1
|
Gao Y, Luo Y, Ji G, Wu T. Functional and pathological roles of adenylyl cyclases in various diseases. Int J Biol Macromol 2024; 281:136198. [PMID: 39366614 DOI: 10.1016/j.ijbiomac.2024.136198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/29/2024] [Accepted: 09/29/2024] [Indexed: 10/06/2024]
Abstract
Adenylyl cyclases (ADCYs) produce the second messengers cAMP, which is crucial for a number of cellular activities. There are ten isoforms in the mammalian ADCY family including nine transmembrane adenylyl cyclases (tmAC) and one soluble adenylyl cyclase (sAC/ADCY10). There have been numerous studies demonstrating the importance of ADCYs in the development of a wide range of diseases, including cardiovascular disease, neurological disease, liver disease, and tumors. The classification, structure and regulation of ADCYs are discussed in this overview, which is followed by an analysis of how ADCYs are involved in various disorders and how they are used as a therapeutic tool. Our objective is to get a more thorough understanding of ADCYs to aid future study and provide novel ideas for the treatment of particular diseases.
Collapse
Affiliation(s)
- Ying Gao
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yanqun Luo
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Guang Ji
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Tao Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
2
|
Zheng B, Hu X, Hu Y, Dong S, Xiao X, Qi H, Wang Y, Wang W, Wang Z. Type III adenylyl cyclase is essential for follicular development in female mice and their reproductive lifespan. iScience 2024; 27:110293. [PMID: 39050703 PMCID: PMC11267094 DOI: 10.1016/j.isci.2024.110293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/15/2024] [Accepted: 06/14/2024] [Indexed: 07/27/2024] Open
Abstract
Premature ovarian failure (POF) is a complex and heterogeneous disease that causes infertility and subfertility. However, the molecular mechanism of POF has not been fully elucidated. Here, we show that the loss of adenylyl cyclase III (Adcy3) in female mice leads to POF and a shortened reproductive lifespan. We found that Adcy3 is abundantly expressed in mouse oocytes. Adcy3 knockout mice exhibited the excessive activation of primordial follicles, progressive follicle loss, follicular atresia, and ultimately POF. Mechanistically, we found that mitochondrial oxidative stress in oocytes significantly increased with age in Adcy3-deficient mice and was accompanied by oocyte apoptosis and defective folliculogenesis. In contrast, compared with wild-type female mice, humanized ADCY3 knock-in female mice exhibited improved fertility with age. Collectively, these results reveal that the previously unrecognized Adcy3 signaling pathway is tightly linked to female ovarian aging, providing potential pharmaceutical targets for preventing and treating POF.
Collapse
Affiliation(s)
- Baofang Zheng
- School of Life Sciences, Institute of Life Science, Hebei University, Baoding 071002, China
| | - Xiaoyu Hu
- School of Life Sciences, Institute of Life Science, Hebei University, Baoding 071002, China
- Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding 071002, China
| | - Yuanhui Hu
- School of Life Sciences, Institute of Life Science, Hebei University, Baoding 071002, China
| | - Sheng Dong
- School of Life Sciences, Institute of Life Science, Hebei University, Baoding 071002, China
| | - Xin Xiao
- School of Life Sciences, Institute of Life Science, Hebei University, Baoding 071002, China
| | - Haoming Qi
- School of Life Sciences, Institute of Life Science, Hebei University, Baoding 071002, China
| | - Yongdi Wang
- School of Life Sciences, Institute of Life Science, Hebei University, Baoding 071002, China
| | - Weina Wang
- School of Life Sciences, Institute of Life Science, Hebei University, Baoding 071002, China
| | - Zhenshan Wang
- School of Life Sciences, Institute of Life Science, Hebei University, Baoding 071002, China
- Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding 071002, China
| |
Collapse
|
3
|
Li P, Wang T, Guo H, Liu Y, Zhao H, Ren T, Tang Y, Wang Y, Zou M. Pramipexole improves depression-like behavior in diabetes mellitus with depression rats by inhibiting NLRP3 inflammasome-mediated neuroinflammation and preventing impaired neuroplasticity. J Affect Disord 2024; 356:586-596. [PMID: 38657764 DOI: 10.1016/j.jad.2024.04.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/09/2024] [Accepted: 04/21/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Diabetes mellitus (DM) is frequently associated with the occurrence and development of depression, and the co-occurrence of diabetes mellitus with depression (DD) may further reduce patients' quality of life. Recent research indicates that dopamine receptors (DRs) play a crucial role in immune and metabolic regulation. Pramipexole (PPX), a D2/3R agonist, has demonstrated promising neuroprotective and immunomodulatory effects. Nevertheless, the therapeutic effects and mechanisms of action of PPX on DM-induced depression are not clear at present. METHODS Depression, DM, and DD were induced in a rat model through a combination of a high-fat diet (HFD) supplemented with streptozotocin (STZ) and chronic unpredictable mild stress (CUMS) combined with solitary cage rearing. The pathogenesis of DD and the neuroprotective effects of DRs agonists were investigated using behavioral assays, enzyme-linked immunosorbent assay (ELISA), hematoxylin-eosin (HE) staining, Nissl staining, Western blotting (WB) and immunofluorescence (IF). RESULTS DD rats exhibited more severe dopaminergic, neuroinflammatory, and neuroplastic impairments and more pronounced depressive behaviors than rats with depression alone or DM. Our findings suggest that DRs agonists have significant therapeutic effects on DD rats and that PPX improved neuroplasticity and decreased neuroinflammation in the hippocampus of DD rats while also promoting DG cell growth and differentiation, ultimately mitigating depression-like behaviors. LIMITATION Our study is based on a rat model. Further evidence is needed to determine whether the therapeutic effects of PPX apply to patients suffering from DD. CONCLUSIONS Neuroinflammation mediated by damage to the dopaminergic system is one of the key pathogenic mechanisms of DD. We provide evidence that PPX has a neuroprotective effect on the hippocampus in DD rats and the mechanism may involve the inhibition of NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome activation by DRs to attenuate the neuroinflammatory response and neuroplasticity damage.
Collapse
Affiliation(s)
- Ping Li
- Hunan University of Chinese Medicine, Changsha 410208, Hunan, China
| | - Tingting Wang
- Hunan University of Chinese Medicine, Changsha 410208, Hunan, China
| | - Haipeng Guo
- Hunan University of Chinese Medicine, Changsha 410208, Hunan, China
| | - Yingxi Liu
- Hunan University of Chinese Medicine, Changsha 410208, Hunan, China
| | - Hongqing Zhao
- Hunan University of Chinese Medicine, Changsha 410208, Hunan, China; Hunan Provincial Key Laboratory of Prevention and Treatment of Depressive Diseases with Traditional Chinese Medicine, Changsha 410208, Hunan, China
| | - Tingting Ren
- Hunan University of Chinese Medicine, Changsha 410208, Hunan, China
| | - Yingjuan Tang
- Hunan University of Chinese Medicine, Changsha 410208, Hunan, China
| | - Yuhong Wang
- Hunan University of Chinese Medicine, Changsha 410208, Hunan, China; Hunan Provincial Key Laboratory of Prevention and Treatment of Depressive Diseases with Traditional Chinese Medicine, Changsha 410208, Hunan, China.
| | - Manshu Zou
- Hunan University of Chinese Medicine, Changsha 410208, Hunan, China; Hunan Provincial Key Laboratory of Prevention and Treatment of Depressive Diseases with Traditional Chinese Medicine, Changsha 410208, Hunan, China.
| |
Collapse
|
4
|
Takahashi K, Tsuji M, Nakagawasai O, Katsuyama S, Miyagawa K, Kurokawa K, Mochida-Saito A, Takeda H, Tadano T. Polarization to M1-type microglia in the hippocampus is involved in depression-like behavior in a mouse model of olfactory dysfunction. Neurochem Int 2024; 175:105723. [PMID: 38490486 DOI: 10.1016/j.neuint.2024.105723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/26/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
Impaired olfactory function may be associated with the development of psychiatric disorders such as depression and anxiety; however, knowledge on the mechanisms underlying psychiatric disorders is incomplete. A reversible model of olfactory dysfunction, zinc sulfate (ZnSO4) nasal-treated mice, exhibit depression-like behavior accompanying olfactory dysfunction. Therefore, we investigated olfactory function and depression-like behaviors in ZnSO4-treated mice using the buried food finding test and tail suspension test, respectively; investigated the changes in the hippocampal microglial activity and neurogenesis in the dentate gyrus by immunohistochemistry; and evaluated the inflammation and microglial polarity related-proteins in the hippocampus using western blot study. On day 14 after treatment, ZnSO4-treated mice showed depression-like behavior in the tail suspension test and recovery of the olfactory function in the buried food finding test. In the hippocampus of ZnSO4-treated mice, expression levels of ionized calcium-binding adapter molecule 1 (Iba1), cluster of differentiation 40, inducible nitric oxide synthase, interleukin (IL)-1β, IL-6, tumor necrosis factor-α, cleaved caspase-3, as well as the number of Iba1-positive cells and cell body size increased, and arginase-1 expression and neurogenesis decreased. Except for the increased IL-6, these changes were prevented by a microglia activation inhibitor, minocycline. The findings suggest that neuroinflammation due to polarization of M1-type hippocampal microglia is involved in depression accompanied with olfactory dysfunction.
Collapse
Affiliation(s)
- Kohei Takahashi
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi, 324-8501, Japan
| | - Minoru Tsuji
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi, 324-8501, Japan.
| | - Osamu Nakagawasai
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| | - Soh Katsuyama
- Division of Clinical Pharmacology and Pharmaceutics, Nihon Pharmaceutical University, 10281 Komuro, Kitaadachigun, Inamachi, Saitama, 362-0806, Japan
| | - Kazuya Miyagawa
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi, 324-8501, Japan
| | - Kazuhiro Kurokawa
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi, 324-8501, Japan
| | - Atsumi Mochida-Saito
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi, 324-8501, Japan
| | - Hiroshi Takeda
- Department of Pharmacology, School of Pharmacy at Fukuoka, International University of Health and Welfare, 137-1 Enokizu, Okawa, Fukuoka, 831-8501, Japan
| | - Takeshi Tadano
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan; Department of Environment and Preventive Medicine, Graduate School of Medicine Sciences, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa, 920-8640, Japan
| |
Collapse
|
5
|
Chen B, Xu J, Chen S, Mou T, Wang Y, Wang H, Zhang Z, Ren F, Wang Z, Jin K, Lu J. Dysregulation of striatal dopamine D2/D3 receptor-mediated by hypocretin induces depressive behaviors in rats. J Affect Disord 2023; 325:256-263. [PMID: 36638964 DOI: 10.1016/j.jad.2023.01.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/26/2022] [Accepted: 01/03/2023] [Indexed: 01/12/2023]
Abstract
BACKGROUND The dysregulation of the dopamine system contributes to depressive-like behaviors in rats, and the neurological functions regulated by hypocretin are severely affected in depression. However, whether suvorexant plays a role in alleviating depression by affecting the dopamine system is unclear. METHODS To preliminarily explore the mechanism of suvorexant (10 mg/kg) in the treatment of depression, the mRNA and protein expression of TH, Drd2, Drd3, GluN2A, DAT, and GluN2B in the striatum of rats was quantified by qPCR and western blotting. The plasma hypocretin-1 and dopamine levels and the striatal dopamine levels were determined by ELISA. RESULTS i) Compared to those of the control group, chronic unpredictable mild stress (CUMS) rats showed depressive-like behaviors, which were subsequently reversed by treatment with suvorexant. ii) The mRNA and protein expressions of TH, Drd2, Drd3, GluN2A, and GluN2B in the striatum of CUMS were significantly increased compared with those in the controls, but decreased after suvorexant treatment. iii) Compared with those in the control group, the plasma and striatal dopamine levels of CUMS decreased while plasma hypocretin-1 levels increased, which was reversed after suvorexant treatment. LIMITATIONS i) The suvorexant is a dual hypocretin receptor antagonist; however, the responsible receptor is unclear. ii) We only focused on related factors in the striatum but did not explore other brain regions, nor did we directly explore the relationship among these factors. CONCLUSION Depressive-like behaviors induced by CUMS can be reversed by suvorexant, and the therapeutic effects of suvorexant may be mediated by affecting the dopamine system.
Collapse
Affiliation(s)
- Bing Chen
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Jiangang Xu
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999007, Hong Kong
| | - Simiao Chen
- School of Life Science, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, China
| | - Tingting Mou
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Ying Wang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Haojun Wang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Zhihan Zhang
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Feifan Ren
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Zheng Wang
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Kangyu Jin
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China.
| | - Jing Lu
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China.
| |
Collapse
|
6
|
Schappi JM, Rasenick MM. Gα s, adenylyl cyclase, and their relationship to the diagnosis and treatment of depression. Front Pharmacol 2022; 13:1012778. [PMID: 36467104 PMCID: PMC9716287 DOI: 10.3389/fphar.2022.1012778] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/31/2022] [Indexed: 11/21/2022] Open
Abstract
The relationship between depression, its etiology and therapy, and the cAMP signaling system have been studies for decades. This review will focus on cAMP, G proteins and adenylyl cyclase and depression or antidepressant action. Both human and animal studies are compared and contrasted. It is concluded that there is some synteny in the findings that cAMP signaling is attenuated in depression and that this is reversed by successful antidepressant therapy. The G protein that activates adenylyl cyclase, Gαs, appears to have diminished access to adenylyl cyclase in depression, and this is rectified by successful antidepressant treatment. Unfortunately, attempts to link specific isoforms of adenylyl cyclase to depression or antidepressant action suffer from discontinuity between human and animal studies.
Collapse
Affiliation(s)
- Jeffrey M. Schappi
- Departments of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, United States,Jesse Brown VAMC, Chicago, IL, United States,*Correspondence: Mark M. Rasenick, ; Jeffrey M. Schappi,
| | - Mark M. Rasenick
- Departments of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, United States,Jesse Brown VAMC, Chicago, IL, United States,Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States,Pax Neuroscience, Glenview, IL, United States,*Correspondence: Mark M. Rasenick, ; Jeffrey M. Schappi,
| |
Collapse
|
7
|
Chen J, Ding Q, An L, Wang H. Ca2+-stimulated adenylyl cyclases as therapeutic targets for psychiatric and neurodevelopmental disorders. Front Pharmacol 2022; 13:949384. [PMID: 36188604 PMCID: PMC9523369 DOI: 10.3389/fphar.2022.949384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
As the main secondary messengers, cyclic AMP (cAMP) and Ca2+ trigger intracellular signal transduction cascade and, in turn, regulate many aspects of cellular function in developing and mature neurons. The group I adenylyl cyclase (ADCY, also known as AC) isoforms, including ADCY1, 3, and 8 (also known as AC1, AC3, and AC8), are stimulated by Ca2+ and thus functionally positioned to integrate cAMP and Ca2+ signaling. Emerging lines of evidence have suggested the association of the Ca2+-stimulated ADCYs with bipolar disorder, schizophrenia, major depressive disorder, post-traumatic stress disorder, and autism. In this review, we discuss the molecular and cellular features as well as the physiological functions of ADCY1, 3, and 8. We further discuss the recent therapeutic development to target the Ca2+-stimulated ADCYs for potential treatments of psychiatric and neurodevelopmental disorders.
Collapse
|
8
|
Bhattarai JP, Etyemez S, Jaaro-Peled H, Janke E, Leon Tolosa UD, Kamiya A, Gottfried JA, Sawa A, Ma M. Olfactory modulation of the medial prefrontal cortex circuitry: Implications for social cognition. Semin Cell Dev Biol 2022; 129:31-39. [PMID: 33975755 PMCID: PMC8573060 DOI: 10.1016/j.semcdb.2021.03.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/24/2021] [Accepted: 03/29/2021] [Indexed: 10/21/2022]
Abstract
Olfactory dysfunction is manifested in a wide range of neurological and psychiatric diseases, and often emerges prior to the onset of more classical symptoms and signs. From a behavioral perspective, olfactory deficits typically arise in conjunction with impairments of cognition, motivation, memory, and emotion. However, a conceptual framework for explaining the impact of olfactory processing on higher brain functions in health and disease remains lacking. Here we aim to provide circuit-level insights into this question by synthesizing recent advances in olfactory network connectivity with other cortical brain regions such as the prefrontal cortex. We will focus on social cognition as a representative model for exploring and critically evaluating the relationship between olfactory cortices and higher-order cortical regions in rodent models. Although rodents do not recapitulate all dimensions of human social cognition, they have experimentally accessible neural circuits and well-established behavioral tests for social motivation, memory/recognition, and hierarchy, which can be extrapolated to other species including humans. In particular, the medial prefrontal cortex (mPFC) has been recognized as a key brain region in mediating social cognition in both rodents and humans. This review will highlight the underappreciated connectivity, both anatomical and functional, between the olfactory system and mPFC circuitry, which together provide a neural substrate for olfactory modulation of social cognition and social behaviors. We will provide future perspectives on the functional investigation of the olfactory-mPFC circuit in rodent models and discuss how to translate such animal research to human studies.
Collapse
Affiliation(s)
- Janardhan P Bhattarai
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Semra Etyemez
- Department of Psychiatry, John Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Hanna Jaaro-Peled
- Department of Psychiatry, John Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Emma Janke
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Usuy D Leon Tolosa
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Atsushi Kamiya
- Department of Psychiatry, John Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jay A Gottfried
- Department of Psychology, University of Pennsylvania, School of Arts and Sciences, Philadelphia, PA 19104, USA; Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Akira Sawa
- Department of Psychiatry, John Hopkins University School of Medicine, Baltimore, MD 21287, USA; Departments of Neuroscience, Biomedical Engineering, and Genetic Medicine, John Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Mental Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21287, USA.
| | - Minghong Ma
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
9
|
The role of ciliopathy-associated type 3 adenylyl cyclase in infanticidal behavior in virgin adult male mice. iScience 2022; 25:104534. [PMID: 35754726 PMCID: PMC9218507 DOI: 10.1016/j.isci.2022.104534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/11/2022] [Accepted: 06/01/2022] [Indexed: 12/04/2022] Open
Abstract
Virgin adult male mice often display killing of alien newborns, defined as infanticide, and this behavior is dependent on olfactory signaling. Olfactory perception is achieved by the main olfactory system (MOS) or vomeronasal system (VNS). Although it has been established that the VNS is crucial for infanticide in male mice, the role of the MOS in infanticide remains unknown. Herein, by producing lesions via ZnSO4 perfusion and N-methyl-D-aspartic acid stereotactic injection, we demonstrated that the main olfactory epithelium (MOE), anterior olfactory nucleus (AON), or ventromedial hypothalamus (VMH) is crucial for infanticide in adult males. By using CRISPR-Cas9 coupled with adeno-associated viruses to induce specific knockdown of type 3 adenylyl cyclase (AC3) in these tissues, we further demonstrated that AC3, a ciliopathy-associated protein, in the MOE and the expression of related proteins in the AON or VMH are necessary for infanticidal behavior in virgin adult male mice. MOE lesions and knockdown of AC3 in the MOE result in abnormal infanticidal behavior The infanticidal behavior of male mice is impaired by lesioning of the AON or VMH AC3 knockdown in the AON or VMH affects the infanticidal behavior of male mice
Collapse
|
10
|
Bester‐Meredith JK, Burns JN, Dang MN, Garcia AM, Mammarella GE, Rowe ME, Spatacean CF. Blocking olfactory input alters aggression in male and female California mice (Peromyscus californicus). Aggress Behav 2022; 48:290-297. [PMID: 34706094 DOI: 10.1002/ab.22004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 12/19/2022]
Abstract
Olfactory input into the brain can be disrupted by a variety of environmental factors, including exposure to pathogens or environmental contaminants. Olfactory cues are often eliminated in laboratory rats and mice through highly invasive procedures like olfactory bulbectomy, which may also disrupt accessory olfactory pathways and detection of non-volatile odors. In the present study, we tested whether inducing anosmia through intranasal infusion of zinc gluconate alters aggression in a monogamous, biparental rodent species, the California mouse (Peromyscus californicus). This less invasive method of manipulating olfaction selectively targets the olfactory epithelium and reduces the detection of volatile odors. Treatment with zinc gluconate extended the time required for male and female California mice to find hidden pieces of apple and reduced the amount of time spent investigating bedding that was soiled by unfamiliar males. Moreover, inhibition of olfaction with zinc gluconate reduced aggressiveness in both sexes as demonstrated by an increased attack latency in the resident-intruder test among same-sex dyads from the same treatment group. These results suggest that volatile olfactory cues are necessary for agonistic responses in both male and female California mice. Therefore, even in species with complex social systems that include territorial aggression and monogamy, volatile olfactory cues modulate agonistic behavior.
Collapse
Affiliation(s)
| | - Jennifer N. Burns
- Department of Biology Seattle Pacific University Seattle Washington USA
- Department of Psychiatry Translational Neuroscience Program, University of Pittsburgh School of Medicine Pittsburgh Pennsylvania USA
| | - Minh N. Dang
- Department of Biology Seattle Pacific University Seattle Washington USA
- University of Washington School of Medicine Seattle Washington USA
| | | | - Grace E. Mammarella
- Department of Biology Seattle Pacific University Seattle Washington USA
- University of Washington School of Medicine Seattle Washington USA
| | - Melissa E. Rowe
- Department of Biology Seattle Pacific University Seattle Washington USA
| | | |
Collapse
|
11
|
Ostrom KF, LaVigne JE, Brust TF, Seifert R, Dessauer CW, Watts VJ, Ostrom RS. Physiological roles of mammalian transmembrane adenylyl cyclase isoforms. Physiol Rev 2022; 102:815-857. [PMID: 34698552 PMCID: PMC8759965 DOI: 10.1152/physrev.00013.2021] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/20/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022] Open
Abstract
Adenylyl cyclases (ACs) catalyze the conversion of ATP to the ubiquitous second messenger cAMP. Mammals possess nine isoforms of transmembrane ACs, dubbed AC1-9, that serve as major effector enzymes of G protein-coupled receptors (GPCRs). The transmembrane ACs display varying expression patterns across tissues, giving the potential for them to have a wide array of physiological roles. Cells express multiple AC isoforms, implying that ACs have redundant functions. Furthermore, all transmembrane ACs are activated by Gαs, so it was long assumed that all ACs are activated by Gαs-coupled GPCRs. AC isoforms partition to different microdomains of the plasma membrane and form prearranged signaling complexes with specific GPCRs that contribute to cAMP signaling compartments. This compartmentation allows for a diversity of cellular and physiological responses by enabling unique signaling events to be triggered by different pools of cAMP. Isoform-specific pharmacological activators or inhibitors are lacking for most ACs, making knockdown and overexpression the primary tools for examining the physiological roles of a given isoform. Much progress has been made in understanding the physiological effects mediated through individual transmembrane ACs. GPCR-AC-cAMP signaling pathways play significant roles in regulating functions of every cell and tissue, so understanding each AC isoform's role holds potential for uncovering new approaches for treating a vast array of pathophysiological conditions.
Collapse
Affiliation(s)
| | - Justin E LaVigne
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
| | - Tarsis F Brust
- Department of Pharmaceutical Sciences, Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, Florida
| | - Roland Seifert
- Institute of Pharmacology, Hannover Medical School, Hannover, Germany
| | - Carmen W Dessauer
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, Texas
| | - Val J Watts
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
- Purdue Institute for Drug Discovery, Purdue University, West Lafayette, Indiana
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana
| | - Rennolds S Ostrom
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California
| |
Collapse
|
12
|
Bigdai EV, Sinegubov AA. Dysregulation of the cAMP System in Olfactory Neurons in a Model of Schizophrenia Induced by Administration of (+)-MK-801 to Rats. Biophysics (Nagoya-shi) 2022. [DOI: 10.1134/s0006350922020026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
13
|
Chen T, Zhou Y, Liu X, Liu Y, Yuan J, Wang Z. Adenylyl cyclase 3 deficiency results in dysfunction of blood-testis barrier during mouse spermiogenesis. Theriogenology 2021; 180:40-52. [PMID: 34953349 DOI: 10.1016/j.theriogenology.2021.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 12/12/2021] [Accepted: 12/15/2021] [Indexed: 10/19/2022]
Abstract
Human infertility has become a global medical and social health problem. Mice deficient in type 3 adenylyl cyclase (AC3), a key enzyme that synthesizes cyclic adenosine monophosphate (cAMP), develop male infertility, although the underlying molecular mechanisms remain unknown. We performed a label-free quantitative (LFQ) proteomics analyses to identify testicular differentially expressed proteins (DEPs) and their respective biological processes. Furthermore, histological examination demonstrated that AC3 deficiency in mice led to mild impairment of spermatogenesis, including the thinning of seminiferous epithelium and local lesions in the testis. We further identified that the integrity of the blood-testis barrier (BTB) was impaired in AC3 knockout (AC3-/-) mice accompanied with the reduction in the expression of tight junctions (TJs) and ectoplasmic specialization (ESs)-related proteins. In addition, the deletion of AC3 in mice also reduced the germ cell proliferation, increased apoptosis, and decreased lipid deposition in the seminiferous tubules. Collectively, our results revealed a role of AC3 in regulating the BTB integrity during spermatogenesis. Thus, our findings provide new perspectives for future research in male infertility.
Collapse
Affiliation(s)
- Tingrong Chen
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, Hebei, PR China
| | - Yanfen Zhou
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, Hebei, PR China
| | - Xinxia Liu
- School of Basic Medical Sciences, Hebei University, Baoding, 071030, Hebei, PR China
| | - Yuxin Liu
- School of Basic Medical Sciences, Hebei University, Baoding, 071030, Hebei, PR China
| | - Junkai Yuan
- School of Basic Medical Sciences, Hebei University, Baoding, 071030, Hebei, PR China
| | - Zhenshan Wang
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, Hebei, PR China.
| |
Collapse
|
14
|
Wei S, Xu T, Jiang T, Yin D. Chemosensory Dysfunction Induced by Environmental Pollutants and Its Potential As a Novel Neurotoxicological Indicator: A Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:10911-10922. [PMID: 34355568 DOI: 10.1021/acs.est.1c02048] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Air pollution composed of the complex interactions among particular matter, chemicals, and pathogens is an emerging and global environmental issue that closely correlates with a variety of diseases and adverse health effects, especially increasing incidences of neurodegenerative diseases. However, as one of the prevalent health outcomes of air pollution, chemosensory dysfunction has not attracted enough concern until recently. During the COVID-19 pandemic, multiple scientific studies emphasized the plausibly essential roles of the chemosensory system in the airborne transmission airway of viruses into the human body, which can also be utilized by pollutants. In this Review, in addition to summarizing current progress regarding the contributions of traditional air pollutants to chemosensory dysfunction, we highlight the roles of emerging contaminants. We not only sum up clarified mechanisms, such as inflammation and apoptosis but also discuss some not yet completely identified mechanisms, e.g., disruption of olfactory signal transduction. Although the existing evidence is not overwhelming, the chemosensory system is expected to be a useful indicator in neurotoxicology and neural diseases based on accumulating studies that continually excavate the deep link between chemosensory dysfunction and neurodegenerative diseases. Finally, we argue the importance of studies concerning chemosensory dysfunction in understanding the health effects of air pollution and provide comments for some future directions of relevant research.
Collapse
Affiliation(s)
- Sheng Wei
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ting Xu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, People's Republic of China
| | - Tao Jiang
- Lyon Neuroscience Research Center (CRNL), Neuro-Ethology Team, 59 Bd Pinel, 69500 Bron, France
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, People's Republic of China
| |
Collapse
|
15
|
Takahashi K, Tsuji M, Nakagawasai O, Katsuyama S, Miyagawa K, Kurokawa K, Mochida-Saito A, Iwasa M, Iwasa H, Takeda H, Tadano T. Activation of cholinergic system partially rescues olfactory dysfunction-induced learning and memory deficit in mice. Behav Brain Res 2021; 408:113283. [PMID: 33819530 DOI: 10.1016/j.bbr.2021.113283] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/18/2021] [Accepted: 03/30/2021] [Indexed: 02/07/2023]
Abstract
Deficits in olfaction are associated with neurodegenerative disorders such as Alzheimer's disease. A recent study reported that intranasal zinc sulfate (ZnSO4)-treated mice show olfaction and memory deficits. However, it remains unknown whether olfaction deficit-induced learning and memory impairment is associated with the cholinergic system in the brain. In this study, we evaluated olfactory function by the buried food find test, and learning and memory function by the Y-maze and passive avoidance tests in ZnSO4-treated mice. The expression of choline acetyltransferase (ChAT) protein in the olfactory bulb (OB), prefrontal cortex, hippocampus, and amygdala was assessed by western blotting. Moreover, we observed the effect of the acetylcholinesterase inhibitor physostigmine on ZnSO4-induced learning and memory deficits. We found that intranasal ZnSO4-treated mice exhibited olfactory dysfunction, while this change was recovered on day 14 after treatment. Both short-term and long-term learning and memory were impaired on days 4 and 7 after treatment with ZnSO4, whereas the former, but not the latter, was recovered on day 14 after treatment. A significant correlation was observed between olfactory function and short-term memory, but not long-term memory. Treatment with ZnSO4 decreased the ChAT level in the OB on day 4, and increased and decreased the ChAT levels in the OB and hippocampus on day 7, respectively. Physostigmine improved the ZnSO4-induced deficit in short-term, but not long-term, memory. Taken together, the present results suggest that short-term memory may be closely associated with olfactory function via the cholinergic system.
Collapse
Affiliation(s)
- Kohei Takahashi
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501, Japan
| | - Minoru Tsuji
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501, Japan.
| | - Osamu Nakagawasai
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558, Japan
| | - Soh Katsuyama
- Division of Clinical Pharmacology and Pharmaceutics, Nihon Pharmaceutical University, 10281 Komuro, Kitaadachigun Inamachi, Saitama 362-0806, Japan
| | - Kazuya Miyagawa
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501, Japan
| | - Kazuhiro Kurokawa
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501, Japan
| | - Atsumi Mochida-Saito
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501, Japan
| | - Masahiro Iwasa
- Nihon Berm Co., Ltd, 2-14-3 Nagatachou, Chiyoda-ku, Tokyo 100-0014, Japan
| | - Hiroyuki Iwasa
- Nihon Berm Co., Ltd, 2-14-3 Nagatachou, Chiyoda-ku, Tokyo 100-0014, Japan
| | - Hiroshi Takeda
- Department of Pharmacology, School of Pharmacy at Fukuoka, International University of Health and Welfare, 137-1 Enokizu, Okawa, Fukuoka 831-8501, Japan
| | - Takeshi Tadano
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558, Japan; Complementary and Alternative Medicine Clinical Research and Development, Graduate School of Medicine Sciences, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa 920-8640, Japan
| |
Collapse
|
16
|
Xu YH, Wang XX, Wang MJ, Liu YY, Xue Z, Chen JX. Influence of progestational stress on BDNF and NMDARs in the hippocampus of male offspring and amelioration by Chaihu Shugan San. Biomed Pharmacother 2021; 135:111204. [PMID: 33548869 DOI: 10.1016/j.biopha.2020.111204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 12/13/2020] [Accepted: 12/26/2020] [Indexed: 12/09/2022] Open
Abstract
BACKGROUND Progestational stress has been proven to be a risk for the neural development of offspring, especially in the hippocampus. However, whether Chaihu Shugan San (CSS) can ameliorate hippocampal neural development via the regulation of brain-derived neurotrophic factor (BDNF), and N-methyl-D-aspartate receptors (NMDAR) 2A (NR2A) and 2B (NR2B), and the mechanism of such action remains unclear. METHODS Thirty-six female rats were randomly allocated into control, chronic immobilization stress (CIS) and CSS groups according to the random number table, respectively. The male offspring were fed for 21 days after birth then randomly divided into the same three groups (6 rats/group) as the female rats. Female rats, except for the control group, underwent 21-day CIS to established a progestational stress anxiety-like model which was evaluated by body weight, the elevated plus-maze (EPM) test and serum dopamine (DA) measured using an enzyme-linked immunosorbent assay (ELISA). The expression levels of estrogen receptors (ERα/ERβ) and progesterone receptor (PR) in female rat ovaries were quantified by real-time fluorescence quantitative polymerase chain reaction (RT-qPCR) and Western blot analysis. The hippocampal tissue in the 21-day offspring was observed by hematoxylin-eosin (HE) staining. The concentration of BDNF, NR2A, and NR2B were measured by RT-qPCR and immunohistochemistry in the CA3 and dentate gyrus (DG) regions of offsprings' hippocampus. RESULTS Compared with the female control group, significant differences in body weight, EPM test and DA concentration were observed in the CIS group, meanwhile, the concentration of ERα (P < 0.05), PR (P < 0.05) and ERβ in the ovaries were decreased. In the offsprings' hippocampus of the CIS group, the chromatin of the nucleus was edge set and with condensed and irregular morphology nucleus, and the cytoplasm was unevenly stained with spaces around the cells, moreover, the expression levels of BDNF, NR2A, and NR2B were also declined (P < 0.05). However, Chaihu Shugan San reversed these changes, especially the BDNF in the DG region (P < 0.05), and NR2A and NR2B in the CA3 and DG region (P < 0.05). CONCLUSIONS CSS could ameliorate the neural development of the hippocampus in offspring damaged by anxiety-like progestational stress in female rats via regulating the expression levels of ERα, ERβ, and PR in female rat ovaries and BDNF, NR2A, and NR2B in the hippocampus of their offspring.
Collapse
MESH Headings
- Animals
- Brain-Derived Neurotrophic Factor/genetics
- Brain-Derived Neurotrophic Factor/metabolism
- Disease Models, Animal
- Estrogen Receptor alpha/genetics
- Estrogen Receptor alpha/metabolism
- Estrogen Receptor beta/genetics
- Estrogen Receptor beta/metabolism
- Female
- Gestational Age
- Hippocampus/drug effects
- Hippocampus/metabolism
- Hippocampus/pathology
- Male
- Neurogenesis/drug effects
- Ovary/drug effects
- Ovary/metabolism
- Plant Extracts/pharmacology
- Pregnancy
- Prenatal Exposure Delayed Effects
- Rats, Wistar
- Receptors, N-Methyl-D-Aspartate/genetics
- Receptors, N-Methyl-D-Aspartate/metabolism
- Receptors, Progesterone/genetics
- Receptors, Progesterone/metabolism
- Restraint, Physical
- Signal Transduction
- Stress, Psychological/drug therapy
- Stress, Psychological/genetics
- Stress, Psychological/metabolism
- Stress, Psychological/pathology
- Rats
Collapse
Affiliation(s)
- Ya-Hui Xu
- School of Basic Medicine, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China; School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xin-Xing Wang
- School of Basic Medicine, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
| | - Ming-Jing Wang
- School of Basic Medicine, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
| | - Yue-Yun Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zhe Xue
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jia-Xu Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China; Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, Guangdong, China.
| |
Collapse
|