1
|
Tong X, Xie H, Wu W, Keller CJ, Fonzo GA, Chidharom M, Carlisle NB, Etkin A, Zhang Y. Individual deviations from normative electroencephalographic connectivity predict antidepressant response. J Affect Disord 2024; 351:220-230. [PMID: 38281595 PMCID: PMC10923099 DOI: 10.1016/j.jad.2024.01.177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 01/30/2024]
Abstract
BACKGROUND Antidepressant medications yield unsatisfactory treatment outcomes in patients with major depressive disorder (MDD) with modest advantages over the placebo, partly due to the elusive mechanisms of antidepressant responses and unexplained heterogeneity in patient's response to treatment. Here we develop a novel normative modeling framework to quantify individual deviations in psychopathological dimensions that offers a promising avenue for the personalized treatment for psychiatric disorders. METHODS We built a normative model with resting-state electroencephalography (EEG) connectivity data from healthy controls of three independent cohorts. We characterized the individual deviation of MDD patients from the healthy norms, based on which we trained sparse predictive models for treatment responses of MDD patients (102 sertraline-medicated and 119 placebo-medicated). Hamilton depression rating scale (HAMD-17) was assessed at both baseline and after the eight-week antidepressant treatment. RESULTS We successfully predicted treatment outcomes for patients receiving sertraline (r = 0.43, p < 0.001) and placebo (r = 0.33, p < 0.001). We also showed that the normative modeling framework successfully distinguished subclinical and diagnostic variabilities among subjects. From the predictive models, we identified key connectivity signatures in resting-state EEG for antidepressant treatment, suggesting differences in neural circuit involvement between sertraline and placebo responses. CONCLUSIONS Our findings and highly generalizable framework advance the neurobiological understanding in the potential pathways of antidepressant responses, enabling more targeted and effective personalized MDD treatment. TRIAL REGISTRATION Establishing Moderators and Biosignatures of Antidepressant Response for Clinical Care for Depression (EMBARC), NCT#01407094.
Collapse
Affiliation(s)
- Xiaoyu Tong
- Department of Bioengineering, Lehigh University, Bethlehem, PA, USA
| | - Hua Xie
- Center for Neuroscience Research, Children's National Hospital, Washington, DC, USA; George Washington University School of Medicine, Washington, DC, USA
| | - Wei Wu
- Alto Neuroscience, Inc., Los Altos, CA, USA
| | - Corey J Keller
- Department of Psychiatry and Behavioral Sciences, Stanford University, CA, USA; Veterans Affairs Palo Alto Healthcare System, Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), Palo Alto, CA, USA
| | - Gregory A Fonzo
- Center for Psychedelic Research and Therapy, Department of Psychiatry and Behavioral Sciences, Dell Medical School, The University of Texas at Austin, TX, USA
| | | | | | - Amit Etkin
- Alto Neuroscience, Inc., Los Altos, CA, USA
| | - Yu Zhang
- Department of Bioengineering, Lehigh University, Bethlehem, PA, USA; Department of Electrical and Computer Engineering, Lehigh University, Bethlehem, PA, USA.
| |
Collapse
|
2
|
Ni S, Gao S, Ling C, Jiang J, Wu F, Peng T, Sun J, Zhang N, Xu X. Altered brain regional homogeneity is associated with cognitive dysfunction in first-episode drug-naive major depressive disorder: A resting-state fMRI study. J Affect Disord 2023; 343:102-108. [PMID: 37797751 DOI: 10.1016/j.jad.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 09/22/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
BACKGROUND Our study aimed to explore the abnormal spontaneous brain activity by regional homogeneity (ReHo) and its association with cognitive function to understand the neuropathology of major depressive disorder (MDD). METHODS ReHo was used to investigate brain activities of 60 patients with first-episode drug-naive MDD and 60 healthy controls (HCs). Partial correlation analysis was conducted on altered ReHo values and the severity of symptoms and cognitive deficits. Moreover, support vector machine analysis was used to evaluate the accuracy of abnormal ReHo values in distinguishing patients with MDD from HCs. RESULTS Compared with HCs, patients with MDD showed significantly increased ReHo values in the right cerebellum crus2 and right thalamus and decreased ReHo values in the right angular gyrus (AG) and right precuneus (PCUN). The ReHo values in right cerebellum crus2 and right AG were positively associated with working memory and visual learning, respectively. Furthermore, the combination of ReHo values in the right cerebellum crus2 and right PCUN discriminated the patients with MDD from HCs with specificity, sensitivity, and accuracy of 0.9688, 0.6250, and 0.90, respectively. LIMITATIONS The design of repeated cross-sectional surveys does not allow analyses of within individual changes. CONCLUSIONS Our study revealed that the pathophysiology mechanism of cognitive deficits in MDD may be related to abnormal spontaneous brain activity. Moreover, the combination of ReHo values in the right cerebellum crus2 and right PCUN can be used to discriminate patients with MDD from HCs effectively.
Collapse
Affiliation(s)
- Sulin Ni
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing Brain Hospital, Nanjing, China
| | - Shuzhan Gao
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing Brain Hospital, Nanjing, China
| | - Chenxi Ling
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing Brain Hospital, Nanjing, China
| | - Jing Jiang
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing Brain Hospital, Nanjing, China
| | - Fan Wu
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing Brain Hospital, Nanjing, China
| | - Ting Peng
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing Brain Hospital, Nanjing, China
| | - Jing Sun
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing Brain Hospital, Nanjing, China
| | - Ning Zhang
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing Brain Hospital, Nanjing, China; Department of Psychiatry, Nanjing Brain Hospital, Medical School, Nanjing University, Nanjing, China.
| | - Xijia Xu
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing Brain Hospital, Nanjing, China; Department of Psychiatry, Nanjing Brain Hospital, Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
3
|
Wang Z, Baeken C, Wu GR. Metabolic Covariance Connectivity of Posterior Cingulate Cortex Associated with Depression Symptomatology Level in Healthy Young Adults. Metabolites 2023; 13:920. [PMID: 37623864 PMCID: PMC10456574 DOI: 10.3390/metabo13080920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/26/2023] Open
Abstract
Early detection in the development of a Major Depressive Disorder (MDD) could guide earlier clinical interventions. Although MDD can begin at a younger age, most people have their first episode in young adulthood. The underlying pathophysiological mechanisms relating to such an increased risk are not clear. The posterior cingulate cortex (PCC), exhibiting high levels of brain connectivity and metabolic activity, plays a pivotal role in the pathological mechanism underlying MDD. In the current study, we used the (F-18) fluorodeoxyglucose (FDG) positron emission tomography (PET) to measure metabolic covariance connectivity of the PCC and investigated its association with depression symptomatology evaluated by the Centre for Epidemiological Studies Depression Inventory-Revised (CESD-R) among 27 healthy individuals aged between 18 and 23 years. A significant negative correlation has been observed between CESD-R scale scores and the PCC metabolic connectivity with the anterior cingulate, medial prefrontal cortex, inferior and middle frontal gyrus, as well as the insula. Overall, our findings suggest that the neural correlates of depressive symptomatology in healthy young adults without a formal diagnosis involve the metabolic connectivity of the PCC. Our findings may have potential implications for early identification and intervention in people at risk of developing depression.
Collapse
Affiliation(s)
- Zhixin Wang
- Key Laboratory of Cognition and Personality, Faculty of Psychology, Southwest University, Chongqing 400715, China;
| | - Chris Baeken
- Faculty of Medicine and Health Sciences, Department of Head and Skin, Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, 9000 Ghent, Belgium;
| | - Guo-Rong Wu
- Key Laboratory of Cognition and Personality, Faculty of Psychology, Southwest University, Chongqing 400715, China;
| |
Collapse
|
4
|
Tong X, Xie H, Wu W, Keller C, Fonzo G, Chidharom M, Carlisle N, Etkin A, Zhang Y. Individual Deviations from Normative Electroencephalographic Connectivity Predict Antidepressant Response. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.05.24.23290434. [PMID: 37292874 PMCID: PMC10246152 DOI: 10.1101/2023.05.24.23290434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Antidepressant medications yield unsatisfactory treatment outcomes in patients with major depressive disorder (MDD) with modest advantages over the placebo. This modest efficacy is partly due to the elusive mechanisms of antidepressant responses and unexplained heterogeneity in patient's response to treatment - the approved antidepressants only benefit a portion of patients, calling for personalized psychiatry based on individual-level prediction of treatment responses. Normative modeling, a framework that quantifies individual deviations in psychopathological dimensions, offers a promising avenue for the personalized treatment for psychiatric disorders. In this study, we built a normative model with resting-state electroencephalography (EEG) connectivity data from healthy controls of three independent cohorts. We characterized the individual deviation of MDD patients from the healthy norms, based on which we trained sparse predictive models for treatment responses of MDD patients. We successfully predicted treatment outcomes for patients receiving sertraline (r = 0.43, p < 0.001) and placebo (r = 0.33, p < 0.001). We also showed that the normative modeling framework successfully distinguished subclinical and diagnostic variabilities among subjects. From the predictive models, we identified key connectivity signatures in resting-state EEG for antidepressant treatment, suggesting differences in neural circuit involvement between treatment responses. Our findings and highly generalizable framework advance the neurobiological understanding in the potential pathways of antidepressant responses, enabling more targeted and effective MDD treatment.
Collapse
Affiliation(s)
- Xiaoyu Tong
- Department of Bioengineering, Lehigh University, Bethlehem, PA, USA
| | - Hua Xie
- Center for Neuroscience Research, Children’s National Hospital, Washington, DC, USA
- George Washington University School of Medicine, Washington, DC, USA
| | - Wei Wu
- Alto Neuroscience, Inc., Los Altos, CA, USA
| | - Corey Keller
- Department of Psychiatry and Behavioral Sciences, Stanford University, CA, USA
- Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), Palo Alto, CA, USA
| | - Gregory Fonzo
- Center for Psychedelic Research and Therapy, Department of Psychiatry and Behavioral Sciences, Dell Medical School, The University of Texas at Austin, TX, USA
| | | | - Nancy Carlisle
- Department of Psychology, Lehigh University, Bethlehem, PA, USA
| | - Amit Etkin
- Alto Neuroscience, Inc., Los Altos, CA, USA
| | - Yu Zhang
- Department of Bioengineering, Lehigh University, Bethlehem, PA, USA
- Department of Electrical and Computer Engineering, Lehigh University, Bethlehem, PA, USA
| |
Collapse
|
5
|
Gao W, Biswal B, Yang J, Li S, Wang Y, Chen S, Yuan J. Temporal dynamic patterns of the ventromedial prefrontal cortex underlie the association between rumination and depression. Cereb Cortex 2023; 33:969-982. [PMID: 35462398 DOI: 10.1093/cercor/bhac115] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 11/14/2022] Open
Abstract
As a major contributor to the development of depression, rumination has proven linked with aberrant default-mode network (DMN) activity. However, it remains unclear how the spontaneous spatial and temporal activity of DMN underlie the association between rumination and depression. To illustrate this issue, behavioral measures and resting-state functional magnetic resonance images were connected in 2 independent samples (NSample1 = 100, NSample2 = 95). Fractional amplitude of low-frequency fluctuations (fALFF) and regional homogeneity (ReHo) were used to assess spatial characteristic patterns, while voxel-wise functional concordance (across time windows) (VC) and Hurst exponent (HE) were used to assess temporal dynamic patterns of brain activity. Results from both samples consistently show that temporal dynamics but not spatial patterns of DMN are associated with rumination. Specifically, rumination is positively correlated with HE and VC (but not fALFF and ReHo) values, reflecting more consistent and regular temporal dynamic patterns in DMN. Moreover, subregion analyses indicate that temporal dynamics of the ventromedial prefrontal cortex (VMPFC) reliably predict rumination scores. Furthermore, mediation analyses show that HE and VC of VMPFC mediate the association between rumination and depression. These findings shed light on neural mechanisms of individual differences in rumination and corresponding risk for depression.
Collapse
Affiliation(s)
- Wei Gao
- Institute of Brain and Psychological Science, Sichuan Normal University, Chengdu, Sichuan, China.,Faculty of Psychology, Southwest University, Chongqing, China
| | - Bharat Biswal
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United States
| | - Jiemin Yang
- Institute of Brain and Psychological Science, Sichuan Normal University, Chengdu, Sichuan, China
| | - Songlin Li
- School of Educational Science, Sichuan Normal University, Chengdu, Sichuan, China
| | - YanQing Wang
- Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Shengdong Chen
- School of Psychology, Qufu Normal University, Qufu, Shandong, China
| | - JiaJin Yuan
- Institute of Brain and Psychological Science, Sichuan Normal University, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Cerebello-cerebral Functional Connectivity Networks in Major Depressive Disorder: a CAN-BIND-1 Study Report. CEREBELLUM (LONDON, ENGLAND) 2023; 22:26-36. [PMID: 35023065 DOI: 10.1007/s12311-021-01353-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/29/2021] [Indexed: 02/01/2023]
Abstract
Neuroimaging studies have demonstrated aberrant structure and function of the "cognitive-affective cerebellum" in major depressive disorder (MDD), although the specific role of the cerebello-cerebral circuitry in this population remains largely uninvestigated. The objective of this study was to delineate the role of cerebellar functional networks in depression. A total of 308 unmedicated participants completed resting-state functional magnetic resonance imaging scans, of which 247 (148 MDD; 99 healthy controls, HC) were suitable for this study. Seed-based resting-state functional connectivity (RsFc) analysis was performed using three cerebellar regions of interest (ROIs): ROI1 corresponded to default mode network (DMN)/inattentive processing; ROI2 corresponded to attentional networks, including frontoparietal, dorsal attention, and ventral attention; ROI3 corresponded to motor processing. These ROIs were delineated based on prior functional gradient analyses of the cerebellum. A general linear model was used to perform within-group and between-group comparisons. In comparison to HC, participants with MDD displayed increased RsFc within the cerebello-cerebral DMN (ROI1) and significantly elevated RsFc between the cerebellar ROI1 and bilateral angular gyrus at a voxel threshold (p < 0.001, two-tailed) and at a cluster level (p < 0.05, FDR-corrected). Group differences were non-significant for ROI2 and ROI3. These results contribute to the development of a systems neuroscience approach to the diagnosis and treatment of MDD. Specifically, our findings confirm previously reported associations between MDD, DMN, and cerebellum, and highlight the promising role of these functional and anatomical locations for the development of novel imaging-based biomarkers and targets for neuromodulation therapies. ClinicalTrials.gov TRN: NCT01655706; Date of Registration: August 2nd, 2012.
Collapse
|
7
|
Lin Z, Xu X, Wang T, Huang Z, Wang G. Abnormal regional homogeneity and functional connectivity in major depressive disorder patients with long-term remission: An exploratory study. Psychiatry Res Neuroimaging 2022; 327:111557. [PMID: 36327866 DOI: 10.1016/j.pscychresns.2022.111557] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 09/13/2022] [Accepted: 10/18/2022] [Indexed: 11/07/2022]
Abstract
This study was the first to explore whether abnormal spontaneous neuronal activities exist in patients in the long-term remission stage of major depressive disorder (MDD). We recruited 34 MDD patients (PTs) and 30 sex- and age-matched healthy controls (HCs). Resting-state functional magnetic resonance imaging (rs-fMRI) was employed to scan all subjects' brain regions, and independent two-sample t-test was used for regional homogeneity (ReHo) and functional connectivity (FC) analysis. Compared with the HCs, the ReHo of PTs increased in the right superior frontal gyrus and left middle frontal gyrus, and decreased in the right anterior and collateral cingulate gyrus, right middle frontal gyrus, right inferior parietal lobule. The cingulate gyrus as a mask showed that FC of the cingulate gyrus with the bilateral lingual gyrus and the right middle temporal gyrus decreased, and FC with the left supper frontal gyrus increased. The correlation analysis revealed no significant correlation between the abnormal ReHo and HAMD-24 scores in PTs. The ReHo of inferior parietal lobule and the duration of remission were positively correlated. We concluded that the spontaneous neuronal activities might be disrupted in MDD patients in the long-term remission stage. Our findings provided new reasons for MDD relapse.
Collapse
Affiliation(s)
- Zouqing Lin
- Department of Psychiatry, Wuxi Mental Health Center, Wuxi, China.
| | - Xiaoyan Xu
- Department of Psychiatry, Wuxi Mental Health Center, Wuxi, China; Department of Psychiatry, Wuxi Hospital of traditional Chinese Medicine, Wuxi, China.
| | - Tenglong Wang
- Department of geriatric psychiatry, Wuxi Mental Health Center, Wuxi, China.
| | | | - Guoqiang Wang
- Department of Psychiatry, Wuxi Mental Health Center, Wuxi, China.
| |
Collapse
|
8
|
Zhao C, Chen M, Ding Z, Liu C, Wu X. Altered functional association and couplings: Effective diagnostic neuromarkers for Alzheimer’s disease. Front Aging Neurosci 2022; 14:1009632. [PMID: 36313014 PMCID: PMC9606803 DOI: 10.3389/fnagi.2022.1009632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/05/2022] [Indexed: 11/29/2022] Open
Abstract
Alzheimer’s disease (AD) is a common neurodegenerative disorder causing dementia in the elderly population. Functional disconnection of brain is considered to be the main cause of AD. In this study, we applied a newly developed association (Asso) mapping approach to directly quantify the functional disconnections and to explore the diagnostic effects for AD with resting-state functional magnetic resonance imaging data from 36 AD patients and 42 age-, gender-, and education-matched healthy controls (HC). We found that AD patients showed decreased Asso in left dorsoanterior insula (INS) while increased functional connections of INS with right medial prefrontal cortex (MPFC) and left posterior cingulate cortex (PCC). The changed Asso and functional connections were closely associated with cognitive performances. In addition, the reduced Asso and increased functional connections could serve as effective neuromarkers to distinguish AD patients from HC. Our research provided new evidence for functional disconnections in AD and demonstrated that functional disconnections between cognition-memory networks may be potential early biomarkers for AD.
Collapse
Affiliation(s)
- Chongyi Zhao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Department of Gynecology, The First People’s Hospital of Yunnan Province, Kunming University of Science and Technology, Kunming, China
| | - Meiling Chen
- Department of Clinical Psychology, The First People’s Hospital of Yunnan Province, Kunming University of Science and Technology, Kunming, China
| | - Zhiyong Ding
- Department of Medical Imaging, Qujing Maternal and Child Health Care Hospital, Kunming University of Science and Technology, Qujing, China
- *Correspondence: Zhiyong Ding,
| | - Chunyan Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neuromodulation, Beijing, China
- Chunyan Liu,
| | - Xiaomei Wu
- Department of Gynecology, The First People’s Hospital of Yunnan Province, Kunming University of Science and Technology, Kunming, China
- Xiaomei Wu,
| |
Collapse
|
9
|
Yi S, Wang Z, Yang W, Huang C, Liu P, Chen Y, Zhang H, Zhao G, Li W, Fang J, Liu J. Neural activity changes in first-episode, drug-naïve patients with major depressive disorder after transcutaneous auricular vagus nerve stimulation treatment: A resting-state fMRI study. Front Neurosci 2022; 16:1018387. [PMID: 36312012 PMCID: PMC9597483 DOI: 10.3389/fnins.2022.1018387] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 09/26/2022] [Indexed: 11/14/2022] Open
Abstract
Introduction Major depressive disorder (MDD) is a disease with prominent individual, medical, and economic impacts. Drug therapy and other treatment methods (such as Electroconvulsive therapy) may induce treatment-resistance and have associated side effects including loss of memory, decrease of reaction time, and residual symptoms. Transcutaneous auricular vagus nerve stimulation (taVNS) is a novel and non-invasive treatment approach which stimulates brain structures with no side-effects. However, it remains little understood whether and how the neural activation is modulated by taVNS in MDD patients. Herein, we used the regional homogeneity (ReHo) to investigate the brain activity in first-episode, drug-naïve MDD patients after taVNS treatment. Materials and methods Twenty-two first-episode, drug-naïve MDD patients were enrolled in the study. These patients received the first taVNS treatment at the baseline time, and underwent resting-state MRI scanning twice, before and after taVNS. All the patients then received taVNS treatments for 4 weeks. The severity of depression was assessed by the 17-item Hamilton Depression Rating Scale (HAMD) at the baseline time and after 4-week’s treatment. Pearson analysis was used to assess the correlation between alterations of ReHo and changes of the HAMD scores. Two patients were excluded due to excessive head movement, two patients lack clinical data in the fourth week, thus, imaging analysis was performed in 20 patients, while correlation analysis between clinical and imaging data was performed in only 18 patients. Results There were significant differences in the ReHo values in first-episode, drug-naïve MDD patients between pre- or post- taVNS. The primary finding is that the patients exhibited a significantly lower ReHo in the left/right median cingulate cortex, the left precentral gyrus, the left postcentral gyrus, the right calcarine cortex, the left supplementary motor area, the left paracentral lobule, and the right lingual gyrus. Pearson analysis revealed a positive correlation between changes of ReHo in the right median cingulate cortex/the left supplementary motor area and changes of HAMD scores after taVNS. Conclusion The decreased ReHo were found after taVNS. The sensorimotor, limbic and visual-related brain regions may play an important role in understanding the underlying neural mechanisms and be the target brain regions in the further therapy.
Collapse
Affiliation(s)
- Sijie Yi
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhi Wang
- Department of Radiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wenhan Yang
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Chuxin Huang
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ping Liu
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yanjing Chen
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Huiting Zhang
- MR Scientific Marketing, Siemens Healthineers Ltd., Wuhan, China
| | - Guangju Zhao
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Weihui Li
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Jun Liu,
| | - Jiliang Fang
- Department of Radiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Jiliang Fang,
| | - Jun Liu
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
- Clinical Research Center for Medical Imaging in Hunan Province, Changsha, China
- Department of Radiology Quality Control Center, Changsha, China
- Weihui Li,
| |
Collapse
|
10
|
Xue K, Liang S, Yang B, Zhu D, Xie Y, Qin W, Liu F, Zhang Y, Yu C. Local dynamic spontaneous brain activity changes in first-episode, treatment-naïve patients with major depressive disorder and their associated gene expression profiles. Psychol Med 2022; 52:2052-2061. [PMID: 33121546 DOI: 10.1017/s0033291720003876] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Major depressive disorder (MDD) is a common debilitating disorder characterized by impaired spontaneous brain activity, yet little is known about its alterations in dynamic properties and the molecular mechanisms associated with these changes. METHODS Based on the resting-state functional MRI data of 65 first-episode, treatment-naïve patients with MDD and 66 healthy controls, we compared dynamic regional homogeneity (dReHo) of spontaneous brain activity between the two groups, and we investigated gene expression profiles associated with dReHo alterations in MDD by leveraging transcriptional data from the Allen Human Brain Atlas and weighted gene co-expression network analysis. RESULTS Compared with healthy controls, patients with MDD consistently showed reduced dReHo in both fusiform gyri and in the right temporal pole and hippocampus. The expression profiles of 16 gene modules were correlated with dReHo alterations in MDD. These gene modules were enriched for various biological process terms, including immune, synaptic signalling, ion channels, mitochondrial function and protein metabolism, and were preferentially expressed in different cell types. CONCLUSIONS Patients with MDD have reduced dReHo in brain areas associated with emotional and cognitive regulation, and these changes may be related to complex polygenetic and polypathway mechanisms.
Collapse
Affiliation(s)
- Kaizhong Xue
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Sixiang Liang
- Tianjin Anding Hospital, Tianjin 300222, China
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University & the Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100088, China
| | - Bingbing Yang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Dan Zhu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yingying Xie
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Wen Qin
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Feng Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yong Zhang
- Tianjin Anding Hospital, Tianjin 300222, China
| | - Chunshui Yu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
11
|
Shared and specific characteristics of regional cerebral blood flow and functional connectivity in unmedicated bipolar and major depressive disorders. J Affect Disord 2022; 309:77-84. [PMID: 35452757 DOI: 10.1016/j.jad.2022.04.099] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/10/2022] [Accepted: 04/13/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND Identifying brain similarities and differences between bipolar disorder (BD) and major depressive disorder (MDD) can help us better understand their pathophysiological mechanisms and develop more effective treatments. However, the features of whole-brain regional cerebral blood flow (CBF) and intrinsic functional connectivity (FC) underlying BD and MDD have not been directly compared. METHODS Eighty-eight unmedicated BD II depression patients, 95 unmedicated MDD patients, and 96 healthy controls (HCs) underwent three-dimensional arterial spin labeling (3D ASL) and resting-state functional MRI (rs-fMRI). The functional properties of whole brain CBF and seed-based resting-state FC further performed based on those regions with changed CBF were analyzed between the three groups. RESULTS The patients with BD and MDD showed commonly increased CBF in the left posterior lobe of the cerebellum and the left middle temporal gyrus (MTG) compared with HCs. The CBF of the left MTG was positively associated with 24-items Hamilton Depression Rating Scale scores in MDD patients. Decreased FC between the left posterior lobe of the cerebellum and the left inferior frontal gyrus (IFG) was observed only in patients with BD compared with HCs. CONCLUSION Patients with BD and those with MDD shared common features of CBF in the posterior lobe of the cerebellum and the MTG. The altered posterior lobe of the cerebellum-IFG FC can be considered as a potential biomarker for the differentiation of patients with BD from those with MDD.
Collapse
|
12
|
Sun J, Chen L, He J, Du Z, Ma Y, Wang Z, Guo C, Luo Y, Gao D, Hong Y, Zhang L, Xu F, Cao J, Hou X, Xiao X, Tian J, Fang J, Yu X. Altered Brain Function in First-Episode and Recurrent Depression: A Resting-State Functional Magnetic Resonance Imaging Study. Front Neurosci 2022; 16:876121. [PMID: 35546875 PMCID: PMC9083329 DOI: 10.3389/fnins.2022.876121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/30/2022] [Indexed: 01/10/2023] Open
Abstract
Background Studies on differences in brain function activity between the first depressive episode (FDE) and recurrent depressive episodes (RDE) are scarce. In this study, we used regional homogeneity (ReHo) and amplitude of low-frequency fluctuations (ALFF) as indices of abnormal brain function activity. We aimed to determine the differences in these indices between patients with FDE and those with RDE, and to investigate the correlation between areas of abnormal brain function and clinical symptoms. Methods A total of 29 patients with RDE, 28 patients with FDE, and 29 healthy controls (HCs) who underwent resting-state functional magnetic resonance imaging were included in this study. The ReHo and ALFF measurements were used for image analysis and further analysis of the correlation between different brain regions and clinical symptoms. Results Analysis of variance showed significant differences among the three groups in ReHo and ALFF in the frontal, parietal, temporal, and occipital lobes. ReHo was higher in the right inferior frontal triangular gyrus and lower in the left inferior temporal gyrus in the RDE group than in the FDE group. Meanwhile, ALFF was higher in the right inferior frontal triangular gyrus, left anterior cingulate gyrus, orbital part of the left middle frontal gyrus, orbital part of the left superior frontal gyrus, and right angular gyrus, but was lower in the right lingual gyrus in the RDE group than in the FDE group. ReHo and ALFF were lower in the left angular gyrus in the RDE and FDE groups than in the HC group. Pearson correlation analysis showed a positive correlation between the ReHo and ALFF values in these abnormal areas in the frontal lobe and the severity of depressive symptoms (P < 0.05). Abnormal areas in the temporal and occipital lobes were negatively correlated with the severity of depressive symptoms (P < 0.05). Conclusion The RDE and FDE groups had abnormal neural function activity in some of the same brain regions. ReHo and ALFF were more widely distributed in different brain regions and had more complex neuropathological mechanisms in the RDE group than in the FDE group, especially in the right inferior frontal triangular gyrus of the frontal lobe.
Collapse
Affiliation(s)
- Jifei Sun
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Limei Chen
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiakai He
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China.,Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhongming Du
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yue Ma
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhi Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chunlei Guo
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yi Luo
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Deqiang Gao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yang Hong
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lei Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fengquan Xu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiudong Cao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaobing Hou
- Beijing First Hospital of Integrated Chinese and Western Medicine, Beijing, China
| | - Xue Xiao
- Beijing First Hospital of Integrated Chinese and Western Medicine, Beijing, China
| | - Jing Tian
- Beijing First Hospital of Integrated Chinese and Western Medicine, Beijing, China
| | - Jiliang Fang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xue Yu
- Beijing First Hospital of Integrated Chinese and Western Medicine, Beijing, China
| |
Collapse
|
13
|
Yao G, Zhang X, Li J, Liu S, Li X, Liu P, Xu Y. Improving Depressive Symptoms of Post-stroke Depression Using the Shugan Jieyu Capsule: A Resting-State Functional Magnetic Resonance Imaging Study. Front Neurol 2022; 13:860290. [PMID: 35493835 PMCID: PMC9047823 DOI: 10.3389/fneur.2022.860290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/24/2022] [Indexed: 11/16/2022] Open
Abstract
Regional homogeneity (ReHo) and fractional amplitude of low-frequency fluctuation (fALFF) were used to detect the neuroimaging mechanism of Shugan Jieyu Capsule (SG) in ameliorating depression of post-stroke depression (PSD) patients. Fifteen PSD patients took SG for 8 weeks, completed the 24-item Hamilton Depression Scale (HAMD) assessment at the baseline and 8 weeks later, and underwent functional magnetic resonance imaging (fMRI) scanning. Twenty-one healthy controls (HCs) underwent these assessments at the baseline. We found that SG improved depression of PSD patients, in which ReHo values decreased in the left calcarine sulcus (CAL.L) and increased in the left superior frontal gyrus (SFG.L) of PSD patients at the baseline. The fALFF values of the left inferior parietal cortex (IPL.L) decreased in PSD patients at the baseline. Abnormal functional activities in the brain regions were reversed to normal levels after the administration of SG for 8 weeks. Receiver operating characteristic (ROC) analysis found that the changes in three altered brain regions could be used to differentiate PSD patients at the baseline and HCs. Average signal values of altered regions were related to depression in all subjects at the baseline. Our results suggest that SG may ameliorate depression of PSD patients by affecting brain region activity and local synchronization.
Collapse
Affiliation(s)
- Guanqun Yao
- School of Clinical Medicine, Tsinghua University, Beijing, China
- Department of Psychiatry, Tsinghua University Yuquan Hospital, Beijing, China
| | - Xiaoqian Zhang
- School of Clinical Medicine, Tsinghua University, Beijing, China
- Department of Psychiatry, Tsinghua University Yuquan Hospital, Beijing, China
| | - Jing Li
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Sha Liu
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Xinrong Li
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Pozi Liu
- School of Clinical Medicine, Tsinghua University, Beijing, China
- Department of Psychiatry, Tsinghua University Yuquan Hospital, Beijing, China
| | - Yong Xu
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
14
|
Hu G, Ge H, Yang K, Liu D, Liu Y, Jiang Z, Hu X, Xiao C, Zou Y, Liu H, Hu X, Chen J. Altered static and dynamic voxel-mirrored homotopic connectivity in patients with frontal glioma. Neuroscience 2022; 490:79-88. [PMID: 35278629 DOI: 10.1016/j.neuroscience.2022.03.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/19/2022] [Accepted: 03/04/2022] [Indexed: 01/02/2023]
Abstract
Contralateral regions play critical role in functional compensation in glioma patients. Voxel-mirrored homotopic connectivity (VMHC) characterizes the intrinsic functional connectivity (FC) of the brain, considered to have a regional functional basis. We aimed to investigate the alterations of brain regional function and VMHC in patients with frontal glioma, and further investigated the correlation between these alterations and cognition. We enrolled patients with frontal glioma and matched healthy controls (HC). We chose degree centrality (DC), regional homogeneity (ReHo), and VMHC to investigate the alterations of regional function and intrinsic FC in patients. Furthermore, partial correlation analyses were conducted to explore the relationship between imaging functional indicators and cognitions. Compared with HC, patients showed decreased static VMHC within right and left middle frontal gyrus (MFG.R, MFG.L), left superior frontal gyrus (SFG.L), right precuneus (PCUN.R), and left precuneus (PCUN.L), decreased static DC within left cingulate gyrus (CG.L), right superior frontal gyrus (SFG.R), and right postcentral gyrus (POCG.R), decreased static ReHo within CG.L, decreased dynamic ReHo within right inferior parietal lobule (IPL.R), but increased dynamic VMHC (dVMHC) within PCUN.R and PCUN.L. Furthermore, values of decreased VMHC within MFG.R, decreased DC within CG.L, decreased ReHo within CG.L, and increased dVMHC within PCUN.R were significantly positively correlated with cognitive functions. We preliminarily confirmed glioma causes regional dysfunction and disturbs long-distance FC, and long-distance FC showed strong instability in patients with frontal glioma. Meanwhile, the correlation analyses indicated directions for cognitive protection in patients with frontal glioma.
Collapse
Affiliation(s)
- Guanjie Hu
- Department of Neurosurgery, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Honglin Ge
- Department of Neurosurgery, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Kun Yang
- Department of Neurosurgery, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Dongming Liu
- Department of Neurosurgery, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Yong Liu
- Department of Neurosurgery, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Zijuan Jiang
- Department of Neurosurgery, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Xiao Hu
- Department of Radiology, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Chaoyong Xiao
- Department of Radiology, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Yuanjie Zou
- Department of Neurosurgery, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Hongyi Liu
- Department of Neurosurgery, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Xinhua Hu
- Department of Neurosurgery, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, Jiangsu, 210029, China.
| | - Jiu Chen
- Institute of Neuropsychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Fourth Clinical College of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, Jiangsu, 210029, China.
| |
Collapse
|
15
|
Li Q, Xiang G, Song S, Chen H. How people reach their goals: Neural basis responsible for trait self-control association with hope. PERSONALITY AND INDIVIDUAL DIFFERENCES 2022. [DOI: 10.1016/j.paid.2021.111228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
16
|
Lan Z, Zhang W, Wang D, Tan Z, Wang Y, Pan C, Xiao Y, Kuai C, Xue SW. Decreased modular segregation of the frontal-parietal network in major depressive disorder. Front Psychiatry 2022; 13:929812. [PMID: 35935436 PMCID: PMC9353222 DOI: 10.3389/fpsyt.2022.929812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Major depressive disorder (MDD) is a common psychiatric condition associated with aberrant large-scale distributed brain networks. However, it is unclear how the network dysfunction in MDD patients is characterized by imbalance or derangement of network modular segregation. Fifty-one MDD patients and forty-three matched healthy controls (HC) were recruited in the present study. We analyzed intrinsic brain activity derived from resting-state functional magnetic resonance imaging (R-fMRI) and then examined brain network segregation by computing the participation coefficient (PC). Further intra- and inter-modular connections analysis were preformed to explain atypical PC. Besides, we explored the potential relationship between the above graph theory measures and symptom severity in MDD. Lower modular segregation of the frontal-parietal network (FPN) was found in MDD compared with the HC group. The MDD group exhibited increased inter-module connections between the FPN and cingulo-opercular network (CON), between the FPN and cerebellum (Cere), between the CON and Cere. At the nodal level, the PC of the anterior prefrontal cortex, anterior cingulate cortex, inferior parietal lobule (IPL), and intraparietal sulcus showed larger in MDD. Additionally, the inter-module connections between the FPN and CON and the PC values of the IPL were negatively correlated with depression symptom in the MDD group. These findings might give evidence about abnormal FPN in MDD from the perspective of modular segregation in brain networks.
Collapse
Affiliation(s)
- Zhihui Lan
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.,Institute of Psychological Science, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China.,Jing Hengyi School of Education, Hangzhou Normal University, Hangzhou, China
| | - Wei Zhang
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.,Institute of Psychological Science, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Donglin Wang
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.,Institute of Psychological Science, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Zhonglin Tan
- Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan Wang
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.,Institute of Psychological Science, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Chenyuan Pan
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.,Institute of Psychological Science, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China.,Jing Hengyi School of Education, Hangzhou Normal University, Hangzhou, China
| | - Yang Xiao
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.,Institute of Psychological Science, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China.,Jing Hengyi School of Education, Hangzhou Normal University, Hangzhou, China
| | - Changxiao Kuai
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.,Institute of Psychological Science, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China.,Jing Hengyi School of Education, Hangzhou Normal University, Hangzhou, China
| | - Shao-Wei Xue
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.,Institute of Psychological Science, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| |
Collapse
|
17
|
Deng Z, Jiang X, Liu W, Zhao W, Jia L, Sun Q, Xie Y, Zhou Y, Sun T, Wu F, Kong L, Tang Y. The aberrant dynamic amplitude of low-frequency fluctuations in melancholic major depressive disorder with insomnia. Front Psychiatry 2022; 13:958994. [PMID: 36072459 PMCID: PMC9441487 DOI: 10.3389/fpsyt.2022.958994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Insomnia is considered one of the manifestations of sleep disorders, and its intensity is linked to the treatment effect or suicidal thoughts. Major depressive disorder (MDD) is classified into various subtypes due to heterogeneous symptoms. Melancholic MDD has been considered one of the most common subtypes with special sleep features. However, the brain functional mechanisms in melancholic MDD with insomnia remain unclear. MATERIALS AND METHODS Melancholic MDD and healthy controls (HCs, n = 46) were recruited for the study. Patients were divided into patients with melancholic MDD with low insomnia (mMDD-LI, n = 23) and patients with melancholic MDD with high insomnia (mMDD-HI, n = 30), according to the sleep disturbance subscale of the 17-item Hamilton Depression Rating Scale. The dynamic amplitude of low-frequency fluctuation was employed to investigate the alterations of brain activity among the three groups. Then, the correlations between abnormal dALFF values of brain regions and the severity of symptoms were investigated. RESULTS Lower dALFF values were found in the mMDD-HI group in the right middle temporal gyrus (MTG)/superior temporal gyrus (STG) than in the mMDD-LI (p = 0.014) and HC groups (p < 0.001). Melancholic MDD groups showed decreased dALFF values than HC in the right middle occipital gyri (MOG)/superior occipital gyri (SOG), the right cuneus, the bilateral lingual gyrus, and the bilateral calcarine (p < 0.05). Lower dALFF values than HC in the left MOG/SOG and the left cuneus in melancholic MDD groups were found, but no significant difference was found between the mMDD-LI group and HC group (p = 0.079). Positive correlations between the dALFF values in the right MTG/STG and HAMD-SD scores (the sleep disturbance subscale of the HAMD-17) in the mMDD-HI group (r = 0.41, p = 0.042) were found. In the pooled melancholic MDD, the dALFF values in the right MOG/SOG and the right cuneus (r = 0.338, p = 0.019), the left MOG/SOG and the left cuneus (r = 0.299, p = 0.039), and the bilateral lingual gyrus and the bilateral calcarine (r = 0.288, p = 0.047) were positively correlated with adjusted HAMD scores. CONCLUSION The occipital cortex may be related to depressive symptoms in melancholic MDD. Importantly, the right MTG/STG may play a critical role in patients with melancholic MDD with more severe insomnia.
Collapse
Affiliation(s)
- Zijing Deng
- Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, China.,Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiaowei Jiang
- Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, China.,Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Wen Liu
- Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, China.,Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Wenhui Zhao
- Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, China.,Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Linna Jia
- Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, China.,Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Qikun Sun
- Department of Radiation Oncology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yu Xie
- Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yifang Zhou
- Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, China.,Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Ting Sun
- Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, China.,Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Feng Wu
- Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, China.,Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Lingtao Kong
- Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, China.,Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yanqing Tang
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China.,Department of Gerontology, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
18
|
Dynamic changes of large-scale resting-state functional networks in major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2021; 111:110369. [PMID: 34062173 DOI: 10.1016/j.pnpbp.2021.110369] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/11/2021] [Accepted: 05/26/2021] [Indexed: 11/24/2022]
Abstract
Sliding window method is widely used to study the functional connectivity dynamics in brain networks. A key issue of this method is how to choose the window length and number of clusters across different window length. Here, we introduced a universal method to determine the optimal window length and number of clusters and applied it to study the dynamic functional network connectivity (FNC) in major depressive disorder (MDD). Specifically, we first extracted the resting-state networks (RSNs) in 27 medication-free MDD patients and 54 healthy controls using group independent component analysis (ICA), and constructed the dynamic FNC patterns for each subject in the window range of 10-80 repetition times (TRs) using sliding window method. Then, litekmeans algorithm was utilized to cluster the FNC patterns corresponding to each window length into 2-20 clusters. The optimal number of clusters was determined by voting method and the optimal window length was determined by identifying the most representative window length. Finally, 8 recurring FNC patterns regarded as FNC states were captured for further analyzing the dynamic attributes. Our results revealed that MDD patients showed increased mean dwell time and fraction of time spent in state #5, and the mean dwell time is correlated with depression symptom load. Additionally, compared with healthy controls, MDD patients had significantly reduced FNC within FPN in state #7. Our study reported a new approach to determine the optimal window length and number of clusters, which may facilitate the future study of the functional dynamics. These findings about MDD using dynamic FNC analyses provide new evidence to better understand the neuropathology of MDD.
Collapse
|
19
|
Guo H, Wang Y, Qiu L, Huang X, He C, Zhang J, Gong Q. Structural and Functional Abnormalities in Knee Osteoarthritis Pain Revealed With Multimodal Magnetic Resonance Imaging. Front Hum Neurosci 2021; 15:783355. [PMID: 34912202 PMCID: PMC8667073 DOI: 10.3389/fnhum.2021.783355] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 10/28/2021] [Indexed: 02/05/2023] Open
Abstract
The knee osteoarthritis (KOA) pain is the most common form of arthritis pain affecting millions of people worldwide. Long-term KOA pain causes motor impairment and affects affective and cognitive functions. However, little is known about the structural and functional abnormalities induced by long-term KOA pain. In this work, high-resolution structural magnetic resonance imaging (sMRI) and resting-state functional MRI (rs-fMRI) data were acquired in patients with KOA and age-, sex-matched healthy controls (HC). Gray matter volume (GMV) and fractional amplitude of low-frequency fluctuation (fALFF) were used to study the structural and functional abnormalities in patients with KOA. Compared with HC, patients with KOA showed reduced GMV in bilateral insula and bilateral hippocampus, and reduced fALFF in left cerebellum, precentral gyrus, and the right superior occipital gyrus. Patients with KOA also showed increased fALFF in left insula and bilateral hippocampus. In addition, the abnormal GMV in left insula and fALFF in left fusiform were closely correlated with the pain severity or disease duration. These results indicated that long KOA pain leads to brain structural and functional impairments in motor, visual, cognitive, and affective functions that related to brain areas. Our findings may facilitate to understand the neural basis of KOA pain and the future therapy to relieve disease symptoms.
Collapse
Affiliation(s)
- Hua Guo
- Department of Rehabilitative Medicine, West China Hospital, Sichuan University, Chengdu, China
| | | | - Lihua Qiu
- Radiology Department, The Second People's Hospital of Yibin, Yibin, China
| | - Xiaoqi Huang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Chengqi He
- Department of Rehabilitative Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Junran Zhang
- School of Electrical Engineering, Sichuan University, Chengdu, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
20
|
Huang H, Li SY, Shi L, Huang X, Wang J. Altered spontaneous brain activity in patients with asthma: a resting-state functional MRI study using regional homogeneity analysis. Neuroreport 2021; 32:1403-1407. [PMID: 34743166 DOI: 10.1097/wnr.0000000000001736] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Studies have shown that patients with asthma have changes in brain function activities, but the specific relationship is still unknown. This study aims to investigate the potential regional homogeneity (ReHo) brain activity changes in patients with asthma and healthy controls. METHODS Thirty-one patients with asthma and 31 healthy controls closely matched in age, sex, and weight underwent resting-state functional MRI scans, respectively. The ReHo method was applied to evaluate synchronous neural activity changes. Receiver operating characteristic curve was used to show high test-retest stability and a high degree of sensitivity and specificity. RESULTS Compared with the healthy controls, asthma patients had significantly increased ReHo values in left cerebellum posterior lobe and left superior frontal gyrus, and decreased ReHo values of right middle temporal gyrus, right Putamen, right inferior temporal gyrus, right inferior middle frontal gyrus, left middle occipital gyrus, and right precentral/middle frontal gyrus. CONCLUSION Patients with asthma have different functional changes in different brain regions, mainly including the cerebellum, frontal lobe, temporal lobe, and occipital lobe, which provides important pieces of evidence to support the role of brain networks in the pathophysiology of asthma and offers an entirely new target for potential therapeutic intervention in asthma.
Collapse
Affiliation(s)
- Hui Huang
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University
| | - Si-Yu Li
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University
| | - Ling Shi
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University
| | | | - Jun Wang
- The Second Department of Respiratory Disease, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi, P.R. China
| |
Collapse
|
21
|
Cheng B, Zhou Y, Kwok VPY, Li Y, Wang S, Zhao Y, Meng Y, Deng W, Wang J. Altered Functional Connectivity Density and Couplings in Postpartum Depression with and Without Anxiety. Soc Cogn Affect Neurosci 2021; 17:756-766. [PMID: 34904174 PMCID: PMC9340108 DOI: 10.1093/scan/nsab127] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/28/2021] [Accepted: 12/13/2021] [Indexed: 02/05/2023] Open
Abstract
Postpartum depression (PPD) is the most common psychological health issue among women, which often comorbids with anxiety (PPD-A). PPD and PPD-A showed highly overlapping clinical symptoms. Identifying disorder-specific neurophysiological markers of PDD and PPD-A is important for better clinical diagnosis and treatments. Here, we performed functional connectivity density (FCD) and resting-state functional connectivity (rsFC) analyses in 138 participants (45 unmedicated patients with first-episode PPD, 31 PDD-A patients and 62 healthy postnatal women, respectively). FCD mapping revealed specifically weaker long-range FCD in right lingual gyrus (LG.R) for PPD patients and significantly stronger long-range FCD in left ventral striatum (VS.L) for PPD-A patients. The follow-up rsFC analyses further revealed reduced functional connectivity between dorsomedial prefrontal cortex (dmPFC) and VS.L in both PPD and PPD-A. PPD showed specific changes of rsFC between LG.R and dmPFC, right angular gyrus and left precentral gyrus, while PPD-A represented specifically abnormal rsFC between VS.L and left ventrolateral prefrontal cortex. Moreover, the altered FCD and rsFC were closely associated with depression and anxiety symptoms load. Taken together, our study is the first to identify common and disorder-specific neural circuit disruptions in PPD and PPD-A, which may facilitate more effective diagnosis and treatments.
Collapse
Affiliation(s)
- Bochao Cheng
- Department of Radiology, West China Second University Hospital of Sichuan University, Chengdu 610041, China.,Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yushan Zhou
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China
| | - Veronica P Y Kwok
- Center for Language and Brain, Shenzhen Institute of Neuroscience, Shenzhen 518057, China
| | - Yuanyuan Li
- Key Laboratory for NeuroInformation of the Ministry of Education, School of life Science and technology, University of Electronic Science and Technology of China, Chengdu 625014, China
| | - Song Wang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yajun Zhao
- School of Sociality and Psychology, Southwest Minzu University, Chengdu, China
| | - Yajing Meng
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Wei Deng
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Jiaojian Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
22
|
Zhang Y, Wang Z, Du J, Liu J, Xu T, Wang X, Sun M, Wen Y, Li D, Liao H, Zhao Y, Zhao L. Regulatory Effects of Acupuncture on Emotional Disorders in Patients With Menstrual Migraine Without Aura: A Resting-State fMRI Study. Front Neurosci 2021; 15:726505. [PMID: 34671239 PMCID: PMC8521095 DOI: 10.3389/fnins.2021.726505] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/10/2021] [Indexed: 01/03/2023] Open
Abstract
Background: Menstrual migraine without aura (MMoA) refers to a specific type of migraine that is associated with the female ovarian cycle. It is particularly serious and has brought huge life pressure and mental burden to female patients. Acupuncture has been commonly used to prevent migraines and relieve concomitant emotional disorders; however, the physiological mechanism underlying this intervention remains unclear. This study aimed to use resting-state functional magnetic resonance imaging (rsfMRI) to investigate whether acupuncture can modulate brain function and if the potential influence on brain activity correlates with improving emotional symptoms in MMoA patients. Methods: Overall, 44 patients were randomly divided into a true acupuncture (TA) group and the sham acupuncture (SA) group. Patients underwent rsfMRI before and after 3-month treatment, the amplitude of low-frequency fuctuations (ALFF) and regional homogeneity (ReHo) in rsfMRI were calculated. Zung self-rating anxiety scale (SAS), Zung self-rating depression scale (SDS), frequency of migraine attacks, visual analog scale, and intensity of the migraine were used for evaluate the clinical effect. The clinical changes of variables were also used to further assess the correlation with brain activity in MMoA patients. Results: After acupuncture treatment, the emotional symptoms of both groups of patients improved, and the clinical symptoms of migraine were alleviated. The major finding of our study was that patients with MMoA showed lower ALFF value in the left anterior cingulate and the value was positively correlated with the decreases in the SAS and SDS scores. In the SA group, common brain regions responded both in ALFF and regional homogeneity values mainly in the insula, and no significant correlations were observed between brain regions and clinical variables. Conclusions: These results indicated that both two acupuncture treatments were helpful in treating migraine and could improve emotion symptoms. TA had a relatively better effect in reducing the frequency of migraine attack than SA. The two therapies have different modulation effects as TA regulates emotional disorders by modulating the frontal-limbic regions, and SA may modulate pain perception through the placebo effect on insula and by indirectly regulating emotional disorders. These findings provided evidence that acupuncture is a complementary and alternative therapy to relieve clinical symptoms in female patients with migraines and could help enhance clinical diagnosis and treatment. Clinical Trial Registration: [http://www.chictr.org.cn/index.aspx], identifier [ChiCTR-IOR-15006648. Registered 23 June 2015].
Collapse
Affiliation(s)
- Yutong Zhang
- College of Acupuncture, Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ziwen Wang
- College of Acupuncture, Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Clinical Research Center for Acupuncture and Moxibustion in Sichuan province, Chengdu, China
| | - Jiarong Du
- Sichuan Province Building Hospital, Chengdu, China
| | - Jixin Liu
- Center for Brain Imaging, School of Life Sciences and Technology, Xidian University, Xi'an, China
| | - Tao Xu
- College of Acupuncture, Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Wang
- College of Acupuncture, Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mingsheng Sun
- College of Acupuncture, Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yi Wen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dehua Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huaqiang Liao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Zhao
- Chengdu Integrated Traditional Chinese Medicine and Western Medicine Hospital, Chengdu, China
| | - Ling Zhao
- College of Acupuncture, Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Clinical Research Center for Acupuncture and Moxibustion in Sichuan province, Chengdu, China
| |
Collapse
|
23
|
Wei Q, Cao S, Ji Y, Zhang J, Chen C, Wang X, Tian Y, Qiu B, Wang K. Altered Functional Connectivity Patterns of Parietal Subregions Contribute to Cognitive Dysfunction in Patients with White Matter Hyperintensities. J Alzheimers Dis 2021; 84:659-669. [PMID: 34569947 DOI: 10.3233/jad-210315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The white matter hyperintensities (WMHs) are considered as one of the core neuroimaging findings of cerebral small vessel disease and independently associated with cognitive deficit. The parietal lobe is a heterogeneous area containing many subregions and play an important role in the processes of neurocognition. OBJECTIVE To explore the relationship between parietal subregions alterations and cognitive impairments in WHMs. METHODS Resting-state functional connectivity (rs-FC) analyses of parietal subregions were performed in 104 right-handed WMHs patients divided into mild (n = 39), moderate (n = 37), and severe WMHs (n = 28) groups according to the Fazekas scale and 36 healthy controls. Parietal subregions were defined using tractographic Human Brainnetome Atlas and included five subregions for superior parietal lobe, six subregions for inferior parietal lobe (IPL), and three subregions for precuneus. All participants underwent a neuropsychological test battery to evaluate emotional and general cognitive functions. RESULTS Differences existed between the rs-FC strength of IPL_R_6_2 with the left anterior cingulate gyrus, IPL_R_6_3 with the right dorsolateral superior frontal gyrus, and the IPL_R_6_5 with the left anterior cingulate gyrus. The connectivity strength between IPL_R_6_3 and the left anterior cingulate gyrus were correlated with AVLT-immediate and AVLT-recognition test in WMHs. CONCLUSION We explored the roles of parietal subregions in WMHs using rs-FC. The functional connectivity of parietal subregions with the cortex regions showed significant differences between the patients with WMHs and healthy controls which may be associated with cognitive deficits in WMHs.
Collapse
Affiliation(s)
- Qiang Wei
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China.,Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, China
| | - Shanshan Cao
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
| | - Yang Ji
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
| | - Jun Zhang
- Department of Neurology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chen Chen
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
| | - Xiaojing Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
| | - Yanghua Tian
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,The College of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China.,Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China.,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China.,Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, China
| | - Bensheng Qiu
- Hefei National Lab for Physical Sciences at the Microscale and the Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, China
| | - Kai Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,The College of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China.,Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China.,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China.,Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, China
| |
Collapse
|
24
|
Wang L, Wei Q, Wang C, Xu J, Wang K, Tian Y, Wang J. Altered functional connectivity patterns of insular subregions in major depressive disorder after electroconvulsive therapy. Brain Imaging Behav 2021; 14:753-761. [PMID: 30610527 DOI: 10.1007/s11682-018-0013-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Although electroconvulsive therapy (ECT) is an efficient treatment for major depressive disorder (MDD), however, it also brings memory impairment. The insula is a critical brain structure for coordinating affective, cognitive memory, saliency processing, and attention switching suggesting functional activity of insula maybe an important indicator to delineate the treatment and side effects of ECT. Here, Resting-state functional connectivity analyses of insular subregions were performed to reveal the changes of connectivity in 23 MDD patients before and after ECT and 25 healthy control (HC) and identified significantly increased functional connectivity of the right ventral anterior insular subregion with bilateral caudate, angular gyrus, and dorsolateral prefrontal cortex after ECT. Granger causality analyses identified significantly increased effective connectivity from dorsolateral prefrontal cortex to right angular gyrus in MDD patients after ECT. Furthermore, increased effective connectivity from dorsolateral prefrontal cortex to right angular gyrus exhibited significantly positive correlation with changed Hamilton Rating Scale for Depression scores. These results showed that ECT can normalize abnormal functional connectivity and effective connectivity in MDD. Our findings also indicated that the right ventral anterior insula and effective connectivity from dorsolateral prefrontal cortex to right angular gyrus are biomarkers of antidepressant effects during ECT of MDD.
Collapse
Affiliation(s)
- Lijie Wang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 625014, China.,School of life Science and technology, University of Electronic Science and Technology of China, Chengdu, 625014, China
| | - Qiang Wei
- Department of Neurology, The First Hospital of Anhui Medical University, Hefei, 230022, China
| | - Chao Wang
- College of Psychology and Sociology, Shenzhen University, Shenzhen, 518060, China
| | - Jinping Xu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Kai Wang
- Department of Neurology, The First Hospital of Anhui Medical University, Hefei, 230022, China.,Department of Medical Psychology, Anhui Medical University, Hefei, 230022, China.,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230022, China.,Collaborative Innovation Center for Neuropsychiatric Disorders and Mental Health, Hefei, 230022, China
| | - Yanghua Tian
- Department of Neurology, The First Hospital of Anhui Medical University, Hefei, 230022, China.
| | - Jiaojian Wang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 625014, China. .,School of life Science and technology, University of Electronic Science and Technology of China, Chengdu, 625014, China.
| |
Collapse
|
25
|
Shen J, Yang B, Xie Z, Wu H, Zheng Z, Wang J, Wang P, Zhang P, Li W, Ye Z, Yu C. Cell-Type-Specific Gene Modules Related to the Regional Homogeneity of Spontaneous Brain Activity and Their Associations With Common Brain Disorders. Front Neurosci 2021; 15:639527. [PMID: 33958982 PMCID: PMC8093778 DOI: 10.3389/fnins.2021.639527] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/25/2021] [Indexed: 12/13/2022] Open
Abstract
Mapping gene expression profiles to neuroimaging phenotypes in the same anatomical space provides opportunities to discover molecular substrates for human brain functional properties. Here, we aimed to identify cell-type-specific gene modules associated with the regional homogeneity (ReHo) of spontaneous brain activity and their associations with brain disorders. Fourteen gene modules were consistently associated with ReHo in the three datasets, five of which showed cell-type-specific expression (one neuron-endothelial module, one neuron module, one astrocyte module and two microglial modules) in two independent cell series of the human cerebral cortex. The neuron-endothelial module was mainly enriched for transporter complexes, the neuron module for the synaptic membrane, the astrocyte module for amino acid metabolism, and microglial modules for leukocyte activation and ribose phosphate biosynthesis. In enrichment analyses of cell-type-specific modules for 10 common brain disorders, only the microglial module was significantly enriched for genes obtained from genome-wide association studies of multiple sclerosis (MS) and Alzheimer's disease (AD). The ReHo of spontaneous brain activity is associated with the gene expression profiles of neurons, astrocytes, microglia and endothelial cells. The microglia-related genes associated with MS and AD may provide possible molecular substrates for ReHo abnormality in both brain disorders.
Collapse
Affiliation(s)
- Junlin Shen
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Bingbing Yang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhonghua Xie
- Department of Mathematics, School of Science, Tianjin University of Science and Technology, Tianjin, China
| | - Heng Wu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhanye Zheng
- Department of Pharmacology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Jianhua Wang
- Department of Pharmacology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Ping Wang
- School of Medical Imaging and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin, China
| | - Peng Zhang
- Department of Radiology, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Wei Li
- Department of Radiology, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Zhaoxiang Ye
- Department of Radiology, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Chunshui Yu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
26
|
Altered patterns of fractional amplitude of low-frequency fluctuation and regional homogeneity in abstinent methamphetamine-dependent users. Sci Rep 2021; 11:7705. [PMID: 33833282 PMCID: PMC8032776 DOI: 10.1038/s41598-021-87185-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 03/22/2021] [Indexed: 02/01/2023] Open
Abstract
Methamphetamine (MA) could induce functional and structural brain alterations in dependent subjects. However, few studies have investigated resting-state activity in methamphetamine-dependent subjects (MADs). We aimed to investigate alterations of brain activity during resting-state in MADs using fractional amplitude of low-frequency fluctuation (fALFF) and regional homogeneity (ReHo). We analyzed fALFF and ReHo between MADs (n = 70) and healthy controls (HCs) (n = 84) and performed regression analysis using MA use variables. Compared to HCs, abstinent MADs showed increased fALFF and ReHo values in the bilateral striatum, decreased fALFF in the left inferior frontal gyrus, and decreased ReHo in the bilateral anterior cingulate cortex, sensorimotor cortex, and left precuneus. We also observed the fALFF values of bilateral striatum were positively correlated with the age of first MA use, and negatively correlated with the duration of MA use. The fALFF value of right striatum was also positively correlated with the duration of abstinence. The alterations of spontaneous cerebral activity in abstinent MADs may help us probe into the neurological pathophysiology underlying MA-related dysfunction and recovery. Since MADs with higher fALFF in the right striatum had shorter MA use and longer abstinence, the increased fALFF in the right striatum might implicate early recovery during abstinence.
Collapse
|
27
|
QIN DONGXUE, QIAN HAOTIAN, QI SHOULIANG, TENG YUEYANG, WU JIANLIN. ANALYSIS OF RS-FMRI IMAGES CLARIFIES BRAIN ALTERATIONS IN TYPE 2 DIABETES MELLITUS PATIENTS WITH COGNITIVE IMPAIRMENT. J MECH MED BIOL 2021. [DOI: 10.1142/s0219519421400157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Type 2 Diabetes Mellitus (T2DM) increases the risk of cognitive impairment (CI); however, the underlying pathophysiological mechanisms are still not well understood. We propose to clarify the altered spontaneous brain activity and functional connectivity implicated in CI of T2DM by analyzing resting state functional MRI (rs-fMRI) data. Totally 22 T2DM patients with cognitive impairment (T2DM-CI) and 31 T2DM patients with normal cognition (T2DM-NC) are included in this study. The whole brain amplitude of low frequency fluctuation (ALFF) value, regional homogeneity (ReHo) value and functional connectivity (FC) analysis using posterior cingulate cortex (PCC) as a seed region are investigated through comparison between groups of T2DM-CI and T2DM-NC. It is found that, compared with T2DM-NC, T2DM-CI demonstrates the decreased ALFF in the regions of precuneus, posterior cingulate gyrus, middle occipital gyrus and left superior/middle frontal gyrus, but the increased ALFF in the left middle frontal gyrus and left superior temporal gyrus. In T2DM-CI, ReHo decreases in bilateral posterior cingulate gyrus, right precuneus, right inferior frontal gyrus, but increases in the middle frontal gyrus and right superior occipital gyrus. Higher FC between PCC and bilateral inferior parietal lobule and right middle/inferior frontal gyrus, lower FC between PCC and bilateral precuneus and right superior frontal gyrus are observed in T2DM-CI group. Compared with T2DM-NC, patients with T2DM-CI have presented altered ALFF, ReHo and FC in and between important brain regions. The observed alterations are thought to be implicated with cognitive impairment of T2DM as the potential imaging pathophysiological basis.
Collapse
Affiliation(s)
- DONGXUE QIN
- Department of Radiology, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, P. R. China
| | - HAOTIAN QIAN
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110819, P. R. China
| | - SHOULIANG QI
- College of Medicine and Biological Information Engineering, Northeastern University, Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang 110819, P. R. China
| | - YUEYANG TENG
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110819, P. R. China
| | - JIANLIN WU
- Department of Radiology, Affiliated Zhongshan Hospital of Dalian University, Dalian 116023, P. R. China
| |
Collapse
|
28
|
Chen H, Qi G, Zhang Y, Huang Y, Zhang S, Yang D, He J, Mu L, Zhou L, Zeng M. Altered Dynamic Amplitude of Low-Frequency Fluctuations in Patients With Migraine Without Aura. Front Hum Neurosci 2021; 15:636472. [PMID: 33679354 PMCID: PMC7928334 DOI: 10.3389/fnhum.2021.636472] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/07/2021] [Indexed: 11/22/2022] Open
Abstract
Migraine is a chronic and idiopathic disorder leading to cognitive and affective problems. However, the neural basis of migraine without aura is still unclear. In this study, dynamic amplitude of low-frequency fluctuations (dALFF) analyses were performed in 21 patients with migraine without aura and 21 gender- and age-matched healthy controls to identify the voxel-level abnormal functional dynamics. Significantly decreased dALFF in the bilateral anterior insula, bilateral lateral orbitofrontal cortex, bilateral medial prefrontal cortex, bilateral anterior cingulate cortex, and left middle frontal cortex were found in patients with migraine without aura. The dALFF values in the anterior cingulate cortex were negatively correlated with pain intensity, i.e., visual analog scale. Finally, support vector machine was used to classify patients with migraine without aura from healthy controls and achieved an accuracy of 83.33%, sensitivity of 90.48%, and specificity of 76.19%. Our findings provide the evidence that migraine influences the brain functional activity dynamics and reveal the neural basis for migraine, which could facilitate understanding the neuropathology of migraine and future treatment.
Collapse
Affiliation(s)
- Hong Chen
- Department of Radiology, The Third Affiliated Hospital of Chengdu Medical College, Pidu District People's Hospital, Chengdu, China
| | - Guiqiang Qi
- Department of Radiology, The Third Affiliated Hospital of Chengdu Medical College, Pidu District People's Hospital, Chengdu, China
| | - Yingxia Zhang
- Department of Radiology, The Third Affiliated Hospital of Chengdu Medical College, Pidu District People's Hospital, Chengdu, China
| | - Ying Huang
- Department of Radiology, The Third Affiliated Hospital of Chengdu Medical College, Pidu District People's Hospital, Chengdu, China
| | - Shaojin Zhang
- Department of Radiology, The Third Affiliated Hospital of Chengdu Medical College, Pidu District People's Hospital, Chengdu, China
| | - Dongjun Yang
- Department of Radiology, The Third Affiliated Hospital of Chengdu Medical College, Pidu District People's Hospital, Chengdu, China
| | - Junwei He
- Department of Radiology, The Third Affiliated Hospital of Chengdu Medical College, Pidu District People's Hospital, Chengdu, China
| | - Lan Mu
- Department of Radiology, The Third Affiliated Hospital of Chengdu Medical College, Pidu District People's Hospital, Chengdu, China
| | - Lin Zhou
- Department of Radiology, The Third Affiliated Hospital of Chengdu Medical College, Pidu District People's Hospital, Chengdu, China
| | - Min Zeng
- Department of Radiology, The Third Affiliated Hospital of Chengdu Medical College, Pidu District People's Hospital, Chengdu, China
| |
Collapse
|
29
|
Associations of the Rate of Change in Geriatric Depression Scale with Amyloid and Cerebral Glucose Metabolism in Cognitively Normal Older Adults: A Longitudinal Study. J Affect Disord 2021; 280:77-84. [PMID: 33202341 DOI: 10.1016/j.jad.2020.10.078] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/09/2020] [Accepted: 10/31/2020] [Indexed: 01/10/2023]
Abstract
BACKGROUND Depression is considered a psychological risk factor for Alzheimer's disease (AD). We sought to examine the differential associations of depression severity with cognitive decline, clinical progression to mild cognitive impairment (MCI) or AD, and neuroimaging markers of AD in cognitively normal older adults. METHODS A total of 522 cognitively normal (CN) participants who underwent assessments for depression (longitudinal geriatric depression scale [GDS] ) and cognitive assessments were included from the Alzheimer Disease Neuroimaging Initiative (ADNI) cohort. The cross-sectional and longitudinal associations of the rate of change in GDS with amyloid-β (Aβ)-positron emission tomography (PET), tau-PET, and 18F-fluorodeoxyglucose (FDG)-PET were explored. Kaplan-Meier survival curves of clinical progression and Aβ accumulation were plotted based on mean annual changes in GDS. Mediation analyses were utilized to explore the mediation effects of AD markers. RESULTS Higher rate of increase in GDS was associated with faster cognitive decline and higher risk of progression to MCI or AD. Moreover, the rate of change in GDS was significantly associated with Aβ accumulation and cerebral glucose metabolism. The influences of the rate of change in GDS on cognition and clinical progression were partially mediated by Aβ accumulation and cerebral glucose metabolism. LIMITATIONS GDS is a self-reported questionnaire and not the same as a clinical diagnosis of depression. CONCLUSIONS The cognitive and clinical consequences of changes in depressive symptoms partly stem from Aβ accumulation and cerebral glucose metabolism, which increases our understanding of how depressive symptoms may increase vulnerability to dementia.
Collapse
|
30
|
Liu M, Yang H, Qin J, Yao Q, Yang G, Li J. Changes in the regional homogeneity of resting-state magnetic resonance imaging in perimenopausal women. BMC WOMENS HEALTH 2021; 21:39. [PMID: 33509177 PMCID: PMC7842067 DOI: 10.1186/s12905-020-01171-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 12/23/2020] [Indexed: 11/10/2022]
Abstract
Background There is a noticeable lack of systematic researches on evaluating the correlation between serum estrogen levels and changes in brain functional areas of perimenopausal women.The aim of this study is to investigate the regional spontaneous brain activity changes in perimenopausal women. Methods Based on the resting-state functional magnetic resonance imaging datasets acquired from 25 perimenopausal women and 20 healthy women of reproductive age, a two-sample t-test was performed on individual normalized regional homogeneity (ReHo) maps. Relationships between abnormal ReHo values and the self-rating anxiety scale (SAS), the self-rating depression scale (SDS) were investigated with Pearson correlation analysis. We also investigated the correlation between abnormal ReHo values and serum estrogen level. Results In the perimenopausal group, we found increased ReHo in the right posterior cerebellum (region 2), left middle frontal gyrus and left middle cingulate gyrus (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$P<0.05$$\end{document}P<0.05). Additionally, the ReHo values in left middle frontal gyrus and leftt middle cingulate gyrus showed positively significant correlation with the SAS, SDS scores. On the contrary, there was no significant correlation between the ReHo value in right posterior cerebellum and SDS, SAS scores. In the perimenopausal group, the ReHo values in the left middle frontal gyrus and left middle cingulate gyrus were negatively correlated with the serum estrogen level (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$P<0.05$$\end{document}P<0.05). Conclusion The results of this preliminary study have suggested that abnormal spontaneous activities of multiple brain regions during resting state was already altered in perimenopausal women. Alterative activities might be related to emotional regulation deficits and cognitive impairment, and might potentially represent the neural mechanism underlying perimenopausal period.
Collapse
Affiliation(s)
- Min Liu
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, No.366 Taishan Street, Tai'an, Shandong, China
| | - Hui Yang
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, No.366 Taishan Street, Tai'an, Shandong, China
| | - Jian Qin
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, No.366 Taishan Street, Tai'an, Shandong, China
| | - Qianqian Yao
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, No.366 Taishan Street, Tai'an, Shandong, China
| | - Guihua Yang
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, No.366 Taishan Street, Tai'an, Shandong, China
| | - Jiang Li
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, No.366 Taishan Street, Tai'an, Shandong, China.
| |
Collapse
|
31
|
Zhang Y, Cui X, Ou Y, Liu F, Li H, Chen J, Zhao J, Xie G, Guo W. Differentiating Melancholic and Non-melancholic Major Depressive Disorder Using Fractional Amplitude of Low-Frequency Fluctuations. Front Psychiatry 2021; 12:763770. [PMID: 35185634 PMCID: PMC8847389 DOI: 10.3389/fpsyt.2021.763770] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/14/2021] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Melancholic major depressive disorder (MDD) is a network-based brain disorder. However, whether or not network-based changes can be applied to differentiate melancholic (MEL) from non-melancholic (NMEL) MDD remains unclear. METHODS Thirty-one MEL patients, 28 NMEL patients, and 32 matched healthy controls (HCs) were scanned using resting-state functional magnetic resonance imaging. Patients were assessed by the Chinese version of Snaith-Hamilton Pleasure Scale (SHAPS-C) and Temporal Experience of Pleasure Scale (TEPS). Fractional amplitude of low-frequency fluctuations (fALFF) and correlation analysis were used to analyze the data. RESULTS Compared with HCs, the MEL group had significantly higher fALFF values in the bilateral inferior frontal gyrus and right supplementary motor area (SMA) and significantly lower fALFF values in the right inferior occipital gyrus (IOG), right middle temporal gyrus (MTG)/left IOG, and bilateral superior occipital gyrus (SOG)/MTG. On the other hand, the NMEL group showed significantly higher fALFF values in the bilateral SMA and significantly lower fALFF values in the bilateral posterior cingulate cortex/precuneus relative to HCs. Compared with the NMEL group, the MEL group showed significantly lower fALFF values in the left anterior cingulate cortex (ACC). A correlation was found between the fALFF values of the right SMA and the SHAPS-C in the MEL group. In addition, correlations were observed between the fALFF values of the left ACC and the TEPS contextual consummatory and total scores in all patients. CONCLUSION Our study uncovered that MDD exhibited altered brain activity in extensive brain networks, including the default-mode network, frontal-striatal network, reward system, and frontal-limbic network. Decreased fALFF in the left ACC might be applied to differentiate the two subtypes of MDD.
Collapse
Affiliation(s)
- Yingying Zhang
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xilong Cui
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yangpan Ou
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Feng Liu
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Huabing Li
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jindong Chen
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jingping Zhao
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Guangrong Xie
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Wenbin Guo
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China.,Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, China
| |
Collapse
|
32
|
Bifrontal electroconvulsive therapy changed regional homogeneity and functional connectivity of left angular gyrus in major depressive disorder. Psychiatry Res 2020; 294:113461. [PMID: 33038791 DOI: 10.1016/j.psychres.2020.113461] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 09/15/2020] [Indexed: 12/11/2022]
Abstract
Electroconvulsive therapy (ECT) is a rapid and effective treatment for MDD. However, the mechanism of ECT for MDD has not been clarified. In this study, we used resting-state functional magnetic resonance imaging (rs-fMRI) to explore the mechanism of ECT. Two groups of subjects were recruited: healthy controls (HCs) and MDD patients who received bifrontal ECT. MDD patients and HCs underwent rs-fMRI scans and clinical assessments (Hamilton Depression Rating Scale, Rey-Auditory Verbal Learning Test (RAVLT), and the verbal fluency test). Regional homogeneity (ReHo) and functional connectivity were evaluated for the analysis of rs-fMRI data. The results showed that ReHo values in the left angular gyrus (LAG) significantly increased in MDD patients after ECT, and the functional connectivity of the LAG with bilateral inferior temporal gyrus, bilateral middle frontal gyrus, left superior frontal gyrus, left middle temporal gyrus, left precuneus, left posterior cingulate gyrus, and right angular gyrus was found to be strengthened after ECT. The scores of delayed recall trial in the RAVLT of MDD patients were related to the functional connectivity of the LAG with the left inferior temporal gyrus and the left posterior cingulate gyrus. It indicated LAG palyed an important role in the mechanism of ECT in MDD.
Collapse
|
33
|
Gao J, Li Y, Wei Q, Li X, Wang K, Tian Y, Wang J. Habenula and left angular gyrus circuit contributes to response of electroconvulsive therapy in major depressive disorder. Brain Imaging Behav 2020; 15:2246-2253. [PMID: 33244628 DOI: 10.1007/s11682-020-00418-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/21/2020] [Accepted: 11/02/2020] [Indexed: 10/22/2022]
Abstract
The habenula (Hb), one of the hottest structures in depression, has been widely demonstrated to be involved in the neurobiology of depression. Although the structural and functional abnormalities of Hb have been reported in major depressive disorders (MDD) patients, the role of Hb in treatment response in MDD remains unclear. In this study, resting-state functional connectivity (RSFC) and Granger causality analysis (GCA) were performed to investigate the intrinsic and causal changes of Hb in MDD after ECT. Moreover, support vector classification was applied to find out whether the changed functional and causal connections of Hb can effectively distinguish the MDD patients from healthy controls. The RSFC and GCA identified increased RSFC strength between bilateral Hb and left angular gyrus (AG), decreased causal connectivity strength from left AG to left Hb, from right Hb to left AG, and bidirectional interactions between left and right Hb in MDD patients after ECT. The changed causal connectivities from left AG to left Hb, and from right Hb to left AG were correlated with the changed depression symptoms and impaired delay memory recall performances. Furthermore, the functional and causal connectivities between left AG and bilateral Hb could serve as a biomarker to differentiate MDD from HCs. These results provided new evidence for the importance of Hb in depression and revealed that the interactions between Hb and left AG contribute to ECT response in MDD. Our findings will facilitate the future treatment of depression with the target of Hb in MDD and other brain disorders.
Collapse
Affiliation(s)
- Jingjing Gao
- School of Information and Communication Engineer, University of Electronic Science and Technology of China, Chengdu, 625014, China
| | - Yuanyuan Li
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 625014, China
| | - Qiang Wei
- Department of Neurology, The First Hospital of Anhui Medical University, Hefei, 230022, China
| | - Xuemei Li
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 625014, China
| | - Kai Wang
- Department of Neurology, The First Hospital of Anhui Medical University, Hefei, 230022, China.,Department of Medical Psychology, Anhui Medical University, 230022, Hefei, China.,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, 230022, Hefei, China.,Collaborative Innovation Center for Neuropsychiatric Disorders and Mental Health, 230022, Hefei, China
| | - Yanghua Tian
- Department of Neurology, The First Hospital of Anhui Medical University, Hefei, 230022, China.
| | - Jiaojian Wang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 625014, China. .,Center for Language and Brain, Shenzhen Institute of Neuroscience, Shenzhen, 518060, China.
| |
Collapse
|
34
|
Zeng M, Yu M, Qi G, Zhang S, Ma J, Hu Q, Zhang J, Li H, Wu H, Xu J. Concurrent alterations of white matter microstructure and functional activities in medication-free major depressive disorder. Brain Imaging Behav 2020; 15:2159-2167. [PMID: 33155171 DOI: 10.1007/s11682-020-00411-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/18/2020] [Accepted: 10/14/2020] [Indexed: 01/08/2023]
Abstract
Although numerous studies have revealed the structural and functional alterations in major depressive disorder (MDD) using unimodal diffusion magnetic resonance imaging (MRI) or functional MRI, however, the potential associations between changed microstructure and corresponding functional activities in the MDD has been largely uninvestigated. Herein, 27 medication-free MDD patients and 54 gender-, age-, and educational level-matched healthy controls (HC) were used to investigate the concurrent alterations of white matter microstructure and functional activities using tract-based spatial statistics (TBSS) analyses, fractional amplitude of low-frequency fluctuation (fALFF), and degree centrality (DC). The TBSS analyses revealed significantly decreased fractional anisotropy (FA) in the superior longitudinal fasciculus (SLF I) in the MDD patients compared to HC. Correlation analyses showed that decreased FA in the SLF I was significantly correlated with fALFF in left pre/postcentral gyrus and binary, weighted DC in right posterior cerebellum. Moreover, the fALFF in left pre/postcentral gyrus significantly reduced in MDD patients while binary and weighted DC in right posterior cerebellum significantly increased in MDD patients. Our results revealed concurrent structural and functional changes in MDD patients suggesting that the underlying structural disruptions are an important indicator of functional abnormalities.
Collapse
Affiliation(s)
- Min Zeng
- Department of Radiology, Pidu District People's Hospital, Chengdu, 625014, Chengdu, China
| | - Min Yu
- Department of Neonatology, Changzhou Children's Hospital, Changzhou, 213003, China
| | - Guiqiang Qi
- Department of Radiology, Pidu District People's Hospital, Chengdu, 625014, Chengdu, China
| | - Shaojin Zhang
- Department of Radiology, Pidu District People's Hospital, Chengdu, 625014, Chengdu, China
| | - Jijian Ma
- Department of Radiology, Pidu District People's Hospital, Chengdu, 625014, Chengdu, China
| | - Qingmao Hu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China.,CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
| | - Jinhuan Zhang
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China.,The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, 518000, Shenzhen, China
| | - Hongxing Li
- Department of Neonatology, Changzhou Children's Hospital, Changzhou, 213003, China.
| | - Huawang Wu
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), 510370, Guangzhou, China.
| | - Jinping Xu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China.
| |
Collapse
|
35
|
Zeng M, Wang L, Cheng B, Qi G, He J, Xu Z, Han T, Liu C, Wang Y. Transcutaneous Spinal Cord Direct-Current Stimulation Modulates Functional Activity and Integration in Idiopathic Restless Legs Syndrome. Front Neurosci 2020; 14:873. [PMID: 32982669 PMCID: PMC7475652 DOI: 10.3389/fnins.2020.00873] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/27/2020] [Indexed: 11/13/2022] Open
Abstract
Idiopathic restless legs syndrome (RLS) is a sensorimotor disorder and is suggested to be caused by central nervous system abnormalities. Non-invasive transcutaneous spinal direct-current stimulation (tsDCS) was recently used for RLS therapy. However, the neurophysiological basis of tsDCS treatment is still unknown. In this study, we explored the neural basis of tsDCS in 15 RLS patients and 20 gender- and age-matched healthy controls using resting-state functional magnetic resonance imaging. We calculated the whole-brain voxel-wise fractional amplitude of low-frequency fluctuations (fALFF), regional homogeneity (ReHo), and weighted degree centrality (DC) to characterize the intrinsic functional activities and the local and global functional integration. We found that tsDCS can effectively improve the sleep and RLS symptoms in RLS patients. Moreover, after tsDCS therapy, the RLS patients showed decreased fALFF in the right anterior insula/temporal pole, decreased ReHo in the supplementary motor area, increased weighted DC in the left primary visual cortex, and decreased weighted DC in the right posterior cerebellum. The changed patterns were consistent with that found between RLS patients and healthy controls. The weighted DC in the left primary visual cortex after treatment and the fALFF in the right anterior insula/temporal pole before treatment were significantly and marginally correlated with sleep and RLS symptom scores, respectively. These results revealed that tsDCS can normalize the functional patterns of RLS patients and is an effective way for RLS therapy. Our findings provide the neurophysiological basis for tsDCS treatment and may facilitate understanding the neuropathology of RLS and directing other neuromodulation treatments.
Collapse
Affiliation(s)
- Min Zeng
- Department of Radiology, Pidu District People's Hospital, Chengdu, China
| | - Li Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neuromodulation, Beijing, China
| | - Bochao Cheng
- Department of Radiology, West China Second University Hospital of Sichuan University, Chengdu, China
| | - Guiqiang Qi
- Department of Radiology, Pidu District People's Hospital, Chengdu, China
| | - Junwei He
- Department of Radiology, Pidu District People's Hospital, Chengdu, China
| | - Zhexue Xu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neuromodulation, Beijing, China
| | - Tao Han
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neuromodulation, Beijing, China
| | - Chunyan Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neuromodulation, Beijing, China
| | - Yuping Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neuromodulation, Beijing, China
| |
Collapse
|
36
|
Mao N, Che K, Chu T, Li Y, Wang Q, Liu M, Ma H, Wang Z, Lin F, Wang B, Ji H. Aberrant Resting-State Brain Function in Adolescent Depression. Front Psychol 2020; 11:1784. [PMID: 32903315 PMCID: PMC7396538 DOI: 10.3389/fpsyg.2020.01784] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/29/2020] [Indexed: 12/11/2022] Open
Abstract
To explore the changes of brain function and conduct clinical differential diagnosis based on support vector machine (SVM) in adolescent patients with depression. A total of 24 adolescent patients with depression according to CCMD-3 and DSM-5 and 23 gender, education level, body mass index, and age matched healthy controls were assessed with 17-item Hamilton Depression Rating Scale (HAMD). HAMD scores were requested from ≥17 of patients. Three−dimensional T1 and resting-state functional magnetic resonance imaging data were acquired from all participants. The data were analyzed using SPM 12 and REST1.8. Two-sample t-test was conducted to compare regional homogeneity (ReHo) values among the groups of participants. Finally, based on SVM classification, clinical differential diagnosis of the patients was carried out. The receiver operator characteristic (ROC) curve were used to confirm the performance of the SVM model. An increase ReHo values were observed in the lingual gyrus, middle occipital gyrus, postcentral gyrus, and precentral gyrus, whereas a decrease in ReHo was found in vermis compared with the control group. The SVM model showed good performance in classification prediction of adolescent depression, with an area under curve (AUC) of 0.778 [95% confidence interval (CI), 0.661–0.797]. The changes in the spontaneous neural activity of these regions may play an important role in the neuropathological mechanism of adolescent depression and may provide promising markers for clinical evaluation.
Collapse
Affiliation(s)
- Ning Mao
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Kaili Che
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Tongpeng Chu
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Yuna Li
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Qinglin Wang
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Meijie Liu
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Heng Ma
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Zhongyi Wang
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Fan Lin
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Bin Wang
- Medical Imaging Research Institute, Binzhou Medical University, Yantai, China
| | - Haixia Ji
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| |
Collapse
|
37
|
Ma M, Zhang H, Liu R, Liu H, Yang X, Yin X, Chen S, Wu X. Static and Dynamic Changes of Amplitude of Low-Frequency Fluctuations in Cervical Discogenic Pain. Front Neurosci 2020; 14:733. [PMID: 32760245 PMCID: PMC7372087 DOI: 10.3389/fnins.2020.00733] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 06/22/2020] [Indexed: 02/01/2023] Open
Abstract
Cervical discogenic pain (CDP) is a clinically common pain syndrome caused by cervical disk degeneration. A large number of studies have reported that CDP results in brain functional impairments. However, the detailed dynamic brain functional abnormalities in CDP are still unclear. In this study, using resting-state functional magnetic resonance imaging, we explored the neural basis of CDP with 40 CDP patients and 40 age-, gender-matched healthy controls to delineate the changes of the voxel-level static and dynamic amplitude of low frequency fluctuations (ALFF). We found increased static ALFF in left insula (INS) and posterior precuneus (PCu), and decreased static ALFF in left precentral/postcentral gyrus (PreCG/PoCG), thalamus (THA), and subgenual anterior cingulate cortex in CPD patients compared to healthy controls. We also found decreased dynamic ALFF in left PreCG/PoCG, right posterior middle temporal gyrus, and bilateral THA. Moreover, we found that static ALFF in left PreCG/PoCG and dynamic ALFF in THA were significantly negatively correlated with visual analog scale and disease duration, respectively. Our findings provide the neurophysiological basis for CDP and facilitate understanding the neuropathology of CDP.
Collapse
Affiliation(s)
- Mingyue Ma
- Department of Radiology, The Affiliated Xi'an Central Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hong Zhang
- Department of Radiology, The Affiliated Xi'an Central Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Run Liu
- Department of Radiology, The Affiliated Xi'an Central Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hongsheng Liu
- Department of Radiology, The Affiliated Xi'an Central Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiangchun Yang
- Department of Radiology, The Affiliated Xi'an Central Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaohui Yin
- Department of Radiology, The Affiliated Xi'an Central Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Song Chen
- Department of Radiology, The Affiliated Xi'an XD Group Hospital of Shanxi University of Traditional Chinese Medicine, Xi'an, China
| | - Xiaoping Wu
- Department of Radiology, The Affiliated Xi'an Central Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
38
|
Wang J, Ji Y, Li X, He Z, Wei Q, Bai T, Tian Y, Wang K. Improved and residual functional abnormalities in major depressive disorder after electroconvulsive therapy. Prog Neuropsychopharmacol Biol Psychiatry 2020; 100:109888. [PMID: 32061788 DOI: 10.1016/j.pnpbp.2020.109888] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/03/2020] [Accepted: 02/11/2020] [Indexed: 02/07/2023]
Abstract
Electroconvulsive therapy (ECT) can induce fast remission of depression but still retain the residual functional impairments in major depressive disorder (MDD) patients. To delineate the different functional circuits of effective antidepressant treatment and residual functional impairments is able to better guide clinical therapy for depression. Herein, voxel-level whole brain functional connectivity homogeneity (FcHo), functional connectivity, multivariate pattern classification approaches were applied to reveal the specific circuits for treatment response and residual impairments in MDD patients after ECT. Increased FcHo values in right dorsomedial prefrontal cortex (dmPFC) and left angular gyrus (AG) and their corresponding functional connectivities between dmPFC and right AG, dorsolateral prefrontal cortex (dlPFC), superior frontal gyrus, precuneus (Pcu) and between left AG with dlPFC, bilateral AG, and left ventrolateral prefrontal cortex in MDD patients after ECT. Moreover, we found decreased FcHo values in left middle occipital gyrus (MOG) and lingual gyrus (LG) and decreased functional connectivities between MOG and dorsal postcentral gyrus (PCG) and between LG and middle PCG/anterior superior parietal lobule in MDD patients before and after ECT compared to healthy controls (HCs). The increased or normalized FcHo and functional connections may be related to effective antidepressant therapy, and the decreased FcHo and functional connectivities may account for the residual functional impairments in MDD patients after ECT. The different change patterns in MDD after ECT indicated a specific brain circuit supporting fast remission of depression, which was supported by the following multivariate pattern classification analyses. Finally, we found that the changed FcHo in dmPFC was correlated with changed depression scores. These results revealed a specific functional circuit supporting antidepressant effects of ECT and neuroanatomical basis for residual functional impairments. Our findings also highlighted the key role of dmPFC in antidepressant and will provide an important reference for depression treatment.
Collapse
Affiliation(s)
- Jiaojian Wang
- Center for Language and Brain, Shenzhen Institute of Neuroscience, Shenzhen 518057, China.
| | - Yang Ji
- Department of Neurology, the First Hospital of Anhui Medical University, Hefei 230022, China
| | - Xuemei Li
- Key Laboratory for Neurolnformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Zhengyu He
- Key Laboratory for Neurolnformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Qiang Wei
- Department of Neurology, the First Hospital of Anhui Medical University, Hefei 230022, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei 230022, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei 230022, China
| | - Tongjian Bai
- Department of Neurology, the First Hospital of Anhui Medical University, Hefei 230022, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei 230022, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei 230022, China.
| | - Yanghua Tian
- Department of Neurology, the First Hospital of Anhui Medical University, Hefei 230022, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei 230022, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei 230022, China.
| | - Kai Wang
- Department of Neurology, the First Hospital of Anhui Medical University, Hefei 230022, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei 230022, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei 230022, China; Department of Medical Psychology, Anhui Medical University, Hefei 230022, China
| |
Collapse
|
39
|
Abnormal large-scale resting-state functional networks in drug-free major depressive disorder. Brain Imaging Behav 2020; 15:96-106. [DOI: 10.1007/s11682-019-00236-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
40
|
Kamarajan C, Ardekani BA, Pandey AK, Kinreich S, Pandey G, Chorlian DB, Meyers JL, Zhang J, Bermudez E, Stimus AT, Porjesz B. Random Forest Classification of Alcohol Use Disorder Using fMRI Functional Connectivity, Neuropsychological Functioning, and Impulsivity Measures. Brain Sci 2020; 10:brainsci10020115. [PMID: 32093319 PMCID: PMC7071377 DOI: 10.3390/brainsci10020115] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/12/2020] [Accepted: 02/18/2020] [Indexed: 12/22/2022] Open
Abstract
Individuals with alcohol use disorder (AUD) are known to manifest a variety of neurocognitive impairments that can be attributed to alterations in specific brain networks. The current study aims to identify specific features of brain connectivity, neuropsychological performance, and impulsivity traits that can classify adult males with AUD (n = 30) from healthy controls (CTL, n = 30) using the Random Forest (RF) classification method. The predictor variables were: (i) fMRI-based within-network functional connectivity (FC) of the Default Mode Network (DMN), (ii) neuropsychological scores from the Tower of London Test (TOLT), and the Visual Span Test (VST), and (iii) impulsivity factors from the Barratt Impulsiveness Scale (BIS). The RF model, with a classification accuracy of 76.67%, identified fourteen DMN connections, two neuropsychological variables (memory span and total correct scores of the forward condition of the VST), and all impulsivity factors as significantly important for classifying participants into either the AUD or CTL group. Specifically, the AUD group manifested hyperconnectivity across the bilateral anterior cingulate cortex and the prefrontal cortex as well as between the bilateral posterior cingulate cortex and the left inferior parietal lobule, while showing hypoconnectivity in long-range anterior-posterior and interhemispheric long-range connections. Individuals with AUD also showed poorer memory performance and increased impulsivity compared to CTL individuals. Furthermore, there were significant associations among FC, impulsivity, neuropsychological performance, and AUD status. These results confirm the previous findings that alterations in specific brain networks coupled with poor neuropsychological functioning and heightened impulsivity may characterize individuals with AUD, who can be efficiently identified using classification algorithms such as Random Forest.
Collapse
Affiliation(s)
- Chella Kamarajan
- Henri Begleiter Neurodynamics Lab, Department of Psychiatry, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA; (A.K.P.); (S.K.); (G.P.); (D.B.C.); (J.L.M.); (J.Z.); (A.T.S.); (B.P.)
- Correspondence: ; Tel.: +1-718-270-2913
| | - Babak A. Ardekani
- Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA;
- Department of Psychiatry, NYU School of Medicine, New York, NY 10016, USA;
| | - Ashwini K. Pandey
- Henri Begleiter Neurodynamics Lab, Department of Psychiatry, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA; (A.K.P.); (S.K.); (G.P.); (D.B.C.); (J.L.M.); (J.Z.); (A.T.S.); (B.P.)
| | - Sivan Kinreich
- Henri Begleiter Neurodynamics Lab, Department of Psychiatry, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA; (A.K.P.); (S.K.); (G.P.); (D.B.C.); (J.L.M.); (J.Z.); (A.T.S.); (B.P.)
| | - Gayathri Pandey
- Henri Begleiter Neurodynamics Lab, Department of Psychiatry, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA; (A.K.P.); (S.K.); (G.P.); (D.B.C.); (J.L.M.); (J.Z.); (A.T.S.); (B.P.)
| | - David B. Chorlian
- Henri Begleiter Neurodynamics Lab, Department of Psychiatry, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA; (A.K.P.); (S.K.); (G.P.); (D.B.C.); (J.L.M.); (J.Z.); (A.T.S.); (B.P.)
| | - Jacquelyn L. Meyers
- Henri Begleiter Neurodynamics Lab, Department of Psychiatry, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA; (A.K.P.); (S.K.); (G.P.); (D.B.C.); (J.L.M.); (J.Z.); (A.T.S.); (B.P.)
| | - Jian Zhang
- Henri Begleiter Neurodynamics Lab, Department of Psychiatry, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA; (A.K.P.); (S.K.); (G.P.); (D.B.C.); (J.L.M.); (J.Z.); (A.T.S.); (B.P.)
| | - Elaine Bermudez
- Department of Psychiatry, NYU School of Medicine, New York, NY 10016, USA;
| | - Arthur T. Stimus
- Henri Begleiter Neurodynamics Lab, Department of Psychiatry, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA; (A.K.P.); (S.K.); (G.P.); (D.B.C.); (J.L.M.); (J.Z.); (A.T.S.); (B.P.)
| | - Bernice Porjesz
- Henri Begleiter Neurodynamics Lab, Department of Psychiatry, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA; (A.K.P.); (S.K.); (G.P.); (D.B.C.); (J.L.M.); (J.Z.); (A.T.S.); (B.P.)
| |
Collapse
|
41
|
Wang Y, Zhang A, Yang C, Li G, Sun N, Liu P, Wang Y, Zhang K. Enhanced Functional Connectivity Within Executive Function Network in Remitted or Partially Remitted MDD Patients. Front Psychiatry 2020; 11:538333. [PMID: 33584355 PMCID: PMC7875881 DOI: 10.3389/fpsyt.2020.538333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 12/18/2020] [Indexed: 12/30/2022] Open
Abstract
Background: Impaired executive function (EF) is associated with a range of typical clinical characteristics and psychosocial dysfunction in major depressive disorder (MDD). However, because of the lack of objective cognitive tests, inconsistencies in research results, and improvement in patients' subjective experience, few clinicians are concerned with the persistent impairment of EF in euthymia. The study makes a further investigation for EF in remitted and partially remitted MDD patients via multiple EF tests and fMRI, so as to explore the executive function of patients in euthymia. Methods: We recruited 19 MDD patients and 17 age-, gender-, and education-matched healthy controls (HCs). All participants completed EF tests and fMRI scanning. Bilateral dorsolateral prefrontal cortex (dlPFC) regions were selected as the region of interests (ROIs) to conduct seed-based functional connectivity (FC). We conducted fractional amplitude of low-frequency fluctuations (fALFF) analysis for all ROIs and whole brain. Results: All MDD patients were in remission or partial remission, and they were comparable with HCs on all the EF tests. MDD group showed increased positive FC between left dlPFC and cerebellar Crus I, right dlPFC and supramarginal gyrus after 8-weeks treatment, even taking residual depressive symptoms into account. We did not find group difference of fALFF value. Conclusion: MDD patients persisted with EF impairment despite the remission or partially remission of depressive symptoms. Clinicians should focus on residual cognitive symptoms, which may contribute to maximize the efficacy of routine therapy.
Collapse
Affiliation(s)
- Yuchen Wang
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China.,Department of Medical Psychology, College of Humanities and Social Science, Shanxi Medical University, Taiyuan, China
| | - Aixia Zhang
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Chunxia Yang
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Gaizhi Li
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Ning Sun
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China.,College of Nursing, Shanxi Medical University, Taiyuan, China
| | - Penghong Liu
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yanfang Wang
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Kerang Zhang
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
42
|
Liu X, Hou Z, Yin Y, Xie C, Zhang H, Zhang H, Zhang Z, Yuan Y. Dopamine Multilocus Genetic Profile, Spontaneous Activity of Left Superior Temporal Gyrus, and Early Therapeutic Effect in Major Depressive Disorder. Front Psychiatry 2020; 11:591407. [PMID: 33414733 PMCID: PMC7782966 DOI: 10.3389/fpsyt.2020.591407] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/17/2020] [Indexed: 12/15/2022] Open
Abstract
Objectives: This study aimed to examine the interactive effects of dopamine (DA) pathway gene and disease on spontaneous brain activity and further to explore the relationship between spontaneous brain activity and the early antidepressant therapeutic effect in patients with major depressive disorder (MDD). Methods: A total of 104 patients with MDD and 64 healthy controls (HCs) were recruited. The Hamilton Depression Scale-24 (HAMD-24) was used to measure the depression severity. Both groups were given resting-state functional magnetic resonance imaging (rs-fMRI) scan. The amplitude of low-frequency fluctuation (ALFF) was calculated to reflect the spontaneous brain activity based on the rs-fMRI data. After treatment for 2 weeks, depression severity was evaluated again, and HAMD-24 reductive rate was used to measure the therapeutic effect of antidepressants. Multilocus genetic profile scores (MGPS) were used to assess the multi-site cumulative effect of DA pathway gene. The interactive effects of MDD and DA pathway gene on the ALFF of regional brain areas were measured by the multivariate linear regression analysis. Finally, partial correlation analysis (age, sex, education, and illness durations as covariates) was performed to identify the relationship between regional ALFF and therapeutic effect. Results: MDD and DA-MGPS had interactive effects on the left fusiform gyrus (FG_L), right calcarine sulcus (CS_R), left superior temporal gyrus (STG_L), bilateral cerebellum posterior lobe (CPL), bilateral inferior frontal gyrus (IFG), and bilateral superior frontal gyrus (SFG). Partial correlation analysis revealed that the ALFF of STG_L had a significant negative correlation with 2-week HAMD-24 reductive rate (r = -0.211, P = 0.035). Conclusions: The spontaneous activity of STG_L may be a potential biomarker of antidepressant-related early therapeutic effect underlying the influence of DA pathway genes in MDD.
Collapse
Affiliation(s)
- Xiaoyun Liu
- Department of Psychosomatics and Psychiatry, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, China
| | - Zhenghua Hou
- Department of Psychosomatics and Psychiatry, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, China
| | - Yingying Yin
- Department of Psychosomatics and Psychiatry, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, China
| | - Chunming Xie
- Department of Neurology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Haisan Zhang
- Departments of Clinical Magnetic Resonance Imaging, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Hongxing Zhang
- Departments of Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Zhijun Zhang
- Department of Neurology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yonggui Yuan
- Department of Psychosomatics and Psychiatry, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, China
| |
Collapse
|
43
|
Chai X, Zhang R, Xue C, Li Z, Xiao W, Huang Q, Xiao C, Xie S. Altered Patterns of the Fractional Amplitude of Low-Frequency Fluctuation in Drug-Naive First-Episode Unipolar and Bipolar Depression. Front Psychiatry 2020; 11:587803. [PMID: 33312139 PMCID: PMC7704435 DOI: 10.3389/fpsyt.2020.587803] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/12/2020] [Indexed: 12/18/2022] Open
Abstract
Background: An early and correct diagnosis is crucial for treatment of unipolar depression (UD) and bipolar disorder (BD). The fractional amplitude of low-frequency fluctuations (fALFFs) has been widely used in the study of neuropsychiatric diseases, as it can detect spontaneous brain activities. This study was conducted to survey changes of fALFF within various frequency bands of the UD and BD patients, as well as to explore the effects on changes in fALFF on cognitive function. Methods: In total, 58 drug-naive first-episode patients, including 32 UD and 26 BD, were enrolled in the study. The fALFF values were calculated under slow-5 band (0.01-0.027 Hz) and slow-4 band (0.027-0.073 Hz) among UD patients, BD patients, and healthy control (HC). Additionally, we conducted correlation analyses to examine the association between altered fALFF values and cognitive function. Results: Under the slow-5 band, compared to the HC group, the UD group showed increased fALFF values in the right cerebellum posterior lobe, whereas the BD group showed increased fALFF values in the left middle temporal gyrus (MTG). Under the slow-4 band, in comparison to HC, the UD group showed increased fALFF values in the left superior temporal gyrus, whereas the right inferior parietal lobule (IPL) and BD group showed increased fALFF values in the bilateral postcentral gyrus. Notably, compared to BD, the UD group showed increased fALFF values in the right IPL under the slow-4 band. Furthermore, altered fALFF values in the left MTG and the right IPL were significantly positively correlated with Verbal Fluency Test scores. Conclusions: This current study indicated that there were changes in brain activities in the early UD and BD groups, and changes were related to executive function. The fALFF values can serve as potential biomarker to diagnose and differentiate UD and BD patients.
Collapse
Affiliation(s)
- Xue Chai
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Rongrong Zhang
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Chen Xue
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Zonghong Li
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Wang Xiao
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Qingling Huang
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Chaoyong Xiao
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Shiping Xie
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
44
|
Long J, Xu J, Wang X, Li J, Rao S, Wu H, Kuang W. Altered Local Gyrification Index and Corresponding Functional Connectivity in Medication Free Major Depressive Disorder. Front Psychiatry 2020; 11:585401. [PMID: 33424661 PMCID: PMC7793885 DOI: 10.3389/fpsyt.2020.585401] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/24/2020] [Indexed: 02/05/2023] Open
Abstract
A lot of previous studies have documented that major depressive disorder (MDD) is a developmental disorder. The cortical surface measure, local gyrification index (LGI), can well reflect the fetal and early postnatal neurodevelopmental processes. Thus, LGI may provide new insight for the neuropathology of MDD. The previous studies only focused on the surface structural abnormality, but how the structural abnormality lead to functional connectivity changes is unexplored. In this study, we investigated LGI and corresponding functional connectivity difference in 28 medication-free MDD patients. We found significantly decreased LGI in left lingual gyrus (LING) and right posterior superior temporal sulcus (bSTS), and the changed LGI in bSTS was negatively correlated with disease onset age and anxiety scores. The following functional connectivity analyses identified decreased functional connectivities between LING and right LING, precentral gyrus, and middle temporal gyrus. The decreased functional connectivities were correlated with disease duration, onset, and depression symptoms. Our findings revealed abnormal LGI in LING and bSTS indicating that the abnormal developmental of visual and social cognition related brain areas may be an early biomarker for depression.
Collapse
Affiliation(s)
- Jiang Long
- Deparment of Psychiatry, West China Hospital, Sichuan University, Chengdu, China
| | - Jinping Xu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xue Wang
- Deparment of Psychiatry, West China Hospital, Sichuan University, Chengdu, China
| | - Jin Li
- Deparment of Psychiatry, West China Hospital, Sichuan University, Chengdu, China
| | - Shan Rao
- Deparment of Psychiatry, West China Hospital, Sichuan University, Chengdu, China
| | - Huawang Wu
- Department of Radiology, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Weihong Kuang
- Department of Psychiatry and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
45
|
Xu MW, Liu HM, Tan G, Su T, Xiang CQ, Wu W, Li B, Lin Q, Xu XW, Min YL, Liu WF, Gao GP, Shao Y. Altered Regional Homogeneity in Patients With Corneal Ulcer: A Resting-State Functional MRI Study. Front Neurosci 2019; 13:743. [PMID: 31396034 PMCID: PMC6664059 DOI: 10.3389/fnins.2019.00743] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 07/05/2019] [Indexed: 12/30/2022] Open
Abstract
Objective To investigate the potential regional homogeneity (ReHo) brain activity changes in patients with corneal ulcer (CU) and their possible relationship with clinical symptoms. Materials and Methods Forty patients with CU (26 men and 14 women), and 40 healthy controls (HCs) (26 men and 14 women) closely matched in age, sex, and weight underwent resting-state functional MRI scans, respectively. The ReHo method was applied to evaluate synchronous neural activity changes. Receiver operating characteristic curve (ROC curve) was used to show high test-retest stability and high degree of sensitivity and specificity. We utilized the correlation analysis to calculate the relationship between the average ReHo signal values in different brain areas and the clinical symptoms in CU patients. Results Compared with the HCs, CU patients had significantly increased ReHo values in right cerebellum posterior lobe, left cerebellum posterior lobe, left inferior temporal gyrus, right lingual gyrus, left middle frontal gyrus, left angular gyrus, left cingulate gyrus, right angular gyrus and bilateral superior frontal gyrus, and decreased ReHo values in right anterior cingulate and left precentral gyrus. ROC curve analysis of each brain regions showed the accuracy of AUC was perfect except the right cerebellum posterior lobe. Nevertheless, there was no clear evidence of prominent relevance between the average ReHo values in brain areas and the clinical symptoms. Conclusion Corneal ulcer caused dysfunctional adaption in different brain areas, which including relatively increased values and decreased values. This finding may help us take a further step in exploring the underlying pathologic mechanisms of CU.
Collapse
Affiliation(s)
- Man-Wei Xu
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Ocular Disease Clinical Research Center, Nanchang, China
| | - Hui-Min Liu
- Department of Ophthalmology, University of South China, Hengyang, China
| | - Gang Tan
- Department of Ophthalmology, University of South China, Hengyang, China
| | - Ting Su
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, China
| | - Chu-Qi Xiang
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Ocular Disease Clinical Research Center, Nanchang, China
| | - Wei Wu
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Ocular Disease Clinical Research Center, Nanchang, China
| | - Biao Li
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Ocular Disease Clinical Research Center, Nanchang, China
| | - Qi Lin
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Ocular Disease Clinical Research Center, Nanchang, China
| | - Xiao-Wei Xu
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Ocular Disease Clinical Research Center, Nanchang, China
| | - You-Lan Min
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Ocular Disease Clinical Research Center, Nanchang, China
| | - Wen-Feng Liu
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Ocular Disease Clinical Research Center, Nanchang, China
| | - Gui-Ping Gao
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Ocular Disease Clinical Research Center, Nanchang, China
| | - Yi Shao
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Ocular Disease Clinical Research Center, Nanchang, China
| |
Collapse
|
46
|
Wang L, Yu L, Wu F, Wu H, Wang J. Altered whole brain functional connectivity pattern homogeneity in medication-free major depressive disorder. J Affect Disord 2019; 253:18-25. [PMID: 31009844 DOI: 10.1016/j.jad.2019.04.040] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/11/2019] [Accepted: 04/07/2019] [Indexed: 11/29/2022]
Abstract
BACKGROUND Many previous studies have revealed abnormal functional connectivity patterns between brain areas underlying the onset of major depressive disorder (MDD) using resting-state functional magnetic resonance imaging (rs-fMRI). However, how to exactly characterize the voxel-wise whole brain functional connectivity pattern changes in MDD remains unclear, which will provide more convincing evidence for localizing the exactly functional connectivity abnormality in MDD. METHODS In this study, we employed our newly developed whole brain functional connectivity homogeneity (FcHo) method to identify the voxel-wise changes of functional connectivity patterns in 27 medication-free MDD patients and 34 gender-, age-, and education level-matched healthy controls (HC). Furthermore, seed-based functional connectivity analysis was then used to identify the alteration of corresponding functional connectivity. RESULTS Significantly decreased FcHo values in right ventral anterior insula (INS) and medial prefrontal cortex (MPFC) were identified in MDD patients. The ensuing functional connectivity analyses identified decreased functional connectivity between MPFC and left angular gyrus (AG) in MDD patients. Moreover, both decreased FcHo values in INS, MPFC and functional connectivity between MPFC and left AG showed significant negative correlations with Hamilton depression rating scale (HDRS) scores. The FcHo values in INS were also negatively correlated with disease duration. Finally, meta-analysis based functional characterization found that these brain areas are mainly involved in emotion, theory of mind and reward processing. CONCLUSIONS Our findings revealed abnormal whole brain FcHo in INS and MPFC and functional interactions between MPFC and AG in MDD and suggested that dysfunctions of INS and MPFC play an important role in the neuropathology of MDD.
Collapse
Affiliation(s)
- Lijie Wang
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Lin Yu
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou 510370, China
| | - Fengchun Wu
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou 510370, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou 510370, China
| | - Huawang Wu
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou 510370, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou 510370, China.
| | - Jiaojian Wang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| |
Collapse
|
47
|
Raymond C, Marin MF, Juster RP, Leclaire S, Bourdon O, Cayer-Falardeau S, Lupien SJ. Increased frequency of mind wandering in healthy women using oral contraceptives. Psychoneuroendocrinology 2019; 101:121-127. [PMID: 30453124 DOI: 10.1016/j.psyneuen.2018.11.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 11/01/2018] [Accepted: 11/01/2018] [Indexed: 01/12/2023]
Abstract
Oral contraceptive (OC) is the most common type of contraceptive method used in industrialized countries. A recent epidemiological study showed that OC use was associated with the onset of depression in young women. Mind wandering, a cognitive process associated with spontaneous thoughts unrelated to the task at-hand, has previously been associated with depressive thinking. Consequently, mind wandering might be a precursor for cognitive vulnerability in individuals who are at-risk for mood disorders. The purpose of this study was to examine the frequency and nature of mind wandering in women using OC in comparison to two control groups: naturally cycling women and men. We recruited 71 participants (28 women currently using OC, 14 naturally cycling women in the luteal phase of their menstrual cycle and 29 men) aged between 18 and 35 years, and measured the frequency and nature (guilt/fear oriented and positive) of mind wandering using the short version of the Imaginal Process Inventory. In all analyses, we controlled for depressive symptoms to delineate the unique association between OC use and mind wandering. We also measured estradiol, progesterone and testosterone to confirm expected group differences in sex hormones concentrations. Results show that women using OC presented increased frequency of mind wandering when compared to naturally cycling women and men who did not differ between each other. The three groups did not differ in terms of the nature of mind wandering. These results show that OC use is associated with increased frequency of mind wandering and suggest that the association between OC use and dysphoric mood described in previous studies may be partially explained by the impact of OC use on cognitive processes underlying mind wandering.
Collapse
Affiliation(s)
- Catherine Raymond
- Centre for Studies on Human Stress, Institut universitaire en santé mentale de Montréal, Research Centre, CIUSSS East, Montréal, Québec, Canada; Department of Neurosciences, Université de Montréal.
| | - Marie-France Marin
- Centre for Studies on Human Stress, Institut universitaire en santé mentale de Montréal, Research Centre, CIUSSS East, Montréal, Québec, Canada; Department of Psychology, Université du Québec à Montréal
| | - Robert-Paul Juster
- Centre for Studies on Human Stress, Institut universitaire en santé mentale de Montréal, Research Centre, CIUSSS East, Montréal, Québec, Canada; Department of Psychiatry and Addiction, Université de Montréal
| | - Sarah Leclaire
- Centre for Studies on Human Stress, Institut universitaire en santé mentale de Montréal, Research Centre, CIUSSS East, Montréal, Québec, Canada; Department of Neurosciences, Université de Montréal
| | - Olivier Bourdon
- Centre for Studies on Human Stress, Institut universitaire en santé mentale de Montréal, Research Centre, CIUSSS East, Montréal, Québec, Canada
| | - Sophia Cayer-Falardeau
- Centre for Studies on Human Stress, Institut universitaire en santé mentale de Montréal, Research Centre, CIUSSS East, Montréal, Québec, Canada
| | - Sonia J Lupien
- Centre for Studies on Human Stress, Institut universitaire en santé mentale de Montréal, Research Centre, CIUSSS East, Montréal, Québec, Canada; Department of Psychiatry and Addiction, Université de Montréal
| |
Collapse
|
48
|
Luo L, Wu K, Lu Y, Gao S, Kong X, Lu F, Wu F, Wu H, Wang J. Increased Functional Connectivity Between Medulla and Inferior Parietal Cortex in Medication-Free Major Depressive Disorder. Front Neurosci 2019; 12:926. [PMID: 30618555 PMCID: PMC6295569 DOI: 10.3389/fnins.2018.00926] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 11/26/2018] [Indexed: 11/13/2022] Open
Abstract
Emerging evidence has documented the abnormalities of primary brain functions in major depressive disorder (MDD). The brainstem has shown to play an important role in regulating basic functions of the human brain, but little is known about its role in MDD, especially the roles of its subregions. To uncover this, the present study adopted resting-state functional magnetic resonance imaging with fine-grained brainstem atlas in 23 medication-free MDD patients and 34 matched healthy controls (HC). The analysis revealed significantly increased functional connectivity of the medulla, one of the brainstem subregions, with the inferior parietal cortex (IPC) in MDD patients. A positive correlation was further identified between the increased medulla-IPC functional connectivity and Hamilton anxiety scores. Functional characterization of the medulla and IPC using a meta-analysis revealed that both regions primarily participated in action execution and inhibition. Our findings suggest that increased medulla-IPC functional connectivity may be related to over-activity or abnormal control of negative emotions in MDD, which provides a new insight for the neurobiology of MDD.
Collapse
Affiliation(s)
- Lizhu Luo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Kunhua Wu
- Department of MRI, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Yi Lu
- The Department of Medical Imaging, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Shan Gao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China.,School of Foreign Languages, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiangchao Kong
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Fengmei Lu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Fengchun Wu
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Huawang Wu
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Jiaojian Wang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
49
|
Song L, Peng Q, Liu S, Wang J. Changed hub and functional connectivity patterns of the posterior fusiform gyrus in chess experts. Brain Imaging Behav 2019; 14:797-805. [PMID: 30612341 DOI: 10.1007/s11682-018-0020-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The hubs of the brain network play a key role in integrating and transferring information between different functional modules. However, the effects of long-term practice on functional network hubs in chess experts are largely undefined. Here, we investigated whether alterations of hubs can be detected in chess experts using resting-state functional magnetic resonance imaging (rs-fMRI) and graph theory methods. We first mapped the whole-brain voxel-wise functional connectivity and calculated the functional connectivity strength (FCS) map in each of the 28 chess players and 27 gender- and age-matched healthy novice players. Whole-brain resting-state functional connectivity analyses for the changed hub areas were conducted to further elucidate the corresponding changes of functional connectivity patterns in chess players. The hub analysis revealed increased FCS in the right posterior fusiform gyrus of the chess players, which was supported by analyses of this area's regional homogeneity (ReHo), amplitude of low frequency fluctuations (ALFF), and fractional amplitude of low frequency fluctuations (fALFF). The following functional connectivity analyses revealed increased functional connectivities between the right posterior fusiform gyrus and the visuospatial attention and motor networks in chess players. These findings demonstrate that cognitive expertise has a positive influence on the functions of the brain regions associated with the chess expertise and that increased functional connections might in turn facilitate within and between networks communication for expert behavior to get superior performance.
Collapse
Affiliation(s)
- Limei Song
- Research Center for Sectional and Imaging Anatomy, Shandong University Cheeloo College of Medicine, Jinan, Shandong, China
| | - Qinmu Peng
- School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shuwei Liu
- Research Center for Sectional and Imaging Anatomy, Shandong University Cheeloo College of Medicine, Jinan, Shandong, China.
| | - Jiaojian Wang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
| |
Collapse
|
50
|
Zhang L, Wu H, Xu J, Shang J. Abnormal Global Functional Connectivity Patterns in Medication-Free Major Depressive Disorder. Front Neurosci 2018; 12:692. [PMID: 30356761 PMCID: PMC6189368 DOI: 10.3389/fnins.2018.00692] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 09/18/2018] [Indexed: 01/15/2023] Open
Abstract
Mounting studies have applied resting-state functional magnetic resonance imaging (rs-fMRI) to study major depressive disorder (MDD) and have identified abnormal functional activities. However, how the global functional connectivity patterns change in MDD is still unknown. Using rs-fMRI, we investigated the alterations of global resting-state functional connectivity (RSFC) patterns in MDD using weighted global brain connectivity (wGBC) method. First, a whole brain voxel-wise wGBC map was calculated for 23 MDD patients and 34 healthy controls. Two-sample t-tests were applied to compare the wGBC and RSFC maps and the significant level was set at p < 0.05, cluster-level correction with voxel-level p < 0.001. MDD patients showed significantly decreased wGBC in left temporal pole (TP) and increased wGBC in right parahippocampus (PHC). Subsequent RSFC analyses showed decreased functional interaction between TP and right posterior superior temporal cortex and increased functional interaction between PHC and right inferior frontal gyrus in MDD patients. These results revealed the abnormal global FC patterns and its corresponding disrupted functional connectivity in MDD. Our findings present new evidence for the functional interruption in MDD.
Collapse
Affiliation(s)
- Lu Zhang
- Lab of Learning Sciences, Graduate School of Education, Peking University, Beijing, China
| | - Huawang Wu
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Hui'ai Hospital), Guangzhou, China
| | - Jinping Xu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Junjie Shang
- Lab of Learning Sciences, Graduate School of Education, Peking University, Beijing, China
| |
Collapse
|