1
|
Fu XX, Huang ZH, Wang SY, Qi JW, Luo ZJ, E Y, Zhang YD, Jiang T. Knockdown of TREML2 Alleviates Neuropathological Hallmarks and Cognitive Deficiency in a Model of Sporadic Alzheimer's Disease. J Inflamm Res 2024; 17:10471-10478. [PMID: 39654855 PMCID: PMC11627106 DOI: 10.2147/jir.s489474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/29/2024] [Indexed: 12/12/2024] Open
Abstract
Objective Recently, we revealed that triggering receptor expressed on myeloid cells-like 2 (TREML2) modulated inflammation by regulating microglial polarization and NLRP3 inflammasome activation. However, the role of TREML2 in Alzheimer's disease (AD) pathogenesis remains poorly understood. In this study, we tried to observe the impact of TREML2 on neuropathological hallmarks (including amyloid-β (Aβ) pathology, hyperphosphorylated tau and neuroinflammation) and cognitive deficiency in senescence-accelerated mouse prone substrain 8 (SAMP8) mice, an animal model of sporadic AD. Methods A lentiviral-based strategy was employed to manipulate TREML2 levels in the brain of SAMP8 mice. Enzyme-linked immunosorbent assay was used to detect the protein levels of inflammatory cytokines, Aβ42 and hyperphosphorylated tau. The mRNA levels of microglial polarization markers were assessed by qRT-PCR. Morris water maze test was performed to evaluate the spatial cognitive functions. Results TREML2 overexpression elevated inflammatory cytokines levels, induced microglial M1-type polarization, and exacerbated Aβ and tau pathology in SAMP8 mice. Contrastingly, knocking down TREML2 mitigated inflammatory cytokines release, promoted microglial M2-type polarization, ameliorated Aβ and tau pathology, and rescued cognitive deficiency in SAMP8 mice. Conclusion This study offers the first in vivo evidence that TREML2 contributes to the pathogenesis of AD. Furthermore, this study also proves that inhibition of TREML2 signaling may represent a potential treatment strategy for this disease.
Collapse
Affiliation(s)
- Xin-Xin Fu
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, People’s Republic of China
- Department of Pharmacology, Nanjing First Hospital, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Zhi-Hang Huang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Shi-Yao Wang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Jing-Wen Qi
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Zi-Jian Luo
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Yan E
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Ying-Dong Zhang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Teng Jiang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, People’s Republic of China
| |
Collapse
|
2
|
Liu D, Zhang H, Liu C, Liu J, Liu Y, Bai N, Zhou Q, Xu Z, Li L, Liu H. Systematic review and meta-analysis of the association between ABCA7 common variants and Alzheimer's disease in non-Hispanic White and Asian cohorts. Front Aging Neurosci 2024; 16:1406573. [PMID: 39484364 PMCID: PMC11524920 DOI: 10.3389/fnagi.2024.1406573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/30/2024] [Indexed: 11/03/2024] Open
Abstract
Background and aims The relationship between the ABCA7 gene and Alzheimer's disease (AD) has been widely studied across various populations. However, the results have been inconsistent. This meta-analysis aimed to evaluate the association of ABCA7 polymorphisms with AD risk, including specific subtypes such as late-onset Alzheimer's disease (LOAD). Methods Relevant studies were identified through comprehensive database searches, and the quality of each study was assessed using the Newcastle-Ottawa Scale (NOS). Allele and genotype frequencies were extracted from the included studies. The pooled odds ratios (OR) with corresponding 95% confidence intervals (CI) were calculated using random-effects or fixed-effects models. Multiple testing corrections were conducted using the false discovery rate (FDR) method. The Cochran Q statistic and I2 metric were used to evaluate heterogeneity between studies, while Egger's test and funnel plots were employed to assess publication bias. Results A total of 36 studies, covering 21 polymorphisms and involving 31,809 AD cases and 44,994 controls, were included in this meta-analysis. NOS scores ranged from 7 to 9, indicating high-quality studies. A total of 11 SNPs (rs3764650, rs3752246, rs4147929, rs3752232, rs3752243, rs3764645, rs4147934, rs200538373, rs4147914, rs4147915, and rs115550680) in ABCA7 were significantly associated with AD risk. Among these SNPs, two (rs3764650 and rs3752246) were also found to be related to the late-onset AD (LOAD) subtype. In addition, two SNPs (rs4147929 and rs4147934) were associated with the susceptibility to AD only in non-Hispanic White populations. A total of 10 SNPs (rs3764647, rs3752229, rs3752237, rs4147932, rs113809142, rs3745842, rs3752239, rs4147918, rs74176364, and rs117187003) showed no significant relationship with AD risk. Sensitivity analyses confirmed the reliability of the original results, and heterogeneity was largely attributed to deviations from Hardy-Weinberg equilibrium, ethnicity, and variations between individual studies. Conclusion The available evidence suggests that specific ABCA7 SNPs may be associated with AD risk. Future studies with larger sample sizes will be necessary to confirm these results. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier: CRD42024540539.
Collapse
Affiliation(s)
- Da Liu
- Department of Clinical Medicine, North Sichuan Medical College, Nanchong, China
- Department of Neurology, The Third People's Hospital of Chengdu, Chengdu, China
| | - Hongwei Zhang
- Department of Clinical Medicine, North Sichuan Medical College, Nanchong, China
- Department of Neurology, The Third People's Hospital of Chengdu, Chengdu, China
| | - Cao Liu
- Chengdu Municipal Health Commission, Chengdu, China
| | - Jianyu Liu
- Department of Neurology, The Third People's Hospital of Chengdu, Chengdu, China
| | - Yan Liu
- Department of Neurology, The Third People's Hospital of Chengdu, Chengdu, China
| | - Na Bai
- Department of Neurology, The Sixth People’s Hospital of Chengdu, Chengdu, China
| | - Qiang Zhou
- Department of Neurology, The Third People's Hospital of Chengdu, Chengdu, China
| | - Zhiyao Xu
- Department of Neurology, The Third People's Hospital of Chengdu, Chengdu, China
- Medical College of Southwest Jiaotong University, Chengdu, China
| | - Linyan Li
- Department of Clinical Medicine, North Sichuan Medical College, Nanchong, China
- Department of Neurology, The Third People's Hospital of Chengdu, Chengdu, China
| | - Hua Liu
- Department of Neurology, The Third People's Hospital of Chengdu, Chengdu, China
| |
Collapse
|
3
|
Gialama V, Siokas V, Liampas I, Tsouris Z, Stamati P, Aslanidou P, Provatas A, Tsimourtou V, Xiromerisiou G, Bogdanos DP, Dardiotis E. Alzheimer's Disease and Effects of ABCA7 Polymorphisms: A Review. J Integr Neurosci 2024; 23:164. [PMID: 39344232 DOI: 10.31083/j.jin2309164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/26/2024] [Accepted: 06/19/2024] [Indexed: 10/01/2024] Open
Abstract
Alzheimer's Disease (AD) is a progressive neurodegenerative disease and the main cause of dementia. Its etiology remains largely unclear, though genetic and environmental factors appear to confer susceptibility to AD development. This study assessed the role of ATP-binding Cassette A Subfamily 7 (ABCA7) genetic polymorphisms, as ongoing research suggests they have a role in the development of AD. We conducted a PubMed, Google Scholar, and Scopus search to identify and assess all AD studies examining ABCA7 variants in different populations and ethnicities. The last search was conducted on February 8, 2023. Inclusion and exclusion criteria were applied and only the studies that met the inclusion criteria were included in this review. Seventeen studies were finally included. According to the results, ABCA7 variants infer different risks for AD among populations with different ancestries. African American populations show a higher risk for AD, carrying the five novel variants rs115550680, rs142076058, rs10405305, rs3764647, and rs567222111. Asian populations also have an increased risk for AD, harboring three variants. ABCA7 genetic variability contributes to AD development and shows racial disparities. African American and Asian populations seem to be at greater risk of developing AD. These results may assist future research efforts for the early and accurate diagnosis of AD. Moreover, further exploration of the mechanisms of ABCA7 in the context of AD could identify potential therapeutic targets.
Collapse
Affiliation(s)
- Vaia Gialama
- Department of Neurology, Laboratory of Neurogenetics, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41100 Larissa, Greece
| | - Vasileios Siokas
- Department of Neurology, Laboratory of Neurogenetics, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41100 Larissa, Greece
| | - Ioannis Liampas
- Department of Neurology, Laboratory of Neurogenetics, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41100 Larissa, Greece
| | - Zisis Tsouris
- Department of Neurology, Laboratory of Neurogenetics, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41100 Larissa, Greece
| | - Polyxeni Stamati
- Department of Neurology, Laboratory of Neurogenetics, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41100 Larissa, Greece
| | - Paraskevi Aslanidou
- Department of Neurology, Laboratory of Neurogenetics, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41100 Larissa, Greece
| | - Antonios Provatas
- Department of Neurology, Laboratory of Neurogenetics, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41100 Larissa, Greece
| | - Vana Tsimourtou
- Department of Neurology, Laboratory of Neurogenetics, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41100 Larissa, Greece
| | - Georgia Xiromerisiou
- Department of Neurology, Laboratory of Neurogenetics, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41100 Larissa, Greece
| | - Dimitrios P Bogdanos
- Department of Rheumatology and Clinical Immunology, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41100 Larissa, Greece
| | - Efthimios Dardiotis
- Department of Neurology, Laboratory of Neurogenetics, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41100 Larissa, Greece
| |
Collapse
|
4
|
Ge Y, Chen S, Wu B, Zhang Y, Wang J, He X, Liu W, Chen Y, Ou Y, Shen X, Huang Y, Gan Y, Yang L, Ma L, Ma Y, Chen K, Chen S, Cui M, Tan L, Dong Q, Zhao Q, Wang Y, Jia J, Yu J. Genome-wide meta-analysis identifies ancestry-specific loci for Alzheimer's disease. Alzheimers Dement 2024; 20:6243-6256. [PMID: 39023044 PMCID: PMC11497642 DOI: 10.1002/alz.14121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 07/20/2024]
Abstract
INTRODUCTION Alzheimer's disease (AD) is a devastating neurological disease with complex genetic etiology. Yet most known loci have only identified from the late-onset type AD in populations of European ancestry. METHODS We performed a two-stage genome-wide association study (GWAS) of AD totaling 6878 Chinese and 63,926 European individuals. RESULTS In addition to the apolipoprotein E (APOE) locus, our GWAS of two independent Chinese samples uncovered three novel AD susceptibility loci (KIAA2013, SLC52A3, and TCN2) and a novel ancestry-specific variant within EGFR (rs1815157). More replicated variants were observed in the Chinese (31%) than in the European samples (15%). In combining genome-wide associations and functional annotations, EGFR and TCN2 were prioritized as two of the most biologically significant genes. Phenome-wide Mendelian randomization suggests that high mean corpuscular hemoglobin concentration might protect against AD. DISCUSSION The current study reveals novel AD susceptibility loci, emphasizes the importance of diverse populations in AD genetic research, and advances our understanding of disease etiology. HIGHLIGHTS Loci KIAA2013, SLC52A3, and TCN2 were associated with Alzheimer's disease (AD) in Chinese populations. rs1815157 within the EGFR locus was associated with AD in Chinese populations. The genetic architecture of AD varied between Chinese and European populations. EGFR and TCN2 were prioritized as two of the most biologically significant genes. High mean corpuscular hemoglobin concentrations might have protective effects against AD.
Collapse
Affiliation(s)
- Yi‐Jun Ge
- Department of Neurology and Institute of NeurologyHuashan HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai Medical CollegeNational Center for Neurological DisordersFudan UniversityShanghaiChina
| | - Shi‐Dong Chen
- Department of Neurology and Institute of NeurologyHuashan HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai Medical CollegeNational Center for Neurological DisordersFudan UniversityShanghaiChina
| | - Bang‐Sheng Wu
- Department of Neurology and Institute of NeurologyHuashan HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai Medical CollegeNational Center for Neurological DisordersFudan UniversityShanghaiChina
| | - Ya‐Ru Zhang
- Department of Neurology and Institute of NeurologyHuashan HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai Medical CollegeNational Center for Neurological DisordersFudan UniversityShanghaiChina
| | - Jun Wang
- Department of Neurology and Centre for Clinical NeuroscienceDaping HospitalThird Military Medical UniversityChongqingChina
| | - Xiao‐Yu He
- Department of Neurology and Institute of NeurologyHuashan HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai Medical CollegeNational Center for Neurological DisordersFudan UniversityShanghaiChina
| | - Wei‐Shi Liu
- Department of Neurology and Institute of NeurologyHuashan HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai Medical CollegeNational Center for Neurological DisordersFudan UniversityShanghaiChina
| | - Yi‐Lin Chen
- Department of Neurology and Institute of NeurologyHuashan HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai Medical CollegeNational Center for Neurological DisordersFudan UniversityShanghaiChina
| | - Ya‐Nan Ou
- Department of NeurologyQingdao Municipal HospitalQingdao UniversityQingdaoChina
| | - Xue‐Ning Shen
- Department of Neurology and Institute of NeurologyHuashan HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai Medical CollegeNational Center for Neurological DisordersFudan UniversityShanghaiChina
| | - Yu‐Yuan Huang
- Department of Neurology and Institute of NeurologyHuashan HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai Medical CollegeNational Center for Neurological DisordersFudan UniversityShanghaiChina
| | - Yi‐Han Gan
- Department of Neurology and Institute of NeurologyHuashan HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai Medical CollegeNational Center for Neurological DisordersFudan UniversityShanghaiChina
| | - Liu Yang
- Department of Neurology and Institute of NeurologyHuashan HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai Medical CollegeNational Center for Neurological DisordersFudan UniversityShanghaiChina
| | - Ling‐Zhi Ma
- Department of NeurologyQingdao Municipal HospitalQingdao UniversityQingdaoChina
| | - Ya‐Hui Ma
- Department of NeurologyThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Ke‐Liang Chen
- Department of Neurology and Institute of NeurologyHuashan HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai Medical CollegeNational Center for Neurological DisordersFudan UniversityShanghaiChina
| | - Shu‐Fen Chen
- Department of Neurology and Institute of NeurologyHuashan HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai Medical CollegeNational Center for Neurological DisordersFudan UniversityShanghaiChina
| | - Mei Cui
- Department of Neurology and Institute of NeurologyHuashan HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai Medical CollegeNational Center for Neurological DisordersFudan UniversityShanghaiChina
| | - Lan Tan
- Department of NeurologyQingdao Municipal HospitalQingdao UniversityQingdaoChina
| | - Qiang Dong
- Department of Neurology and Institute of NeurologyHuashan HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai Medical CollegeNational Center for Neurological DisordersFudan UniversityShanghaiChina
| | - Qian‐Hua Zhao
- Department of Neurology and Institute of NeurologyHuashan HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai Medical CollegeNational Center for Neurological DisordersFudan UniversityShanghaiChina
| | - Yan‐Jiang Wang
- Department of Neurology and Centre for Clinical NeuroscienceDaping HospitalThird Military Medical UniversityChongqingChina
| | - Jian‐Ping Jia
- Innovation Center for Neurological Disorders and Department of NeurologyNational Clinical Research Center for Geriatric DiseasesXuanwu HospitalCapital Medical UniversityBeijingChina
| | - Jin‐Tai Yu
- Department of Neurology and Institute of NeurologyHuashan HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai Medical CollegeNational Center for Neurological DisordersFudan UniversityShanghaiChina
| |
Collapse
|
5
|
Winfree RL, Nolan E, Dumitrescu L, Blennow K, Zetterberg H, Gifford KA, Pechman KR, Seto M, Petyuk VA, Wang Y, Schneider J, Bennett DA, Jefferson AL, Hohman TJ. Variants in the MS4A cluster interact with soluble TREM2 expression on biomarkers of neuropathology. Mol Neurodegener 2024; 19:41. [PMID: 38760857 PMCID: PMC11101336 DOI: 10.1186/s13024-024-00727-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 04/11/2024] [Indexed: 05/19/2024] Open
Abstract
Recent evidence suggests that Alzheimer's disease (AD) genetic risk variants (rs1582763 and rs6591561) of the MS4A locus are genome-wide significant regulators of soluble TREM2 levels such that the minor allele of the protective variant (rs1582763) is associated with higher sTREM2 and lower AD risk while the minor allele of (rs6591561) relates to lower sTREM2 and higher AD risk. Our group previously found that higher sTREM2 relates to higher Aβ40, worse blood-brain barrier (BBB) integrity (measured with the CSF/plasma albumin ratio), and higher CSF tau, suggesting strong associations with amyloid abundance and both BBB and neurodegeneration complicate interpretation. We expand on this work by leveraging these common variants as genetic tools to tune the interpretation of high CSF sTREM2, and by exploring the potential modifying role of these variants on the well-established associations between CSF sTREM2 as well as TREM2 transcript levels in the brain with AD neuropathology. Biomarker analyses leveraged data from the Vanderbilt Memory & Aging Project (n = 127, age = 72 ± 6.43) and were replicated in the Alzheimer's Disease Neuroimaging Initiative (n = 399, age = 73 ± 7.39). Autopsy analyses were performed leveraging data from the Religious Orders Study and Rush Memory and Aging Project (n = 577, age = 89 ± 6.46). We found that the protective variant rs1582763 attenuated the association between CSF sTREM2 and Aβ40 (β = -0.44, p-value = 0.017) and replicated this interaction in ADNI (β = -0.27, p = 0.017). We did not observe this same interaction effect between TREM2 mRNA levels and Aβ peptides in brain (Aβ total β = -0.14, p = 0.629; Aβ1-38, β = 0.11, p = 0.200). In contrast to the effects on Aβ, the minor allele of this same variant seemed to enhance the association with blood-brain barrier dysfunction (β = 7.0e-4, p = 0.009), suggesting that elevated sTREM2 may carry a much different interpretation in carriers vs. non-carriers of this allele. When evaluating the risk variant (rs6591561) across datasets, we did not observe a statistically significant interaction against any outcome in VMAP and observed opposing directions of associations in ADNI and ROS/MAP on Aβ levels. Together, our results suggest that the protective effect of rs1582763 may act by decoupling the associations between sTREM2 and amyloid abundance, providing important mechanistic insight into sTREM2 changes and highlighting the need to incorporate genetic context into the analysis of sTREM2 levels, particularly if leveraged as a clinical biomarker of disease in the future.
Collapse
Affiliation(s)
- Rebecca L Winfree
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA.
- Pharmacology Department, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Emma Nolan
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Epidemiology Doctoral Program, School of Medicine, Vanderbilt University, Nashville, TN, USA
| | - Logan Dumitrescu
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 431 41, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 431 41, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Katherine A Gifford
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kimberly R Pechman
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mabel Seto
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Vladislav A Petyuk
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Yanling Wang
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Julie Schneider
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Pathology, Rush University Medical Center, Chicago, IL, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Angela L Jefferson
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Timothy J Hohman
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Pharmacology Department, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
- Epidemiology Doctoral Program, School of Medicine, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
6
|
Sakkaki E, Jafari B, Gharesouran J, Rezazadeh M. Gene expression patterns of CRYM and SIGLEC10 in Alzheimer's disease: potential early diagnostic indicators. Mol Biol Rep 2024; 51:349. [PMID: 38401023 DOI: 10.1007/s11033-023-09113-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 12/06/2023] [Indexed: 02/26/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurological condition that may lead to dementia as well as a slow and steady decline in cognitive ability. Finding early signs that may be used in the diagnosis of AD is still a difficult aim to achieve in the field of medical practice. METHODS AND RESULTS The purpose of this research was to investigate to determine any differences in the gene expression patterns of crystallin mu (CRYM) and sialic acid-binding immunoglobulin-like lectin 10 (SIGLEC10) in whole blood samples obtained from fifty individuals who were diagnosed with AD and fifty individuals as a control group. When compared with controls, it was discovered that the expression of the CRYM gene was substantially decreased in AD patients, but the expression of the SIGLEC10 gene was significantly higher. A positive correlation between CRYM and SIGLEC10 was noticed solely in patients with AD. Furthermore, assessing the diagnostic value of these genes, CRYM and SIGLEC10 transcript levels displayed an area under the curve (AUC) of 0.74 and 0.81, respectively. CONCLUSIONS These results suggest that alterations in CRYM and SIGLEC10 expression may be implicated in AD pathology and that these genes expression levels can potentially serve as biomarkers for early detection and diagnosis of AD. Nevertheless, further validation of these findings requires the inclusion of more extensive and heterogeneous cohorts. The findings derived from this study possess the capability to offer a significant contribution towards the progression of innovative diagnostic and therapeutic strategies for AD.
Collapse
Affiliation(s)
- Ehsan Sakkaki
- Department of Genetics, Ahar Branch, Islamic Azad University, Ahar, Iran
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behboud Jafari
- Department of Microbiology, Ahar Branch, Islamic Azad University, Ahar, Iran.
| | - Jalal Gharesouran
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Rezazadeh
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
7
|
Li Y, Li J, Tang X, Xu J, Liu R, Jiang L, Tian J, Zhang Y, Wang D, Sun K, Xu B, Zhao W, Hui R, Gao R, Song L, Yuan J, Zhao X. Association of NPC1L1 and HMGCR gene polymorphisms with coronary artery calcification in patients with premature triple-vessel coronary disease. BMC Med Genomics 2024; 17:22. [PMID: 38233830 PMCID: PMC10795340 DOI: 10.1186/s12920-024-01802-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 01/09/2024] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND Coronary artery calcification (CAC) is a highly specific marker of atherosclerosis. Niemann-Pick C1-like 1 (NPC1L1) and 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR) are the therapeutic targets of ezetimibe and statins, respectively, which are important for the progression of atherosclerosis. However, CAC's genetic susceptibility with above targets is still unknown. We aimed to investigate the association of NPC1L1 and HMGCR gene polymorphisms with CAC in patients with premature triple-vessel disease (PTVD). METHODS Four single nucleotide polymorphisms (SNPs) (rs11763759, rs4720470, rs2072183, rs2073547) of NPC1L1, and three SNPs (rs12916, rs2303151, rs4629571) of HMGCR were genotyped in 872 PTVD patients. According to the coronary angiography results, patients were divided into low-degree CAC group and high-degree CAC group. RESULTS A total of 872 PTVD patients (mean age, 47.71 ± 6.12; male, 72.8%) were finally included for analysis. Multivariate logistic regression analysis showed no significant association between the SNPs of NPC1L1 and HMGCR genes and high-degree CAC in the total population (P > 0.05). Subgroup analysis by gender revealed that the variant genotype (TT/CT) of rs4720470 on NPC1L1 gene was associated with increased risk for high-degree CAC in male patients only (OR = 1.505, 95% CI: 1.008-2.249, P = 0.046) in dominant model, but no significant association was found in female population, other SNPs of NPC1L1 and HMGCR genes (all P > 0.05). CONCLUSIONS We reported for the first time that the rs4720470 on NPC1L1 gene was associated with high-degree CAC in male patients with PTVD. In the future, whether therapies related to this target could reduce CAC and cardiovascular events deserves further investigation.
Collapse
Affiliation(s)
- Yulong Li
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, Xicheng District, Beijing, 100037, China
| | - Jiawen Li
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, Xicheng District, Beijing, 100037, China
| | - Xiaofang Tang
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, Xicheng District, Beijing, 100037, China
| | - Jingjing Xu
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, Xicheng District, Beijing, 100037, China
| | - Ru Liu
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, Xicheng District, Beijing, 100037, China
| | - Lin Jiang
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, Xicheng District, Beijing, 100037, China
| | - Jian Tian
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, Xicheng District, Beijing, 100037, China
| | - Yin Zhang
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, Xicheng District, Beijing, 100037, China
| | - Dong Wang
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, Xicheng District, Beijing, 100037, China
| | - Kai Sun
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, Xicheng District, Beijing, 100037, China
| | - Bo Xu
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, Xicheng District, Beijing, 100037, China
| | - Wei Zhao
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, Xicheng District, Beijing, 100037, China
| | - Rutai Hui
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, Xicheng District, Beijing, 100037, China
| | - Runlin Gao
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, Xicheng District, Beijing, 100037, China
| | - Lei Song
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, Xicheng District, Beijing, 100037, China.
| | - Jinqing Yuan
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, Xicheng District, Beijing, 100037, China.
| | - Xueyan Zhao
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, Xicheng District, Beijing, 100037, China.
| |
Collapse
|
8
|
Zhang J, Wang Y, Zhang Y, Yao J. Genome-wide association study in Alzheimer's disease: a bibliometric and visualization analysis. Front Aging Neurosci 2023; 15:1290657. [PMID: 38094504 PMCID: PMC10716290 DOI: 10.3389/fnagi.2023.1290657] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/08/2023] [Indexed: 02/23/2024] Open
Abstract
BACKGROUND Thousands of research studies concerning genome-wide association studies (GWAS) in Alzheimer's disease (AD) have been published in the last decades. However, a comprehensive understanding of the current research status and future development trends of GWAS in AD have not been clearly shown. In this study, we tried to gain a systematic overview of GWAS in AD by bibliometric and visualization analysis. METHODS The literature search terms are: ("genome-wide analysis" or "genome-wide association study" or "whole-genome analysis") AND ("Alzheimer's Disease" or "Alzheimer Disease"). Relevant publications were extracted from the Web of Science Core Collection (WoSCC) database. Collected data were further analyzed using VOSviewer, CiteSpace and R package Bibliometrix. The countries, institutions, authors and scholar collaborations were investigated. The co-citation analysis of publications was visualized. In addition, research hotspots and fronts were examined. RESULTS A total of 1,350 publications with 59,818 citations were identified. The number of publications and citations presented a significant rising trend since 2013. The United States was the leading country with an overwhelming number of publications (775) and citations (42,237). The University of Washington and Harvard University were the most prolific institutions with 101 publications each. Bennett DA was the most influential researcher with the highest local H-index. Neurobiology of Aging was the journal with the highest number of publications. Aβ, tau, immunity, microglia and DNA methylation were research hotspots. Disease and causal variants were research fronts. CONCLUSION The most frequently studied AD pathogenesis and research hotspots are (1) Aβ and tau, (2) immunity and microglia, with TREM2 as a potential immunotherapy target, and (3) DNA methylation. The research fronts are (1) looking for genetic similarities between AD and other neurological diseases and syndromes, and (2) searching for causal variants of AD. These hotspots suggest noteworthy directions for future studies on AD pathogenesis and genetics, in which basic research regarding immunity is promising for clinical conversion. The current under-researched directions are (1) GWAS in AD biomarkers based on large sample sizes, (2) studies of causal variants of AD, and (3) GWAS in AD based on non-European populations, which need to be strengthened in the future.
Collapse
Affiliation(s)
- Junyao Zhang
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yinuo Wang
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingying Zhang
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junyan Yao
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Anesthesiology and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Ding Y, Chen H, Yan Y, Qiu Y, Zhao A, Li B, Xu W, Deng Y. Relationship Between FERMT2, CELF1, COPI, CHRNA2, and ABCA7 Genetic Polymorphisms and Alzheimer's Disease Risk in the Southern Chinese Population. J Alzheimers Dis Rep 2023; 7:1247-1257. [PMID: 38025799 PMCID: PMC10657721 DOI: 10.3233/adr-230072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 10/05/2023] [Indexed: 12/01/2023] Open
Abstract
Background Alzheimer's disease (AD) is a multi-gene inherited disease, and apolipoprotein E (APOE) ɛ4 is a strong risk factor. Other genetic factors are important but limited. Objective This study aimed to investigate the relationship between 17 single-nucleotide polymorphisms (SNPs) and AD in the Southern Chinese populations. Methods We recruited 242 AD patients and 208 controls. The SNaPshot technique was used to detect the SNPs. Results Adjusted for sex and age, we found rs6572869 (FERMT2), rs11604680 (CELF1), and rs1317149 (CELF1) were associated with AD risk in the dominant (rs6572869: p = 0.022, OR = 1.55; rs11604680: p = 0.007, OR = 1.68; rs1317149: p = 0.033, OR = 1.50) and overdominant models (rs6572869: p = 0.001, OR = 1.96; rs11604680: p = 0.002, OR = 1.82; rs1317149: p = 0.003, OR = 1.80). rs9898218 (COPI) was associated with AD risk in the overdominant model (p = 0.004, OR = 1.81). Further, rs2741342 (CHRNA2) was associated with AD protection in the dominant (p = 0.002, OR = 0.5) and additive models (p = 0.002, OR = 0.64). Mutations in rs10742814 (CELF1), rs11039280 (CELF1), and rs3752242 (ABCA7) contributed to AD protection. Among them, rs10742814 (CELF1), rs3752242 (ABCA7), and rs11039280 (CELF1) were more significantly associated with AD carrying APOE ɛ4, whereas rs1317149 (CELF1) showed an opposite trend. Interestingly, rs4147912 (ABCA7) and rs2516049 (HLA-DRB1) were identified to be relevant with AD carrying APOE ɛ4. Using expression quantitative trait locus analysis, we found polymorphisms in CELF1 (rs10742814 and rs11039280), ABCA7 (rs4147912), HLA-DRB1 (rs2516049), and ADGRF4 (rs1109581) correlated with their corresponding gene expression in the brain. Conclusions We identified four risk and four protective SNPs associated with AD in the Southern Chinese population, with different correlations between APOE ɛ4 carriers and non-carriers. rs4147912 (ABCA7) and rs2516049 (HLA-DRB1) were associated with AD carrying APOE ɛ4.
Collapse
Affiliation(s)
- Yanfei Ding
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haijuan Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Yan
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yinghui Qiu
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Aonan Zhao
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Binyin Li
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Xu
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yulei Deng
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Neurology, Ruijin Hospital, Luwan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
Li Y, Xu M, Xiang BL, Li X, Zhang DF, Zhao H, Bi R, Yao YG. Functional genomics identify causal variant underlying the protective CTSH locus for Alzheimer's disease. Neuropsychopharmacology 2023; 48:1555-1566. [PMID: 36739351 PMCID: PMC10516988 DOI: 10.1038/s41386-023-01542-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/30/2022] [Accepted: 01/25/2023] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is the most prevalent age-related neurodegenerative disease, which has a high heritability of up to 79%. Exploring the genetic basis is essential for understanding the pathogenic mechanisms underlying AD development. Recent genome-wide association studies (GWASs) reported an AD-associated signal in the Cathepsin H (CTSH) gene in European populations. However, the exact functional/causal variant(s), and the genetic regulating mechanism of CTSH in AD remain to be determined. In this study, we carried out a comprehensive study to characterize the role of CTSH variants in the pathogenesis of AD. We identified rs2289702 in CTSH as the most significant functional variant that is associated with a protective effect against AD. The genetic association between rs2289702 and AD was validated in independent cohorts of the Han Chinese population. The CTSH mRNA expression level was significantly increased in AD patients and AD animal models, and the protective allele T of rs2289702 was associated with a decreased expression level of CTSH through the disruption of the binding affinity of transcription factors. Human microglia cells with CTSH knockout showed a significantly increased phagocytosis of Aβ peptides. Our study identified CTSH as being involved in AD genetic susceptibility and uncovered the genetic regulating mechanism of CTSH in pathogenesis of AD.
Collapse
Affiliation(s)
- Yu Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
| | - Min Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
| | - Bo-Lin Xiang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
| | - Xiao Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
| | - Deng-Feng Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
| | - Hui Zhao
- KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Yunnan, 650204, Kunming, China
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Hong Kong Branch of CAS Center for Excellence in Animal Evolution and Genetics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Rui Bi
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650204, Yunnan, China.
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, Yunnan, China.
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Yong-Gang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650204, Yunnan, China.
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, Yunnan, China.
- KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Yunnan, 650204, Kunming, China.
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
11
|
Zhao W, Smith J, Wang Y, Chintalapati M, Ammous F, Yu M, Moorjani P, Ganna A, Gross A, Dey S, Benerjee J, Chatterjee P, Dey A, Lee J, Kardia S. Polygenic Risk Scores for Alzheimer's Disease and General Cognitive Function Are Associated With Measures of Cognition in Older South Asians. J Gerontol A Biol Sci Med Sci 2023; 78:743-752. [PMID: 36782352 PMCID: PMC10172981 DOI: 10.1093/gerona/glad057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Indexed: 02/15/2023] Open
Abstract
Genome-wide association studies (GWAS) conducted in European ancestry (EA) have identified hundreds of single-nucleotide polymorphisms (SNPs) associated with general cognitive function and/or Alzheimer's disease (AD). The association between these SNPs and cognitive function has not been fully evaluated in populations with complex genetic substructure such as South Asians. This study investigated whether SNPs identified in EA GWAS, either individually or as polygenic risk scores (PRSs), were associated with general cognitive function and 5 broad cognitive domains in 932 South Asians from the Diagnostic Assessment of Dementia for the Longitudinal Aging Study in India (LASI-DAD). We found that SNPs identified from AD GWAS were more strongly associated with cognitive function in LASI-DAD than those from a GWAS of general cognitive function. PRSs for general cognitive function and AD explained up to 1.1% of the variability in LASI-DAD cognitive domain scores. Our study represents an important stepping stone toward better characterization of the genetic architecture of cognitive aging in the Indian/South Asian population and highlights the need for further research that may lead to the identification of new variants unique to this population.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, Michigan, USA
| | - Jennifer A Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, Michigan, USA
| | - Yi Zhe Wang
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Manjusha Chintalapati
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA
- Center for Computational Biology, University of California, Berkeley, Berkeley, California, USA
| | - Farah Ammous
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Miao Yu
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Priya Moorjani
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA
- Center for Computational Biology, University of California, Berkeley, Berkeley, California, USA
| | - Andrea Ganna
- Institute for Molecular Medicine Finland, Helsinki, Finland
| | - Alden Gross
- Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sharmistha Dey
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Joyita Benerjee
- Department of Geriatric Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Prasun Chatterjee
- Department of Geriatric Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Aparajit B Dey
- Department of Geriatric Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Jinkook Lee
- Department of Economics, University of Southern California, Los Angeles, California, USA
| | - Sharon L R Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
12
|
Gao S, Hao JW, Zhao YN, Li X, Wang T, Han ZF, Sun BL, Sun JY, Liu GY. An updated analysis of the association between CD2-associated protein gene rs9349407 polymorphism and Alzheimer’s disease in Chinese population. Front Neuroinform 2022; 16:1006164. [DOI: 10.3389/fninf.2022.1006164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundSince 2011, three large-scale genome-wide association studies (GWAS) have confirmed that the CD2AP rs9349407 polymorphism is significantly connected with Alzheimer’s disease (AD) in individuals of European descent. Subsequently, this association has been replicated in European populations, but is unclear whether it can be replicated in Chinese. Recently, the correlation between rs9349407 and AD in the Chinese population has become a research hotspot.ObjectiveTo explore the association between rs9349407 polymorphism and AD in the Chinese population.Materials and methodsFirstly, based on the exclusion and inclusion criteria, we selected 11 independent studies from 8 articles exploring the correlation between rs9349407 variation and AD in Chinese. Secondly, we conducted a meta-analysis based on fixed and random effect models and conducted a heterogeneity test. Thirdly, we used the additive model, dominant model, and recessive model for subgroup analysis.ResultsWe demonstrated that the CD2AP rs9349407 polymorphism increases AD susceptibility in Chinese populations (OR = 1.33, 95% CI = 1.08–1.64, P = 7.45E-03), which is consistent with the effect observed in Caucasian populations. Additionally, subgroup analysis showed that rs9349407 under the additive model (GG + CC vs. GC, OR = 0.76, 95% CI = 0.61–0.97, P = 2.04E-02) and dominant model (GG + GC vs. CC, OR = 0.49, 95% CI = 0.32–0.74, P = 8.51E-04) were also significantly correlated with AD susceptibility, but not under the recessive model (GG vs. GC + CC, OR = 0.77, 95% CI = 0.58–1.03, P = 7.44E-02).ConclusionThese existing data suggest that rs9349307 is significantly correlated with the susceptibility to AD in the Chinese population, but future studies with large samples are needed to confirm our findings.
Collapse
|
13
|
Zhao X, Tang X, Xu J, Liu R, Huang K, Li J, Li Y, Jiang L, Xu L, Zhang Y, Wang D, Hui R, Gao R, Song L, Yuan J. Novel polymorphism of HMGCR gene related to the risk of diabetes in premature triple-vessel disease patients. J Gene Med 2022; 24:e3445. [PMID: 35998373 DOI: 10.1002/jgm.3445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/03/2022] [Accepted: 08/12/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Coronary heart disease and diabetes are highly interrelated and complex diseases. We proposed to investigate the association of genetic polymorphisms of the lipoprotein important regulatory genes Niemann-Pick C1-like 1 (NPC1L1) and 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR) in patients with premature triple-vessel coronary disease (PTVD) with diabetes, blood glucose and body mass index (BMI). METHODS Four single-nucleotide polymorphisms (SNPs) (rs11763759, rs4720470, rs2072183, rs2073547) of NPC1L1, and three SNPs (rs12916, rs2303151, rs4629571) of HMGCR were genotyped in 872 PTVD patients. RESULTS After performing logistic regression analysis adjusted for age and sex, rs2303151 of HMGCR was related to the risk of diabetes in dominance model (odds ratio [OR]=1.35, 95% confidence intervals [CI]: 1.01-1.80, P=0.04). However, the four SNPs of NPC1L1 were not associated with the risk of diabetes. Further analyses showed that neither the above SNPs of NPC1L1 nor the SNPs of HMGCR were related to blood glucose and body mass index (all P>0.05). CONCLUSION We firstly report that rs2303151 is a novel polymorphism of HMGCR gene related to the risk of diabetes in PTVD patients, which suggests HMGCR may be a potential common targeted pathogenic pathways between the coronary heart disease and diabetes.
Collapse
Affiliation(s)
- Xueyan Zhao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaofang Tang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingjing Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ru Liu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Keyong Huang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiawen Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yulong Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lin Jiang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lianjun Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yin Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dong Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rutai Hui
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Runlin Gao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lei Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jinqing Yuan
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
14
|
Chen Q, Wang T, Kang D, Chen L. Protective effect of apolipoprotein E epsilon 3 on sporadic Alzheimer's disease in the Chinese population: a meta-analysis. Sci Rep 2022; 12:13620. [PMID: 35948759 PMCID: PMC9365782 DOI: 10.1038/s41598-022-18033-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 08/03/2022] [Indexed: 11/10/2022] Open
Abstract
Alzheimer's disease (AD) is fast becoming one of the most expensive, deadly and burdensome diseases in this century. It has the fastest-growing disease burden in China. Apolipoprotein E (APOE) polymorphic alleles are generally considered to be the primary genetic determinant of AD risk: individuals with the E4 allele are at increased risk of AD compared with individuals with the more common E3 allele. Since the intensity of the association varies among different ethnic groups, a separate meta-analysis of the Chinese population is needed. We searched Chinese and English databases to sift through literature over the past 20 years. Data on the APOE genotype and AD were collected for correlation analysis. OR was calculated according to APOE allele and genotype. A publication bias analysis and sensitivity analysis were performed, and the main results were further verified by subgroup analysis. The 116 eligible studies enrolled 23,396 patients with AD and 25,568 healthy controls. The study subjects covered at least 30 of the 34 provincial-level administrative regions (including Taiwan). The partial sex ratio was as follows: AD male/female; 10,291/11,240; control male/female, 11,304/12,428, [Formula: see text] = 0.122, P = 0.727. The results of the meta-analysis of alleles showed that I2 > 50% and Q statistics were significant for all genotypes; therefore, the random effect model was selected. The frequency of the ApoE ε4 allele in AD was higher than that in healthy controls, and the difference was statistically significant (OR 2.847, 95% CI [2.611-3.101], P < 0.001). The frequencies of ApoE ε3 and ε2 in AD were lower than those in healthy controls, and the differences were statistically significant (ε3: OR 0.539, 95% CI [0.504-0.576], P < 0.001; ε2: OR 0.771, 95% CI [0.705-0.843], P < 0.001). The results of the meta-analysis of AD genotype showed that ApoE ε2/ε4 (OR 1.521, 95% CI [1.270-1.823], P < 0.001), ε3/ε4 (OR 2.491, 95% CI [2.267-2.738], P < 0.001) and ε4/ε4 (OR 5.481, 95% CI [4.801-6.257], P < 0.001) allele genotype frequencies were higher than those of the healthy controls. The differences were all statistically significant. Moreover, the ApoE ε2/ε2 (OR 0.612, 95% CI [0.504-0.743], P < 0.001), ε2/ε3 (OR 0.649, 95% CI [0.585-0.714], P < 0.001) and ε3/ε3 (OR 0.508, 95% CI [0.468-0.551], P < 0.001) genotypes were less frequent in patients with AD than in healthy controls, and the differences were statistically significant. The results of the sensitivity analysis and subgroup analysis were consistent with those of the whole model. These results provide support for the protective effect of the ApoE ε3/ε3 genotype against the development of AD. This research is the most comprehensive meta-analysis of the correlation between APOE and AD in the Chinese population by analysing the distribution of the APOE gene in patients with AD reported in the last 20 years. It was concluded that the APOE ε3 allele had a protective effect against sporadic AD in the Chinese population, with great significance, and that its protective effect was stronger than that of the ε2 allele.
Collapse
Affiliation(s)
- Qian Chen
- Department of Clinical Research Management, Center of Biostatistics, Design, Measurement and Evaluation, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Ting Wang
- Department of Clinical Research Management, Center of Biostatistics, Design, Measurement and Evaluation, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Deying Kang
- Department of Clinical Research Management, Center of Biostatistics, Design, Measurement and Evaluation, West China Hospital of Sichuan University, Chengdu, Sichuan, China.,Department of Evidence-Based Medicine and Clinical Epidemiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lei Chen
- Department of Clinical Research Management, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, Sichuan, China. .,Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
15
|
Abdul Aziz M, Md Ashraf G, Safiqul Islam M. Link of BIN1, CLU and IDE gene polymorphisms with the susceptibility of Alzheimer's disease: evidence from a meta-analysis. Curr Alzheimer Res 2022; 19:302-316. [PMID: 35546756 DOI: 10.2174/1567205019666220511140955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/15/2022] [Accepted: 03/06/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common form of neurodegenerative disorder. The association of BIN1, CLU and IDE genetic polymorphisms with AD risk have been evaluated overtimes that produced conflicting outcomes. OBJECTIVE We performed this meta-analysis to investigate the contribution of BIN1 (rs744373 and rs7561528), CLU (rs11136000 and rs9331888), and IDE (rs1887922) polymorphisms to AD risk. METHODS From a systemic literature search up to July 15, 2021, we included 25 studies with rs744373, 16 studies with rs7561528, 37 studies with rs11136000, 16 studies with rs9331888, and 4 studies with rs1887922. To analyze the correlation, we constructed seven genetic models that used odds ratio and 95% confidence intervals. We used RevMan 5.4 for meta-analysis. RESULTS Our study suggests that BIN1 rs744373 is associated with a significantly increased risk of AD in five genetic models (OR>1). Again, CLU rs11136000 showed reduced association in all genetic models (OR<1). CLU rs9331888 revealed an increased association in two models (OR>1). The IDE rs1887922 showed significantly increased risk in four models (OR>1). From subgroup analysis, a significantly increased risk of AD was observed in Caucasians and Asians for BIN1 rs744373. Again, BIN1 rs7561528 showed a significantly enhanced risk of AD only in Caucasians. CLU rs11136000 showed significantly reduced risk in Caucasians but rs9331888 showed increased risk in the same ethnicity. CONCLUSION Our meta-analysis confirms the association of BIN1 rs744373, CLU rs9331888 and IDE rs1887922 polymorphisms with an increased risk of AD, especially in Caucasians. Again, CLU rs11136000 is associated with reduced AD risk in the overall population and Caucasians.
Collapse
Affiliation(s)
- Md Abdul Aziz
- Department of Pharmacy, Faculty of Pharmacy and Health Sciences, State University of Bangladesh, Dhaka-1205, Bangladesh
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad Safiqul Islam
- Laboratory of Pharmacogenomics and Molecular Biology, Department of Pharmacy, Faculty of Science, Noakhali Science and Technology University, Sonapur-3814, Noakhali, Bangladesh
| |
Collapse
|
16
|
Jairaman A, McQuade A, Granzotto A, Kang YJ, Chadarevian JP, Gandhi S, Parker I, Smith I, Cho H, Sensi SL, Othy S, Blurton-Jones M, Cahalan MD. TREM2 regulates purinergic receptor-mediated calcium signaling and motility in human iPSC-derived microglia. eLife 2022; 11:e73021. [PMID: 35191835 PMCID: PMC8906810 DOI: 10.7554/elife.73021] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 02/18/2022] [Indexed: 01/07/2023] Open
Abstract
The membrane protein TREM2 (Triggering Receptor Expressed on Myeloid cells 2) regulates key microglial functions including phagocytosis and chemotaxis. Loss-of-function variants of TREM2 are associated with increased risk of Alzheimer's disease (AD). Because abnormalities in Ca2+ signaling have been observed in several AD models, we investigated TREM2 regulation of Ca2+ signaling in human induced pluripotent stem cell-derived microglia (iPSC-microglia) with genetic deletion of TREM2. We found that iPSC-microglia lacking TREM2 (TREM2 KO) show exaggerated Ca2+ signals in response to purinergic agonists, such as ADP, that shape microglial injury responses. This ADP hypersensitivity, driven by increased expression of P2Y12 and P2Y13 receptors, results in greater release of Ca2+ from the endoplasmic reticulum stores, which triggers sustained Ca2+ influx through Orai channels and alters cell motility in TREM2 KO microglia. Using iPSC-microglia expressing the genetically encoded Ca2+ probe, Salsa6f, we found that cytosolic Ca2+ tunes motility to a greater extent in TREM2 KO microglia. Despite showing greater overall displacement, TREM2 KO microglia exhibit reduced directional chemotaxis along ADP gradients. Accordingly, the chemotactic defect in TREM2 KO microglia was rescued by reducing cytosolic Ca2+ using a P2Y12 receptor antagonist. Our results show that loss of TREM2 confers a defect in microglial Ca2+ response to purinergic signals, suggesting a window of Ca2+ signaling for optimal microglial motility.
Collapse
Affiliation(s)
- Amit Jairaman
- Department of Physiology and Biophysics, University of California, IrvineIrvineUnited States
| | - Amanda McQuade
- Department of Neurobiology and Behavior, University of California, IrvineIrvineUnited States
- Sue and Bill Gross Stem Cell Research Center, University of California, IrvineIrvineUnited States
- UCI Institute for Memory Impairments and Neurological Disorders, University of CaliforniaIrvineUnited States
- Institute for Neurodegenerative Diseases, University of California, San FranciscoSan FranciscoUnited States
| | - Alberto Granzotto
- Department of Neurobiology and Behavior, University of California, IrvineIrvineUnited States
- Center for Advanced Sciences and Technology (CAST), University "G. d'Annunzio" of Chieti-PescaraChietiItaly
- Department of Neuroscience, Imaging and Clinical Sciences, University G d'Annunzio of Chieti-PescaraChietiItaly
| | - You Jung Kang
- Department of Mechanical Engineering and Engineering Science, University of North CarolinaCharlotteUnited States
| | - Jean Paul Chadarevian
- Department of Neurobiology and Behavior, University of California, IrvineIrvineUnited States
| | - Sunil Gandhi
- Department of Neurobiology and Behavior, University of California, IrvineIrvineUnited States
| | - Ian Parker
- Department of Physiology and Biophysics, University of California, IrvineIrvineUnited States
- Department of Neurobiology and Behavior, University of California, IrvineIrvineUnited States
| | - Ian Smith
- Department of Neurobiology and Behavior, University of California, IrvineIrvineUnited States
| | - Hansang Cho
- Institute of Quantum Biophysics, Department of Biophysics, Dept of Intelligent Precision Healthcare Convergence, Sungkyunkwan UniversityGyeonggi-doRepublic of Korea
| | - Stefano L Sensi
- Center for Advanced Sciences and Technology (CAST), University "G. d'Annunzio" of Chieti-PescaraChietiItaly
- Department of Neuroscience, Imaging and Clinical Sciences, University G d'Annunzio of Chieti-PescaraChietiItaly
| | - Shivashankar Othy
- Department of Physiology and Biophysics, University of California, IrvineIrvineUnited States
- Institute for Immunology, University of California, IrvineIrvineUnited States
| | - Mathew Blurton-Jones
- Department of Neurobiology and Behavior, University of California, IrvineIrvineUnited States
- Sue and Bill Gross Stem Cell Research Center, University of California, IrvineIrvineUnited States
- UCI Institute for Memory Impairments and Neurological Disorders, University of CaliforniaIrvineUnited States
- Institute for Immunology, University of California, IrvineIrvineUnited States
| | - Michael D Cahalan
- Department of Physiology and Biophysics, University of California, IrvineIrvineUnited States
- Institute for Immunology, University of California, IrvineIrvineUnited States
| |
Collapse
|
17
|
Factors Influencing Alzheimer's Disease Risk: Whether and How They are Related to the APOE Genotype. Neurosci Bull 2022; 38:809-819. [PMID: 35149974 PMCID: PMC9276873 DOI: 10.1007/s12264-021-00814-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/25/2021] [Indexed: 11/21/2022] Open
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease featuring progressive cognitive impairment. Although the etiology of late-onset AD remains unclear, the close association of AD with apolipoprotein E (APOE), a gene that mainly regulates lipid metabolism, has been firmly established and may shed light on the exploration of AD pathogenesis and therapy. However, various confounding factors interfere with the APOE-related AD risk, raising questions about our comprehension of the clinical findings concerning APOE. In this review, we summarize the most debated factors interacting with the APOE genotype and AD pathogenesis, depict the extent to which these factors relate to APOE-dependent AD risk, and discuss the possible underlying mechanisms.
Collapse
|
18
|
Zhao X, Xu J, Tang X, Huang K, Li J, Liu R, Jiang L, Zhang Y, Wang D, Sun K, Xu B, Zhao W, Hui R, Gao R, Song L, Yuan J. Effect of NPC1L1 and HMGCR Genetic Variants With Premature Triple-Vessel Coronary Disease. Front Cardiovasc Med 2021; 8:704501. [PMID: 34926596 PMCID: PMC8672111 DOI: 10.3389/fcvm.2021.704501] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 11/11/2021] [Indexed: 11/22/2022] Open
Abstract
Background: Both Niemann-Pick C1-like 1 (NPC1L1) and 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR) play a key role on dyslipidaemia. We aim to evaluate whether NPC1L1 and HMGCR genetic variants are associated with susceptibility of premature triple-vessel disease (PTVD). Methods: Four single-nucleotide polymorphisms (SNPs) (rs11763759, rs4720470, rs2072183, and rs2073547) of NPC1L1; and three SNPs (rs12916, rs2303151, and rs4629571) of HMGCR were genotyped in 872 PTVD patients (males ≤ 50 years old and females ≤ 60 years old), and 401 healthy controls. Results: After adjusting for age and sex, rs12916 of HMGCR was associated with the risk of PTVD in dominance model [odds ratio (OR) = 1.68, 95% confidence intervals (CI): 1.29–2.18, P < 0.001], recessive model (OR = 1.43, 95% CI: 1.08–1.90, P = 0.013) and codominant model (OR = 1.38, 95% CI: 1.17–1.63, P < 0.001); meanwhile, rs4720470 of NPC1L1 was related to increased risk of PTVD in recessive model (OR = 1.74, 95% CI: 1.14–2.74, P = 0.013). Patients who carried both variant rs4720470 and rs12916 also had the risk of PTVD (P < 0.001); however, there were no correlation between these SNPs and the SNYTAX score (all P > 0.05). Conclusions: This is the first report that rs4720470 is a novel polymorphism of the NPC1L1 gene associated with PTVD, and rs12916 of HMGCR gene appears to be a strong genetic marker of PTVD. Our study may improve the early warning, therapeutic strategies and drug development of PTVD.
Collapse
Affiliation(s)
- Xueyan Zhao
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingjing Xu
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaofang Tang
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Keyong Huang
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiawen Li
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ru Liu
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lin Jiang
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yin Zhang
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dong Wang
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kai Sun
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bo Xu
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Zhao
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rutai Hui
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Runlin Gao
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lei Song
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jinqing Yuan
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
19
|
Zeng A, Rong H, Pan D, Jia L, Zhang Y, Zhao F, Peng S. Discovery of Genetic Biomarkers for Alzheimer's Disease Using Adaptive Convolutional Neural Networks Ensemble and Genome-Wide Association Studies. Interdiscip Sci 2021; 13:787-800. [PMID: 34410590 DOI: 10.1007/s12539-021-00470-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 07/01/2021] [Accepted: 08/01/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVE To identify candidate neuroimaging and genetic biomarkers for Alzheimer's disease (AD) and other brain disorders, especially for little-investigated brain diseases, we advocate a data-driven approach which incorporates an adaptive classifier ensemble model acquired by integrating Convolutional Neural Network (CNN) and Ensemble Learning (EL) with Genetic Algorithm (GA), i.e., the CNN-EL-GA method, into Genome-Wide Association Studies (GWAS). METHODS Above all, a large number of CNN models as base classifiers were trained using coronal, sagittal, or transverse magnetic resonance imaging slices, respectively, and the CNN models with strong discriminability were then selected to build a single classifier ensemble with the GA for classifying AD, with the help of the CNN-EL-GA method. While the acquired classifier ensemble exhibited the highest generalization capability, the points of intersection were determined with the most discriminative coronal, sagittal, and transverse slices. Finally, we conducted GWAS on the genotype data and the phenotypes, i.e., the gray matter volumes of the top ten most discriminative brain regions, which contained the ten most points of intersection. RESULTS Six genes of PCDH11X/Y, TPTE2, LOC107985902, MUC16 and LINC01621 as well as Single-Nucleotide Polymorphisms, e.g., rs36088804, rs34640393, rs2451078, rs10496214, rs17016520, rs2591597, rs9352767 and rs5941380, were identified. CONCLUSION This approach overcomes the limitations associated with the impact of subjective factors and dependence on prior knowledge while adaptively achieving more robust and effective candidate biomarkers in a data-driven way. SIGNIFICANCE The approach is promising to facilitate discovering effective candidate genetic biomarkers for brain disorders, as well as to help improve the effectiveness of identified candidate neuroimaging biomarkers for brain diseases.
Collapse
Affiliation(s)
- An Zeng
- Faculty of Computer, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Huabin Rong
- Faculty of Computer, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Dan Pan
- School of Electronics and Information, Guangdong Polytechnic Normal University, Guangzhou, 510665, People's Republic of China.
| | - Longfei Jia
- Faculty of Computer, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Yiqun Zhang
- Faculty of Computer, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Fengyi Zhao
- Faculty of Computer, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Shaoliang Peng
- College of Computer Science and Electronic Engineering, Hunan University, School of Computer Science, National University of Defense Technology, Peng Cheng Lab, Shenzhen, 518000, People's Republic of China.
| |
Collapse
|
20
|
Jin X, Shu C, Zeng Y, Liang L, Ji JS. Interaction of greenness and polygenic risk score of Alzheimer's disease on risk of cognitive impairment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 796:148767. [PMID: 34273838 DOI: 10.1016/j.scitotenv.2021.148767] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/13/2021] [Accepted: 06/27/2021] [Indexed: 05/10/2023]
Abstract
Studies have shown contact with nature has positive psychological, neurological, and cognitive benefits. Whether the built environment can affect genetic predisposition of Alzheimer's disease (AD) should be explored. We aimed to examine whether greenness around the residential environment can modify the effect of genetic AD risk on cognitive function. We used a genetic sub-study of the Chinese Longitudinal Healthy Longevity Survey including 1199 older adults (mean age: 100.3 ± 3.4 years) aged 90 years old or older. We used Polygenic Risk Score (PRS) to quantify the genetic AD risk and two types of measurements based on Normalized Difference Vegetation Index (NDVI) to access the residential greenness (contemporaneous and annual average NDVI). Contemporaneous NDVI values were the NDVI value collected at the corresponding survey, and the annual average NDVI was the average value of NDVI during the year before the corresponding survey. We defined cognitive impairment as having a Mini-Mental State Examination score below 25. In the multivariable logistics regression models, contemporaneous NDVI and genetic AD risk were associated with cognitive impairment. Among those with low genetic AD risk, the risk of cognitive impairment was lower in those living around higher greenness (contemporaneous NDVI OR: 0.55, 95% CI: [0.34, 0.86]; Pinteraction: 0.071; annual average NDVI OR: 0.49, 95% CI: [0.31, 0.79]; Pinteraction: 0.040). We did not observe significant associations between greenness and cognitive impairment among those with high genetic AD risk. Prevention efforts using PRS warrant a higher granularity of environmental exposures and biological etiology data.
Collapse
Affiliation(s)
- Xurui Jin
- Global Health Research Center, Duke Kunshan University, Kunshan, Jiangsu, China; Environmental Research Center, Duke Kunshan University, Kunshan, China.
| | - Chang Shu
- Department of Pediatrics, Columbia University Irving Medical Center, New York, USA.
| | - Yi Zeng
- Center for the Study of Aging and Human Development, Duke Medical School, Durham, NC, USA; Center for Healthy Aging and Development Studies, National School of Development, Peking University, Beijing, China.
| | - Liming Liang
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - John S Ji
- Vanke School of Public Health, Tsinghua University, Beijing, China; Global Health Research Center, Duke Kunshan University, Kunshan, Jiangsu, China; Environmental Research Center, Duke Kunshan University, Kunshan, China; Nicholas School of the Environment, Duke University, Durham, NC, USA.
| |
Collapse
|
21
|
G N S HS, Marise VLP, Satish KS, Yergolkar AV, Krishnamurthy M, Ganesan Rajalekshmi S, Radhika K, Burri RR. Untangling huge literature to disinter genetic underpinnings of Alzheimer's Disease: A systematic review and meta-analysis. Ageing Res Rev 2021; 71:101421. [PMID: 34371203 DOI: 10.1016/j.arr.2021.101421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 06/25/2021] [Accepted: 08/02/2021] [Indexed: 10/20/2022]
Abstract
Drug discovery for Alzheimer's Disease (AD) is channeled towards unravelling key disease specific drug targets/genes to predict promising therapeutic candidates. Though enormous literature on AD genetics is available, there exists dearth in data pertinent to drug targets and crucial pathological pathways intertwined in disease progression. Further, the research findings revealing genetic associations failed to demonstrate consistency across different studies. This scenario prompted us to initiate a systematic review and meta-analysis with an aim of unearthing significant genetic hallmarks of AD. Initially, a Boolean search strategy was developed to retrieve case-control studies from PubMed, Cochrane, ProQuest, Europe PMC, grey literature and HuGE navigator. Subsequently, certain inclusion and exclusion criteria were framed to shortlist the relevant studies. These studies were later critically appraised using New Castle Ottawa Scale and Q-Genie followed by data extraction. Later, meta-analysis was performed only for those Single Nucleotide Polymorphisms (SNPs) which were evaluated in at least two different ethnicities from two different reports. Among, 204,351 studies retrieved, 820 met our eligibility criteria and 117 were processed for systematic review after critical appraisal. Ultimately, meta-analysis was performed for 23 SNPs associated with 15 genes which revealed significant associations of rs3865444 (CD33), rs7561528 (BIN1) and rs1801133 (MTHFR) with AD risk.
Collapse
|
22
|
Heidari F, Ansstas G, Ajamian F. CD33 mRNA Has Elevated Expression Levels in the Leukocytes of Peripheral Blood in Patients with Late-Onset Alzheimer's Disease. Gerontology 2021; 68:421-430. [PMID: 34569532 DOI: 10.1159/000518820] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 07/31/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS In despite of conflicting results among different ethnic groups, the rs3865444 of CD33 gene has previously been identified as a risk factor for late-onset Alzheimer's disease (LOAD).This study was aimed to evaluate the association between rs3865444 SNP with LOAD occurrence, and to investigate whether CD33 mRNA expression will change in the leukocytes of peripheral blood in LOAD patients. METHODS The rs3865444 polymorphism was genotyped in 233 LOAD and 238 control subjects using the Tetra-ARMS-PCR method. CD33 mRNAs expression in leukocytes were assessed and analyzed using the real-time qPCR method. We used in silico approach to analyze potential effects imparted by rs3865444 polymorphism in LOAD pathogenesis. RESULTS Our results show a significant increase in CD33 mRNA expression levels in white blood cells of LOAD patients, however, the association between CD33 rs3865444 polymorphism and LOAD was found to be not significant. We also noticed that LOAD patients with the C/A genotype had higher CD33 mRNA levels in their peripheral blood than those of the control group. CONCLUSIONS rs3865444, located upstream of the 5'CD33 coding region, might positively influence CD33 mRNAs expression in leukocytes of LOAD versus healthy people. This is likely to happen through interfering rs3865444 (C) with the functional activity of several other transcription factors given that rs3865444 is in linkage disequilibrium with other functional polymorphisms in this coding region according to an in silico study. We propose that CD33 mRNAs elevation in peripheral immune cells - as a potential biomarker in LOAD - is related to peripheral immune system impairment.
Collapse
Affiliation(s)
- Fatemeh Heidari
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - George Ansstas
- Division of Oncology, Washington University, School of Medicine, St. Louis, Missouri, USA
| | - Farzam Ajamian
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| |
Collapse
|
23
|
Jia L, Li F, Wei C, Zhu M, Qu Q, Qin W, Tang Y, Shen L, Wang Y, Shen L, Li H, Peng D, Tan L, Luo B, Guo Q, Tang M, Du Y, Zhang J, Zhang J, Lyu J, Li Y, Zhou A, Wang F, Chu C, Song H, Wu L, Zuo X, Han Y, Liang J, Wang Q, Jin H, Wang W, Lü Y, Li F, Zhou Y, Zhang W, Liao Z, Qiu Q, Li Y, Kong C, Li Y, Jiao H, Lu J, Jia J. Prediction of Alzheimer's disease using multi-variants from a Chinese genome-wide association study. Brain 2021; 144:924-937. [PMID: 33188687 PMCID: PMC8041344 DOI: 10.1093/brain/awaa364] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 07/30/2020] [Accepted: 08/14/2020] [Indexed: 12/28/2022] Open
Abstract
Previous genome-wide association studies have identified dozens of susceptibility loci for sporadic Alzheimer’s disease, but few of these loci have been validated in longitudinal cohorts. Establishing predictive models of Alzheimer’s disease based on these novel variants is clinically important for verifying whether they have pathological functions and provide a useful tool for screening of disease risk. In the current study, we performed a two-stage genome-wide association study of 3913 patients with Alzheimer’s disease and 7593 controls and identified four novel variants (rs3777215, rs6859823, rs234434, and rs2255835; Pcombined = 3.07 × 10−19, 2.49 × 10−23, 1.35 × 10−67, and 4.81 × 10−9, respectively) as well as nine variants in the apolipoprotein E region with genome-wide significance (P < 5.0 × 10−8). Literature mining suggested that these novel single nucleotide polymorphisms are related to amyloid precursor protein transport and metabolism, antioxidation, and neurogenesis. Based on their possible roles in the development of Alzheimer’s disease, we used different combinations of these variants and the apolipoprotein E status and successively built 11 predictive models. The predictive models include relatively few single nucleotide polymorphisms useful for clinical practice, in which the maximum number was 13 and the minimum was only four. These predictive models were all significant and their peak of area under the curve reached 0.73 both in the first and second stages. Finally, these models were validated using a separate longitudinal cohort of 5474 individuals. The results showed that individuals carrying risk variants included in the models had a shorter latency and higher incidence of Alzheimer’s disease, suggesting that our models can predict Alzheimer’s disease onset in a population with genetic susceptibility. The effectiveness of the models for predicting Alzheimer’s disease onset confirmed the contributions of these identified variants to disease pathogenesis. In conclusion, this is the first study to validate genome-wide association study-based predictive models for evaluating the risk of Alzheimer’s disease onset in a large Chinese population. The clinical application of these models will be beneficial for individuals harbouring these risk variants, and particularly for young individuals seeking genetic consultation.
Collapse
Affiliation(s)
- Longfei Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Fangyu Li
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Cuibai Wei
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Min Zhu
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Qiumin Qu
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
| | - Wei Qin
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Yi Tang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Luxi Shen
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Yanjiang Wang
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Honglei Li
- Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Zhejiang, China
| | - Dantao Peng
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Shandong, China
| | - Benyan Luo
- Department of Neurology, The First Affiliated Hospital, Zhejiang University, Zhejiang, China
| | - Qihao Guo
- Department of Gerontology, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Muni Tang
- Department of Geriatrics, Guangzhou Huiai Hospital, Affiliated Hospital of Guangzhou Medical College, Guangzhou, China
| | - Yifeng Du
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong, China
| | - Jiewen Zhang
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan, China
| | - Junjian Zhang
- Department of Neurology, Zhongnan Hospital, Wuhan University, Hubei, China
| | - Jihui Lyu
- Center for Cognitive Disorders, Beijing Geriatric Hospital, Beijing, China
| | - Ying Li
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Aihong Zhou
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Fen Wang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Changbiao Chu
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Haiqing Song
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Liyong Wu
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Xiumei Zuo
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Yue Han
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Junhua Liang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Qi Wang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Hongmei Jin
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Wei Wang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Yang Lü
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fang Li
- Department of Geriatric, Fuxing Hospital, Capital Medical University, Beijing, China
| | - Yuying Zhou
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Wei Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Center for Cognitive Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhengluan Liao
- Department of Psychiatry, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Qiongqiong Qiu
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Yan Li
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Chaojun Kong
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Yan Li
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Haishan Jiao
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Jie Lu
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Department of Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jianping Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China.,Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, China.,Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing, China.,Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
24
|
Dehghani N, Bras J, Guerreiro R. How understudied populations have contributed to our understanding of Alzheimer's disease genetics. Brain 2021; 144:1067-1081. [PMID: 33889936 DOI: 10.1093/brain/awab028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/30/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022] Open
Abstract
The majority of genome-wide association studies have been conducted using samples with a broadly European genetic background. As a field, we acknowledge this limitation and the need to increase the diversity of populations studied. A major challenge when designing and conducting such studies is to assimilate large samples sizes so that we attain enough statistical power to detect variants associated with disease, particularly when trying to identify variants with low and rare minor allele frequencies. In this review, we aimed to illustrate the benefits to genetic characterization of Alzheimer's disease, in researching currently understudied populations. This is important for both fair representation of world populations and the translatability of findings. To that end, we conducted a literature search to understand the contributions of studies, on different populations, to Alzheimer's disease genetics. Using both PubMed and Alzforum Mutation Database, we systematically quantified the number of studies reporting variants in known disease-causing genes, in a worldwide manner, and discuss the contributions of research in understudied populations to the identification of novel genetic factors in this disease. Additionally, we compared the effects of genome-wide significant single nucleotide polymorphisms across populations by focusing on loci that show different association profiles between populations (a key example being APOE). Reports of variants in APP, PSEN1 and PSEN2 can initially determine whether patients from a country have been studied for Alzheimer's disease genetics. Most genome-wide significant associations in non-Hispanic white genome-wide association studies do not reach genome-wide significance in such studies of other populations, with some suggesting an opposite effect direction; this is likely due to much smaller sample sizes attained. There are, however, genome-wide significant associations first identified in understudied populations which have yet to be replicated. Familial studies in understudied populations have identified rare, high effect variants, which have been replicated in other populations. This work functions to both highlight how understudied populations have furthered our understanding of Alzheimer's disease genetics, and to help us gauge our progress in understanding the genetic architecture of this disease in all populations.
Collapse
Affiliation(s)
- Nadia Dehghani
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, Michigan, USA
| | - Jose Bras
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, Michigan, USA.,Division of Psychiatry and Behavioral Medicine, Michigan State University College of Human Medicine, Grand Rapids, MI, USA
| | - Rita Guerreiro
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, Michigan, USA.,Division of Psychiatry and Behavioral Medicine, Michigan State University College of Human Medicine, Grand Rapids, MI, USA
| |
Collapse
|
25
|
Vogrinc D, Goričar K, Dolžan V. Genetic Variability in Molecular Pathways Implicated in Alzheimer's Disease: A Comprehensive Review. Front Aging Neurosci 2021; 13:646901. [PMID: 33815092 PMCID: PMC8012500 DOI: 10.3389/fnagi.2021.646901] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 02/16/2021] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disease, affecting a significant part of the population. The majority of AD cases occur in the elderly with a typical age of onset of the disease above 65 years. AD presents a major burden for the healthcare system and since population is rapidly aging, the burden of the disease will increase in the future. However, no effective drug treatment for a full-blown disease has been developed to date. The genetic background of AD is extensively studied; numerous genome-wide association studies (GWAS) identified significant genes associated with increased risk of AD development. This review summarizes more than 100 risk loci. Many of them may serve as biomarkers of AD progression, even in the preclinical stage of the disease. Furthermore, we used GWAS data to identify key pathways of AD pathogenesis: cellular processes, metabolic processes, biological regulation, localization, transport, regulation of cellular processes, and neurological system processes. Gene clustering into molecular pathways can provide background for identification of novel molecular targets and may support the development of tailored and personalized treatment of AD.
Collapse
Affiliation(s)
| | | | - Vita Dolžan
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
26
|
Hou M, Xu G, Ran M, Luo W, Wang H. APOE-ε4 Carrier Status and Gut Microbiota Dysbiosis in Patients With Alzheimer Disease. Front Neurosci 2021; 15:619051. [PMID: 33732104 PMCID: PMC7959830 DOI: 10.3389/fnins.2021.619051] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/14/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Alternations in gut microbiota and a number of genes have been implicated as risk factors for the development of Alzheimer disease (AD). However, the interactions between the altered bacteria and risk genetic variants remain unclear. OBJECTIVE We aimed to explore associations of the risk genetic variants with altered gut bacteria in the onset of AD. METHODS We collected baseline data and stool and blood samples from 30 AD patients and 47 healthy controls in a case-control study. The rs42358/rs4512 (ApoE), rs3851179 (PICALM), rs744373 (BIN1), rs9331888 (CLU), rs670139 (MS4A4E), rs3764650 (ABCA7), rs3865444 (CD33), rs9349407 (CD2AP), rs11771145 (EPHA1), and rs3818361/rs6656401 (CR1) were sequenced, and microbiota composition was characterized using 16S rRNA gene sequencing. The associations of the altered gut bacteria with the risk genetics were analyzed. RESULTS Apolipoprotein ε4 allele and rs744373 were risk loci for the AD among 12 genetic variants. Phylum Proteobacteria; orders Enterobacteriales, Deltaproteobacteria, and Desulfovibrionales; families Enterobacteriaceae and Desulfovibrionaceae; and genera Escherichia-Shigella, Ruminococcaceae_UCG_002, Shuttleworthia, Anaerofustis, Morganelia, Finegoldia, and Anaerotruncus were increased in AD subjects, whereas family Enterococcaceae and genera Megamonas, Enterococcus, and Anaerostipes were more abundant in controls (P < 0.05). Among the altered microbiota, APOE ε4 allele was positively associated with pathogens: Proteobacteria. CONCLUSION The interaction of APOE ε4 gene and the AD-promoting pathogens might be an important factor requiring for the promotion of AD. Targeting to microbiota might be an effective therapeutic strategy for AD susceptible to APOE ε4 allele. This needs further investigation.
Collapse
Affiliation(s)
- Min Hou
- School of Public Health, College of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Gaolian Xu
- Nano Biomedical Research Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Maosheng Ran
- Department of Social Work and Social Administration, The University of Hong Kong, Hong Kong, China
| | - Wei Luo
- Xinjin No. 2 People’s Hospital, Chengdu, China
| | - Hui Wang
- School of Public Health, College of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
27
|
Wang Q, He C, Wang Z, Zhang Z, Xie C. Dynamic Connectivity Alteration Facilitates Cognitive Decline in Alzheimer's Disease Spectrum. Brain Connect 2021; 11:213-224. [PMID: 33308002 DOI: 10.1089/brain.2020.0823] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Introduction: It is unknown the alterations in the dynamic networks of the brain and the underlying molecular pathological mechanism of Alzheimer's disease (AD) spectrum. Here, we aim to explore the association between alterations in the dynamic brain networks' trajectory and cognitive decline in the AD spectrum. Methods: One hundred sixty subjects were recruited from the ADNI database, including 49 early mild cognitive impairment, 28 late mild cognitive impairment, 24 AD patients, and 59 cognitively normal. All participants completed the resting-state functional magnetic resonance imaging scan and neuropsychological tests. We integrated a new method combining large-scale network analysis and canonical correlation analysis to explore the dynamic spatiotemporal patterns within- and between resting-state networks (RSNs) and their significance in the AD spectrum. Results: All RSNs represented an increase in connectivity within networks by enhancing inner cohesive ability, while 7 out of 10 RSNs were characterized by a decrease in connectivity between networks, which indicated a weakened connector among networks from the early stage to dementia. This dichotomous mode presenting large-scale dynamic network abnormality was significantly correlated with the levels of molecular biomarkers of AD, and cognitive performance, as well as with the accumulating effects of 10 identified AD-related genetic risk factors. Discussion: These findings deepen our understanding of the associated mechanism underlying large-scale network disruption, linking known molecular biomarkers and phenotypic variations in the AD spectrum.
Collapse
Affiliation(s)
- Qing Wang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Cancan He
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zan Wang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China.,Neuropsychiatric Institute, Affiliated ZhongDa Hospital, Southeast University, Nanjing, China
| | - Zhijun Zhang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China.,Neuropsychiatric Institute, Affiliated ZhongDa Hospital, Southeast University, Nanjing, China.,The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Chunming Xie
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China.,Neuropsychiatric Institute, Affiliated ZhongDa Hospital, Southeast University, Nanjing, China.,The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| |
Collapse
|
28
|
Zhao X, Li J, Tang X, Liu R, Xu J, Xu L, Jiang L, Huang K, Tian J, Feng X, Wu Y, Zhang Y, Wang D, Sun K, Xu B, Zhao W, Hui R, Gao R, Song L, Yuan J. Association of NPC1L1 and HMGCR Gene Polymorphisms with Major Adverse Cardiac and Cerebrovascular Events in Patients with Three-Vessel Disease. Hum Gene Ther 2021; 32:581-588. [PMID: 33167740 DOI: 10.1089/hum.2020.229] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Three-vessel disease (TVD) is a severe coronary heart disease (CHD) with poor prognosis. Niemann-Pick C1-like 1 (NPC1L1) is a transporter protein for exogenous cholesterol absorption, and 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR) is a rate-limiting enzyme for cholesterol synthesis. We aimed to investigate the association between NPC1L1 and HMGCR gene polymorphisms and major adverse cardiac and cerebrovascular events (MACCE) in patients with TVD. A total of 342 TVD patients were consecutively enrolled and followed up for 1-year MACCE (a composite of all-cause death, myocardial infarction, revascularization, readmission, and stroke) as TVD event group, and 344 patients without CHD were control group. Four single-nucleotide polymorphisms (SNPs), rs11763759, rs4720470, rs2072183, and rs2073547, on NPC1L1 gene and four SNPs, rs12916, rs2303151, rs2303152, and rs4629571, on HMGCR gene were genotyped. Multivariate logistic regression analysis showed that rs4720470 of NPC1L1 was associated with higher risk of TVD with MACCE in codominant model (odds ratio [OR]: 1.315; 95% confidence intervals [CI]: 1.007-1.716, p = 0.044), and that rs2303151 of HMGCR was associated with higher in recessive (OR: 3.383; 95% CI: 1.040-10.998, p = 0.043) and codominant (OR: 1.458; 95% CI: 1.038-2.047, p = 0.030) model, respectively. Patients with both variant rs4720470 in codominant model and variant rs2303151 in recessive model related to a higher risk (OR: 6.772, CI: 1.338-34.280; p = 0.021). We reported for the first time that the rs4720470 on NPC1L1 gene and rs2303151 on HMGCR gene were associated with risk of 1-year MACCE in TVD.
Collapse
Affiliation(s)
- Xueyan Zhao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiawen Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaofang Tang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ru Liu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingjing Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lianjun Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lin Jiang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Keyong Huang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jian Tian
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinxing Feng
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yajie Wu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yin Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dong Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kai Sun
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bo Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Zhao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rutai Hui
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Runlin Gao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lei Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jinqing Yuan
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
29
|
Li X, Zhang Y, Chen X, Yuan H, Wang Z, Wang G, Zhang K, Liu H. Association of Gene Polymorphisms in APOE and BIN1 With Dementia of Alzheimer's Type Susceptibility in Chinese Han Population. Front Psychiatry 2021; 12:753909. [PMID: 34733192 PMCID: PMC8558379 DOI: 10.3389/fpsyt.2021.753909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/21/2021] [Indexed: 01/23/2023] Open
Abstract
Objectives: Dementia of the Alzheimer's type (DAT) is the most common chronic neurodegenerative disease. At present, the pathogenesis of DAT is not completely clear, and there are no drugs that can cure the disease. Once an individual is diagnosed with DAT, the survival time is only 3 to 9 years. Therefore, there is an urgent need to determine the etiology of DAT and the associated influencing factors to find a breakthrough in the treatment of DAT. Methods: We studied the relationship between polymorphisms in several genes (including BIN1 and APOE) and DAT susceptibility and the effects of sex differences on DAT. Our study included 137 patients with DAT and 509 healthy controls (HCs). Results: The APOE rs429358 polymorphism CC and CT genotypes were associated with an increased risk of DAT in women. We found a significant association between APOE ε4 and DAT. The frequency of the ε4 allele in the DAT group (15.5%) was higher than that in the HC group (8.7%). The BIN1 rs7561528 polymorphism was associated with a decreased risk of DAT in men. Conclusions: APOE gene rs429358 and BIN1 gene 7561528 genes may affect the susceptibility to DAT in a Chinese Han population.
Collapse
Affiliation(s)
- Xiaoyue Li
- Department of Psychiatry, Chaohu Hospital, Anhui Medical University, Hefei, China
| | - Yelei Zhang
- Department of Psychiatry, Chaohu Hospital, Anhui Medical University, Hefei, China.,Anhui Psychiatric Center, Anhui Medical University, Hefei, China
| | - Xinyu Chen
- Department of Psychiatry, Wuxi Mental Health Center, Nanjing Medical University, Wuxi, China
| | - Hongwei Yuan
- Department of Psychiatry, Wuxi Mental Health Center, Nanjing Medical University, Wuxi, China
| | - Zhiqiang Wang
- Department of Psychiatry, Wuxi Mental Health Center, Nanjing Medical University, Wuxi, China
| | - Guoqiang Wang
- Department of Psychiatry, Wuxi Mental Health Center, Nanjing Medical University, Wuxi, China
| | - Kai Zhang
- Department of Psychiatry, Chaohu Hospital, Anhui Medical University, Hefei, China.,Anhui Psychiatric Center, Anhui Medical University, Hefei, China
| | - Huanzhong Liu
- Department of Psychiatry, Chaohu Hospital, Anhui Medical University, Hefei, China.,Anhui Psychiatric Center, Anhui Medical University, Hefei, China
| |
Collapse
|
30
|
Calabrò M, Rinaldi C, Santoro G, Crisafulli C. The biological pathways of Alzheimer disease: a review. AIMS Neurosci 2020; 8:86-132. [PMID: 33490374 PMCID: PMC7815481 DOI: 10.3934/neuroscience.2021005] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/23/2020] [Indexed: 12/18/2022] Open
Abstract
Alzheimer disease is a progressive neurodegenerative disorder, mainly affecting older people, which severely impairs patients' quality of life. In the recent years, the number of affected individuals has seen a rapid increase. It is estimated that up to 107 million subjects will be affected by 2050 worldwide. Research in this area has revealed a lot about the biological and environmental underpinnings of Alzheimer, especially its correlation with β-Amyloid and Tau related mechanics; however, the precise molecular events and biological pathways behind the disease are yet to be discovered. In this review, we focus our attention on the biological mechanics that may lie behind Alzheimer development. In particular, we briefly describe the genetic elements and discuss about specific biological processes potentially associated with the disease.
Collapse
Affiliation(s)
| | | | | | - Concetta Crisafulli
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Italy
| |
Collapse
|
31
|
Xu T, Zheng X, Wang A, Guo Z, Zhang Y. Association of CHI3L1 gene variants with YKL-40 levels and hypertension incidence: A population-based nested case-control study in China. J Cell Mol Med 2020; 25:919-924. [PMID: 33280245 PMCID: PMC7812251 DOI: 10.1111/jcmm.16148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/11/2020] [Accepted: 11/22/2020] [Indexed: 01/10/2023] Open
Abstract
YKL‐40 was reported to be associated with the risk of hypertension. Whether the variants of CHI3L1 gene were associated with both YKL‐40 levels and hypertension needs to be further elucidated. In a 1:1 matched case‐control study of 507 pairs with available YKL‐40 levels and DNA samples nested in a prospective cohort of Chinese subjects, the 15 tag single nucleotide polymorphisms (SNPs) of CHI3L1 gene were genotyped. The levels of YKL‐40 among different genotypes of each SNP were compared after false discovery rate adjustment. Multivariable conditional logistic regression analyses were used to explore the association between the genotypes and the risk of hypertension. Subjects with the genetic variants for rs10399931, rs1538372, rs2071580, rs2297839 and rs4950928 had lower YKL‐40 levels. The genetic variant for rs10399805 was associated with higher YKL‐40 level. Subjects with the genotype of GA/AA of rs10399805 had a 1.34‐fold risk of hypertension compared with those with GG genotype in the total population (P = .05). Subjects with heterozygote/rare homozygote genotype of rs4950928 and rs2297839 both had a significantly lower risk of hypertension compared with those with major homozygote genotype among men. The ORs (95% CIs) were 0.46 (0.23‐0.89) and 0.49 (0.26‐0.91), respectively. The above three SNPs could significantly improve the accuracy of risk prediction for hypertension based on the conventional factors. The genotypes of rs10399805, rs4950928 and rs2297839 may hopefully become stable biomarkers for predicting the risk of hypertension.
Collapse
Affiliation(s)
- Tian Xu
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, China
| | - Xiaowei Zheng
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Aili Wang
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Zhirong Guo
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Yonghong Zhang
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| |
Collapse
|
32
|
Xu W, Tan CC, Cao XP, Tan L. Association of Alzheimer's disease risk variants on the PICALM gene with PICALM expression, core biomarkers, and feature neurodegeneration. Aging (Albany NY) 2020; 12:21202-21219. [PMID: 33170153 PMCID: PMC7695360 DOI: 10.18632/aging.103814] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 07/20/2020] [Indexed: 12/12/2022]
Abstract
It is still unclear how PICALM mutations influence the risk of Alzheimer's disease (AD). We tested the association of AD risk variants on the PICALM gene with PICALM expression and AD feature endophenotypes. Bioinformatic methods were used to annotate the functionalities and to select the tag single nucleotide polymorphisms (SNPs). Multiple regressions were used to examine the cross-sectional and longitudinal influences of tag SNPs on cerebrospinal fluid (CSF) AD biomarkers and neurodegenerations. A total of 59 SNPs, among which 75% were reported in Caucasians, were associated with AD risk. Of these, 73% were linked to PICALM expression in the whole blood (p < 0.0001) and/or brain regions (p < 0.05). Eleven SNPs were selected as tag SNPs in Caucasians. rs510566 (T allele) was associated with decreased CSF ptau and ptau/abeta42 ratio. The G allele of rs1237999 and rs510566 was linked with greater reserve capacities of the hippocampus, parahippocampus, middle temporal lobe, posterior cingulate, and precuneus. The longitudinal analyses revealed four loci that could predict dynamic changes of CSF ptau and ptau/abeta42 ratio (rs10501610, p = 0.0001) or AD feature neurodegeneration (rs3851179, rs592297, and rs7480193, p < 0.005). Overall, the genetic, bioinformatic, and association studies tagged four SNPs (rs3851179, rs7480193, rs510566, and rs1237999) as the most prominent PICALM loci contributing to AD in Caucasians.
Collapse
Affiliation(s)
- Wei Xu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Chen-Chen Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Xi-Peng Cao
- Clinical Research Center, Qingdao Municipal Hospital, Qingdao, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | | |
Collapse
|
33
|
Smith JA, Zhao W, Yu M, Rumfelt KE, Moorjani P, Ganna A, Dey AB, Lee J, Kardia SLR. Association Between Episodic Memory and Genetic Risk Factors for Alzheimer's Disease in South Asians from the Longitudinal Aging Study in India-Diagnostic Assessment of Dementia (LASI-DAD). J Am Geriatr Soc 2020; 68 Suppl 3:S45-S53. [PMID: 32815605 DOI: 10.1111/jgs.16735] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/03/2020] [Accepted: 04/23/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND/OBJECTIVES Genetic factors play an important role in Alzheimer's disease (AD) and cognitive aging. However, it is unclear whether risk loci identified in European ancestry (EA) populations have similar effects in other groups, such as South Asians. DESIGN We investigated the allelic distribution and cognitive associations of 56 known AD risk single-nucleotide polymorphisms (SNPs) identified from three EA genome-wide association studies (EA-GWASs) in a South Asian population. Single SNP and genetic risk score (GRS) associations with measures of episodic memory were assessed. SETTING The Diagnostic Assessment of Dementia for the Longitudinal Aging Study in India (LASI-DAD). PARTICIPANTS A total of 906 LASI-DAD participants from diverse states in India. MEASUREMENTS Participants were genotyped using the Illumina Global Screening Array and imputed with 1000G Phase 3v5. Cognitive measures included total learning and delayed word recall. RESULTS Although only a few SNPs were significantly associated with memory scores (P < .05), effect estimates from the EA-GWAS and the LASI-DAD showed moderate correlation (0.35-0.88) in the expected direction. GRSs were also associated with memory scores, although percentage variation explained was small (0.1%-0.6%). CONCLUSIONS Discrepancies in allele frequencies and cognitive association results suggest that genetic factors found predominantly through EA-GWASs may play a limited role in South Asians. However, the extent of differences in the genetic architecture of AD and cognition in EA and South Asians remains uncertain. There is also a critical need to perform a more comprehensive assessment of the mutational spectrum of South Asia to identify novel genetic variants associated with AD and cognition in this population. J Am Geriatr Soc 68:S45-S53, 2020.
Collapse
Affiliation(s)
- Jennifer A Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA.,Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, Michigan, USA
| | - Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Miao Yu
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Kalee E Rumfelt
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Priya Moorjani
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA.,Center for Computational Biology, University of California, Berkeley, California, USA
| | - Andrea Ganna
- Institute for Molecular Medicine Finland, Helsinki, Finland
| | - Aparajit B Dey
- Department of Geriatric Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Jinkook Lee
- Department of Economics, University of Southern California, Los Angeles, California, USA
| | - Sharon L R Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
34
|
Wang H, Shen X, Li J, Suckling J, Tan C, Wang Y, Feng L, Zhang C, Tan L, Dong Q, Touchon J, Gauthier S, Yu J. Clinical and biomarker trajectories in sporadic Alzheimer's disease: A longitudinal study. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2020; 12:e12095. [PMID: 32793801 PMCID: PMC7421532 DOI: 10.1002/dad2.12095] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 07/22/2020] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Amyloid beta (Aβ) deposition was identified to precede tau pathology and neurodegeneration in familial Alzheimer's disease (AD). But the divergence between sporadic and familial AD limits the extension of these findings to sporadic AD. METHODS Longitudinal changes of biomarkers among different stages were assessed using linear mixed-effects models. The slopes of the models were used to estimate rates of change to calculate the biomarker trajectories in sporadic AD. RESULTS Cerebrospinal fluid (CSF) Aβ was estimated to decline 45.2 years (abnormal: 27.8 years) before dementia, and Aβ deposition seemed to increase 31.7 years (abnormal: 26.7 years) before dementia. It was estimated to take 29.0 years (CSF t-tau), 12.2 years (memory), 11.6 years (hippocampus), 9.3 years (hypometabolism), and 6.1 years (cognition) to move from normal to dementia. DISCUSSION The trajectory in sporadic AD is led by Aβ accumulation, followed by CSF t-tau increase, memory deficits, brain atrophy, hypometabolism, and cognitive decline.
Collapse
Affiliation(s)
- Hui‐Fu Wang
- Department of NeurologyQingdao Municipal HospitalQingdao UniversityQingdaoChina
| | - Xue‐Ning Shen
- Department of Neurology and Institute of NeurologyHuashan HospitalShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Jie‐Qiong Li
- Department of NeurologyThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - John Suckling
- Department of PsychiatryUniversity of CambridgeCambridgeUK
- Medical Research Council and Wellcome Trust Behavioural and Clinical Neuroscience InstituteUniversity of CambridgeCambridge, UK; Cambridgeshire and Peterborough NHS TrustUK
| | - Chen‐Chen Tan
- Department of NeurologyQingdao Municipal HospitalQingdao UniversityQingdaoChina
| | - Yan‐Jiang Wang
- Department of NeurologyDaping HospitalThird Military Medical UniversityChongqingChina
| | - Lei Feng
- Department of Psychological MedicineYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Can Zhang
- Genetics and Aging Research UnitMcCance Center for Brain HealthMassGeneral Institute for Neurodegenerative Diseases (MIND)Department of NeurologyMassachusetts General Hospital and Harvard Medical SchoolCharlestownMassachusettsUSA
| | - Lan Tan
- Department of NeurologyQingdao Municipal HospitalQingdao UniversityQingdaoChina
| | - Qiang Dong
- Department of Neurology and Institute of NeurologyHuashan HospitalShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Jacques Touchon
- Memory Research and Resource Center for Alzheimer's DiseaseDepartment of NeurologyUniversity Hospital of MontpellierUniversity of MontpellierMontpellierFrance
| | - Serge Gauthier
- McGill Center for Studies in AgingMcGill UniversityMontrealCanada
| | - Jin‐Tai Yu
- Department of Neurology and Institute of NeurologyHuashan HospitalShanghai Medical CollegeFudan UniversityShanghaiChina
| | | |
Collapse
|
35
|
Wang YJ, Wan Y, Wang HF, Tan CC, Li JQ, Yu JT, Tan L. Effects of CD33 Variants on Neuroimaging Biomarkers in Non-Demented Elders. J Alzheimers Dis 2020; 68:757-766. [PMID: 30883353 DOI: 10.3233/jad-181062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Two CD33 common variants, rs3826656 and rs3865444, have been identified to be correlated with Alzheimer's disease (AD). Our study examined the effects of the two AD-related CD33 common variants (rs3826656 and rs3865444) on the chosen AD-related brain regions (including hippocampus, amygdala, parahippocampus, middle temporal, entorhinal cortex, and total brain volume) in non-demented elders recruited from the Alzheimer's Disease Neuroimaging Initiative database at baseline and during four-year follow-up. We further tested the effects in an Aβ-positive group (including preclinical and prodromal stage of AD) and an Aβ-negative group. In the total non-demented elderly population, no associations reached significant levels after FDR correction. In the Aβ-positive group, we found that rs3826656 was associated with hippocampal and amygdala volumes (Hippocampus-R: pc = 0.0022; Amygdala-L: pc = 0.0044; Amygdala-R: pc = 0.0066), and rs3865444 was associated with right entorhinal volume (pc = 0.0286). The associations of rs3826656 with hippocampal and amygdala volumes in the Aβ-positive group were successfully replicated in the prodromal AD group (Hippocampus-R: pc = 0.0022; Amygdala-L: pc = 0.0022; Amygdala-R: pc = 0.0088). These changes became more obvious over time during four-year follow-up. No associations were found between the two CD33 variants and neuroimaging biomarkers in the Aβ-negative and preclinical AD groups after FDR correction. These results suggested that the two CD33 common variants (rs3826656 and rs3865444) influenced volumes and atrophy rates of AD-related brain regions in non-demented elders. Subgroup analyses showed the effects mainly existed in the Aβ-positive group instead of the Aβ-negative group, and the effects began in the prodromal AD stage.
Collapse
Affiliation(s)
- Ya-Juan Wang
- Department of Neurology, Qingdao Municipal Hospital, Dalian Medical University, China
| | - Yu Wan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, China
| | - Hui-Fu Wang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, China
| | - Chen-Chen Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, China
| | - Jie-Qiong Li
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, China
| | - Jin-Tai Yu
- Department of Neurology, Qingdao Municipal Hospital, Dalian Medical University, China.,Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Dalian Medical University, China.,Department of Neurology, Qingdao Municipal Hospital, Qingdao University, China
| | | |
Collapse
|
36
|
Javor J, Ďurmanová V, Párnická Z, Minárik G, Králová M, Pečeňák J, Vašečková B, Režnáková V, Šutovský S, Gmitterová K, Hromádka T, Peterajová Ľ, Shawkatová I. Association of CD33 rs3865444:C˃A polymorphism with a reduced risk of late-onset Alzheimer's disease in Slovaks is limited to subjects carrying the APOE ε4 allele. Int J Immunogenet 2020; 47:397-405. [PMID: 32333488 DOI: 10.1111/iji.12489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 03/04/2020] [Accepted: 03/22/2020] [Indexed: 12/17/2022]
Abstract
CD33 rs3865444:C>A single nucleotide polymorphism (SNP) has been previously associated with the risk of late-onset Alzheimer's disease (LOAD); however, the results have been inconsistent across different populations. CD33 is a transmembrane receptor that plays an important role in AD pathogenesis by inhibiting amyloid β42 uptake by microglial cells. In this study, we aimed to validate the association between rs3865444 and LOAD risk in the Slovak population and to evaluate whether it was affected by the carrier status of the major LOAD risk allele apolipoprotein (APOE) ε4. CD33 rs3865444 and APOE variants were genotyped in 206 LOAD patients and 487 control subjects using the polymerase chain reaction-restriction fragment length polymorphism method and direct sequencing, respectively. Logistic regression analysis revealed a significant association of rs3865444 A allele with a reduced LOAD risk that was only present in APOE ε4 allele carriers (AA + CA versus CC: p = .0085; OR = 0.45; 95% CI = 0.25-0.82). On the other hand, no such association was found in subjects without the APOE ε4 (p = .75; OR = 0.93; 95% CI = 0.61-1.42). Moreover, regression analysis detected a significant interaction between CD33 rs3865444 A and APOE ε4 alleles (p = .021 for APOE ε4 allele dosage and p = .051 for APOE ε4 carriage status), with synergy factor (SF) value of 0.49 indicating an antagonistic effect between the two alleles in LOAD risk. In conclusion, our results suggest that CD33 rs3865444:C˃A substitution may reduce the risk of LOAD in Slovaks by antagonizing the effect conferred by the major susceptibility allele APOE ε4.
Collapse
Affiliation(s)
- Juraj Javor
- Institute of Immunology, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Vladimíra Ďurmanová
- Institute of Immunology, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Zuzana Párnická
- Institute of Immunology, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Gabriel Minárik
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Mária Králová
- Department of Psychiatry, Faculty of Medicine, Comenius University in Bratislava and University Hospital, Bratislava, Slovakia
| | - Ján Pečeňák
- Department of Psychiatry, Faculty of Medicine, Comenius University in Bratislava and University Hospital, Bratislava, Slovakia
| | - Barbora Vašečková
- Psychiatry Outpatient Clinic, University Hospital with Polyclinic the Brothers of Saint John of God, Bratislava, Slovakia
| | | | - Stanislav Šutovský
- 1st Department of Neurology, Faculty of Medicine, Comenius University in Bratislava and University Hospital, Bratislava, Slovakia
| | - Karin Gmitterová
- 2nd Department of Neurology, Faculty of Medicine, Comenius University in Bratislava and University Hospital, Bratislava, Slovakia
| | - Tomáš Hromádka
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Ľubica Peterajová
- Haematology Outpatient Clinic, University Hospital, Bratislava, Slovakia
| | - Ivana Shawkatová
- Institute of Immunology, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| |
Collapse
|
37
|
Jiang X, Zhu Y, Liu H, Chen S, Zhang D. Effect of BIN1 on cardiac dysfunction and malignant arrhythmias. Acta Physiol (Oxf) 2020; 228:e13429. [PMID: 31837094 DOI: 10.1111/apha.13429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 11/24/2019] [Accepted: 12/11/2019] [Indexed: 02/06/2023]
Abstract
Heart failure (HF) is the end-stage syndrome for most cardiac diseases, and the 5-year morbidity and mortality of HF remain high. Malignant arrhythmia is the main cause of sudden death in the progression of HF. Recently, bridging integrator 1 (BIN1) was discovered as a regulator of transverse tubule function and calcium signalling in cardiomyocytes. BIN1 downregulation is linked to abnormal cardiac contraction, and it increases the possibility of malignant arrhythmias preceding HF. Because of the detectability of cardiac BIN1 in peripheral blood, BIN1 may serve as a predictor of HF and may be useful in therapy development. However, the mechanism of BIN1 downregulation in HF and how BIN1 regulates normal cardiac function under physiological conditions remain unclear. In this review, recent progress in the biological studies of BIN1-related cardiomyocytes and the effect of cardiac dysfunction and malignant arrhythmia will be discussed.
Collapse
Affiliation(s)
- Xiao‐Xin Jiang
- Department of Cardiology Nanjing First Hospital Nanjing Medical University Nanjing Jiangsu P. R. China
| | - Yan‐Rong Zhu
- Department of Cardiology Nanjing First Hospital Nanjing Medical University Nanjing Jiangsu P. R. China
| | - Hong‐Ming Liu
- Department of Geriatric Cardiology The First Affiliated Hospital of Kunming Medical University Kunming Yunnan P. R. China
| | - Shao‐Liang Chen
- Department of Cardiology Nanjing First Hospital Nanjing Medical University Nanjing Jiangsu P. R. China
| | - Dai‐Min Zhang
- Department of Cardiology Nanjing First Hospital Nanjing Medical University Nanjing Jiangsu P. R. China
| |
Collapse
|
38
|
Does the CD33 rs3865444 Polymorphism Confer Susceptibility to Alzheimer’s Disease? J Mol Neurosci 2020; 70:851-860. [DOI: 10.1007/s12031-020-01507-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 02/05/2020] [Indexed: 12/13/2022]
|
39
|
Yan Y, Zhao A, Qui Y, Li Y, Yan R, Wang Y, Xu W, Deng Y. Genetic Association of FERMT2, HLA-DRB1, CD2AP, and PTK2B Polymorphisms With Alzheimer's Disease Risk in the Southern Chinese Population. Front Aging Neurosci 2020; 12:16. [PMID: 32116649 PMCID: PMC7010721 DOI: 10.3389/fnagi.2020.00016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 01/17/2020] [Indexed: 12/13/2022] Open
Abstract
Objectives This study aimed to explore the relationship between 18 single nucleotide polymorphisms (SNPs) and Alzheimer’s disease (AD) within the southern Chinese population. Methods A total of 420 participants, consisting of 215 AD patients and 205 sex- and age-matched controls, were recruited. The SNaPshot technique and polymer chain reaction (PCR) were used to detect the 18 SNPs. Combined with the apolipoprotein E (APOE) ε4 allele and age at onset, we performed an association analysis between these SNPs and AD susceptibility. Furthermore, we analyzed SNP-associated gene expression using the expression quantitative trait loci analysis. Results Our study found that rs17125924 of FERMT2 was associated with the risk of developing AD in the dominant (P = 0.022, odds ratio [OR] = 1.57, 95% confidence interval [CI]: 1.07–2.32) and overdominant (P = 0.005, OR = 1.76, 95% CI: 1.18–2.61) models. Moreover, compared with APOE ε4 non-carriers, the frequency of the G-allele at rs17125924 was significantly higher among AD patients in APOE ε4 allele carriers (P = 0.029). The rs9271058 of HLA-DRB1 (dominant, overdominant, and additive models), rs9473117 of CD2AP (dominant and additive models), and rs73223431 of PTK2B (dominant, overdominant, and additive models) were associated with early onset AD (EOAD). Using the genotype-tissue expression (GTEx) and Braineac database, we found a significant association between rs9271058 genotypes and HLA-DRB1 expression levels, while the CC genotype at rs9473117 and the TT genotype of rs73223431 increased CD2AP and PTK2B gene expression, respectively. Conclusion Our study identifies the G-allele at rs17125924 as a risk factor for developing AD, especially in APOE ε4 carriers. In addition, we found that rs9271058 of HLA-DRB1, rs9473117 of CD2AP, and rs73223431 of PTK2B were associated with EOAD. Further studies with larger sample sizes are needed to confirm our results.
Collapse
Affiliation(s)
- Yi Yan
- Department of Neurology, Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Aonan Zhao
- Department of Neurology, Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yinghui Qui
- Department of Neurology, Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanyuan Li
- Department of Neurology, Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ran Yan
- Department of Neurology, Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Wang
- Department of Neurology, Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Xu
- Department of Neurology, Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yulei Deng
- Department of Neurology, Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Neurology, Ruijin Hospital, Luwan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
40
|
Neuroinflammation and Neurogenesis in Alzheimer's Disease and Potential Therapeutic Approaches. Int J Mol Sci 2020; 21:ijms21030701. [PMID: 31973106 PMCID: PMC7037892 DOI: 10.3390/ijms21030701] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/17/2020] [Accepted: 01/19/2020] [Indexed: 12/17/2022] Open
Abstract
In adult brain, new neurons are generated throughout adulthood in the subventricular zone and the dentate gyrus; this process is commonly known as adult neurogenesis. The regulation or modulation of adult neurogenesis includes various intrinsic pathways (signal transduction pathway and epigenetic or genetic modulation pathways) or extrinsic pathways (metabolic growth factor modulation, vascular, and immune system pathways). Altered neurogenesis has been identified in Alzheimer's disease (AD), in both human AD brains and AD rodent models. The exact mechanism of the dysregulation of adult neurogenesis in AD has not been completely elucidated. However, neuroinflammation has been demonstrated to alter adult neurogenesis. The presence of various inflammatory components, such as immune cells, cytokines, or chemokines, plays a role in regulating the survival, proliferation, and maturation of neural stem cells. Neuroinflammation has also been considered as a hallmark neuropathological feature of AD. In this review, we summarize current, state-of-the art perspectives on adult neurogenesis, neuroinflammation, and the relationship between these two phenomena in AD. Furthermore, we discuss the potential therapeutic approaches, focusing on the anti-inflammatory and proneurogenic interventions that have been reported in this field.
Collapse
|
41
|
Han Z, Wang T, Tian R, Zhou W, Wang P, Ren P, Zong J, Hu Y, Jin S, Jiang Q. BIN1 rs744373 variant shows different association with Alzheimer's disease in Caucasian and Asian populations. BMC Bioinformatics 2019; 20:691. [PMID: 31874619 PMCID: PMC6929404 DOI: 10.1186/s12859-019-3264-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The association between BIN1 rs744373 variant and Alzheimer's disease (AD) had been identified by genome-wide association studies (GWASs) as well as candidate gene studies in Caucasian populations. But in East Asian populations, both positive and negative results had been identified by association studies. Considering the smaller sample sizes of the studies in East Asian, we believe that the results did not have enough statistical power. RESULTS We conducted a meta-analysis with 71,168 samples (22,395 AD cases and 48,773 controls, from 37 studies of 19 articles). Based on the additive model, we observed significant genetic heterogeneities in pooled populations as well as Caucasians and East Asians. We identified a significant association between rs744373 polymorphism with AD in pooled populations (P = 5 × 10- 07, odds ratio (OR) = 1.12, and 95% confidence interval (CI) 1.07-1.17) and in Caucasian populations (P = 3.38 × 10- 08, OR = 1.16, 95% CI 1.10-1.22). But in the East Asian populations, the association was not identified (P = 0.393, OR = 1.057, and 95% CI 0.95-1.15). Besides, the regression analysis suggested no significant publication bias. The results for sensitivity analysis as well as meta-analysis under the dominant model and recessive model remained consistent, which demonstrated the reliability of our finding. CONCLUSIONS The large-scale meta-analysis highlighted the significant association between rs744373 polymorphism and AD risk in Caucasian populations but not in the East Asian populations.
Collapse
Affiliation(s)
- Zhifa Han
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Tao Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Rui Tian
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Wenyang Zhou
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Pingping Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Peng Ren
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Jian Zong
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Yang Hu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Shuilin Jin
- Department of Mathematics, Harbin Institute of Technology, Harbin, China.
| | - Qinghua Jiang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China.
| |
Collapse
|
42
|
Talebi M, Delpak A, Khalaj-Kondori M, Sadigh-Eteghad S, Talebi M, Mehdizadeh E, Majdi A. ABCA7 and EphA1 Genes Polymorphisms in Late-Onset Alzheimer's Disease. J Mol Neurosci 2019; 70:167-173. [PMID: 31659653 DOI: 10.1007/s12031-019-01420-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 10/10/2019] [Indexed: 02/07/2023]
Abstract
Large-scale genome-wide studies have revealed the role of several genes and their respective single-nucleotide polymorphisms (SNPs) in the pathophysiology of late-onset Alzheimer's disease (LOAD). Here, the frequencies of ABCA7 SNPs rs3764650 and rs4147929 and EphA1 SNP rs11771145 were assessed and compared in LOAD patients and healthy subjects. In a case-control study, 110 patients with LOAD (case) and 88 healthy unrelated age- and gender-matched individuals (control), both from Azeri descent, were enrolled. DNA was extracted from blood samples using the salting out method, and the genotyping was performed by RFLP-PCR for rs3764650, rs4147929, and rs11771145 polymorphisms. Electrophoresis was carried out on agarose gel. Sequencing was utilized for confirmation of the results. No differences were found in the frequencies of ABCA7 SNP rs3764650 and EphA1 SNP rs11771145 between healthy subjects and LOAD patients. However, a significant difference was revealed in the frequencies of AA (p = 0.042, OR = 0.150; 95%CI = 0.005-1.410) and GG (p = 0.009, OR = 1.716; 95%CI = 0.918-3.218) genotypes of ABCA7 SNP rs4147929 between the mentioned groups. This study showed that ABCA7 SNP rs4147929 might be a predisposing factor for LOAD. However, such an association was not found between ABCA7 SNP rs3764650 as well as EphA1 SNP rs11771145 and LOAD. These results must be confirmed in other ethnic groups.
Collapse
Affiliation(s)
- Mahnaz Talebi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Azra Delpak
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Saeed Sadigh-Eteghad
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Malihe Talebi
- Health Center of East Azerbaijan Province, Tabriz, Iran
| | - Elham Mehdizadeh
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Majdi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
43
|
Tao QQ, Chen YC, Wu ZY. The role of CD2AP in the Pathogenesis of Alzheimer's Disease. Aging Dis 2019; 10:901-907. [PMID: 31440393 PMCID: PMC6675523 DOI: 10.14336/ad.2018.1025] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 10/25/2018] [Indexed: 12/19/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease characterized by irreversible decline in cognition with unclear pathogenesis. Recently, accumulating evidence has revealed that CD2 associated protein (CD2AP), a scaffolding molecule regulates signal transduction and cytoskeletal molecules, is implicated in AD pathogenesis. Several single nucleotide polymorphisms (SNPs) in CD2AP gene are associated with higher risk for AD and mRNA levels of CD2AP are decreased in peripheral lymphocytes of sporadic AD patients. Furthermore, CD2AP loss of function is linked to enhanced Aβ production, Tau-induced neurotoxicity, abnormal neurite structure modulation and reduced blood-brain barrier integrity. This review is to summarize the recent discoveries about the genetics and known functions of CD2AP. The recent evidence concerning the roles of CD2AP in the AD pathogenesis is summarized and CD2AP can be a promising therapeutic target for AD.
Collapse
Affiliation(s)
- Qing-Qing Tao
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu-Chao Chen
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhi-Ying Wu
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
44
|
Zhang C, Hu R, Zhang G, Zhe Y, Hu B, He J, Wang Z, Qi X. A Weighted Genetic Risk Score Based on Four APOE-Independent Alzheimer’s Disease Risk Loci May Supplement APOE E4 for Better Disease Prediction. J Mol Neurosci 2019; 69:433-443. [DOI: 10.1007/s12031-019-01372-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 06/26/2019] [Indexed: 12/13/2022]
|
45
|
Gong L, Xu R, Lan L, Liu D, Shen J, Zhang B. The CD33 genotype associated cognitive performance was bidirectionally modulated by intrinsic functional connectivity in the Alzheimer’s disease spectrum. Biomed Pharmacother 2019; 115:108903. [DOI: 10.1016/j.biopha.2019.108903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 04/10/2019] [Accepted: 04/22/2019] [Indexed: 12/26/2022] Open
|
46
|
Oliynyk RT. Age-related late-onset disease heritability patterns and implications for genome-wide association studies. PeerJ 2019; 7:e7168. [PMID: 31231601 PMCID: PMC6573810 DOI: 10.7717/peerj.7168] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 05/22/2019] [Indexed: 01/06/2023] Open
Abstract
Genome-wide association studies (GWASs) and other computational biology techniques are gradually discovering the causal gene variants that contribute to late-onset human diseases. After more than a decade of genome-wide association study efforts, these can account for only a fraction of the heritability implied by familial studies, the so-called "missing heritability" problem. Computer simulations of polygenic late-onset diseases (LODs) in an aging population have quantified the risk allele frequency decrease at older ages caused by individuals with higher polygenic risk scores (PRSs) becoming ill proportionately earlier. This effect is most prominent for diseases characterized by high cumulative incidence and high heritability, examples of which include Alzheimer's disease, coronary artery disease, cerebral stroke, and type 2 diabetes. The incidence rate for LODs grows exponentially for decades after early onset ages, guaranteeing that the cohorts used for GWASs overrepresent older individuals with lower PRSs, whose disease cases are disproportionately due to environmental causes such as old age itself. This mechanism explains the decline in clinical predictive power with age and the lower discovery power of familial studies of heritability and GWASs. It also explains the relatively constant-with-age heritability found for LODs of lower prevalence, exemplified by cancers.
Collapse
Affiliation(s)
- Roman Teo Oliynyk
- Centre for Computational Evolution, University of Auckland, Auckland, New Zealand
- Department of Computer Science, University of Auckland, Auckland, New Zealand
| |
Collapse
|
47
|
Ma FC, Wang HF, Cao XP, Tan CC, Tan L, Yu JT. Meta-Analysis of the Association between Variants in ABCA7 and Alzheimer's Disease. J Alzheimers Dis 2019; 63:1261-1267. [PMID: 29782324 DOI: 10.3233/jad-180107] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The ATP-binding cassette transporter A7 (ABCA7) was identified as a known risk factor for Alzheimer's disease (AD). However, the relation between ABCA7 and AD was still inconsistent across these studies. Here, our meta-analysis aimed at confirming the association of ABCA7 with AD. Finally, 16 case-control studies (63747 versus 85833) were retrieved from PubMed and other databases. Three common loci were confirmed to increase the risk of AD (rs3764650: OR = 1.20, 95% CI = 1.16-1.24; rs3752246: OR = 1.13,95% CI = 1.08-1.19; rs4147929: OR = 1.17, 95% CI = 1.10-1.24), but the associations varied among the different races. Furthermore, ABCA7 loss-of-function (LOF) mutations conferred a higher risk for AD than did the above variants (LOF: OR = 1.78, 95% = 1.43-2.22). In conclusion, ABCA7 genetic variants, especially the LOF mutations, were significantly associated with the risk of AD.
Collapse
Affiliation(s)
- Fang-Chen Ma
- Department of Neurology, Qingdao Municipal Hospital, Weifang Medical University, Qingdao, China
| | - Hui-Fu Wang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Xi-Peng Cao
- Clinical Research Center, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Chen-Chen Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Jin-Tai Yu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China.,Clinical Research Center, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| |
Collapse
|
48
|
Hou XH, Bi YL, Tan MS, Xu W, Li JQ, Shen XN, Dou KX, Tan CC, Tan L, Yu JT. Genome-wide association study identifies Alzheimer's risk variant in MS4A6A influencing cerebrospinal fluid sTREM2 levels. Neurobiol Aging 2019; 84:241.e13-241.e20. [PMID: 31204042 DOI: 10.1016/j.neurobiolaging.2019.05.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/25/2019] [Accepted: 05/13/2019] [Indexed: 12/31/2022]
Abstract
The triggering receptor expressed on myeloid cells 2 (TREM2) gene has been reported to increase the risk of Alzheimer's disease (AD). The soluble TREM2 protein (sTREM2) in cerebrospinal fluid (CSF) was also associated with AD. However, the role of sTREM2 in AD and its genetic modifiers remain unclear. We carried out a genome-wide association study for CSF sTREM2 levels using participants from the Alzheimer's Disease Neuroimaging Initiative and validated the significant association in an independent cohort from Chinese Alzheimer's Biomarker and LifestylE study. rs7232 in membrane spanning 4-domains A6A (MS4A6A) gene was associated with CSF sTREM2 levels at genome-wide significance (p = 1.42 × 10-15). The locus influences CSF sTREM2 levels especially in nondemented individuals. And the association was replicable in the validation cohort from Chinese Alzheimer's Biomarker and LifestylE study (p = 0.0106). Besides, the expressions of MS4A6A and TREM2 were correlated in brain regions (p < 2 × 10-16). The findings of our study suggest that the AD risk variant in the MS4A6A gene participates in the regulation of sTREM2.
Collapse
Affiliation(s)
- Xiao-He Hou
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, China
| | - Yan-Lin Bi
- Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao University, China
| | - Meng-Shan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, China
| | - Wei Xu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, China
| | - Jie-Qiong Li
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, China
| | - Xue-Ning Shen
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, China
| | - Kai-Xin Dou
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, China
| | - Chen-Chen Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, China
| | | | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, WHO Collaborating Center for Research and Training in Neurosciences, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
49
|
Zhang DF, Xu M, Bi R, Yao YG. Genetic Analyses of Alzheimer's Disease in China: Achievements and Perspectives. ACS Chem Neurosci 2019; 10:890-901. [PMID: 30698408 DOI: 10.1021/acschemneuro.8b00435] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Since 2010, the Chinese have become one of the most aged populations in the world, leading to a severe burden of neurodegenerative disorders. Alzheimer's disease (AD) is the most prevalent neurodegenerative disease and has a high genetic heritability. In the past two decades, numerous genetic analyses, from linkage analyses and candidate gene studies to genome-wide association studies (GWASs) and next-generation sequencing studies, have identified dozens of AD susceptibility or causal genes. These studies have provided a comprehensive genetic view and contributed to the understanding of the pathological and molecular mechanisms of the disease. However, most of the recognized AD genetic risk factors have been reported in studies based on European populations or populations of European ancestry, and data about the genetics of AD from other populations has been very limited. As China has the largest AD population in the world and because of the remarkable genetic differences between the East and the West, deciphering the genetic basis and molecular mechanism in Chinese patients with AD may add key points to the full characterization of AD. In this review, we present an overview of the current state of AD genetic research in China, with an emphasis on genome-level studies. We also describe the challenges and opportunities for future advances, especially for in-depth collaborations, brain bank construction, and primate animal modeling. There is an urgent need to promote public awareness and increase our collaborations and data sharing.
Collapse
Affiliation(s)
- Deng-Feng Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China
| | - Min Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Rui Bi
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China
| | - Yong-Gang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- Kunming Institute of Zoology−Chinese University of Hong Kong Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| |
Collapse
|
50
|
Akram Husain R, Subramaniyan K, Ahmed SS, Ramakrishnan V. Association of PSEN1 rs165932 polymorphism with Alzheimer's disease susceptibility: An extensive meta-analysis. Meta Gene 2019. [DOI: 10.1016/j.mgene.2018.11.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|