1
|
Barik P, Kuo WW, Kuo CH, Hsieh DJY, Day CH, Daddam J, Chen MYC, Padma VV, Shibu MA, Huang CY. Rewiring of IGF1 secretion and enhanced IGF1R signaling induced by co-chaperone carboxyl-terminus of Hsp70 interacting protein in adipose-derived stem cells provide augmented cardioprotection in aging-hypertensive rats. Aging (Albany NY) 2023; 15:14019-14038. [PMID: 38085649 PMCID: PMC10756089 DOI: 10.18632/aging.205287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/04/2023] [Indexed: 12/21/2023]
Abstract
Aging-associated cardiovascular diseases depend on the longitudinal deterioration of stem cell dynamics. The entire mechanism behind it is not completely understood. However, many studies suggest that endocrine pathways, particularly the insulin-like growth factor-1(IGF1) signaling pathway are involved in cardioprotection, especially in stem-cell treatments. Here, we investigated the role of a co-chaperone, carboxyl-terminus of Hsp70 interacting protein (CHIP) in the aspects of growth factor secretion and receptor stabilization in mesenchymal stem cells (MSCs). Briefly, we overexpressed CHIP in rat adipose-derived stem cells (rADSCs) and explored the consequences in vitro, and in vivo, in spontaneously hypertensive rats (SHR). Our data revealed that CHIP overexpression in rADSCs promoted the secretion of insulin-like growth factor-1 (IGF1) and IGF binding protein-3 (IGFBP3) as per immunoblot/cytokine array analysis. We also found that these results were dependent on the nuclear translocation of signal transducer and activator of transcription 3 (STAT3) in rADSCs. Further, the CHIP co-chaperone was also involved in the stabilization of the receptor of IGF1 (IGF1R); interactions between the beta transmembrane region of IGF1R, and the tetracopeptide repeat (TPR) domain of CHIP were evident. Importantly, after the transplantation of lentiviral CHIP overexpression of rADSCs (rADSCsCHIP-WT) into nine months aging-SHR led to an increase in their cardiac function - increased ejection fraction and fractional shortening (≈15% vs. control SHR) - as well as a decrease in their heart size and heart rate, respectively. Altogether, our results support the use of CHIP overexpressing stem cells for the mitigation of cardiac hypertrophy and remodeling associated with late-stage hypertension.
Collapse
Affiliation(s)
- Parthasarathi Barik
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Chia-Hua Kuo
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan
| | - Dennis Jine-Yuan Hsieh
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan
| | | | - Jayasimharayalu Daddam
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | | | - V. Vijaya Padma
- Department of Biotechnology, Bharathiar University, Coimbatore, India
| | | | - Chih-Yang Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan
| |
Collapse
|
2
|
Wang Y, Shou X, Fan Z, Cui J, Xue D, Wu Y. A Systematic Review and Meta-Analysis of Phytoestrogen Protects Against Myocardial Ischemia/Reperfusion Injury: Pre-Clinical Evidence From Small Animal Studies. Front Pharmacol 2022; 13:847748. [PMID: 35668938 PMCID: PMC9166621 DOI: 10.3389/fphar.2022.847748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 04/26/2022] [Indexed: 12/09/2022] Open
Abstract
Background: Phytoestrogens are a class of natural compounds that have structural similarities to estrogens. They have been identified to confer potent cardioprotective effects in experimental myocardial ischemia-reperfusion injury (MIRI) animal models. We aimed to investigate the effect of PE on MIRI and its intrinsic mechanisms. Methods: A systematic search was conducted to identify PEs that have been validated in animal studies or clinical studies as effective against MIRI. Then, we collected studies that met inclusion and exclusion criteria from January 2016 to September 2021. The SYRCLE's RoB tool was used to evaluate the quality. Data were analyzed by STATA 16.0 software. Results: The search yielded 18 phytoestrogens effective against heart disease. They are genistein, quercetin, biochanin A, formononetin, daidzein, kaempferol, icariin, puerarin, rutin, notoginsenoside R1, tanshinone IIA, ginsenoside Rb1, ginsenoside Rb3, ginsenoside Rg1, ginsenoside Re, resveratrol, polydatin, and bakuchiol. Then, a total of 20 studies from 17 articles with a total of 355 animals were included in this meta-analysis. The results show that PE significantly reduced the myocardial infarct size in MIRI animals compared with the control group (p < 0.001). PE treatment significantly reduced the creatine kinase level (p < 0.001) and cTnI level (p < 0.001), increased left ventricular ejection fraction (p < 0.001) and left ventricular fractional shortening (p < 0.001) in MIRI animals. In addition, PE also exerts a significant heart rate lowering effect (p < 0.001). Conclusion: Preclinical evidence suggests that PE can be multi-targeted for cardioprotective effects in MIRI. More large animal studies and clinical research are still needed in the future to further confirm its role in MIRI.
Collapse
Affiliation(s)
- Yumeng Wang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China.,Department of Cardiovascular, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xintian Shou
- Graduate School, Beijing University of Chinese Medicine, Beijing, China.,Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zongjing Fan
- Department of Cardiovascular, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jie Cui
- Department of Cardiovascular, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Donghua Xue
- Graduate School, Beijing University of Chinese Medicine, Beijing, China.,Department of Cardiovascular, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yang Wu
- Department of Cardiovascular, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
3
|
Wang Y, Qi Z, Yan Z, Ji N, Yang X, Gao D, Hu L, Lv H, Zhang J, Li M. Mesenchymal Stem Cell Immunomodulation: A Novel Intervention Mechanism in Cardiovascular Disease. Front Cell Dev Biol 2022; 9:742088. [PMID: 35096808 PMCID: PMC8790228 DOI: 10.3389/fcell.2021.742088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are the member of multipotency stem cells, which possess the capacity for self-renewal and multi-directional differentiation, and have several characteristics, including multi-lineage differentiation potential and immune regulation, which make them a promising source for cell therapy in inflammation, immune diseases, and organ transplantation. In recent years, MSCs have been described as a novel therapeutic strategy for the treatment of cardiovascular diseases because they are potent modulators of immune system with the ability to modulating immune cell subsets, coordinating local and systemic innate and adaptive immune responses, thereby enabling the formation of a stable inflammatory microenvironment in damaged cardiac tissues. In this review, the immunoregulatory characteristics and potential mechanisms of MSCs are sorted out, the effect of these MSCs on immune cells is emphasized, and finally the application of this mechanism in the treatment of cardiovascular diseases is described to provide help for clinical application.
Collapse
Affiliation(s)
- Yueyao Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Zhongwen Qi
- Institute of Gerontology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhipeng Yan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Nan Ji
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaoya Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Dongjie Gao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Leilei Hu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hao Lv
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Junping Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Meng Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
4
|
Gu X, Zhou F, Mu J. Recent Advances in Maturation of Pluripotent Stem Cell-Derived Cardiomyocytes Promoted by Mechanical Stretch. Med Sci Monit 2021; 27:e931063. [PMID: 34381009 PMCID: PMC8369941 DOI: 10.12659/msm.931063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Stem cells have significant potential use in tissue regeneration, especially for treating cardiac diseases because of their multi-directional differentiation capability. By mimicking the in vivo physiological environment of native cardiomyocytes during their development and maturation, researchers have been able to induce pluripotent stem cell-derived cardiomyocytes (PSC-CMs) at high purity. However, the phenotype of these PSC-CMs is immature compared with that of adult cardiomyocytes. Various strategies have been explored to improve the maturity of PSC-CMs, such as long-term culturing, mechanical stimuli, chemical stimuli, and combinations of these strategies. Among these strategies, mechanical stretch as a key mechanical stimulus plays an important role in PSC-CM maturation. In this review, the optimal parameters of mechanical stretch, the effects of mechanical stretch on maturation of PSC-CMs, underlying molecular mechanisms as well as existing problems are discussed. Mechanical stretch is a powerful approach to promote the maturation of SC-CMs in terms of morphology, structure, and functionality. Nonetheless, further research efforts are needed to reach a satisfactory standard for clinical applications of PSC-CMs in treating cardiac diseases.
Collapse
Affiliation(s)
- Xingwang Gu
- Capital Medical University, Beijing, China (mainland)
| | - Fan Zhou
- Department of Ultrasound, Third Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China (mainland)
| | - Junsheng Mu
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Beijing, China (mainland)
| |
Collapse
|
5
|
Turner D, Rieger AC, Balkan W, Hare JM. Clinical-based Cell Therapies for Heart Disease-Current and Future State. Rambam Maimonides Med J 2020; 11:RMMJ.10401. [PMID: 32374254 PMCID: PMC7202446 DOI: 10.5041/rmmj.10401] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Patients have an ongoing unmet need for effective therapies that reverse the cellular and functional damage associated with heart damage and disease. The discovery that ~1%-2% of adult cardiomyocytes turn over per year provided the impetus for treatments that stimulate endogenous repair mechanisms that augment this rate. Preclinical and clinical studies provide evidence that cell-based therapy meets these therapeutic criteria. Recent and ongoing studies are focused on determining which cell type(s) works best for specific patient population(s) and the mechanism(s) by which these cells promote repair. Here we review clinical and preclinical stem cell studies and anticipate future directions of regenerative medicine for heart disease.
Collapse
Affiliation(s)
- Darren Turner
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Angela C. Rieger
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Wayne Balkan
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Joshua M. Hare
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
6
|
Firouzi F, Sinha Choudhury S, Broughton K, Salazar A, Bailey B, Sussman MA. Human CardioChimeras: Creation of a Novel "Next-Generation" Cardiac Cell. J Am Heart Assoc 2020; 9:e013452. [PMID: 31902324 PMCID: PMC6988174 DOI: 10.1161/jaha.119.013452] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background CardioChimeras produced by fusion of murine c‐kit+ cardiac interstitial cells with mesenchymal stem cells promote superior structural and functional recovery in a mouse model of myocardial infarction compared with either precursor cell alone or in combination. Creation of human CardioChimeras (hCCs) represents the next step in translational development of this novel cell type, but new challenges arise when working with c‐kit+ cardiac interstitial cells isolated and expanded from human heart tissue samples. The objective of the study was to establish a reliable cell fusion protocol for consistent optimized creation of hCCs and characterize fundamental hCC properties. Methods and Results Cell fusion was induced by incubating human c‐kit+ cardiac interstitial cells and mesenchymal stem cells at a 2:1 ratio with inactivated Sendai virus. Hybrid cells were sorted into 96‐well microplates for clonal expansion to derive unique cloned hCCs, which were then characterized for various cellular and molecular properties. hCCs exhibited enhanced survival relative to the parent cells and promoted cardiomyocyte survival in response to serum deprivation in vitro. Conclusions The generation of hCC is demonstrated and validated in this study, representing the next step toward implementation of a novel cell product for therapeutic development. Feasibility of creating human hybrid cells prompts consideration of multiple possibilities to create novel chimeric cells derived from cells with desirable traits to promote healing in pathologically damaged myocardium.
Collapse
Affiliation(s)
- Fareheh Firouzi
- Department of Biology and Integrated Regenerative Research Institute San Diego State University San Diego CA
| | - Sarmistha Sinha Choudhury
- Department of Biology and Integrated Regenerative Research Institute San Diego State University San Diego CA
| | - Kathleen Broughton
- Department of Biology and Integrated Regenerative Research Institute San Diego State University San Diego CA
| | - Adriana Salazar
- Department of Biology and Integrated Regenerative Research Institute San Diego State University San Diego CA
| | - Barbara Bailey
- Department of Mathematics & Statistics San Diego State University San Diego CA
| | - Mark A Sussman
- Department of Biology and Integrated Regenerative Research Institute San Diego State University San Diego CA
| |
Collapse
|
7
|
Browne S, Healy KE. Matrix-assisted cell transplantation for tissue vascularization. Adv Drug Deliv Rev 2019; 146:155-169. [PMID: 30605738 DOI: 10.1016/j.addr.2018.12.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 10/30/2018] [Accepted: 12/27/2018] [Indexed: 12/20/2022]
Abstract
Cell therapy offers much promise for the treatment of ischemic diseases by augmenting tissue vasculogenesis. Matrix-assisted cell transplantation (MACT) has been proposed as a solution to enhance cell survival and integration with host tissue following transplantation. By designing semi synthetic matrices (sECM) with the correct physical and biochemical signals, encapsulated cells are directed towards a more angiogenic phenotype. In this review, we describe the choice of cells suitable for pro-angiogenic therapies, the properties that should be considered when designing sECM for transplantation and their relative importance. Pre-clinical models where MACT has been successfully applied to promote angiogenesis are reviewed to show the great potential of this strategy to treat ischemic conditions.
Collapse
Affiliation(s)
- Shane Browne
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA; Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, USA; Centre for Research in Medical Devices (CÚRAM), National University of Ireland, Galway, Ireland
| | - Kevin E Healy
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA; Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
8
|
Browne S, Jha AK, Ameri K, Marcus SG, Yeghiazarians Y, Healy KE. TGF-β1/CD105 signaling controls vascular network formation within growth factor sequestering hyaluronic acid hydrogels. PLoS One 2018; 13:e0194679. [PMID: 29566045 PMCID: PMC5864059 DOI: 10.1371/journal.pone.0194679] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 03/07/2018] [Indexed: 12/17/2022] Open
Abstract
Cell-based strategies for the treatment of ischemic diseases are at the forefront of tissue engineering and regenerative medicine. Cell therapies purportedly can play a key role in the neovascularization of ischemic tissue; however, low survival and poor cell engraftment with the host vasculature following implantation limits their potential to treat ischemic diseases. To overcome these limitations, we previously developed a growth factor sequestering hyaluronic acid (HyA)-based hydrogel that enhanced transplanted mouse cardiosphere-derived cell survival and formation of vasculature that anastomosed with host vessels. In this work, we examined the mechanism by which HyA hydrogels presenting transforming growth factor beta-1 (TGF-β1) promoted proliferation of more clinically relevant human cardiosphere-derived cells (hCDC), and their formation of vascular-like networks in vitro. We observed hCDC proliferation and enhanced formation of vascular-like networks occurred in the presence of TGF-β1. Furthermore, production of nitric oxide (NO), VEGF, and a host of angiogenic factors were increased in the presence of TGF-β1. This response was dependent on the co-activity of CD105 (Endoglin) with the TGF-βR2 receptor, demonstrating its role in the process of angiogenic differentiation and vascular organization of hCDC. These results demonstrated that hCDC form vascular-like networks in vitro, and that the induction of vascular networks by hCDC within growth factor sequestering HyA hydrogels was mediated by TGF-β1/CD105 signaling.
Collapse
Affiliation(s)
- Shane Browne
- Departments of Bioengineering and Materials Science and Engineering, University of California, Berkeley, CA, United States of America
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Galway, Ireland
| | - Amit K. Jha
- Departments of Bioengineering and Materials Science and Engineering, University of California, Berkeley, CA, United States of America
| | - Kurosh Ameri
- Department of Medicine, University of California, San Francisco, CA, United States of America
| | - Sivan G. Marcus
- Departments of Bioengineering and Materials Science and Engineering, University of California, Berkeley, CA, United States of America
| | - Yerem Yeghiazarians
- Department of Medicine, University of California, San Francisco, CA, United States of America
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, United States of America
- Cardiovascular Research Institute, University of California, San Francisco, CA, United States of America
| | - Kevin E. Healy
- Departments of Bioengineering and Materials Science and Engineering, University of California, Berkeley, CA, United States of America
- * E-mail:
| |
Collapse
|
9
|
Wang XL, Zhao YY, Sun L, Shi Y, Li ZQ, Zhao XD, Xu CG, Ji HG, Wang M, Xu WR, Zhu W. Exosomes derived from human umbilical cord mesenchymal stem cells improve myocardial repair via upregulation of Smad7. Int J Mol Med 2018; 41:3063-3072. [PMID: 29484378 DOI: 10.3892/ijmm.2018.3496] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 02/09/2018] [Indexed: 12/13/2022] Open
Abstract
It has been previously reported that exosomes derived from human umbilical cord mesenchymal stem cells (hucMSC)‑exosomes exhibit cardioprotective effects on the rat acute myocardial infarction (AMI) models and cardiomyocyte hypoxia injury models in vitro, however the exact mechanisms involved require further investigation. The present study aimed to investigate the repair effects of hucMSC‑exosomes on myocardial injury via the regulation of mothers against decapentaplegic homolog 7 (Smad7) expression. Compared with sham or normoxia groups (in vivo and in vitro, respectively), western blotting demonstrated that Smad7 expression was significantly decreased in the borderline area of infraction myocardium and in H9C2(2‑1) cells following hypoxia‑induced injury. Additionally, microRNA (miR)‑125b‑5p expression was markedly increased using reverse transcription‑quantitative polymerase chain reaction, but was reversed by hucMSC‑exosomes. Trypan blue staining and lactate dehydrogenase release detection demonstrated that cell injury was significantly increased in the AMI + PBS and hypoxia group compared with in the sham and normoxia groups and was inhibited by hucMSC‑exosomes. A dual luciferase reporter gene assay confirmed that Smad7 is a target gene of miR‑125b‑5p. In addition, miR‑125b‑5p mimics promoted H9C2(2‑1) cell injury following 48 h exposure to hypoxia. Downregulation of Smad7 expression under hypoxia was increased by miR‑125b‑5p mimics compared with the mimic negative control, and hucMSC‑exosomes partially alleviated this phenomenon. In conclusion, hucMSC‑exosomes may promote Smad7 expression by inhibiting miR‑125b‑5p to increase myocardial repair. The present study may provide a potential therapeutic approach to improve myocardial repair following AMI.
Collapse
Affiliation(s)
- Xin-Long Wang
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Yuan-Yuan Zhao
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Li Sun
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Yu Shi
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Zhu-Qian Li
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Xiang-Dong Zhao
- Department of Clinical Laboratory, Zhenjiang Provincial Blood Center, Zhenjiang, Jiangsu 212000, P.R. China
| | - Chang-Gen Xu
- Department of Clinical Laboratory, Zhenjiang Provincial Blood Center, Zhenjiang, Jiangsu 212000, P.R. China
| | - Hong-Ge Ji
- Department of Clinical Laboratory, Zhenjiang Provincial Blood Center, Zhenjiang, Jiangsu 212000, P.R. China
| | - Mei Wang
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Wen-Rong Xu
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Wei Zhu
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| |
Collapse
|
10
|
Sommese L, Zullo A, Schiano C, Mancini FP, Napoli C. Possible Muscle Repair in the Human Cardiovascular System. Stem Cell Rev Rep 2017; 13:170-191. [PMID: 28058671 DOI: 10.1007/s12015-016-9711-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The regenerative potential of tissues and organs could promote survival, extended lifespan and healthy life in multicellular organisms. Niches of adult stemness are widely distributed and lead to the anatomical and functional regeneration of the damaged organ. Conversely, muscular regeneration in mammals, and humans in particular, is very limited and not a single piece of muscle can fully regrow after a severe injury. Therefore, muscle repair after myocardial infarction is still a chimera. Recently, it has been recognized that epigenetics could play a role in tissue regrowth since it guarantees the maintenance of cellular identity in differentiated cells and, therefore, the stability of organs and tissues. The removal of these locks can shift a specific cell identity back to the stem-like one. Given the gradual loss of tissue renewal potential in the course of evolution, in the last few years many different attempts to retrieve such potential by means of cell therapy approaches have been performed in experimental models. Here we review pathways and mechanisms involved in the in vivo repair of cardiovascular muscle tissues in humans. Moreover, we address the ongoing research on mammalian cardiac muscle repair based on adult stem cell transplantation and pro-regenerative factor delivery. This latter issue, involving genetic manipulations of adult cells, paves the way for developing possible therapeutic strategies in the field of cardiovascular muscle repair.
Collapse
Affiliation(s)
- Linda Sommese
- Department of Internal and Specialty Medicine, U.O.C. Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, Regional Reference Laboratory of Transplant Immunology, Azienda Ospedaliera Universitaria, Università degli Studi della Campania "Luigi Vanvitelli", Piazza Miraglia 2, 80138, Naples, Italy.
| | - Alberto Zullo
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy.,CEINGE Advanced Biotechnologies, s.c.ar.l, Naples, Italy
| | | | - Francesco P Mancini
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| | - Claudio Napoli
- Department of Internal and Specialty Medicine, U.O.C. Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, Regional Reference Laboratory of Transplant Immunology, Azienda Ospedaliera Universitaria, Università degli Studi della Campania "Luigi Vanvitelli", Piazza Miraglia 2, 80138, Naples, Italy.,IRCCS Foundation SDN, Naples, Italy
| |
Collapse
|
11
|
The role of GILZ in modulation of adaptive immunity in a murine model of myocardial infarction. Exp Mol Pathol 2017; 102:408-414. [DOI: 10.1016/j.yexmp.2017.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/08/2017] [Indexed: 11/22/2022]
|
12
|
Yang Y, Hu W, Di S, Ma Z, Fan C, Wang D, Jiang S, Li Y, Zhou Q, Li T, Luo E. Tackling myocardial ischemic injury: the signal transducer and activator of transcription 3 (STAT3) at a good site. Expert Opin Ther Targets 2016; 21:215-228. [PMID: 28001439 DOI: 10.1080/14728222.2017.1275566] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yang Yang
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi’an, China
- Department of Thoracic and Cardiovascular Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Wei Hu
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi’an, China
| | - Shouyin Di
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi’an, China
| | - Zhiqiang Ma
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi’an, China
| | - Chongxi Fan
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi’an, China
| | - Dongjin Wang
- Department of Thoracic and Cardiovascular Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Shuai Jiang
- Department of Aerospace Medicine, The Fourth Military Medical University, Xi’an, China
| | - Yue Li
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi’an, China
| | - Qing Zhou
- Department of Thoracic and Cardiovascular Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Tian Li
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi’an, China
| | - Erping Luo
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi’an, China
| |
Collapse
|
13
|
Golpanian S, Wolf A, Hatzistergos KE, Hare JM. Rebuilding the Damaged Heart: Mesenchymal Stem Cells, Cell-Based Therapy, and Engineered Heart Tissue. Physiol Rev 2016; 96:1127-68. [PMID: 27335447 PMCID: PMC6345247 DOI: 10.1152/physrev.00019.2015] [Citation(s) in RCA: 234] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are broadly distributed cells that retain postnatal capacity for self-renewal and multilineage differentiation. MSCs evade immune detection, secrete an array of anti-inflammatory and anti-fibrotic mediators, and very importantly activate resident precursors. These properties form the basis for the strategy of clinical application of cell-based therapeutics for inflammatory and fibrotic conditions. In cardiovascular medicine, administration of autologous or allogeneic MSCs in patients with ischemic and nonischemic cardiomyopathy holds significant promise. Numerous preclinical studies of ischemic and nonischemic cardiomyopathy employing MSC-based therapy have demonstrated that the properties of reducing fibrosis, stimulating angiogenesis, and cardiomyogenesis have led to improvements in the structure and function of remodeled ventricles. Further attempts have been made to augment MSCs' effects through genetic modification and cell preconditioning. Progression of MSC therapy to early clinical trials has supported their role in improving cardiac structure and function, functional capacity, and patient quality of life. Emerging data have supported larger clinical trials that have been either completed or are currently underway. Mechanistically, MSC therapy is thought to benefit the heart by stimulating innate anti-fibrotic and regenerative responses. The mechanisms of action involve paracrine signaling, cell-cell interactions, and fusion with resident cells. Trans-differentiation of MSCs to bona fide cardiomyocytes and coronary vessels is also thought to occur, although at a nonphysiological level. Recently, MSC-based tissue engineering for cardiovascular disease has been examined with quite encouraging results. This review discusses MSCs from their basic biological characteristics to their role as a promising therapeutic strategy for clinical cardiovascular disease.
Collapse
Affiliation(s)
- Samuel Golpanian
- Interdisciplinary Stem Cell Institute, Department of Medicine, and Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Ariel Wolf
- Interdisciplinary Stem Cell Institute, Department of Medicine, and Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Konstantinos E Hatzistergos
- Interdisciplinary Stem Cell Institute, Department of Medicine, and Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, Department of Medicine, and Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
14
|
Singh A, Singh A, Sen D. Mesenchymal stem cells in cardiac regeneration: a detailed progress report of the last 6 years (2010-2015). Stem Cell Res Ther 2016; 7:82. [PMID: 27259550 PMCID: PMC4893234 DOI: 10.1186/s13287-016-0341-0] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cells have been used for cardiovascular regenerative therapy for decades. These cells have been established as one of the potential therapeutic agents, following several tests in animal models and clinical trials. In the process, various sources of mesenchymal stem cells have been identified which help in cardiac regeneration by either revitalizing the cardiac stem cells or revascularizing the arteries and veins of the heart. Although mesenchymal cell therapy has achieved considerable admiration, some challenges still remain that need to be overcome in order to establish it as a successful technique. This in-depth review is an attempt to summarize the major sources of mesenchymal stem cells involved in myocardial regeneration, the significant mechanisms involved in the process with a focus on studies (human and animal) conducted in the last 6 years and the challenges that remain to be addressed.
Collapse
Affiliation(s)
- Aastha Singh
- School of Bio Sciences and Technology, VIT University, Vellore, India
| | - Abhishek Singh
- School of Bio Sciences and Technology, VIT University, Vellore, India
| | - Dwaipayan Sen
- School of Bio Sciences and Technology, VIT University, Vellore, India. .,Cellular and Molecular Therapeutics Laboratory, Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), VIT University, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
15
|
|
16
|
Abdelwahid E, Kalvelyte A, Stulpinas A, de Carvalho KAT, Guarita-Souza LC, Foldes G. Stem cell death and survival in heart regeneration and repair. Apoptosis 2016; 21:252-68. [PMID: 26687129 PMCID: PMC5200890 DOI: 10.1007/s10495-015-1203-4] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cardiovascular diseases are major causes of mortality and morbidity. Cardiomyocyte apoptosis disrupts cardiac function and leads to cardiac decompensation and terminal heart failure. Delineating the regulatory signaling pathways that orchestrate cell survival in the heart has significant therapeutic implications. Cardiac tissue has limited capacity to regenerate and repair. Stem cell therapy is a successful approach for repairing and regenerating ischemic cardiac tissue; however, transplanted cells display very high death percentage, a problem that affects success of tissue regeneration. Stem cells display multipotency or pluripotency and undergo self-renewal, however these events are negatively influenced by upregulation of cell death machinery that induces the significant decrease in survival and differentiation signals upon cardiovascular injury. While efforts to identify cell types and molecular pathways that promote cardiac tissue regeneration have been productive, studies that focus on blocking the extensive cell death after transplantation are limited. The control of cell death includes multiple networks rather than one crucial pathway, which underlies the challenge of identifying the interaction between various cellular and biochemical components. This review is aimed at exploiting the molecular mechanisms by which stem cells resist death signals to develop into mature and healthy cardiac cells. Specifically, we focus on a number of factors that control death and survival of stem cells upon transplantation and ultimately affect cardiac regeneration. We also discuss potential survival enhancing strategies and how they could be meaningful in the design of targeted therapies that improve cardiac function.
Collapse
Affiliation(s)
- Eltyeb Abdelwahid
- Feinberg School of Medicine, Feinberg Cardiovascular Research Institute, Northwestern University, 303 E. Chicago Ave., Tarry 14-725, Chicago, IL, 60611, USA.
| | - Audrone Kalvelyte
- Department of Molecular Cell Biology, Vilnius University Institute of Biochemistry, Vilnius, Lithuania
| | - Aurimas Stulpinas
- Department of Molecular Cell Biology, Vilnius University Institute of Biochemistry, Vilnius, Lithuania
| | - Katherine Athayde Teixeira de Carvalho
- Cell Therapy and Biotechnology in Regenerative Medicine Research Group, Pequeno Príncipe Faculty, Pelé Pequeno Príncipe Institute, Curitiba, Paraná, 80250-200, Brazil
| | - Luiz Cesar Guarita-Souza
- Experimental Laboratory of Institute of Biological and Health Sciences of Pontifical Catholic University of Parana, Curitiba, Paraná, 80215-901, Brazil
| | - Gabor Foldes
- National Heart and Lung Institute, Imperial College London, Imperial Centre for Experimental and Translational Medicine, Du Cane Road, London, W12 0NN, UK
| |
Collapse
|
17
|
van Zuylen VL, den Haan MC, Geutskens SB, Roelofs H, Fibbe WE, Schalij MJ, Atsma DE. Post-myocardial infarct inflammation and the potential role of cell therapy. Cardiovasc Drugs Ther 2015; 29:59-73. [PMID: 25583678 DOI: 10.1007/s10557-014-6568-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Myocardial infarction triggers reparative inflammatory processes programmed to repair damaged tissue. However, often additional injury to the myocardium occurs through the course of this inflammatory process, which ultimately can lead to heart failure. The potential beneficial effects of cell therapy in treating cardiac ischemic disease, the number one cause of death worldwide, are being studied extensively, both in clinical trials using adult stem cells as well as in fundamental research on cardiac stem cells and regenerative biology. This review summarizes the current knowledge on molecular and cellular processes implicated in post-infarction inflammation and discusses the potential beneficial role cell therapy might play in this process. Due to its immunomodulatory properties, the mesenchymal stromal cell is a candidate to reverse the disease progression of the infarcted heart towards heart failure, and therefore is emphasized in this review.
Collapse
Affiliation(s)
- Vanessa-leigh van Zuylen
- Department of Cardiology, Leiden University Medical Center, P.O. Box 9600, 2300, RC, Leiden, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
18
|
Quijada P, Salunga HT, Hariharan N, Cubillo JD, El-Sayed FG, Moshref M, Bala KM, Emathinger JM, De La Torre A, Ormachea L, Alvarez R, Gude NA, Sussman MA. Cardiac Stem Cell Hybrids Enhance Myocardial Repair. Circ Res 2015; 117:695-706. [PMID: 26228030 DOI: 10.1161/circresaha.115.306838] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 07/29/2015] [Indexed: 02/07/2023]
Abstract
RATIONALE Dual cell transplantation of cardiac progenitor cells (CPCs) and mesenchymal stem cells (MSCs) after infarction improves myocardial repair and performance in large animal models relative to delivery of either cell population. OBJECTIVE To demonstrate that CardioChimeras (CCs) formed by fusion between CPCs and MSCs have enhanced reparative potential in a mouse model of myocardial infarction relative to individual stem cells or combined cell delivery. METHODS AND RESULTS Two distinct and clonally derived CCs, CC1 and CC2, were used for this study. CCs improved left ventricular anterior wall thickness at 4 weeks post injury, but only CC1 treatment preserved anterior wall thickness at 18 weeks. Ejection fraction was enhanced at 6 weeks in CCs, and functional improvements were maintained in CCs and CPC+MSC groups at 18 weeks. Infarct size was decreased in CCs, whereas CPC+MSC and CPC parent groups remained unchanged at 12 weeks. CCs exhibited increased persistence, engraftment, and expression of early commitment markers within the border zone relative to combinatorial and individual cell population-injected groups. CCs increased capillary density and preserved cardiomyocyte size in the infarcted regions suggesting CCs role in protective paracrine secretion. CONCLUSIONS CCs merge the application of distinct cells into a single entity for cellular therapeutic intervention in the progression of heart failure. CCs are a novel cell therapy that improves on combinatorial cell approaches to support myocardial regeneration.
Collapse
Affiliation(s)
- Pearl Quijada
- From the Integrated Regenerative Research Institute, Department of Biology, San Diego State University, CA (P.Q., H.T.S., J.D.C., F.G.E.-S., M.M., K.M.B., J.M.E., A.D.L.T., L.O., R.A., N.A.G., M.A.S.); and Department of Pharmacology, University of California at Davis (N.H.)
| | - Hazel T Salunga
- From the Integrated Regenerative Research Institute, Department of Biology, San Diego State University, CA (P.Q., H.T.S., J.D.C., F.G.E.-S., M.M., K.M.B., J.M.E., A.D.L.T., L.O., R.A., N.A.G., M.A.S.); and Department of Pharmacology, University of California at Davis (N.H.)
| | - Nirmala Hariharan
- From the Integrated Regenerative Research Institute, Department of Biology, San Diego State University, CA (P.Q., H.T.S., J.D.C., F.G.E.-S., M.M., K.M.B., J.M.E., A.D.L.T., L.O., R.A., N.A.G., M.A.S.); and Department of Pharmacology, University of California at Davis (N.H.)
| | - Jonathan D Cubillo
- From the Integrated Regenerative Research Institute, Department of Biology, San Diego State University, CA (P.Q., H.T.S., J.D.C., F.G.E.-S., M.M., K.M.B., J.M.E., A.D.L.T., L.O., R.A., N.A.G., M.A.S.); and Department of Pharmacology, University of California at Davis (N.H.)
| | - Farid G El-Sayed
- From the Integrated Regenerative Research Institute, Department of Biology, San Diego State University, CA (P.Q., H.T.S., J.D.C., F.G.E.-S., M.M., K.M.B., J.M.E., A.D.L.T., L.O., R.A., N.A.G., M.A.S.); and Department of Pharmacology, University of California at Davis (N.H.)
| | - Maryam Moshref
- From the Integrated Regenerative Research Institute, Department of Biology, San Diego State University, CA (P.Q., H.T.S., J.D.C., F.G.E.-S., M.M., K.M.B., J.M.E., A.D.L.T., L.O., R.A., N.A.G., M.A.S.); and Department of Pharmacology, University of California at Davis (N.H.)
| | - Kristin M Bala
- From the Integrated Regenerative Research Institute, Department of Biology, San Diego State University, CA (P.Q., H.T.S., J.D.C., F.G.E.-S., M.M., K.M.B., J.M.E., A.D.L.T., L.O., R.A., N.A.G., M.A.S.); and Department of Pharmacology, University of California at Davis (N.H.)
| | - Jacqueline M Emathinger
- From the Integrated Regenerative Research Institute, Department of Biology, San Diego State University, CA (P.Q., H.T.S., J.D.C., F.G.E.-S., M.M., K.M.B., J.M.E., A.D.L.T., L.O., R.A., N.A.G., M.A.S.); and Department of Pharmacology, University of California at Davis (N.H.)
| | - Andrea De La Torre
- From the Integrated Regenerative Research Institute, Department of Biology, San Diego State University, CA (P.Q., H.T.S., J.D.C., F.G.E.-S., M.M., K.M.B., J.M.E., A.D.L.T., L.O., R.A., N.A.G., M.A.S.); and Department of Pharmacology, University of California at Davis (N.H.)
| | - Lucia Ormachea
- From the Integrated Regenerative Research Institute, Department of Biology, San Diego State University, CA (P.Q., H.T.S., J.D.C., F.G.E.-S., M.M., K.M.B., J.M.E., A.D.L.T., L.O., R.A., N.A.G., M.A.S.); and Department of Pharmacology, University of California at Davis (N.H.)
| | - Roberto Alvarez
- From the Integrated Regenerative Research Institute, Department of Biology, San Diego State University, CA (P.Q., H.T.S., J.D.C., F.G.E.-S., M.M., K.M.B., J.M.E., A.D.L.T., L.O., R.A., N.A.G., M.A.S.); and Department of Pharmacology, University of California at Davis (N.H.)
| | - Natalie A Gude
- From the Integrated Regenerative Research Institute, Department of Biology, San Diego State University, CA (P.Q., H.T.S., J.D.C., F.G.E.-S., M.M., K.M.B., J.M.E., A.D.L.T., L.O., R.A., N.A.G., M.A.S.); and Department of Pharmacology, University of California at Davis (N.H.)
| | - Mark A Sussman
- From the Integrated Regenerative Research Institute, Department of Biology, San Diego State University, CA (P.Q., H.T.S., J.D.C., F.G.E.-S., M.M., K.M.B., J.M.E., A.D.L.T., L.O., R.A., N.A.G., M.A.S.); and Department of Pharmacology, University of California at Davis (N.H.).
| |
Collapse
|
19
|
Xing Y, Hou J, Guo T, Zheng S, Zhou C, Huang H, Chen Y, Sun K, Zhong T, Wang J, Li H, Wang T. microRNA-378 promotes mesenchymal stem cell survival and vascularization under hypoxic-ischemic conditions in vitro. Stem Cell Res Ther 2014; 5:130. [PMID: 25418617 PMCID: PMC4446090 DOI: 10.1186/scrt520] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 11/12/2014] [Indexed: 12/18/2022] Open
Abstract
Introduction Mesenchymal stem cells (MSCs) transplantation has been demonstrated to be an effective strategy for the treatment of cardiovascular disease. However, the low survival rate of MSCs at local diseased tissue reduces the therapeutic efficacy. We therefore investigated the influence of MicroRNA-378 (miR-378) transfection on MSCs survival and vascularization under hypoxic-ischemic condition in vitro. Methods MSCs were isolated from bone marrow of Sprague–Dawley rats and cultured in vitro. The third passage of MSCs were divided into the miR-378 group and control group. For the miR-378 group, cells were transfected with miR-378 mimic. Both groups experienced exposure to hypoxia (1% O2) and serum deprivation for 24 hours, using normoxia (20% O2) as a negative control during the process. After 24 hours of reoxygenation (20% O2), cell proliferation and apoptosis were evaluated. Expressions of apoptosis and angiogenesis related genes were detected. Both groups were further co-cultured with human umbilical vein endothelial cells to promote vascular differentiation for another 6 hours. Vascular density was assessed thereafter. Results Compared with the control group, MSCs transfected with miR-378 showed more rapid growth. Their proliferation rates were much higher at 72 h and 96 h under hypoxic condition (257.33% versus 246.67%, P <0.01; 406.84% versus 365.39%, P <0.05). Cell apoptosis percentage in the miR-378 group was significantly declined under normoxic and hypoxic condition (0.30 ± 0.10% versus 0.50 ± 0.10%, P <0.05; 0.60 ± 0.40% versus 1.70 ± 0.20%, P <0.01). The miR-378 group formed a larger number of vascular branches on matrigel. BCL2 level was decreased accompanied with an upregulated expression of BAX in the two experimental groups under the hypoxic environment. BAX expression was reduced in the miR-378 group under the hypoxic environment. In the miR-378 group, there was a decreased expression of tumor necrosis factor-α on protein level and a reduction of TUSC-2 under normoxic environment. Their expressions were both downregulated under hypoxic environment. For the angiogenesis related genes, enhanced expressions of vascular endothelial growth factorα, platelet derived growth factor-β and transforming growth factor-β1 could be detected both in normoxic and hypoxic-ischemic conditions. Conclusion MiR-378 transfection could effectively promote MSCs survival and vascularization under hypoxic-ischemic condition in vitro.
Collapse
|
20
|
Ma L, Liu H, Xie Z, Yang S, Xu W, Hou J, Yu B. Ginsenoside Rb3 protects cardiomyocytes against ischemia-reperfusion injury via the inhibition of JNK-mediated NF-κB pathway: a mouse cardiomyocyte model. PLoS One 2014; 9:e103628. [PMID: 25084093 PMCID: PMC4118887 DOI: 10.1371/journal.pone.0103628] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 07/02/2014] [Indexed: 11/19/2022] Open
Abstract
Ginsenoside Rb3 is extracted from the plant Panax ginseng and plays important roles in cardiovascular diseases, including myocardial ischemia-reperfusion (I/R) injury. NF-κB is an important transcription factor involved in I/R injury. However, the underlying mechanism of ginsenoside Rb3 in myocardial I/R injury remains poorly understood. In the current study, a model of myocardial I/R injury was induced via oxygen and glucose deprivation (OGD) followed by reperfusion (OGD-Rep) in mouse cardiac myoblast H9c2 cells. Our data demonstrate that ginsenoside Rb3 suppresses OGD-Rep-induced cell apoptosis by the suppression of ROS generation. By detecting the NF-κB signaling pathway, we discover that the protective effect of ginsenoside Rb3 on the OGD-Rep injury is closely related to the inhibition of NF-κB activity. Ginsenoside Rb3 inhibits the upregulation of phospho-IκB-α and nuclear translocation of NF-κB subunit p65 which are induced by ORD-Rep injury. In addition, the extract also inhibits the OGD-Rep-induced increase in the expression of inflammation-related factors, such as IL-6, TNF-α, monocyte chemotactic protein-1 (MCP-1), MMP-2 and MMP-9. However, LPS treatment alleviates the protective roles of ginsenoside Rb3 and activates the NF-κB pathway. Finally, the upstream factors of NF-κB were analyzed, including the Akt/Foxo3a and MAPK signaling pathways. We find that ginsenoside Rb3 pretreatment only decreases the phosphorylation of JNK induced by OGD-Rep injury, an indicator of the MAPK pathway. Importantly, an inhibitor of phospho-JNK, SP600125, protects against OGD-Rep induced apoptosis and inhibited NF-κB signaling pathway, similar to the roles of ginsenoside Rb3. Taken together, our results demonstrate that the protective effect of ginsenoside Rb3 on the OGD-Rep injury is attributed to the inhibition of JNK-mediated NF-κB activation, suggesting that ginsenoside Rb3 has the potential to serve as a novel therapeutic agent for myocardial I/R injury.
Collapse
Affiliation(s)
- Lijia Ma
- Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, Key Laboratory of Myocardial Ischemia Mechanism and Treatment Ministry of Education, Harbin, Heilongjiang, China
| | - Huimin Liu
- Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, Key Laboratory of Myocardial Ischemia Mechanism and Treatment Ministry of Education, Harbin, Heilongjiang, China
| | - Zulong Xie
- Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, Key Laboratory of Myocardial Ischemia Mechanism and Treatment Ministry of Education, Harbin, Heilongjiang, China
| | - Shuang Yang
- Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, Key Laboratory of Myocardial Ischemia Mechanism and Treatment Ministry of Education, Harbin, Heilongjiang, China
| | - Wei Xu
- Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, Key Laboratory of Myocardial Ischemia Mechanism and Treatment Ministry of Education, Harbin, Heilongjiang, China
| | - Jingbo Hou
- Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, Key Laboratory of Myocardial Ischemia Mechanism and Treatment Ministry of Education, Harbin, Heilongjiang, China
| | - Bo Yu
- Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, Key Laboratory of Myocardial Ischemia Mechanism and Treatment Ministry of Education, Harbin, Heilongjiang, China
- * E-mail:
| |
Collapse
|
21
|
Bank J, Fuller SM, Henry GI, Zachary LS. Fat grafting to the hand in patients with Raynaud phenomenon: a novel therapeutic modality. Plast Reconstr Surg 2014; 133:1109-1118. [PMID: 24445877 DOI: 10.1097/prs.0000000000000104] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Raynaud phenomenon causes progressively decreasing blood flow to the extremities, resulting from an imbalance between vasoconstriction and vasodilation. Treatment options include biofeedback, phosphodiesterase inhibitors, calcium channel inhibitors, botulinum toxin injection, or surgical sympathectomy. The authors propose fat grafting to the hands as a method to delay progression of the disease. METHODS Indications included symptomatic Raynaud phenomenon with failure of previous management. Fat is harvested from abdominal depots. Approximately 30 ml of decanted fat is injected by means of blunt cannulae: 10 to 15 ml in the dorsum of the hand, 2 to 3 ml in the snuffbox, 1 to 2 ml in each dorsal webspace, 3 to 4 ml along the superficial palmar arch, 1 to 2 ml in volar webspaces 2 to 4, and 2 to 3 ml in the first webspace. Patients underwent preoperative and postoperative laser speckle imaging study to assess changes in perfusion. RESULTS A total of 13 patients were treated (21 hands). Twelve patients had undergone prior botulinum toxin injection, and 11 patients had prior sympathectomies. Findings included reduced pain (average reduction, 6.86 of 10 to 2.38 of 10), fewer cold attacks, improved skin and soft-tissue texture, decrease in ulcerations, and patient-reported improved function. Three patients had no changes. Increased blood flow per imaging was noted in five of 11 hands tested. Six patients had decreased readings on laser imaging. None of the laser speckle imaging changes were statistically significant, and they did not correlate clinically. There were no major complications. CONCLUSIONS Preliminary results of fat grafting to the hands of patients with Raynaud phenomenon revealed improved symptomatology with evidence suggestive of measurably increased perfusion in some cases. Fat grafting may benefit the management of this patient population. CLINICAL QUESTION/LEVEL OF EVIDENCE Therapeutic, IV.
Collapse
Affiliation(s)
- Jonathan Bank
- Chicago, Ill. From the Section of Plastic and Reconstructive Surgery, Department of Surgery, University of Chicago Medical Center
| | | | | | | |
Collapse
|
22
|
Injection of mesenchymal stromal cells into a mechanically stimulated in vitro model of cardiac fibrosis has paracrine effects on resident fibroblasts. Cytotherapy 2014; 16:906-14. [PMID: 24713331 DOI: 10.1016/j.jcyt.2014.01.416] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 12/18/2013] [Accepted: 01/31/2014] [Indexed: 12/19/2022]
Abstract
BACKGROUND AIMS Myocardial infarction results in the formation of scar tissue populated by myofibroblasts, a phenotype characterized by increased contractility and matrix deposition. Mesenchymal stromal cells (MSC) delivered to the myocardium can attenuate scar growth and restore cardiac function, though the mechanism is unclear. METHODS This study describes a simple yet robust three-dimensional (3D) in vitro co-culture model to examine the paracrine effects of implanted MSC on resident myofibroblasts in a controlled biochemical and mechanical environment. The fibrosis model consisted of fibroblasts embedded in a 3D collagen gel cultured under defined oxygen tensions and exposed to either cyclic strain or interstitial fluid flow. MSC were injected into this model, and the effect on fibroblast phenotype was evaluated 48 h after cell injection. RESULTS Analysis of gene and protein expression of the fibroblasts indicated that injection of MSC attenuated the myofibroblast transition in response to reduced oxygen and mechanical stress. Assessment of vascular endothelial growth factor and insulin-like growth factor-1 levels demonstrated that their release by fibroblasts was markedly upregulated in hypoxic conditions but attenuated by strain or fluid flow. In fibroblast-MSC co-cultures, vascular endothelial growth factor levels were increased by hypoxia but not affected by mechanical stimuli, whereas insulin-like growth factor-1 levels were generally low and not affected by experimental conditions. CONCLUSIONS This study demonstrates how a 3D in vitro model of the cardiac scar can be used to examine paracrine effects of MSC on the phenotype of resident fibroblasts and therefore illuminates the role of injected progenitor cells on the progression of cardiac fibrosis.
Collapse
|
23
|
Chaturvedi P, Tyagi SC. Epigenetic mechanisms underlying cardiac degeneration and regeneration. Int J Cardiol 2014; 173:1-11. [PMID: 24636549 DOI: 10.1016/j.ijcard.2014.02.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 12/29/2013] [Accepted: 02/08/2014] [Indexed: 01/08/2023]
Abstract
Epigenetic modifications which are defined by DNA methylation, histone modifications and microRNA mediated gene regulation, have been found to be associated with cardiac dysfunction and cardiac regeneration but the mechanisms are unclear. MicroRNA therapies have been proposed for cardiac regeneration and proliferation of stem cells into cardiomyocytes. Cardiovascular disorders are represented by abnormal methylation of CpG islands and drugs that inhibit DNA methyltransferases such as 5-methyl Aza cytidine are under trials. Histone modifications which include acetylation, methylation, phosphorylation, ADP ribosylation, sumoylation and biotinylation are represented within abnormal phenotypes of cardiac hypertrophy, cardiac development and contractility. MicroRNAs have been used efficiently to epigenetically reprogram fibroblasts into cardiomyocytes. MicroRNAs represent themselves as potential biomarkers for early detection of cardiac disorders which are difficult to diagnose and are captured at later stages. Because microRNAs regulate circadian genes, for example a nocturnin gene of circadian clockwork is regulated by miR122, they have a profound role in regulating biological clock and this may explain the high cardiovascular risk during the morning time. This review highlights the role of epigenetics which can be helpful in disease management strategies.
Collapse
Affiliation(s)
- Pankaj Chaturvedi
- Department of Physiology and Biophysics, School of Medicine, University of Louisville, KY, USA
| | - Suresh C Tyagi
- Department of Physiology and Biophysics, School of Medicine, University of Louisville, KY, USA.
| |
Collapse
|
24
|
Monnerat-Cahli G, Trentin-Sonoda M, Guerra B, Manso G, Ferreira ACF, Silva DLSG, Coutinho DC, Carneiro-Ramos MS, Rodrigues DC, Cabral-da-Silva MC, Goldenberg RCS, Nascimento JHM, Campos de Carvalho AC, Medei E. Bone marrow mesenchymal stromal cells rescue cardiac function in streptozotocin-induced diabetic rats. Int J Cardiol 2014; 171:199-208. [PMID: 24374203 DOI: 10.1016/j.ijcard.2013.12.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 11/05/2013] [Accepted: 12/10/2013] [Indexed: 02/06/2023]
Abstract
OBJECTIVES In the present study, we investigated whether MSC-transplantation can revert cardiac dysfunction in streptozotocin-induced diabetic rats and the immunoregulatory effects of MSC were examined. BACKGROUND Cardiac complications are one of the main causes of death in diabetes. Several studies have shown anti-diabetic effects of bone marrow mesenchymal stromal cells (MSC). METHODS/RESULTS The rats were divided in three groups: Non-diabetic, Diabetic and Diabetic-Treated with 5 × 10(6) MSC 4 weeks after establishment of diabetes. Four weeks after MSC-therapy, systemic metabolic parameters, immunological profile and cardiac function were assessed. MSC-transplantation was able to revert the hyperglycemia and body weight loss of the animals. In addition, after MSC-transplantation a decrease in corticosterone and IFN-γ sera levels without restoration of insulin and leptin plasma levels was observed. Also, MSC-therapy improved electrical remodeling, shortening QT and QTc in the ECG and action potential duration of left ventricular myocytes. No arrhythmic events were observed after MSC-transplantation. MSC-therapy rescued the cardiac beta-adrenergic sensitivity by increasing beta-1 adrenergic receptor expression. Both alpha and beta cardiac AMPK and p-AMPK returned to baseline values after MSC-therapy. However, total ERK1 and p-ERK1/2 were not different among groups. CONCLUSION The results indicate that MSC-therapy was able to rescue cardiac impairment induced by diabetes, normalize cardiac AMPK subunit expression and activity, decrease corticosterone and glycemia and exert systemic immunoregulation.
Collapse
Affiliation(s)
- Gustavo Monnerat-Cahli
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Mayra Trentin-Sonoda
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo Andre, Brasil
| | - Bárbara Guerra
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Gabriel Manso
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Andrea C F Ferreira
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Diorney L S G Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Danielle C Coutinho
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brasil
| | - Marcela S Carneiro-Ramos
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brasil
| | - Deivid C Rodrigues
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Mauricio C Cabral-da-Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Regina C S Goldenberg
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - José H M Nascimento
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Antonio C Campos de Carvalho
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil; Instituto Nacional de Cardiologia, Rio de Janeiro, Brasil
| | - Emiliano Medei
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil.
| |
Collapse
|
25
|
Khomenko T, Deng X, Ahluwalia A, Tarnawski A, Patel KN, Sandor Z, Szabo S. STAT3 and importins are novel mediators of early molecular and cellular responses in experimental duodenal ulceration. Dig Dis Sci 2014; 59:297-306. [PMID: 24385009 DOI: 10.1007/s10620-013-2807-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 07/15/2013] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Signal transducer and activator of transcription 3 (STAT3) is a transcription factor that directly upregulates VEGF, Ref-1, p21, and anti-apoptotic genes such as Bcl-xL. In this study, we hypothesized that STAT3 signaling is activated and provides a critical protective role that is required for enterocyte survival during the early phases of cysteamine-induced duodenal ulcers. METHODS We studied the effect of inhibition of STAT3 activity on cysteamine-induced duodenal ulcers in rats and egr-1 knockout mice using STAT3/DNA binding assay, immunohistochemistry, immunoblot, and quantitative reverse transcriptase PCR analyses. RESULTS We found that G-quartet oligodeoxynucleotides T40214, a specific inhibitor of STAT3/DNA binding, aggravated cysteamine-induced duodenal ulcers in rats 2.8-fold (p < 0.05). In the pre-ulcerogenic stage, cysteamine induced STAT3 tyrosine phosphorylation, its translocation to nuclei, an increased expression and nuclear translocation of importin α and β in the rat duodenal mucosa. Cysteamine enhanced the binding of STAT3 to its DNA consensus sequences at 6, 12, and 24 h after cysteamine by 1.5-, 1.8-, and 3.5-fold, respectively, and activated the expression of STAT3 target genes such as VEGF, Bcl-xL, Ref-1, and STAT3-induced feedback inhibitor, a suppressor of cytokine signaling 3. We also demonstrated that egr-1 knockout mice, which are more susceptible to cysteamine-induced duodenal ulcers, had lower levels of STAT3 expression, its phosphorylation, expression of importin α or β, and STAT3/DNA binding than wild-type mice in response to cysteamine. CONCLUSIONS Thus, STAT3 represents an important new molecular mechanism in experimental duodenal ulceration.
Collapse
Affiliation(s)
- Tetyana Khomenko
- VA Medical Center, (05/113) 5901 East 7th Street, Long Beach, CA, 90822-5201, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Yu B, Gong M, Wang Y, Millard RW, Pasha Z, Yang Y, Ashraf M, Xu M. Cardiomyocyte protection by GATA-4 gene engineered mesenchymal stem cells is partially mediated by translocation of miR-221 in microvesicles. PLoS One 2013; 8:e73304. [PMID: 24015301 PMCID: PMC3756018 DOI: 10.1371/journal.pone.0073304] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 07/18/2013] [Indexed: 01/12/2023] Open
Abstract
Introduction microRNAs (miRs), a novel class of small non-coding RNAs, are involved in cell proliferation, differentiation, development, and death. In this study, we found that miR-221 translocation by microvesicles (MVs) plays an important role in cardioprotection mediated by GATA-4 overexpressed mesenchymal stem cells (MSC). Methods and Results Adult rat bone marrow MSC and neonatal rat ventricle cardiomyocytes (CM) were harvested as primary cultures. MSC were transduced with GATA-4 (MSCGATA-4) using the murine stem cell virus (pMSCV) retroviral expression system. Empty vector transfection was used as a control (MSCNull). The expression of miRs was assessed by real-time PCR and localized using in situ hybridization (ISH). MVs collected from MSC cultures were characterized by expression of CD9, CD63, and HSP70, and photographed with electron microscopy. Cardioprotection during hypoxia afforded by conditioned medium (CdM) from MSC cultures was evaluated by lactate dehydrogenase (LDH) release, MTS uptake by CM, and caspase 3/7 activity. Expression of miR-221/222 was significantly higher in MSC than in CM and miR-221 was upregulated in MSCGATA-4. MSC overexpression of miR-221 significantly enhanced cardioprotection by reducing the expression of p53 upregulated modulator of apoptosis (PUMA). Moreover, expression of PUMA was significantly decreased in CM co-cultured with MSC. MVs derived from MSC expressed high levels of miR-221, and were internalized quickly by CM as documented in images obtained from a Time-Lapse Imaging System. Conclusions Our results demonstrate that cardioprotection by MSCGATA-4 may be regulated in part by a transfer of anti-apoptotic miRs contained within MVs.
Collapse
Affiliation(s)
- Bin Yu
- Department of Pathology and Laboratory Medicine, University of Cincinnati Medical Center, Cincinnati, Ohio, United States of America
| | - Min Gong
- Department of Pathology and Laboratory Medicine, University of Cincinnati Medical Center, Cincinnati, Ohio, United States of America
| | - Yigang Wang
- Department of Pathology and Laboratory Medicine, University of Cincinnati Medical Center, Cincinnati, Ohio, United States of America
| | - Ronald W. Millard
- Department of Pharmacology and Cell Biophysics, University of Cincinnati Medical Center, Cincinnati, Ohio, United States of America
| | - Zeeshan Pasha
- Department of Pathology and Laboratory Medicine, University of Cincinnati Medical Center, Cincinnati, Ohio, United States of America
| | - Yueting Yang
- Department of Pathology and Laboratory Medicine, University of Cincinnati Medical Center, Cincinnati, Ohio, United States of America
| | - Muhammad Ashraf
- Department of Pathology and Laboratory Medicine, University of Cincinnati Medical Center, Cincinnati, Ohio, United States of America
| | - Meifeng Xu
- Department of Pathology and Laboratory Medicine, University of Cincinnati Medical Center, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW Organ transplantation and other major surgeries are impacted by ischemia-reperfusion injury (IRI). Mesenchymal stromal cells (MSCs) recently became an attractive alternative therapeutic tool to combat IRI. The present review highlights the effects of MSCs in the preclinical animal models of IRI and clinical trials, and explains their potential modes of action based on the pathophysiological IRI cascade. RECENT FINDINGS The application of MSCs in animal models of IRI show anti-inflammatory and anti-apoptotic effects, particularly for damage to the kidneys, heart and lungs. The mechanism of MSC action remains unclear, but may involve paracrine factors which could include the transfer of microvesicles, RNA or mitochondria. Although few clinical trials have reached completion, adverse effects appear minimal. SUMMARY MSCs show promise in protecting against IRI-induced damage. They appear to help recovery mainly by affecting the levels of inflammation and apoptosis during the organ repair process. In addition, they may mediate immunomodulatory effects on the innate and adaptive immune processes triggered during reperfusion and reduce fibrosis. Success in preclinical animal models has led to the initiation of ongoing clinical trials.
Collapse
|
28
|
Singer DD, Singer AJ, Gordon C, Brink P. The effects of rat mesenchymal stem cells on injury progression in a rat model. Acad Emerg Med 2013; 20:398-402. [PMID: 23701348 DOI: 10.1111/acem.12116] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 10/10/2012] [Accepted: 10/12/2012] [Indexed: 11/27/2022]
Abstract
OBJECTIVES Burns are common injuries that can result in significant scarring, leading to poor function and disfigurement. Unlike mechanical injuries, burns often progress both in depth and in size over the first few days after injury, possibly due to inflammation and oxidative stress. A major gap in the field of burns is the lack of an effective therapy that reduces burn injury progression. Because stem cells have been shown to improve healing in several injury models, the authors hypothesized that species-specific mesenchymal stem cells (MSCs) would reduce injury progression in a rat comb-burn model. METHODS Using a brass comb preheated to 100°C, the authors created four rectangular burns, separated by three unburned interspaces on both sides of the backs of male Sprague-Dawley rats. The interspaces represented the ischemic zones surrounding the central necrotic core. In an attempt to reduce burn injury progression, 20 rats were randomized to tail vein injections of 1 mL of rat-specific MSCs, 10(6) cells/mL (n = 10), or normal saline (n = 10), 60 minutes after injury. RESULTS While the authors were unable to identify any quantum dot (Q-dot)-labeled MSCs in the injured skin, at 7 days the mean percentage of the unburned interspaces that became necrotic in the MSC group was significantly less than in the control group (80% vs. 100%, p < 0.0001). CONCLUSIONS Intravenous injection of rat MSCs reduced burn injury progression in a rat comb-burn model.
Collapse
Affiliation(s)
- Daniel D. Singer
- Department of Emergency Medicine; Stony Brook University; Stony Brook; NY
| | - Adam J. Singer
- Department of Emergency Medicine; Stony Brook University; Stony Brook; NY
| | - Chris Gordon
- Department of Physiology; Stony Brook University; Stony Brook; NY
| | - Peter Brink
- Department of Physiology; Stony Brook University; Stony Brook; NY
| |
Collapse
|
29
|
Sinclair K, Yerkovich ST, Chambers DC. Mesenchymal stem cells and the lung. Respirology 2013; 18:397-411. [DOI: 10.1111/resp.12050] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Revised: 11/28/2012] [Accepted: 01/01/2013] [Indexed: 12/20/2022]
|
30
|
Li L, Gong H, Yu H, Liu X, Liu Q, Yan G, Zhang Y, Lu H, Zou Y, Yang P. Knockdown of nucleosome assembly protein 1-like 1 promotes dimethyl sulfoxide-induced differentiation of P19CL6 cells into cardiomyocytes. J Cell Biochem 2013; 113:3788-96. [PMID: 22807403 DOI: 10.1002/jcb.24254] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Transplantation of cardiomyocytes derived from stem cells is a promising option for cardiac repair. However, how to obtain efficient cardiomyocytes from stem cells is still a great challenge. Understanding of the mechanism that regulates the cardiac differentiation of stem cells is necessary for the effective induction of cardiomyocytes. A clonal derivative named P19CL6 cells can easily differentiate into cardiomyocytes with 1% dimethyl sulfoxide (DMSO) treatment, which offers a valuable model to study cardiomyocytes differentiation in vitro. In this study, the isobaric tags for relative and absolute quantitation (iTRAQ) proteomics were performed to identify proteins associated with cardiomyocytes differentiation of P19CL6 cells induced by DMSO. Out of 543 non-redundant proteins identified, 207 proteins showed significant changes during differentiation with ≥1.2-fold or ≤0.83-fold changes cut-offs. Nine proteins were confirmed by the quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot analysis respectively. Notably, broad consistency was well showed between mRNA and protein expression for down-regulation of nucleosome assembly protein 1-like 1 (Nap1l1). Further study revealed that knockdown of Nap1l1 by stable transfection of shRNA vector significantly accelerated DMSO-induced cardiomyocytes differentiation of P19CL6 cells characterized by increases in expression of cardiac specific transcription factors, genes, and proteins (GATA4, MEF-2C, ANP, BNP, cTNT, and β-MHC). Therefore, Nap1l1 is a novel protein that regulates cardiomyocytes differentiation of P19CL6 cells induced by DMSO.
Collapse
Affiliation(s)
- Lu Li
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Niu SH, Jian LG, Zhang LH. Protective Effects of Mesenchymal Stem Cells with Transient Overexpression of Hmgb1 on Balloon-Induced Carotid Artery Injury. EUR J INFLAMM 2012. [DOI: 10.1177/1721727x1201000310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Mesenchymal stem cells (MSC) play a crucial role in endothelial repair after artery injury. The high mobility group box 1 (HMGB1) is a key modulator of the homing of MSC to impaired artery and endothelialization. This study was aimed to determine whether balloon-induced carotid artery injury could be improved by transplantation with MSC modified by HMGB1. MSC were infected by adenoviral serotype 5 encoding recombinant green fluorescent protein (GFP) gene and HMGB1 (ad5GFP-HMGB1). The expression of HMGB1, vascular endothelial growth factor (VEGF) and proliferating cell nuclear antigen (PCNA) was detected in MSC using Real-time PCR, Western blot and semi-quantitative immunohistochemical assays. In vivo, reendothelialization was examined in rats subjected to carotid artery injury. The homing of MSC was observed under fluorescence microscopy, and the levels of serum tumor necrosis factor-α (TNF-α) and C-reactive protein (CRP) was assessed by ELISA assay. As a result, compared with the MSC group, the expression of HMGB1, VEGF and PCNA was markedly increased, vascular reendothelialization was accelerated, and the levels of serum TNF-α and CRP were decreased in group ad5GFP and ad5GFP-HMGB1. Transplantation of MSC infected with adGFP-HMGB1 strengthened the MSC effect. Taken together, modification of HMGB1 can enhance the protective effects of MSC on balloon-induced carotid artery injury through up-regulation of VEGF and PCNA expression and inhibition of the inflammatory response. HMGB1 in MSC may represent a novel therapeutic target for the treatment of endothelial repair.
Collapse
Affiliation(s)
- S-H. Niu
- Department of Cardiology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - L-G. Jian
- Department of Cardiology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - L-H. Zhang
- Department of Cardiology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| |
Collapse
|
32
|
Yang J, Watkins D, Chen CL, Bhushan B, Zhou Y, Besner GE. Heparin-binding epidermal growth factor-like growth factor and mesenchymal stem cells act synergistically to prevent experimental necrotizing enterocolitis. J Am Coll Surg 2012; 215:534-45. [PMID: 22819639 DOI: 10.1016/j.jamcollsurg.2012.05.037] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 05/30/2012] [Accepted: 05/30/2012] [Indexed: 02/07/2023]
Abstract
BACKGROUND We have shown that administration of heparin-binding EGF (epidermal growth factor)-like growth factor (HB-EGF) protects the intestines from experimental necrotizing enterocolitis (NEC). We have also demonstrated that systemically administered mesenchymal stem cells (MSC) can engraft into injured intestines. This study investigated the effects of HB-EGF on MSC in vitro, and whether MSC and HB-EGF can act synergistically to prevent NEC in vivo. STUDY DESIGN In vitro, the effect of HB-EGF on MSC proliferation, migration, and apoptosis was determined. In vivo, rat pups received MSC either intraperitoneally (IP) or intravenously (IV). Pups were assigned to 1 of 7 groups: Group 1, breast-fed; Group 2, experimental NEC; Group 3, NEC+HB-EGF; Group 4, NEC+MSC IP; Group 5, NEC+HB-EGF+MSC IP; Group 6, NEC+MSC IV; or Group 7, NEC+HB-EGF+MSC IV. Mesechymal stem cell engraftment, histologic injury, intestinal permeability, and mortality were determined. RESULTS Heparin-binding EGF-like growth factor promoted MSC proliferation and migration, and decreased MSC apoptosis in vitro. In vivo, MSC administered IV had increased engraftment into NEC-injured intestine compared with MSC administered IP (p < 0.05). Heparin binding EGF-like growth factor increased engraftment of IP-administered MSC (p < 0.01) and IV-administered MSC (p < 0.05). Pups in Groups 3 to 7 had a decreased incidence of NEC compared with nontreated pups (Group 2), with the lowest incidence in pups treated with HB-EGF+MSC IV (p < 0.01). Pups in Group 7 had a significantly decreased incidence of intestinal dilation and perforation, and had the lowest intestinal permeability, compared with other treatment groups (p < 0.01). Pups in all experimental groups had significantly improved survival compared with pups exposed to NEC, with the best survival in Group 7 (p < 0.05). CONCLUSIONS Heparin-binding EGF-like growth factor and MSC act synergistically to reduce injury and improve survival in experimental NEC.
Collapse
Affiliation(s)
- Jixin Yang
- The Research Institute at Nationwide Children's Hospital, Center for Perinatal Research, Department of Pediatric Surgery, Nationwide Children's Hospital, and the Ohio State University College of Medicine, Columbus, OH, USA
| | | | | | | | | | | |
Collapse
|
33
|
Ibrahim M, Rao C, Athanasiou T, Yacoub MH, Terracciano CM. Mechanical unloading and cell therapy have a synergistic role in the recovery and regeneration of the failing heart. Eur J Cardiothorac Surg 2012; 42:312-8. [DOI: 10.1093/ejcts/ezs067] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
34
|
Wannemuehler TJ, Manukyan MC, Brewster BD, Rouch J, Poynter JA, Wang Y, Meldrum DR. Advances in mesenchymal stem cell research in sepsis. J Surg Res 2011; 173:113-26. [PMID: 22225756 DOI: 10.1016/j.jss.2011.09.053] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 09/22/2011] [Accepted: 09/27/2011] [Indexed: 01/08/2023]
Abstract
BACKGROUND Sepsis remains a source of morbidity and mortality in the postoperative patient despite appropriate resuscitative and antimicrobial approaches. Recent research has focused upon additional interventions such as exogenous cell-based therapy. Mesenchymal stem cells (MSCs) exhibit multiple beneficial properties through their capacity for homing, attenuating the inflammatory response, modulating immune cells, and promoting tissue healing. Recent animal trials have provided evidence that MSCs may be useful therapeutic adjuncts. MATERIALS AND METHODS A directed search of recent medical literature was performed utilizing PubMed to examine the pathophysiology of sepsis, mechanisms of mesenchymal stem cell interaction with host cells, sepsis animal models, and recent trials utilizing stem cells in sepsis. RESULTS MSCs continue to show promise in the treatment of sepsis by their intrinsic ability to home to injured tissue, secrete paracrine signals to limit systemic and local inflammation, decrease apoptosis in threatened tissues, stimulate neoangiogenesis, activate resident stem cells, beneficially modulate immune cells, and exhibit direct antimicrobial activity. These effects are associated with reduced organ dysfunction and improved survival in animal models. CONCLUSION Research utilizing animal models of sepsis has provided a greater understanding of the beneficial properties of MSCs. Their capacity to home to sites of injury and use paracrine mechanisms to change the local environment to ultimately improve organ function and survival make MSCs attractive in the treatment of sepsis. Future studies are needed to further evaluate the complex interactions between MSCs and host tissues.
Collapse
Affiliation(s)
- Todd J Wannemuehler
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA.
| | | | | | | | | | | | | |
Collapse
|