1
|
Zhang L, Lin J, Xiang K, Shi T, Guo B. Omnidirectional improvement of mitochondrial health in Alzheimer's disease by multi-targeting engineered activated neutrophil exosomes. J Control Release 2024; 376:470-487. [PMID: 39433157 DOI: 10.1016/j.jconrel.2024.10.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 10/23/2024]
Abstract
Alzheimer's disease (AD) is one kind of devasting neurodegenerative disorders affecting over 50 million people worldwide. Multi-targeted therapy has emerged as a new treatment for diagnosing and alleviating the pathogenesis process of AD; however, the current strategy is limited by its unsatisfactory efficiency. In our study, engineered activated neutrophil-derived exosomes (MP@Cur-MExo) were developed to improve the mitochondrial function in neurons by targeting and alleviating Aβ-induced neurotoxicity. MP@Cur-MExo are exosomes derived from IL-8-stimulated neutrophils decorated with mitochondria targeting ligand and Aβ targeted ligand modified SPION. Engineered exosomes can be cleaved by matrix metallopeptidase-2, which is overexpressed in the AD brain. Consequently, the released SPION and Curcumin-loaded engineered exosomes collaboratively protected neuron cells against Aβ-induced mitochondrial deficiency. In addition, MP@Cur-MExo effectively accumulated in the inflamed region of AD brain at an early stage, allowing early diagnosis of AD through bimodal (MRI/IVIS) imaging. Importantly, in a mouse model at an early stage of AD, intravenously injected MP@Cur-MExo restored mitochondrial function and reduced Aβ-induced mitochondrial damage, thereby attenuating AD progression. In conclusion, our designed engineered exosomes demonstrated that omnidirectional improvement of mitochondrial function can serve as a novel and practical approach for the diagnosis and treatment of neurodegenerative diseases. This study also reveals a promising therapeutic agent for impeding AD progression for future clinical applications.
Collapse
Affiliation(s)
- Lei Zhang
- School of Pharmacy, Wannan Medical College, Wuhu 241002, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China.
| | - Jiaquan Lin
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Branch of National Clinical Research Center for Orthopedics Sports Medicine and Rehabilitation, 321 Zhongshan Road, Nanjing, Jiangsu 210008, China
| | - Kai Xiang
- School of Pharmacy, Wannan Medical College, Wuhu 241002, China
| | - Tianshu Shi
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Branch of National Clinical Research Center for Orthopedics Sports Medicine and Rehabilitation, 321 Zhongshan Road, Nanjing, Jiangsu 210008, China.
| | - Baosheng Guo
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Branch of National Clinical Research Center for Orthopedics Sports Medicine and Rehabilitation, 321 Zhongshan Road, Nanjing, Jiangsu 210008, China.
| |
Collapse
|
2
|
Piccioni G, Maisto N, d'Ettorre A, Strimpakos G, Nisticò R, Triaca V, Mango D. Switch to phagocytic microglia by CSFR1 inhibition drives amyloid-beta clearance from glutamatergic terminals rescuing LTP in acute hippocampal slices. Transl Psychiatry 2024; 14:338. [PMID: 39179543 PMCID: PMC11344079 DOI: 10.1038/s41398-024-03019-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 06/21/2024] [Accepted: 07/08/2024] [Indexed: 08/26/2024] Open
Abstract
Microglia, traditionally regarded as innate immune cells in the brain, drive neuroinflammation and synaptic dysfunctions in the early phases of Alzheimer disease (AD), acting upstream to Aβ accumulation. Colony stimulating factor 1-receptor (CSF-1R) is predominantly expressed on microglia and its levels are significantly increased in neurodegenerative diseases, possibly contributing to the chronic inflammatory microglial response. On the other hand, CSF-1R inhibitors confer neuroprotection in preclinical models of neurodegenerative diseases. Here, we determined the effects of the CSF-1R inhibitor PLX3397 on the Aβ-mediated synaptic alterations in ex vivo hippocampal slices. Electrophysiological findings show that PLX3397 rescues LTP impairment and neurotransmission changes induced by Aβ. In addition, using confocal imaging experiments, we demonstrate that PLX3397 stimulates a microglial transition toward a phagocytic phenotype, which in turn promotes the clearance of Aβ from glutamatergic terminals. We believe that the selective pruning of Aβ-loaded synaptic terminals might contribute to the restoration of LTP and excitatory transmission alterations observed upon acute PLX3397 treatment. This result is in accordance with the mechanism proposed for CSF1R inhibitors, that is to eliminate responsive microglia and replace it with newly generated, homeostatic microglia, capable of promoting brain repair. Overall, our findings identify a connection between the rapid microglia adjustments and the early synaptic alterations observed in AD, possibly highlighting a novel disease-modifying target.
Collapse
Affiliation(s)
- Gaia Piccioni
- Laboratory Pharmacology of Synaptic Plasticity, European Brain Research Institute, Rome, Italy
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| | - Nunzia Maisto
- Laboratory Pharmacology of Synaptic Plasticity, European Brain Research Institute, Rome, Italy
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| | - Asia d'Ettorre
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), International Campus A. Buzzati-Traverso, Rome, Italy
- School of Pharmacy, University of Rome "Tor Vergata", Rome, Italy
| | - Georgios Strimpakos
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), International Campus A. Buzzati-Traverso, Rome, Italy
| | - Robert Nisticò
- Laboratory Pharmacology of Synaptic Plasticity, European Brain Research Institute, Rome, Italy.
- School of Pharmacy, University of Rome "Tor Vergata", Rome, Italy.
| | - Viviana Triaca
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), International Campus A. Buzzati-Traverso, Rome, Italy.
| | - Dalila Mango
- Laboratory Pharmacology of Synaptic Plasticity, European Brain Research Institute, Rome, Italy.
- School of Pharmacy, University of Rome "Tor Vergata", Rome, Italy.
| |
Collapse
|
3
|
Haynes JR, Whitmore CA, Behof WJ, Landman CA, Ong HH, Feld AP, Suero IC, Greer CB, Gore JC, Wijesinghe P, Matsubara JA, Wadzinski BE, Spiller BW, Pham W. Targeting soluble amyloid-beta oligomers with a novel nanobody. Sci Rep 2024; 14:16086. [PMID: 38992064 PMCID: PMC11239946 DOI: 10.1038/s41598-024-66970-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 07/05/2024] [Indexed: 07/13/2024] Open
Abstract
The classical amyloid cascade hypothesis postulates that the aggregation of amyloid plaques and the accumulation of intracellular hyperphosphorylated Tau tangles, together, lead to profound neuronal death. However, emerging research has demonstrated that soluble amyloid-β oligomers (SAβOs) accumulate early, prior to amyloid plaque formation. SAβOs induce memory impairment and disrupt cognitive function independent of amyloid-β plaques, and even in the absence of plaque formation. This work describes the development and characterization of a novel anti-SAβO (E3) nanobody generated from an alpaca immunized with SAβO. In-vitro assays and in-vivo studies using 5XFAD mice indicate that the fluorescein (FAM)-labeled E3 nanobody recognizes both SAβOs and amyloid-β plaques. The E3 nanobody traverses across the blood-brain barrier and binds to amyloid species in the brain of 5XFAD mice. Imaging of mouse brains reveals that SAβO and amyloid-β plaques are not only different in size, shape, and morphology, but also have a distinct spatial distribution in the brain. SAβOs are associated with neurons, while amyloid plaques reside in the extracellular matrix. The results of this study demonstrate that the SAβO nanobody can serve as a diagnostic agent with potential theragnostic applications in Alzheimer's disease.
Collapse
Affiliation(s)
- Justin R Haynes
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Clayton A Whitmore
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - William J Behof
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Charlotte A Landman
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Henry H Ong
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Andrew P Feld
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Isabelle C Suero
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Celeste B Greer
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37232, USA
| | - John C Gore
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37232, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA
- Vanderbilt Ingram Cancer Center, Nashville, TN, 37232, USA
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Printha Wijesinghe
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, BC, V5Z3N9, Canada
| | - Joanne A Matsubara
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, BC, V5Z3N9, Canada
| | - Brian E Wadzinski
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA.
- Vanderbilt Ingram Cancer Center, Nashville, TN, 37232, USA.
| | - Benjamin W Spiller
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA.
- Vanderbilt Center for Structural Biology, Vanderbilt University, Nashville, TN, 37235, USA.
| | - Wellington Pham
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37232, USA.
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA.
- Vanderbilt Ingram Cancer Center, Nashville, TN, 37232, USA.
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, 37232, USA.
- Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, TN, 37235, USA.
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, 37212, USA.
| |
Collapse
|
4
|
Yeh CT, Chang HW, Hsu WH, Huang SJ, Wu MH, Tu LH, Lee MC, Chan JCC. Beta Amyloid Oligomers with Higher Cytotoxicity have Higher Sidechain Dynamics. Chemistry 2023; 29:e202301879. [PMID: 37706579 DOI: 10.1002/chem.202301879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Indexed: 09/15/2023]
Abstract
The underlying biophysical principle governing the cytotoxicity of the oligomeric aggregates of β-amyloid (Aβ) peptides has long been an enigma. Here we show that the size of Aβ40 oligomers can be actively controlled by incubating the peptides in reverse micelles. Our approach allowed for the first time a detailed comparison of the structures and dynamics of two Aβ40 oligomers of different sizes, viz., 10 and 23 nm, by solid-state NMR. From the chemical shift data, we infer that the conformation and/or the chemical environments of the residues from K16 to K28 are different between the 10-nm and 23-nm oligomers. We find that the 10-nm oligomers are more cytotoxic, and the molecular motion of the sidechain of its charged residue K16 is more dynamic. Interestingly, the residue A21 exhibits unusually high structural rigidity. Our data raise an interesting possibility that the cytotoxicity of Aβ40 oligomers could also be correlated to the motional dynamics of the sidechains.
Collapse
Affiliation(s)
- Chen-Tsen Yeh
- Department of Chemistry, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Han-Wen Chang
- Department of Chemistry, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Wen-Hsin Hsu
- Department of Chemistry, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Shing-Jong Huang
- Instrumentation Center, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Meng-Hsin Wu
- Department of Chemistry, National Taiwan Normal University, No. 88, Section 4, Ting-Chow Road, Taipei, 11677, Taiwan
| | - Ling-Hsien Tu
- Department of Chemistry, National Taiwan Normal University, No. 88, Section 4, Ting-Chow Road, Taipei, 11677, Taiwan
| | - Ming-Che Lee
- Department of Chemistry, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Jerry Chun Chung Chan
- Department of Chemistry, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan
| |
Collapse
|
5
|
Bhembre N, Bonthron C, Opazo P. Synaptic Compensatory Plasticity in Alzheimer's Disease. J Neurosci 2023; 43:6833-6840. [PMID: 37821232 PMCID: PMC10573755 DOI: 10.1523/jneurosci.0379-23.2023] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/28/2023] [Accepted: 07/06/2023] [Indexed: 10/13/2023] Open
Abstract
The loss of excitatory synapses is known to underlie the cognitive deficits in Alzheimer's disease (AD). Although much is known about the mechanisms underlying synaptic loss in AD, how neurons compensate for this loss and whether this provides cognitive benefits remain almost completely unexplored. In this review, we describe two potential compensatory mechanisms implemented following synaptic loss: the enlargement of the surviving neighboring synapses and the regeneration of synapses. Because dendritic spines, the postsynaptic site of excitatory synapses, are easily visualized using light microscopy, we focus on a range of microscopy approaches to monitor synaptic loss and compensation. Here, we stress the importance of longitudinal dendritic spine imaging, as opposed to fixed-tissue imaging, to gain insights into the temporal dynamics of dendritic spine compensation. We believe that understanding the molecular mechanisms behind these and other forms of synaptic compensation and regeneration will be critical for the development of therapeutics aiming at delaying the onset of cognitive deficits in AD.
Collapse
Affiliation(s)
- Nishita Bhembre
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Calum Bonthron
- UK Dementia Research Institute, Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh Medical School, Edinburgh, EH16 4SB, United Kingdom
| | - Patricio Opazo
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, University of Queensland, Brisbane, Queensland 4072, Australia
- UK Dementia Research Institute, Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh Medical School, Edinburgh, EH16 4SB, United Kingdom
| |
Collapse
|
6
|
Cai W, Li L, Sang S, Pan X, Zhong C. Physiological Roles of β-amyloid in Regulating Synaptic Function: Implications for AD Pathophysiology. Neurosci Bull 2023; 39:1289-1308. [PMID: 36443453 PMCID: PMC10387033 DOI: 10.1007/s12264-022-00985-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 09/02/2022] [Indexed: 11/29/2022] Open
Abstract
The physiological functions of endogenous amyloid-β (Aβ), which plays important role in the pathology of Alzheimer's disease (AD), have not been paid enough attention. Here, we review the multiple physiological effects of Aβ, particularly in regulating synaptic transmission, and the possible mechanisms, in order to decipher the real characters of Aβ under both physiological and pathological conditions. Some worthy studies have shown that the deprivation of endogenous Aβ gives rise to synaptic dysfunction and cognitive deficiency, while the moderate elevation of this peptide enhances long term potentiation and leads to neuronal hyperexcitability. In this review, we provide a new view for understanding the role of Aβ in AD pathophysiology from the perspective of physiological meaning.
Collapse
Affiliation(s)
- Wenwen Cai
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Linxi Li
- Basic Medical College, Nanchang University, Nanchang, 330031, China
| | - Shaoming Sang
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xiaoli Pan
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Chunjiu Zhong
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science & Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
7
|
Phospholipase D1 Attenuation Therapeutics Promotes Resilience against Synaptotoxicity in 12-Month-Old 3xTg-AD Mouse Model of Progressive Neurodegeneration. Int J Mol Sci 2023; 24:ijms24043372. [PMID: 36834781 PMCID: PMC9967100 DOI: 10.3390/ijms24043372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Abrogating synaptotoxicity in age-related neurodegenerative disorders is an extremely promising area of research with significant neurotherapeutic implications in tauopathies including Alzheimer's disease (AD). Our studies using human clinical samples and mouse models demonstrated that aberrantly elevated phospholipase D1 (PLD1) is associated with amyloid beta (Aβ) and tau-driven synaptic dysfunction and underlying memory deficits. While knocking out the lipolytic PLD1 gene is not detrimental to survival across species, elevated expression is implicated in cancer, cardiovascular conditions and neuropathologies, leading to the successful development of well-tolerated mammalian PLD isoform-specific small molecule inhibitors. Here, we address the importance of PLD1 attenuation, achieved using repeated 1 mg/kg of VU0155069 (VU01) intraperitoneally every alternate day for a month in 3xTg-AD mice beginning only from ~11 months of age (with greater influence of tau-driven insults) compared to age-matched vehicle (0.9% saline)-injected siblings. A multimodal approach involving behavior, electrophysiology and biochemistry corroborate the impact of this pre-clinical therapeutic intervention. VU01 proved efficacious in preventing in later stage AD-like cognitive decline affecting perirhinal cortex-, hippocampal- and amygdala-dependent behaviors. Glutamate-dependent HFS-LTP and LFS-LTD improved. Dendritic spine morphology showed the preservation of mushroom and filamentous spine characteristics. Differential PLD1 immunofluorescence and co-localization with Aβ were noted.
Collapse
|
8
|
Al-Onaizi M, Al-Sarraf A, Braysh K, Kazem F, Al-Hussaini H, Rao M, Kilarkaje N, ElAli A. Impaired spatial navigation and age-dependent hippocampal synaptic dysfunction are associated with chronic inflammatory response in db/db mice. Eur J Neurosci 2022; 56:6003-6021. [PMID: 36226387 DOI: 10.1111/ejn.15835] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/18/2022] [Accepted: 09/23/2022] [Indexed: 12/29/2022]
Abstract
Type 2 diabetes mellitus (T2DM) increases the risk of developing Alzheimer's disease (AD), which has been proposed to be driven by an abnormal neuroinflammatory response affecting cognitive function. However, the impact of T2DM on hippocampal function and synaptic integrity during aging has not been investigated. Here, we investigated the effects of aging in T2DM on AD-like pathology using the leptin receptor-deficient db/db mouse model of T2DM. Our results indicate that adult T2DM mice exhibited impaired spatial acquisition in the Morris water maze (MWM). Morphological analysis showed an age-dependent neuronal loss in the dentate gyrus. We found that astrocyte density was significantly decreased in all regions of the hippocampus in T2DM mice. Our analysis showed that microglial activation was increased in the CA3 and the dentate gyrus of the hippocampus in an age-dependent manner in T2DM mice. However, the expression of presynaptic marker protein (synaptophysin) and the postsynaptic marker protein [postsynaptic density protein 95 (PSD95)] was unchanged in the hippocampus of adult T2DM mice. Interestingly, synaptophysin and PSD95 expression significantly decreased in the hippocampus of aged T2DM mice, suggesting an impaired hippocampal synaptic integrity. Cytokine profiling analysis displayed a robust pro-inflammatory cytokine profile in the hippocampus of aged T2DM mice compared with the younger cohort, outlining the role of aging in exacerbating the neuroinflammatory profile in the diabetic state. Our results suggest that T2DM impairs cognitive function by promoting neuronal loss in the dentate gyrus and triggering an age-dependent deterioration in hippocampal synaptic integrity, associated with an aberrant neuroinflammatory response.
Collapse
Affiliation(s)
- Mohammed Al-Onaizi
- Department of Anatomy, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Ahmad Al-Sarraf
- Undergraduate Medical Degree Program, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Kawthar Braysh
- Department of Anatomy, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Fatema Kazem
- Undergraduate Medical Degree Program, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Heba Al-Hussaini
- Department of Anatomy, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Muddanna Rao
- Department of Anatomy, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Narayana Kilarkaje
- Department of Anatomy, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Ayman ElAli
- Neuroscience Axis, Research Center of CHU de Québec, Université Laval, Quebec City, Quebec, Canada.,Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
9
|
Continuous Theta-Burst Stimulation Promotes Paravascular CSF-Interstitial Fluid Exchange through Regulation of Aquaporin-4 Polarization in APP/PS1 Mice. Mediators Inflamm 2022; 2022:2140524. [PMID: 36032783 PMCID: PMC9417777 DOI: 10.1155/2022/2140524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/21/2022] [Accepted: 08/01/2022] [Indexed: 11/20/2022] Open
Abstract
Amyloid-β (Aβ) deposition plays a crucial role in the occurrence and development of Alzheimer's disease (AD), and impaired Aβ clearance is the leading cause of Aβ deposition. Recently, studies have found that the glymphatic system performs similar functions to the peripheral lymphatic system. Glymphatic fluid transport mainly consists of cerebrospinal fluid (CSF) entering the brain from the paravascular space (PVS) by penetrating arteries and CSF and interstitial fluid exchanging mediated by aquaporin-4 (AQP4). This system promotes the drainage of interstitial fluid (ISF) in the parenchyma and removes metabolic waste, including Aβ, in the brain. Glymphatic system dysfunction plays an essential role in the occurrence and progression of AD. Regulation of glymphatic fluid transport may be a critical target for AD therapy. This study explored the regulatory effects of continuous theta-burst stimulation (CTBS) on the glymphatic system in APPswe/PS1dE9 (APP/PS1) mice with two-photon imaging. The results demonstrated that CTBS could increase glymphatic fluid transport, especially CSF and ISF exchange, mediated by improved AQP4 polarization. In addition, the accelerated glymphatic pathway reduced Aβ deposition and enhanced spatial memory cognition. It provided new insight into the clinical prevention and treatment of Aβ deposition-related diseases.
Collapse
|
10
|
Krafft GA, Jerecic J, Siemers E, Cline EN. ACU193: An Immunotherapeutic Poised to Test the Amyloid β Oligomer Hypothesis of Alzheimer’s Disease. Front Neurosci 2022; 16:848215. [PMID: 35557606 PMCID: PMC9088393 DOI: 10.3389/fnins.2022.848215] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/02/2022] [Indexed: 12/26/2022] Open
Abstract
Alzheimer’s disease (AD) is an age-related neurodegenerative disease that affects 50 million people worldwide, with 10 million new cases occurring each year. The emotional and economic impacts of AD on patients and families are devastating. Approved treatments confer modest improvement in symptoms, and recently one treatment obtained accelerated approval from the United States Food and Drug Administration (FDA) and may have modest disease modifying benefit. Research over the past three decades has established a clear causal linkage between AD and elevated brain levels of amyloid β (Aβ) peptide, and substantial evidence now implicates soluble, non-fibrillar Aβ oligomers (AβOs) as the molecular assemblies directly responsible for AD-associated memory and cognitive failure and accompanying progressive neurodegeneration. The widely recognized linkage of elevated Aβ and AD spawned a comprehensive 20-year therapeutic campaign that focused primarily on two strategies – inhibition of the secretase enzymes responsible for Aβ production and clearance of Aβ peptide or amyloid plaques with Aβ-directed immunotherapeutics. Unfortunately, all clinical trials of secretase inhibitors were unsuccessful. Of the completed phase 3 immunotherapy programs, bapineuzumab (targeting amyloid plaque) and solanezumab (targeting Aβ monomers) were negative, and the crenezumab program (targeting Aβ monomers and to a small extent oligomers) was stopped for futility. Aducanumab (targeting amyloid plaques), which recently received FDA accelerated approval, had one positive and one negative phase 3 trial. More than 25 negative randomized clinical trials (RCTs) have evaluated Aβ-targeting therapeutics, yet none has directly evaluated whether selective blockage of disease-relevant AβOs can stop or reverse AD-associated cognitive decline. Here, we briefly summarize studies that establish the AD therapeutic rationale to target AβOs selectively, and we describe ACU193, the first AβO-selective immunotherapeutic to enter human clinical trials and the first positioned to test the AβO hypothesis of AD.
Collapse
|
11
|
Rishton GM, Look GC, Ni ZJ, Zhang J, Wang Y, Huang Y, Wu X, Izzo NJ, LaBarbera KM, Limegrover CS, Rehak C, Yurko R, Catalano SM. Discovery of Investigational Drug CT1812, an Antagonist of the Sigma-2 Receptor Complex for Alzheimer's Disease. ACS Med Chem Lett 2021; 12:1389-1395. [PMID: 34531947 DOI: 10.1021/acsmedchemlett.1c00048] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 08/03/2021] [Indexed: 02/08/2023] Open
Abstract
An unbiased phenotypic neuronal assay was developed to measure the synaptotoxic effects of soluble Aβ oligomers. A collection of CNS druglike small molecules prepared by conditioned extraction was screened. Compounds that prevented and reversed synaptotoxic effects of Aβ oligomers in neurons were discovered to bind to the sigma-2 receptor complex. Select development compounds displaced receptor-bound Aβ oligomers, rescued synapses, and restored cognitive function in transgenic hAPP Swe/Ldn mice. Our first-in-class orally administered small molecule investigational drug 7 (CT1812) has been advanced to Phase II clinical studies for Alzheimer's disease.
Collapse
Affiliation(s)
- Gilbert M. Rishton
- Cognition Therapeutics, 2403 Sidney Street, Suite 261, Pittsburgh, Pennsylvania 15203, United States
| | - Gary C. Look
- Cognition Therapeutics, 2403 Sidney Street, Suite 261, Pittsburgh, Pennsylvania 15203, United States
| | - Zhi-Jie Ni
- Acme Bioscience, Inc., 3941 East Bayshore Road, Palo Alto, California 94303, United States
| | - Jason Zhang
- Acme Bioscience, Inc., 3941 East Bayshore Road, Palo Alto, California 94303, United States
| | - Yingcai Wang
- Acme Bioscience, Inc., 3941 East Bayshore Road, Palo Alto, California 94303, United States
| | - Yaodong Huang
- Acme Bioscience, Inc., 3941 East Bayshore Road, Palo Alto, California 94303, United States
| | - Xiaodong Wu
- Acme Bioscience, Inc., 3941 East Bayshore Road, Palo Alto, California 94303, United States
| | - Nicholas J. Izzo
- Cognition Therapeutics, 2403 Sidney Street, Suite 261, Pittsburgh, Pennsylvania 15203, United States
| | - Kelsie M LaBarbera
- Cognition Therapeutics, 2403 Sidney Street, Suite 261, Pittsburgh, Pennsylvania 15203, United States
| | - Colleen S. Limegrover
- Cognition Therapeutics, 2403 Sidney Street, Suite 261, Pittsburgh, Pennsylvania 15203, United States
| | - Courtney Rehak
- Cognition Therapeutics, 2403 Sidney Street, Suite 261, Pittsburgh, Pennsylvania 15203, United States
| | - Raymond Yurko
- Cognition Therapeutics, 2403 Sidney Street, Suite 261, Pittsburgh, Pennsylvania 15203, United States
| | - Susan M. Catalano
- Cognition Therapeutics, 2403 Sidney Street, Suite 261, Pittsburgh, Pennsylvania 15203, United States
| |
Collapse
|
12
|
Geula C, Dunlop SR, Ayala I, Kawles AS, Flanagan ME, Gefen T, Mesulam MM. Basal forebrain cholinergic system in the dementias: Vulnerability, resilience, and resistance. J Neurochem 2021; 158:1394-1411. [PMID: 34272732 PMCID: PMC8458251 DOI: 10.1111/jnc.15471] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 01/15/2023]
Abstract
The basal forebrain cholinergic neurons (BFCN) provide the primary source of cholinergic innervation of the human cerebral cortex. They are involved in the cognitive processes of learning, memory, and attention. These neurons are differentially vulnerable in various neuropathologic entities that cause dementia. This review summarizes the relevance to BFCN of neuropathologic markers associated with dementias, including the plaques and tangles of Alzheimer's disease (AD), the Lewy bodies of diffuse Lewy body disease, the tauopathy of frontotemporal lobar degeneration (FTLD-TAU) and the TDP-43 proteinopathy of FTLD-TDP. Each of these proteinopathies has a different relationship to BFCN and their corticofugal axons. Available evidence points to early and substantial degeneration of the BFCN in AD and diffuse Lewy body disease. In AD, the major neurodegenerative correlate is accumulation of phosphotau in neurofibrillary tangles. However, these neurons are less vulnerable to the tauopathy of FTLD. An intriguing finding is that the intracellular tau of AD causes destruction of the BFCN, whereas that of FTLD does not. This observation has profound implications for exploring the impact of different species of tauopathy on neuronal survival. The proteinopathy of FTLD-TDP shows virtually no abnormal inclusions within the BFCN. Thus, the BFCN are highly vulnerable to the neurodegenerative effects of tauopathy in AD, resilient to the neurodegenerative effect of tauopathy in FTLD and apparently resistant to the emergence of proteinopathy in FTLD-TDP and perhaps also in Pick's disease. Investigations are beginning to shed light on the potential mechanisms of this differential vulnerability and their implications for therapeutic intervention.
Collapse
Affiliation(s)
- Changiz Geula
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine Chicago, Northwestern University, Chicago, Illinois, USA
| | - Sara R Dunlop
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine Chicago, Northwestern University, Chicago, Illinois, USA
| | - Ivan Ayala
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine Chicago, Northwestern University, Chicago, Illinois, USA
| | - Allegra S Kawles
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine Chicago, Northwestern University, Chicago, Illinois, USA
| | - Margaret E Flanagan
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine Chicago, Northwestern University, Chicago, Illinois, USA
| | - Tamar Gefen
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine Chicago, Northwestern University, Chicago, Illinois, USA
| | - Marek-Marsel Mesulam
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine Chicago, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
13
|
Su X, Tang Z, Lu Z, Liu Y, He W, Jiang J, Zhang Y, Wu H. Oral Treponema denticola Infection Induces Aβ 1-40 and Aβ 1-42 Accumulation in the Hippocampus of C57BL/6 Mice. J Mol Neurosci 2021; 71:1506-1514. [PMID: 33763842 DOI: 10.1007/s12031-021-01827-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/05/2021] [Indexed: 02/05/2023]
Abstract
Accumulation of amyloid-β (Aβ) in the brain is a central component of pathology in Alzheimer's disease. A growing volume of evidence demonstrates close associations between periodontal pathogens including Porphyromonas gingivalis (P. gingivalis) and Treponema denticola (T. denticola) and AD. However, the effect and mechanisms of T. denticola on accumulation of Aβ remain to be unclear. In this study, we demonstrated that T. denticola was able to enter the brain and act directly on nerve cells resulting in intra- and extracellular Aβ1-40 and Aβ1-42 accumulation in the hippocampus of C57BL/6 mice by selectively activating both β-secretase and γ-secretase. Furthermore, both KMI1303, an inhibitor of β-secretase, as well as DAPT, an inhibitor of γ- secretase, were found to be able to inhibit the effect of T. denticola on Aβ accumulation in N2a neuronal cells. Overall, it is concluded that T. denticola increases the expression of Aβ1-42 and Aβ1-40 by its regulation on beta-site amyloid precursor protein cleaving enzyme-1 and presenilin 1.
Collapse
Affiliation(s)
- Xinyi Su
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Zhiqun Tang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Zhiyue Lu
- Department of Stomatology Beijing Hospital, Institute of Geriatric Medicine, National Center of Gerontology, Beijing, 100000, China
| | - Yuqiu Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Wanzhi He
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiapei Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yifan Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Hongkun Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
14
|
Habif M, Do Carmo S, Báez MV, Colettis NC, Cercato MC, Salas DA, Acutain MF, Sister CL, Berkowicz VL, Canal MP, González Garello T, Cuello AC, Jerusalinsky DA. Early Long-Term Memory Impairment and Changes in the Expression of Synaptic Plasticity-Associated Genes, in the McGill-R-Thy1-APP Rat Model of Alzheimer's-Like Brain Amyloidosis. Front Aging Neurosci 2021; 12:585873. [PMID: 33551786 PMCID: PMC7862771 DOI: 10.3389/fnagi.2020.585873] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 12/23/2020] [Indexed: 12/27/2022] Open
Abstract
Accruing evidence supports the hypothesis that memory deficits in early Alzheimer Disease (AD) might be due to synaptic failure caused by accumulation of intracellular amyloid beta (Aβ) oligomers, then secreted to the extracellular media. Transgenic mouse AD models provide valuable information on AD pathology. However, the failure to translate these findings to humans calls for models that better recapitulate the human pathology. McGill-R-Thy1-APP transgenic (Tg) rat expresses the human amyloid precursor protein (APP751) with the Swedish and Indiana mutations (of familial AD), leading to an AD-like slow-progressing brain amyloid pathology. Therefore, it offers a unique opportunity to investigate learning and memory abilities at early stages of AD, when Aβ accumulation is restricted to the intracellular compartment, prior to plaque deposition. Our goal was to further investigate early deficits in memory, particularly long-term memory in McGill-R-Thy1-APP heterozygous (Tg+/–) rats. Short-term- and long-term habituation to an open field were preserved in 3-, 4-, and 6-month-old (Tg+/–). However, long-term memory of inhibitory avoidance to a foot-shock, novel object-recognition and social approaching behavior were seriously impaired in 4-month-old (Tg+/–) male rats, suggesting that they are unable to either consolidate and/or evoke such associative and discriminative memories with aversive, emotional and spatial components. The long-term memory deficits were accompanied by increased transcript levels of genes relevant to synaptic plasticity, learning and memory processing in the hippocampus, such as Grin2b, Dlg4, Camk2b, and Syn1. Our findings indicate that in addition to the previously well-documented deficits in learning and memory, McGill-R-Thy1-APP rats display particular long-term-memory deficits and deep social behavior alterations at pre-plaque early stages of the pathology. This highlights the importance of Aβ oligomers and emphasizes the validity of the model to study AD-like early processes, with potentially predictive value.
Collapse
Affiliation(s)
- Martín Habif
- Laboratory of Neuroplasticity and Neurotoxins (LaN&N), Facultad de Medicina, Instituto de Biología Celular y Neurociencia (IBCN) "Prof. Eduardo De Robertis" (Universidad de Buenos Aires - CONICET), Buenos Aires, Argentina
| | - Sonia Do Carmo
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - María Verónica Báez
- Laboratory of Neuroplasticity and Neurotoxins (LaN&N), Facultad de Medicina, Instituto de Biología Celular y Neurociencia (IBCN) "Prof. Eduardo De Robertis" (Universidad de Buenos Aires - CONICET), Buenos Aires, Argentina
| | - Natalia Claudia Colettis
- Laboratory of Neuroplasticity and Neurotoxins (LaN&N), Facultad de Medicina, Instituto de Biología Celular y Neurociencia (IBCN) "Prof. Eduardo De Robertis" (Universidad de Buenos Aires - CONICET), Buenos Aires, Argentina
| | - Magalí Cecilia Cercato
- Laboratory of Neuroplasticity and Neurotoxins (LaN&N), Facultad de Medicina, Instituto de Biología Celular y Neurociencia (IBCN) "Prof. Eduardo De Robertis" (Universidad de Buenos Aires - CONICET), Buenos Aires, Argentina
| | - Daniela Alejandra Salas
- Laboratory of Neuroplasticity and Neurotoxins (LaN&N), Facultad de Medicina, Instituto de Biología Celular y Neurociencia (IBCN) "Prof. Eduardo De Robertis" (Universidad de Buenos Aires - CONICET), Buenos Aires, Argentina
| | - María Florencia Acutain
- Laboratory of Neuroplasticity and Neurotoxins (LaN&N), Facultad de Medicina, Instituto de Biología Celular y Neurociencia (IBCN) "Prof. Eduardo De Robertis" (Universidad de Buenos Aires - CONICET), Buenos Aires, Argentina
| | - Caterina Laura Sister
- Laboratory of Neuroplasticity and Neurotoxins (LaN&N), Facultad de Medicina, Instituto de Biología Celular y Neurociencia (IBCN) "Prof. Eduardo De Robertis" (Universidad de Buenos Aires - CONICET), Buenos Aires, Argentina
| | - Valeria Laura Berkowicz
- Laboratory of Neuroplasticity and Neurotoxins (LaN&N), Facultad de Medicina, Instituto de Biología Celular y Neurociencia (IBCN) "Prof. Eduardo De Robertis" (Universidad de Buenos Aires - CONICET), Buenos Aires, Argentina
| | - María Pilar Canal
- Laboratory of Neuroplasticity and Neurotoxins (LaN&N), Facultad de Medicina, Instituto de Biología Celular y Neurociencia (IBCN) "Prof. Eduardo De Robertis" (Universidad de Buenos Aires - CONICET), Buenos Aires, Argentina
| | - Tomás González Garello
- Laboratory of Neuroplasticity and Neurotoxins (LaN&N), Facultad de Medicina, Instituto de Biología Celular y Neurociencia (IBCN) "Prof. Eduardo De Robertis" (Universidad de Buenos Aires - CONICET), Buenos Aires, Argentina
| | - A Claudio Cuello
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada.,Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Diana Alicia Jerusalinsky
- Laboratory of Neuroplasticity and Neurotoxins (LaN&N), Facultad de Medicina, Instituto de Biología Celular y Neurociencia (IBCN) "Prof. Eduardo De Robertis" (Universidad de Buenos Aires - CONICET), Buenos Aires, Argentina
| |
Collapse
|
15
|
Yue C, Shan Z, Tan Y, Yao C, Liu Y, Liu Q, Tan X, Du X. His-Rich Domain of Selenoprotein P Ameliorates Neuropathology and Cognitive Deficits by Regulating TrkB Pathway and Zinc Homeostasis in an Alzheimer Model of Mice. ACS Chem Neurosci 2020; 11:4098-4110. [PMID: 33226214 DOI: 10.1021/acschemneuro.0c00278] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Selenoproteins are a family of special proteins that contain the 21st amino acid, selenocysteine (Sec), in their sequence. Selenoprotein P has 10 Sec residues and modulates selenium homeostasis and redox balance in the brain. Previously, we found that the Sec-devoid His-rich motif of selenoprotein P (Selenop-H) suppressed metal-induced aggregation and neurotoxicities of both Aβ and tau in vitro. To investigate the intervening capacity of Selenop-H on the neuropathology and cognitive deficits of triple transgenic AD (3 × Tg-AD) mice, the Selenop-H gene packaged in rAAV9 was delivered into the hippocampal CA3 regions of mice via stereotaxic injection. Four months later, we demonstrated that Selenop-H (1) improved the spatial learning and memory deficits, (2) alleviated neuron damage and synaptic protein loss, (3) inhibited both tau pathology and amyloid beta protein (Aβ) aggregation, (4) activated both BDNF- and Src-mediated TrkB signaling, and (5) increased MT3 and ZnT3 levels and restored Zn2+ homeostasis in the mice model of AD. The study revealed that Selenop-H is potent in ameliorating AD-related neuropathology and cognitive deficits by modulating TrkB signaling and Zn2+ homeostasis.
Collapse
Affiliation(s)
- Caiping Yue
- College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen University, Shenzhen 518060, China
| | - Zhifu Shan
- College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen University, Shenzhen 518060, China
- College of Veterinary Medicine, Northeast Agricultural University, No. 600 Chang jiang Street, Harbin 150030, P. R. China
| | - Yibin Tan
- College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen University, Shenzhen 518060, China
| | - Chuangyu Yao
- College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen University, Shenzhen 518060, China
| | - Yuanheng Liu
- Advance Institute of Engineering Science for Intelligent Manufacturing, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Qiong Liu
- College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen University, Shenzhen 518060, China
- Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Xiangshi Tan
- Department of Chemistry &Shanghai Key Laboratory of Chemical Biology for Protein Research and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| | - Xiubo Du
- College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen University, Shenzhen 518060, China
- Shenzhen Bay Laboratory, Shenzhen 518055, China
| |
Collapse
|
16
|
Sotolongo K, Ghiso J, Rostagno A. Nrf2 activation through the PI3K/GSK-3 axis protects neuronal cells from Aβ-mediated oxidative and metabolic damage. ALZHEIMERS RESEARCH & THERAPY 2020; 12:13. [PMID: 31931869 PMCID: PMC6958642 DOI: 10.1186/s13195-019-0578-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/30/2019] [Indexed: 01/08/2023]
Abstract
Background Mounting evidence points to a crucial role of amyloid-β (Aβ) in the pathophysiology of Alzheimer’s disease (AD), a disorder in which brain glucose hypometabolism, downregulation of central elements of phosphorylation pathways, reduced ATP levels, and enhanced oxidative damage coexist, and sometimes precede, synaptic alterations and clinical manifestations. Since the brain has limited energy storage capacity, mitochondria play essential roles in maintaining the high levels of energy demand, but, as major consumers of oxygen, these organelles are also the most important generators of reactive oxygen species (ROS). Thus, it is not surprising that mitochondrial dysfunction is tightly linked to synaptic loss and AD pathophysiology. In spite of their relevance, the mechanistic links among ROS homeostasis, metabolic alterations, and cell bioenergetics, particularly in relation to Aβ, still remain elusive. Methods We have used classic biochemical and immunocytochemical approaches together with the evaluation of real-time changes in global energy metabolism in a Seahorse Metabolic Analyzer to provide insights into the detrimental role of oligAβ in SH-SY5Y and primary neurons testing their pharmacologic protection by small molecules. Results Our findings indicate that oligomeric Aβ induces a dramatic increase in ROS production and severely affects neuronal metabolism and bioenergetics. Assessment of global energy metabolism in real time demonstrated Aβ-mediated reduction in oxygen consumption affecting basal and maximal respiration and causing decreased ATP production. Pharmacologic targeting of Aβ-challenged neurons with a set of small molecules of known antioxidant and cytoprotective activity prevented the metabolic/bioenergetic changes induced by the peptide, fully restoring mitochondrial function while inducing an antioxidant response that counterbalanced the ROS production. Search for a mechanistic link among the protective small molecules tested identified the transcription factor Nrf2—compromised by age and downregulated in AD and transgenic models—as their main target and the PI3K/GSK-3 axis as the central pathway through which the compounds elicit their Aβ protective action. Conclusions Our study provides insights into the complex molecular mechanisms triggered by oligAβ which profoundly affect mitochondrial performance and argues for the inclusion of small molecules targeting the PI3K/GSK-3 axis and Nrf2-mediated pathways as part of the current or future combinatorial therapies.
Collapse
Affiliation(s)
- Krystal Sotolongo
- Department of Pathology, New York University School of Medicine, 550 First Avenue, New York, NY, 10016, USA
| | - Jorge Ghiso
- Department of Pathology, New York University School of Medicine, 550 First Avenue, New York, NY, 10016, USA. .,Department of Psychiatry, New York University School of Medicine, 550 First Avenue, New York, NY, 10016, USA.
| | - Agueda Rostagno
- Department of Pathology, New York University School of Medicine, 550 First Avenue, New York, NY, 10016, USA.
| |
Collapse
|
17
|
Loera-Valencia R, Cedazo-Minguez A, Kenigsberg PA, Page G, Duarte AI, Giusti P, Zusso M, Robert P, Frisoni GB, Cattaneo A, Zille M, Boltze J, Cartier N, Buee L, Johansson G, Winblad B. Current and emerging avenues for Alzheimer's disease drug targets. J Intern Med 2019; 286:398-437. [PMID: 31286586 DOI: 10.1111/joim.12959] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease (AD), the most frequent cause of dementia, is escalating as a global epidemic, and so far, there is neither cure nor treatment to alter its progression. The most important feature of the disease is neuronal death and loss of cognitive functions, caused probably from several pathological processes in the brain. The main neuropathological features of AD are widely described as amyloid beta (Aβ) plaques and neurofibrillary tangles of the aggregated protein tau, which contribute to the disease. Nevertheless, AD brains suffer from a variety of alterations in function, such as energy metabolism, inflammation and synaptic activity. The latest decades have seen an explosion of genes and molecules that can be employed as targets aiming to improve brain physiology, which can result in preventive strategies for AD. Moreover, therapeutics using these targets can help AD brains to sustain function during the development of AD pathology. Here, we review broadly recent information for potential targets that can modify AD through diverse pharmacological and nonpharmacological approaches including gene therapy. We propose that AD could be tackled not only using combination therapies including Aβ and tau, but also considering insulin and cholesterol metabolism, vascular function, synaptic plasticity, epigenetics, neurovascular junction and blood-brain barrier targets that have been studied recently. We also make a case for the role of gut microbiota in AD. Our hope is to promote the continuing research of diverse targets affecting AD and promote diverse targeting as a near-future strategy.
Collapse
Affiliation(s)
- R Loera-Valencia
- Division of Neurogeriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
| | - A Cedazo-Minguez
- Division of Neurogeriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
| | | | - G Page
- Neurovascular Unit and Cognitive impairments - EA3808, University of Poitiers, Poitiers, France
| | - A I Duarte
- CNC- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - P Giusti
- Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, Padova, Italy
| | - M Zusso
- Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, Padova, Italy
| | - P Robert
- CoBTeK - lab, CHU Nice University Côte d'Azur, Nice, France
| | - G B Frisoni
- University Hospitals and University of Geneva, Geneva, Switzerland
| | - A Cattaneo
- University Hospitals and University of Geneva, Geneva, Switzerland
| | - M Zille
- Institute of Experimental and Clinical Pharmacology and Toxicology, Lübeck, Germany
| | - J Boltze
- School of Life Sciences, The University of Warwick, Coventry, UK
| | - N Cartier
- Preclinical research platform, INSERM U1169/MIRCen Commissariat à l'énergie atomique, Fontenay aux Roses, France.,Université Paris-Sud, Orsay, France
| | - L Buee
- Alzheimer & Tauopathies, LabEx DISTALZ, CHU-Lille, Inserm, Univ. Lille, Lille, France
| | - G Johansson
- Division of Neurogeriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
| | - B Winblad
- Division of Neurogeriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden.,Theme Aging, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
18
|
Tao CC, Cheng KM, Ma YL, Hsu WL, Chen YC, Fuh JL, Lee WJ, Chao CC, Lee EHY. Galectin-3 promotes Aβ oligomerization and Aβ toxicity in a mouse model of Alzheimer's disease. Cell Death Differ 2019; 27:192-209. [PMID: 31127200 PMCID: PMC7206130 DOI: 10.1038/s41418-019-0348-z] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 04/13/2019] [Accepted: 05/02/2019] [Indexed: 12/23/2022] Open
Abstract
Amyloid-β (Aβ) oligomers largely initiate the cascade underlying the pathology of Alzheimer's disease (AD). Galectin-3 (Gal-3), which is a member of the galectin protein family, promotes inflammatory responses and enhances the homotypic aggregation of cancer cells. Here, we examined the role and action mechanism of Gal-3 in Aβ oligomerization and Aβ toxicities. Wild-type (WT) and Gal-3-knockout (KO) mice, APP/PS1;WT mice, APP/PS1;Gal-3+/- mice and brain tissues from normal subjects and AD patients were used. We found that Aβ oligomerization is reduced in Gal-3 KO mice injected with Aβ, whereas overexpression of Gal-3 enhances Aβ oligomerization in the hippocampi of Aβ-injected mice. Gal-3 expression shows an age-dependent increase that parallels endogenous Aβ oligomerization in APP/PS1 mice. Moreover, Aβ oligomerization, Iba1 expression, GFAP expression and amyloid plaque accumulation are reduced in APP/PS1;Gal-3+/- mice compared with APP/PS1;WT mice. APP/PS1;Gal-3+/- mice also show better acquisition and retention performance compared to APP/PS1;WT mice. In studying the mechanism underlying Gal-3-promoted Aβ oligomerization, we found that Gal-3 primarily co-localizes with Iba1, and that microglia-secreted Gal-3 directly interacts with Aβ. Gal-3 also interacts with triggering receptor expressed on myeloid cells-2, which then mediates the ability of Gal-3 to activate microglia for further Gal-3 expression. Immunohistochemical analyses show that the distribution of Gal-3 overlaps with that of endogenous Aβ in APP/PS1 mice and partially overlaps with that of amyloid plaque. Moreover, the expression of the Aβ-degrading enzyme, neprilysin, is increased in Gal-3 KO mice and this is associated with enhanced integrin-mediated signaling. Consistently, Gal-3 expression is also increased in the frontal lobe of AD patients, in parallel with Aβ oligomerization. Because Gal-3 expression is dramatically increased as early as 3 months of age in APP/PS1 mice and anti-Aβ oligomerization is believed to protect against Aβ toxicity, Gal-3 could be considered a novel therapeutic target in efforts to combat AD.
Collapse
Affiliation(s)
- Chih-Chieh Tao
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Kuang-Min Cheng
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Institute of Neuroscience, National Cheng-chi University, Taipei, Taiwan
| | - Yun-Li Ma
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Wei-Lun Hsu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yan-Chu Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Jong-Ling Fuh
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan.,Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Wei-Ju Lee
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan.,Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan.,Institute of Clinical Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Chih-Chang Chao
- Institute of Neuroscience, National Cheng-chi University, Taipei, Taiwan
| | - Eminy H Y Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan. .,Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan. .,Institute of Neuroscience, National Cheng-chi University, Taipei, Taiwan.
| |
Collapse
|
19
|
Spriggs MJ, Thompson CS, Moreau D, McNair NA, Wu CC, Lamb YN, McKay NS, King ROC, Antia U, Shelling AN, Hamm JP, Teyler TJ, Russell BR, Waldie KE, Kirk IJ. Human Sensory LTP Predicts Memory Performance and Is Modulated by the BDNF Val 66Met Polymorphism. Front Hum Neurosci 2019; 13:22. [PMID: 30828292 PMCID: PMC6384276 DOI: 10.3389/fnhum.2019.00022] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 01/18/2019] [Indexed: 12/16/2022] Open
Abstract
Background: Long-term potentiation (LTP) is recognised as a core neuronal process underlying long-term memory. However, a direct relationship between LTP and human memory performance is yet to be demonstrated. The first aim of the current study was thus to assess the relationship between LTP and human long-term memory performance. With this also comes an opportunity to explore factors thought to mediate the relationship between LTP and long-term memory. The second aim of the current study was to explore the relationship between LTP and memory in groups differing with respect to brain-derived neurotrophic factor (BDNF) Val66Met; a single-nucleotide polymorphism (SNP) implicated in memory function. Methods: Participants were split into three genotype groups (Val/Val, Val/Met, Met/Met) and were presented with both an EEG paradigm for inducing LTP-like enhancements of the visually-evoked response, and a test of visual memory. Results: The magnitude of LTP 40 min after induction was predictive of long-term memory performance. Additionally, the BDNF Met allele was associated with both reduced LTP and reduced memory performance. Conclusions: The current study not only presents the first evidence for a relationship between sensory LTP and human memory performance, but also demonstrates how targeting this relationship can provide insight into factors implicated in variation in human memory performance. It is anticipated that this will be of utility to future clinical studies of disrupted memory function.
Collapse
Affiliation(s)
- Meg J Spriggs
- Faculty of Science, School of Psychology, University of Auckland, Auckland, New Zealand.,Centre for Brain Research, University of Auckland, Auckland, New Zealand.,Brain Research New Zealand, Auckland, New Zealand.,Psychedelic Research Group, Division of Brain Sciences, Centre for Psychiatry, Imperial College London, London, United Kingdom
| | - Chris S Thompson
- Faculty of Science, School of Psychology, University of Auckland, Auckland, New Zealand.,Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - David Moreau
- Faculty of Science, School of Psychology, University of Auckland, Auckland, New Zealand.,Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Nicolas A McNair
- Faculty of Science, School of Psychology, University of Auckland, Auckland, New Zealand.,School of Psychology, University of Sydney, Sydney, NSW, Australia
| | - C Carolyn Wu
- Faculty of Science, School of Psychology, University of Auckland, Auckland, New Zealand.,Department of Psychology, University of Trier, Trier, Germany
| | - Yvette N Lamb
- Faculty of Science, School of Psychology, University of Auckland, Auckland, New Zealand.,Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Nicole S McKay
- Faculty of Science, School of Psychology, University of Auckland, Auckland, New Zealand.,Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Rohan O C King
- Faculty of Science, School of Psychology, University of Auckland, Auckland, New Zealand.,Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Ushtana Antia
- Faculty of Medical and Health Sciences, School of Pharmacy, University of Auckland, Auckland, New Zealand.,Boston Scientific, Mascot, NSW, Australia
| | - Andrew N Shelling
- Centre for Brain Research, University of Auckland, Auckland, New Zealand.,Department of Obstetrics & Gynaecology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Jeff P Hamm
- Faculty of Science, School of Psychology, University of Auckland, Auckland, New Zealand.,Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | | | - Bruce R Russell
- Faculty of Medical and Health Sciences, School of Pharmacy, University of Auckland, Auckland, New Zealand.,School of Pharmacy, University of Otago, Dunedin, New Zealand
| | - Karen E Waldie
- Faculty of Science, School of Psychology, University of Auckland, Auckland, New Zealand.,Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Ian J Kirk
- Faculty of Science, School of Psychology, University of Auckland, Auckland, New Zealand.,Centre for Brain Research, University of Auckland, Auckland, New Zealand.,Brain Research New Zealand, Auckland, New Zealand
| |
Collapse
|
20
|
Xie Z, Shapiro LP, Cahill ME, Russell TA, Lacor PN, Klein WL, Penzes P. Kalirin-7 prevents dendritic spine dysgenesis induced by amyloid beta-derived oligomers. Eur J Neurosci 2019; 49:1091-1101. [PMID: 30565792 DOI: 10.1111/ejn.14311] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/19/2018] [Accepted: 12/13/2018] [Indexed: 12/15/2022]
Abstract
Synapse degeneration and dendritic spine dysgenesis are believed to be crucial early steps in Alzheimer's disease (AD), and correlate with cognitive deficits in AD patients. Soluble amyloid beta (Aβ)-derived oligomers, also termed Aβ-derived diffusible ligands (ADDLs), accumulate in the brain of AD patients and play a crucial role in AD pathogenesis. ADDLs bind to mature hippocampal neurons, induce structural changes in dendritic spines and contribute to neuronal death. However, mechanisms underlying structural and toxic effects are not fully understood. Here, we report that ADDLs bind to cultured mature cortical pyramidal neurons and induce spine dysgenesis. ADDL treatment induced the rapid depletion of kalirin-7, a brain-specific guanine-nucleotide exchange factor for the small GTPase Rac1, from spines. Kalirin-7 is a key regulator of dendritic spine morphogenesis and maintenance in forebrain pyramidal neurons and here we show that overexpression of kalirin-7 prevents ADDL-induced spine degeneration. Taken together, our results suggest that kalirin-7 may play a role in the early events leading to synapse degeneration, and its pharmacological activation may prevent or delay synapse pathology in AD.
Collapse
Affiliation(s)
- Zhong Xie
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Lauren P Shapiro
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Michael E Cahill
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Theron A Russell
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Pascale N Lacor
- Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, Illinois
| | - William L Klein
- Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, Illinois
| | - Peter Penzes
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
21
|
Analysis of the interaction of para-sulfonatocalix[8]arene with free amino acids and a six residue segment of β-amyloid peptide as a potential treatment for Alzheimer’s disease. J INCL PHENOM MACRO 2019. [DOI: 10.1007/s10847-018-00879-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
22
|
Kolisnyk B, Al-Onaizi M, Soreq L, Barbash S, Bekenstein U, Haberman N, Hanin G, Kish MT, Souza da Silva J, Fahnestock M, Ule J, Soreq H, Prado VF, Prado MAM. Cholinergic Surveillance over Hippocampal RNA Metabolism and Alzheimer's-Like Pathology. Cereb Cortex 2018; 27:3553-3567. [PMID: 27312991 DOI: 10.1093/cercor/bhw177] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The relationship between long-term cholinergic dysfunction and risk of developing dementia is poorly understood. Here we used mice with deletion of the vesicular acetylcholine transporter (VAChT) in the forebrain to model cholinergic abnormalities observed in dementia. Whole-genome RNA sequencing of hippocampal samples revealed that cholinergic failure causes changes in RNA metabolism. Remarkably, key transcripts related to Alzheimer's disease are affected. BACE1, for instance, shows abnormal splicing caused by decreased expression of the splicing regulator hnRNPA2/B1. Resulting BACE1 overexpression leads to increased APP processing and accumulation of soluble Aβ1-42. This is accompanied by age-related increases in GSK3 activation, tau hyperphosphorylation, caspase-3 activation, decreased synaptic markers, increased neuronal death, and deteriorating cognition. Pharmacological inhibition of GSK3 hyperactivation reversed deficits in synaptic markers and tau hyperphosphorylation induced by cholinergic dysfunction, indicating a key role for GSK3 in some of these pathological changes. Interestingly, in human brains there was a high correlation between decreased levels of VAChT and hnRNPA2/B1 levels with increased tau hyperphosphorylation. These results suggest that changes in RNA processing caused by cholinergic loss can facilitate Alzheimer's-like pathology in mice, providing a mechanism by which decreased cholinergic tone may increase risk of dementia.
Collapse
Affiliation(s)
| | - Mohammed Al-Onaizi
- Robarts Research Institute.,Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada N6A5K8
| | - Lilach Soreq
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Shahar Barbash
- The Edmond and Lily Safra Center for Brain Science and The Silberman Institute of Life Sciences, The Edmond J Safra Campus, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Uriya Bekenstein
- The Edmond and Lily Safra Center for Brain Science and The Silberman Institute of Life Sciences, The Edmond J Safra Campus, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Nejc Haberman
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Geula Hanin
- The Edmond and Lily Safra Center for Brain Science and The Silberman Institute of Life Sciences, The Edmond J Safra Campus, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Maxine T Kish
- Robarts Research Institute.,Department of Physiology and Pharmacology
| | | | - Margaret Fahnestock
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, CanadaL8S 4K1
| | - Jernej Ule
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Hermona Soreq
- The Edmond and Lily Safra Center for Brain Science and The Silberman Institute of Life Sciences, The Edmond J Safra Campus, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Vania F Prado
- Robarts Research Institute.,Graduate Program in Neuroscience.,Department of Physiology and Pharmacology.,Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada N6A5K8
| | - Marco A M Prado
- Robarts Research Institute.,Graduate Program in Neuroscience.,Department of Physiology and Pharmacology.,Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada N6A5K8
| |
Collapse
|
23
|
Spriggs MJ, Sumner RL, McMillan RL, Moran RJ, Kirk IJ, Muthukumaraswamy SD. Indexing sensory plasticity: Evidence for distinct Predictive Coding and Hebbian learning mechanisms in the cerebral cortex. Neuroimage 2018; 176:290-300. [PMID: 29715566 DOI: 10.1016/j.neuroimage.2018.04.060] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 03/13/2018] [Accepted: 04/25/2018] [Indexed: 11/17/2022] Open
Abstract
The Roving Mismatch Negativity (MMN), and Visual LTP paradigms are widely used as independent measures of sensory plasticity. However, the paradigms are built upon fundamentally different (and seemingly opposing) models of perceptual learning; namely, Predictive Coding (MMN) and Hebbian plasticity (LTP). The aim of the current study was to compare the generative mechanisms of the MMN and visual LTP, therefore assessing whether Predictive Coding and Hebbian mechanisms co-occur in the brain. Forty participants were presented with both paradigms during EEG recording. Consistent with Predictive Coding and Hebbian predictions, Dynamic Causal Modelling revealed that the generation of the MMN modulates forward and backward connections in the underlying network, while visual LTP only modulates forward connections. These results suggest that both Predictive Coding and Hebbian mechanisms are utilized by the brain under different task demands. This therefore indicates that both tasks provide unique insight into plasticity mechanisms, which has important implications for future studies of aberrant plasticity in clinical populations.
Collapse
Affiliation(s)
- M J Spriggs
- School of Psychology, The University of Auckland, New Zealand; Brain Research New Zealand, New Zealand.
| | - R L Sumner
- School of Psychology, The University of Auckland, New Zealand
| | - R L McMillan
- School of Pharmacy, The University of Auckland, New Zealand
| | - R J Moran
- Department Engineering Mathematics, University of Bristol, BS8 1TH, UK; Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - I J Kirk
- School of Psychology, The University of Auckland, New Zealand; Brain Research New Zealand, New Zealand
| | | |
Collapse
|
24
|
Marsh J, Alifragis P. Synaptic dysfunction in Alzheimer's disease: the effects of amyloid beta on synaptic vesicle dynamics as a novel target for therapeutic intervention. Neural Regen Res 2018; 13:616-623. [PMID: 29722304 PMCID: PMC5950662 DOI: 10.4103/1673-5374.230276] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The most prevalent form of dementia in the elderly is Alzheimer's disease. A significant contributing factor to the progression of the disease appears to be the progressive accumulation of amyloid-β42 (Aβ42), a small hydrophobic peptide. Unfortunately, attempts to develop therapies targeting the accumulation of Aβ42 have not been successful to treat or even slow down the disease. It is possible that this failure is an indication that targeting downstream effects rather than the accumulation of the peptide itself might be a more effective approach. The accumulation of Aβ42 seems to affect various aspects of physiological cell functions. In this review, we provide an overview of the evidence that implicates Aβ42 in synaptic dysfunction, with a focus on how it contributes to defects in synaptic vesicle dynamics and neurotransmitter release. We discuss data that provide new insights on the Aβ42 induced pathology of Alzheimer's disease and a more detailed understanding of its contribution to the synaptic deficiencies that are associated with the early stages of the disease. Although the precise mechanisms that trigger synaptic dysfunction are still under investigation, the available data so far has enabled us to put forward a model that could be used as a guide to generate new therapeutic targets for pharmaceutical intervention.
Collapse
Affiliation(s)
- Jade Marsh
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham, UK
| | - Pavlos Alifragis
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham, UK
| |
Collapse
|
25
|
Kaniyappan S, Chandupatla RR, Mandelkow EM, Mandelkow E. Extracellular low-n oligomers of tau cause selective synaptotoxicity without affecting cell viability. Alzheimers Dement 2017; 13:1270-1291. [PMID: 28528849 DOI: 10.1016/j.jalz.2017.04.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/27/2017] [Accepted: 04/11/2017] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Tau-mediated toxicity in Alzheimer's disease is thought to operate through low-n oligomers, rather than filamentous aggregates. However, the nature of oligomers and pathways of toxicity are poorly understood. Therefore, we investigated structural and functional aspects of highly purified oligomers of a pro-aggregant tau species. METHODS Purified oligomers of the tau repeat domain were characterized by biophysical and structural methods. Functional aspects were investigated by cellular assays ((3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay of cell viability, lactate dehydrogenase release assay [for cell toxicity], reactive oxygen species production, and calcium assay), combined with analysis of neuronal dendritic spines exposed to oligomers. RESULTS Purified low-n oligomers are roughly globular, with sizes around 1.6 to 5.4 nm, exhibit an altered conformation, but do not have substantial β-structure. Treatment of primary neurons with oligomers impairs spine morphology and density, accompanied by increased reactive oxygen species and intracellular calcium, but without affecting cell viability (by (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay of cell viability and lactate dehydrogenase release assay [for cell toxicity]). DISCUSSION Tau oligomers are toxic to synapses but not lethal to cells.
Collapse
Affiliation(s)
- Senthilvelrajan Kaniyappan
- DZNE, German Center for Neurodegenerative Diseases, Bonn, Germany; MPI for Metabolism Research, Hamburg, Germany.
| | - Ram Reddy Chandupatla
- DZNE, German Center for Neurodegenerative Diseases, Bonn, Germany; MPI for Metabolism Research, Hamburg, Germany
| | - Eva-Maria Mandelkow
- DZNE, German Center for Neurodegenerative Diseases, Bonn, Germany; MPI for Metabolism Research, Hamburg, Germany; CAESAR Research Center, Bonn, Germany
| | - Eckhard Mandelkow
- DZNE, German Center for Neurodegenerative Diseases, Bonn, Germany; MPI for Metabolism Research, Hamburg, Germany; CAESAR Research Center, Bonn, Germany.
| |
Collapse
|
26
|
Spriggs M, Cadwallader C, Hamm J, Tippett L, Kirk I. Age-related alterations in human neocortical plasticity. Brain Res Bull 2017; 130:53-59. [DOI: 10.1016/j.brainresbull.2016.12.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 12/23/2016] [Indexed: 12/17/2022]
|
27
|
Mushtaq G, Greig NH, Anwar F, Al-Abbasi FA, Zamzami MA, Al-Talhi HA, Kamal MA. Neuroprotective Mechanisms Mediated by CDK5 Inhibition. Curr Pharm Des 2016; 22:527-34. [PMID: 26601962 DOI: 10.2174/1381612822666151124235028] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 11/24/2015] [Indexed: 12/30/2022]
Abstract
Cyclin-dependent kinase 5 (CDK5) is a proline-directed serine/threonine kinase belonging to the family of cyclin-dependent kinases. In addition to maintaining the neuronal architecture, CDK5 plays an important role in the regulation of synaptic plasticity, neurotransmitter release, neuron migration and neurite outgrowth. Although various reports have shown links between neurodegeneration and deregulation of cyclin-dependent kinases, the specific role of CDK5 inhibition in causing neuroprotection in cases of neuronal insult or in neurodegenerative diseases is not wellunderstood. This article discusses current evidence for the involvement of CDK5 deregulation in neurodegenerative disorders and neurodegeneration associated with stroke through various mechanisms. These include upregulation of cyclin D1 and overactivation of CDK5 mediated neuronal cell death pathways, aberrant hyperphosphorylation of human tau proteins and/or neurofilament proteins, formation of neurofibrillary lesions, excitotoxicity, cytoskeletal disruption, motor neuron death (due to abnormally high levels of CDK5/p25) and colchicine- induced apoptosis in cerebellar granule neurons. A better understanding of the role of CDK5 inhibition in neuroprotective mechanisms will help scientists and researchers to develop selective, safe and efficacious pharmacological inhibitors of CDK5 for therapeutic use against human neurodegenerative disorders, such as Alzheimer's disease, amyotrophic lateral sclerosis and neuronal loss associated with stroke.
Collapse
Affiliation(s)
- Gohar Mushtaq
- Department of Biochemistry, College of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Nigel H Greig
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National, Institute on Aging, National Institutes of Health, Biomedical Research Center, 251 Bayview Boulevard, Baltimore, MD 21224, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Liu Z, Wang W, Feng N, Wang L, Shi J, Wang X. Parishin C's prevention of Aβ 1-42-induced inhibition of long-term potentiation is related to NMDA receptors. Acta Pharm Sin B 2016; 6:189-97. [PMID: 27175329 PMCID: PMC4857013 DOI: 10.1016/j.apsb.2016.03.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 03/22/2016] [Accepted: 03/23/2016] [Indexed: 11/29/2022] Open
Abstract
The rhizome of Gastrodia elata (GE), a herb medicine, has been used for treatment of neuronal disorders in Eastern Asia for hundreds of years. Parishin C is a major ingredient of GE. In this study, the i.c.v. injection of soluble Aβ1–42 oligomers model of LTP injury was used. We investigated the effects of parishin C on the improvement of LTP in soluble Aβ1–42 oligomer–injected rats and the underlying electrophysiological mechanisms. Parishin C (i.p. or i.c.v.) significantly ameliorated LTP impairment induced by i.c.v. injection of soluble Aβ1–42 oligomers. In cultured hippocampal neurons, soluble Aβ1–42 oligomers significantly inhibited NMDAR currents while not affecting AMPAR currents and voltage-dependent currents. Pretreatment with parishin C protected NMDA receptor currents from the damage induced by Aβ. In summary, parishin C improved LTP deficits induced by soluble Aβ1–42 oligomers. The protection by parishin C against Aβ-induced LTP damage might be related to NMDA receptors.
Collapse
|
29
|
Mushtaq G, Greig NH, Anwar F, Zamzami MA, Choudhry H, Shaik MM, Tamargo IA, Kamal MA. miRNAs as Circulating Biomarkers for Alzheimer's Disease and Parkinson's Disease. Med Chem 2016; 12:217-25. [PMID: 26527155 PMCID: PMC6138249 DOI: 10.2174/1573406411666151030112140] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 05/19/2015] [Indexed: 12/22/2022]
Abstract
Detection of biomarkers for neurodegenerative disorders (NDDs) within brain tissues of Alzheimer's disease (AD) and Parkinson's disease (PD) patients has always been hampered by our inability to access and biopsy tissue of key brain regions implicated in disease occurrence and progression. Currently, diagnosis of NDDs is principally based on clinical observations of symptoms that present at later stages of disease progression, followed by neuroimaging and, possibly, CSF evaluation. One way to potentially detect and diagnose NDDs at a far earlier stage is to screen for abnormal levels of specific disease markers within the peripheral circulation of patients with NDDs. Increasing evidence suggests that there is dysregulation of microRNAs (miRNAs) in NDDs. Peripheral blood mononuclear cells, as well as biofluids, such as plasma, serum, urine and cerebrospinal fluid, contain miRNAs that can be identified and quantified. Circulating miRNAs within blood and other biofluids may thus be characterized and used as non-invasive, diagnostic biomarkers that facilitate the early detection of disease and potentially the continual monitoring of disease progression for NDDs such as AD and PD. Plainly, such a screen is only possible with a clear understanding of which miRNAs change with disease, and when these changes occur during the progression of AD and PD. Such information is becoming increasingly available and, in the near future, may not only support disease diagnosis, but provide the opportunity to evaluate therapeutic interventions earlier in the disease process.
Collapse
Affiliation(s)
| | - Nigel H Greig
- Drug Design and Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| | | | | | | | | | | | | |
Collapse
|
30
|
Norvin D, Kim G, Baker-Nigh A, Geula C. Accumulation and age-related elevation of amyloid-β within basal forebrain cholinergic neurons in the rhesus monkey. Neuroscience 2015; 298:102-11. [DOI: 10.1016/j.neuroscience.2015.04.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 03/31/2015] [Accepted: 04/06/2015] [Indexed: 11/29/2022]
|
31
|
Baker-Nigh A, Vahedi S, Davis EG, Weintraub S, Bigio EH, Klein WL, Geula C. Neuronal amyloid-β accumulation within cholinergic basal forebrain in ageing and Alzheimer's disease. Brain 2015; 138:1722-37. [PMID: 25732182 DOI: 10.1093/brain/awv024] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 12/14/2014] [Indexed: 11/14/2022] Open
Abstract
The mechanisms that contribute to selective vulnerability of the magnocellular basal forebrain cholinergic neurons in neurodegenerative diseases, such as Alzheimer's disease, are not fully understood. Because age is the primary risk factor for Alzheimer's disease, mechanisms of interest must include age-related alterations in protein expression, cell type-specific markers and pathology. The present study explored the extent and characteristics of intraneuronal amyloid-β accumulation, particularly of the fibrillogenic 42-amino acid isoform, within basal forebrain cholinergic neurons in normal young, normal aged and Alzheimer's disease brains as a potential contributor to the selective vulnerability of these neurons using immunohistochemistry and western blot analysis. Amyloid-β1-42 immunoreactivity was observed in the entire cholinergic neuronal population regardless of age or Alzheimer's disease diagnosis. The magnitude of this accumulation as revealed by optical density measures was significantly greater than that in cortical pyramidal neurons, and magnocellular neurons in the globus pallidus did not demonstrate a similar extent of amyloid immunoreactivity. Immunoblot analysis with a panel of amyloid-β antibodies confirmed accumulation of high concentration of amyloid-β in basal forebrain early in adult life. There was no age- or Alzheimer-related alteration in total amyloid-β content within this region. In contrast, an increase in the large molecular weight soluble oligomer species was observed with a highly oligomer-specific antibody in aged and Alzheimer brains when compared with the young. Similarly, intermediate molecular weight oligomeric species displayed an increase in aged and Alzheimer brains when compared with the young using two amyloid-β42 antibodies. Compared to cortical homogenates, small molecular weight oligomeric species were lower and intermediate species were enriched in basal forebrain in ageing and Alzheimer's disease. Regional and age-related differences in accumulation were not the result of alterations in expression of the amyloid precursor protein, as confirmed by both immunostaining and western blot. Our results demonstrate that intraneuronal amyloid-β accumulation is a relatively selective trait of basal forebrain cholinergic neurons early in adult life, and increases in the prevalence of intermediate and large oligomeric assembly states are associated with both ageing and Alzheimer's disease. Selective intraneuronal amyloid-β accumulation in adult life and oligomerization during the ageing process are potential contributors to the degeneration of basal forebrain cholinergic neurons in Alzheimer's disease.
Collapse
Affiliation(s)
- Alaina Baker-Nigh
- 1 Cognitive Neurology and Alzheimer's Disease Centre, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Shahrooz Vahedi
- 1 Cognitive Neurology and Alzheimer's Disease Centre, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Elena Goetz Davis
- 1 Cognitive Neurology and Alzheimer's Disease Centre, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Sandra Weintraub
- 1 Cognitive Neurology and Alzheimer's Disease Centre, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Eileen H Bigio
- 1 Cognitive Neurology and Alzheimer's Disease Centre, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - William L Klein
- 2 Neurobiology, Northwestern University, Evanston, IL 60201, USA
| | - Changiz Geula
- 1 Cognitive Neurology and Alzheimer's Disease Centre, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| |
Collapse
|
32
|
Ferreira IL, Ferreiro E, Schmidt J, Cardoso JM, Pereira CM, Carvalho AL, Oliveira CR, Rego AC. Aβ and NMDAR activation cause mitochondrial dysfunction involving ER calcium release. Neurobiol Aging 2015; 36:680-92. [DOI: 10.1016/j.neurobiolaging.2014.09.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 08/26/2014] [Accepted: 09/02/2014] [Indexed: 11/24/2022]
|
33
|
Bu T, Zako T, Zeltner M, Sörgjerd KM, Schumacher CM, Hofer CJ, Stark WJ, Maeda M. Adsorption and separation of amyloid beta aggregates using ferromagnetic nanoparticles coated with charged polymer brushes. J Mater Chem B 2015; 3:3351-3357. [DOI: 10.1039/c4tb02029d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Adsorption and separation of toxic Aβ aggregates (fibrils and oligomers) using ferromagnetic nanoparticles functionalized with a cationic polymer (C/Co@polyMAPTAC) was demonstrated.
Collapse
Affiliation(s)
- Tong Bu
- Department of Advanced Materials Science
- School of Frontier Sciences
- The University of Tokyo
- Kashiwa, Japan
- Bioengineering Laboratory
| | - Tamotsu Zako
- Bioengineering Laboratory
- RIKEN Institute
- Saitama 351-0198, Japan
| | - Martin Zeltner
- Institute for Chemical and Bioengineering
- CH-8093 Zurich, Switzerland
| | | | | | - Corinne J. Hofer
- Institute for Chemical and Bioengineering
- CH-8093 Zurich, Switzerland
| | - Wendelin J. Stark
- Institute for Chemical and Bioengineering
- CH-8093 Zurich, Switzerland
| | - Mizuo Maeda
- Department of Advanced Materials Science
- School of Frontier Sciences
- The University of Tokyo
- Kashiwa, Japan
- Bioengineering Laboratory
| |
Collapse
|
34
|
Kamal MA, Mushtaq G, Greig NH. Current Update on Synopsis of miRNA Dysregulation in Neurological Disorders. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2015; 14:492-501. [PMID: 25714967 PMCID: PMC5878050 DOI: 10.2174/1871527314666150225143637] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 12/04/2014] [Accepted: 12/04/2014] [Indexed: 02/07/2023]
Abstract
Aberrant expression of microRNAs (miRNAs) has been implicated in various neurological disorders (NDs) of the central nervous system such as Alzheimer disease, Parkinson's disease, Huntington disease, amyotrophic lateral sclerosis, schizophrenia and autism. If dysregulated miRNAs are identified in patients suffering from NDs, this may serve as a biomarker for the earlier diagnosis and monitoring of disease progression. Identifying the role of miRNAs in normal cellular processes and understanding how dysregulated miRNA expression is responsible for their neurological effects is also critical in the development of new therapeutic strategies for NDs. miRNAs hold great promise from a therapeutic point of view especially if it can be proved that a single miRNA has the ability to influence several target genes, making it possible for the researchers to potentially modify a whole disease phenotype by modulating a single miRNA molecule. Hence, better understanding of the mechanisms by which miRNA play a role in the pathogenesis of NDs may provide novel targets to scientists and researchers for innovative therapies.
Collapse
Affiliation(s)
- Mohammad A. Kamal
- King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah 21589, Saudi Arabia
| | - Gohar Mushtaq
- Department of Biochemistry, College of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nigel H. Greig
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Biomedical Research Center, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| |
Collapse
|
35
|
Bastianetto S, Ménard C, Quirion R. Neuroprotective action of resveratrol. Biochim Biophys Acta Mol Basis Dis 2014; 1852:1195-201. [PMID: 25281824 DOI: 10.1016/j.bbadis.2014.09.011] [Citation(s) in RCA: 249] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 09/09/2014] [Accepted: 09/16/2014] [Indexed: 11/30/2022]
Abstract
Low-to-moderate red wine consumption appeared to reduce age-related neurological disorders including macular degeneration, stroke, and cognitive deficits with or without dementia. Resveratrol has been considered as one of the key ingredients responsible for the preventive action of red wine since the stilbene displays a neuroprotective action in various models of toxicity. Besides its well documented free radical scavenging and anti-inflammatory properties, resveratrol has been shown to increase the clearance of beta-amyloid, a key feature of Alzheimer's disease, and to modulate intracellular effectors associated with oxidative stress (e.g. heme oxygenase), neuronal energy homeostasis (e.g. AMP kinase), program cell death (i.e. AIF) and longevity (i.e. sirtuins). This article summarizes the most recent findings on mechanisms of action involved in the protective effects of this multi target polyphenol, and discusses its possible roles in the prevention of various age-related neurological disorders. This article is part of a Special Issue entitled: Resveratrol: Challenges in translating pre-clinical findings to improved patient outcomes.
Collapse
Affiliation(s)
- Stéphane Bastianetto
- Douglas Mental Health University Institute, McGill University, Montreal, QC H4H 1R3, Canada
| | - Caroline Ménard
- Douglas Mental Health University Institute, McGill University, Montreal, QC H4H 1R3, Canada; Department of Psychiatry, McGill University, Montreal, QC H3A 1A1, Canada; Laboratory of Neuroendocrinology of Aging, Centre Hospitalier de l'Université de Montréal Research Center, Montreal, QC H2X 0A9, Canada; Department of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Rémi Quirion
- Douglas Mental Health University Institute, McGill University, Montreal, QC H4H 1R3, Canada; Department of Psychiatry, McGill University, Montreal, QC H3A 1A1, Canada.
| |
Collapse
|
36
|
Yang JC, Chi L, Teichholtz S, Schneider A, Nanakul R, Nowacki R, Seritan A, Reed B, DeCarli C, Iragui VJ, Kutas M, Hagerman PJ, Hagerman RJ, Olichney JM. ERP abnormalities elicited by word repetition in fragile X-associated tremor/ataxia syndrome (FXTAS) and amnestic MCI. Neuropsychologia 2014; 63:34-42. [PMID: 25111034 DOI: 10.1016/j.neuropsychologia.2014.08.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 07/31/2014] [Accepted: 08/01/2014] [Indexed: 01/26/2023]
Abstract
BACKGROUND Fragile X-associated tremor/ataxia syndrome (FXTAS), a neurodegenerative disorder caused by FMR1 gene premutations, typically associated with frontal-subcortical type cognitive impairments. High prevalence (~50%) of superimposed Alzheimer׳s pathology has been reported in FMR1 premutation carriers, and standardized neuropsychological tests have not yielded any robust discriminators between FXTAS and Alzheimer׳s disease (AD) dementia. The similarities/differences in memory processes between FXTAS and early AD remain underexplored. METHODS 32-channel event-related potentials (ERPs) were obtained from a semantic judgment task in which semantically congruous (50%) and incongruous pairs repeat pseudorandomly. The N400 and late positive component (LPC) of 25 FXTAS patients (M(age)=71.2, MMSE=26.6) were compared to a matched group of 25 patients with MCI or early AD (1 mild AD dementia, 24 amnestic MCI, of whom 18 later converted to AD; M(age)=73.4, MMSE=26.4), and 25 healthy elderly. RESULTS Both patient groups showed similar reductions in the N400 repetition effect and N400 congruity effect amplitudes, compared to controls, reflecting abnormal semantic priming and repetition priming. The MCI/AD group, however, had significantly smaller LPC word repetition effects and poorer learning and memory on the CVLT than FXTAS. The LPC and N400 repetition effects both correlated with verbal memory across all subjects, but only N400 correlated with memory in FXTAS. CONCLUSION FXTAS patients show relative sparing of the LPC repetition effect, and less disruption of explicit memory than prodromal/early AD. N400 abnormalities in FXTAS appear to account for much of their mild impairments in verbal learning and memory.
Collapse
Affiliation(s)
- Jin-Chen Yang
- University of California Davis, Center for Mind and Brain, Davis, CA 95618-5412, USA; University of California Davis, Department of Neurology, School of Medicine, Sacramento, CA 95618-5412, USA.
| | - Lillian Chi
- University of California Davis, Center for Mind and Brain, Davis, CA 95618-5412, USA; University of California Davis, Department of Neurology, School of Medicine, Sacramento, CA 95618-5412, USA
| | - Sara Teichholtz
- University of California Davis, Center for Mind and Brain, Davis, CA 95618-5412, USA; University of California Davis, Department of Neurology, School of Medicine, Sacramento, CA 95618-5412, USA
| | - Andrea Schneider
- University of California Davis, M.I.N.D. Institute, School of Medicine, Sacramento, CA, USA; University of California Davis, Department of Pediatrics, School of Medicine, Sacramento, CA, USA
| | - Rawi Nanakul
- University of California Davis, Center for Mind and Brain, Davis, CA 95618-5412, USA; University of California Davis, Department of Neurology, School of Medicine, Sacramento, CA 95618-5412, USA
| | - Ralph Nowacki
- University of California San Diego, Department of Neurosciences, San Diego, CA, USA; VA San Diego Healthcare System, San Diego, CA, USA
| | - Andreea Seritan
- University of California Davis, Department of Psychiatry and Behavioral Sciences, School of Medicine, Sacramento, CA, USA
| | - Bruce Reed
- University of California Davis, Department of Neurology, School of Medicine, Sacramento, CA 95618-5412, USA
| | - Charles DeCarli
- University of California Davis, Department of Neurology, School of Medicine, Sacramento, CA 95618-5412, USA
| | - Vicente J Iragui
- University of California San Diego, Department of Neurosciences, San Diego, CA, USA; VA San Diego Healthcare System, San Diego, CA, USA
| | - Marta Kutas
- University of California San Diego, Department of Cognitive Sciences, San Diego, CA, USA
| | - Paul J Hagerman
- University of California Davis, Department of Biochemistry and Molecular Medicine, Davis, CA, USA
| | - Randi J Hagerman
- University of California Davis, M.I.N.D. Institute, School of Medicine, Sacramento, CA, USA; University of California Davis, Department of Pediatrics, School of Medicine, Sacramento, CA, USA
| | - John M Olichney
- University of California Davis, Center for Mind and Brain, Davis, CA 95618-5412, USA; University of California Davis, Department of Neurology, School of Medicine, Sacramento, CA 95618-5412, USA.
| |
Collapse
|
37
|
Heffern MC, Velasco PT, Matosziuk LM, Coomes JL, Karras C, Ratner MA, Klein WB, Eckermann AL, Meade TJ. Modulation of amyloid-β aggregation by histidine-coordinating Cobalt(III) Schiff base complexes. Chembiochem 2014; 15:1584-9. [PMID: 24961930 PMCID: PMC4166533 DOI: 10.1002/cbic.201402201] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Indexed: 01/14/2023]
Abstract
Oligomers of the Aβ42 peptide are significant neurotoxins linked to Alzheimer's disease (AD). Histidine (His) residues present at the N terminus of Aβ42 are believed to influence toxicity by either serving as metal-ion binding sites (which promote oligomerization and oxidative damage) or facilitating synaptic binding. Transition metal complexes that bind to these residues and modulate Aβ toxicity have emerged as therapeutic candidates. Cobalt(III) Schiff base complexes (Co-sb) were evaluated for their ability to interact with Aβ peptides. HPLC-MS, NMR, fluorescence, and DFT studies demonstrated that Co-sb complexes could interact with the His residues in a truncated Aβ16 peptide representing the Aβ42 N terminus. Coordination of Co-sb complexes altered the structure of Aβ42 peptides and promoted the formation of large soluble oligomers. Interestingly, this structural perturbation of Aβ correlated to reduced synaptic binding to hippocampal neurons. These results demonstrate the promise of Co-sb complexes in anti-AD therapeutic approaches.
Collapse
Affiliation(s)
- Marie C. Heffern
- Departments of Chemistry, Molecular Biosciences, Neurobiology, Biomedical Engineering, and Radiology, Northwestern University, Evanston, IL 60208-3113, USA
| | - Pauline T. Velasco
- Department of Neurobiology, Northwestern University, Evanston, IL 60208-3113, USA
| | - Lauren M. Matosziuk
- Departments of Chemistry, Molecular Biosciences, Neurobiology, Biomedical Engineering, and Radiology, Northwestern University, Evanston, IL 60208-3113, USA
| | - Joseph L. Coomes
- Departments of Chemistry, Molecular Biosciences, Neurobiology, Biomedical Engineering, and Radiology, Northwestern University, Evanston, IL 60208-3113, USA
| | - Constantine Karras
- Departments of Chemistry, Molecular Biosciences, Neurobiology, Biomedical Engineering, and Radiology, Northwestern University, Evanston, IL 60208-3113, USA
| | - Mark A. Ratner
- Department of Chemistry, Northwestern University, Evanston, IL 60208-3113, USA
| | - William B. Klein
- Department of Neurobiology, Northwestern University, Evanston, IL 60208-3113, USA
| | - Amanda L. Eckermann
- Departments of Chemistry, Molecular Biosciences, Neurobiology, Biomedical Engineering, and Radiology, Northwestern University, Evanston, IL 60208-3113, USA
| | - Thomas J. Meade
- Departments of Chemistry, Molecular Biosciences, Neurobiology, Biomedical Engineering, and Radiology, Northwestern University, Evanston, IL 60208-3113, USA
| |
Collapse
|
38
|
Spires-Jones TL, Hyman BT. The intersection of amyloid beta and tau at synapses in Alzheimer's disease. Neuron 2014; 82:756-71. [PMID: 24853936 PMCID: PMC4135182 DOI: 10.1016/j.neuron.2014.05.004] [Citation(s) in RCA: 760] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2014] [Indexed: 02/07/2023]
Abstract
The collapse of neural networks important for memory and cognition, including death of neurons and degeneration of synapses, causes the debilitating dementia associated with Alzheimer's disease (AD). We suggest that synaptic changes are central to the disease process. Amyloid beta and tau form fibrillar lesions that are the classical hallmarks of AD. Recent data indicate that both molecules may have normal roles at the synapse, and that the accumulation of soluble toxic forms of the proteins at the synapse may be on the critical path to neurodegeneration. Further, the march of neurofibrillary tangles through brain circuits appears to take advantage of recently described mechanisms of transsynaptic spread of pathological forms of tau. These two key phenomena, synapse loss and the spread of pathology through the brain via synapses, make it critical to understand the physiological and pathological roles of amyloid beta and tau at the synapse.
Collapse
Affiliation(s)
- Tara L Spires-Jones
- Centre for Cognitive and Neural Systems, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK; The Euan MacDonald Centre, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK.
| | - Bradley T Hyman
- Massachusetts General Hospital, Harvard Medical School, Neurology, 114 16(th) Street, Charlestown, MA 02129, USA.
| |
Collapse
|
39
|
Redox proteomics and the dynamic molecular landscape of the aging brain. Ageing Res Rev 2014; 13:75-89. [PMID: 24374232 DOI: 10.1016/j.arr.2013.12.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 12/04/2013] [Accepted: 12/16/2013] [Indexed: 12/13/2022]
Abstract
It is well established that the risk to develop neurodegenerative disorders increases with chronological aging. Accumulating studies contributed to characterize the age-dependent changes either at gene and protein expression level which, taken together, show that aging of the human brain results from the combination of the normal decline of multiple biological functions with environmental factors that contribute to defining disease risk of late-life brain disorders. Finding the "way out" of the labyrinth of such complex molecular interactions may help to fill the gap between "normal" brain aging and development of age-dependent diseases. To this purpose, proteomics studies are a powerful tool to better understand where to set the boundary line of healthy aging and age-related disease by analyzing the variation of protein expression levels and the major post translational modifications that determine "protein" physio/pathological fate. Increasing attention has been focused on oxidative modifications due to the crucial role of oxidative stress in aging, in addition to the fact that this type of modification is irreversible and may alter protein function. Redox proteomics studies contributed to decipher the complexity of brain aging by identifying the proteins that were increasingly oxidized and eventually dysfunctional as a function of age. The purpose of this review is to summarize the most important findings obtained by applying proteomics approaches to murine models of aging with also a brief overview of some human studies, in particular those related to dementia.
Collapse
|
40
|
Zako T, Maeda M. Application of biomaterials for the detection of amyloid aggregates. Biomater Sci 2014; 2:951-955. [DOI: 10.1039/c4bm00026a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Recent developments on biomaterials, such as proteins, nanoparticles and chemical reagents, for detecting amyloid aggregates are discussed.
Collapse
Affiliation(s)
- Tamotsu Zako
- Bioengineering Laboratory
- RIKEN Institute
- Wako, Japan
| | - Mizuo Maeda
- Bioengineering Laboratory
- RIKEN Institute
- Wako, Japan
| |
Collapse
|
41
|
Dose-dependent folic acid and memantine treatments promote synergistic or additive protection against Aβ(25–35) peptide-induced apoptosis in SH-SY5Y cells mediated by mitochondria stress-associated death signals. Food Chem Toxicol 2013; 62:538-47. [DOI: 10.1016/j.fct.2013.09.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Revised: 08/02/2013] [Accepted: 09/09/2013] [Indexed: 11/21/2022]
|
42
|
Olichney JM, Pak J, Salmon DP, Yang JC, Gahagan T, Nowacki R, Hansen L, Galasko D, Kutas M, Iragui-Madoz VJ. Abnormal P600 word repetition effect in elderly persons with preclinical Alzheimer's disease. Cogn Neurosci 2013; 4:143-51. [PMID: 24090465 DOI: 10.1080/17588928.2013.838945] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We sought cognitive event-related potential (ERP) biomarkers of "Preclinical Alzheimer's disease" (Pre-AD) using an incidental verbal learning paradigm with high sensitivity to prodromal AD. Seven elderly persons, with normal cognition at the time of ERP recordings, but who showed subsequent cognitive decline or AD pathology at autopsy (n = 5, mean Braak stage = 2.8), were compared to 12 "robust" normal elderly (RNE) persons who remained cognitively normal (Mfollow-up = 9.0 years). EEG was recorded during a word repetition paradigm (semantically congruous (50%) and incongruous target words repeat ~10-140 seconds later). The RNE P600 congruous word repetition ERP effects (New minus Old congruous words) were significantly larger than in Pre-AD (mean amplitudes = 3.28 vs. 0.10 μV, p = .04). High group discrimination (84%) was achieved (by a P600 amplitude cutoff of ~1.5 μV). Abnormal P600 word repetition effects in cognitively normal elderly persons may be an important sign of synaptic dysfunction and Preclinical AD.
Collapse
Affiliation(s)
- John M Olichney
- a Department of Neurology , University of California , Davis , CA , USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Zempel H, Luedtke J, Kumar Y, Biernat J, Dawson H, Mandelkow E, Mandelkow EM. Amyloid-β oligomers induce synaptic damage via Tau-dependent microtubule severing by TTLL6 and spastin. EMBO J 2013; 32:2920-37. [PMID: 24065130 PMCID: PMC3831312 DOI: 10.1038/emboj.2013.207] [Citation(s) in RCA: 207] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 08/22/2013] [Indexed: 01/23/2023] Open
Abstract
Mislocalization and aggregation of Aβ and Tau combined with loss of synapses and microtubules (MTs) are hallmarks of Alzheimer disease. We exposed mature primary neurons to Aβ oligomers and analysed changes in the Tau/MT system. MT breakdown occurs in dendrites invaded by Tau (Tau missorting) and is mediated by spastin, an MT-severing enzyme. Spastin is recruited by MT polyglutamylation, induced by Tau missorting triggered translocalization of TTLL6 (Tubulin-Tyrosine-Ligase-Like-6) into dendrites. Consequences are spine loss and mitochondria and neurofilament mislocalization. Missorted Tau is not axonally derived, as shown by axonal retention of photoconvertible Dendra2-Tau, but newly synthesized. Recovery from Aβ insult occurs after Aβ oligomers lose their toxicity and requires the kinase MARK (Microtubule-Affinity-Regulating-Kinase). In neurons derived from Tau-knockout mice, MTs and synapses are resistant to Aβ toxicity because TTLL6 mislocalization and MT polyglutamylation are prevented; hence no spastin recruitment and no MT breakdown occur, enabling faster recovery. Reintroduction of Tau re-establishes Aβ-induced toxicity in TauKO neurons, which requires phosphorylation of Tau's KXGS motifs. Transgenic mice overexpressing Tau show TTLL6 translocalization into dendrites and decreased MT stability. The results provide a rationale for MT stabilization as a therapeutic approach.
Collapse
Affiliation(s)
- Hans Zempel
- DZNE, German Center for Neurodegenerative Diseases, Bonn, Germany
| | | | | | | | | | | | | |
Collapse
|
44
|
Different ataxin-3 amyloid aggregates induce intracellular Ca(2+) deregulation by different mechanisms in cerebellar granule cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:3155-3165. [PMID: 24035922 DOI: 10.1016/j.bbamcr.2013.08.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 08/27/2013] [Accepted: 08/28/2013] [Indexed: 11/23/2022]
Abstract
This work aims at elucidating the relation between morphological and physicochemical properties of different ataxin-3 (ATX3) aggregates and their cytotoxicity. We investigated a non-pathological ATX3 form (ATX3Q24), a pathological expanded form (ATX3Q55), and an ATX3 variant truncated at residue 291 lacking the polyQ expansion (ATX3/291Δ). Solubility, morphology and hydrophobic exposure of oligomeric aggregates were characterized. Then we monitored the changes in the intracellular Ca(2+) levels and the abnormal Ca(2+) signaling resulting from aggregate interaction with cultured rat cerebellar granule cells. ATX3Q55, ATX3/291Δ and, to a lesser extent, ATX3Q24 oligomers displayed similar morphological and physicochemical features and induced qualitatively comparable time-dependent intracellular Ca(2+) responses. However, only the pre-fibrillar aggregates of expanded ATX3 (the only variant which forms bundles of mature fibrils) triggered a characteristic Ca(2+) response at a later stage that correlated with a larger hydrophobic exposure relative to the two other variants. Cell interaction with early oligomers involved glutamatergic receptors, voltage-gated channels and monosialotetrahexosylganglioside (GM1)-rich membrane domains, whereas cell interaction with more aged ATX3Q55 pre-fibrillar aggregates resulted in membrane disassembly by a mechanism involving only GM1-rich areas. Exposure to ATX3Q55 and ATX3/291Δ aggregates resulted in cell apoptosis, while ATX3Q24 was substantially innocuous. Our findings provide insight into the mechanisms of ATX3 aggregation, aggregate cytotoxicity and calcium level modifications in exposed cerebellar cells.
Collapse
|
45
|
Takeda S, Hashimoto T, Roe AD, Hori Y, Spires-Jones TL, Hyman BT. Brain interstitial oligomeric amyloid β increases with age and is resistant to clearance from brain in a mouse model of Alzheimer's disease. FASEB J 2013; 27:3239-48. [PMID: 23640054 PMCID: PMC3714573 DOI: 10.1096/fj.13-229666] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 04/22/2013] [Indexed: 12/21/2022]
Abstract
There is a growing body of evidence that soluble oligomeric forms of amyloid β (Aβ) play a critical role in Alzheimer's disease (AD). Despite the importance of soluble Aβ oligomers as a therapeutic target for AD, the dynamic metabolism of these Aβ species in vivo has not been elucidated because of the difficulty in monitoring brain Aβ oligomers in living animals. Here, using a unique large pore-sized membrane microdialysis, we characterized soluble Aβ oligomers in brain interstitial fluid (ISF) of awake, freely moving APP/PS1 transgenic and control WT mice. We could detect high-molecular-weight (HMW) and low-molecular-weight (LMW) Aβ oligomers in the brain ISF of living animals, which increased dramatically in an age-dependent manner (5- to 8-fold increase, 4 vs. 17-18 mo). Notably, HMW Aβ decreased more slowly than other forms of Aβ after acute γ-secretase inhibition [% decrease from the baseline (HMW vs. LMW) was 36.9 vs. 74.1% (Aβ40, P<0.05) and 25.4 vs. 88.0% (Aβ42, P<0.01)], suggesting that HMW Aβ oligomers clear more slowly than other forms from the brain. These data reveal the dynamic metabolism of neurotoxic Aβ oligomers in AD brain and could provide new insights into Aβ-targeted therapies for AD.
Collapse
Affiliation(s)
- Shuko Takeda
- Alzheimer's Disease Research Laboratory, Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Tadafumi Hashimoto
- Alzheimer's Disease Research Laboratory, Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Allyson D. Roe
- Alzheimer's Disease Research Laboratory, Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Yukiko Hori
- Alzheimer's Disease Research Laboratory, Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Tara L. Spires-Jones
- Alzheimer's Disease Research Laboratory, Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Bradley T. Hyman
- Alzheimer's Disease Research Laboratory, Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| |
Collapse
|
46
|
Lithner CU, Lacor PN, Zhao WQ, Mustafiz T, Klein WL, Sweatt JD, Hernandez CM. Disruption of neocortical histone H3 homeostasis by soluble Aβ: implications for Alzheimer's disease. Neurobiol Aging 2013; 34:2081-90. [PMID: 23582659 DOI: 10.1016/j.neurobiolaging.2012.12.028] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 12/28/2012] [Indexed: 01/08/2023]
Abstract
Amyloid-β peptide (Aβ) fragment misfolding may play a crucial role in the progression of Alzheimer's disease (AD) pathophysiology as well as epigenetic mechanisms at the DNA and histone level. We hypothesized that histone H3 homeostasis is disrupted in association with the appearance of soluble Aβ at an early stage in AD progression. We identified, localized, and compared histone H3 modifications in multiple model systems (neural-like SH-SY5Y, primary neurons, Tg2576 mice, and AD neocortex), and narrowed our focus to investigate 3 key motifs associated with regulating transcriptional activation and inhibition: acetylated lysine 14, phosphorylated serine 10 and dimethylated lysine 9. Our results in vitro and in vivo indicate that multimeric soluble Aβ may be a potent signaling molecule indirectly modulating the transcriptional activity of DNA by modulating histone H3 homeostasis. These findings reveal potential loci of transcriptional disruption relevant to AD. Identifying genes that undergo significant epigenetic alterations in response to Aβ could aid in the understanding of the pathogenesis of AD, as well as suggesting possible new treatment strategies.
Collapse
Affiliation(s)
- Christina Unger Lithner
- Alzheimer Neurobiology Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
AbstractRecent investigations into the etiology and pathogenesis of Alzheimer’s disease (AD) in the past few years have expanded to include previously unexplored and/or disconnected aspects of AD and related conditions at both the cellular and systemic levels of organization. These include how AD-associated abnormalities affect the cell cycle and neuronal differentiation state and how they recruit signal transduction, membrane trafficking and protein transcytosis mechanisms to produce a neurotoxic syndrome capable of spreading itself throughout the brain. The recent expansion of AD research into intercellular and new aspects of cellular degenerative mechanisms is causing a systemic re-evaluation of AD pathogenesis, including the roles played by well-studied elements, such as the generation of Aβ and tau protein aggregates. It is also changing our view of neurodegenerative diseases as a whole. Here we propose a conceptual framework to account for some of the emerging aspects of the role of tau in AD pathogenesis.
Collapse
|
48
|
Costa RO, Lacor PN, Ferreira IL, Resende R, Auberson YP, Klein WL, Oliveira CR, Rego AC, Pereira CMF. Endoplasmic reticulum stress occurs downstream of GluN2B subunit of N-methyl-d-aspartate receptor in mature hippocampal cultures treated with amyloid-β oligomers. Aging Cell 2012; 11:823-33. [PMID: 22708890 DOI: 10.1111/j.1474-9726.2012.00848.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder affecting both the hippocampus and the cerebral cortex. Reduced synaptic density that occurs early in the disease process seems to be partially due to the overactivation of N-methyl-d-aspartate receptors (NMDARs) leading to excitotoxicity. Recently, we demonstrated that amyloid-beta oligomers (AβO), the species implicated in synaptic loss during the initial disease stages, induce endoplasmic reticulum (ER) stress in cultured neurons. Here, we investigated whether AβO trigger ER stress by an NMDAR-dependent mechanism leading to neuronal dysfunction and analyzed the contribution of GluN2A and GluN2B subunits of this glutamate receptor. Our data revealed that AβO induce ER stress in mature hippocampal cultures, activating ER stress-associated sensors and increasing the levels of the ER chaperone GRP78. We also showed that AβO induce NADPH oxidase (NOX)-mediated superoxide production downstream of GluN2B and impairs ER and cytosolic Ca2+ homeostasis. These events precede changes in cell viability and activation of the ER stress-mediated apoptotic pathway, which was associated with translocation of the transcription factor GADD153 / CHOP to the nucleus and occurred by a caspase-12-independent mechanism. Significantly, ER stress took place after AβO interaction with GluN2B subunits. In addition, AβO-induced ER stress and hippocampal dysfunction were prevented by ifenprodil, an antagonist of GluN2B subunits, while the GluN2A antagonist NVP-AAM077 only slightly attenuated AβO-induced neurotoxicity. Taken together, our results highlight the role of GluN2B subunit of NMDARs on ER stress-mediated hippocampal dysfunction caused by AβO suggesting that it might be a potential therapeutic target during the early stages of AD.
Collapse
Affiliation(s)
- Rui O Costa
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Hall D, Edskes H. Computational modeling of the relationship between amyloid and disease. Biophys Rev 2012; 4:205-222. [PMID: 23495357 PMCID: PMC3595053 DOI: 10.1007/s12551-012-0091-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 06/21/2012] [Indexed: 01/29/2023] Open
Abstract
Amyloid is a title conferred upon a special type of linear protein aggregate that exhibits a common set of structural features and dye binding capabilities. The formation of amyloid is associated with over twenty-seven distinct human diseases which are collectively referred to as the amyloidoses. Although there is great diversity amongst the amyloidoses with regard to the polypeptide monomeric precursor, targeted tissues and the nature and time course of disease development, the common underlying link of a structurally similar amyloid aggregate has prompted the search for a unified theory of disease progression in which amyloid production is the central element. Computational modeling has allowed the formulation and testing of scientific hypotheses for exploring this relationship. However, the majority of computational studies on amyloid aggregation are pitched at the atomistic level of description, in simple ideal solution environments, with simulation time scales of the order of microseconds and system sizes limited to a hundred monomers (or less). The experimental reality is that disease related amyloid aggregation processes occur in extremely complex reaction environments (i.e. the human body), over time-scales of months to years with monitoring of the reaction achieved using extremely coarse or indirect experimental markers that yield little or no atomistic insight. Clearly a substantial gap exists between computational and experimental communities with a deficit of 'useful' computational methodology that can be directly related to available markers of disease progression. This Review will place its focus on the development of these latter types of computational models and discuss them in relation to disease onset and progression.
Collapse
Affiliation(s)
- Damien Hall
- Institute of Basic Medical Science, University of Tsukuba, Lab 225-B, Building D. 1-1-1 Tennodai, Tsukuba-shi, Ibaraki-ken 305-8577 Japan
| | - Herman Edskes
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0830 USA
| |
Collapse
|
50
|
Pozueta J, Lefort R, Shelanski ML. Synaptic changes in Alzheimer's disease and its models. Neuroscience 2012; 251:51-65. [PMID: 22687952 DOI: 10.1016/j.neuroscience.2012.05.050] [Citation(s) in RCA: 216] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 05/14/2012] [Accepted: 05/17/2012] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD) is a highly prevalent neurodegenerative disorder characterized by a progressive loss of cognition and the presence of two hallmark lesions, senile plaques (SP) and neurofibrillary tangles (NFT), which result from the accumulation and deposition of the β-amyloid peptide (Aβ) and the aggregation of hyperphosphorylated tau protein, respectively. Initially, it was thought that Aβ fibrils, which make up SP, were the root cause of the massive neurodegeneration usual found in AD brains. Over time, the longstanding emphasis on fibrillar Aβ deposits and neuronal death slowly gave way to a new paradigm involving soluble oligomeric forms of Aβ, which play a prominent role in triggering the cognitive deficits by specifically targeting synapses and disrupting synaptic signaling pathways. While this paradigm is widely accepted today in the AD field, the molecular details have not been fully elucidated. In this review, we address some of the important evidence, which has led to the Aβ oligomer-centric hypothesis as well as some of the key findings concerning the effects of Aβ oligomers on synapses at a morphological and functional level. Understanding how Aβ oligomers target synapses provides an important framework for ongoing AD research, which can lead to the development of successful therapeutic strategies designed to alter or perhaps reverse the course of the disease.
Collapse
Affiliation(s)
- J Pozueta
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain and Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, United States
| | | | | |
Collapse
|