1
|
Liu M, Hu S, Yan N, Popowski KD, Cheng K. Inhalable extracellular vesicle delivery of IL-12 mRNA to treat lung cancer and promote systemic immunity. NATURE NANOTECHNOLOGY 2024; 19:565-575. [PMID: 38212521 DOI: 10.1038/s41565-023-01580-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 11/21/2023] [Indexed: 01/13/2024]
Abstract
Lung carcinoma is one of the most common cancers and has one of the lowest survival rates in the world. Cytokines such as interleukin-12 (IL-12) have demonstrated considerable potential as robust tumour suppressors. However, their applications are limited due to off-target toxicity. Here we report on a strategy involving the inhalation of IL-12 messenger RNA, encapsulated within extracellular vesicles. Inhalation and preferential uptake by cancer cells results in targeted delivery and fewer systemic side effects. The IL-12 messenger RNA generates interferon-γ production in both innate and adaptive immune-cell populations. This activation consequently incites an intense activation state in the tumour microenvironment and augments its immunogenicity. The increased immune response results in the expansion of tumour cytotoxic immune effector cells, the formation of immune memory, improved antigen presentation and tumour-specific T cell priming. The strategy is demonstrated against primary neoplastic lesions and provides profound protection against subsequent tumour rechallenge. This shows the potential for locally delivered cytokine-based immunotherapies to address orthotopic and metastatic lung tumours.
Collapse
Affiliation(s)
- Mengrui Liu
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Shiqi Hu
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Na Yan
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Kristen D Popowski
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill/Raleigh, NC, USA
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA
| | - Ke Cheng
- Department of Biomedical Engineering, Columbia University, New York, NY, USA.
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA.
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill/Raleigh, NC, USA.
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
2
|
Assy L, Khalil SM, Attia M, Salem ML. IL-12 conditioning of peripheral blood mononuclear cells from breast cancer patients promotes the zoledronate-induced expansion of γδ T cells in vitro and enhances their cytotoxic activity and cytokine production. Int Immunopharmacol 2023; 114:109402. [PMID: 36481526 DOI: 10.1016/j.intimp.2022.109402] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/07/2022] [Accepted: 10/28/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND In a series of our preclinical studies, we have reported that conditioning of α/β CD8+ T cells in vitro with interleukin-12 (IL-12) during their expansion improves their homing phenotype and anti-tumor cytolytic function upon their adoptive transfer in vivo. Vγ9+Vδ2+ T cells can also be expanded in vitro with amino bisphosphonates such as zoledronate (ZOL) for the purpose of adoptive therapy. AIM We aimed in this study to use IL-12 to enhance the expansion and cytotoxic functions of ZOL-expanded Vγ9+Vδ2+T cells. MATERIALS AND METHODS Peripheral blood mononuclear cells (PBMCs) were separated from healthy donors and stage II breast cancer patients. PBMCs (1 × 106 cells/mL) were cultured and treated with ZOL/IL2, ZOL/IL2/IL12, or IL2/IL12. Cultured cells were harvested on days 7 and 14 of culture and their numbers, phenotype, and cytolytic activity were assessed. The levels of pro- and inflammatory cytokines/chemokines in the plasma and supernatants of the cultured cells were analyzed by Luminex. RESULTS In healthy subjects, the addition of IL-12 to ZOL/IL2-stimulated PBMCs increased the expansion and the cytotoxic activity of Vγ9+Vδ2+ T cells on days 7 and 14 of culture. The latter was measured by the expression level of the cytolytic molecules granzyme B (GZB) and perforin (PER). Of note, αβ CD8 + T cells were also activated under the same condition but with a lesser extent addition of IL-12 to ZOL/IL2-stimulated PBMCs from cancer patients also induced similar effects but were lower than in control subjects. Interestingly, ZOL/IL2/IL12-treated PBMCs showed higher levels of cytokines/chemokines, in particular, CCL, CCL4, GM-CSF, IL-1rα; IL-12, IL-13, TNF, and IFNγ measured on days 7 and 14. CONCLUSION The addition of IL12 at the start of the expansion protocol can enhance the activity of γδ T cells which might be mediated in part by the activation of αβ T cells.
Collapse
Affiliation(s)
- Lobna Assy
- Immunology and Biotechnology Unit, Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt; Center of Excellence in Cancer Research, New Tanta University Teaching Hospital, Tanta, University, Egypt
| | - Sohaila M Khalil
- Immunology and Biotechnology Unit, Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt; Center of Excellence in Cancer Research, New Tanta University Teaching Hospital, Tanta, University, Egypt
| | - Mohamed Attia
- Department of Clinical Pathology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Mohamed L Salem
- Immunology and Biotechnology Unit, Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt; Center of Excellence in Cancer Research, New Tanta University Teaching Hospital, Tanta, University, Egypt.
| |
Collapse
|
3
|
Holder PG, Lim SA, Huang CS, Sharma P, Dagdas YS, Bulutoglu B, Sockolosky JT. Engineering interferons and interleukins for cancer immunotherapy. Adv Drug Deliv Rev 2022; 182:114112. [PMID: 35085624 DOI: 10.1016/j.addr.2022.114112] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/07/2022] [Accepted: 01/12/2022] [Indexed: 02/08/2023]
Abstract
Cytokines are a class of potent immunoregulatory proteins that are secreted in response to various stimuli and act locally to regulate many aspects of human physiology and disease. Cytokines play important roles in cancer initiation, progression, and elimination, and thus, there is a long clinical history associated with the use of recombinant cytokines to treat cancer. However, the use of cytokines as therapeutics has been limited by cytokine pleiotropy, complex biology, poor drug-like properties, and severe dose-limiting toxicities. Nevertheless, cytokines are crucial mediators of innate and adaptive antitumor immunity and have the potential to enhance immunotherapeutic approaches to treat cancer. Development of immune checkpoint inhibitors and combination immunotherapies has reinvigorated interest in cytokines as therapeutics, and a variety of engineering approaches are emerging to improve the safety and effectiveness of cytokine immunotherapy. In this review we highlight recent advances in cytokine biology and engineering for cancer immunotherapy.
Collapse
|
4
|
Titov A, Kaminskiy Y, Ganeeva I, Zmievskaya E, Valiullina A, Rakhmatullina A, Petukhov A, Miftakhova R, Rizvanov A, Bulatov E. Knowns and Unknowns about CAR-T Cell Dysfunction. Cancers (Basel) 2022; 14:1078. [PMID: 35205827 PMCID: PMC8870103 DOI: 10.3390/cancers14041078] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/29/2022] [Accepted: 02/11/2022] [Indexed: 02/01/2023] Open
Abstract
Immunotherapy using chimeric antigen receptor (CAR) T cells is a promising option for cancer treatment. However, T cells and CAR-T cells frequently become dysfunctional in cancer, where numerous evasion mechanisms impair antitumor immunity. Cancer frequently exploits intrinsic T cell dysfunction mechanisms that evolved for the purpose of defending against autoimmunity. T cell exhaustion is the most studied type of T cell dysfunction. It is characterized by impaired proliferation and cytokine secretion and is often misdefined solely by the expression of the inhibitory receptors. Another type of dysfunction is T cell senescence, which occurs when T cells permanently arrest their cell cycle and proliferation while retaining cytotoxic capability. The first section of this review provides a broad overview of T cell dysfunctional states, including exhaustion and senescence; the second section is focused on the impact of T cell dysfunction on the CAR-T therapeutic potential. Finally, we discuss the recent efforts to mitigate CAR-T cell exhaustion, with an emphasis on epigenetic and transcriptional modulation.
Collapse
Affiliation(s)
- Aleksei Titov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
- Laboratory of Transplantation Immunology, National Research Centre for Hematology, 125167 Moscow, Russia
| | - Yaroslav Kaminskiy
- Laboratory of Transplantation Immunology, National Research Centre for Hematology, 125167 Moscow, Russia
| | - Irina Ganeeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Ekaterina Zmievskaya
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Aygul Valiullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Aygul Rakhmatullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Alexey Petukhov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
- Institute of Hematology, Almazov National Medical Research Center, 197341 Saint Petersburg, Russia
| | - Regina Miftakhova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Albert Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Emil Bulatov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| |
Collapse
|
5
|
Xue D, Moon B, Liao J, Guo J, Zou Z, Han Y, Cao S, Wang Y, Fu YX, Peng H. A tumor-specific pro-IL-12 activates preexisting cytotoxic T cells to control established tumors. Sci Immunol 2022; 7:eabi6899. [PMID: 34995098 PMCID: PMC9009736 DOI: 10.1126/sciimmunol.abi6899] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
It is a challenge to effectively reactivate preexisting tumor-infiltrating lymphocytes (TILs) without causing severe toxicity. Interleukin-12 (IL-12) can potently activate lymphocytes, but its clinical use is limited by its short half-life and dose-related toxicity. In this study, we developed a tumor-conditional IL-12 (pro-IL-12), which masked IL-12 with selective extracellular receptor–binding domains of the IL-12 receptor while preferentially and persistently activating TILs after being unmasked by matrix metalloproteinases expressed by tumors. Systemic delivery of pro-IL-12 demonstrated reduced toxicity but better control of established tumors compared with IL-12-Fc. Mechanistically, antitumor responses induced by pro-IL-12 were dependent on TILs and IFNγ. Furthermore, direct binding of IL-12 to IL-12R on CD8+, not CD4+, T cells was essential for maximal effectiveness. Pro-IL-12 improved the efficacy of both immune checkpoint blockade and targeted therapy when used in combination. Therefore, our study demonstrated that pro-IL-12 could rejuvenate TILs, which then combined with current treatment modalities while limiting adverse effects for treating established tumors.
Collapse
Affiliation(s)
- Diyuan Xue
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Benjamin Moon
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | - Jing Liao
- G uangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China
| | - Jingya Guo
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuangzhi Zou
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanfei Han
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuaishuai Cao
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Wang
- Immune Targeting Inc, Dallas, Texas 75247
| | - Yang-Xin Fu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | - Hua Peng
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
6
|
Smith AS, Knochelmann HM, Wyatt MM, Rangel Rivera GO, Rivera-Reyes AM, Dwyer CJ, Ware MB, Cole AC, Neskey DM, Rubinstein MP, Liu B, Thaxton JE, Bartee E, Paulos CM. B cells imprint adoptively transferred CD8 + T cells with enhanced tumor immunity. J Immunother Cancer 2022; 10:e003078. [PMID: 35017148 PMCID: PMC8753437 DOI: 10.1136/jitc-2021-003078] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2021] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Adoptive T cell transfer (ACT) therapy improves outcomes in patients with advanced malignancies, yet many individuals relapse due to the infusion of T cells with poor function or persistence. Toll-like receptor (TLR) agonists can invigorate antitumor T cell responses when administered directly to patients, but these responses often coincide with toxicities. We posited that TLR agonists could be repurposed ex vivo to condition T cells with remarkable potency in vivo, circumventing TLR-related toxicity. METHODS In this study we investigated how tumor-specific murine CD8+ T cells and human tumor infiltrating lymphocytes (TILs) are impacted when expanded ex vivo with the TLR9 agonist CpG. RESULTS Herein we reveal a new way to reverse the tolerant state of adoptively transferred CD8+ T cells against tumors using TLR-activated B cells. We repurposed the TLR9 agonist, CpG, commonly used in the clinic, to bolster T cell-B cell interactions during expansion for ACT. T cells expanded ex vivo from a CpG-treated culture demonstrated potent antitumor efficacy and prolonged persistence in vivo. This antitumor efficacy was accomplished without in vivo administration of TLR agonists or other adjuvants of high-dose interleukin (IL)-2 or vaccination, which are classically required for effective ACT therapy. CpG-conditioned CD8+ T cells acquired a unique proteomic signature hallmarked by an IL-2RαhighICOShighCD39low phenotype and an altered metabolic profile, all reliant on B cells transiently present in the culture. Likewise, human TILs benefitted from expansion with CpG ex vivo, as they also possessed the IL-2RαhighICOShighCD39low phenotype. CpG fostered the expansion of potent CD8+ T cells with the signature phenotype and antitumor ability via empowering a direct B-T cell interaction. Isolated B cells also imparted T cells with the CpG-associated phenotype and improved tumor immunity without the aid of additional antigen-presenting cells or other immune cells in the culture. CONCLUSIONS Our results demonstrate a novel way to use TLR agonists to improve immunotherapy and reveal a vital role for B cells in the generation of potent CD8+ T cell-based therapies. Our findings have immediate implications in the clinical treatment of advanced solid tumors.
Collapse
Affiliation(s)
- Aubrey S Smith
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, USA
- Division of Surgical Oncology, Department of Surgery, Emory University, Atlanta, Georgia, USA
- Department of Microbiology and Immunology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Hannah M Knochelmann
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, USA
- Division of Surgical Oncology, Department of Surgery, Emory University, Atlanta, Georgia, USA
- Department of Microbiology and Immunology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Megan M Wyatt
- Division of Surgical Oncology, Department of Surgery, Emory University, Atlanta, Georgia, USA
- Department of Microbiology and Immunology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Guillermo O Rangel Rivera
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, USA
- Division of Surgical Oncology, Department of Surgery, Emory University, Atlanta, Georgia, USA
- Department of Microbiology and Immunology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Amalia M Rivera-Reyes
- Division of Surgical Oncology, Department of Surgery, Emory University, Atlanta, Georgia, USA
- Department of Microbiology and Immunology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Connor J Dwyer
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Michael B Ware
- Division of Surgical Oncology, Department of Surgery, Emory University, Atlanta, Georgia, USA
- Department of Microbiology and Immunology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Anna C Cole
- Division of Surgical Oncology, Department of Surgery, Emory University, Atlanta, Georgia, USA
- Department of Microbiology and Immunology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - David M Neskey
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, Charleston, South Carolina, USA
- Department of Cell and Molecular Pharmacology and Developmental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Mark P Rubinstein
- Division of Medical Oncology, The Ohio State University, Columbus, Ohio, USA
| | - Bei Liu
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Jessica E Thaxton
- Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Immunotherapy Program, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Eric Bartee
- Department of Internal Medicine, Division of Molecular Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Chrystal M Paulos
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, USA
- Division of Surgical Oncology, Department of Surgery, Emory University, Atlanta, Georgia, USA
- Department of Microbiology and Immunology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
7
|
Salem ML, Salman S, Barnawi IO. Brief in vitro IL-12 conditioning of CD8 + T Cells for anticancer adoptive T cell therapy. Cancer Immunol Immunother 2021; 70:2751-2759. [PMID: 33966093 DOI: 10.1007/s00262-021-02887-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 02/08/2021] [Indexed: 02/07/2023]
Abstract
Cancer immunotherapy represents a potential treatment approach through non-specific and specific enhancement of the immune responses. Adoptive cell therapy (ACT) is a potential modality of immunotherapy that depends on harvesting T cells from the tumor-bearing host, activating them in vitro and infusing them back to the same host. Several cytokines, in particular IL-2, IL-7 and IL-15, have been used to enhance survival T cells in vitro. Although effective, conditioning of T cells in vitro with these cytokines requires long-term culture which results in the loss of expression of their trafficking receptors mainly CD62L. It also results in exhaustion of the activated T cells and reduction in their functions upon adoptive transfer in vivo. Our recent studies and those of other groups showed that brief (3 days) conditioning of CD8+ T cells by IL-12 in vitro can result in enhancing function of tumor-reactive CD8+ T cells. Adoptive transfer of these IL-12-conditioned CD8+ T cells into tumor-bearing mice, preconditioned with cyclophosphamide, 1 day before ACT, induced tumor eradication that was associated with generation of tumor-specific memory response. In this review, we summarize studies that indicated to the superiority of IL-12 as a potential cytokine for conditioning T cells for ACT. In addition, we discuss some of the cellular and molecular mechanisms that govern how IL-12 programs CD8+ T cells to enhance their functionality especially in vitro and its implication in combination with other ACT modalities, opening a avenue for the clinical application of this cytokine.
Collapse
Affiliation(s)
- Mohamed Labib Salem
- Immunology and Biotechnology Unit, Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt.
- Center of Excellence in Cancer Research (CECR), Tanta University, Tanta, Egypt.
| | - Samar Salman
- Department of Dermatology and VenereologyFaculty of MedicineTanta University Hospital, Tanta University, Tanta, Egypt
| | - Ibrahim O Barnawi
- Animal Section, Department of Biological Sciences, Faculty of Science, Taibah University, Medina, Saudi Arabia
| |
Collapse
|
8
|
Nguyen KG, Vrabel MR, Mantooth SM, Hopkins JJ, Wagner ES, Gabaldon TA, Zaharoff DA. Localized Interleukin-12 for Cancer Immunotherapy. Front Immunol 2020; 11:575597. [PMID: 33178203 PMCID: PMC7593768 DOI: 10.3389/fimmu.2020.575597] [Citation(s) in RCA: 228] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/08/2020] [Indexed: 12/30/2022] Open
Abstract
Interleukin-12 (IL-12) is a potent, pro-inflammatory type 1 cytokine that has long been studied as a potential immunotherapy for cancer. Unfortunately, IL-12's remarkable antitumor efficacy in preclinical models has yet to be replicated in humans. Early clinical trials in the mid-1990's showed that systemic delivery of IL-12 incurred dose-limiting toxicities. Nevertheless, IL-12's pleiotropic activity, i.e., its ability to engage multiple effector mechanisms and reverse tumor-induced immunosuppression, continues to entice cancer researchers. The development of strategies which maximize IL-12 delivery to the tumor microenvironment while minimizing systemic exposure are of increasing interest. Diverse IL-12 delivery systems, from immunocytokine fusions to polymeric nanoparticles, have demonstrated robust antitumor immunity with reduced adverse events in preclinical studies. Several localized IL-12 delivery approaches have recently reached the clinical stage with several more at the precipice of translation. Taken together, localized delivery systems are supporting an IL-12 renaissance which may finally allow this potent cytokine to fulfill its considerable clinical potential. This review begins with a brief historical account of cytokine monotherapies and describes how IL-12 went from promising new cure to ostracized black sheep following multiple on-study deaths. The bulk of this comprehensive review focuses on developments in diverse localized delivery strategies for IL-12-based cancer immunotherapies. Advantages and limitations of different delivery technologies are highlighted. Finally, perspectives on how IL-12-based immunotherapies may be utilized for widespread clinical application in the very near future are offered.
Collapse
Affiliation(s)
- Khue G Nguyen
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, NC, United States
| | - Maura R Vrabel
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, NC, United States
| | - Siena M Mantooth
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, NC, United States
| | - Jared J Hopkins
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, NC, United States
| | - Ethan S Wagner
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, NC, United States
| | - Taylor A Gabaldon
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, NC, United States
| | - David A Zaharoff
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
9
|
Tucker CG, Mitchell JS, Martinov T, Burbach BJ, Beura LK, Wilson JC, Dwyer AJ, Singh LM, Mescher MF, Fife BT. Adoptive T Cell Therapy with IL-12-Preconditioned Low-Avidity T Cells Prevents Exhaustion and Results in Enhanced T Cell Activation, Enhanced Tumor Clearance, and Decreased Risk for Autoimmunity. THE JOURNAL OF IMMUNOLOGY 2020; 205:1449-1460. [PMID: 32737148 DOI: 10.4049/jimmunol.2000007] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 06/28/2020] [Indexed: 12/16/2022]
Abstract
Optimal ex vivo expansion protocols of tumor-specific T cells followed by adoptive cell therapy must yield T cells able to home to tumors and effectively kill them. Our previous study demonstrated ex vivo activation in the presence of IL-12-induced optimal CD8+ T cell expansion and melanoma regression; however, adverse side effects, including autoimmunity, can occur. This may be due to transfer of high-avidity self-specific T cells. In this study, we compared mouse low- and high-avidity T cells targeting the tumor Ag tyrosinase-related protein 2 (TRP2). Not surprisingly, high-avidity T cells provide superior tumor control, yet low-avidity T cells can promote tumor regression. The addition of IL-12 during in vitro expansion boosts low-avidity T cell responsiveness, tumor regression, and prevents T cell exhaustion. In this study, we demonstrate that IL-12-primed T cells are resistant to PD-1/PD-L1-mediated suppression and retain effector function. Importantly, IL-12 preconditioning prevented exhaustion as LAG-3, PD-1, and TOX were decreased while simultaneously increasing KLRG1. Using intravital imaging, we also determined that high-avidity T cells have sustained contacts with intratumoral dendritic cells and tumor targets compared with low-avidity T cells. However, with Ag overexpression, this defect is overcome, and low-avidity T cells control tumor growth. Taken together, these data illustrate that low-avidity T cells can be therapeutically beneficial if cocultured with IL-12 cytokine during in vitro expansion and highly effective in vivo if Ag is not limiting. Clinically, low-avidity T cells provide a safer alternative to high-avidity, TCR-engineered T cells, as IL-12-primed, low-avidity T cells cause less autoimmune vitiligo.
Collapse
Affiliation(s)
- Christopher G Tucker
- Department of Medicine, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455
| | - Jason S Mitchell
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455; and
| | - Tijana Martinov
- Department of Medicine, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455
| | - Brandon J Burbach
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455; and
| | - Lalit K Beura
- Department of Microbiology and Immunology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455
| | - Joseph C Wilson
- Department of Medicine, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455
| | - Alexander J Dwyer
- Department of Medicine, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455
| | - Lovejot M Singh
- Department of Medicine, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455
| | - Matthew F Mescher
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455; and
| | - Brian T Fife
- Department of Medicine, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455;
| |
Collapse
|
10
|
Abstract
The adoptive cell transfer (ACT) of genetically engineered T cell receptor (TCR) T cells is one of the burgeoning fields of immunotherapy, with promising results in current clinical trials. Presently, clinicaltrials.gov has over 200 active trials involving adoptive cell therapy. The ACT of genetically engineered T cells not only allows the ability to select for TCRs with desired properties such as high-affinity receptors and tumor reactivity but to further enhance those receptors allowing for better targeting and killing of cancer cells in patients. Moreover, the addition of genetic material, including cytokines and cytokine receptors, can increase the survival and persistence of the T cell allowing for complete and sustained remission of cancer targets. The potential for improvement in adoptive cell therapy is limitless, with genetic modifications targeting to improve weaknesses of ACT and to thus enhance receptor affinity and functional avidity of the genetically engineered T cells.
Collapse
|
11
|
Abstract
Interferon gamma has long been studied as a critical mediator of tumor immunity. In recent years, the complexity of cellular interactions that take place in the tumor microenvironment has become better appreciated in the context of immunotherapy. While checkpoint inhibitors have dramatically improved remission rates in cancer treatment, IFN-γ and related effectors continue to be identified as strong predictors of treatment success. In this review, we provide an overview of the multiple immunosuppressive barriers that IFN-γ has to overcome to eliminate tumors, and potential avenues for modulating the immune response in favor of tumor rejection.
Collapse
Affiliation(s)
- J Daniel Burke
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA.
| | - Howard A Young
- Laboratory of Experimental Immunology, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| |
Collapse
|
12
|
Combination immunotherapies implementing adoptive T-cell transfer for advanced-stage melanoma. Melanoma Res 2019. [PMID: 29521881 DOI: 10.1097/cmr.0000000000000436] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Immunotherapy is a promising method of treatment for a number of cancers. Many of the curative results have been seen specifically in advanced-stage melanoma. Despite this, single-agent therapies are only successful in a small percentage of patients, and relapse is very common. As chemotherapy is becoming a thing of the past for treatment of melanoma, the combination of cellular therapies with immunotherapies appears to be on the rise in in-vivo models and in clinical trials. These forms of therapies include tumor-infiltrating lymphocytes, T-cell receptor, or chimeric antigen receptor-modified T cells, cytokines [interleukin (IL-2), IL-15, IL-12, granulocyte-macrophage colony stimulating factor, tumor necrosis factor-α, interferon-α, interferon-γ], antibodies (αPD-1, αPD-L1, αTIM-3, αOX40, αCTLA-4, αLAG-3), dendritic cell-based vaccines, and chemokines (CXCR2). There are a substantial number of ongoing clinical trials using two or more of these combination therapies. Preliminary results indicate that these combination therapies are a promising area to focus on for cancer treatments, especially melanoma. The main challenges with the combination of cellular and immunotherapies are adverse events due to toxicities and autoimmunity. Identifying mechanisms for reducing or eliminating these adverse events remains a critical area of research. Many important questions still need to be elucidated in regard to combination cellular therapies and immunotherapies, but with the number of ongoing clinical trials, the future of curative melanoma therapies is promising.
Collapse
|
13
|
Mukhopadhyay A, Wright J, Shirley S, Canton DA, Burkart C, Connolly RJ, Campbell JS, Pierce RH. Characterization of abscopal effects of intratumoral electroporation-mediated IL-12 gene therapy. Gene Ther 2019; 26:1-15. [PMID: 30323352 PMCID: PMC6514882 DOI: 10.1038/s41434-018-0044-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 08/20/2018] [Accepted: 09/12/2018] [Indexed: 12/16/2022]
Abstract
Intratumoral electroporation-mediated IL-12 gene therapy (IT-pIL12/EP) has been shown to be safe and effective in clinical trials, demonstrating systemic antitumor effects with local delivery of this potent cytokine. We recently optimized our IL-12 gene delivery platform to increase transgene expression and efficacy in preclinical models. Here we analyze the immunological changes induced with the new IT-pIL12/EP platform in both electroporated and distant, non-electroporated lesions. IT-pIL12/EP-treated tumors demonstrated rapid induction of IL-12-regulated pathways, as well as other cytokines and chemokines pathways, and upregulation of antigen presentation machinery. The distant tumors showed an increase in infiltrating lymphocytes and gene expression changes indicative of a de novo immune response in these untreated lesions. Flow cytometric analyses revealed a KLRG1hi CD8+ effector T-cell population uniquely present in mice treated with IT-pIL12/EP. Despite being highly activated, this population expressed diminished levels of PD-1 when re-exposed to antigen in the PD-L1-rich tumor. Other T-cell exhaustion markers appeared to be downregulated in concert, suggesting an orchestrated "armoring" of these effector T cells against T-cell checkpoints when primed in the presence of IL-12 in situ. These cells may represent an important mechanism by which local IL-12 gene therapy can induce a systemic antitumor immune response without the associated toxicity of systemic IL-12 exposure.
Collapse
Affiliation(s)
| | - Jocelyn Wright
- OncoSec Medical Incorporated, 3565 General Atomics Court #100, San Diego, CA, 92121, USA
| | - Shawna Shirley
- OncoSec Medical Incorporated, 3565 General Atomics Court #100, San Diego, CA, 92121, USA
| | - David A Canton
- OncoSec Medical Incorporated, 3565 General Atomics Court #100, San Diego, CA, 92121, USA
| | - Christoph Burkart
- OncoSec Medical Incorporated, 3565 General Atomics Court #100, San Diego, CA, 92121, USA
| | - Richard J Connolly
- OncoSec Medical Incorporated, 3565 General Atomics Court #100, San Diego, CA, 92121, USA
- Fred Hutchinson Cancer Center, 1100 Fairview Avenue N, Seattle, WA, 98109, USA
| | - Jean S Campbell
- Fred Hutchinson Cancer Center, 1100 Fairview Avenue N, Seattle, WA, 98109, USA
| | - Robert H Pierce
- Fred Hutchinson Cancer Center, 1100 Fairview Avenue N, Seattle, WA, 98109, USA.
| |
Collapse
|
14
|
Johnson CB, May BR, Riesenberg BP, Suriano S, Mehrotra S, Garrett-Mayer E, Salem ML, Jeng EK, Wong HC, Paulos CM, Wrangle JM, Cole DJ, Rubinstein MP. Enhanced Lymphodepletion Is Insufficient to Replace Exogenous IL2 or IL15 Therapy in Augmenting the Efficacy of Adoptively Transferred Effector CD8 + T Cells. Cancer Res 2018; 78:3067-3074. [PMID: 29636345 PMCID: PMC6108084 DOI: 10.1158/0008-5472.can-17-2153] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 03/05/2018] [Accepted: 04/02/2018] [Indexed: 02/07/2023]
Abstract
Effector CD8+ T cells conditioned with IL12 during activation mediate enhanced antitumor efficacy after adoptive transfer into lymphodepleted hosts; this is due in part to improved IL7 responsiveness. Therefore, we hypothesized that increasing the intensity or type of lymphodepletion would deplete more IL7-consuming host cells and improve the persistence and antitumor activity of IL12-conditioned CD8+ T cells. Using cyclophosphamide, fludarabine, and total body irradiation (TBI, 6 Gy) either individually or in combination, we found that combined lymphodepletion best enhanced T-cell engraftment in mice. This improvement was strongly related to the extent of leukopenia, as posttransfer levels of donor T cells inversely correlated to host cell counts after lymphodepletion. Despite the improvement in engraftment seen with combination lymphodepletion, dual-agent lymphodepletion did not augment the antitumor efficacy of donor T cells compared with TBI alone. Similarly, IL7 supplementation after TBI and transfer of tumor-reactive T cells failed to improve persistence or antitumor immunity. However, IL15 or IL2 supplementation greatly augmented the persistence and antitumor efficacy of donor tumor-reactive T cells. Our results indicate that the amount of host IL7 induced after single agent lymphodepletion is sufficient to potentiate the expansion and antitumor activity of donor T cells, and that the efficacy of future regimens may be improved by providing posttransfer support with IL2 or IL15.Significance: The relationship between lymphodepletion and cytokine support plays a critical role in determining donor T-cell engraftment and antitumor efficacy. Cancer Res; 78(11); 3067-74. ©2018 AACR.
Collapse
Affiliation(s)
- C Bryce Johnson
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Bennett R May
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Brian P Riesenberg
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - Samantha Suriano
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Shikhar Mehrotra
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Elizabeth Garrett-Mayer
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - Mohamed L Salem
- Immunology and Biotechnology Division, Faculty of Science, Tanta University, Center of Excellence in Cancer Research, Tanta, Egypt
| | | | - Hing C Wong
- Altor BioScience Corporation, Miramar, Florida
| | - Chrystal M Paulos
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
- Department of Dermatology and Dermatological Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - John M Wrangle
- Department of Dermatology and Dermatological Surgery, Medical University of South Carolina, Charleston, South Carolina
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - David J Cole
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - Mark P Rubinstein
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina.
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
15
|
Rachidi S, Metelli A, Riesenberg B, Wu BX, Nelson MH, Wallace C, Paulos CM, Rubinstein MP, Garrett-Mayer E, Hennig M, Bearden DW, Yang Y, Liu B, Li Z. Platelets subvert T cell immunity against cancer via GARP-TGFβ axis. Sci Immunol 2017; 2:2/11/eaai7911. [PMID: 28763790 DOI: 10.1126/sciimmunol.aai7911] [Citation(s) in RCA: 237] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 11/16/2016] [Accepted: 03/23/2017] [Indexed: 12/13/2022]
Abstract
Cancer-associated thrombocytosis has long been linked to poor clinical outcome, but the underlying mechanism is enigmatic. We hypothesized that platelets promote malignancy and resistance to therapy by dampening host immunity. We show that genetic targeting of platelets enhances adoptive T cell therapy of cancer. An unbiased biochemical and structural biology approach established transforming growth factor β (TGFβ) and lactate as major platelet-derived soluble factors to obliterate CD4+ and CD8+ T cell functions. Moreover, we found that platelets are the dominant source of functional TGFβ systemically as well as in the tumor microenvironment through constitutive expression of the TGFβ-docking receptor glycoprotein A repetitions predominant (GARP) rather than secretion of TGFβ per se. Platelet-specific deletion of the GARP-encoding gene Lrrc32 blunted TGFβ activity at the tumor site and potentiated protective immunity against both melanoma and colon cancer. Last, this study shows that T cell therapy of cancer can be substantially improved by concurrent treatment with readily available antiplatelet agents. We conclude that platelets constrain T cell immunity through a GARP-TGFβ axis and suggest a combination of immunotherapy and platelet inhibitors as a therapeutic strategy against cancer.
Collapse
Affiliation(s)
- Saleh Rachidi
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA.,Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Alessandra Metelli
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA.,Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Brian Riesenberg
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA.,Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Bill X Wu
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA.,Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Michelle H Nelson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA.,Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Caroline Wallace
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA.,Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Chrystal M Paulos
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA.,Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA.,Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Mark P Rubinstein
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA.,Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA.,Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Elizabeth Garrett-Mayer
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA.,Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Mirko Hennig
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Daniel W Bearden
- National Institutes of Standards and Technology, Hollings Marine Laboratory, Charleston, SC 29412, USA
| | - Yi Yang
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA.,Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Bei Liu
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA.,Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Zihai Li
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA. .,Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA.,First Affiliated Hospital, Zhengzhou University School of Medicine, Zhengzhou 450052, Henan, China
| |
Collapse
|
16
|
Ansa-Addo EA, Zhang Y, Yang Y, Hussey GS, Howley BV, Salem M, Riesenberg B, Sun S, Rockey DC, Karvar S, Howe PH, Liu B, Li Z. Membrane-organizing protein moesin controls Treg differentiation and antitumor immunity via TGF-β signaling. J Clin Invest 2017; 127:1321-1337. [PMID: 28287407 DOI: 10.1172/jci89281] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 01/17/2017] [Indexed: 12/22/2022] Open
Abstract
Moesin is a member of the ezrin-radixin-moesin (ERM) family of proteins that are important for organizing membrane domains and receptor signaling and regulating the migration of effector T cells. Whether moesin plays any role during the generation of TGF-β-induced Tregs (iTregs) is unknown. Here, we have discovered that moesin is translationally regulated by TGF-β and is also required for optimal TGF-β signaling that promotes efficient development of iTregs. Loss of moesin impaired the development and function of both peripherally derived iTregs and in vitro-induced Tregs. Mechanistically, we identified an interaction between moesin and TGF-β receptor II (TβRII) that allows moesin to control the surface abundance and stability of TβRI and TβRII. We also found that moesin is required for iTreg conversion in the tumor microenvironment, and the deletion of moesin from recipient mice supported the rapid expansion of adoptively transferred CD8+ T cells against melanoma. Our study establishes moesin as an important regulator of the surface abundance and stability of TβRII and identifies moesin's role in facilitating the efficient generation of iTregs. It also provides an advancement to our understanding about the role of the ERM proteins in regulating signal transduction pathways and suggests that modulation of moesin is a potential therapeutic target for Treg-related immune disorders.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- Cell Differentiation
- Cell Membrane/metabolism
- Cells, Cultured
- Female
- HEK293 Cells
- Humans
- Male
- Melanoma, Experimental/immunology
- Melanoma, Experimental/pathology
- Melanoma, Experimental/therapy
- Mice, 129 Strain
- Mice, Inbred C57BL
- Mice, Knockout
- Microfilament Proteins/physiology
- Neoplasm Transplantation
- Protein Binding
- Protein Biosynthesis
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Protein Stability
- Protein Transport
- Receptor, Transforming Growth Factor-beta Type II
- Receptors, Transforming Growth Factor beta/genetics
- Receptors, Transforming Growth Factor beta/metabolism
- Signal Transduction
- Skin Neoplasms/immunology
- Skin Neoplasms/pathology
- Skin Neoplasms/therapy
- T-Lymphocytes, Regulatory/physiology
- Transcriptional Activation
- Transforming Growth Factor beta/physiology
- Tumor Escape
- Up-Regulation
Collapse
|
17
|
Su EW, Moore CJ, Suriano S, Johnson CB, Songalia N, Patterson A, Neitzke DJ, Andrijauskaite K, Garrett-Mayer E, Mehrotra S, Paulos CM, Doedens AL, Goldrath AW, Li Z, Cole DJ, Rubinstein MP. IL-2Rα mediates temporal regulation of IL-2 signaling and enhances immunotherapy. Sci Transl Med 2016; 7:311ra170. [PMID: 26511507 PMCID: PMC4805116 DOI: 10.1126/scitranslmed.aac8155] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Interleukin-2 (IL-2) is a lymphocyte growth factor that is an important component of many immune-based cancer therapies. The efficacy of IL-2 is thought to be limited by the expansion of T regulatory cells, which express the high-affinity IL-2 receptor subunit IL-2Rα. IL-15 is under investigation as an alternative to IL-2. Although both cytokines signal through IL-2Rβγ, IL-15 does not bind IL-2Rα and therefore induces less T regulatory cell expansion. However, we found that transferred effector CD8(+) T cells induced curative responses in lymphoreplete mice only with IL-2-based therapy. Although conventional in vitro assays showed similar effector T cell responsiveness to IL-2 and IL-15, upon removal of free cytokine, IL-2 mediated sustained signaling dependent on IL-2Rα. Mechanistically, IL-2Rα sustained signaling by promoting a cell surface IL-2 reservoir and recycling of IL-2 back to the cell surface. Our results demonstrate that IL-2Rα endows T cells with the ability to compete temporally for limited IL-2 via mechanisms beyond ligand affinity. These results suggest that strategies to enhance IL-2Rα expression on tumor-reactive lymphocytes may facilitate the development of more effective IL-2-based therapies.
Collapse
Affiliation(s)
- Ee W Su
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Caitlin J Moore
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Samantha Suriano
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | - Neizel Songalia
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Alicia Patterson
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Daniel J Neitzke
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | - Elizabeth Garrett-Mayer
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Shikhar Mehrotra
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Chrystal M Paulos
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Andrew L Doedens
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ananda W Goldrath
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Zihai Li
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - David J Cole
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Mark P Rubinstein
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA. Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA.
| |
Collapse
|
18
|
Johnson CB, Wrangle J, Mehrotra S, Li Z, Paulos CM, Cole DJ, Surh CD, Rubinstein MP. Harnessing the IL-7/IL-7Rα axis to improve tumor immunotherapy. Oncoimmunology 2016; 5:e1122865. [PMID: 27467935 DOI: 10.1080/2162402x.2015.1122865] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 11/16/2015] [Indexed: 01/08/2023] Open
Abstract
IL-7 and IL-15 are critical for supporting T cells transferred into a lymphopenic environment. As activated CD8(+) T cells downregulate IL-7Rα, it is thought IL-15 is more important. However, we find that CD8(+) T cells activated with IL-12 have elevated IL-7Rα and rely on IL-7 for persistence and antitumor immunity.
Collapse
Affiliation(s)
- C Bryce Johnson
- Department of Surgery, Medical University of South Carolina , Charleston, SC
| | - John Wrangle
- Department of Microbiology & Immunology, Medical University of South Carolina , Charleston, SC
| | - Shikhar Mehrotra
- Department of Surgery, Medical University of South Carolina , Charleston, SC
| | - Zihai Li
- Department of Microbiology & Immunology, Medical University of South Carolina , Charleston, SC
| | - Chrystal M Paulos
- Department of Surgery, Medical University of South Carolina, Charleston, SC; Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC
| | - David J Cole
- Department of Surgery, Medical University of South Carolina , Charleston, SC
| | - Charles D Surh
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang, South Korea; Department of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, South Korea; Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Mark P Rubinstein
- Department of Surgery, Medical University of South Carolina, Charleston, SC; Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC
| |
Collapse
|
19
|
Johnson CB, Riesenberg BP, May BR, Gilreath SC, Li G, Staveley-O'Carroll KF, Garrett-Mayer E, Mehrotra S, Cole DJ, Rubinstein MP. Effector CD8+ T-cell Engraftment and Antitumor Immunity in Lymphodepleted Hosts Is IL7Rα Dependent. Cancer Immunol Res 2015; 3:1364-74. [PMID: 26297711 DOI: 10.1158/2326-6066.cir-15-0087-t] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 07/02/2015] [Indexed: 01/12/2023]
Abstract
Adoptive cellular therapy, in which activated tumor-reactive T cells are transferred into lymphodepleted recipients, is a promising cancer treatment option. Activation of T cells decreases IL7 responsiveness; therefore, IL15 is generally considered the main driver of effector T-cell responses in this setting. However, we found in lymphodepleted mice that CD8(+) T cells activated with IL12 showed enhanced engraftment that was initially dependent on host IL7, but not IL15. Mechanistically, enhanced IL7 responsiveness was conferred by elevated IL7Rα expression, which was critical for antitumor immunity. Elevated IL7Rα expression was achievable without IL12, as polyclonal CD8(+) T cells activated with high T-cell receptor (TCR) stimulation depended on T-cell IL7Rα expression and host IL7 for maximal engraftment. Finally, IL12 conditioning during the activation of human CD8(+) T cells, including TCR-modified T cells generated using a clinically relevant protocol, led to enhanced IL7Rα expression. Our results demonstrate the importance of the donor IL7Rα/host IL7 axis for effector CD8(+) T-cell engraftment and suggest novel strategies to improve adoptive cellular therapy as a cancer treatment.
Collapse
Affiliation(s)
- C Bryce Johnson
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Brian P Riesenberg
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - Bennett R May
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Stuart C Gilreath
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Guangfu Li
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | | | - Elizabeth Garrett-Mayer
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - Shikhar Mehrotra
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina. Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - David J Cole
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina. Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - Mark P Rubinstein
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina. Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina.
| |
Collapse
|
20
|
Abstract
The immune system is designed to discriminate between self and tumor tissue. Through genetic recombination, there is fundamentally no limit to the number of tumor antigens that immune cells can recognize. Yet, tumors use a variety of immunosuppressive mechanisms to evade immunity. Insight into how the immune system interacts with tumors is expanding rapidly and has accelerated the translation of immunotherapies into medical breakthroughs. Herein, we appraise novel strategies that exploit the patient's immune system to kill cancer. We review various forms of immune-based therapies, which have shown significant promise in patients with hematologic malignancies, including (i) conventional monoclonal therapies like rituximab; (ii) engineered monoclonal antibodies called bispecific T-cell engagers; (iii) monoclonal antibodies and pharmaceutical drugs that block inhibitory T-cell pathways (i.e. PD-1, CTLA-4, and IDO); and (iv) adoptive cell transfer therapy with T cells engineered to express chimeric antigen receptors or T-cell receptors. We also assess the idea of using these therapies in combination and conclude by suggesting multi-prong approaches to improve treatment outcomes and curative responses in patients.
Collapse
Affiliation(s)
- Michelle H Nelson
- Department of Microbiology and Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA; Department of Surgery, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | | |
Collapse
|
21
|
Andrijauskaite K, Suriano S, Cloud CA, Li M, Kesarwani P, Stefanik LS, Moxley KM, Salem ML, Garrett-Mayer E, Paulos CM, Mehrotra S, Kochenderfer JN, Cole DJ, Rubinstein MP. IL-12 conditioning improves retrovirally mediated transduction efficiency of CD8+ T cells. Cancer Gene Ther 2015; 22:360-7. [PMID: 26182912 PMCID: PMC4807400 DOI: 10.1038/cgt.2015.28] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 01/10/2015] [Accepted: 05/20/2015] [Indexed: 02/07/2023]
Abstract
The ability to genetically modify T cells is a critical component to many immunotherapeutic strategies and research studies. However, the success of these approaches is often limited by transduction efficiency. As retroviral vectors require cell division for integration, transduction efficiency is dependent on the appropriate activation and culture conditions for T cells. Naive CD8(+) T cells, which are quiescent, must be first activated to induce cell division to allow genetic modification. To optimize this process, we activated mouse T cells with a panel of different cytokines, including interleukin-2 (IL-2), IL-4, IL-6, IL-7, IL-12, IL-15 and IL-23, known to act on T cells. After activation, cytokines were removed, and activated T cells were retrovirally transduced. We found that IL-12 preconditioning of mouse T cells greatly enhanced transduction efficiency, while preserving function and expansion potential. We also observed a similar transduction-enhancing effect of IL-12 preconditioning on human T cells. These findings provide a simple method to improve the transduction efficiencies of CD8(+) T cells.
Collapse
Affiliation(s)
| | - Samantha Suriano
- Department of Surgery, Medical University of South Carolina, Charleston SC 29425
| | - Colleen A. Cloud
- Department of Surgery, Medical University of South Carolina, Charleston SC 29425
| | - Mingli Li
- Department of Surgery, Medical University of South Carolina, Charleston SC 29425
| | - Pravin Kesarwani
- Department of Surgery, Medical University of South Carolina, Charleston SC 29425
| | - Leah S. Stefanik
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston SC 29425
| | | | - Mohamed L Salem
- Immunology & Biotechnology Division, Tanta University, Egypt
| | | | - Chrystal M. Paulos
- Department of Surgery, Medical University of South Carolina, Charleston SC 29425
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston SC 29425
| | - Shikhar Mehrotra
- Department of Surgery, Medical University of South Carolina, Charleston SC 29425
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston SC 29425
| | - James N. Kochenderfer
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - David J. Cole
- Department of Surgery, Medical University of South Carolina, Charleston SC 29425
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston SC 29425
| | - Mark P. Rubinstein
- Department of Surgery, Medical University of South Carolina, Charleston SC 29425
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston SC 29425
| |
Collapse
|
22
|
Rubinstein MP, Su EW, Suriano S, Cloud CA, Andrijauskaite K, Kesarwani P, Schwartz KM, Williams KM, Johnson CB, Li M, Scurti GM, Salem ML, Paulos CM, Garrett-Mayer E, Mehrotra S, Cole DJ. Interleukin-12 enhances the function and anti-tumor activity in murine and human CD8(+) T cells. Cancer Immunol Immunother 2015; 64:539-49. [PMID: 25676709 PMCID: PMC4804872 DOI: 10.1007/s00262-015-1655-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 01/10/2015] [Indexed: 02/07/2023]
Abstract
Mouse CD8(+) T cells conditioned with interleukin (IL)-12 ex vivo mediate the potent regression of established melanoma when transferred into lymphodepleted mice. However, the quantitative and qualitative changes induced by IL-12 in the responding mouse CD8(+) T cells have not been well defined. Moreover, the mechanisms by which IL-12-conditioning impacts human CD8(+) T cells, and how such cells might be expanded prior to infusion into patients is not known. We found that ex vivo IL-12-conditioning of mouse CD8(+) T cells led to a tenfold-100-fold increase in persistence and anti-tumor efficacy upon adoptive transfer into lymphodepleted mice. The enhancing effect of IL-12 was associated with maintenance of functional avidity. Importantly, in the context of ongoing ACT clinical trials, human CD8(+) T cells genetically modified with a tyrosinase-specific T cell receptor (TCR) exhibited significantly enhanced functional activity when conditioned with IL-12 as indicated by heightened granzyme B expression and elevated peptide-specific CD107a degranulation. This effect was sustainable despite the 20 days of in vitro cellular expansion required to expand cells over 1,000-fold allowing adequate cell numbers for administration to cancer patients. Overall, these findings support the efficacy and feasibility of ex vivo IL-12-conditioning of TCR-modified human CD8(+) T cells for adoptive transfer and cancer therapy.
Collapse
Affiliation(s)
- Mark P Rubinstein
- Department of Surgery, Medical University of South Carolina, 86 Jonathan Lucas Street, HO506, Charleston, SC, 29425, USA,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
IL-12 is required for mTOR regulation of memory CTLs during viral infection. Genes Immun 2014; 15:413-23. [PMID: 24898389 PMCID: PMC4156562 DOI: 10.1038/gene.2014.33] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 03/27/2014] [Accepted: 04/10/2014] [Indexed: 01/14/2023]
Abstract
The induction of functional memory CTLs is a major goal of vaccination against
intracellular pathogens. IL-12 is critical for the generation of memory CTLs, and
inhibition of mTOR by rapamycin can effectively enhance the memory CTL response. Yet, the
role of IL-12 in mTOR’s regulation of memory CTL is unknown. Here, we hypothesized
that the immunostimulatory effects of mTOR on memory CTLs requires IL-12 signaling. Our
results revealed that rapamycin increased the generation of memory CTLs in vaccinia virus
infection, and this enhancement was dependent upon the IL-12 signal. Furthermore, IL-12
receptor deficiency diminished the secondary expansion of rapamycin-regulated memory, and
resultant secondary memory CTLs were abolished. Rapamycin enhanced IL-12 signaling by up
regulating IL-12 receptor β2 expression and STAT4 phosphorylation in CTLs during
early infection. In addition, rapamycin continually suppressed T-bet expression in both WT
and IL-12 receptor knockout CTLs. These results indicate an essential role for IL-12 in
the regulation of memory CTLs by mTOR, and highlight the importance of considering the
interplay between cytokines and adjuvants during vaccine design.
Collapse
|
24
|
Identification of the genomic insertion site of Pmel-1 TCR α and β transgenes by next-generation sequencing. PLoS One 2014; 9:e96650. [PMID: 24827921 PMCID: PMC4020793 DOI: 10.1371/journal.pone.0096650] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 04/09/2014] [Indexed: 11/19/2022] Open
Abstract
The pmel-1 T cell receptor transgenic mouse has been extensively employed as an ideal model system to study the mechanisms of tumor immunology, CD8+ T cell differentiation, autoimmunity and adoptive immunotherapy. The ‘zygosity’ of the transgene affects the transgene expression levels and may compromise optimal breeding scheme design. However, the integration sites for the pmel-1 mouse have remained uncharacterized. This is also true for many other commonly used transgenic mice created before the modern era of rapid and inexpensive next-generation sequencing. Here, we show that whole genome sequencing can be used to determine the exact pmel-1 genomic integration site, even with relatively ‘shallow’ (8X) coverage. The results were used to develop a validated polymerase chain reaction-based genotyping assay. For the first time, we provide a quick and convenient polymerase chain reaction method to determine the dosage of pmel-1 transgene for this freely and publically available mouse resource. We also demonstrate that next-generation sequencing provides a feasible approach for mapping foreign DNA integration sites, even when information of the original vector sequences is only partially known.
Collapse
|
25
|
Zheng Y, Stephan MT, Gai SA, Abraham W, Shearer A, Irvine DJ. In vivo targeting of adoptively transferred T-cells with antibody- and cytokine-conjugated liposomes. J Control Release 2013; 172:426-35. [PMID: 23770010 DOI: 10.1016/j.jconrel.2013.05.037] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 05/13/2013] [Accepted: 05/20/2013] [Indexed: 12/28/2022]
Abstract
In adoptive cell therapy (ACT), autologous tumor-specific T-cells isolated from cancer patients are activated and expanded ex vivo, then infused back into the individual to eliminate metastatic tumors. A major limitation of this promising approach is the rapid loss of ACT T-cell effector function in vivo due to the highly immunosuppressive environment in tumors. Protection of T-cells from immunosuppressive signals can be achieved by systemic administration of supporting adjuvant drugs such as interleukins, chemotherapy, and other immunomodulators, but these adjuvant treatments are often accompanied by serious toxicities and may still fail to optimally stimulate lymphocytes in all tumor and lymphoid compartments. Here we propose a novel strategy to repeatedly stimulate or track ACT T-cells, using cytokines or ACT-cell-specific antibodies as ligands to target PEGylated liposomes to transferred T-cells in vivo. Using F(ab')2 fragments against a unique cell surface antigen on ACT cells (Thy1.1) or an engineered interleukin-2 (IL-2) molecule on an Fc framework as targeting ligands, we demonstrate that >95% of ACT cells can be conjugated with liposomes following a single injection in vivo. Further, we show that IL-2-conjugated liposomes both target ACT cells and are capable of inducing repeated waves of ACT T-cell proliferation in tumor-bearing mice. These results demonstrate the feasibility of repeated functional targeting of T-cells in vivo, which will enable delivery of imaging contrast agents, immunomodulators, or chemotherapy agents in adoptive cell therapy regimens.
Collapse
Affiliation(s)
- Yiran Zheng
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, USA; Koch Institute for Integrative Cancer Research, MIT, Cambridge, USA
| | | | | | | | | | | |
Collapse
|
26
|
Vacchelli E, Eggermont A, Fridman WH, Galon J, Tartour E, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Adoptive cell transfer for anticancer immunotherapy. Oncoimmunology 2013; 2:e24238. [PMID: 23762803 PMCID: PMC3667909 DOI: 10.4161/onci.24238] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 03/08/2013] [Indexed: 12/16/2022] Open
Abstract
Adoptive cell transfer (ACT) represents a prominent form of immunotherapy against malignant diseases. ACT is conceptually distinct from dendritic cell-based approaches (which de facto constitute cellular vaccines) and allogeneic transplantation (which can be employed for the therapy of hematopoietic tumors) as it involves the isolation of autologous lymphocytes exhibiting antitumor activity, their expansion/activation ex vivo and their reintroduction into the patient. Re-infusion is most often performed in the context of lymphodepleting regimens (to minimize immunosuppression by host cells) and combined with immunostimulatory interventions, such as the administration of Toll-like receptor agonists. Autologous cells that are suitable for ACT protocols can be isolated from tumor-infiltrating lymphocytes or generated by engineering their circulating counterparts for the expression of transgenic tumor-specific T-cell receptors. Importantly, lymphocytes can be genetically modified prior to re-infusion for increasing their persistence in vivo, boosting antitumor responses and minimizing side effects. Moreover, recent data indicate that exhausted antitumor T lymphocytes may be rejuvenated in vitro by exposing them to specific cytokine cocktails, a strategy that might considerably improve the clinical success of ACT. Following up the Trial Watch that we published on this topic in the third issue of OncoImmunology (May 2012), here we summarize the latest developments in ACT-related research, covering both high-impact studies that have been published during the last 13 months and clinical trials that have been initiated in the same period to assess the antineoplastic profile of this form of cellular immunotherapy.
Collapse
Affiliation(s)
- Erika Vacchelli
- Institut Gustave Roussy; Villejuif, France
- Université Paris-Sud/Paris XI; Le Kremlin-Bicêtre; Paris France
- INSERM, U848; Villejuif, France
| | | | - Wolf Hervé Fridman
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
- Equipe 13; Centre de Recherche des Cordeliers; Paris, France
- Pôle de Biologie; Hôpital Européen Georges Pompidou; Assistance Publique-Hôpitaux de Paris; Paris, France
| | - Jérôme Galon
- Pôle de Biologie; Hôpital Européen Georges Pompidou; Assistance Publique-Hôpitaux de Paris; Paris, France
- Equipe 15; Centre de Recherche des Cordeliers; Paris, France
- INSERM; U872; Paris, France
- Université Pierre et Marie Curie/Paris VI; Paris, France
| | - Eric Tartour
- Pôle de Biologie; Hôpital Européen Georges Pompidou; Assistance Publique-Hôpitaux de Paris; Paris, France
- Université Pierre et Marie Curie/Paris VI; Paris, France
- INSERM; U970; Paris, France
| | - Laurence Zitvogel
- Université Paris-Sud/Paris XI; Le Kremlin-Bicêtre; Paris France
- INSERM; U1015; CICBT507; Villejuif, France
| | - Guido Kroemer
- INSERM, U848; Villejuif, France
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
- Pôle de Biologie; Hôpital Européen Georges Pompidou; Assistance Publique-Hôpitaux de Paris; Paris, France
- Equipe 11; Labelisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers; Paris, France
- Metabolomics Platform; Institut Gustave Roussy; Villejuif, France
| | - Lorenzo Galluzzi
- Institut Gustave Roussy; Villejuif, France
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
- Equipe 11; Labelisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers; Paris, France
| |
Collapse
|