers, Alexander, Kalin), the Neuroscience Training Program (Tromp, Kalin), the Department of Medical Physics (Alexander), and the HealthEmotions Research Institute (Tromp, Williams, Oler, Roseboom, Kalin), University of Wisconsin, Madison; the Department of Psychology and the California National Primate Research Center, University of California, Davis (Fox); and the Section on Development and Affective Neuroscience, NIMH, Bethesda, Md. (Benson, Pine)
| | - Lisa E Williams
- The Department of Psychiatry (Tromp, Williams, Oler, Roseboom, Rogers, Alexander, Kalin), the Neuroscience Training Program (Tromp, Kalin), the Department of Medical Physics (Alexander), and the HealthEmotions Research Institute (Tromp, Williams, Oler, Roseboom, Kalin), University of Wisconsin, Madison; the Department of Psychology and the California National Primate Research Center, University of California, Davis (Fox); and the Section on Development and Affective Neuroscience, NIMH, Bethesda, Md. (Benson, Pine)
| | - Andrew S Fox
- The Department of Psychiatry (Tromp, Williams, Oler, Roseboom, Rogers, Alexander, Kalin), the Neuroscience Training Program (Tromp, Kalin), the Department of Medical Physics (Alexander), and the HealthEmotions Research Institute (Tromp, Williams, Oler, Roseboom, Kalin), University of Wisconsin, Madison; the Department of Psychology and the California National Primate Research Center, University of California, Davis (Fox); and the Section on Development and Affective Neuroscience, NIMH, Bethesda, Md. (Benson, Pine)
| | - Jonathan A Oler
- The Department of Psychiatry (Tromp, Williams, Oler, Roseboom, Rogers, Alexander, Kalin), the Neuroscience Training Program (Tromp, Kalin), the Department of Medical Physics (Alexander), and the HealthEmotions Research Institute (Tromp, Williams, Oler, Roseboom, Kalin), University of Wisconsin, Madison; the Department of Psychology and the California National Primate Research Center, University of California, Davis (Fox); and the Section on Development and Affective Neuroscience, NIMH, Bethesda, Md. (Benson, Pine)
| | - Patrick H Roseboom
- The Department of Psychiatry (Tromp, Williams, Oler, Roseboom, Rogers, Alexander, Kalin), the Neuroscience Training Program (Tromp, Kalin), the Department of Medical Physics (Alexander), and the HealthEmotions Research Institute (Tromp, Williams, Oler, Roseboom, Kalin), University of Wisconsin, Madison; the Department of Psychology and the California National Primate Research Center, University of California, Davis (Fox); and the Section on Development and Affective Neuroscience, NIMH, Bethesda, Md. (Benson, Pine)
| | - Gregory M Rogers
- The Department of Psychiatry (Tromp, Williams, Oler, Roseboom, Rogers, Alexander, Kalin), the Neuroscience Training Program (Tromp, Kalin), the Department of Medical Physics (Alexander), and the HealthEmotions Research Institute (Tromp, Williams, Oler, Roseboom, Kalin), University of Wisconsin, Madison; the Department of Psychology and the California National Primate Research Center, University of California, Davis (Fox); and the Section on Development and Affective Neuroscience, NIMH, Bethesda, Md. (Benson, Pine)
| | - Brenda E Benson
- The Department of Psychiatry (Tromp, Williams, Oler, Roseboom, Rogers, Alexander, Kalin), the Neuroscience Training Program (Tromp, Kalin), the Department of Medical Physics (Alexander), and the HealthEmotions Research Institute (Tromp, Williams, Oler, Roseboom, Kalin), University of Wisconsin, Madison; the Department of Psychology and the California National Primate Research Center, University of California, Davis (Fox); and the Section on Development and Affective Neuroscience, NIMH, Bethesda, Md. (Benson, Pine)
| | - Andrew L Alexander
- The Department of Psychiatry (Tromp, Williams, Oler, Roseboom, Rogers, Alexander, Kalin), the Neuroscience Training Program (Tromp, Kalin), the Department of Medical Physics (Alexander), and the HealthEmotions Research Institute (Tromp, Williams, Oler, Roseboom, Kalin), University of Wisconsin, Madison; the Department of Psychology and the California National Primate Research Center, University of California, Davis (Fox); and the Section on Development and Affective Neuroscience, NIMH, Bethesda, Md. (Benson, Pine)
| | - Daniel S Pine
- The Department of Psychiatry (Tromp, Williams, Oler, Roseboom, Rogers, Alexander, Kalin), the Neuroscience Training Program (Tromp, Kalin), the Department of Medical Physics (Alexander), and the HealthEmotions Research Institute (Tromp, Williams, Oler, Roseboom, Kalin), University of Wisconsin, Madison; the Department of Psychology and the California National Primate Research Center, University of California, Davis (Fox); and the Section on Development and Affective Neuroscience, NIMH, Bethesda, Md. (Benson, Pine)
| | - Ned H Kalin
- The Department of Psychiatry (Tromp, Williams, Oler, Roseboom, Rogers, Alexander, Kalin), the Neuroscience Training Program (Tromp, Kalin), the Department of Medical Physics (Alexander), and the HealthEmotions Research Institute (Tromp, Williams, Oler, Roseboom, Kalin), University of Wisconsin, Madison; the Department of Psychology and the California National Primate Research Center, University of California, Davis (Fox); and the Section on Development and Affective Neuroscience, NIMH, Bethesda, Md. (Benson, Pine)
| |
Collapse
|
21
|
Lai CH. Fear Network Model in Panic Disorder: The Past and the Future. Psychiatry Investig 2019; 16:16-26. [PMID: 30176707 PMCID: PMC6354036 DOI: 10.30773/pi.2018.05.04.2] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 05/04/2018] [Indexed: 01/04/2023] Open
Abstract
The core concept for pathophysiology in panic disorder (PD) is the fear network model (FNM). The alterations in FNM might be linked with disturbances in the autonomic nervous system (ANS), which is a common phenomenon in PD. The traditional FNM included the frontal and limbic regions, which were dysregulated in the feedback mechanism for cognitive control of frontal lobe over the primitive response of limbic system. The exaggerated responses of limbic system are also associated with dysregulation in the neurotransmitter system. The neuroimaging studies also corresponded to FNM concept. However, more extended areas of FNM have been discovered in recent imaging studies, such as sensory regions of occipital, parietal cortex and temporal cortex and insula. The insula might integrate the filtered sensory information via thalamus from the visuospatial and other sensory modalities related to occipital, parietal and temporal lobes. In this review article, the traditional and advanced FNM would be discussed. I would also focus on the current evidences of insula, temporal, parietal and occipital lobes in the pathophysiology. In addition, the white matter and functional connectome studies would be reviewed to support the concept of advanced FNM. An emerging dysregulation model of fronto-limbic-insula and temporooccipito-parietal areas might be revealed according to the combined results of recent neuroimaging studies. The future delineation of advanced FNM model can be beneficial from more extensive and advanced studies focusing on the additional sensory regions of occipital, parietal and temporal cortex to confirm the role of advanced FNM in the pathophysiology of PD.
Collapse
Affiliation(s)
- Chien-Han Lai
- Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan.,PhD Psychiatry & Neuroscience Clinic, Taoyuan, Taiwan.,Department of Psychiatry, Yeezen General Hospital, Taoyuan, Taiwan
| |
Collapse
|
22
|
Molent C, Maggioni E, Cecchetto F, Garzitto M, Piccin S, Bonivento C, Maieron M, D'Agostini S, Balestrieri M, Perna G, Altamura AC, Brambilla P. Reduced cortical thickness and increased gyrification in generalized anxiety disorder: a 3 T MRI study. Psychol Med 2018; 48:2001-2010. [PMID: 29239286 DOI: 10.1017/s003329171700352x] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Although the study of the neuroanatomical correlates of generalized anxiety disorder (GAD) is gaining increasing interest, up to now the cortical anatomy of GAD patients has been poorly investigated and still no data on cortical gyrification are available. The aim of the present study is to quantitatively examine the cortical morphology in patients with GAD compared with healthy controls (HC) using magnetic resonance imaging (MRI). To the best of our knowledge, this is the first study analyzing the gyrification patterns in GAD. METHODS A total of 31 GAD patients and 31 HC underwent 3 T structural MRI. For each subject, cortical surface area (CSA), cortical thickness (CT), gray matter volume (GMV), and local gyrification index (LGI) were estimated in 19 regions of interest using the Freesurfer software. These parameters were then compared between the two groups using General Linear Model designs. RESULTS Compared with HC, GAD patients showed: (1) reduced CT in right caudal middle frontal gyrus (p < 0.05, Bonferroni corrected), (2) hyper-gyrification in right fusiform, inferior temporal, superior parietal and supramarginal gyri and in left supramarginal and superior frontal gyri (p < 0.05, Bonferroni corrected). No significant alterations in CSA and GMV were observed. CONCLUSIONS Our findings support the hypothesis of a neuroanatomical basis for GAD, highlighting a possible key role of the right hemisphere. The alterations of CT and gyrification in GAD suggest a neurodevelopmental origin of the disorder. Further studies on GAD are needed to understand the evolution of the cerebral morphology with age and during the clinical course of the illness.
Collapse
Affiliation(s)
- Cinzia Molent
- Unit of Psychiatry, Department of Medicine (DAME),University of Udine,Udine,Italy
| | - Eleonora Maggioni
- Department of Neurosciences and Mental Health,IRCCS Fondazione Ca' Granda Ospedale Maggiore Policlinico,University of Milan,Milan,Italy
| | - Filippo Cecchetto
- Unit of Psychiatry, Department of Medicine (DAME),University of Udine,Udine,Italy
| | - Marco Garzitto
- Scientific Institute IRCCS 'Eugenio Medea',Polo FVG, San Vito al Tagliamento, Pordenone,Italy
| | - Sara Piccin
- Scientific Institute IRCCS 'Eugenio Medea',Polo FVG, San Vito al Tagliamento, Pordenone,Italy
| | - Carolina Bonivento
- Unit of Psychiatry, Department of Medicine (DAME),University of Udine,Udine,Italy
| | - Marta Maieron
- Department of Physics,Azienda Ospedaliero Universitaria 'S.Maria della Misericordia',Udine,Italy
| | - Serena D'Agostini
- Department of Neuroradiology,Azienda Ospedaliero Universitaria 'S.Maria della Misericordia',Udine,Italy
| | - Matteo Balestrieri
- Unit of Psychiatry, Department of Medicine (DAME),University of Udine,Udine,Italy
| | - Giampaolo Perna
- Department of Clinical Neurosciences,Villa San Benedetto Menni, Hermanas Hospitalarias,FoRiPsi, Albese con Cassano, Como,Italy
| | - A Carlo Altamura
- Department of Neurosciences and Mental Health,IRCCS Fondazione Ca' Granda Ospedale Maggiore Policlinico,University of Milan,Milan,Italy
| | - Paolo Brambilla
- Department of Neurosciences and Mental Health,IRCCS Fondazione Ca' Granda Ospedale Maggiore Policlinico,University of Milan,Milan,Italy
| |
Collapse
|
23
|
Siehl S, King JA, Burgess N, Flor H, Nees F. Structural white matter changes in adults and children with posttraumatic stress disorder: A systematic review and meta-analysis. Neuroimage Clin 2018; 19:581-598. [PMID: 29984166 PMCID: PMC6029559 DOI: 10.1016/j.nicl.2018.05.013] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/10/2018] [Accepted: 05/12/2018] [Indexed: 11/25/2022]
Abstract
White matter plasticity occurs throughout life due to learning and can be a protective factor against as well as a vulnerability factor for the development of mental disorders. In this systematic review we summarize findings on structural white matter changes in children and adults with posttraumatic stress disorder (PTSD) and relate them to theoretical accounts of the pathophysiology of PTSD with a focus on the disturbed processing of contexts and associated problems in emotional and cognitive processing and PTSD symptomatology. We particularly examine studies reporting fractional anisotropy (FA) measured with diffusion tensor imaging (DTI). We further subdivided the studies in adult-onset PTSD with traumatic experience in adulthood, adult-onset PTSD with traumatic experience in childhood and children with PTSD. We included 30 studies comprising almost 1700 participants with 450 adults and 300 children suffering from PTSD. Our systematic review showed that for children with PTSD and adult-onset PTSD with childhood trauma, a decrease in FA in the corpus collosum, most prominently in the anterior and posterior midbody, the isthmus and splenium were reported. For adult-onset PTSD with traumatic experience in adulthood, changes in FA in the anterior and posterior part of the cingulum, the superior longitudinal fasciculus and frontal regions were found. Using GingerAle, we also performed a coordinate-based meta-analysis of 14 studies of adult-onset PTSD with traumatic experience in adulthood and did not find any significant clusters. Our results suggest that changes in white matter microstructure vary depending on traumatic experience and are associated with changes in brain circuits related to the processing of contexts. Finally, we present methodological considerations for future studies.
Collapse
Affiliation(s)
- Sebastian Siehl
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Graduate School of Economic and Social Sciences, University of Mannheim, Mannheim, Germany; Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| | - John A King
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom; Clinical, Education and Health Psychology, University College London, London, United Kingdom
| | - Neil Burgess
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom; Institute of Neurology, University College London, London, United Kingdom
| | - Herta Flor
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Department of Psychology, School of Social Sciences, University of Mannheim, Mannheim, Germany
| | - Frauke Nees
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| |
Collapse
|
24
|
Qiao J, Li A, Cao C, Wang Z, Sun J, Xu G. Aberrant Functional Network Connectivity as a Biomarker of Generalized Anxiety Disorder. Front Hum Neurosci 2017; 11:626. [PMID: 29375339 PMCID: PMC5770732 DOI: 10.3389/fnhum.2017.00626] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 12/08/2017] [Indexed: 12/14/2022] Open
Abstract
Neural disruptions during emotion regulation are common of generalized anxiety disorder (GAD). Identifying distinct functional and effective connectivity patterns in GAD may provide biomarkers for their diagnoses. This study aims to investigate the differences of features of brain network connectivity between GAD patients and healthy controls (HC), and to assess whether those differences can serve as biomarkers to distinguish GAD from controls. Independent component analysis (ICA) with hierarchical partner matching (HPM-ICA) was conducted on resting-state functional magnetic resonance imaging data collected from 20 GAD patients with medicine-free and 20 matched HC, identifying nine highly reproducible and significantly different functional brain connectivity patterns across diagnostic groups. We then utilized Granger causality (GC) to study the effective connectivity between the regions that identified by HPM-ICA. The linear discriminant analysis was finally used to distinguish GAD from controls with these measures of neural connectivity. The GAD patients showed stronger functional connectivity in amygdala, insula, putamen, thalamus, and posterior cingulate cortex, but weaker in frontal and temporal cortex compared with controls. Besides, the effective connectivity in GAD was decreased from the cortex to amygdala and basal ganglia. Applying the ICA and GC features to the classifier led to a classification accuracy of 87.5%, with a sensitivity of 90.0% and a specificity of 85.0%. These findings suggest that the presence of emotion dysregulation circuits may contribute to the pathophysiology of GAD, and these aberrant brain features may serve as robust brain biomarkers for GAD.
Collapse
Affiliation(s)
- Jianping Qiao
- School of Physics and Electronics, Shandong Normal University, Jinan, China.,Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, Shandong Normal University, Jinan, China.,Institute of Data Science and Technology, Shandong Normal University, Jinan, China
| | - Anning Li
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, China
| | - Chongfeng Cao
- Department of Emergency, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Zhishun Wang
- Department of Psychiatry, Columbia University, New York, NY, United States
| | - Jiande Sun
- Institute of Data Science and Technology, Shandong Normal University, Jinan, China.,School of Information Science and Engineering, Shandong Normal University, Jinan, China
| | - Guangrun Xu
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
25
|
Andreescu C, Tudorascu D, Sheu LK, Rangarajan A, Butters MA, Walker S, Berta R, Desmidt T, Aizenstein H. Brain structural changes in late-life generalized anxiety disorder. Psychiatry Res 2017; 268:15-21. [PMID: 28837828 PMCID: PMC5593792 DOI: 10.1016/j.pscychresns.2017.08.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 08/09/2017] [Accepted: 08/12/2017] [Indexed: 02/05/2023]
Abstract
Late-life Generalized Anxiety Disorder (GAD) is relatively understudied and the underlying structural and functional neuroanatomy has received little attention. In this study, we compare the brain structural characteristics in white and gray matter in 31 non-anxious older adults and 28 late-life GAD participants. Gray matter indices (cortical thickness and volume) were measured using FreeSurfer parcellation and segmentation, and mean diffusivity was obtained through Diffusion Tensor Imaging (DTI). We assessed both macroscopic white matter changes [using white matter hyperintensity (WMH) burden] and microscopic white matter integrity [using fractional anisotropy (FA)]. No differences in macro- or microscopic white matter integrity were found between GAD and non-anxious controls (HC). GAD participants had lower cortical thickness in the orbitofrontal cortex (OFC), inferior frontal gyrus, and pregenual anterior cingulate cortex (ACC). Higher worry severity was associated with gray matter changes in OFC, ACC and the putamen. The results did not survive the multiple comparison correction, but the effect sizes indicate a moderate effect. The study suggests that late-life GAD is associated with gray matter changes in areas involved in emotion regulation, more so than with white matter changes. We conclude that anxiety-related chronic hypercortisolemia may have a dissociative effect on gray and white matter integrity.
Collapse
Affiliation(s)
- Carmen Andreescu
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.
| | - Dana Tudorascu
- Department of Internal Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Biostatistics Department, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Lei K Sheu
- Department of Psychology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Anusha Rangarajan
- Bioengineering Department, University of Pittsburgh, Pittsburgh, PA, United States
| | - Meryl A Butters
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Sarah Walker
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Rachel Berta
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Thomas Desmidt
- CHU de Tours & INSERM U930 Imagerie et Cerveau, Université François-Rabelais de Tours, Tours, France
| | - Howard Aizenstein
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Bioengineering Department, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
26
|
Yao Z, Liao M, Hu T, Zhang Z, Zhao Y, Zheng F, Gutknecht J, Majoe D, Hu B, Li L. An Effective Method to Identify Adolescent Generalized Anxiety Disorder by Temporal Features of Dynamic Functional Connectivity. Front Hum Neurosci 2017; 11:492. [PMID: 29081741 PMCID: PMC5645525 DOI: 10.3389/fnhum.2017.00492] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 09/26/2017] [Indexed: 02/02/2023] Open
Abstract
Generalized anxiety disorder (GAD) is one of common anxiety disorders in adolescents. Although adolescents with GAD are thought to be at high risk for other mental diseases, the disease-specific alterations have not been adequately explored. Recent studies have revealed the abnormal functional connectivity (FC) in adolescents with GAD. Most previous researches have investigated the static FC which ignores the fluctuations of FC over time and focused on the structures of “fear circuit”. To figure out the alterations of dynamic FC caused by GAD and the possibilities of dynamic FC as biomarkers, we propose an effective approach to identify adolescent GAD using temporal features derived from dynamic FC. In our study, the instantaneous synchronization of pairwise signals was estimated as dynamic FC. The Hurst exponent (H) and variance, indicating regularity and variable degree of a time series respectively, were calculated as temporal features of dynamic FC. By leave-one-out cross-validation (LOOCV), a relatively high accuracy of 88.46% could be achieved when H and variance of dynamic FC were combined as features. In addition, we identified the disease-related regions, including regions belonging to default mode (DM) and cerebellar networks. The results suggest that temporal features of dynamic FC could achieve a clinically acceptable diagnostic power and serve as biomarkers of adolescent GAD. Furthermore, our work could be helpful in understanding the pathophysiological mechanism of adolescent GAD.
Collapse
Affiliation(s)
- Zhijun Yao
- Key Laboratory of Wearable Computing of Gansu Province, Lanzhou University, Lanzhou, China
| | - Mei Liao
- Mental Health Institute, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Tao Hu
- Key Laboratory of Wearable Computing of Gansu Province, Lanzhou University, Lanzhou, China
| | - Zhe Zhang
- Key Laboratory of Wearable Computing of Gansu Province, Lanzhou University, Lanzhou, China
| | - Yu Zhao
- Key Laboratory of Wearable Computing of Gansu Province, Lanzhou University, Lanzhou, China
| | - Fang Zheng
- Key Laboratory of Wearable Computing of Gansu Province, Lanzhou University, Lanzhou, China
| | - Jürg Gutknecht
- Computer Systems Institute, ETH Zürich, Zürich, Switzerland
| | - Dennis Majoe
- Computer Systems Institute, ETH Zürich, Zürich, Switzerland
| | - Bin Hu
- Key Laboratory of Wearable Computing of Gansu Province, Lanzhou University, Lanzhou, China
| | - Lingjiang Li
- Mental Health Institute, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
27
|
Karim H, Tudorascu DL, Aizenstein H, Walker S, Good R, Andreescu C. Emotion Reactivity and Cerebrovascular Burden in Late-Life GAD: A Neuroimaging Study. Am J Geriatr Psychiatry 2016; 24:1040-1050. [PMID: 27633897 PMCID: PMC5914171 DOI: 10.1016/j.jagp.2016.07.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 07/15/2016] [Accepted: 07/19/2016] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Generalized anxiety disorder (GAD) in older adults is associated with persistent deficits in emotion reactivity (ER) and regulation, yet the neural basis of these deficits has not been explored. This study focuses on the neural basis of ER deficits in late-life GAD and the association with cerebrovascular burden. METHODS Twenty elderly nonanxious participants and 17 late-life GAD participants were included. The faces-shapes functional magnetic resonance imaging task was used to assess ER; the Hamilton Anxiety Rating Scale and the Penn State Worry Questionnaire to measure global anxiety and worry, respectively; linear regression models to examine the association between ER and global anxiety severity and between ER and worry severity; and mediation analysis to explore the effect of ER on the relationship between global anxiety/worry severity and cerebrovascular burden. RESULTS A positive association was found between ER and global anxiety in the left parahippocampus, left and right precuneus, and right superior occipital gyrus. A negative association was found between ER and worry severity in the left and right precuneus. The association between cerebrovascular burden and anxiety/worry severity was indirectly mediated by increased ER in limbic and paralimbic areas and by decreased ER in prefrontal regulatory regions. CONCLUSION These results indicate that ER is associated with different neural activation patterns for worry and global anxiety and that ER-related functional connectivity indirectly mediates the relationship between cerebrovascular burden and late-life GAD. This latter result supports a yet-unexplored cerebrovascular pathway involved in the pathophysiology of late-life anxiety.
Collapse
Affiliation(s)
- Helmet Karim
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA
| | - Dana Larisa Tudorascu
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA; Department of Internal Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA; Biostatistics Department, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Howard Aizenstein
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA; Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Sarah Walker
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Rachel Good
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Carmen Andreescu
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA.
| |
Collapse
|
28
|
Wang W, Qian S, Liu K, Li B, Li M, Xin K, Sun G. Reduced white matter integrity and its correlation with clinical symptom in first-episode, treatment-naive generalized anxiety disorder. Behav Brain Res 2016; 314:159-64. [DOI: 10.1016/j.bbr.2016.08.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 08/05/2016] [Accepted: 08/07/2016] [Indexed: 12/27/2022]
|
29
|
Cui H, Zhang J, Liu Y, Li Q, Li H, Zhang L, Hu Q, Cheng W, Luo Q, Li J, Li W, Wang J, Feng J, Li C, Northoff G. Differential alterations of resting-state functional connectivity in generalized anxiety disorder and panic disorder. Hum Brain Mapp 2016; 37:1459-73. [PMID: 26800659 DOI: 10.1002/hbm.23113] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 12/14/2015] [Accepted: 12/29/2015] [Indexed: 12/12/2022] Open
Abstract
Generalized anxiety disorder (GAD) and panic disorder (PD) are most common anxiety disorders with high lifetime prevalence while the pathophysiology and disease-specific alterations still remain largely unclear. Few studies have taken a whole-brain perspective in the functional connectivity (FC) analysis of these two disorders in resting state. It limits the ability to identify regionally and psychopathologically specific network abnormalities with their subsequent use as diagnostic marker and novel treatment strategy. The whole brain FC using a novel FC metric was compared, that is, scaled correlation, which they demonstrated to be a reliable FC statistics, but have higher statistical power in two-sample t-test of whole brain FC analysis. About 21 GAD and 18 PD patients were compared with 22 matched control subjects during resting-state, respectively. It was found that GAD patients demonstrated increased FC between hippocampus/parahippocampus and fusiform gyrus among the most significantly changed FC, while PD was mainly associated with greater FC between somatosensory cortex and thalamus. Besides such regional specificity, it was observed that psychopathological specificity in that the disrupted FC pattern in PD and GAD correlated with their respective symptom severity. The findings suggested that the increased FC between hippocampus/parahippocampus and fusiform gyrus in GAD were mainly associated with a fear generalization related neural circuit, while the greater FC between somatosensory cortex and thalamus in PD were more likely linked to interoceptive processing. Due to the observed regional and psychopathological specificity, their findings bear important clinical implications for the potential treatment strategy.
Collapse
Affiliation(s)
- Huiru Cui
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Jie Zhang
- Centre for Computational Systems Biology, Fudan University, Shanghai, People's Republic of China.,Department of Radiology, Jinling Hospital of Nanjing, Nanjing, People's Republic of China
| | - Yicen Liu
- Centre for Computational Systems Biology, Fudan University, Shanghai, People's Republic of China
| | - Qingwei Li
- Department of Psychiatry, Tongji Hospital of Tongji University, Shanghai, People's Republic of China
| | - Hui Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Lanlan Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Qiang Hu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Wei Cheng
- Centre for Computational Systems Biology, Fudan University, Shanghai, People's Republic of China
| | - Qiang Luo
- Centre for Computational Systems Biology, Fudan University, Shanghai, People's Republic of China
| | - Jianqi Li
- Shanghai Key Laboratory of Magnetic Resonance, Department of Physics, East China Normal University, Shanghai, People's Republic of China
| | - Wei Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Jijun Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Jianfeng Feng
- Centre for Computational Systems Biology, Fudan University, Shanghai, People's Republic of China.,Department of Computer Science, University of Warwick, Coventry, CV4 7AL, United Kingdom.,Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, People's Republic of China.,Shanghai Center for Mathematical Sciences, Shanghai, People's Republic of China
| | - Chunbo Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Georg Northoff
- Institute of Mental Health Research, University of Ottawa, Ottawa, Canada.,Centre for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, People's Republic of China.,Centre for Brain and Consciousness, Taipei Medical University (TMU), Taipei, Taiwan
| |
Collapse
|
30
|
Hilbert K, Pine DS, Muehlhan M, Lueken U, Steudte-Schmiedgen S, Beesdo-Baum K. Gray and white matter volume abnormalities in generalized anxiety disorder by categorical and dimensional characterization. Psychiatry Res 2015; 234:314-20. [PMID: 26490569 PMCID: PMC5103633 DOI: 10.1016/j.pscychresns.2015.10.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 09/24/2015] [Accepted: 10/08/2015] [Indexed: 12/26/2022]
Abstract
Increasing efforts have been made to investigate the underlying pathophysiology of generalized anxiety disorder (GAD), but only limited consistent information is available on gray (GM) and white matter (WM) volume changes in affected adults. Additionally, few studies employed dimensional approaches to GAD pathology. This study compares structural brain imaging data from n=19 GAD subjects and n=24 healthy comparison (HC) subjects, all medication-free and matched on age, sex and education. Separate categorical and dimensional models were employed using voxel-based morphometry for GM and WM. Significantly higher GM volumes were found in GAD subjects mainly in basal ganglia structures and less consistently in the superior temporal pole. For WM, GAD subjects showed significantly lower volumes in the dlPFC. Largely consistent findings in dimensional and categorical models point toward these structural alterations being reliable and of importance for GAD. While lower volume in the dlPFC could reflect impaired emotional processing and control over worry in GAD, basal ganglia alterations may be linked to disturbed gain and loss anticipation as implicated in previous functional GAD studies. As perturbations in anticipation processes are central to GAD, these areas may warrant greater attention in future studies.
Collapse
Affiliation(s)
- Kevin Hilbert
- Institute of Clinical Psychology and Psychotherapy, Technische Universität Dresden, Dresden, Germany; Neuroimaging Center, Technische Universität Dresden, Dresden, Germany; Behavioral Epidemiology, Technische Universität Dresden, Dresden, Germany.
| | - Daniel S Pine
- Mood and Anxiety Disorders Program, National Institute of Mental Health (NIMH), Bethesda, MD, USA
| | - Markus Muehlhan
- Institute of Clinical Psychology and Psychotherapy, Technische Universität Dresden, Dresden, Germany; Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Ulrike Lueken
- Institute of Clinical Psychology and Psychotherapy, Technische Universität Dresden, Dresden, Germany; Neuroimaging Center, Technische Universität Dresden, Dresden, Germany; Department of Psychiatry, Psychosomatics, and Psychotherapy, University Hospital Würzburg, Würzburg, Germany
| | | | - Katja Beesdo-Baum
- Institute of Clinical Psychology and Psychotherapy, Technische Universität Dresden, Dresden, Germany; Neuroimaging Center, Technische Universität Dresden, Dresden, Germany; Behavioral Epidemiology, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
31
|
Takita M, Kikusui T. Early weaning influences short-term synaptic plasticity in the medial prefrontal-anterior basolateral amygdala pathway. Neurosci Res 2015; 103:48-53. [PMID: 26325007 DOI: 10.1016/j.neures.2015.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 07/31/2015] [Accepted: 08/14/2015] [Indexed: 01/01/2023]
Abstract
Early weaning in rodents reportedly influences behavioral and emotional traits and triggers precocious myelin formation in the anterior basolateral amygdala (aBLA; Ono et al., 2008), where prefrontal efferents terminate. We studied the correlation between behavior and the synaptic properties of the prefrontal-aBLA pathway. Open-field behaviors of adult male rats weaned at either 16 days or 30 days were measured on two consecutive days. On the first day, the rats received a slight footshock that was reportedly insufficient for fear conditioning. Electrophysiological recordings in the prefrontal-aBLA were then performed under urethane anesthesia. Without group differences in the stimulus intensity or the first evoked response, the overall paired-pulse facilitation was significantly lower in the early-weaned group from 25 to 100 ms. At the 25-ms interval, regression values between paired-pulse facilitation and locomotion on the second day were positive/insignificant and negative/significant in early- and control-weaned groups, respectively, and were statistically different between the groups.
Collapse
Affiliation(s)
- Masatoshi Takita
- Brain Function Measurement Research Group, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan; Brain Science Inspired Life Support Research Center, The University of Electro-Communications, Tokyo, Japan.
| | - Takefumi Kikusui
- Department of Animal Science and Biotechnology, Azabu University, Kanagawa, Japan
| |
Collapse
|
32
|
Alterations in white matter volume and its correlation with clinical characteristics in patients with generalized anxiety disorder. Neuroradiology 2015; 57:1127-34. [PMID: 26293129 DOI: 10.1007/s00234-015-1572-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 08/05/2015] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Only a few morphological studies have focused on changes in white matter (WM) volume in patients with generalized anxiety disorder (GAD). We evaluated alterations in WM volume and its correlation with symptom severity and duration of illness in adults with GAD. METHODS The 44 subjects were comprised of 22 patients with GAD (13 males and nine females) diagnosed using the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision (DSM-IV-TR) and 22 age-matched healthy controls (13 males and nine females). High-resolution magnetic resonance imaging (MRI) data were processed by voxel-based morphometry (VBM) analysis based on diffeomorphic anatomical registration using the exponentiated Lie algebra (DARTEL) algorithm in SPM8. RESULTS Patients with GAD showed significantly reduced WM volume, particularly in the dorsolateral prefrontal cortex (DLPFC), anterior limb of the internal capsule (ALIC), and midbrain. In addition, DLPFC volume was negatively correlated with GAD-7 score and illness duration. ALIC volume was negatively correlated with GAD-7 score. Female patients had significantly less orbitofrontal cortex volume compared to that in male patients. CONCLUSION The findings demonstrate localized changes in WM volume associated with cognitive and emotional dysfunction in patients with GAD. The finding will be helpful for understanding the neuropathology in patients with GAD.
Collapse
|
33
|
Zorlu N, Karavul Ucman T, Gelal F, Colak Kalayci C, Polat S, Saricicek A, Kurtgöz Zorlu P, Gulseren S. Abnormal white matter integrity in long-term abstinent alcohol dependent patients. Psychiatry Res 2014; 224:42-8. [PMID: 25104315 DOI: 10.1016/j.pscychresns.2014.07.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 06/05/2014] [Accepted: 07/11/2014] [Indexed: 10/25/2022]
Abstract
A number of diffusion tensor imaging (DTI) studies have reported substantial white matter (WM) abnormalities in alcohol-dependent patients. These studies were usually performed in recovering alcohol-dependent patients who had been abstinent for days to several weeks. The current study was designed to examine WM microstructure and decision-making in a sample of long-term abstinent alcohol-dependent patients. The study included 12 subjects with alcohol dependence who had been abstinent for at least 6 months before testing and scanning and 13 healthy control subjects. The Iowa Gambling Task (IGT) was used to measure decision-making. We found that the long-term abstinent alcohol-dependent group had significantly higher radial and axial diffusivity (RD and AD, respectively) values in frontal, temporal and parietal WM than was found in the healthy control group despite showing no difference in fractional anisotropy (FA) values in comparison to controls. In conclusion, we found widespread WM changes in long-term abstinent alcohol-dependent patients compared with healthy controls. Our findings suggested that AD and RD should be included in analyses of DTI data in addition to the more commonly studied FA. In the current study, FA values of the detoxified alcoholics had recovered and were comparable to those of the controls, whereas significant changes in AD and RD were still observed in some clusters in the frontal, parietal and temporal lobes of detoxified alcoholics even after 27.8 months.
Collapse
Affiliation(s)
- Nabi Zorlu
- Katip Celebi University Ataturk Training And Research Hospital, Department Of Psychiatry, Izmir, Turkey.
| | - Tugba Karavul Ucman
- Katip Celebi University Ataturk Training And Research Hospital, Department Of Psychiatry, Izmir, Turkey
| | - Fazil Gelal
- Katip Celebi University Ataturk Training And Research Hospital, Department Of Radiodiagnostics, Izmir, Turkey
| | - Cigdem Colak Kalayci
- Katip Celebi University Ataturk Training And Research Hospital, Department Of Psychiatry, Izmir, Turkey
| | - Serap Polat
- Katip Celebi University Ataturk Training And Research Hospital, Department Of Psychiatry, Izmir, Turkey
| | - Aybala Saricicek
- Katip Celebi University Ataturk Training And Research Hospital, Department Of Psychiatry, Izmir, Turkey
| | - Pelin Kurtgöz Zorlu
- Bozyaka Training And Research Hospital Department Of Psychiatry, Izmir, Turkey
| | - Seref Gulseren
- Katip Celebi University Ataturk Training And Research Hospital, Department Of Psychiatry, Izmir, Turkey
| |
Collapse
|
34
|
Donzuso G, Cerasa A, Gioia MC, Caracciolo M, Quattrone A. The neuroanatomical correlates of anxiety in a healthy population: differences between the State-Trait Anxiety Inventory and the Hamilton Anxiety Rating Scale. Brain Behav 2014; 4:504-14. [PMID: 25161817 PMCID: PMC4128032 DOI: 10.1002/brb3.232] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 03/20/2014] [Accepted: 03/25/2014] [Indexed: 01/19/2023] Open
Abstract
OBJECTIVES The State-Trait Anxiety Inventory (STAI) and the Hamilton scale for anxiety (HARS) are two of the most important scales employed in clinical and psychological realms for the evaluation of anxiety. Although the reliability and sensibility of these scales are widely demonstrated there is an open debate on what exactly their scores reflect. Neuroimaging provides the potential to validate the quality and reliability of clinical scales through the identification of specific biomarkers. For this reason, we evaluated the neural correlates of these two scales in a large cohort of healthy individuals using structural neuroimaging methods. CASE REPORT Neuroimaging analysis included thickness/volume estimation of cortical and subcortical limbic structures, which were regressed on anxiety inventory scores with age and gender used for assessing discriminant validity. A total of 121 healthy subjects were evaluated. Despite the two anxiety scales, at a behavioral level, displaying significant correlations among them (HARS with STAI-state (r = 0.24; P = 0.006) and HARS with STAI-trait (r = 0.42; P < 0.001)), multivariate neuroimaging analyses demonstrated that anatomical variability in the anterior cingulate cortex was the best predictor of the HARS scores (all β's ≥ 0.31 and P's ≤ 0.01), whereas STAI-related measures did not show any significant relationship with regions of limbic circuits, but their scores were predicted by gender (all β's ≥ 0.23 and P's ≤ 0.02). CONCLUSION Although the purpose of HARS and STAI is to quantify the degree and characteristics of anxiety-like behaviors, our neuroimaging data indicated that these scales are neurobiologically different, confirming that their scores might reflect different aspects of anxiety: the HARS is more related to subclinical expression of anxiety disorders, whereas the STAI captures sub-dimensions of personality linked to anxiety.
Collapse
Affiliation(s)
- Giulia Donzuso
- IBFM, National Research Council Catanzaro, Italy ; Department "G.F. Ingrassia", Section of Neuroscience, University of Catania Catania, Italy
| | | | | | | | - Aldo Quattrone
- IBFM, National Research Council Catanzaro, Italy ; Institute of Neurology, University "Magna Graecia" Germaneto, Italy
| |
Collapse
|
35
|
Hilbert K, Lueken U, Beesdo-Baum K. Neural structures, functioning and connectivity in Generalized Anxiety Disorder and interaction with neuroendocrine systems: a systematic review. J Affect Disord 2014; 158:114-26. [PMID: 24655775 DOI: 10.1016/j.jad.2014.01.022] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 01/30/2014] [Accepted: 01/31/2014] [Indexed: 12/31/2022]
Abstract
BACKGROUND Research on the neurobiological basis of Generalized Anxiety Disorder (GAD) has considerably expanded in recent years. However, many studies investigated different domains and used different methods and paradigms. Therefore, this review aims to integrate the findings to date and to identify the core correlates of neurobiological underpinnings of GAD discovered so far. METHODS We conducted a systematic review of original papers investigating neural correlates, connectivity, or structural changes as well as reporting changes in the serotonergic system, noradrenergic system and cortisol levels in DSM-IV-defined GAD samples until December 2013. RESULTS Studies have identified abnormal amygdala and prefrontal cortex activation in patients and decreased functional connectivity between these areas. Furthermore, studies showed increased gray matter volume and decreased structural connectivity between these structures. Neuroendocrine findings are less consistent, but increased reactivity of the noradrenergic system and perpetuations in the cortisol secretion have been reported. LIMITATIONS Only studies on DSM-IV defined Generalized Anxiety Disorder which employed a group comparison were included. CONCLUSIONS Current research suggests a distinct set of neurobiological alterations in Generalized Anxiety Disorder. However, future research on the interaction between these structures and systems and on the specificity of these findings in relation to other mental disorders is urgently needed.
Collapse
Affiliation(s)
- Kevin Hilbert
- Institute of Clinical Psychology and Psychotherapy, Technische Universität Dresden, Dresden, Germany; Neuroimaging Center, Technische Universität Dresden, Dresden, Germany.
| | - Ulrike Lueken
- Institute of Clinical Psychology and Psychotherapy, Technische Universität Dresden, Dresden, Germany; Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Katja Beesdo-Baum
- Institute of Clinical Psychology and Psychotherapy, Technische Universität Dresden, Dresden, Germany; Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
36
|
Liao M, Yang F, Zhang Y, He Z, Su L, Li L. White matter abnormalities in adolescents with generalized anxiety disorder: a diffusion tensor imaging study. BMC Psychiatry 2014; 14:41. [PMID: 24528558 PMCID: PMC3937009 DOI: 10.1186/1471-244x-14-41] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 02/11/2014] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Previous neuroimaging studies have suggested an abnormal neural circuitry of emotion regulation including the amygdala and prefrontal cortex in both adult and adolescent generalized anxiety disorder (GAD) patients. Aberrant integrity of white matter in this neural circuitry has been verified in adult GAD patients. White matter abnormalities in adolescent GAD patients have not been detected. METHODS Twenty-five adolescents with GAD and 24 healthy controls underwent a diffusion tensor imaging scan. Fractional anisotropy (FA) was compared between groups with a voxel-wise Tract-Based Spatial Statistics (TBSS) analysis method. RESULTS Compared with healthy controls, adolescents with GAD showed significantly reduced FA in bilateral uncinate fasciculus, inferior fronto-occipital fasciculus, inferior longitudinal fasciculus, and corona radiata. CONCLUSIONS The findings in the present study suggest a neural basis of emotion dysregulation in adolescent GAD patients.
Collapse
Affiliation(s)
- Mei Liao
- Department of Psychiatry, the Second Xiangya Hospital of Central South University, Changsha, China
| | - Fan Yang
- Department of Psychiatry, the Second Xiangya Hospital of Central South University, Changsha, China
| | - Yan Zhang
- Department of Psychiatry, the Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhong He
- Department of Radiology, the Second Xiangya Hospital of Central South University, Changsha, China
| | - Linyan Su
- Department of Psychiatry, the Second Xiangya Hospital of Central South University, Changsha, China.
| | - Lingjiang Li
- Department of Psychiatry, the Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
37
|
Lu S, Wei Z, Gao W, Wu W, Liao M, Zhang Y, Li W, Li Z, Li L. White matter integrity alterations in young healthy adults reporting childhood trauma: A diffusion tensor imaging study. Aust N Z J Psychiatry 2013; 47:1183-90. [PMID: 24126606 DOI: 10.1177/0004867413508454] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVE To date, insufficient studies have focused on the relationship between childhood trauma and white matter integrity changes in healthy subjects. The aim of the present study was to explore the potential effects of childhood trauma on white matter microstructural changes by using voxel-based diffusion tensor imaging (DTI) to examine alterations in fractional anisotropy (FA) values in a group of young healthy adults. METHODS A total of 21 healthy adults with a history of childhood trauma exposures and 21 age- and sex-matched individuals without childhood trauma were recruited in the present study. The Childhood Trauma Questionnaire was used to assess five aspects of childhood trauma exposures. DTI data were obtained on a Philips 3.0-Tesla scanner. Voxel-based analysis was conducted to compare white matter FA values between groups. RESULTS Adults with self-reported childhood trauma experiences showed decreased white matter FA values in the genu and body of the corpus callosum and the left occipital fusiform gyrus (p < 0.001 uncorrected, voxel > 100). There was no significant difference in FA values between individuals with single and multiple childhood trauma exposures at the defined threshold. CONCLUSION Our findings suggest that childhood trauma is associated with reduced microstructural integrity of the white matter in adulthood. These effects are still evident even in the absence of current psychiatric or medical symptoms, which may represent the vulnerability for developing mental disorders after childhood trauma experiences.
Collapse
Affiliation(s)
- Shaojia Lu
- 1Mental Health Institute, Second Xiangya Hospital, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, Changsha, Hunan, China
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Larson MJ, Clawson A, Clayson PE, Baldwin SA. Cognitive conflict adaptation in generalized anxiety disorder. Biol Psychol 2013; 94:408-18. [DOI: 10.1016/j.biopsycho.2013.08.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 08/24/2013] [Accepted: 08/26/2013] [Indexed: 01/11/2023]
|
39
|
Lai CH, Wu YT, Yu PL, Yuan W. Improvements in white matter micro-structural integrity of right uncinate fasciculus and left fronto-occipital fasciculus of remitted first-episode medication-naïve panic disorder patients. J Affect Disord 2013; 150:330-6. [PMID: 23680435 DOI: 10.1016/j.jad.2013.04.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 04/10/2013] [Accepted: 04/10/2013] [Indexed: 11/16/2022]
Abstract
OBJECTIVE We designed this study to investigate neural correlates of white matter micro-structural integrity of remitted patients with first-episode, medication-naïve and very late-onset panic disorder. METHOD Twenty-one remitted patients with panic disorder completed treatment course with treatment of escitalopram (dose range around 10-15 mg/d). Twenty-one healthy controls were also enrolled into this study. Patients and controls all received 3-Tesla magnetic resonance imaging diffusion tensor imaging scanning at baseline and 6th week. We utilized FDT (FMRIB's Diffusion Toolbox v2.0) function of FSL (FMRIB Software Library) to calculate fractional anisotropy (FA). We compared FA values of patients and controls at baseline and 6th week to estimate the changes of FA of remitted patient group and inter-scan bias of controls. FA outputs of remitted patients and controls were compared by independent t test. RESULTS We found increased FA in some regions of right uncinate fasciculus and left fronoto-occipital fasciculus after remission in patient group (corrected p<0.05). Reduced FA of other regions of right uncinate fasciculus was still observed in remitted patients when they were compared to the control group. CONCLUSION Subtle changes of white matter micro-structural integrity after remission might represent neural correlates of treatment effects for first-episode, medication-naïve and very late-onset panic disorder.
Collapse
Affiliation(s)
- Chien-Han Lai
- Department of Psychiatry, Cheng Hsin General Hospital, No. 45, Cheng Hsin St., Pai-Tou Destrict, Taipei City, Taiwan, ROC.
| | | | | | | |
Collapse
|