1
|
Fanlo-Ucar H, Picón-Pagès P, Herrera-Fernández V, ILL-Raga G, Muñoz FJ. The Dual Role of Amyloid Beta-Peptide in Oxidative Stress and Inflammation: Unveiling Their Connections in Alzheimer's Disease Etiopathology. Antioxidants (Basel) 2024; 13:1208. [PMID: 39456461 PMCID: PMC11505517 DOI: 10.3390/antiox13101208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/03/2024] [Accepted: 10/05/2024] [Indexed: 10/28/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease, and it is currently the seventh leading cause of death worldwide. It is characterized by the extracellular aggregation of the amyloid β-peptide (Aβ) into oligomers and fibrils that cause synaptotoxicity and neuronal death. Aβ exhibits a dual role in promoting oxidative stress and inflammation. This review aims to unravel the intricate connection between these processes and their contribution to AD progression. The review delves into oxidative stress in AD, focusing on the involvement of metals, mitochondrial dysfunction, and biomolecule oxidation. The distinct yet overlapping concept of nitro-oxidative stress is also discussed, detailing the roles of nitric oxide, mitochondrial perturbations, and their cumulative impact on Aβ production and neurotoxicity. Inflammation is examined through astroglia and microglia function, elucidating their response to Aβ and their contribution to oxidative stress within the AD brain. The blood-brain barrier and oligodendrocytes are also considered in the context of AD pathophysiology. We also review current diagnostic methodologies and emerging therapeutic strategies aimed at mitigating oxidative stress and inflammation, thereby offering potential treatments for halting or slowing AD progression. This comprehensive synthesis underscores the pivotal role of Aβ in bridging oxidative stress and inflammation, advancing our understanding of AD and informing future research and treatment paradigms.
Collapse
Affiliation(s)
- Hugo Fanlo-Ucar
- Laboratory of Molecular Physiology, Department of Medicine and Life Sciences, Faculty of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (H.F.-U.); (P.P.-P.); (V.H.-F.); (G.I.-R.)
| | - Pol Picón-Pagès
- Laboratory of Molecular Physiology, Department of Medicine and Life Sciences, Faculty of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (H.F.-U.); (P.P.-P.); (V.H.-F.); (G.I.-R.)
- Laboratory of Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 08028 Barcelona, Spain
| | - Víctor Herrera-Fernández
- Laboratory of Molecular Physiology, Department of Medicine and Life Sciences, Faculty of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (H.F.-U.); (P.P.-P.); (V.H.-F.); (G.I.-R.)
| | - Gerard ILL-Raga
- Laboratory of Molecular Physiology, Department of Medicine and Life Sciences, Faculty of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (H.F.-U.); (P.P.-P.); (V.H.-F.); (G.I.-R.)
| | - Francisco J. Muñoz
- Laboratory of Molecular Physiology, Department of Medicine and Life Sciences, Faculty of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (H.F.-U.); (P.P.-P.); (V.H.-F.); (G.I.-R.)
| |
Collapse
|
2
|
Yu L, Chen Z, Zhou X, Teng F, Bai QR, Li L, Li Y, Liu Y, Zeng Q, Wang Y, Wang M, Xu Y, Tang X, Wang X. KARS Mutations Impair Brain Myelination by Inducing Oligodendrocyte Deficiency: One Potential Mechanism and Improvement by Melatonin. J Pineal Res 2024; 76:e12998. [PMID: 39087379 DOI: 10.1111/jpi.12998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/08/2024] [Accepted: 07/19/2024] [Indexed: 08/02/2024]
Abstract
It is very crucial to investigate key molecules that are involved in myelination to gain an understanding of brain development and injury. We have reported for the first time that pathogenic variants p.R477H and p.P505S in KARS, which encodes lysyl-tRNA synthetase (LysRS), cause leukoencephalopathy with progressive cognitive impairment in humans. The role and action mechanisms of KARS in brain myelination during development are unknown. Here, we first generated Kars knock-in mouse models through the CRISPR-Cas9 system. Kars knock-in mice displayed significant cognitive deficits. These mice also showed significantly reduced myelin density and content, as well as significantly decreased myelin thickness during development. In addition, Kars mutations significantly induced oligodendrocyte differentiation arrest and reduction in the brain white matter of mice. Mechanically, oligodendrocytes' significantly imbalanced expression of differentiation regulators and increased capase-3-mediated apoptosis were observed in the brain white matter of Kars knock-in mice. Furthermore, Kars mutations significantly reduced the aminoacylation and steady-state level of mitochondrial tRNALys and decreased the protein expression of subunits of oxidative phosphorylation complexes in the brain white matter. Kars knock-in mice showed decreased activity of complex IV and significantly reduced ATP production and increased reactive oxygen species in the brain white matter. Significantly increased percentages of abnormal mitochondria and mitochondrion area were observed in the oligodendrocytes of Kars knock-in mouse brain. Finally, melatonin (a mitochondrion protectant) significantly attenuated mitochondrion and oligodendrocyte deficiency in the brain white matter of KarsR504H/P532S mice. The mice treated with melatonin also showed significantly restored myelination and cognitive function. Our study first establishes Kars knock-in mammal models of leukoencephalopathy and cognitive impairment and indicates important roles of KARS in the regulation of mitochondria, oligodendrocyte differentiation and survival, and myelination during brain development and application prospects of melatonin in KARS (or even aaRS)-related diseases.
Collapse
Affiliation(s)
- Lijia Yu
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhilin Chen
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaolong Zhou
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Fei Teng
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qing-Ran Bai
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Lixi Li
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yunhong Li
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Ying Liu
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Neurology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Qiyu Zeng
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yong Wang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Meihua Wang
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Neurosurgery & Neurocritical Care, Huashan Hospital Affiliated to Fudan University, Shanghai, China
| | - Yaling Xu
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaohui Tang
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xijin Wang
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Huang Z, Jordan JD, Zhang Q. Myelin Pathology in Alzheimer's Disease: Potential Therapeutic Opportunities. Aging Dis 2024; 15:698-713. [PMID: 37548935 PMCID: PMC10917545 DOI: 10.14336/ad.2023.0628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/28/2023] [Indexed: 08/08/2023] Open
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disease characterized by memory loss and cognitive decline. Despite significant efforts over several decades, our understanding of the pathophysiology of this disease is still incomplete. Myelin is a multi-layered membrane structure ensheathing neuronal axons, which is essential for the fast and effective propagation of action potentials along the axons. Recent studies highlight the critical involvement of myelin in memory consolidation and reveal its vulnerability in various pathological conditions. Notably, apart from the classic amyloid hypothesis, myelin degeneration has been proposed as another critical pathophysiological feature of AD, which could occur prior to the development of amyloid pathology. Here, we review recent works supporting the critical role of myelin in cognition and myelin pathology during AD progression, with a focus on the mechanisms underlying myelin degeneration in AD. We also discuss the complex intersections between myelin pathology and typical AD pathophysiology, as well as the therapeutic potential of pro-myelinating approaches for this disease. Overall, these findings implicate myelin degeneration as a critical contributor to AD-related cognitive deficits and support targeting myelin repair as a promising therapeutic strategy for AD.
Collapse
Affiliation(s)
- Zhihai Huang
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA 71103 USA
| | - J. Dedrick Jordan
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA 71103 USA
| | - Quanguang Zhang
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA 71103 USA
| |
Collapse
|
4
|
Nwadiugwu M, Onwuekwe I, Ezeanolue E, Deng H. Beyond Amyloid: A Machine Learning-Driven Approach Reveals Properties of Potent GSK-3β Inhibitors Targeting Neurofibrillary Tangles. Int J Mol Sci 2024; 25:2646. [PMID: 38473895 PMCID: PMC10931970 DOI: 10.3390/ijms25052646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Current treatments for Alzheimer's disease (AD) focus on slowing memory and cognitive decline, but none offer curative outcomes. This study aims to explore and curate the common properties of active, drug-like molecules that modulate glycogen synthase kinase 3β (GSK-3β), a well-documented kinase with increased activity in tau hyperphosphorylation and neurofibrillary tangles-hallmarks of AD pathology. Leveraging quantitative structure-activity relationship (QSAR) data from the PubChem and ChEMBL databases, we employed seven machine learning models: logistic regression (LogR), k-nearest neighbors (KNN), random forest (RF), support vector machine (SVM), extreme gradient boosting (XGB), neural networks (NNs), and ensemble majority voting. Our goal was to correctly predict active and inactive compounds that inhibit GSK-3β activity and identify their key properties. Among the six individual models, the NN demonstrated the highest performance with a 79% AUC-ROC on unbalanced external validation data, while the SVM model was superior in accurately classifying the compounds. The SVM and RF models surpassed NN in terms of Kappa values, and the ensemble majority voting model demonstrated slightly better accuracy to the NN on the external validation data. Feature importance analysis revealed that hydrogen bonds, phenol groups, and specific electronic characteristics are important features of molecular descriptors that positively correlate with active GSK-3β inhibition. Conversely, structural features like imidazole rings, sulfides, and methoxy groups showed a negative correlation. Our study highlights the significance of structural, electronic, and physicochemical descriptors in screening active candidates against GSK-3β. These predictive features could prove useful in therapeutic strategies to understand the important properties of GSK-3β candidate inhibitors that may potentially benefit non-amyloid-based AD treatments targeting neurofibrillary tangles.
Collapse
Affiliation(s)
- Martin Nwadiugwu
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Ikenna Onwuekwe
- Neurology Unit, Department of Medicine, University of Nigeria Teaching Hospital, Ituku-Ozalla 400001, Enugu, Nigeria;
- Department of Medicine, College of Medicine, University of Nigeria, Enugu Campus, Nsukka 400001, Enugu, Nigeria
| | - Echezona Ezeanolue
- Center for Translation and Implementation Research (CTAIR), University of Nigeria, Nsukka 410001, Enugu, Nigeria;
- Healthy Sunrise Foundation, Las Vegas, NV 89107, USA
| | - Hongwen Deng
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA 70112, USA
| |
Collapse
|
5
|
Dileep V, Boix CA, Mathys H, Marco A, Welch GM, Meharena HS, Loon A, Jeloka R, Peng Z, Bennett DA, Kellis M, Tsai LH. Neuronal DNA double-strand breaks lead to genome structural variations and 3D genome disruption in neurodegeneration. Cell 2023; 186:4404-4421.e20. [PMID: 37774679 PMCID: PMC10697236 DOI: 10.1016/j.cell.2023.08.038] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 04/02/2023] [Accepted: 08/29/2023] [Indexed: 10/01/2023]
Abstract
Persistent DNA double-strand breaks (DSBs) in neurons are an early pathological hallmark of neurodegenerative diseases including Alzheimer's disease (AD), with the potential to disrupt genome integrity. We used single-nucleus RNA-seq in human postmortem prefrontal cortex samples and found that excitatory neurons in AD were enriched for somatic mosaic gene fusions. Gene fusions were particularly enriched in excitatory neurons with DNA damage repair and senescence gene signatures. In addition, somatic genome structural variations and gene fusions were enriched in neurons burdened with DSBs in the CK-p25 mouse model of neurodegeneration. Neurons enriched for DSBs also had elevated levels of cohesin along with progressive multiscale disruption of the 3D genome organization aligned with transcriptional changes in synaptic, neuronal development, and histone genes. Overall, this study demonstrates the disruption of genome stability and the 3D genome organization by DSBs in neurons as pathological steps in the progression of neurodegenerative diseases.
Collapse
Affiliation(s)
- Vishnu Dileep
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Carles A Boix
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Hansruedi Mathys
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Asaf Marco
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Gwyneth M Welch
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Hiruy S Meharena
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Anjanet Loon
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ritika Jeloka
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Zhuyu Peng
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Manolis Kellis
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Li-Huei Tsai
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
6
|
Cheng GWY, Ma IWT, Huang J, Yeung SHS, Ho P, Chen Z, Mak HKF, Herrup K, Chan KWY, Tse KH. Cuprizone drives divergent neuropathological changes in different mouse models of Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.24.547147. [PMID: 37546935 PMCID: PMC10402084 DOI: 10.1101/2023.07.24.547147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Myelin degradation is a normal feature of brain aging that accelerates in Alzheimer's disease (AD). To date, however, the underlying biological basis of this correlation remains elusive. The amyloid cascade hypothesis predicts that demyelination is caused by increased levels of the β-amyloid (Aβ) peptide. Here we report on work supporting the alternative hypothesis that early demyelination is upstream of amyloid. We challenged two different mouse models of AD (R1.40 and APP/PS1) using cuprizone-induced demyelination and tracked the responses with both neuroimaging and neuropathology. In oppose to amyloid cascade hypothesis, R1.40 mice, carrying only a single human mutant APP (Swedish; APP SWE ) transgene, showed a more abnormal changes of magnetization transfer ratio and diffusivity than in APP/PS1 mice, which carry both APP SWE and a second PSEN1 transgene (delta exon 9; PSEN1 dE9 ). Although cuprizone targets oligodendrocytes (OL), magnetic resonance spectroscopy and targeted RNA-seq data in R1.40 mice suggested a possible metabolic alternation in axons. In support of alternative hypotheses, cuprizone induced significant intraneuronal amyloid deposition in young APP/PS1, but not in R1.40 mice, and it suggested the presence of PSEN deficiencies, may accelerate Aβ deposition upon demyelination. In APP/PS1, mature OL is highly vulnerable to cuprizone with significant DNA double strand breaks (53BP1 + ) formation. Despite these major changes in myelin, OLs, and Aβ immunoreactivity, no cognitive impairment or hippocampal pathology was detected in APP/PS1 mice after cuprizone treatment. Together, our data supports the hypothesis that myelin loss can be the cause, but not the consequence, of AD pathology. SIGNIFICANCE STATEMENT The causal relationship between early myelin loss and the progression of Alzheimer's disease remains unclear. Using two different AD mouse models, R1.40 and APP/PS1, our study supports the hypothesis that myelin abnormalities are upstream of amyloid production and deposition. We find that acute demyelination initiates intraneuronal amyloid deposition in the frontal cortex. Further, the loss of oligodendrocytes, coupled with the accelerated intraneuronal amyloid deposition, interferes with myelin tract diffusivity at a stage before any hippocampus pathology or cognitive impairments occur. We propose that myelin loss could be the cause, not the consequence, of amyloid pathology during the early stages of Alzheimer's disease.
Collapse
|
7
|
Georgiadis M, Menzel M, Reuter JA, Born DE, Kovacevich SR, Alvarez D, Taghavi HM, Schroeter A, Rudin M, Gao Z, Guizar-Sicairos M, Weiss TM, Axer M, Rajkovic I, Zeineh MM. Imaging crossing fibers in mouse, pig, monkey, and human brain using small-angle X-ray scattering. Acta Biomater 2023; 164:317-331. [PMID: 37098400 PMCID: PMC10811447 DOI: 10.1016/j.actbio.2023.04.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 04/27/2023]
Abstract
Myelinated axons (nerve fibers) efficiently transmit signals throughout the brain via action potentials. Multiple methods that are sensitive to axon orientations, from microscopy to magnetic resonance imaging, aim to reconstruct the brain's structural connectome. As billions of nerve fibers traverse the brain with various possible geometries at each point, resolving fiber crossings is necessary to generate accurate structural connectivity maps. However, doing so with specificity is a challenging task because signals originating from oriented fibers can be influenced by brain (micro)structures unrelated to myelinated axons. X-ray scattering can specifically probe myelinated axons due to the periodicity of the myelin sheath, which yields distinct peaks in the scattering pattern. Here, we show that small-angle X-ray scattering (SAXS) can be used to detect myelinated, axon-specific fiber crossings. We first demonstrate the capability using strips of human corpus callosum to create artificial double- and triple-crossing fiber geometries, and we then apply the method in mouse, pig, vervet monkey, and human brains. We compare results to polarized light imaging (3D-PLI), tracer experiments, and to outputs from diffusion MRI that sometimes fails to detect crossings. Given its specificity, capability of 3-dimensional sampling and high resolution, SAXS could serve as a ground truth for validating fiber orientations derived using diffusion MRI as well as microscopy-based methods. STATEMENT OF SIGNIFICANCE: To study how the nerve fibers in our brain are interconnected, scientists need to visualize their trajectories, which often cross one another. Here, we show the unique capacity of small-angle X-ray scattering (SAXS) to study these fiber crossings without use of labeling, taking advantage of SAXS's specificity to myelin - the insulating sheath that is wrapped around nerve fibers. We use SAXS to detect double and triple crossing fibers and unveil intricate crossings in mouse, pig, vervet monkey, and human brains. This non-destructive method can uncover complex fiber trajectories and validate other less specific imaging methods (e.g., MRI or microscopy), towards accurate mapping of neuronal connectivity in the animal and human brain.
Collapse
Affiliation(s)
- Marios Georgiadis
- Department of Radiology, Stanford School of Medicine, Stanford, CA, USA; Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland.
| | - Miriam Menzel
- Institute of Neuroscience and Medicine (INM-1), Forschungszentrum Jülich GmbH, Jülich 52425, Germany; Department of Imaging Physics, Delft University of Technology, Delft, the Netherlands
| | - Jan A Reuter
- Institute of Neuroscience and Medicine (INM-1), Forschungszentrum Jülich GmbH, Jülich 52425, Germany
| | - Donald E Born
- Department of Pathology, Stanford School of Medicine, Stanford, CA, USA
| | | | - Dario Alvarez
- Department of Radiology, Stanford School of Medicine, Stanford, CA, USA
| | | | - Aileen Schroeter
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Markus Rudin
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Zirui Gao
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| | | | - Thomas M Weiss
- SLAC National Accelerator Laboratory, Stanford Synchrotron Radiation Lightsource, USA
| | - Markus Axer
- Institute of Neuroscience and Medicine (INM-1), Forschungszentrum Jülich GmbH, Jülich 52425, Germany
| | - Ivan Rajkovic
- SLAC National Accelerator Laboratory, Stanford Synchrotron Radiation Lightsource, USA
| | - Michael M Zeineh
- Department of Radiology, Stanford School of Medicine, Stanford, CA, USA
| |
Collapse
|
8
|
Nelson TJ, Xu Y. Sting and p53 DNA repair pathways are compromised in Alzheimer's disease. Sci Rep 2023; 13:8304. [PMID: 37221295 PMCID: PMC10206146 DOI: 10.1038/s41598-023-35533-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/19/2023] [Indexed: 05/25/2023] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia. A common finding in AD is DNA damage. Double-strand DNA breaks (DSBs) are particularly hazardous to neurons because their post-mitotic state forces neurons to rely on error-prone and potentially mutagenic mechanisms to repair DNA breaks. However, it remains unclear whether DNA damage results from increased DNA damage or failure of DNA repair. Oligomerization of the tumor suppressor protein p53 is an essential part of DSB repair, and p53 phosphorylated on S15 is an indicator of DNA damage. We report that the monomer:dimer ratio of phosphorylated (S15) p53 is increased by 2.86-fold in temporal lobes of AD patients compared to age-matched controls, indicating that p53 oligomerization is compromised in AD. In vitro oxidation of p53 with 100 nM H2O2 produced a similar shift in the monomer:dimer ratio. A COMET test showed a higher level of DNA degradation in AD consistent with double-strand DNA damage or inhibition of repair. Protein carbonylation was also elevated (190% of control), indicating elevated oxidative stress in AD patients. Levels of the DNA repair support protein 14-3-3σ, γ-H2AX, a phosphorylated histone marking double strand DNA breaks, and phosphorylated ataxia telangiectasia mutated (ATM) protein were all increased. cGAS-STING-interferon signaling was impaired in AD and was accompanied by a depletion of STING protein from Golgi and a failure to elevate interferon despite the presence of DSBs. The results suggest that oxidation of p53 by ROS could inhibit the DDR and decrease its ability to orchestrate DSB repair by altering the oligomerization state of p53. The failure of immune-stimulated DNA repair may contribute to cell loss in AD and suggests new therapeutic targets for AD.
Collapse
Affiliation(s)
- Thomas J Nelson
- Department of Neurology, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, 25704, USA.
| | - Yunhui Xu
- Department of Neurology, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, 25704, USA
| |
Collapse
|
9
|
Mok KKS, Yeung SHS, Cheng GWY, Ma IWT, Lee RHS, Herrup K, Tse KH. Apolipoprotein E ε4 disrupts oligodendrocyte differentiation by interfering with astrocyte-derived lipid transport. J Neurochem 2023; 165:55-75. [PMID: 36549843 DOI: 10.1111/jnc.15748] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 11/23/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022]
Abstract
Carriers of the APOE4 (apolipoprotein E ε4) variant of the APOE gene are subject to several age-related health risks, including Alzheimer's disease (AD). The deficient lipid and cholesterol transport capabilities of the APOE4 protein are one reason for the altered risk profile. In particular, APOE4 carriers are at elevated risk for sporadic AD. While deposits o misfolded proteins are present in the AD brain, white matter (WM) myelin is also disturbed. As myelin is a lipid- and cholesterol-rich structure, the connection to APOE makes considerable biological sense. To explore the APOE-WM connection, we have analyzed the impact of human APOE4 on oligodendrocytes (OLs) of the mouse both in vivo and in vitro. We find that APOE proteins is enriched in astrocytes but sparse in OL. In human APOE4 (hAPOE4) knock-in mice, myelin lipid content is increased but the density of major myelin proteins (MBP, MAG, and PLP) is largely unchanged. We also find an unexpected but significant reduction of cell density of the OL lineage (Olig2+ ) and an abnormal accumulation of OL precursors (Nkx 2.2+ ), suggesting a disruption of OL differentiation. Gene ontology analysis of an existing RNA-seq dataset confirms a robust transcriptional response to the altered chemistry of the hAPOE4 mouse brain. In culture, the uptake of astrocyte-derived APOE during Lovastatin-mediated depletion of cholesterol synthesis is sufficient to sustain OL differentiation. While endogenous hAPOE protein isoforms have no effects on OL development, exogenous hAPOE4 abolishes the ability of very low-density lipoprotein to restore myelination in Apoe-deficient, cholesterol-depleted OL. Our data suggest that APOE4 impairs myelination in the aging brain by interrupting the delivery of astrocyte-derived lipids to the oligodendrocytes. We propose that high myelin turnover and OL exhaustion found in APOE4 carriers is a likely explanation for the APOE-dependent myelin phenotypes of the AD brain.
Collapse
Affiliation(s)
- Kingston King-Shi Mok
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Sunny Hoi-Sang Yeung
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Gerald Wai-Yeung Cheng
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Iris Wai-Ting Ma
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Ralph Hon-Sun Lee
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Karl Herrup
- Department of Neurobiology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kai-Hei Tse
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
10
|
Tiwari A, Pradhan S, Sannigrahi A, Mahakud AK, Jha S, Chattopadhyay K, Biswas M, Saleem M. “Interplay of lipid-head group and packing defects in driving Amyloid-beta mediated myelin-like model membrane deformation”. J Biol Chem 2023; 299:104653. [PMID: 36990217 PMCID: PMC10148160 DOI: 10.1016/j.jbc.2023.104653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/24/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Accumulating evidence suggests that amyloid plaque associated myelin lipid loss as a result of elevated amyloid burden might also contribute to Alzheimer's disease. The amyloid fibrils though closely associated with lipids under physiological conditions, however, the progression of membrane remodeling events leading to lipid-fibril assembly remains unknown. Here we first reconstitute the interaction of Aβ-40 with myelin-like model membrane and show that the binding of Aβ-40 induces extensive tubulation. To look into the mechanism of membrane tubulation we chose a set of membrane conditions varying in lipid packing density and net charge that allows us to dissect the contribution of lipid specificity of Aβ-40 binding, aggregation kinetics, and subsequent changes in membrane parameters such as fluidity, diffusion, and compressibility modulus. We show that the binding of Aβ-40 depends predominantly on the lipid packing defect densities and electrostatic interactions and results in rigidification of the myelin-like model membrane during the early phase of amyloid aggregation. Furthermore, elongation of Aβ-40 into higher oligomeric and fibrillar species leads to eventual fluidization of the model membrane followed by extensive lipid membrane tubulation observed in the late phase. Taken together, our results capture mechanistic insights into snapshots of temporal dynamics of Aβ-40 - myelin-like model membrane interaction and demonstrate how short timescale, local phenomena of binding, and fibril-mediated load generation results in the consequent association of lipids with growing amyloid fibrils.
Collapse
|
11
|
Sharp FR, DeCarli CS, Jin LW, Zhan X. White matter injury, cholesterol dysmetabolism, and APP/Abeta dysmetabolism interact to produce Alzheimer's disease (AD) neuropathology: A hypothesis and review. Front Aging Neurosci 2023; 15:1096206. [PMID: 36845656 PMCID: PMC9950279 DOI: 10.3389/fnagi.2023.1096206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/30/2023] [Indexed: 02/12/2023] Open
Abstract
We postulate that myelin injury contributes to cholesterol release from myelin and cholesterol dysmetabolism which contributes to Abeta dysmetabolism, and combined with genetic and AD risk factors, leads to increased Abeta and amyloid plaques. Increased Abeta damages myelin to form a vicious injury cycle. Thus, white matter injury, cholesterol dysmetabolism and Abeta dysmetabolism interact to produce or worsen AD neuropathology. The amyloid cascade is the leading hypothesis for the cause of Alzheimer's disease (AD). The failure of clinical trials based on this hypothesis has raised other possibilities. Even with a possible new success (Lecanemab), it is not clear whether this is a cause or a result of the disease. With the discovery in 1993 that the apolipoprotein E type 4 allele (APOE4) was the major risk factor for sporadic, late-onset AD (LOAD), there has been increasing interest in cholesterol in AD since APOE is a major cholesterol transporter. Recent studies show that cholesterol metabolism is intricately involved with Abeta (Aβ)/amyloid transport and metabolism, with cholesterol down-regulating the Aβ LRP1 transporter and upregulating the Aβ RAGE receptor, both of which would increase brain Aβ. Moreover, manipulating cholesterol transport and metabolism in rodent AD models can ameliorate pathology and cognitive deficits, or worsen them depending upon the manipulation. Though white matter (WM) injury has been noted in AD brain since Alzheimer's initial observations, recent studies have shown abnormal white matter in every AD brain. Moreover, there is age-related WM injury in normal individuals that occurs earlier and is worse with the APOE4 genotype. Moreover, WM injury precedes formation of plaques and tangles in human Familial Alzheimer's disease (FAD) and precedes plaque formation in rodent AD models. Restoring WM in rodent AD models improves cognition without affecting AD pathology. Thus, we postulate that the amyloid cascade, cholesterol dysmetabolism and white matter injury interact to produce and/or worsen AD pathology. We further postulate that the primary initiating event could be related to any of the three, with age a major factor for WM injury, diet and APOE4 and other genes a factor for cholesterol dysmetabolism, and FAD and other genes for Abeta dysmetabolism.
Collapse
Affiliation(s)
- Frank R. Sharp
- Department of Neurology, The MIND Institute, University of California at Davis Medical Center, Sacramento, CA, United States
| | | | | | | |
Collapse
|
12
|
Blusztajn JK, Aytan N, Rajendiran T, Mellott TJ, Soni T, Burant CF, Serrano GE, Beach TG, Lin H, Stein TD. Cerebral Gray and White Matter Monogalactosyl Diglyceride Levels Rise with the Progression of Alzheimer's Disease. J Alzheimers Dis 2023; 95:1623-1634. [PMID: 37718815 PMCID: PMC10911245 DOI: 10.3233/jad-230543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
BACKGROUND Multiple studies have reported brain lipidomic abnormalities in Alzheimer's disease (AD) that affect glycerophospholipids, sphingolipids, and fatty acids. However, there is no consensus regarding the nature of these abnormalities, and it is unclear if they relate to disease progression. OBJECTIVE Monogalactosyl diglycerides (MGDGs) are a class of lipids which have been recently detected in the human brain. We sought to measure their levels in postmortem human brain and determine if these levels correlate with the progression of the AD-related traits. METHODS We measured MGDGs by ultrahigh performance liquid chromatography tandem mass spectrometry in postmortem dorsolateral prefrontal cortex gray matter and subcortical corona radiata white matter samples derived from three cohorts of participants: the Framingham Heart Study, the Boston University Alzheimer's Disease Research Center, and the Arizona Study of Aging and Neurodegenerative Disorders/Brain and Body Donation Program (total n = 288). RESULTS We detected 40 molecular species of MGDGs (including diacyl and alkyl/acyl compounds) and found that the levels of 29 of them, as well as total MGDG levels, are positively associated with AD-related traits including pathologically confirmed AD diagnosis, clinical dementia rating, Braak and Braak stage, neuritic plaque score, phospho-Tau AT8 immunostaining density, levels of phospho-Tau396 and levels of Aβ40. Increased MGDG levels were present in both gray and white matter, indicating that they are widespread and likely associated with myelin-producing oligodendrocytes-the principal cell type of white matter. CONCLUSIONS Our data implicate the MGDG metabolic defect as a central correlate of clinical and pathological progression in AD.
Collapse
Affiliation(s)
- Jan Krzysztof Blusztajn
- Boston University Chobanian & Avedisian School of Medicine
- Boston University Alzheimer’s Disease Research Center
| | - Nurgul Aytan
- Boston University Chobanian & Avedisian School of Medicine
- Boston University Alzheimer’s Disease Research Center
| | | | | | | | | | | | | | | | - Thor D. Stein
- Boston University Chobanian & Avedisian School of Medicine
- Boston University Alzheimer’s Disease Research Center
- VA Boston Healthcare System, U.S. Department of Veteran Affairs, Jamaica Plain, MA, USA
- VA Bedford Healthcare System, U.S. Department of Veteran Affairs, Bedford, MA
| |
Collapse
|
13
|
Cheng GWY, Mok KKS, Yeung SHS, Kofler J, Herrup K, Tse KH. Apolipoprotein E ε4 Mediates Myelin Breakdown by Targeting Oligodendrocytes in Sporadic Alzheimer Disease. J Neuropathol Exp Neurol 2022; 81:717-730. [PMID: 35779013 DOI: 10.1093/jnen/nlac054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
White matter degradation in the frontal lobe is one of the earliest detectable changes in aging and Alzheimer disease. The ε4 allele of apolipoprotein E (APOE4) is strongly associated with such myelin pathology but the underlying cellular mechanisms remain obscure. We hypothesized that, as a lipid transporter, APOE4 directly triggers pathology in the cholesterol-rich myelin sheath independent of AD pathology. To test this, we performed immunohistochemistry on brain tissues from healthy controls, sporadic, and familial Alzheimer disease subjects. While myelin basic protein expression was largely unchanged, in frontal cortex the number of oligodendrocytes (OLs) was significantly reduced in APOE4 brains independent of their Braak stage or NIA-RI criteria. This high vulnerability of OLs was confirmed in humanized APOE3 or APOE4 transgenic mice. A gradual decline of OL numbers was found in the aging brain without associated neuronal loss. Importantly, the application of lipidated human APOE4, but not APOE3, proteins significantly reduced the formation of myelinating OL in primary cell culture derived from Apoe-knockout mice, especially in cholesterol-depleted conditions. Our findings suggest that the disruption of myelination in APOE4 carriers may represent a direct OL pathology, rather than an indirect consequence of amyloid plaque formation or neuronal loss.
Collapse
Affiliation(s)
- Gerald Wai-Yeung Cheng
- From the Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR
| | - Kingston King-Shi Mok
- From the Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR
| | - Sunny Hoi-Sang Yeung
- From the Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR
| | - Julia Kofler
- Division of Neuropathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Karl Herrup
- Department of Neurobiology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kai-Hei Tse
- From the Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR
| |
Collapse
|
14
|
Ilina A, Khavinson V, Linkova N, Petukhov M. Neuroepigenetic Mechanisms of Action of Ultrashort Peptides in Alzheimer's Disease. Int J Mol Sci 2022; 23:ijms23084259. [PMID: 35457077 PMCID: PMC9032300 DOI: 10.3390/ijms23084259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/07/2022] [Accepted: 04/09/2022] [Indexed: 12/23/2022] Open
Abstract
Epigenetic regulation of gene expression is necessary for maintaining higher-order cognitive functions (learning and memory). The current understanding of the role of epigenetics in the mechanism of Alzheimer’s disease (AD) is focused on DNA methylation, chromatin remodeling, histone modifications, and regulation of non-coding RNAs. The pathogenetic links of this disease are the misfolding and aggregation of tau protein and amyloid peptides, mitochondrial dysfunction, oxidative stress, impaired energy metabolism, destruction of the blood–brain barrier, and neuroinflammation, all of which lead to impaired synaptic plasticity and memory loss. Ultrashort peptides are promising neuroprotective compounds with a broad spectrum of activity and without reported side effects. The main aim of this review is to analyze the possible epigenetic mechanisms of the neuroprotective action of ultrashort peptides in AD. The review highlights the role of short peptides in the AD pathophysiology. We formulate the hypothesis that peptide regulation of gene expression can be mediated by the interaction of short peptides with histone proteins, cis- and transregulatory DNA elements and effector molecules (DNA/RNA-binding proteins and non-coding RNA). The development of therapeutic agents based on ultrashort peptides may offer a promising addition to the multifunctional treatment of AD.
Collapse
Affiliation(s)
- Anastasiia Ilina
- Department of Biogerontology, Saint Petersburg Institute of Bioregulation and Gerontology, 19711 Saint Petersburg, Russia; (V.K.); (N.L.)
- Department of General Pathology and Pathological Physiology, Institute of Experimental Medicine, 197376 Saint Petersburg, Russia
- Correspondence: ; Tel.: +7-(953)145-89-58
| | - Vladimir Khavinson
- Department of Biogerontology, Saint Petersburg Institute of Bioregulation and Gerontology, 19711 Saint Petersburg, Russia; (V.K.); (N.L.)
- Group of Peptide Regulation of Aging, Pavlov Institute of Physiology, Russian Academy of Sciences, 199034 Saint Petersburg, Russia
| | - Natalia Linkova
- Department of Biogerontology, Saint Petersburg Institute of Bioregulation and Gerontology, 19711 Saint Petersburg, Russia; (V.K.); (N.L.)
| | - Mikhael Petukhov
- Department of Molecular Radiation Biophysics, Petersburg Nuclear Physics Institute Named after B.P. Konstantinov, NRC “Kurchatov Institute”, 188300 Gatchina, Russia;
- Group of Biophysics, Higher Engineering and Technical School, Peter the Great St. Petersburg Polytechnic University, 195251 Saint Petersburg, Russia
| |
Collapse
|
15
|
DeFlitch L, Gonzalez-Fernandez E, Crawley I, Kang SH. Age and Alzheimer's Disease-Related Oligodendrocyte Changes in Hippocampal Subregions. Front Cell Neurosci 2022; 16:847097. [PMID: 35465615 PMCID: PMC9023310 DOI: 10.3389/fncel.2022.847097] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 02/09/2022] [Indexed: 12/24/2022] Open
Abstract
Oligodendrocytes (OLs) form myelin sheaths and provide metabolic support to axons in the CNS. Although most OLs develop during early postnatal life, OL generation continues in adulthood, and this late oligodendrogenesis may contribute to neuronal network plasticity in the adult brain. We used genetic tools for OL labeling and fate tracing of OL progenitors (OPCs), thereby determining OL population growth in hippocampal subregions with normal aging. OL numbers increased up to at least 1 year of age, but the rates and degrees of this OL change differed among hippocampal subregions. In particular, adult oligodendrogenesis was most prominent in the CA3 and CA4 subregions. In Alzheimer's disease-like conditions, OL loss was also most severe in the CA3 and CA4 of APP/PS1 mice, although the disease did not impair the rate of OPC differentiation into OLs in those regions. Such region-specific, dynamic OL changes were not correlated with those of OPCs or astrocytes, or the regional distribution of Aβ deposits. Our findings suggest subregion-dependent mechanisms for myelin plasticity and disease-associated OL vulnerability in the adult hippocampus.
Collapse
Affiliation(s)
- Leah DeFlitch
- Biology Department, College of Science and Technology, Temple University, Philadelphia, PA, United States
| | - Estibaliz Gonzalez-Fernandez
- Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States,Shriners Hospitals Pediatric Research Center (Center for Neural Repair and Rehabilitation), Temple University, Philadelphia, PA, United States
| | - Ilan Crawley
- Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States,Shriners Hospitals Pediatric Research Center (Center for Neural Repair and Rehabilitation), Temple University, Philadelphia, PA, United States
| | - Shin H. Kang
- Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States,Shriners Hospitals Pediatric Research Center (Center for Neural Repair and Rehabilitation), Temple University, Philadelphia, PA, United States,*Correspondence: Shin H. Kang,
| |
Collapse
|
16
|
Benitez A, Jensen JH, Thorn K, Dhiman S, Fountain-Zaragoza S, Rieter WJ, Spampinato MV, Hamlett ED, Nietert PJ, Falangola MDF, Helpern JA. Greater diffusion restriction in white matter in Preclinical Alzheimer's disease. Ann Neurol 2022; 91:864-877. [PMID: 35285067 DOI: 10.1002/ana.26353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/14/2022] [Accepted: 03/07/2022] [Indexed: 11/07/2022]
Abstract
OBJECTIVE The Alzheimer's Continuum is biologically defined by beta-amyloid deposition which, at the earliest stages, is superimposed upon white matter degeneration in aging. However, the extent to which these co-occurring changes are characterized is relatively under-explored. The goal of this study was to use Diffusional Kurtosis Imaging (DKI) and biophysical modeling to detect and describe amyloid-related white matter changes in preclinical Alzheimer's disease (AD). METHODS Cognitively unimpaired participants ages 45-85 completed brain MRI, amyloid PET (florbetapir), neuropsychological testing, and other clinical measures at baseline in a cohort study. We tested whether beta amyloid-negative (AB-) and -positive (AB+) participants differed on DKI-based conventional (i.e. Fractional Anisotropy [FA], Mean Diffusivity [MD], Mean Kurtosis [MK]) and modeling (i.e. Axonal Water Fraction [AWF], extra-axonal radial diffusivity [De,⊥ ]) metrics, and whether these metrics were associated with other biomarkers. RESULTS We found significantly greater diffusion restriction (higher FA/AWF, lower MD/ De,⊥ ) in white matter in AB+ than AB- (partial η2 = 0.08-0.19), more notably in the extra-axonal space within primarily late-myelinating tracts. Diffusion metrics predicted amyloid status incrementally over age (AUC=0.84) with modest yet selective associations, where AWF (a marker of axonal density) correlated with speed/executive functions and neurodegeneration, whereas De,⊥ (a marker of gliosis/myelin repair) correlated with amyloid deposition and white matter hyperintensity volume. INTERPRETATION These results support prior evidence of a non-monotonic change in diffusion behavior, where an early increase in diffusion restriction is hypothesized to reflect inflammation and myelin repair prior to an ensuing decrease in diffusion restriction, indicating glial and neuronal degeneration. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Andreana Benitez
- Department of Neurology, Medical University of South Carolina, Charleston, SC, USA
- Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, USA
- Department of Radiology and Radiological Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Jens H Jensen
- Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, USA
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Kathryn Thorn
- Department of Neurology, Medical University of South Carolina, Charleston, SC, USA
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Siddhartha Dhiman
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Stephanie Fountain-Zaragoza
- Department of Neurology, Medical University of South Carolina, Charleston, SC, USA
- Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, USA
| | - William J Rieter
- Department of Radiology and Radiological Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Maria Vittoria Spampinato
- Department of Radiology and Radiological Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Eric D Hamlett
- Department of Pathology and Laboratory Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Paul J Nietert
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Maria de Fatima Falangola
- Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, USA
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Joseph A Helpern
- Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, USA
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
17
|
Chen JF, Wang F, Huang NX, Xiao L, Mei F. Oligodendrocytes and Myelin: Active players in Neurodegenerative brains? Dev Neurobiol 2022; 82:160-174. [PMID: 35081276 DOI: 10.1002/dneu.22867] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 11/10/2022]
Abstract
Oligodendrocytes (OLs) are a major type of glial cells in the central nervous system that generate multiple myelin sheaths to wrap axons. Myelin ensures fast and efficient propagation of action potentials along axons and supports neurons with nourishment. The decay of OLs and myelin has been implicated in age-related neurodegenerative diseases and these changes are generally considered as an inevitable result of neuron loss and axon degeneration. Noticeably, OLs and myelin undergo dynamic changes in healthy adult brains, that is, newly formed OLs are continuously added throughout life from the differentiation of oligodendrocyte precursor cells (OPCs) and the pre-existing myelin sheaths may undergo degeneration or remodeling. Increasing evidence has shown that changes in OLs and myelin are present in the early stages of neurodegenerative diseases, and even prior to significant neuronal loss and functional deficits. More importantly, oligodendroglia-specific manipulation, by either deletion of the disease gene or enhancement of myelin renewal, can alleviate functional impairments in neurodegenerative animal models. These findings underscore the possibility that OLs and myelin are not passively but actively involved in neurodegenerative diseases and may play an important role in modulating neuronal function and survival. In this review, we summarize recent work characterizing OL and myelin changes in both healthy and neurodegenerative brains and discuss the potential of targeting oligodendroglial cells in treating neurodegenerative diseases. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jing-Fei Chen
- Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Department of Histology and Embryology, Third Military Medical University, Chongqing, 400038, China
| | - Fei Wang
- Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Department of Histology and Embryology, Third Military Medical University, Chongqing, 400038, China
| | - Nan-Xing Huang
- Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Department of Histology and Embryology, Third Military Medical University, Chongqing, 400038, China
| | - Lan Xiao
- Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Department of Histology and Embryology, Third Military Medical University, Chongqing, 400038, China
| | - Feng Mei
- Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Department of Histology and Embryology, Third Military Medical University, Chongqing, 400038, China
| |
Collapse
|
18
|
DNA Repair Inhibition Leads to Active Export of Repetitive Sequences to the Cytoplasm Triggering an Inflammatory Response. J Neurosci 2021; 41:9286-9307. [PMID: 34593604 DOI: 10.1523/jneurosci.0845-21.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/25/2021] [Accepted: 09/01/2021] [Indexed: 01/02/2023] Open
Abstract
Adult-onset neurodegenerative diseases are often accompanied by evidence of a chronic inflammation that includes activation of microglial cells and altered levels of brain cytokines. Aspects of this response are likely secondary reactions to neurodegeneration, but for many illnesses the inflammation may itself be an early and even causative disease event. In such cases, the inflammation is referred to as "sterile" as it occurs in the absence of an actual bacterial or viral pathogen. A potent trigger of sterile inflammation in CNS microglia has been shown to be the presence of DNA in the cytoplasm (cytoDNA) induced either by direct DNA damage or by inhibited DNA repair. We have shown that cytoDNA comes from the cell nucleus as a result of insufficient DNA damage repair. Using wild-type and Atm -/- mouse microglia, we extend these observations here by showing that its genomic origins are not random, but rather are heavily biased toward transcriptionally inactive, intergenic regions, in particular repetitive elements and AT-rich sequences. Once released from the genome, in both males and females, we show that cytoDNA is actively exported to the cytoplasm by a CRM1-dependent mechanism. In the cytoplasm, it is degraded either by a cytosolic exonuclease, Trex1, or an autophagy pathway that ends with degradation in the lysosome. Blocking the accumulation of cytoDNA prevents the emergence of the sterile inflammation reaction. These findings offer new insights into the emergence of sterile inflammation and offer novel approaches that may be of use in combatting a wide range of neurodegenerative conditions.SIGNIFICANCE STATEMENT Sterile inflammation describes a state where the defenses of the immune system are activated in the absence of a true pathogen. A potent trigger of this unorthodox response is the presence of DNA in the cytoplasm, which immune cells interpret as an invading virus or pathogen. We show that when DNA damage increases, fragments of the cell's own genome are actively exported to the cytoplasm where they are normally degraded. If this degradation is incomplete an immune reaction is triggered. Both age and stress increase DNA damage, and as age-related neurodegenerative diseases are frequently accompanied by a chronic low-level inflammation, strategies that reduce the induction of cytoplasmic DNA or speed its clearance become attractive therapeutic targets.
Collapse
|
19
|
Tufail AB, Ma YK, Zhang QN, Khan A, Zhao L, Yang Q, Adeel M, Khan R, Ullah I. 3D convolutional neural networks-based multiclass classification of Alzheimer's and Parkinson's diseases using PET and SPECT neuroimaging modalities. Brain Inform 2021; 8:23. [PMID: 34725741 PMCID: PMC8560868 DOI: 10.1186/s40708-021-00144-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 10/15/2021] [Indexed: 11/10/2022] Open
Abstract
Background Alzheimer’s disease (AD) is a neurodegenerative brain pathology formed due to piling up of amyloid proteins, development of plaques and disappearance of neurons. Another common subtype of dementia like AD, Parkinson’s disease (PD) is determined by the disappearance of dopaminergic neurons in the region known as substantia nigra pars compacta located in the midbrain. Both AD and PD target aged population worldwide forming a major chunk of healthcare costs. Hence, there is a need for methods that help in the early diagnosis of these diseases. PD subjects especially those who have confirmed postmortem plaque are a strong candidate for a second AD diagnosis. Modalities such as positron emission tomography (PET) and single photon emission computed tomography (SPECT) can be combined with deep learning methods to diagnose these two diseases for the benefit of clinicians. Result In this work, we deployed a 3D Convolutional Neural Network (CNN) to extract features for multiclass classification of both AD and PD in the frequency and spatial domains using PET and SPECT neuroimaging modalities to differentiate between AD, PD and Normal Control (NC) classes. Discrete Cosine Transform has been deployed as a frequency domain learning method along with random weak Gaussian blurring and random zooming in/out augmentation methods in both frequency and spatial domains. To select the hyperparameters of the 3D-CNN model, we deployed both 5- and 10-fold cross-validation (CV) approaches. The best performing model was found to be AD/NC(SPECT)/PD classification with random weak Gaussian blurred augmentation in the spatial domain using fivefold CV approach while the worst performing model happens to be AD/NC(PET)/PD classification without augmentation in the frequency domain using tenfold CV approach. We also found that spatial domain methods tend to perform better than their frequency domain counterparts. Conclusion The proposed model provides a good performance in discriminating AD and PD subjects due to minimal correlation between these two dementia types on the clinicopathological continuum between AD and PD subjects from a neuroimaging perspective.
Collapse
Affiliation(s)
- Ahsan Bin Tufail
- School of Electronics and Information Engineering, Harbin Institute of Technology, Harbin, 150001, China.,Department of Electrical and Computer Engineering, COMSATS University Islamabad, Sahiwal Campus, Sahiwal, Pakistan
| | - Yong-Kui Ma
- School of Electronics and Information Engineering, Harbin Institute of Technology, Harbin, 150001, China.
| | - Qiu-Na Zhang
- School of Electronics and Information Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Adil Khan
- Department of Computer Science, University of Peshawar, Peshawar, Pakistan
| | | | - Qiang Yang
- School of Electronics and Information Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | | | - Rahim Khan
- School of Electronics and Information Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | | |
Collapse
|
20
|
Huang J, Lai JHC, Tse KH, Cheng GWY, Liu Y, Chen Z, Han X, Chen L, Xu J, Chan KWY. Deep neural network based CEST and AREX processing: Application in imaging a model of Alzheimer's disease at 3 T. Magn Reson Med 2021; 87:1529-1545. [PMID: 34657318 DOI: 10.1002/mrm.29044] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/26/2021] [Accepted: 09/22/2021] [Indexed: 02/06/2023]
Abstract
PURPOSE To optimize and apply deep neural network based CEST (deepCEST) and apparent exchange dependent-relaxation (deepAREX) for imaging the mouse brain with Alzheimer's disease (AD) at 3T MRI. METHODS CEST and T1 data of central and anterior brain slices of 10 AD mice and 10 age-matched wild type (WT) mice were acquired at a 3T animal MRI scanner. The networks of deepCEST/deepAREX were optimized and trained on the WT data. The CEST/AREX contrasts of AD and WT mice predicted by the networks were analyzed and further validated by immunohistochemistry. RESULTS After optimization and training on CEST data of WT mice, deepCEST/deepAREX could rapidly (~1 s) generate precise CEST and AREX results for unseen CEST data of AD mice, indicating the accuracy and generalization of the networks. Significant lower amide weighted (3.5 ppm) signal related to amyloid β-peptide (Aβ) plaque depositions, which was validated by immunohistochemistry results, was detected in both central and anterior brain slices of AD mice compared to WT mice. Decreased magnetization transfer (MT) signal was also found in AD mice especially in the anterior slice. CONCLUSION DeepCEST/deepAREX could rapidly generate accurate CEST/AREX contrasts in animal study. The well-optimized deepCEST/deepAREX have potential for AD differentiation at 3T MRI.
Collapse
Affiliation(s)
- Jianpan Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Joseph H C Lai
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Kai-Hei Tse
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Gerald W Y Cheng
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Yang Liu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China.,Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, China
| | - Zilin Chen
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Xiongqi Han
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Lin Chen
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland, USA.,Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China
| | - Jiadi Xu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland, USA.,Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kannie W Y Chan
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China.,Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, China.,Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
21
|
Seiwa C, Sugiyama I, Sugawa M, Murase H, Kudoh C, Asou H. The Absence of Myelin Basic Protein Reduces Non-Amyloidogenic Processing of Amyloid Precursor Protein. Curr Alzheimer Res 2021; 18:326-334. [PMID: 34218780 DOI: 10.2174/1567205018666210701162851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 12/11/2020] [Accepted: 01/10/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The accumulation of amyloid β-protein (Aβ) in the brain is a pathological feature of Alzheimer's disease (AD). Aβ peptides originate from amyloid precursor protein (APP). APP can be proteolytically cleaved through amyloidogenic or non-amyloidogenic pathways. The molecular effects on APP metabolism / processing may be influenced by myelin and the breakdown of myelin basic protein (MBP) in AD patients and mouse models of AD pathology. METHODS We directly tested whether MBP can alter influence APP processing in MBP-/- mice, known as Shiverer (shi/shi) mice, in which no functional MBP is produced due to gene breakage from the middle of MBP exon II. RESULTS A significant reduction of the cerebral sAPPα level in Shiverer (shi/shi) mice was found, although the levels of both total APP and sAPPβ remain unchanged. The reduction of sAPPα was considered to be due to the changes in the expression levels of a disintegrin and metalloproteinase-9 (ADAM9) catalysis and non-amyloid genic processing of APP in the absence of MBP because it binds to ADAM9. MBP -/- mice exhibited increased Aβ oligomer production. CONCLUSION Together, these findings suggest that in the absence of MBP, there is a marked reduction of non-amyloidogenic APP processing to sAPPα, and targeting myelin of oligodendrocytes may be a novel therapy for the prevention and treatment of AD.
Collapse
Affiliation(s)
| | - Ichiro Sugiyama
- Department of Neurosurgy,Keio University School of Medicine, Shinanomachi, Shinjukuku, Tokyo 160-8582, Japan
| | | | - Hiroaki Murase
- Glovia Myelin Research Institute, 75-1, Onocho, Tsurumi-ku, Yokohama, Kanagawa 230-0046, Japan
| | - Chiaki Kudoh
- KUDOH Clinic for Neurosurgery and Neurology, 1-23-10, Omori-kita, Otaku, Tokyo 143-0016, Japan
| | - Hiroaki Asou
- Glovia Myelin Research Institute, 75-1, Onocho, Tsurumi-ku, Yokohama, Kanagawa 230-0046, Japan
| |
Collapse
|
22
|
Leung E, Hazrati LN. Breast cancer type 1 and neurodegeneration: consequences of deficient DNA repair. Brain Commun 2021; 3:fcab117. [PMID: 34222870 PMCID: PMC8242133 DOI: 10.1093/braincomms/fcab117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/09/2021] [Accepted: 04/13/2021] [Indexed: 12/20/2022] Open
Abstract
Numerous cellular processes, including toxic protein aggregation and oxidative stress, have been studied extensively as potential mechanisms underlying neurodegeneration. However, limited therapeutic efficacy targeting these processes has prompted other mechanisms to be explored. Previous research has emphasized a link between cellular senescence and neurodegeneration, where senescence induced by excess DNA damage and deficient DNA repair results in structural and functional changes that ultimately contribute to brain dysfunction and increased vulnerability for neurodegeneration. Specific DNA repair proteins, such as breast cancer type 1, have been associated with both stress-induced senescence and neurodegenerative diseases, however, specific mechanisms remain unclear. Therefore, this review explores DNA damage-induced senescence in the brain as a driver of neurodegeneration, with particular focus on breast cancer type 1, and its potential contribution to sex-specific differences associated with neurodegenerative disease.
Collapse
Affiliation(s)
- Emily Leung
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 Kings College Cir, Toronto, ON M5S 1A8, Canada
- The Hospital for Sick Children, 555 University Ave, Toronto, ON M5G 1X8, Canada
| | - Lili-Naz Hazrati
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 Kings College Cir, Toronto, ON M5S 1A8, Canada
- The Hospital for Sick Children, 555 University Ave, Toronto, ON M5G 1X8, Canada
| |
Collapse
|
23
|
Spaas J, van Veggel L, Schepers M, Tiane A, van Horssen J, Wilson DM, Moya PR, Piccart E, Hellings N, Eijnde BO, Derave W, Schreiber R, Vanmierlo T. Oxidative stress and impaired oligodendrocyte precursor cell differentiation in neurological disorders. Cell Mol Life Sci 2021; 78:4615-4637. [PMID: 33751149 PMCID: PMC8195802 DOI: 10.1007/s00018-021-03802-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/12/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023]
Abstract
Oligodendrocyte precursor cells (OPCs) account for 5% of the resident parenchymal central nervous system glial cells. OPCs are not only a back-up for the loss of oligodendrocytes that occurs due to brain injury or inflammation-induced demyelination (remyelination) but are also pivotal in plastic processes such as learning and memory (adaptive myelination). OPC differentiation into mature myelinating oligodendrocytes is controlled by a complex transcriptional network and depends on high metabolic and mitochondrial demand. Mounting evidence shows that OPC dysfunction, culminating in the lack of OPC differentiation, mediates the progression of neurodegenerative disorders such as multiple sclerosis, Alzheimer's disease and Parkinson's disease. Importantly, neurodegeneration is characterised by oxidative and carbonyl stress, which may primarily affect OPC plasticity due to the high metabolic demand and a limited antioxidant capacity associated with this cell type. The underlying mechanisms of how oxidative/carbonyl stress disrupt OPC differentiation remain enigmatic and a focus of current research efforts. This review proposes a role for oxidative/carbonyl stress in interfering with the transcriptional and metabolic changes required for OPC differentiation. In particular, oligodendrocyte (epi)genetics, cellular defence and repair responses, mitochondrial signalling and respiration, and lipid metabolism represent key mechanisms how oxidative/carbonyl stress may hamper OPC differentiation in neurodegenerative disorders. Understanding how oxidative/carbonyl stress impacts OPC function may pave the way for future OPC-targeted treatment strategies in neurodegenerative disorders.
Collapse
Affiliation(s)
- Jan Spaas
- University MS Center (UMSC), Hasselt-Pelt, Belgium
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
- Department of Movement and Sports Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Lieve van Veggel
- University MS Center (UMSC), Hasselt-Pelt, Belgium
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
- Department Psychiatry and Neuropsychology, Division of Translational Neuroscience, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Melissa Schepers
- University MS Center (UMSC), Hasselt-Pelt, Belgium
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
- Department Psychiatry and Neuropsychology, Division of Translational Neuroscience, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Assia Tiane
- University MS Center (UMSC), Hasselt-Pelt, Belgium
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
- Department Psychiatry and Neuropsychology, Division of Translational Neuroscience, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Jack van Horssen
- University MS Center (UMSC), Hasselt-Pelt, Belgium
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam University Medical Center, Location VUmc, Amsterdam, The Netherlands
| | - David M Wilson
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
| | - Pablo R Moya
- Facultad de Ciencias, Instituto de Fisiología, Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Universidad de Valparaíso, Valparaíso, Chile
| | - Elisabeth Piccart
- University MS Center (UMSC), Hasselt-Pelt, Belgium
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
| | - Niels Hellings
- University MS Center (UMSC), Hasselt-Pelt, Belgium
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
| | - Bert O Eijnde
- University MS Center (UMSC), Hasselt-Pelt, Belgium
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
- Faculty of Medicine and Life Sciences, SMRC-Sportsmedical Research Center, BIOMED Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Wim Derave
- Department of Movement and Sports Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Rudy Schreiber
- Department Psychiatry and Neuropsychology, Division of Translational Neuroscience, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Tim Vanmierlo
- University MS Center (UMSC), Hasselt-Pelt, Belgium.
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium.
- Department Psychiatry and Neuropsychology, Division of Translational Neuroscience, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
24
|
Semochkina YP, Moskaleva EY, Malashenkova IK, Krynskiy SA, Hailov NA, Ogurtsov DP, Ponomareva EV, Gavrilova SI. [Effectiveness of the DNA double-strand breaks repair system in lymphocytes of patients with cognitive impairments and healthy volunteers]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2020; 66:345-352. [PMID: 32893818 DOI: 10.18097/pbmc20206604345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The individual differences in the efficiency of DNA DSB repair were estimated by the level of residual γH2AX foci after γ-irradiation at a dose of 2 Gy, in lymphocytes of patients with amnestic mild cognitive impairment (AMCI) and Alzheimer's disease (AD) and of healthy volunteers. Lymphocytes were isolated from the peripheral blood of the examined patients and were frozen in a medium for freezing cells. Before the study, the lymphocytes were thawed, suspended in RPMI 1640 culture medium supplemented with 10% inactivated fetal bovine serum, and half of the cells were γ-irradiated at 4°C from a 60Co source on a GUT-200M facility at a dose of 2 Gy (a dose rate of 0.75 Gy/min). Control and irradiated lymphocytes were cultured for 24 h, collected, fixed, and stored until the study of the number of spontaneous and residual foci of γH2AX using fluorescent microscopy after staining with fluorescent labeled antibodies. In lymphocytes of patients with AMCI and AD a higher number of residual γH2AX foci in lymphocytes and the higher number of lymphocytes with foci were found compared with healthy volunteers. This indicates a decrease in the ability to repair DNA DSB in these patients. Indicators of cellular immunity and the concentration of TNF-α in the blood serum in the group of examined patients were normal. In the group of patients with the cognitive impairments (AMCI+AD), a correlation was found between the number of residual foci of γH2AX and the number of CD3+CD4+ lymphocytes and the concentration of proinflammatory cytokine TNF-α in the blood serum. This suggests the development of stronger neuroinflammation in patients with reduced ability to repair DNA DSB in this pathology.
Collapse
|
25
|
Roussarie JP, Rodriguez-Rodriguez P. Deciphering cell-type specific signal transduction in the brain: Challenges and promises. ADVANCES IN PHARMACOLOGY 2020; 90:145-171. [PMID: 33706931 DOI: 10.1016/bs.apha.2020.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Signal transduction designates the set of molecular events that take place within a cell upon extracellular stimulation to mediate a functional outcome. Decades after the discovery that dopamine triggers opposing signaling pathways in D1- and D2-expressing medium spiny neurons, it is now clear that there are as many different flavors of signaling pathways in the brain as there are neuron types. One of the biggest challenges in molecular neuroscience is to elucidate cell-type specific signaling, in order to understand neurological diseases with regional vulnerability, but also to identify targets for precision drugs devoid of off-target effects. Here, we make a case for the importance of the study of neuron-type specific molecular characteristics. We then review the technologies that exist to study neurons in their full diversity and highlight their disease-relevant idiosyncrasies.
Collapse
Affiliation(s)
- Jean-Pierre Roussarie
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY, United States.
| | - Patricia Rodriguez-Rodriguez
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY, United States; Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
26
|
D’Mello SR, Kindy MC. Overdosing on iron: Elevated iron and degenerative brain disorders. Exp Biol Med (Maywood) 2020; 245:1444-1473. [PMID: 32878460 PMCID: PMC7553095 DOI: 10.1177/1535370220953065] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
IMPACT STATEMENT Brain degenerative disorders, which include some neurodevelopmental disorders and age-associated diseases, cause debilitating neurological deficits and are generally fatal. A large body of emerging evidence indicates that iron accumulation in neurons within specific regions of the brain plays an important role in the pathogenesis of many of these disorders. Iron homeostasis is a highly complex and incompletely understood process involving a large number of regulatory molecules. Our review provides a description of what is known about how iron is obtained by the body and brain and how defects in the homeostatic processes could contribute to the development of brain diseases, focusing on Alzheimer's disease and Parkinson's disease as well as four other disorders belonging to a class of inherited conditions referred to as neurodegeneration based on iron accumulation (NBIA) disorders. A description of potential therapeutic approaches being tested for each of these different disorders is provided.
Collapse
Affiliation(s)
| | - Mark C Kindy
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
- James A. Haley Veterans Affairs Medical Center, Tampa, FL 33612, USA
| |
Collapse
|
27
|
Sen MK, Almuslehi MSM, Shortland PJ, Coorssen JR, Mahns DA. Revisiting the Pathoetiology of Multiple Sclerosis: Has the Tail Been Wagging the Mouse? Front Immunol 2020; 11:572186. [PMID: 33117365 PMCID: PMC7553052 DOI: 10.3389/fimmu.2020.572186] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 08/27/2020] [Indexed: 12/18/2022] Open
Abstract
Multiple Sclerosis (MS) is traditionally considered an autoimmune-mediated demyelinating disease, the pathoetiology of which is unknown. However, the key question remains whether autoimmunity is the initiator of the disease (outside-in) or the consequence of a slow and as yet uncharacterized cytodegeneration (oligodendrocytosis), which leads to a subsequent immune response (inside-out). Experimental autoimmune encephalomyelitis has been used to model the later stages of MS during which the autoimmune involvement predominates. In contrast, the cuprizone (CPZ) model is used to model early stages of the disease during which oligodendrocytosis and demyelination predominate and are hypothesized to precede subsequent immune involvement in MS. Recent studies combining a boost, or protection, to the immune system with disruption of the blood brain barrier have shown CPZ-induced oligodendrocytosis with a subsequent immune response. In this Perspective, we review these recent advances and discuss the likelihood of an inside-out vs. an outside-in pathoetiology of MS.
Collapse
Affiliation(s)
- Monokesh K Sen
- School of Medicine, Western Sydney University, Penrith, NSW, Australia
| | - Mohammed S M Almuslehi
- School of Medicine, Western Sydney University, Penrith, NSW, Australia.,Department of Physiology, College of Veterinary Medicine, University of Diyala, Baqubah, Iraq
| | - Peter J Shortland
- School of Science, Western Sydney University, Penrith, NSW, Australia
| | - Jens R Coorssen
- Departments of Health Sciences and Biological Sciences, Faculties of Applied Health Sciences and Mathematics & Science, Brock University, St. Catharines, ON, Canada
| | - David A Mahns
- School of Medicine, Western Sydney University, Penrith, NSW, Australia
| |
Collapse
|
28
|
Thadathil N, Delotterie DF, Xiao J, Hori R, McDonald MP, Khan MM. DNA Double-Strand Break Accumulation in Alzheimer's Disease: Evidence from Experimental Models and Postmortem Human Brains. Mol Neurobiol 2020; 58:118-131. [PMID: 32895786 DOI: 10.1007/s12035-020-02109-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 08/28/2020] [Indexed: 01/01/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease that accounts for a majority of dementia cases. AD is characterized by progressive neuronal death associated with neuropathological lesions consisting of neurofibrillary tangles and senile plaques. While the pathogenesis of AD has been widely investigated, significant gaps in our knowledge remain about the cellular and molecular mechanisms promoting AD. Recent studies have highlighted the role of DNA damage, particularly DNA double-strand breaks (DSBs), in the progression of neuronal loss in a broad spectrum of neurodegenerative diseases. In the present study, we tested the hypothesis that accumulation of DNA DSB plays an important role in AD pathogenesis. To test our hypothesis, we examined DNA DSB expression and DNA repair function in the hippocampus of human AD and non-AD brains by immunohistochemistry, ELISA, and RT-qPCR. We observed increased DNA DSB accumulation and reduced DNA repair function in the hippocampus of AD brains compared to the non-AD control brains. Next, we found significantly increased levels of DNA DSB and altered levels of DNA repair proteins in the hippocampus of 5xFAD mice compared to non-transgenic mice. Interestingly, increased accumulation of DNA DSBs and altered DNA repair proteins were also observed in cellular models of AD. These findings provided compelling evidence that AD is associated with accumulation of DNA DSB and/or alteration in DSB repair proteins which may influence an important early part of the pathway toward neural damage and memory loss in AD.
Collapse
Affiliation(s)
- Nidheesh Thadathil
- Department of Neurology, College of Medicine, University of Tennessee Health Science Center, 855 Monroe Avenue, 415 Link Building, Memphis, TN, 38163, USA
| | - David F Delotterie
- Department of Neurology, College of Medicine, University of Tennessee Health Science Center, 855 Monroe Avenue, 415 Link Building, Memphis, TN, 38163, USA
| | - Jianfeng Xiao
- Department of Neurology, College of Medicine, University of Tennessee Health Science Center, 855 Monroe Avenue, 415 Link Building, Memphis, TN, 38163, USA
| | - Roderick Hori
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Michael P McDonald
- Department of Neurology, College of Medicine, University of Tennessee Health Science Center, 855 Monroe Avenue, 415 Link Building, Memphis, TN, 38163, USA.,Department of Anatomy & Neurobiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Mohammad Moshahid Khan
- Department of Neurology, College of Medicine, University of Tennessee Health Science Center, 855 Monroe Avenue, 415 Link Building, Memphis, TN, 38163, USA. .,Center for Muscle, Metabolism and Neuropathology, Division of Rehabilitation Sciences and Department of Physical Therapy, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
29
|
Ferreira S, Pitman KA, Wang S, Summers BS, Bye N, Young KM, Cullen CL. Amyloidosis is associated with thicker myelin and increased oligodendrogenesis in the adult mouse brain. J Neurosci Res 2020; 98:1905-1932. [PMID: 32557778 PMCID: PMC7540704 DOI: 10.1002/jnr.24672] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/03/2020] [Accepted: 05/25/2020] [Indexed: 12/15/2022]
Abstract
In Alzheimer's disease, amyloid plaque formation is associated with the focal death of oligodendrocytes and soluble amyloid β impairs the survival of oligodendrocytes in vitro. However, the response of oligodendrocyte progenitor cells (OPCs) to early amyloid pathology remains unclear. To explore this, we performed a histological, electrophysiological, and behavioral characterization of transgenic mice expressing a pathological form of human amyloid precursor protein (APP), containing three single point mutations associated with the development of familial Alzheimer's disease (PDGFB‐APPSw.Ind, also known as J20 mice). PDGFB‐APPSw.Ind transgenic mice had impaired survival from weaning, were hyperactive by 2 months of age, and developed amyloid plaques by 6 months of age, however, their spatial memory remained intact over this time course. Hippocampal OPC density was normal in P60‐P180 PDGFB‐APPSw.Ind transgenic mice and, by performing whole‐cell patch‐clamp electrophysiology, we found that their membrane properties, including their response to kainate (100 µM), were largely normal. However, by P100, the response of hippocampal OPCs to GABA was elevated in PDGFB‐APPSw.Ind transgenic mice. We also found that the nodes of Ranvier were shorter, the paranodes longer, and the myelin thicker for hippocampal axons in young adult PDGFB‐APPSw.Ind transgenic mice compared with wildtype littermates. Additionally, oligodendrogenesis was normal in young adulthood, but increased in the hippocampus, entorhinal cortex, and fimbria of PDGFB‐APPSw.Ind transgenic mice as pathology developed. As the new oligodendrocytes were not associated with a change in total oligodendrocyte number, these cells are likely required for cell replacement.
Collapse
Affiliation(s)
- Solène Ferreira
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Kimberley A Pitman
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Shiwei Wang
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Benjamin S Summers
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Nicole Bye
- School of Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Kaylene M Young
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Carlie L Cullen
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
30
|
Contributions of DNA Damage to Alzheimer's Disease. Int J Mol Sci 2020; 21:ijms21051666. [PMID: 32121304 PMCID: PMC7084447 DOI: 10.3390/ijms21051666] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/20/2020] [Accepted: 02/25/2020] [Indexed: 12/16/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common type of neurodegenerative disease. Its typical pathology consists of extracellular amyloid-β (Aβ) plaques and intracellular tau neurofibrillary tangles. Mutations in the APP, PSEN1, and PSEN2 genes increase Aβ production and aggregation, and thus cause early onset or familial AD. Even with this strong genetic evidence, recent studies support AD to result from complex etiological alterations. Among them, aging is the strongest risk factor for the vast majority of AD cases: Sporadic late onset AD (LOAD). Accumulation of DNA damage is a well-established aging factor. In this regard, a large amount of evidence reveals DNA damage as a critical pathological cause of AD. Clinically, DNA damage is accumulated in brains of AD patients. Genetically, defects in DNA damage repair resulted from mutations in the BRAC1 and other DNA damage repair genes occur in AD brain and facilitate the pathogenesis. Abnormalities in DNA damage repair can be used as diagnostic biomarkers for AD. In this review, we discuss the association, the causative potential, and the biomarker values of DNA damage in AD pathogenesis.
Collapse
|
31
|
Berry K, Wang J, Lu QR. Epigenetic regulation of oligodendrocyte myelination in developmental disorders and neurodegenerative diseases. F1000Res 2020; 9:F1000 Faculty Rev-105. [PMID: 32089836 PMCID: PMC7014579 DOI: 10.12688/f1000research.20904.1] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/30/2020] [Indexed: 12/16/2022] Open
Abstract
Oligodendrocytes are the critical cell types giving rise to the myelin nerve sheath enabling efficient nerve transmission in the central nervous system (CNS). Oligodendrocyte precursor cells differentiate into mature oligodendrocytes and are maintained throughout life. Deficits in the generation, proliferation, or differentiation of these cells or their maintenance have been linked to neurological disorders ranging from developmental disorders to neurodegenerative diseases and limit repair after CNS injury. Understanding the regulation of these processes is critical for achieving proper myelination during development, preventing disease, or recovering from injury. Many of the key factors underlying these processes are epigenetic regulators that enable the fine tuning or reprogramming of gene expression during development and regeneration in response to changes in the local microenvironment. These include chromatin remodelers, histone-modifying enzymes, covalent modifiers of DNA methylation, and RNA modification-mediated mechanisms. In this review, we will discuss the key components in each of these classes which are responsible for generating and maintaining oligodendrocyte myelination as well as potential targeted approaches to stimulate the regenerative program in developmental disorders and neurodegenerative diseases.
Collapse
Affiliation(s)
- Kalen Berry
- Department of Pediatrics, Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Jiajia Wang
- Department of Pediatrics, Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Q. Richard Lu
- Department of Pediatrics, Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
| |
Collapse
|
32
|
White Matter and Neuroprotection in Alzheimer's Dementia. Molecules 2020; 25:molecules25030503. [PMID: 31979414 PMCID: PMC7038211 DOI: 10.3390/molecules25030503] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 12/12/2022] Open
Abstract
Myelin is the main component of the white matter of the central nervous system (CNS), allowing the proper electrical function of the neurons by ensheathing and insulating the axons. The extensive use of magnetic resonance imaging has highlighted the white matter alterations in Alzheimer’s dementia (AD) and other neurodegenerative diseases, alterations which are early, extended, and regionally selective. Given that the white matter turnover is considerable in the adulthood, and that myelin repair is currently recognized as being the only true reparative capability of the mature CNS, oligodendrocyte precursor cells (OPCs), the cells that differentiate in oligodendrocyte, responsible for myelin formation and repair, are regarded as a potential target for neuroprotection. In this review, several aspects of the OPC biology are reviewed. The histology and functional role of OPCs in the neurovascular-neuroglial unit as described in preclinical and clinical studies on AD is discussed, such as the OPC vulnerability to hypoxia-ischemia, neuroinflammation, and amyloid deposition. Finally, the position of OPCs in drug discovery strategies for dementia is discussed.
Collapse
|
33
|
Sorond FA, Whitehead S, Arai K, Arnold D, Carmichael ST, De Carli C, Duering M, Fornage M, Flores-Obando RE, Graff-Radford J, Hamel E, Hess DC, Ihara M, Jensen MK, Markus HS, Montagne A, Rosenberg G, Shih AY, Smith EE, Thiel A, Tse KH, Wilcock D, Barone F. Proceedings from the Albert Charitable Trust Inaugural Workshop on white matter and cognition in aging. GeroScience 2019; 42:81-96. [PMID: 31811528 DOI: 10.1007/s11357-019-00141-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 11/20/2019] [Indexed: 12/13/2022] Open
Abstract
This third in a series of vascular cognitive impairment (VCI) workshops, supported by "The Leo and Anne Albert Charitable Trust," was held from February 8 to 12 at the Omni Resort in Carlsbad, CA. This workshop followed the information gathered from the earlier two workshops suggesting that we focus more specifically on brain white matter in age-related cognitive impairment. The Scientific Program Committee (Frank Barone, Shawn Whitehead, Eric Smith, and Rod Corriveau) assembled translational, clinical, and basic scientists with unique expertise in acute and chronic white matter injury at the intersection of cerebrovascular and neurodegenerative etiologies. As in previous Albert Trust workshops, invited participants addressed key topics related to mechanisms of white matter injury, biomarkers of white matter injury, and interventions to prevent white matter injury and age-related cognitive decline. This report provides a synopsis of the presentations and discussions by the participants, including the existing knowledge gaps and the delineation of the next steps towards advancing our understanding of white matter injury and age-related cognitive decline. Workshop discussions and consensus resulted in action by The Albert Trust to (1) increase support from biannual to annual "White Matter and Cognition" workshops; (2) provide funding for two collaborative, novel research grants annually submitted by meeting participants; and (3) coordinate the formation of the "Albert Research Institute for White Matter and Cognition." This institute will fill a gap in white matter science, providing white matter and cognition communications, including annual updates from workshops and the literature and interconnecting with other Albert Trust scientific endeavors in cognition and dementia, and providing support for newly established collaborations between seasoned investigators and to the development of talented young investigators in the VCI-dementia (VCID) and white matter cognition arena.
Collapse
Affiliation(s)
- Farzaneh A Sorond
- Department of Neurology, Division Stroke and Neurocritical Care, Northwestern University Feinberg School of Medicine, 625 N. Michigan Ave, suite 1150, Chicago, IL, 60611, USA.
| | - Shawn Whitehead
- Department of Neurology, Division Stroke and Neurocritical Care, Northwestern University Feinberg School of Medicine, 625 N. Michigan Ave, suite 1150, Chicago, IL, 60611, USA
| | - Ken Arai
- Department of Neurology, Division Stroke and Neurocritical Care, Northwestern University Feinberg School of Medicine, 625 N. Michigan Ave, suite 1150, Chicago, IL, 60611, USA
| | - Douglas Arnold
- Department of Neurology, Division Stroke and Neurocritical Care, Northwestern University Feinberg School of Medicine, 625 N. Michigan Ave, suite 1150, Chicago, IL, 60611, USA
| | - S Thomas Carmichael
- Department of Neurology, Division Stroke and Neurocritical Care, Northwestern University Feinberg School of Medicine, 625 N. Michigan Ave, suite 1150, Chicago, IL, 60611, USA
| | - Charles De Carli
- Department of Neurology, Division Stroke and Neurocritical Care, Northwestern University Feinberg School of Medicine, 625 N. Michigan Ave, suite 1150, Chicago, IL, 60611, USA
| | - Marco Duering
- Department of Neurology, Division Stroke and Neurocritical Care, Northwestern University Feinberg School of Medicine, 625 N. Michigan Ave, suite 1150, Chicago, IL, 60611, USA
| | - Myriam Fornage
- Department of Neurology, Division Stroke and Neurocritical Care, Northwestern University Feinberg School of Medicine, 625 N. Michigan Ave, suite 1150, Chicago, IL, 60611, USA
| | - Rafael E Flores-Obando
- Department of Neurology, Division Stroke and Neurocritical Care, Northwestern University Feinberg School of Medicine, 625 N. Michigan Ave, suite 1150, Chicago, IL, 60611, USA
| | - Jonathan Graff-Radford
- Department of Neurology, Division Stroke and Neurocritical Care, Northwestern University Feinberg School of Medicine, 625 N. Michigan Ave, suite 1150, Chicago, IL, 60611, USA
| | - Edith Hamel
- Department of Neurology, Division Stroke and Neurocritical Care, Northwestern University Feinberg School of Medicine, 625 N. Michigan Ave, suite 1150, Chicago, IL, 60611, USA
| | - David C Hess
- Department of Neurology, Division Stroke and Neurocritical Care, Northwestern University Feinberg School of Medicine, 625 N. Michigan Ave, suite 1150, Chicago, IL, 60611, USA
| | - Massafumi Ihara
- Department of Neurology, Division Stroke and Neurocritical Care, Northwestern University Feinberg School of Medicine, 625 N. Michigan Ave, suite 1150, Chicago, IL, 60611, USA
| | - Majken K Jensen
- Department of Neurology, Division Stroke and Neurocritical Care, Northwestern University Feinberg School of Medicine, 625 N. Michigan Ave, suite 1150, Chicago, IL, 60611, USA
| | - Hugh S Markus
- Department of Neurology, Division Stroke and Neurocritical Care, Northwestern University Feinberg School of Medicine, 625 N. Michigan Ave, suite 1150, Chicago, IL, 60611, USA
| | - Axel Montagne
- Department of Neurology, Division Stroke and Neurocritical Care, Northwestern University Feinberg School of Medicine, 625 N. Michigan Ave, suite 1150, Chicago, IL, 60611, USA
| | - Gary Rosenberg
- Department of Neurology, Division Stroke and Neurocritical Care, Northwestern University Feinberg School of Medicine, 625 N. Michigan Ave, suite 1150, Chicago, IL, 60611, USA
| | - Andy Y Shih
- Department of Neurology, Division Stroke and Neurocritical Care, Northwestern University Feinberg School of Medicine, 625 N. Michigan Ave, suite 1150, Chicago, IL, 60611, USA
| | - Eric E Smith
- Department of Neurology, Division Stroke and Neurocritical Care, Northwestern University Feinberg School of Medicine, 625 N. Michigan Ave, suite 1150, Chicago, IL, 60611, USA
| | - Alex Thiel
- Department of Neurology, Division Stroke and Neurocritical Care, Northwestern University Feinberg School of Medicine, 625 N. Michigan Ave, suite 1150, Chicago, IL, 60611, USA
| | - Kai Hei Tse
- Department of Neurology, Division Stroke and Neurocritical Care, Northwestern University Feinberg School of Medicine, 625 N. Michigan Ave, suite 1150, Chicago, IL, 60611, USA
| | - Donna Wilcock
- Department of Neurology, Division Stroke and Neurocritical Care, Northwestern University Feinberg School of Medicine, 625 N. Michigan Ave, suite 1150, Chicago, IL, 60611, USA
| | - Frank Barone
- Department of Neurology, Division Stroke and Neurocritical Care, Northwestern University Feinberg School of Medicine, 625 N. Michigan Ave, suite 1150, Chicago, IL, 60611, USA
| |
Collapse
|
34
|
Besser L, Kukull W, Knopman DS, Chui H, Galasko D, Weintraub S, Jicha G, Carlsson C, Burns J, Quinn J, Sweet RA, Rascovsky K, Teylan M, Beekly D, Thomas G, Bollenbeck M, Monsell S, Mock C, Zhou XH, Thomas N, Robichaud E, Dean M, Hubbard J, Jacka M, Schwabe-Fry K, Wu J, Phelps C, Morris JC. Version 3 of the National Alzheimer's Coordinating Center's Uniform Data Set. Alzheimer Dis Assoc Disord 2018; 32:351-358. [PMID: 30376508 PMCID: PMC6249084 DOI: 10.1097/wad.0000000000000279] [Citation(s) in RCA: 276] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 09/04/2018] [Indexed: 11/26/2022]
Abstract
INTRODUCTION In 2015, the US Alzheimer's Disease Centers (ADC) implemented Version 3 of the Uniform Data Set (UDS). This paper describes the history of Version 3 development and the UDS data that are freely available to researchers. METHODS UDS Version 3 was developed after years of coordination between the National Institute on Aging-appointed Clinical Task Force (CTF), clinicians from ∼30 ADCs, and the National Alzheimer's Coordinating Center (NACC). The CTF recognized the need for updates to align with the state of the science in dementia research, while being flexible to the diverse needs and diseases studied at the ADCs. Version 3 also developed a nonproprietary neuropsychological battery. RESULTS This paper focuses on the substantial Version 3 changes to the UDS forms related to clinical diagnosis and characterization of clinical symptoms to match updated consensus-based diagnostic criteria. Between March 2015 and March 2018, 4820 participants were enrolled using UDS Version 3. Longitudinal data were available for 25,337 of the 37,568 total participants using all UDS versions. DISCUSSION The results from utilization of the UDS highlight the possibility for numerous research institutions to successfully collaborate, produce, and use standardized data collection instruments for over a decade.
Collapse
Affiliation(s)
- Lilah Besser
- Department of Epidemiology, National Alzheimer’s Coordinating Center, University of Washington, Seattle, WA
- Institute for Healthy Aging and Lifespan Studies and School of Urban and Regional Planning, Florida Atlantic University, Boca Raton, FL
| | - Walter Kukull
- Department of Epidemiology, National Alzheimer’s Coordinating Center, University of Washington, Seattle, WA
| | | | - Helena Chui
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles
| | - Douglas Galasko
- Department of Neurosciences, University of California San Diego, La Jolla, CA
| | - Sandra Weintraub
- Departments of Psychiatry and Neurology, and Cognitive Neurology and Alzheimer’s Disease Center, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Gregory Jicha
- Department of Neurology, University of Kentucky, Lexington, KY
| | - Cynthia Carlsson
- Department of Medicine, University of Wisconsin School of Medicine and Public Health; Geriatric Research, Education and Clinical Center, Madison VA Hospital, Madison, WI
| | - Jeffrey Burns
- Department of Neurology, School of Medicine, University of Kansas, Kansas City, KS
| | - Joseph Quinn
- Department of Neurology, School of Medicine, Oregon Health & Science University, Portland, OR
| | - Robert A. Sweet
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Katya Rascovsky
- Department of Psychiatry, University of Pittsburgh School of Medicine
- Department of Neurology, University of Pittsburgh School of Medicine
- Mental Illness Research, Education, and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA
| | - Merilee Teylan
- Department of Epidemiology, National Alzheimer’s Coordinating Center, University of Washington, Seattle, WA
| | - Duane Beekly
- Department of Epidemiology, National Alzheimer’s Coordinating Center, University of Washington, Seattle, WA
| | - George Thomas
- Department of Epidemiology, National Alzheimer’s Coordinating Center, University of Washington, Seattle, WA
| | - Mark Bollenbeck
- Department of Epidemiology, National Alzheimer’s Coordinating Center, University of Washington, Seattle, WA
| | - Sarah Monsell
- Center for Biomedical Statistics, University of Washington, Seattle, WA
| | - Charles Mock
- Department of Epidemiology, National Alzheimer’s Coordinating Center, University of Washington, Seattle, WA
| | - Xiao Hua Zhou
- Department of Epidemiology, National Alzheimer’s Coordinating Center, University of Washington, Seattle, WA
| | - Nicole Thomas
- Department of Epidemiology, National Alzheimer’s Coordinating Center, University of Washington, Seattle, WA
| | - Elizabeth Robichaud
- Department of Epidemiology, National Alzheimer’s Coordinating Center, University of Washington, Seattle, WA
| | - Margaret Dean
- Department of Epidemiology, National Alzheimer’s Coordinating Center, University of Washington, Seattle, WA
| | - Janene Hubbard
- Department of Epidemiology, National Alzheimer’s Coordinating Center, University of Washington, Seattle, WA
| | - Mary Jacka
- Department of Epidemiology, National Alzheimer’s Coordinating Center, University of Washington, Seattle, WA
| | - Kristen Schwabe-Fry
- Department of Epidemiology, National Alzheimer’s Coordinating Center, University of Washington, Seattle, WA
| | - Joylee Wu
- Department of Epidemiology, National Alzheimer’s Coordinating Center, University of Washington, Seattle, WA
| | | | | | - John C. Morris
- Department of Neurology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|