1
|
Mistri S, Mondal K. Schiff Base-Based Molybdenum Complexes as Green Catalyst in the Epoxidation Reaction: A Minireview. Top Curr Chem (Cham) 2024; 382:35. [PMID: 39453566 DOI: 10.1007/s41061-024-00480-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024]
Abstract
Epoxides are class of cyclic ether and have been extensively used in petrochemicals and pharmaceuticals industries as raw materials. Due to this reasons, development of the synthetic strategy of epoxides are getting enormous interest among the research chemists. In terms of "development of the synthetic strategy", the use of a catalyst, especially, Schiff base-based complex is of potential interest due to alternative easy routes and significant advances in metal-mediated pathways giving rise to diverse degree of substrate-reagent interactions. In addition, the synthetic strategy that follows the 12 principles of green chemistry, particularly (i) reduce the use of organic solvent, especially toxic solvents, and (ii) increasing the use of catalysts to obtain selective and quick processes in terms of atom economy, are of great attention now a days. The present review encompasses the Schiff base-based molybdenum complexes as green catalyst in the epoxidation reaction. Molybdenum complexes have grown interest owing to lower cost, environmental protection and commercialization as well as its abundance in different metalloenzymes. On the other hand, molybdenum complexes speed up the O-O bond break of tert-butylhydroperoxide (TBHP); as a result, it accelerates the oxygen transfer process from TBHP to the olefin. This review mainly focused on the catalytic activity of molybdenum-based Schiff base complexes for the epoxidation reaction in water/solvent free condition.
Collapse
Affiliation(s)
- Soumen Mistri
- Department of Chemistry, Ramananda Centenary College, Laulara, Purulia, West Bengal, India, 723151.
| | - Keshab Mondal
- Department of Chemistry, Ramananda Centenary College, Laulara, Purulia, West Bengal, India, 723151
| |
Collapse
|
2
|
Huo X, Guagliardo M, Gorden AEV. Copper(II) quinoxolinol imidazolium complexes in catalytic oxidation of benzylic and heterocyclic alcohols. Org Biomol Chem 2024. [PMID: 39377774 DOI: 10.1039/d4ob01081g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
A novel copper(II) quinoxolinol complex has been prepared using a condensation reaction based on previous studies. The copper(II) quinoxolinol salen complex has been applied as a catalyst using tert-butyl hydroperoxide (TBHP) as the oxidant, demonstrating that benzylic and heterocyclic alcohols can be converted efficiently to the corresponding aldehydes. Excellent yields can be achieved (up to 99%) within a short reaction time and with great tolerance for functional groups.
Collapse
Affiliation(s)
- Xiaoyu Huo
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79415, USA.
| | - Mariano Guagliardo
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79415, USA.
| | - Anne E V Gorden
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79415, USA.
| |
Collapse
|
3
|
Pakeeraiah K, Swain PP, Sahoo A, Panda PK, Mahapatra M, Mal S, Sahoo RK, Sahu PK, Paidesetty SK. Multimodal antibacterial potency of newly designed and synthesized Schiff's/Mannich based coumarin derivatives: potential inhibitors of bacterial DNA gyrase and biofilm production. RSC Adv 2024; 14:31633-31647. [PMID: 39376521 PMCID: PMC11457008 DOI: 10.1039/d4ra05756b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 09/26/2024] [Indexed: 10/09/2024] Open
Abstract
The briskened urge to develop potential antibacterial candidates against multidrug-resistant pathogens has motivated the present research study. Herein, newly synthesized coumarin derivatives with azomethine and amino-methylated as the functional groups have been focused on their antibacterial efficacy. The study proposed two distinct series: 3-acetyl substituted coumarin derivatives, followed by the Schiff base approach (5a-5i), and formaldehyde-secondary cyclic amine-based derivatives (7a-7g), using the Mannich base approach, further the compounds have been confirmed through various spectral studies. Further, target-specific binding affinity has been affirmed via in silico study. In vitro antibacterial study suggested compounds 5d and 5f to be most effective against S. aureus and multidrug-resistant K. pneumoniae, with MIC values of 8 and 16 μg mL-1. Among them, the compounds 5d and 5f showed excellent binding scores against different bacterial gyrase compared to the standard novobiocin. Based on RMRS, RMSF, Rg, and H-bond plots, MD simulation study at 100 ns also suggested better stability of 5d inside gyraseB of E. coli than the complex of E. coli-GyrB-novobiocin. The toxicity and pharmacokinetic profiles showed favorable drug-likeness. Overall, systematic in vitro and in silico assessment suggested that multimodal antibacterial derivatives 5d and 5f strongly inhibit both bacterial DNA gyrase and biofilm formation of drug-resistant pathogens, suggesting their potency in mainstream antibacterial therapy.
Collapse
Affiliation(s)
- Kakarla Pakeeraiah
- Medicinal Chemistry Research Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University Bhubaneswar 751003 Odisha India
| | - Pragyan Paramita Swain
- Centre for Biotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University Bhubaneswar 751003 Odisha India
| | - Alaka Sahoo
- Medicinal Chemistry Research Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University Bhubaneswar 751003 Odisha India
- Department of Skin & VD, Institute of Medical Sciences, SUM Hospital, Siksha 'O' Anusandhan Deemed to be University Bhubaneswar 751003 Odisha India
- Research and Development Division, Salixiras Research Private Limited Bhubaneswar Odisha India
| | - Preetesh Kumar Panda
- Medicinal Chemistry Research Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University Bhubaneswar 751003 Odisha India
| | - Monalisa Mahapatra
- Medicinal Chemistry Research Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University Bhubaneswar 751003 Odisha India
| | - Suvadeep Mal
- Medicinal Chemistry Research Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University Bhubaneswar 751003 Odisha India
| | - Rajesh Kumar Sahoo
- Centre for Biotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University Bhubaneswar 751003 Odisha India
| | - Pratap Kumar Sahu
- Department of Pharmacology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University Bhubaneswar 751003 Odisha India
| | - Sudhir Kumar Paidesetty
- Medicinal Chemistry Research Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University Bhubaneswar 751003 Odisha India
| |
Collapse
|
4
|
Yasmeen Z, Khan MA, Ahmad I, Ullah F, Awan B, Akram MT, Khan MR. Molecular docking, derivatization, characterization and biological assays of amantadine. Future Med Chem 2024; 16:1853-1863. [PMID: 39119743 PMCID: PMC11486214 DOI: 10.1080/17568919.2024.2385294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/17/2024] [Indexed: 08/10/2024] Open
Abstract
Background: Derivatization has been tremendously utilized in the field of drug discovery for optimizing the pharmacological properties and improving safety, efficacy and selectivity.Methodology: Schiff's bases (AD1-AD11) are synthesized through amantadine condensation with different aldehydes and ketones. Fourier transform infrared, 1H NMR, 13C NMR, TLC, liquid chromatography mass spectrometry analysis, in silico studies, molecular docking and antiviral activity through hemagglutinin test were performed for evaluation of new compounds.Results: AD2, 3 and 9-11 showed greater antiviral activity than the parent drug. Among all derivatives, AD2 and AD3 exhibited good potential against α-amylase while AD7 and AD10 showed stronger inhibition against α-glucosidase.Conclusion: So, it is concluded that the most potent derivatives can be used as lead compounds in novel drug design of antiviral antidiabetic agents.
Collapse
Affiliation(s)
- Zarmeena Yasmeen
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Mohsin Abbas Khan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Irshad Ahmad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Farhat Ullah
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Breena Awan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Muhammad Toseef Akram
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Muhammad Rizwan Khan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| |
Collapse
|
5
|
Mondal T, Kumar R, Bettanayaka J, Gogoi R, Koti P, Ray M, Kole RK, Mukherjee S. Biodegradable Schiff bases: a novel approach for the management of pathogenic fungi (Sclerotium rolfsii and Rhizoctonia bataticola) and stored grain insect (Callosobruchus maculatus) in green gram (Vigna radiata). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:52540-52561. [PMID: 39153063 DOI: 10.1007/s11356-024-34713-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/11/2024] [Indexed: 08/19/2024]
Abstract
Twenty-two eco-friendly, novel Schiff bases were synthesized from 2,4,5-trichloro aniline and characterized by using FT-IR, 1H NMR, and 13C NMR techniques. Fungicidal activity against pathogenic fungi Sclerotium rolfsii and Rhizoctonia bataticola and insecticidal activity against the stored grain insect pest Callosobruchus maculatus of the test compounds were evaluated under control condition. All of the investigated compounds, according to the study, exhibited moderate to good antifungal and insecticidal activities. The best antifungal activity against both pathogenic fungi was demonstrated by C15 and C16 whose ED50 values were recorded 11.4 and 10.4 μg/mL against R. bataticola and 10.6 and 11.9 μg/mL against S. rolfsii, respectively. They were further screened in for disease suppression against both pathogenic fungi under pot condition through different methods of applications in green gram (Vigna radiata L.) crop. The compounds C10 and C18 had the highest insecticidal activity, with LD50 values of 0.024 and 0.042 percentages, respectively. Stepwise regression analysis using root mean square error (RMSE) and correlation coefficient (R) method used to validate the quantitative structure activity relationship (QSAR) of synthesized compounds in addition to their fungicidal and insecticidal actions. To the best of our knowledge, this investigation on the 22 new Schiff bases as possible agrochemicals is the first one that has been fully reported.
Collapse
Affiliation(s)
- Tilak Mondal
- ICAR-National Institute of Natural Fibre Engineering and Technology, Kolkata, India
| | - Rajesh Kumar
- Indian Agricultural Research Institute, New Delhi, India
| | | | - Robin Gogoi
- Indian Agricultural Research Institute, New Delhi, India
| | - Prasanna Koti
- The University of Trans-Disciplinary Health Sciences and Technology, Bengaluru, India
| | - Mrinmoy Ray
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Ramen Kumar Kole
- Bidhan Chandra Krishi Viswa Vidyalaya, Nadia, West Bengal, India
| | - Santanu Mukherjee
- Shoolini University of Biotechnology and Management Sciences, Solan, Himachal, India.
| |
Collapse
|
6
|
Sahu M, Ganguly M, Sharma P. Recent applications of coinage metal nanoparticles passivated with salicylaldehyde and salicylaldehyde-based Schiff bases. NANOSCALE ADVANCES 2024:d4na00427b. [PMID: 39148500 PMCID: PMC11322903 DOI: 10.1039/d4na00427b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/26/2024] [Indexed: 08/17/2024]
Abstract
Salicylaldehyde (SD) and its derivatives are effective precursors for generating coinage metal (gold, silver, and copper) nanoparticles (NPs). These NPs have a variety of potential environmental applications, such as in water purification and sensing, and those arising from their antibacterial activity. The use of SD and its derivatives for synthesizing coinage NPs is attractive due to several factors. First, SD is a relatively inexpensive and readily available starting material. Second, the synthetic procedures are typically simple and can be carried out under mild conditions. Finally, the resulting NPs can be tailored to have specific properties, such as size, shape, and surface functionality, by varying the reaction conditions. In an alkaline solution, the phenolate form of SD was converted to its quinone form, while ionic coinage metal salts were converted to zero-valent nanoparticles. The capping in situ produced quinone of coinage metal nanoparticles generated metal-enhanced fluorescence under suitable experimental conditions. The formation of iminic bonds during the formation of Schiff bases altered the properties (especially metal-enhanced fluorescence) and applications.
Collapse
Affiliation(s)
- Mamta Sahu
- Department of Chemistry, Solar Energy Conversion and Nanomaterials Laboratory, Manipal University Jaipur Dehmi Kalan Jaipur 303007 Rajasthan India
| | - Mainak Ganguly
- Department of Chemistry, Solar Energy Conversion and Nanomaterials Laboratory, Manipal University Jaipur Dehmi Kalan Jaipur 303007 Rajasthan India
| | - Priyanka Sharma
- Department of Chemistry, Solar Energy Conversion and Nanomaterials Laboratory, Manipal University Jaipur Dehmi Kalan Jaipur 303007 Rajasthan India
| |
Collapse
|
7
|
Zavalishin MN, Kiselev AN, Gamov GA. Schiff Bases Derived from Pyridoxal 5'-Phosphate and 2-X-Phenylamine (X = H, OH, SH): Substituent Effects on UV-Vis Spectra and Hydrolysis Kinetics. Molecules 2024; 29:3504. [PMID: 39124909 PMCID: PMC11314395 DOI: 10.3390/molecules29153504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Schiff bases are compounds that are widely distributed in nature and have practical value for industry and biomedicine. Another important use of Schiff bases is identifying metal ions and different molecules, including proteins. Their proneness to hydrolysis limits the utilization of Schiff bases to mainly non-aqueous solutions. However, by introducing -OH and -SH substituents to aromatic amine-bearing rings, it is possible to increase the resilience of the Schiff base to destruction in water. The present paper discusses how the hydroxyl or thiol group influences the spectral properties and kinetics of the hydrolysis and formation of Schiff bases derived from pyridoxal 5'-phosphate and aniline, 2-hydroxyaniline, and 2-mercaptoaniline using quantum chemical data. The spectral variation between different imines can be explained by taking into account the geometry and frontier molecular orbital alteration induced by the substituents. The changes in the hydrolysis rate are analyzed using the computed values of local reactivity indices.
Collapse
Affiliation(s)
- Maksim N. Zavalishin
- Department of General Chemical Technology, Ivanovo State University of Chemistry and Technology, Sheremetevskii Pr. 7, Ivanovo 153000, Russia;
| | - Aleksei N. Kiselev
- G.A. Krestov Institute of Solution Chemistry, Russian Academy of Science, Akademicheskaya Str. 1, Ivanovo 153045, Russia;
| | - George A. Gamov
- Department of General Chemical Technology, Ivanovo State University of Chemistry and Technology, Sheremetevskii Pr. 7, Ivanovo 153000, Russia;
| |
Collapse
|
8
|
Rizwan M, Noreen S, Asim S, Liaqat Z, Ibrahim H, Talib R. A Comprehensive on Synthesis and Antimicrobial Evaluation of Substituted-Arylideneamino-5-(5-Chlorobenzofuran-2-yl)-1, 2, 4-Triazole-3-Thiol Derivatives/ Schiff Bases. J Fluoresc 2024:10.1007/s10895-024-03817-3. [PMID: 38985394 DOI: 10.1007/s10895-024-03817-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/24/2024] [Indexed: 07/11/2024]
Abstract
Schiff bases are well known and popular classes of organic compounds containing imine (R2C = NH) group that are widely used as catalysts and intermediates in numerous organic transformations. Schiff bases are medicinally very important because they exhibit antimicrobial like antibacterial, antiviral and anticancer activities. Benzofuran based Schiff bases have been found as interesting scaffolds for the synthesis and design of biologically active agents. Moreover, they possess a wide range of biological activities against fungal, bacterial, malarial, inflammatory and viral diseases. In this reviw, substituted-arylideneamino-5-(5-chlorobenzofuran-2-yl)-1,2,4-triazole-3-thiols have been synthesized by using efficient synthetic protocols. The synthesized derivatives are also evaluated against different bacterial strains.
Collapse
Affiliation(s)
- Muhammad Rizwan
- Department of Chemistry, Government College University, Faisalabad, 38000, Pakistan
| | - Sobia Noreen
- Department of Chemistry, Government College Women University, Faisalabad, 38000, Pakistan.
| | - Sadia Asim
- Department of Chemistry, Government College Women University, Faisalabad, 38000, Pakistan
| | - Zohaib Liaqat
- Department of Bio-Chemistry, Minhaj University Lahore, Lahore, 54770, Pakistan
| | - Hina Ibrahim
- Department of Chemistry, University of Education Lahore, Faisalabad Campus, Lahore, 38000, Pakistan
| | - Rimsha Talib
- Department of Chemistry, Government College University, Faisalabad, 38000, Pakistan
| |
Collapse
|
9
|
Mahato J, Bera PS, Saha TK. Synthesis of imines from the coupling reaction of alcohols and amines catalyzed by phosphine-free cobalt(II) complexes. Org Biomol Chem 2024; 22:4528-4535. [PMID: 38752768 DOI: 10.1039/d4ob00351a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Phosphine-free, air stable cobalt(II) based complexes (1a and 1b) consisting of ligands L1H2 and L2H2 (L1H2 = N,N'-((1,2-phenylenebis(azaneylylidene))bis(methaneylylidene))diphenol and L2H2 = N,N'-bis(4-diethylaminosalicylidene)-4,5-dichloro-1,2-phenylenediamine) were synthesized and utilized as catalysts in the coupling reaction of alcohols with amines into imines following an acceptorless dehydrogenative pathway. The reactions were carried out in the presence of t-BuOK base with low catalyst loading (1 mol%) in an open atmosphere. The corresponding imines were isolated in moderate to excellent yields. The methodology was screened with different substituted alcohols and amines. The proposed mechanistic pathway of this reaction was ascertained through intermediate mass and 1H NMR analyses. Most of the previously reported 3d transition metal catalysts used in imine synthesis reactions have a phosphine ligand environment, and the reactions were performed under inert conditions. Herein we have developed a sustainable route for the synthesis of imines from the coupling reaction of alcohols with amines under aerial reaction conditions using phosphine-free air stable cobalt catalysts.
Collapse
Affiliation(s)
- Jharna Mahato
- Department of Chemistry, National Institute of Technology Durgapur, West Bengal, 713209, India.
| | - Partha Sarathi Bera
- Department of Chemistry, National Institute of Technology Durgapur, West Bengal, 713209, India.
| | - Tanmoy Kumar Saha
- Department of Chemistry, National Institute of Technology Durgapur, West Bengal, 713209, India.
| |
Collapse
|
10
|
Abo-Salem HM, Ali EA, Abdelmegeed H, El Souda SSM, Abdel-Aziz MS, Ahmed KM, Fawzy NM. Chitosan nanoparticles of new chromone-based sulfonamide derivatives as effective anti-microbial matrix for wound healing acceleration. Int J Biol Macromol 2024; 272:132631. [PMID: 38810852 DOI: 10.1016/j.ijbiomac.2024.132631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/02/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024]
Abstract
A new series of chromone and furochromone-based sulfonamide Schiff's base derivatives 3-12 were synthesized and evaluated for their antimicrobial activity against S. aureus, E. coli, C. albicans, and A. niger using agar diffusion method. Compound 3a demonstrated potent antimicrobial activities with MIC values of 9.76 and 19.53 μg/mL against S. aureus, E. coli and C. albicans, which is 2-fold and 4-fold more potent than neomycin (MIC = 19.53, 39.06 μg/mL respectively). To improve the effectiveness of 3a, it was encapsulated into chitosan nanoparticles (CS-3aNPs). The CS-3aNPs size was 32.01 nm, as observed by transmission electron microscope (TEM) images and the zeta potential value was 14.1 ± 3.07 mV. Encapsulation efficiency (EE) and loading capacity (LC) were 91.5 % and 1.6 %, respectively as indicated by spectral analysis. The CS-3aNPs extremely inhibited bacterial growth utilizing the colony-forming units (CFU). The ability of CS-3aNPs to protect skin wounds was evaluated in vivo. CS-3aNPs showed complete wound re-epithelialization, hyperplasia of the epidermis, well-organized granulation tissue formation, and reduced signs of wound infection, as seen through histological assessment which showed minimal inflammatory cells in comparison with untreated wound. Overall, these findings suggest that CS-3aNPs has a positive impact on protecting skin wounds from infection due to their antimicrobial activity.
Collapse
Affiliation(s)
- Heba M Abo-Salem
- Chemistry of Natural Compounds Department, National Research Centre, 12622 Dokki, Giza, Egypt.
| | - Eman AboBakr Ali
- Polymers and Pigments Department, National Research Centre, 12622 Dokki, Giza, Egypt
| | - Heba Abdelmegeed
- Chemistry of Natural Compounds Department, National Research Centre, 12622 Dokki, Giza, Egypt
| | - Sahar S M El Souda
- Chemistry of Natural Compounds Department, National Research Centre, 12622 Dokki, Giza, Egypt
| | - Mohamed S Abdel-Aziz
- Microbial Chemistry Department, Biotechnology Research Institute, National Research Centre, 12622 Dokki, Giza, Egypt
| | - Khadiga M Ahmed
- Chemistry of Natural Compounds Department, National Research Centre, 12622 Dokki, Giza, Egypt
| | - Nagwa M Fawzy
- Chemistry of Natural and Microbial Products Department, National Research Center, 12622 Dokki, Giza, Egypt.
| |
Collapse
|
11
|
Kumar S, Arora A, Maikhuri VK, Chaudhary A, Kumar R, Parmar VS, Singh BK, Mathur D. Advances in chromone-based copper(ii) Schiff base complexes: synthesis, characterization, and versatile applications in pharmacology and biomimetic catalysis. RSC Adv 2024; 14:17102-17139. [PMID: 38808245 PMCID: PMC11130647 DOI: 10.1039/d4ra00590b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/20/2024] [Indexed: 05/30/2024] Open
Abstract
Chromones are well known as fundamental structural elements found in numerous natural compounds and medicinal substances. The Schiff bases of chromones have a much wider range of pharmacological applications such as antitumor, antioxidant, anti-HIV, antifungal, anti-inflammatory, and antimicrobial properties. A lot of research has been carried out on chromone-based copper(ii) Schiff-base complexes owing to their role in the organometallic domain and promise as potential bioactive cores. This review article is centered on copper(ii) Schiff-base complexes derived from chromones, highlighting their diverse range of pharmacological applications documented in the past decade, as well as the future research opportunities they offer.
Collapse
Affiliation(s)
- Sumit Kumar
- Department of Chemistry, Bioorganic Research Laboratory, University of Delhi Delhi India
- Department of Chemistry and Environmental Science, Medgar Evers College 1638 Bedford Avenue, Brooklyn New York 11225 USA
| | - Aditi Arora
- Department of Chemistry, Bioorganic Research Laboratory, University of Delhi Delhi India
| | - Vipin K Maikhuri
- Department of Chemistry, Bioorganic Research Laboratory, University of Delhi Delhi India
| | - Ankita Chaudhary
- Department of Chemistry, Maitreyi College, University of Delhi Delhi India
| | - Rajesh Kumar
- Department of Chemistry, Bioorganic Research Laboratory, University of Delhi Delhi India
- Department of Chemistry, R. D. S College, B. R. A. Bihar University Muzaffarpur India
| | - Virinder S Parmar
- Department of Chemistry, Bioorganic Research Laboratory, University of Delhi Delhi India
- Department of Chemistry and Environmental Science, Medgar Evers College 1638 Bedford Avenue, Brooklyn New York 11225 USA
- Amity Institute of Click Chemistry and Research Studies, Amity University Sector 125 Noida 201313 Uttar Pradesh India
| | - Brajendra K Singh
- Department of Chemistry, Bioorganic Research Laboratory, University of Delhi Delhi India
| | - Divya Mathur
- Department of Chemistry, Bioorganic Research Laboratory, University of Delhi Delhi India
- Department of Chemistry, Daulat Ram College, University of Delhi Delhi India
| |
Collapse
|
12
|
Khan H, Jan F, Shakoor A, Khan A, AlAsmari AF, Alasmari F, Ullah S, Al-Harrasi A, Khan M, Ali S. Design, synthesis, molecular docking study, and α-glucosidase inhibitory evaluation of novel hydrazide-hydrazone derivatives of 3,4-dihydroxyphenylacetic acid. Sci Rep 2024; 14:11410. [PMID: 38762658 PMCID: PMC11102520 DOI: 10.1038/s41598-024-62034-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 05/13/2024] [Indexed: 05/20/2024] Open
Abstract
A series of novel Schiff base derivatives (1-28) of 3,4-dihydroxyphenylacetic acid were synthesized in a multi-step reaction. All the synthesized Schiff bases were obtained in high yields and their structures were determined by 1HNMR, 13CNMR, and HR-ESI-MS spectroscopy. Except for compounds 22, 26, 27, and 28, all derivatives show excellent to moderate α-glucosidase inhibition. Compounds 5 (IC50 = 12.84 ± 0.52 µM), 4 (IC50 = 13.64 ± 0.58 µM), 12 (IC50 = 15.73 ± 0.71 µM), 13 (IC50 = 16.62 ± 0.47 µM), 15 (IC50 = 17.40 ± 0.74 µM), 3 (IC50 = 18.45 ± 1.21 µM), 7 (IC50 = 19.68 ± 0.82 µM), and 2 (IC50 = 20.35 ± 1.27 µM) shows outstanding inhibition as compared to standard acarbose (IC50 = 873.34 ± 1.67 µM). Furthermore, a docking study was performed to find out the interaction between the enzyme and the most active compounds. With this research work, 3,4-dihydroxyphenylacetic acid Schiff base derivatives have been introduced as a potential class of α-glucosidase inhibitors that have remained elusive till now.
Collapse
Affiliation(s)
- Hammad Khan
- Organic Synthesis and Catalysis Research Laboratory, Institute of Chemical Sciences, University of Peshawar, Peshawar, 25120, Khyber Pakhtunkhwa, Pakistan
| | - Faheem Jan
- Shenyang National Laboratory for Materials Science, Institute of Metal Research Chinese Academy of Sciences, Shenyang, 110016, Liaoning, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110016, Liaoning, China
| | - Abdul Shakoor
- Department of Chemistry, Abdul Wali Khan University, Mardan, 23200, Pakistan
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, PO Box 33, 616, Birkat Al Mauz, Nizwa, Oman
| | - Abdullah F AlAsmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Fawaz Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Saeed Ullah
- Natural and Medical Sciences Research Center, University of Nizwa, PO Box 33, 616, Birkat Al Mauz, Nizwa, Oman
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, PO Box 33, 616, Birkat Al Mauz, Nizwa, Oman.
| | - Momin Khan
- Department of Chemistry, Abdul Wali Khan University, Mardan, 23200, Pakistan.
| | - Shaukat Ali
- Organic Synthesis and Catalysis Research Laboratory, Institute of Chemical Sciences, University of Peshawar, Peshawar, 25120, Khyber Pakhtunkhwa, Pakistan.
| |
Collapse
|
13
|
Ahmad G, Sohail M, Bilal M, Rasool N, Qamar MU, Ciurea C, Marceanu LG, Misarca C. N-Heterocycles as Promising Antiviral Agents: A Comprehensive Overview. Molecules 2024; 29:2232. [PMID: 38792094 PMCID: PMC11123935 DOI: 10.3390/molecules29102232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/22/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
Viruses are a real threat to every organism at any stage of life leading to extensive infections and casualties. N-heterocycles can affect the viral life cycle at many points, including viral entrance into host cells, viral genome replication, and the production of novel viral species. Certain N-heterocycles can also stimulate the host's immune system, producing antiviral cytokines and chemokines that can stop the reproduction of viruses. This review focused on recent five- or six-membered synthetic N-heterocyclic molecules showing antiviral activity through SAR analyses. The review will assist in identifying robust scaffolds that might be utilized to create effective antiviral drugs with either no or few side effects.
Collapse
Affiliation(s)
- Gulraiz Ahmad
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan; (G.A.); (M.S.)
| | - Maria Sohail
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan; (G.A.); (M.S.)
| | - Muhammad Bilal
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China;
| | - Nasir Rasool
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan; (G.A.); (M.S.)
| | - Muhammad Usman Qamar
- Institute of Microbiology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan;
- Division of Infectious Diseases, Geneva University Hospitals, 1205 Geneva, Switzerland
- Department of Microbiology and Molecular Medicine, University of Geneva, 1205 Geneva, Switzerland
| | - Codrut Ciurea
- Faculty of Medicine, Transilvania University of Brasov, 500036 Brasov, Romania; (L.G.M.)
| | - Luigi Geo Marceanu
- Faculty of Medicine, Transilvania University of Brasov, 500036 Brasov, Romania; (L.G.M.)
| | - Catalin Misarca
- Faculty of Medicine, Transilvania University of Brasov, 500036 Brasov, Romania; (L.G.M.)
| |
Collapse
|
14
|
Wang W, Zhou R, Di S, Mao X, Huang WC. Switchable CO 2-Responsive Janus Nanoparticle for Lipase Catalysis in Pickering Emulsion. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:9967-9973. [PMID: 38639643 DOI: 10.1021/acs.jafc.4c00498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
The use of convertible immobilized enzyme carriers is crucial for biphasic catalytic reactions conducted in Pickering emulsions. However, the intense mechanical forces during the conversion process lead to enzyme leakage, affecting the stability of the immobilized enzymes. In this study, a CO2-responsive switchable Janus (CrSJ) nanoparticle (NP) was developed using silica NP, with one side featuring aldehyde groups and the other side adsorbing N,N-dimethyldodecylamine. A switchable Pickering emulsion catalytic system for biphasic interface reactions was prepared by covalently immobilizing lipase onto the CrSJ NPs. The CO2-responsive nature of the CrSJ NPs allowed for rapid conversion of the Pickering emulsion, and covalent immobilization substantially reduced lipase leakage while enhancing the stability of the immobilization during the conversion process. Impressively, after repeated transformations, the Pickering emulsion still maintains its original structure. Following 10 consecutive cycles of esterification and hydrolysis reactions, the immobilized enzyme's activity remains at 77.7 and 79.5% of its initial activity, respectively. The Km of the CrSJ catalytic system showed no significant change compared to the free enzyme, while its Vmax values were 1.2 and 1.6 times that of the free enzyme in esterification and hydrolysis reactions, respectively.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China
| | - Ruoyu Zhou
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China
| | - Simiao Di
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China
| | - Xiangzhao Mao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China
| | - Wen-Can Huang
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China
| |
Collapse
|
15
|
Sun P, Pu J, Lei D, Li J, Ren X, Jin L, Pan L. Novel Aminocoumarin Derivatives against Phytopathogenic Fungi: Design, Synthesis and Structure-Activity Relationships. Chem Biodivers 2024; 21:e202400311. [PMID: 38494946 DOI: 10.1002/cbdv.202400311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/17/2024] [Accepted: 03/17/2024] [Indexed: 03/19/2024]
Abstract
Phytopathogenic fungi is the most devastating reason for the decrease of the agricultural production and food safety. To develop new fungicidal agents for resistance concerning, a novel series of aminocoumarin derivatives were synthesized and their fungicidal activity were investigated both in vitro and in vivo. Transmission electron microscope (TEM), scanning electron microscope (SEM), RNA-Seq, 3D-QSAR and molecular docking were applied to reveal the underlying anti-fungal mechanisms. Most of the compounds exhibited significant fungicidal activity. Notably, compound 10c had a more extensive fungicidal effect than positive control. TEM indicated that compound 10c could cause abnormal morphology of cell walls, vacuoles and release of cellular contents. Transcriptional analysis data indicated that 895 and 653 out of 1548 differential expressed genes (DEGs) were up-regulated and down-regulated respectively. The Go and KEGG enrichment indicated that the coumarin derivatives could induce significant changes of succinate dehydrogenase (SDH), Acetyl-coenzyme A synthetase (ACCA) and pyruvate dehydrogenase (PDH) genes, which contributed to the disorders of glucolipid metabolism and the dysfunction of mitochondrial. The results demonstrated that aminocoumarins with schiff-base as core moieties could be the promising lead compounds for the discovery of novel fungicides.
Collapse
Affiliation(s)
- Pengzhi Sun
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumqi, 830052
| | - Jiangping Pu
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumqi, 830052
| | - Dongyu Lei
- Department of Physiology, Preclinical School, Xinjiang Medical University, Urumqi, 830011, China
| | - Jiashan Li
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumqi, 830052
| | - Xingyu Ren
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumqi, 830052
| | - Lu Jin
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumqi, 830052
| | - Le Pan
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumqi, 830052
| |
Collapse
|
16
|
Podolski-Renić A, Čipak Gašparović A, Valente A, López Ó, Bormio Nunes JH, Kowol CR, Heffeter P, Filipović NR. Schiff bases and their metal complexes to target and overcome (multidrug) resistance in cancer. Eur J Med Chem 2024; 270:116363. [PMID: 38593587 DOI: 10.1016/j.ejmech.2024.116363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/15/2024] [Accepted: 03/25/2024] [Indexed: 04/11/2024]
Abstract
Overcoming multidrug resistance (MDR) is one of the major challenges in cancer therapy. In this respect, Schiff base-related compounds (bearing a R1R2CNR3 bond) gained high interest during the past decades. Schiff bases are considered privileged ligands for various reasons, including the easiness of their preparation and the possibility to form complexes with almost all transition metal ions. Schiff bases and their metal complexes exhibit many types of biological activities and are used for the treatment and diagnosis of various diseases. Until now, 13 Schiff bases have been investigated in clinical trials for cancer treatment and hypoxia imaging. This review represents the first collection of Schiff bases and their complexes which demonstrated MDR-reversal activity. The areas of drug resistance covered in this article involve: 1) Modulation of ABC transporter function, 2) Targeting lysosomal ABCB1 overexpression, 3) Circumvention of ABC transporter-mediated drug efflux by alternative routes of drug uptake, 4) Selective activity against MDR cancer models (collateral sensitivity), 5) Targeting GSH-detoxifying systems, 6) Overcoming apoptosis resistance by inducing necrosis and paraptosis, 7) Reactivation of mutated p53, 8) Restoration of sensitivity to DNA-damaging anticancer therapy, and 9) Overcoming drug resistance through modulation of the immune system. Through this approach, we would like to draw attention to Schiff bases and their metal complexes representing highly interesting anticancer drug candidates with the ability to overcome MDR.
Collapse
Affiliation(s)
- Ana Podolski-Renić
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Serbia
| | | | - Andreia Valente
- Centro de Química Estrutural and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa, Portugal
| | - Óscar López
- Departamento de Química Organica, Facultad de Química, Universidad de Sevilla, Sevilla, Spain
| | - Julia H Bormio Nunes
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria; Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Christian R Kowol
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Petra Heffeter
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
| | - Nenad R Filipović
- Department of Chemistry and Biochemistry, University of Belgrade, Belgrade, Serbia.
| |
Collapse
|
17
|
Pindjakova D, Mascaretti S, Hricoviniova J, Hosek J, Gregorova J, Kos J, Cizek A, Hricoviniova Z, Jampilek J. Critical view on antimicrobial, antibiofilm and cytotoxic activities of quinazolin-4(3 H)-one derived schiff bases and their Cu(II) complexes. Heliyon 2024; 10:e29051. [PMID: 38601653 PMCID: PMC11004567 DOI: 10.1016/j.heliyon.2024.e29051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 04/12/2024] Open
Abstract
A series of nine 2,3-disubstituted-quinazolin-4(3H)-one derived Schiff bases and their three Cu(II) complexes was prepared and tested for their antimicrobial activities against reference strains Staphylococcus aureus ATCC 29213 and Enterococcus faecalis ATCC 29212 and resistant clinical isolates of methicillin-resistant S. aureus (MRSA) and vancomycin-resistant E. faecalis (VRE). All the substances were tested in vitro against Mycobacterium tuberculosis H37Ra ATCC 25177, M. kansasii DSM 44162 and M. smegmatis ATCC 700084. While anti-enterococcal and antimycobacterial activities were insignificant, 3-[(E)-(2-hydroxy-5-nitrobenzylidene)amino]-2-(2-hydroxy-5-nitrophenyl)-2,3-dihydroquinazolin-4(1H)-one (SB3) and its Cu(II) complex (SB3-Cu) demonstrated bacteriostatic antistaphylococcal activity. In addition, both compounds, as well as the other two prepared complexes, showed antibiofilm activity, which resulted in a reduction of biofilm formation and eradication of mature S. aureus biofilm by 80% even at concentrations lower than the values of their minimum inhibitory concentrations. In addition, the compounds were tested for their cytotoxic effect on the human monocytic leukemia cell line THP-1. The antileukemic efficiency was improved by the preparation of Cu(II) complexes from the corresponding non-chelated Schiff base ligands.
Collapse
Affiliation(s)
- Dominika Pindjakova
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia
| | - Sarka Mascaretti
- Department of Infectious Diseases and Microbiology, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Palackeho 1946/1, 612 42 Brno, Czech Republic
| | - Jana Hricoviniova
- Department of Cell and Molecular Biology of Drugs, Faculty of Pharmacy, Comenius University, Odbojarov 10, 832 32 Bratislava, Slovakia
| | - Jan Hosek
- Department of Pharmacology and Toxicology, Veterinary Research Institute, Hudcova 296/70, 621 00 Brno, Czech Republic
| | - Jana Gregorova
- Department of Biochemistry, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Jiri Kos
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia
- Department of Biochemistry, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Alois Cizek
- Department of Infectious Diseases and Microbiology, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Palackeho 1946/1, 612 42 Brno, Czech Republic
| | - Zuzana Hricoviniova
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovakia
| | - Josef Jampilek
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia
- Department of Chemical Biology, Faculty of Science, Palacky University Olomouc, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| |
Collapse
|
18
|
Kim S, Jeon H, Koo JM, Oh DX, Park J. Practical Applications of Self-Healing Polymers Beyond Mechanical and Electrical Recovery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2302463. [PMID: 38361378 DOI: 10.1002/advs.202302463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 12/15/2023] [Indexed: 02/17/2024]
Abstract
Self-healing polymeric materials, which can repair physical damage, offer promising prospects for protective applications across various industries. Although prolonged durability and resource conservation are key advantages, focusing solely on mechanical recovery may limit the market potential of these materials. The unique physical properties of self-healing polymers, such as interfacial reduction, seamless connection lines, temperature/pressure responses, and phase transitions, enable a multitude of innovative applications. In this perspective, the diverse applications of self-healing polymers beyond their traditional mechanical strength are emphasized and their potential in various sectors such as food packaging, damage-reporting, radiation shielding, acoustic conservation, biomedical monitoring, and tissue regeneration is explored. With regards to the commercialization challenges, including scalability, robustness, and performance degradation under extreme conditions, strategies to overcome these limitations and promote successful industrialization are discussed. Furthermore, the potential impacts of self-healing materials on future research directions, encompassing environmental sustainability, advanced computational techniques, integration with emerging technologies, and tailoring materials for specific applications are examined. This perspective aims to inspire interdisciplinary approaches and foster the adoption of self-healing materials in various real-life settings, ultimately contributing to the development of next-generation materials.
Collapse
Affiliation(s)
- Semin Kim
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, Republic of Korea
| | - Hyeonyeol Jeon
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, Republic of Korea
| | - Jun Mo Koo
- Department of Organic Materials Engineering, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Dongyeop X Oh
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, Republic of Korea
- Department of Polymer Science and Engineering and Program in Environmental and Polymer Engineering, Inha University, Incheon, 22212, Republic of Korea
| | - Jeyoung Park
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
| |
Collapse
|
19
|
Krátký M. Novel sulfonamide derivatives as a tool to combat methicillin-resistant Staphylococcus aureus. Future Med Chem 2024; 16:545-562. [PMID: 38348480 DOI: 10.4155/fmc-2023-0116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 01/24/2024] [Indexed: 02/27/2024] Open
Abstract
Increasing resistance in Staphylococcus aureus has created a critical need for new drugs, especially those effective against methicillin-resistant strains (methicillin-resistant Staphylococcus aureus [MRSA]). Sulfonamides are a privileged scaffold for the development of novel antistaphylococcal agents. This review covers recent advances in sulfonamides active against MRSA. Based on the substitution patterns of sulfonamide moieties, its derivatives can be tuned for desired properties and biological activity. Contrary to the traditional view, not only N-monosubstituted 4-aminobenzenesulfonamides are effective. Novel sulfonamides have various mechanisms of action, not only 'classical' inhibition of the folate biosynthetic pathway. Some of them can overcome resistance to classical sulfa drugs and cotrimoxazole, are bactericidal and active in vivo. Hybrid compounds with distinct bioactive scaffolds are particularly advantageous.
Collapse
Affiliation(s)
- Martin Krátký
- Department of Organic & Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 03, Hradec Králové, Czech Republic
| |
Collapse
|
20
|
Rai P, Dutta A, Kumar A, Sinha B. "Synthesis and characterization of a novel pyridinium iodide-tagged Schiff base and its metal complexes as potential ACHN inhibitors". Heliyon 2024; 10:e25246. [PMID: 38322950 PMCID: PMC10845909 DOI: 10.1016/j.heliyon.2024.e25246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 02/08/2024] Open
Abstract
In quest of developing an efficient and effective drug against the ACHN human renal adenocarcinoma cell line herein, we report the synthesis and characterization of a novel Pyridinium iodide-tagged Schiff base (5) and its Cu (II)/Zn (II)/Cd (II)-complexes (6). The synthesized compounds are well characterized by Elemental analysis, UV-Visible, FTIR, Magnetic Susceptibility, NMR, HRMS, MALDI, and PXRD techniques. They were then subsequently tested on the ACHN cell lines using MTT assays and their IC50 values were determined, followed by their ROS production capacity. Among the tested compounds Zn (II)-complex 6(b) was found to be the most potent one with a minimum IC50 value while the ligand (5) was the least.
Collapse
Affiliation(s)
- Pranesh Rai
- Department of Chemistry, University of North Bengal, Darjeeling, 734013, India
| | - Ankita Dutta
- Department of Biotechnology, University of North Bengal, Darjeeling, 734013, India
| | - Anoop Kumar
- Department of Biotechnology, University of North Bengal, Darjeeling, 734013, India
| | - Biswajit Sinha
- Department of Chemistry, University of North Bengal, Darjeeling, 734013, India
| |
Collapse
|
21
|
Li S, Yu H, Wang Y, Wang S, Zhang L, Zhu P, Gao C, Yu J. Exploring a Ni-N 4 Active Site-Based Conjugated Microporous Polymer Z-Scheme Heterojunction Through Covalent Bonding for Visible Light-Driven Photocatalytic CO 2 Conversion in Pure Water. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305900. [PMID: 37786266 DOI: 10.1002/smll.202305900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/11/2023] [Indexed: 10/04/2023]
Abstract
Designing photocatalysts with efficient charge transport and abundant active sites for photocatalytic CO2 reduction in pure water is considered a potential approach. Herein, a nickel-phthalocyanine containing Ni-N4 active sites-based conjugated microporous polymer (NiPc-CMP), offering highly dispersed metal active sites, satisfactory CO2 adsorption capability, and excellent light harvesting properties, is engineered as a photocatalyst. By virtue of the covalently bonded bridge, an atomic-scale interface between the NiPc-CMP/Bi2 WO6 Z-scheme heterojunction with strong chemical interactions is obtained. The interface creates directional charge transport highways and retains a high redox potential, thereby enhancing the photoexcited charge carrier separation and photocatalytic efficiency. Consequently, the optimal NiPc-CMP/Bi2 WO6 (NCB-3) achieves efficient photocatalytic CO2 reduction performance in pure water under visible-light irradiation without any sacrificial agent or photosensitizer, affording a CO generation rate of 325.9 µmol g-1 with CO selectivity of 93% in 8 h, outperforming those of Bi2 WO6 and NiPc-CMP, individually. Experimental and theoretical calculations reveal the promotion of interfacial photoinduced electron separation and the role of Ni-N4 active sites in photocatalytic reactions. This study presents a high-performance CMP-based Z-scheme heterojunction with an effective interfacial charge-transfer route and rich metal active sites for photocatalytic CO2 conversion.
Collapse
Affiliation(s)
- Shanshan Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Haihan Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Yuwen Wang
- Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan, 250022, China
| | - Shuai Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Lina Zhang
- Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan, 250022, China
| | - Peihua Zhu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Chaomin Gao
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| |
Collapse
|
22
|
García-Gil S, Rodríguez-Luna A, Ávila-Román J, Rodríguez-García G, del Río RE, Motilva V, Gómez-Hurtado MA, Talero E. Photoprotective Effects of Two New Morin-Schiff Base Derivatives on UVB-Irradiated HaCaT Cells. Antioxidants (Basel) 2024; 13:134. [PMID: 38275659 PMCID: PMC10813227 DOI: 10.3390/antiox13010134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/12/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
Ultraviolet (UV) radiation harms the skin, causing oxidative damage, inflammation, and disruption of the skin's barrier function. There is considerable interest in identifying new natural ingredients with antioxidant and anti-inflammatory properties to serve as adjuvants in sunscreens. The flavonoid morin (1) can undergo structural modifications to enhance its biological properties. The aim of this study was to synthesize two new morin-Schiff base derivatives, morin oxime (2) and morin semicarbazone (3), comparing their photoprotective effects with that of the parent compound on UVB-exposed HaCaT keratinocytes. The chemical structure of the novel compounds was revealed based on spectroscopic data analysis. Our findings demonstrated that derivatives 2 and 3 enhanced the light absorption capability in the UV-visible (vis) range compared to 1. Tested compounds exhibited a higher scavenger capacity than Trolox. Moreover, pre-treatment with all compounds protected HaCaT cells from UVB-induced cell death. Compound 3 demonstrated the strongest antioxidant effect, reducing reactive oxygen species (ROS) generation and, subsequently, malondialdehyde (MDA) levels. Additionally, compounds 2 and 3 exhibited greater anti-inflammatory effects than compound 1, significantly reducing interleukin (IL)-6 production levels at all tested concentrations. These findings have demonstrated, for the first time, a promising photoprotective activity of two new Schiff base derivatives and suggest their use as natural sunscreen ingredients.
Collapse
Affiliation(s)
- Sara García-Gil
- Department of Pharmacology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain; (S.G.-G.); (V.M.); (E.T.)
| | - Azahara Rodríguez-Luna
- Department of Pharmacology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain; (S.G.-G.); (V.M.); (E.T.)
- Faculty of Health Sciences, Universidad Loyola Andalucía, 41704 Seville, Spain
| | - Javier Ávila-Román
- Department of Pharmacology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain; (S.G.-G.); (V.M.); (E.T.)
| | - Gabriela Rodríguez-García
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia 58030, Michoacán, Mexico; (G.R.-G.); (R.E.d.R.); (M.A.G.-H.)
| | - Rosa E. del Río
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia 58030, Michoacán, Mexico; (G.R.-G.); (R.E.d.R.); (M.A.G.-H.)
| | - Virginia Motilva
- Department of Pharmacology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain; (S.G.-G.); (V.M.); (E.T.)
| | - Mario A. Gómez-Hurtado
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia 58030, Michoacán, Mexico; (G.R.-G.); (R.E.d.R.); (M.A.G.-H.)
| | - Elena Talero
- Department of Pharmacology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain; (S.G.-G.); (V.M.); (E.T.)
| |
Collapse
|
23
|
Li Y, Chen S, Zhang M, Ma X, Zhao J, Ji Y. Novel Injectable, Self-Healing, Long-Effective Bacteriostatic, and Healed-Promoting Hydrogel Wound Dressing and Controlled Drug Delivery Mechanisms. ACS APPLIED MATERIALS & INTERFACES 2024; 16:2140-2153. [PMID: 38178630 DOI: 10.1021/acsami.3c15705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Multivalent ion cross-linking has been used to form hydrogels between sodium alginate (SA) and hyaluronic acid (HA) in previous studies. However, more stable and robust covalent cross-linking is rarely reported. Herein, we present a facile approach to fabricate a SA and HA hydrogel for wound dressings with injectable, good biocompatibility, and high ductility. HA was first reacted with ethylenediamine to graft an amino group. Then, it was cross-linked with oxidized SA with dialdehyde to form hydrogel networks. The dressing can effectively promote cell migration and wound healing. To increase the antibacterial property of the dressing, we successfully loaded tetracycline hydrochloride into the hydrogel as a model drug. The drug can be released slowly in the alkaline environment of chronic wounds, and the hydrogel releases drugs again in the more acidic environment with wound healing, achieving a long-term antibacterial effect. In addition, one-dimensional partial differential equations based on Fickian diffusion with time-varying diffusion coefficients and hydrogel thicknesses were used to model the entire complex drug release process and to predict drug release.
Collapse
Affiliation(s)
- Yufeng Li
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Shanqi Chen
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Mingdong Zhang
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Xiang Ma
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jian Zhao
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Yuanhui Ji
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| |
Collapse
|
24
|
Tahir MN, Ashfaq M, Munawar KS, Khan AU, Asghar MA, Ahamad T, Ojha SC. Synthesis, Characterizations, Hirshfeld Surface Analysis, DFT, and NLO Study of a Schiff Base Derived from Trifluoromethyl Amine. ACS OMEGA 2024; 9:2325-2338. [PMID: 38250356 PMCID: PMC10795116 DOI: 10.1021/acsomega.3c05199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/05/2023] [Accepted: 12/15/2023] [Indexed: 01/23/2024]
Abstract
We synthesized an imine-based (Schiff base) crystalline organic chromophore, i.e., (E)-2-ethoxy-6-(((3-(trifluoromethyl)phenyl)imino)methyl)phenol (ETPMP), and explored its nonlinear optical (NLO) properties. The crystalline structure of ETPMP was determined by the XRD technique and equated with the associated structures utilizing a Cambridge Structural Database search. The supramolecular assembly of ETPMP was investigated regarding intermolecular interactions and short contacts by Hirshfeld surface analysis. Void analysis was performed to check the mechanical response of the crystal. Supramolecular assembly was further inspected by interaction energy calculations that were performed with the B3LYP/6-31G(d,p) functional. Besides this, the NLO properties of ETPMP and other already reported crystal TFMOS were explored utilizing the M06/6-31G(d,p) functional of the DFT approach. An excellent agreement was observed between XRD and DFT results of geometric parameters of the above-mentioned crystals. Narrow band gap along with bathochromic shift (3.489 eV and 317.225 nm, respectively) were investigated in TFMOS than that of ETPMP. Owing to these unique properties, TFMOS possesses higher linear (⟨a⟩ = 3.835 × 10-23 esu) and nonlinear (γtot. = 1.346 × 10-34 esu) response as compared to ETPMP. The outcomes explicitly show the higher nonlinearity in TFMOS, highlighting its importance in potential NLO applications.
Collapse
Affiliation(s)
| | - Muhammad Ashfaq
- Department of Physics, University of Sargodha, Sargodha 40100, Pakistan
| | - Khurram Shahzad Munawar
- Institute of Chemistry, University of Sargodha, Sargodha 40100, Pakistan
- Department of Chemistry, University of Mianwali, Mianwali 42200, Pakistan
| | - Ahsan Ullah Khan
- Department of Physics, University of Sargodha, Sargodha 40100, Pakistan
| | - Muhammad Adnan Asghar
- Department of Chemistry, Division of Science and Technology, University of Education Lahore, Lahore 54770, Pakistan
| | - Tansir Ahamad
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Suvash Chandra Ojha
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
25
|
Coandă M, Limban C, Nuță DC. Small Schiff Base Molecules-A Possible Strategy to Combat Biofilm-Related Infections. Antibiotics (Basel) 2024; 13:75. [PMID: 38247634 PMCID: PMC10812491 DOI: 10.3390/antibiotics13010075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024] Open
Abstract
Microorganisms participating in the development of biofilms exhibit heightened resistance to antibiotic treatment, therefore infections involving biofilms have become a problem in recent years as they are more difficult to treat. Consequently, research efforts are directed towards identifying novel molecules that not only possess antimicrobial properties but also demonstrate efficacy against biofilms. While numerous investigations have focused on antimicrobial capabilities of Schiff bases, their potential as antibiofilm agents remains largely unexplored. Thus, the objective of this article is to present a comprehensive overview of the existing scientific literature pertaining to small molecules categorized as Schiff bases with antibiofilm properties. The survey involved querying four databases (Web of Science, ScienceDirect, Scopus and Reaxys). Relevant articles published in the last 10 years were selected and categorized based on the molecular structure into two groups: classical Schiff bases and oximes and hydrazones. Despite the majority of studies indicating a moderate antibiofilm potential of Schiff bases, certain compounds exhibited a noteworthy effect, underscoring the significance of considering this type of molecular modeling when seeking to develop new molecules with antibiofilm effects.
Collapse
Affiliation(s)
| | - Carmen Limban
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Str., 020950 Bucharest, Romania; (M.C.); (D.C.N.)
| | | |
Collapse
|
26
|
Azzouzi M, Azougagh O, Ouchaoui AA, El hadad SE, Mazières S, Barkany SE, Abboud M, Oussaid A. Synthesis, Characterizations, and Quantum Chemical Investigations on Imidazo[1,2- a]pyrimidine-Schiff Base Derivative: ( E)-2-Phenyl- N-(thiophen-2-ylmethylene)imidazo[1,2- a]pyrimidin-3-amine. ACS OMEGA 2024; 9:837-857. [PMID: 38222514 PMCID: PMC10785637 DOI: 10.1021/acsomega.3c06841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/27/2023] [Accepted: 11/17/2023] [Indexed: 01/16/2024]
Abstract
In this study, (E)-2-phenyl-N-(thiophen-2-ylmethylene)imidazo[1,2-a]pyrimidin-3-amine (3) is synthesized, and detailed spectral characterizations using 1H NMR, 13C NMR, mass, and Fourier transform infrared (FT-IR) spectroscopy were performed. The optimized geometry was computed using the density functional theory method at the B3LYP/6-311++G(d,p) basis set. The theoretical FT-IR and NMR (1H and 13C) analysis are agreed to validate the structural assignment made for (3). Frontier molecular orbitals, molecular electrostatic potential, Mulliken atomic charge, electron localization function, localized orbital locator, natural bond orbital, nonlinear optical, Fukui functions, and quantum theory of atoms in molecules analyses are undertaken and meticulously interpreted, providing profound insights into the molecular nature and behaviors. In addition, ADMET and drug-likeness studies were carried out and investigated. Furthermore, molecular docking and molecular dynamics simulations have been studied, indicating that this is an ideal molecule to develop as a potential vascular endothelial growth factor receptor-2 inhibitor.
Collapse
Affiliation(s)
- Mohamed Azzouzi
- Laboratory
of Molecular Chemistry, Materials and Environment (LCM2E), Department
of Chemistry, Multidisciplinary Faculty of Nador, University Mohamed I, Nador 60700, Morocco
| | - Omar Azougagh
- Laboratory
of Molecular Chemistry, Materials and Environment (LCM2E), Department
of Chemistry, Multidisciplinary Faculty of Nador, University Mohamed I, Nador 60700, Morocco
| | - Abderrahim Ait Ouchaoui
- Laboratory
of Medical Biotechnology (MedBiotech), Bionova Research Center, Medical
and Pharmacy School, Mohammed V University, Agdal, Rabat B.P 8007, Morocco
| | - Salah eddine El hadad
- Laboratory
of Medical Biotechnology (MedBiotech), Bionova Research Center, Medical
and Pharmacy School, Mohammed V University, Agdal, Rabat B.P 8007, Morocco
| | - Stéphane Mazières
- Laboratory
of IMRCP, University Paul Sabatier, CNRS
UMR 5623, 118 route de Narbonne, Toulouse 31062, France
| | - Soufian El Barkany
- Laboratory
of Molecular Chemistry, Materials and Environment (LCM2E), Department
of Chemistry, Multidisciplinary Faculty of Nador, University Mohamed I, Nador 60700, Morocco
| | - Mohamed Abboud
- Catalysis
Research Group (CRG), Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Adyl Oussaid
- Laboratory
of Molecular Chemistry, Materials and Environment (LCM2E), Department
of Chemistry, Multidisciplinary Faculty of Nador, University Mohamed I, Nador 60700, Morocco
| |
Collapse
|
27
|
Gordon AT, Hosten EC, van Vuuren S, Ogunlaja AS. Copper(II)-photocatalyzed Hydrocarboxylation of Schiff bases with CO 2: antimicrobial evaluation and in silico studies of Schiff bases and unnatural α-amino acids. J Biomol Struct Dyn 2024:1-14. [PMID: 38192072 DOI: 10.1080/07391102.2024.2301765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 12/30/2023] [Indexed: 01/10/2024]
Abstract
We synthesized and characterized two copper(II) complexes: [CuL2Cl]Cl and [CuL'2Cl]Cl, where L = 2,2'-bipyridine and L' = 4,4'-dimethyl-2,2'-bipyridine. We evaluated their photocatalytic hydrocarboxylation properties on a series of synthesized Schiff bases (SBs): (E)-1-(4-((5-bromo-2-hydroxybenzylidene)amino)phenyl)ethanone (SB1), (E)-N-(4-(dimethylamino)benzylidene)benzo[d]thiazol-2-amine (SB2), (E)-4-Bromo-2-((thiazol-2-ylimino)methyl)phenol (SB3), and (E)-4-((5-bromo-2-hydroxybenzylidene)amino)-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one (SB4). Under mild photocatalytic reaction conditions (room temperature, 1 atm CO2, 30-watt Blue LED light), the derivatives of α-amino acids UAA1-4 were obtained with yields ranging from 5% to 44%. Experimental results demonstrated that [CuL2Cl]Cl exhibited superior photocatalytic efficiency compared to [CuL'2Cl]Cl, attributed to favourable electronic properties. In silico studies revealed strong binding strengths with E. faecalis DHFR (4M7U) for docked Schiff bases (SB) and unnatural α-amino acids (UAAs). In vitro studies further demonstrated significant antimicrobial and antifungal activity for SB2, SB3, and SB4, while none of the synthesized UAAs exhibited such properties, primarily due to the electronic and binding properties of these molecules.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Allen T Gordon
- Department of Chemistry, Nelson Mandela University, Port Elizabeth, South Africa
| | - Eric C Hosten
- Department of Chemistry, Nelson Mandela University, Port Elizabeth, South Africa
| | - Sandy van Vuuren
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, Parktown, South Africa
| | - Adeniyi S Ogunlaja
- Department of Chemistry, Nelson Mandela University, Port Elizabeth, South Africa
| |
Collapse
|
28
|
Park LH, Leitao EM, Weber CC. Green imine synthesis from amines using transition metal and micellar catalysis. Org Biomol Chem 2024; 22:202-227. [PMID: 38018443 DOI: 10.1039/d3ob01730c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Imines are a versatile class of chemicals with applications in pharmaceuticals and as synthetic intermediates. While imines are conventionally synthesized via aldehyde-amine condensation, their direct preparation from amines can avoid the need for the independent preparation of the aldehyde coupling partner and associated constraints with regard to aldehyde storage and purification. The direct preparation of imines from amines typically utilizes transition metal catalysis and is often well-aligned with green chemistry principles. This review provides a comprehensive overview of transition metal catalysed imine synthesis, with a particular focus on the copper-catalyzed oxidative coupling of amines. The emerging application of micellar catalysis for imine synthesis is also surveyed due to its potential to avoid the use of hazardous solvents and intensify these reactions through reduced catalyst loadings and locally increased reactant concentrations. Future directions relating to the confluence of these two areas are proposed towards the more sustainable preparation of imines.
Collapse
Affiliation(s)
- Luke H Park
- School of Chemical Sciences, The University of Auckland, Private Bag, 92019, Auckland, 1142, New Zealand.
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Kelburn, Wellington, 6012, New Zealand
| | - Erin M Leitao
- School of Chemical Sciences, The University of Auckland, Private Bag, 92019, Auckland, 1142, New Zealand.
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Kelburn, Wellington, 6012, New Zealand
| | - Cameron C Weber
- School of Chemical Sciences, The University of Auckland, Private Bag, 92019, Auckland, 1142, New Zealand.
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Kelburn, Wellington, 6012, New Zealand
| |
Collapse
|
29
|
Puentes-Díaz N, Chaparro D, Reyes-Marquez V, Morales-Morales D, Flores-Gaspar A, Alí-Torres J. Computational Evaluation of the Potential Pharmacological Activity of Salen-Type Ligands in Alzheimer's Disease. J Alzheimers Dis 2024; 99:S383-S396. [PMID: 37483007 DOI: 10.3233/jad-230542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Background Alzheimer's disease (AD) is the most common form of dementia representing from 60% to 70% of the cases globally. It is a multifactorial disease that, among its many pathological characteristics, has been found to provoke the metal ion dysregulation in the brain, along with an increase in the oxidative stress. There is proof that metallic complexes formed by the amyloid-β peptide (Aβ) and extraneuronal copper can catalyze the production of reactive oxygen species, leading to an increase in oxidative stress, promoting neuronal death. Due to this interaction, bioavailable copper has become an important redox active target to consider within the search protocols of multifunctional agents for AD's treatment. Objective In this study, we examined by using bioinformatics and electronic structure calculations the potential application of 44 salen-type copper chelating ligands and 12 further proposed molecules as possible multifunctional agents in the context of AD. Methods The candidates were evaluated by combining bioinformatic tools and electronic structure calculations, which allowed us to classify the molecules as potential antioxidants, redistributor-like compounds, and the newly proposed suppressor mechanism. Results This evaluation demonstrate that salen-type ligands exhibit properties suitable for interfering in the chain of copper-induced oxidative stress reactions present in AD and potential redistributor and suppressor activity for copper ions. Finally, a novel set of plausible candidates is proposed and evaluated. Conclusion According to the evaluated criteria, a subset of 13 salen-type candidates was found to exhibit promissory pharmacological properties in the AD framework and were classified according to three plausible action mechanisms.
Collapse
Affiliation(s)
- Nicolás Puentes-Díaz
- Departamento de Química, Universidad Nacionalde Colombia -Sede Bogotá, Bogotá, Colombia
| | - Diego Chaparro
- Departamento de Química, Universidad Nacionalde Colombia -Sede Bogotá, Bogotá, Colombia
- Departamento de Química, Universidad Militar Nueva Granada, Cajicá, Colombia
| | - Viviana Reyes-Marquez
- Departamentode Ciencias Químico-Biológicas, Universidad de Sonora, Luis Encinas y Rosales S/N, Hermosillo, México
| | - David Morales-Morales
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad de México, México
| | - Areli Flores-Gaspar
- Departamento de Química, Universidad Militar Nueva Granada, Cajicá, Colombia
| | - Jorge Alí-Torres
- Departamento de Química, Universidad Nacionalde Colombia -Sede Bogotá, Bogotá, Colombia
| |
Collapse
|
30
|
Jorge J, Del Pino Santos KF, Timóteo F, Vasconcelos RRP, Ayala Cáceres OI, Granja IJA, de Souza DM, Frizon TEA, Di Vaccari Botteselle G, Braga AL, Saba S, Rashid HU, Rafique J. Recent Advances on the Antimicrobial Activities of Schiff Bases and their Metal Complexes: An Updated Overview. Curr Med Chem 2024; 31:2330-2344. [PMID: 36823995 DOI: 10.2174/0929867330666230224092830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/12/2022] [Accepted: 12/29/2022] [Indexed: 02/25/2023]
Abstract
Schiff bases represent a valuable class of organic compounds, synthesized via condensation of primary amines with ketones or aldehydes. They are renowned for possessing innumerable applications in agricultural chemistry, organic synthesis, chemical and biological sensing, coating, polymer and resin industries, catalysis, coordination chemistry, and drug designing. Schiff bases contain imine or azomethine (-C=N-) functional groups which are important pharmacophores for the design and synthesis of lead bioactive compounds. In medicinal chemistry, Schiff bases have attracted immense attention due to their diverse biological activities. This review aims to encompass the recent developments on the antimicrobial activities of Schiff bases. The article summarizes the antibacterial, antifungal, antiviral, antimalarial, and antileishmanial activities of Schiff bases reported since 2011.
Collapse
Affiliation(s)
- Juliana Jorge
- Instituto de Química, Universidade Federal do Mato Grosso do Sul, Campo Grande, 79074-460, MS, Brazil
| | | | - Fernanda Timóteo
- Instituto de Química, Universidade Federal do Mato Grosso do Sul, Campo Grande, 79074-460, MS, Brazil
| | | | | | | | - David Monteiro de Souza
- Instituto de Química, Universidade Federal do Mato Grosso do Sul, Campo Grande, 79074-460, MS, Brazil
| | - Tiago Elias Allievi Frizon
- Department of Energy and Sustainability, Universidade Federal de Santa Catarina - UFSC, Campus Araranguá, Araranguá, 88905-120, SC, Brazil
| | | | - Antonio Luiz Braga
- Departamento de Química, Universidade Federal de Santa Catarina, 88040-970, Florianópolis, SC, Brazil
| | - Sumbal Saba
- Instituto de Química, Universidade Federal de Goiás - UFG, Goiânia, 74690-900, GO, Brazil
| | - Haroon Ur Rashid
- Instituto de Química, Universidade Federal do Mato Grosso do Sul, Campo Grande, 79074-460, MS, Brazil
- Departamento de Química, Universidade Federal de Santa Catarina, 88040-970, Florianópolis, SC, Brazil
| | - Jamal Rafique
- Instituto de Química, Universidade Federal do Mato Grosso do Sul, Campo Grande, 79074-460, MS, Brazil
- Instituto de Química, Universidade Federal de Goiás - UFG, Goiânia, 74690-900, GO, Brazil
| |
Collapse
|
31
|
Presenjit, Chaturvedi S, Singh A, Gautam D, Singh K, Mishra AK. An Insight into the Effect of Schiff Base and their d and f Block Metal Complexes on Various Cancer Cell Lines as Anticancer Agents: A Review. Anticancer Agents Med Chem 2024; 24:488-503. [PMID: 38279753 DOI: 10.2174/0118715206280314231201111358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/24/2023] [Accepted: 11/02/2023] [Indexed: 01/28/2024]
Abstract
Over the last few decades, an alarming rise in the percentage of individuals with cancer and those with multi-resistant illnesses has forced researchers to explore possibilities for novel therapeutic approaches. Numerous medications currently exist to treat various disorders, and the development of small molecules as anticancer agents has considerable potential. However, the widespread prevalence of resistance to multiple drugs in cancer indicates that it is necessary to discover novel and promising compounds with ideal characteristics that could overcome the multidrug resistance issue. The utilisation of metallo-drugs has served as a productive anticancer chemotherapeutic method, and this approach may be implemented for combating multi-resistant tumours more successfully. Schiff bases have been receiving a lot of attention as a group of compounds due to their adaptable metal chelating abilities, innate biologic properties, and versatility to tweak the structure to optimise it for a specific biological purpose. The biological relevance of Schiff base and related complexes, notably their anticancer effects, has increased in their popularity as bio-inorganic chemistry has progressed. As a result of learning about Schiff bases antitumor efficacy against multiple cancer cell lines and their complexes, researchers are motivated to develop novel, side-effect-free anticancer treatments. According to study reports from the past ten years, we are still seeking a powerful anticancer contender. This study highlights the potential of Schiff bases, a broad class of chemical molecules, as potent anticancer agents. In combination with other anticancer strategies, they enhance the efficacy of treatment by elevating the cytotoxicity of chemotherapy, surmounting drug resistance, and promoting targeted therapy. Schiff bases also cause cancer cell DNA repair, improve immunotherapy, prevent angiogenesis, cause apoptosis, and lessen the side effects of chemotherapy. The present review explores the development of potential Schiff base and their d and f block metal complexes as anticancer agents against various cancer cell lines.
Collapse
Affiliation(s)
- Presenjit
- Radiological Nuclear and Imaging Sciences, Institute of Nuclear Medicine & Allied Sciences, DRDO, Timarpur, 110054, Delhi, India
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, 226025, Lucknow, India
| | - Shubhra Chaturvedi
- Radiological Nuclear and Imaging Sciences, Institute of Nuclear Medicine & Allied Sciences, DRDO, Timarpur, 110054, Delhi, India
| | - Akanksha Singh
- Department of Zoology, Swami Shraddhanand College, University of Delhi, 110007, India
| | - Divya Gautam
- Radiological Nuclear and Imaging Sciences, Institute of Nuclear Medicine & Allied Sciences, DRDO, Timarpur, 110054, Delhi, India
- Centre of Nanotechnology, Indian Institute of Technology, Roorkee, 247667, Uttarakhand, India
| | - Kaman Singh
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, 226025, Lucknow, India
| | - Anil Kumar Mishra
- Radiological Nuclear and Imaging Sciences, Institute of Nuclear Medicine & Allied Sciences, DRDO, Timarpur, 110054, Delhi, India
| |
Collapse
|
32
|
Hussain S, Berry S. A review study on green synthesis of chitosan derived schiff bases and their applications. Carbohydr Res 2024; 535:109002. [PMID: 38065043 DOI: 10.1016/j.carres.2023.109002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 01/14/2024]
Abstract
Chitosan is a bio-degradable, bio-compatible, non-toxic, and renewable biopolymer. The reactive amino group of chitosan has gained importance because using these amino groups can help achieve the different types of structural modification in chitosan. Chemical modification of chitosan via imine functionalization results in the formation of a chitosan Schiff base. The present review covers the green synthesis of chitosan Schiff bases using non-conventional green methods such as microwave irradiation, green solvent, ultrasound irradiation, and one-pot synthesis. These methods are energy-efficient and greener versions of the conventional condensation methods. Scientists have paid significant attention to the chitosan Schiff base because of its unique properties and versatility. These molecules display various biological applications, including antioxidant, antimicrobial, anticancer, antibacterial, and anti-fungal. In addition to biological applications, chitosan Schiff base also has other applications like corrosion inhibition, catalysis, metal ion adsorption, and as a sensor. Available literature particularly shows the different methods for the synthesis of chitosan Schiff bases and their different applications. This review gives detailed insight regarding sustainable approaches to the synthesis of chitosan derived Schiff bases and their applications in various emerging fields.
Collapse
Affiliation(s)
- Shazia Hussain
- Department of Chemistry and Chemical Sciences, Central University of Himachal Pradesh, Shahpur Campus, Kangra, 176206, India
| | - Shiwani Berry
- Department of Chemistry and Chemical Sciences, Central University of Himachal Pradesh, Shahpur Campus, Kangra, 176206, India.
| |
Collapse
|
33
|
Sahu R, Shah K. Schiff Bases: A Captivating Scaffold with Potential Anticonvulsant Activity. Mini Rev Med Chem 2024; 24:1632-1650. [PMID: 38629363 DOI: 10.2174/0113895575302197240408121537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/14/2024] [Accepted: 03/24/2024] [Indexed: 08/28/2024]
Abstract
One of the most important organic compounds, also known as a Schiff base, imine, or azomethine, has been associated with several biological processes. The group is a component of both natural or synthetic chemicals and functions as both a precursor and an intermediary in the synthesis of therapeutically active substances. The review highlights the various non-metal Schiff bases' structure-activity relationship (SAR) studies, general model, docking, and design approach for anticonvulsant actions. Schiff bases serve as linkers in numerous synthetic compounds with a variety of activities, according to the findings of several investigations. As a result, the current review will give readers a thorough understanding of the key ideas put forth by different researchers regarding the anticonvulsant properties of Schiff bases. It will serve as a valuable information source for those planning to synthesize new anticonvulsant molecules that contain Schiff bases as pharmacophores or biologically active moieties.
Collapse
Affiliation(s)
- Rakesh Sahu
- Department of Pharmaceutical Chemistry, School of Medical and Allied Sciences, Galgotias University, Greater Noida-201310, India
- Department of Pharmaceutical Chemistry, Institute of Pharmaceutical Research, GLA University, Mathura 281406, India
| | - Kamal Shah
- Department of Pharmaceutical Chemistry, Institute of Pharmaceutical Research, GLA University, Mathura 281406, India
| |
Collapse
|
34
|
Nagaraju M, Karthik CS, Hema MK, Chethan BS, Ramalingam RJ, Karnan M, Lokanath NK. Perusal on the role of DMF solvent and hydrogen bonding in the formation of 1D polymeric chains in mixed ligand Ni(II) complex as an anticancer agent: a computational approach. J Biomol Struct Dyn 2023:1-19. [PMID: 38095358 DOI: 10.1080/07391102.2023.2291543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/23/2023] [Indexed: 09/13/2024]
Abstract
A novel mixed ligand Ni(II) metal complex has been investigated for the modification in structural conformation, coordination bond, and noncovalent interactions. The novel Ni(II) metal complex [Ni(TFPB)2(1,10-Ph)(DMF)] has been synthesized and structurally characterized, which featured six coordination with three bidentate ligands connected through oxygen and nitrogen atoms. The single-crystal X-ray analysis showed that the compound possessed octahedral geometry and C-H…F, C-H…O, and π…π intermolecular interactions resulting in the formation of supramolecular architecture contributed significantly towards the crystal packing and molecular stability. Hirshfeld surface analysis was carried out to validate various intermolecular interactions. Further, the 3D structural topologies were visualized using energy framework analysis. To explore the coordination stability and chemically reactive parameters of the novel Ni(II) complex, the electronic structure was optimized using density functional theory calculations. The natural bond orbital analysis revealed the various hyperconjugative interactions exhibited by the complex. In addition, the complex was screened for in silico studies to understand the antitumoricidal potential of the novel Ni(II) complex. Molecular docking studies were also performed against three targeted proteins (PDB ID: 6H0W, 6NE5, and 6E91) to investigate the binding mode and protein-ligand interactions. These results are further analyzed by molecular dynamic simulation to confirm the best possible interactions and stability in the active site of the targeted proteins with a simulation period of 100 ns.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Maithra Nagaraju
- Department of Studies in Physics, University of Mysore, Manasagangotri, Mysuru, Karnataka, India
| | - C S Karthik
- Department of Chemistry, SJCE, JSS Science and Technology University, Mysuru, Karnataka, India
| | - M K Hema
- Department of Studies in Physics, University of Mysore, Manasagangotri, Mysuru, Karnataka, India
| | - B S Chethan
- Department of Studies in Physics, University of Mysore, Manasagangotri, Mysuru, Karnataka, India
| | - R Jothi Ramalingam
- Department of Chemistry, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Muthusamy Karnan
- Grassland and Forage division, National Institute of Animal Science, Rural Development Administration, Cheonan-si, South Korea
| | - N K Lokanath
- Department of Studies in Physics, University of Mysore, Manasagangotri, Mysuru, Karnataka, India
| |
Collapse
|
35
|
Das G, Nayak S, Kotness DK, Das P. A biomass-derived dual crosslinked DNA-nanoparticle hydrogel for visible light-induced photodynamic bacterial inactivation. SOFT MATTER 2023; 19:9511-9519. [PMID: 38047904 DOI: 10.1039/d3sm01400b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Sustainability in developing novel nanomaterials (NPs) from biomass sources is a challenging proposition mainly due to the difficulty of infusing or retaining desired chemical functionalities in the biomass substrate. In this study, we demonstrate the synthesis of DNA-nanoparticles (DNA-NP) from onion genomic DNA as a plant biomass source through controlled hydrothermal pyrolysis to retain functional groups in the NPs for predictable downstream chemical transformations. A dual crosslinking scheme was introduced that involves the DNA-NP to form a hydrogel. Chemical crosslinking was achieved through the formation of a Schiff base between the -CHO groups of glutaraldehyde and the amine functionality present on the DNA-NP surface as well as in the nucleobases of the dangling DNA strands of DNA-NP. Simultaneous physical entanglement was attained through hybridization-mediated self-assembly of the dangling DNA strands of the DNA-NP with untransformed onion genomic DNA. As a corollary of the dual crosslinking, the resulting hydrogel not only displayed remarkable mechanical strength but also showed self-healing properties. The ability of the DNA-NP to generate reactive oxygen species (ROS) with visible light irradiation is translated to the hydrogel, making the system potent for biofilm destruction. The high loading efficiency of the model drug ampicillin sodium (Amp) in the hydrogel was achieved which was released in four days. This hints towards the application of the hydrogel through combination antibiotic-antibacterial photodynamic treatment (APDT) as demonstrated here with both Gram-positive and Gram-negative bacteria.
Collapse
Affiliation(s)
- Gourab Das
- Department of Chemistry, Indian Institute of Technology Patna, Bihta, Patna, Bihar, 801106, India.
| | - Suman Nayak
- Department of Chemistry, Indian Institute of Technology Patna, Bihta, Patna, Bihar, 801106, India.
| | - Dinesh Kumar Kotness
- Department of Chemistry, Indian Institute of Technology Patna, Bihta, Patna, Bihar, 801106, India.
| | - Prolay Das
- Department of Chemistry, Indian Institute of Technology Patna, Bihta, Patna, Bihar, 801106, India.
| |
Collapse
|
36
|
Hamurcu F, Özmen ÜÖ, Şentürk OS, Kaya K, Adem S, Erden BA, Celebioglu HU, Erden Y, Taslimi P. Biological Effects and Crystal X-Ray Study of Novel Schiff Base Containing Pentafluorophenyl Hydrazine: In Vitro and in Silico Studies. Chem Biodivers 2023; 20:e202301132. [PMID: 37743325 DOI: 10.1002/cbdv.202301132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/24/2023] [Accepted: 09/24/2023] [Indexed: 09/26/2023]
Abstract
A novel Schiff base namely 3,5-di-tert-butyl-6-((2-(perfluorophenyl)hydrazono)methyl)phenol was successfully synthesized and characterized using FT-IR and 1 H-NMR, 13 C-NMR, and 19 F-NMR. The crystal structure analysis of the Schiff base compound was also characterized with single crystal X-ray diffraction studies and supported the spectroscopic results. The cytotoxicity, anti-bacterial properties, and enzyme inhibition of the compound were also investigated. The molecular docking studies were performed in order to explain the interactions of the synthesized compound with target enzymes. The newly synthesized hydrazone derivative Schiff base compound showed high cellular toxicity on MCF-7 and PC-3 cells. Also, this compound caused low antibacterial effect on E. coli and S. aureus. Besides, the compound exhibited the inhibitory effect against pancreatic cholesterol esterase and carbonic anhydrase isoenzyme I, II with IC50 values 63, 99, and 188 μM, respectively. Consequently, it has been determined that the prepared Schiff base is an active compound in terms of cytotoxicity, enzyme inhibition, and anti-bacterial properties. These results provide preliminary information for some biological features of the compound and can play a major role in drug applications of the Schiff base compound.
Collapse
Affiliation(s)
- Fatma Hamurcu
- Bartin University, Faculty of Science, Department of Molecular Biology and Genetics, 74110, Bartin, Turkey
| | - Ümmühan Özdemir Özmen
- Gazi University, Faculty of Science, Department of Chemistry, Ankara, 06500, Ankara/, Turkey
| | - Ozan Sanlı Şentürk
- Istanbul Technical University, Faculty of Sciences, Department of Chemistry, 34467, Istanbul, Turkey
| | - Kerem Kaya
- Istanbul Technical University, Faculty of Sciences, Department of Chemistry, 34467, Istanbul, Turkey
| | - Sevki Adem
- Cankırı Karatekin University, Faculty of Science, Department of Chemistry, 06500, Cankırı, Turkey
| | - Büşra Aksoy Erden
- Bartin University, Central Research Laboratory Application and Research Center, 74110, Bartin, Turkey
| | - Hasan Ufuk Celebioglu
- Bartin University, Faculty of Science, Department of Biotechnology, 74110, Bartin, Turkey
| | - Yavuz Erden
- Bartin University, Faculty of Science, Department of Molecular Biology and Genetics, 74110, Bartin, Turkey
| | - Parham Taslimi
- Bartin University, Faculty of Science, Department of Biotechnology, 74110, Bartin, Turkey
| |
Collapse
|
37
|
Kenawy ER, Ghazy AR, Al-Hossainy AF, Bishr M, Azzam MM. Synthesis, electrospinning, and molecular docking of poly(methyl methacrylate) Schiff bases and their applications as polymeric antimicrobial agents and for dye removal. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:109250-109265. [PMID: 37759061 PMCID: PMC10622379 DOI: 10.1007/s11356-023-30043-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023]
Abstract
The antibacterial activity of a variety of modified poly(methyl methacrylate) Schiff bases against common microbial infections and removal of methylene blue (MB) dye were screened. The Schiff bases were synthesized from the reaction of the modified (PMMA) with vanillin (PMMA)Van and cinnamaldehyde (PMMA)Cin. By using Fourier transformer infrared (FT-IR), X-ray diffraction analysis (XRD), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM), the structures of the nanofibers of the synthesized Schiff bases were confirmed. The modified Kirky-Bauer method was used to screen the antibacterial activities of all the obtained materials against various bacterial species, including gram-positive bacterial (Bacillus subtilis (4k1p), Staphylococcus aureus), Gram-negative bacteria (Escherichia coli (7ab3), Pseudomonas aeruginosa). Inhibition zones against gram-positive bacteria ranged in diameter from 7 to 14 mm, whereas for the Gram-negative bacteria, the inhibition zones found to be ranged between 6 and 13 mm. With a minimum bactericidal concentration (MBC) of 8 mg/mL and a minimum inhibitory concentration (MIC) of 2 mg/mL, (PMMA)Van shown the greatest antibacterial activity. Lastly, molecular docking research was done to better understand the interactions between this series' targets and inhibitors for (PMMA)Van and (PMMA)Cin (4k1p and 7ab3). Molecular modeling of these surface-adsorbed polymers indicated that (PMMA)Van binds more strongly with Nitrogen than does (PMMA)Cin through extra hydrogen-bonding interactions. All the developed materials were evaluated for the removal of 0.1 g/L methylene blue dye (MB) from an aqueous solution. The elimination percentage of MB dye ranged from 26.67% by using 0.05 g powder of (PMMA)Cin to 85.63% by employing 0.05 g nanofibers of (PMMA)Van.
Collapse
Affiliation(s)
- El-Refaie Kenawy
- Polymer Research Group, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Ahmed R Ghazy
- Laser Laboratory, Physics Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Ahmed F Al-Hossainy
- Chemistry Department, Faculty of Science, New Valley University, El-Kharga 72511, New Valley, Egypt
| | - Mohamed Bishr
- Polymer Research Group, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Mohamed M Azzam
- Polymer Research Group, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
38
|
Peng D, Shan J, Fan Z, Huang C, Chen H, Wu X. Mechanistic insights into the cinnamaldehyde modification of lignin for sustainable anti-fungal reagent. Int J Biol Macromol 2023; 249:125994. [PMID: 37506788 DOI: 10.1016/j.ijbiomac.2023.125994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/26/2023] [Accepted: 07/24/2023] [Indexed: 07/30/2023]
Abstract
The limited anti-fungal activity of enzymatic hydrolysis lignin (EHL) has been a challenge in its direct application as a bamboo preservative. To address this issue, the cinnamaldehyde modification of EHL was carried out to introduce anti-fungal structures into the lignin matrix, effectively enhancing its anti-fungal activity. The results demonstrated that the minimal inhibitory concentrations of the modified lignin (EHL-DC) against Aspergillus niger significantly improved from 16 mg/mL to 1 mg/mL, with comparable enhancements in anti-fungal activity against other fungi. As a result of the modification, the EHL-DC is more prone to interact with fungal cell membranes, contributing to a roughened, shrunken hyphal surface and a decrease in mycelial biomass. Multiple characterization methods were employed to better grapple with the EHL-DC chemical changes. The nitrogen content increased from 2.3 % to 8.3 %, and alterations in elemental compositions further support the proposed reaction mechanism and its role in enhancing EHL's anti-fungal activity. This study offers novel insights into the high-value utilization of enzymatic hydrolysis lignin based on green chemistry principles.
Collapse
Affiliation(s)
- Dandan Peng
- School of Chemical and Materials Engineering, National Engineering & Technology Research Center of Wood-Based Resources Comprehensive Utilization, Zhejiang A & F University, Hangzhou 311300, People's Republic of China
| | - Jingqun Shan
- School of Finance, Zhejiang University of Finance and Economics, Hangzhou 310018, People's Republic of China
| | - Zhiwei Fan
- School of Chemical and Materials Engineering, National Engineering & Technology Research Center of Wood-Based Resources Comprehensive Utilization, Zhejiang A & F University, Hangzhou 311300, People's Republic of China
| | - Caoxing Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Haili Chen
- School of Chemical and Materials Engineering, National Engineering & Technology Research Center of Wood-Based Resources Comprehensive Utilization, Zhejiang A & F University, Hangzhou 311300, People's Republic of China.
| | - Xinxing Wu
- School of Chemical and Materials Engineering, National Engineering & Technology Research Center of Wood-Based Resources Comprehensive Utilization, Zhejiang A & F University, Hangzhou 311300, People's Republic of China; Microbes and Insects Control Institute of Bio-based Materials, Zhejiang A&F University, Hangzhou 311300, People's Republic of China.
| |
Collapse
|
39
|
Asha S, Sandhya KS, Abhilash A, Achuthsankar NS, Suma S, Sudarsanakumar MR. Insights on the structural characteristics and molecular dynamic studies of methyl vanillin Schiff base bio-compounds. J Biomol Struct Dyn 2023:1-15. [PMID: 37771157 DOI: 10.1080/07391102.2023.2259492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 09/11/2023] [Indexed: 09/30/2023]
Abstract
A new crystalline form of Schiff base, N-cyclohexyl-1-(3,4-dimethoxyphenyl)methanimine (CHADMB) was obtained from methanolic solution of cylohexylamine and (methylvanillin) 3,4dimethoxybenzaldehyde. Single crystal X-ray diffraction study reveals that the compound crystallized in monoclinic crystal system with P21/c space group having four molecules per unit cell (Z = 4). Hirshfeld surface (HS) analysis and 2D fingerprint plots reveals that weak non-covalent interactions are responsible for crystal packing. The UV-Vis spectroscopy study reveals that the optical band gap of the compound is 4.25 eV. The dielectric properties were studied as a function of frequency at room temperature and the results show that these properties can be exploited for optoelectronic applications. Thermal stability of the compound is revealed by thermogravimetric and differential thermogravimetric analysis. The in vitro antimicrobial activity against Gram negative (E. coli and P. aeruginosa and Gram positive (S. aureus ) bacterial strains and two fungal strains (C. albicans and A. niger) were studied by agar well diffusion method. It is found that the Schiff base is inhibiting the growth of the tested species to varying degrees. Molecular docking studies indicate that alkyl-pi and pi-pi weak interactions enhance the binding affinity of Schiff base-protein complexes. Molecular dynamics study reveals interaction of CHADMB complexed with bacterial protein, EC showed maximum stability which is in agreement with experimental result.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- S Asha
- Department of Chemistry, Sree Narayana College, Chempazhanthy, Research centre, University of Kerala, Thiruvananthapuram, India
| | - K S Sandhya
- Department of Computational Biology and Bioinformatics, University of Kerala, Thiruvananthapuram, India
| | - A Abhilash
- Department of Zoology, Government College Kariavattom, Thiruvananthapuram, India
| | - Nair S Achuthsankar
- Department of Computational Biology and Bioinformatics, University of Kerala, Thiruvananthapuram, India
| | - S Suma
- Department of Chemistry, Sree Narayana College, Chempazhanthy, Research centre, University of Kerala, Thiruvananthapuram, India
| | - M R Sudarsanakumar
- Department of Chemistry, Mahatma Gandhi College, Thiruvananthapuram, India
| |
Collapse
|
40
|
Yasen W, Li B, Aini A, Li Z, Su Y, Zhou L, Guo D, Qian Q, Chen D, Zhu X, Dong R. Visible Light-Guided Gene Delivery with Nonviral Supramolecular Block Copolymer Vectors. ACS APPLIED MATERIALS & INTERFACES 2023; 15:41817-41827. [PMID: 37622994 DOI: 10.1021/acsami.3c06170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
To achieve efficient gene delivery in vitro or in vivo, nonviral vectors should have excellent biostability across cellular and tissue barriers and also smart stimuli responsiveness toward controlled release of therapeutic genes into the cell nucleus. However, it remains a key challenge to effectively combine the biostability of covalent polymers with the stimuli responsiveness of noncovalent polymers into one nonviral vehicle. In this work, we report the construction of a kind of cationic supramolecular block copolymers (SBCs) through noncovalent polymerization of β-cyclodextrin/azobenzene-terminated pentaethylenehexamine (DMA-Azo-PEHA-β-CD) in aqueous media using β-CD-monosubstituted poly(ethylene glycol) (PEG-β-CD) as a supramolecular initiator. The resultant SBC exhibits superior biostability, biocompatibility, and light/pH dual-responsive characteristics, and it also demonstrates efficient plasmid DNA condensation capacity and the ability to rapidly release plasmid DNA into cells driven by visible light (450 nm). Eventually, this SBC-based delivery system demonstrates visible light-induced enhancement of gene delivery in both COS-7 and HeLa cells. We anticipate that this work provides a facile and robust strategy to enhance gene delivery in vitro or in vivo via visible light-guided manipulation of genes, further achieving safe, highly efficient, targeting gene therapy for cancer.
Collapse
Affiliation(s)
- Wumaier Yasen
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai 201620, China
| | - Bei Li
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Aliya Aini
- College of Foreign Languages, The University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Ziying Li
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yue Su
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Linzhu Zhou
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dongbo Guo
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qiuhui Qian
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Dong Chen
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinyuan Zhu
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ruijiao Dong
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
41
|
Tatarusanu SM, Lupascu FG, Profire BS, Szilagyi A, Gardikiotis I, Iacob AT, Caluian I, Herciu L, Giscă TC, Baican MC, Crivoi F, Profire L. Modern Approaches in Wounds Management. Polymers (Basel) 2023; 15:3648. [PMID: 37688274 PMCID: PMC10489962 DOI: 10.3390/polym15173648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Wound management represents a well-known continuous challenge and concern of the global healthcare systems worldwide. The challenge is on the one hand related to the accurate diagnosis, and on the other hand to establishing an effective treatment plan and choosing appropriate wound care products in order to maximize the healing outcome and minimize the financial cost. The market of wound dressings is a dynamic field which grows and evolves continuously as a result of extensive research on developing versatile formulations with innovative properties. Hydrogels are one of the most attractive wound care products which, in many aspects, are considered ideal for wound treatment and are widely exploited for extension of their advantages in healing process. Smart hydrogels (SHs) offer the opportunities of the modulation physico-chemical properties of hydrogels in response to external stimuli (light, pressure, pH variations, magnetic/electric field, etc.) in order to achieve innovative behavior of their three-dimensional matrix (gel-sol transitions, self-healing and self-adapting abilities, controlled release of drugs). The SHs response to different triggers depends on their composition, cross-linking method, and manufacturing process approach. Both native or functionalized natural and synthetic polymers may be used to develop stimuli-responsive matrices, while the mandatory characteristics of hydrogels (biocompatibility, water permeability, bioadhesion) are preserved. In this review, we briefly present the physiopathology and healing mechanisms of chronic wounds, as well as current therapeutic approaches. The rational of using traditional hydrogels and SHs in wound healing, as well as the current research directions for developing SHs with innovative features, are addressed and discussed along with their limitations and perspectives in industrial-scale manufacturing.
Collapse
Affiliation(s)
- Simona-Maria Tatarusanu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy “Grigore T. Popa” of Iasi, 16 Universitatii Street, 700115 Iasi, Romania; (S.-M.T.); (F.-G.L.); (A.-T.I.); (I.C.); (L.H.)
- Research & Development Department, Antibiotice Company, 1 Valea Lupului Street, 707410 Iasi, Romania
| | - Florentina-Geanina Lupascu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy “Grigore T. Popa” of Iasi, 16 Universitatii Street, 700115 Iasi, Romania; (S.-M.T.); (F.-G.L.); (A.-T.I.); (I.C.); (L.H.)
| | - Bianca-Stefania Profire
- Department of Internal Medicine, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa” of Iasi, 16 University Street, 700115 Iasi, Romania;
| | - Andrei Szilagyi
- Advanced Research and Development Center for Experimental Medicine (CEMEX), University of Medicine and Pharmacy “Grigore T. Popa” of Iasi, 16 University Street, 700115 Iasi, Romania; (A.S.); (I.G.)
| | - Ioannis Gardikiotis
- Advanced Research and Development Center for Experimental Medicine (CEMEX), University of Medicine and Pharmacy “Grigore T. Popa” of Iasi, 16 University Street, 700115 Iasi, Romania; (A.S.); (I.G.)
| | - Andreea-Teodora Iacob
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy “Grigore T. Popa” of Iasi, 16 Universitatii Street, 700115 Iasi, Romania; (S.-M.T.); (F.-G.L.); (A.-T.I.); (I.C.); (L.H.)
| | - Iulian Caluian
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy “Grigore T. Popa” of Iasi, 16 Universitatii Street, 700115 Iasi, Romania; (S.-M.T.); (F.-G.L.); (A.-T.I.); (I.C.); (L.H.)
| | - Lorena Herciu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy “Grigore T. Popa” of Iasi, 16 Universitatii Street, 700115 Iasi, Romania; (S.-M.T.); (F.-G.L.); (A.-T.I.); (I.C.); (L.H.)
| | - Tudor-Catalin Giscă
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa” of Iasi, 16 University Street 700115 Iasi, Romania;
| | - Mihaela-Cristina Baican
- Department of Pharmaceutical Physics, Faculty of Pharmacy, University of Medicine and Pharmacy “Grigore T. Popa” of Iasi, 16 University Street, 700115 Iasi, Romania;
| | - Florina Crivoi
- Department of Pharmaceutical Physics, Faculty of Pharmacy, University of Medicine and Pharmacy “Grigore T. Popa” of Iasi, 16 University Street, 700115 Iasi, Romania;
| | - Lenuta Profire
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy “Grigore T. Popa” of Iasi, 16 Universitatii Street, 700115 Iasi, Romania; (S.-M.T.); (F.-G.L.); (A.-T.I.); (I.C.); (L.H.)
| |
Collapse
|
42
|
Layaida H, Hellal A, Chafai N, Haddadi I, Imene K, Anis B, Mouna E, Bensouici C, Sobhi W, Attoui A, Lilia A. Synthesis, spectroscopic characterization, density functional theory study, antimicrobial and antioxidant activities of curcumin and alanine-curcumin Schiff base. J Biomol Struct Dyn 2023; 41:7551-7566. [PMID: 36120951 DOI: 10.1080/07391102.2022.2123043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/03/2022] [Indexed: 10/14/2022]
Abstract
In this work, a novel Schiff-base derived from curcumin and L-Alanine was synthesized under microwave conditions in excellent yield. The structural characterization has been carried out from their elemental analyses, FTIR, UV-Vis and 13C-NMR and 1H-NMR spectral techniques. The Schiff base (Cur-Ala) and curcumin (Cur) have been screened for their antimicrobial activity toward some pathogens clinically important microorganisms: Bacillus subtilis, Escherichia coli and Staphylococcus aureus, Aspergillus niger and Candida albicans. Result found that the Schiff base was more active than the curcumin. The antibacterial and antifungal activities of Cur-Ala can be attributed to its greatest dipole moment, as shown by theoretical calculations. Also, the antioxidant activity of Schiff base and curcumin were studied by DPPH, cupric ion reducing antioxidant capacity and o-phenanthroline techniques. Results indicate that Cur-Ala and Cur show more antioxidant activities than the standard antioxidants (BHT and BHA). Quantum chemical parameter calculations of Cur-Ala and Cur have been investigated by DFT using B3LYP/6-31G (d,p) basis set method to calculate the optimized structure, atomic charges, MESP, global reactivity descriptors and thermomolecular proprieties of both molecules.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Houdheifa Layaida
- Laboratoire d'Electrochimie des Matériaux Moléculaires et des Complexes (LEMMC), Département de Génie des procédés, Faculté de Technologie, Université Ferhat Abbas- Sétif 1, Sétif, Algeria
| | - Abdelkader Hellal
- Laboratoire d'Electrochimie des Matériaux Moléculaires et des Complexes (LEMMC), Département de Génie des procédés, Faculté de Technologie, Université Ferhat Abbas- Sétif 1, Sétif, Algeria
- Département de Chimie, Université Ferhat Abbas- Sétif 1, Sétif, Algeria
| | - Nadjib Chafai
- Laboratoire d'Electrochimie des Matériaux Moléculaires et des Complexes (LEMMC), Département de Génie des procédés, Faculté de Technologie, Université Ferhat Abbas- Sétif 1, Sétif, Algeria
| | - Ines Haddadi
- Laboratoire d'Electrochimie des Matériaux Moléculaires et des Complexes (LEMMC), Département de Génie des procédés, Faculté de Technologie, Université Ferhat Abbas- Sétif 1, Sétif, Algeria
- Département de Chimie, Université Ferhat Abbas- Sétif 1, Sétif, Algeria
| | - Kirouani Imene
- Laboratoire d'Electrochimie des Matériaux Moléculaires et des Complexes (LEMMC), Département de Génie des procédés, Faculté de Technologie, Université Ferhat Abbas- Sétif 1, Sétif, Algeria
- Département de Chimie, Université Ferhat Abbas- Sétif 1, Sétif, Algeria
| | - Bouchama Anis
- Laboratoire d'Electrochimie des Matériaux Moléculaires et des Complexes (LEMMC), Département de Génie des procédés, Faculté de Technologie, Université Ferhat Abbas- Sétif 1, Sétif, Algeria
- Département de Chimie, Université Ferhat Abbas- Sétif 1, Sétif, Algeria
| | - ElKolli Mouna
- Laboratoire d'Electrochimie des Matériaux Moléculaires et des Complexes (LEMMC), Département de Génie des procédés, Faculté de Technologie, Université Ferhat Abbas- Sétif 1, Sétif, Algeria
| | - Chawki Bensouici
- Centre de Recherche en Biotechnologie (CRBt), Ali Mendjli, Constantine, Algeria
| | - Widad Sobhi
- Centre de Recherche en Biotechnologie (CRBt), Ali Mendjli, Constantine, Algeria
- Laboratory of Applied Biochemistry, Faculty of Nature and Life Sciences, Université Ferhat Abbas Sétif-1, Sétif, Algeria
| | - Ayoub Attoui
- Laboratory of Applied Biochemistry, Faculty of Nature and Life Sciences, Université Ferhat Abbas Sétif-1, Sétif, Algeria
- Laboratoire des Matériaux Polymères Multiphasiques, LMPMP, Université Ferhat ABBAS Sétif-1, Sétif, Algeria
| | - Adjissi Lilia
- Laboratoire d'Electrochimie des Matériaux Moléculaires et des Complexes (LEMMC), Département de Génie des procédés, Faculté de Technologie, Université Ferhat Abbas- Sétif 1, Sétif, Algeria
| |
Collapse
|
43
|
Reena VN, Kumar KS, Shilpa T, Aswati Nair R, Bhagyasree GS, Nithyaja B. Photocatalytic and Enhanced Biological Activities of Schiff Base Capped Fluorescent CdS Nanoparticles. J Fluoresc 2023; 33:1927-1940. [PMID: 36913162 DOI: 10.1007/s10895-023-03193-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/20/2023] [Indexed: 03/14/2023]
Abstract
In the present work, biocompatible CdS nanoparticles were synthesized using Schiff base ligand, 3-((2-(-(1-(2hydroxyphenyl)ethylidene)amino)ethyl)imino)-2-pentone, by a simple ultrasonic irradiation method. The structural, morphological, and optical properties were studied using XRD, SEM, TEM, UV-visible absorption, and photoluminescence (PL) spectra. The quantum confinement effect of the Schiff base capped CdS nanoparticles was confirmed by using UV-visible and PL spectrum analysis. This CdS nanoparticles were an effective photocatalyst for degrading rhodamine 6G and methylene blue with a 70% and 98% degradation capacity, respectively. Furthermore, the disc-diffusion method demonstrated that CdS nanoparticles inhibit G-positive bacteria and G-negative bacteria more effectively. These Schiff base capped CdS nanoparticles were taken for an in-vitro experiment with HeLa cells to exhibit the possibility of providing optical probes in biological applications and observed under a fluorescence microscope. In addition, MTT cell viability assays were carried out to investigate the cytotoxicity for 24 h. As a result of this study, 2.5 µg/ml doses of CdS nanoparticles are suitable for imaging and are effective in destroying HeLa cells. The present study suggests that the synthesized Schiff base capped CdS nanoparticles could be a potential photocatalyst, antibacterial agent, and biocompatible nanoparticle for bioimaging applications.
Collapse
Affiliation(s)
- V N Reena
- Photonic Materials Research Laboratory, Department of Physics, Government College Madappally, Vadakara, Kozhikode, 673102, Kerala, India.
- University of Calicut, Malappuram, 673635, Kerala, India.
| | - K Subin Kumar
- University of Calicut, Malappuram, 673635, Kerala, India
- Department of Chemistry, Government Arts and Science College Kozhikode, Kozhikode, 673018, Kerala, India
| | - T Shilpa
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Kasaragod, 671316, Kerala, India
| | - R Aswati Nair
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Kasaragod, 671316, Kerala, India
| | - G S Bhagyasree
- Photonic Materials Research Laboratory, Department of Physics, Government College Madappally, Vadakara, Kozhikode, 673102, Kerala, India
- University of Calicut, Malappuram, 673635, Kerala, India
| | - B Nithyaja
- Photonic Materials Research Laboratory, Department of Physics, Government College Madappally, Vadakara, Kozhikode, 673102, Kerala, India
- University of Calicut, Malappuram, 673635, Kerala, India
| |
Collapse
|
44
|
Aydin H, Akocak S, Lolak N, Yumrutaş Ö, Uslu U, Bozgeyik I, Üçkardeş F, Günal S, Ceylan O. Evaluation of cytotoxic, antifungal, and larvicidal activities of different bis-sulfonamide Schiff base compounds. J Biochem Mol Toxicol 2023; 37:e23375. [PMID: 37129082 DOI: 10.1002/jbt.23375] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 08/25/2022] [Accepted: 04/14/2023] [Indexed: 05/03/2023]
Abstract
Schiff bases (imines or azomethines) are versatile ligands synthesized from the condensation of amino compounds with active carbonyl groups and used for many pharmaceutical and medicinal applications. In our study, we aimed to determine the cytotoxic, antifungal and larvicidal activities of biologically potent bis-sulfonamide Schiff base derivatives that were re-synthesized by us. For this aim, 16 compounds were re-synthesized and tested for their cytotoxic, antifungal and larvicidal properties. Among this series, compounds A1B2, A1B4, A4B2, A4B3, and A4B4 were shown to have cytotoxic activity against tested cancer lung cell line (A549). The most potent antifungal activity was observed in compounds A2B1 and A2B2 against all fungi. A1B1 showed the strongest larvicidal effect at all concentrations at the 72nd h (100% mortality). These obtained results demonstrate that these type of bis-substituted compounds might be used as biologically potent pharmacophores against different types of diseases.
Collapse
Affiliation(s)
- Hasan Aydin
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Adıyaman University, Adıyaman, Türkiye
| | - Süleyman Akocak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Adıyaman University, Adıyaman, Türkiye
| | - Nebih Lolak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Adıyaman University, Adıyaman, Türkiye
| | - Önder Yumrutaş
- Department of Medical Biology, Faculty of Medicine, Adıyaman University, Adıyaman, Türkiye
| | - Uğur Uslu
- Department of Medical Microbiology, Faculty of Medicine, Selçuk University, Konya, Türkiye
| | - Ibrahim Bozgeyik
- Department of Medical Biology, Faculty of Medicine, Adıyaman University, Adıyaman, Türkiye
| | - Fatih Üçkardeş
- Department of Biostatistics, Adıyaman University, Adıyaman, Türkiye
| | - Selami Günal
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, İnönü University, Malatya, Türkiye
| | - Onur Ceylan
- Department of Parasitology, Faculty of Veterinary Medicine, Selçuk University, Konya, Türkiye
| |
Collapse
|
45
|
Al-Hawarin JI, Abu-Yamin AA, Abu-Saleh AAAA, Saraireh IAM, Almatarneh MH, Hasan M, Atrooz OM, Al-Douri Y. Synthesis, Characterization, and DFT Calculations of a New Sulfamethoxazole Schiff Base and Its Metal Complexes. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5160. [PMID: 37512433 PMCID: PMC10385116 DOI: 10.3390/ma16145160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023]
Abstract
A new Schiff base, 4-((1E,2E)-3-(furan-2-yl)allylidene)amino)-N-(5-methylisoxazol-3-yl) benzene-sulfonamide (L), was synthesized by thermal condensation of 3-(2-furyl)acrolein and sulfamethoxazole (SMX), and the furan Schiff base (L) was converted to a phenol Schiff base (L') according to the Diels-Alder [4 + 2] cycloaddition reaction and studied experimentally. The structural and spectroscopic properties of the Schiff base were also corroborated by utilizing density functional theory (DFT) calculations. Furthermore, a series of lanthanide and transition metal complexes of the Schiff base were synthesized from the nitrate salts of Gd, Sm, Nd, and Zn (L1, L2, L3, and L4), respectively. Various spectroscopic studies confirmed the chemical structures of the Schiff-base ligand and its complexes. Based on the spectral studies, a nine-coordinated geometry was assigned to the lanthanide complexes and a six-coordinated geometry to the zinc complex. The elemental analysis data confirmed the suggested structure of the metal complexes, and the TGA studies confirmed the presence of one coordinated water molecule in the lanthanide complexes and one crystalline water molecule in the zinc complex; in addition, the conductivity showed the neutral nature of the complexes. Therefore, it is suggested that the ligand acts as a bidentate through coordinates to each metal atom by the isoxazole nitrogen and oxygen atoms of the sulfur dioxide moiety of the SMX based on FTIR studies. The ligand and its complexes were tested for their anti-inflammatory, anti-hemolytic, and antioxidant activities by various colorimetric methods. These complexes were found to exhibit potential effects of the selected biological activities.
Collapse
Affiliation(s)
- Jibril I Al-Hawarin
- Department of Chemistry, Al-Hussein Bin Talal University, Ma'an 71111, Jordan
| | | | | | | | - Mansour H Almatarneh
- Department of Chemistry, Memorial University, St. John's, NL A1B 3X7, Canada
- Department of Chemistry, University of Jordan, Amman 11942, Jordan
| | - Mahmood Hasan
- Hepi Company (Home of Experience) for Paints and Inks, Cairo 61710, Egypt
| | - Omar M Atrooz
- Department of Biological Sciences, Mutah University, Mutah 617102, Jordan
| | - Y Al-Douri
- Nanotechnology and Catalysis Research Center (NANOCAT), University of Malaya, Kuala Lumpur 50603, Malaysia
- Department of Mechanical Engineering, Faculty of Engineering, Piri Reis University, Eflatun Sk. No: 8, Istanbul 34940, Tuzla, Turkey
- Department of Applied Physics and Astronomy, College of Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| |
Collapse
|
46
|
Shaheen S, Liaqat F, Qamar S, Murtaza I, Rasheed A, yousuf S, Ishtiaq A, Akhter Z. Single crystal structure of nitro terminated Azo Schiff base: DNA binding, antioxidant, enzyme inhibitory and photo-isomerization investigation. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
47
|
Tsacheva I, Todorova Z, Momekova D, Momekov G, Koseva N. Pharmacological Activities of Schiff Bases and Their Derivatives with Low and High Molecular Phosphonates. Pharmaceuticals (Basel) 2023; 16:938. [PMID: 37513849 PMCID: PMC10386503 DOI: 10.3390/ph16070938] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
This review paper is focused on the design of anthracene and furan-containing Schiff bases and their advanced properties as ligands in complex transition metal ions The paper also provides a brief overview on a variety of biological applications, namely, potent candidates with antibacterial and antifungal activity, antioxidant and chemosensing properties. These advantageous properties are enhanced upon metal complexing. The subject of the review has been extended with a brief discussion on reactivity of Schiff bases with hydrogen phosphonates and the preparation of low and high molecular phosphonates, as well as their application as pharmacological agents. This work will be of interest for scientists seeking new challenges in discovering advanced pharmacological active molecules gaining inspiration from the versatile families of imines and aminophosphonates.
Collapse
Affiliation(s)
- Ivelina Tsacheva
- Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, 1113 Sofia, Bulgaria
| | - Zornica Todorova
- Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, 1113 Sofia, Bulgaria
| | - Denitsa Momekova
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| | - Georgi Momekov
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| | - Neli Koseva
- Bulgarian Academy of Sciences, 1 "15 Noemvri" Str., 1040 Sofia, Bulgaria
| |
Collapse
|
48
|
Biswas A, Mitra D, Naskar R, Maji A, Das A, Murmu N, Mondal TK. A biphenyl thiosemicarbazide based fluorogenic chemosensor for selective recognition of Cd 2+: application in cell bioimaging. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:2745-2754. [PMID: 37248997 DOI: 10.1039/d3ay00403a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A diversified biphenyl thiosemicarbazide based chemosensor (HBMC) has been fabricated and reported for the specific detection of Cd2+ in a MeOH : H2O (4 : 1) solution. We observed a chromogenic change from colorless to light yellow colour, and it showed a "turn-on" fluorogenic change from non fluorescent to blooming cyan colour. In fluorometric titration a sharp "turn-on" emission for Cd2+ was observed with a ∼16 fold increase in fluorescence intensity value at 496 nm by incremental addition of Cd2+ ions in the MeOH : H2O (4 : 1) solution. The reversibility of the chemosensor (HBMC) was confirmed by a sequential addition of the EDTA solution. Again the binding stoichiometry of HBMC with Cd2+ was found to be 2 : 1, as confirmed by Job's plot analysis and HRMS spectra of the HBMC-Cd2+ complex. The mechanism for Cd2+ sensing in MeOH : H2O (4 : 1) is based upon the inhibition of CN isomerization and ESIPT process and simultaneously turning on the CHEF (chelation enhanced fluorescence) process. The limit of detection for Cd2+ was found to be in the order of 10-8 (M), which implies that HBMC is an efficient probe to detect Cd2+ at the microscopic level. A reusability study was performed and on-sight detection of cadmium ions by the chemosensor (HBMC) was established by dip-stick experiment. In vitro detection of Cd2+ in human breast cancer cells (MDA-MB-231) by HBMC discloses its cell permeability and biocompatible nature. Computational studies (DFT and TDDFT) with the probe HBMC and HBMC-Cd2+ complex were also performed.
Collapse
Affiliation(s)
- Amitav Biswas
- Department: Chemistry, Jadavpur University, Kolkata-700032, India.
| | - Debarpan Mitra
- Department of Signal Transduction and Biogenic Amines (STBA), Chittaranjan National Cancer Institute, Kolkata-700026, India
| | - Rahul Naskar
- Department: Chemistry, Jadavpur University, Kolkata-700032, India.
| | - Atanu Maji
- Department: Chemistry, Jadavpur University, Kolkata-700032, India.
| | - Akash Das
- Department: Chemistry, Jadavpur University, Kolkata-700032, India.
| | - Nabendu Murmu
- Department of Signal Transduction and Biogenic Amines (STBA), Chittaranjan National Cancer Institute, Kolkata-700026, India
| | | |
Collapse
|
49
|
Kaushik S, Paliwal SK, Iyer MR, Patil VM. Promising Schiff bases in antiviral drug design and discovery. Med Chem Res 2023; 32:1063-1076. [PMID: 37305208 PMCID: PMC10171175 DOI: 10.1007/s00044-023-03068-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 04/25/2023] [Indexed: 06/13/2023]
Abstract
Emerging and re-emerging illnesses will probably present a new hazard of infectious diseases and have fostered the urge to research new antiviral agents. Most of the antiviral agents are analogs of nucleosides and only a few are non-nucleoside antiviral agents. There is quite a less percentage of marketed/clinically approved non-nucleoside antiviral medications. Schiff bases are organic compounds that possess a well-demonstrated profile against cancer, viruses, fungus, and bacteria, as well as in the management of diabetes, chemotherapy-resistant cases, and malarial infections. Schiff bases resemble aldehydes or ketones with an imine/azomethine group instead of a carbonyl ring. Schiff bases have a broad application profile not only in therapeutics/medicine but also in industrial applications. Researchers have synthesized and screened various Schiff base analogs for their antiviral potential. Some of the important heterocyclic compounds like istatin, thiosemicarbazide, quinazoline, quinoyl acetohydrazide, etc. have been used to derive novel Schiff base analogs. Keeping in view the outbreak of viral pandemics and epidemics, this manuscript compiles a review of Schiff base analogs concerning their antiviral properties and structural-activity relationship analysis.
Collapse
Affiliation(s)
- Shikha Kaushik
- Department of Pharmaceutical Chemistry, KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, Uttar Pradesh India
- Department of Pharmacy, Banasthali Vidyapith, Tonk, Rajasthan India
| | | | - Malliga R. Iyer
- Section on Medicinal Chemistry, National Institute on Alcohol Abuse and Alcoholism, NIAAA/NIH, Rockville, MD USA
| | - Vaishali M. Patil
- Department of Pharmaceutical Chemistry, KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, Uttar Pradesh India
| |
Collapse
|
50
|
Kobayashi M, Akitsu T, Furuya M, Sekiguchi T, Shoji S, Tanii T, Tanaka D. Efficient Synthesis of a Schiff Base Copper(II) Complex Using a Microfluidic Device. MICROMACHINES 2023; 14:890. [PMID: 37421123 DOI: 10.3390/mi14040890] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 07/09/2023]
Abstract
The efficient synthesis of amino acid Schiff base copper(II) complexes using a microfluidic device was successfully achieved. Schiff bases and their complexes are remarkable compounds due to their high biological activity and catalytic function. Conventionally, products are synthesized under reaction conditions of 40 °C for 4 h using a beaker-based method. However, in this paper, we propose using a microfluidic channel to enable quasi-instantaneous synthesis at room temperature (23 °C). The products were characterized using UV-Vis, FT-IR, and MS spectroscopy. The efficient generation of compounds using microfluidic channels has the potential to significantly contribute to the efficiency of drug discovery and material development due to high reactivity.
Collapse
Affiliation(s)
- Masashi Kobayashi
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Takashiro Akitsu
- Department of Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Masahiro Furuya
- Cooperative Major in Nuclear Energy, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1, Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Tetsushi Sekiguchi
- Research Organization for Nano & Life Innovation, Waseda University, 513 Tsurumakicho, Shinjuku-ku, Tokyo 162-0041, Japan
| | - Shuichi Shoji
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Takashi Tanii
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Daiki Tanaka
- Research Organization for Nano & Life Innovation, Waseda University, 513 Tsurumakicho, Shinjuku-ku, Tokyo 162-0041, Japan
| |
Collapse
|