1
|
Siddiqui AJ, Jamal A, Zafar M, Jahan S. Identification of TBK1 inhibitors against breast cancer using a computational approach supported by machine learning. Front Pharmacol 2024; 15:1342392. [PMID: 38567349 PMCID: PMC10985244 DOI: 10.3389/fphar.2024.1342392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/07/2024] [Indexed: 04/04/2024] Open
Abstract
Introduction: The cytosolic Ser/Thr kinase TBK1 is of utmost importance in facilitating signals that facilitate tumor migration and growth. TBK1-related signaling plays important role in tumor progression, and there is need to work on new methods and workflows to identify new molecules for potential treatments for TBK1-affecting oncologies such as breast cancer. Methods: Here, we propose the machine learning assisted computational drug discovery approach to identify TBK1 inhibitors. Through our computational ML-integrated approach, we identified four novel inhibitors that could be used as new hit molecules for TBK1 inhibition. Results and Discussion: All these four molecules displayed solvent based free energy values of -48.78, -47.56, -46.78 and -45.47 Kcal/mol and glide docking score of -10.4, -9.84, -10.03, -10.06 Kcal/mol respectively. The molecules displayed highly stable RMSD plots, hydrogen bond patterns and MMPBSA score close to or higher than BX795 molecule. In future, all these compounds can be further refined or validated by in vitro as well as in vivo activity. Also, we have found two novel groups that have the potential to be utilized in a fragment-based design strategy for the discovery and development of novel inhibitors targeting TBK1. Our method for identifying small molecule inhibitors can be used to make fundamental advances in drug design methods for the TBK1 protein which will further help to reduce breast cancer incidence.
Collapse
Affiliation(s)
- Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Ha’il, Ha’il, Saudi Arabia
| | - Arshad Jamal
- Department of Biology, College of Science, University of Ha’il, Ha’il, Saudi Arabia
| | - Mubashir Zafar
- Department of Family and Community Medicine, College of Medicine, University of Ha’il, Ha’il, Saudi Arabia
| | - Sadaf Jahan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah, Saudi Arabia
| |
Collapse
|
2
|
Douradinha B. Does hydrogen peroxide contribute to the immunity against Malaria induced by whole attenuated plasmodial sporozoites? Mol Biochem Parasitol 2023; 256:111589. [PMID: 37604406 DOI: 10.1016/j.molbiopara.2023.111589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/11/2023] [Accepted: 08/18/2023] [Indexed: 08/23/2023]
Abstract
Plasmodium sporozoites can block apoptotic pathways within host hepatocytes, ensuring the survival of the parasite. However, attenuated plasmodial sporozoites are unable to prevent apoptosis, which provides many parasite antigens to immune cells. This exposure leads to protection against Malaria in both human and animal models. If these hosts are later inoculated with infectious sporozoites, apoptosis of infected hepatocytes will occur, preventing parasite development. Considering that hydrogen peroxide can induce apoptosis, it is plausible that it plays a role in the mechanisms associated with the protection mediated by attenuated plasmodial sporozoites. Based on published results that describe the relationship between Plasmodium, hydrogen peroxide, and apoptosis, a rational explanation can be provided for this hypothesis.
Collapse
Affiliation(s)
- Bruno Douradinha
- Nykode Therapeutics ASA, Oslo Science Park, Gaustadalléen 21, Oslo 0349, Norway.
| |
Collapse
|
3
|
Browne DJ, Kelly AM, Brady J, Proietti C, Sarathkumara YD, Pattinson DJ, Doolan DL. Evaluating the stability of host-reference gene expression and simultaneously quantifying parasite burden and host immune responses in murine malaria. Sci Rep 2023; 13:21071. [PMID: 38030676 PMCID: PMC10687243 DOI: 10.1038/s41598-023-48066-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023] Open
Abstract
The efficacy of pre-erythrocytic stage malaria antigens or vaccine platforms is routinely assessed in murine models challenged with Plasmodium sporozoites. Relative liver-stage parasite burden is quantified using reverse transcription quantitative PCR (RTqPCR), which relies on constitutively expressed endogenous control reference genes. However, the stability of host-reference gene expression for RTqPCR analysis following Plasmodium challenge and immunization has not been systematically evaluated. Herein, we evaluated the stability of expression of twelve common RTqPCR reference genes in a murine model of Plasmodium yoelii sporozoite challenge and DNA-adenovirus IV 'Prime-Target' immunization. Significant changes in expression for six of twelve reference genes were shown by one-way ANOVA, when comparing gene expression levels among challenge, immunized, and naïve mice groups. These changes were attributed to parasite challenge or immunization when comparing group means using post-hoc Bonferroni corrected multiple comparison testing. Succinate dehydrogenase (SDHA) and TATA-binding protein (TBP) were identified as stable host-reference genes suitable for relative RTqPCR data normalisation, using the RefFinder package. We defined a robust threshold of 'partial-protection' with these genes and developed a strategy to simultaneously quantify matched host parasite burden and cytokine responses following immunisation or challenge. This is the first report systematically identifying reliable host reference genes for RTqPCR analysis following Plasmodium sporozoite challenge. A robust RTqPCR protocol incorporating reliable reference genes which enables simultaneous analysis of host whole-liver cytokine responses and parasite burden will significantly standardise and enhance results between international malaria vaccine efficacy studies.
Collapse
Affiliation(s)
- Daniel J Browne
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, 4870, Australia
| | - Ashton M Kelly
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, 4870, Australia
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Rd, St Lucia, QLD, 4072, Australia
| | - Jamie Brady
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, 4870, Australia
| | - Carla Proietti
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Rd, St Lucia, QLD, 4072, Australia
| | - Yomani D Sarathkumara
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, 4870, Australia
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Rd, St Lucia, QLD, 4072, Australia
| | - David J Pattinson
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, 4870, Australia
| | - Denise L Doolan
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, 4870, Australia.
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Rd, St Lucia, QLD, 4072, Australia.
- Centre for Tropical Bioinformatics and Molecular Biology, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, 4870, Australia.
| |
Collapse
|
4
|
Najam A, Ahmad S, Abid R, Ali H, Husnain M, Aziz T, Adeel SS, Muhammad N, Ghazanfar S. Immune-adjuvant effect of vitamin A and probiotics supplementation on humoral response to cell culture rabies vaccine in rabbits. 3 Biotech 2023; 13:232. [PMID: 37323857 PMCID: PMC10258788 DOI: 10.1007/s13205-023-03631-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 04/26/2023] [Indexed: 06/17/2023] Open
Abstract
This study was carried out to evaluate the effects of vitamin A (Vit A) and probiotic co-supplementation with rabies vaccine on humoral immune response in New Zealand white (NZW) rabbits. For this experiment, 54 rabbits were randomized into six experimental and three control groups. Mixed cultures of commercial probiotics supplements and a dose of Vit A were administered to each animal. Results were compared with the control group fed with only basal diet. Animals in different treatment groups showed significantly higher sero-conversions against rabies vaccine. There was a significant increase (p < 0.001) in the titers of rabies antibodies in all treatment groups on 14th and 35th days than control C3 group. Both commercial probiotics irrespective of brand increase the humoral immune response of rabbits against rabies vaccine. The mean titer values of all groups G1-G6 and sub-controls (C1, C2) were generally above 3.6 EU/ml on day 14th and between 3.7 and 3.9 EU/ml, showing highest sero-conversion on 35th day than mean titer of C3 control = 3.091 and 3.505 EU/ml respectively on both days. The maximum titer values were obtained with the addition of organic carrots to the daily diet. These results suggest that simple dietary interventions using probiotics and Vit A in natural form may enhance the efficacy of rabies vaccine in the host. These cost-effective strategies can be applied for getting higher yields of polyclonal antibody production in animal models, thus providing promising means of improving the final product yield and can be adopted easily by the manufacturers.
Collapse
Affiliation(s)
- Amina Najam
- Biological Production Division, National Institute of Health, Islamabad, Pakistan
- Department of Microbiology, Quaid-i-Azam University, Islamabad, 44100 Pakistan
| | - Safia Ahmad
- Department of Microbiology, Quaid-i-Azam University, Islamabad, 44100 Pakistan
| | - Rameesha Abid
- Department of Microbiology, Quaid-i-Azam University, Islamabad, 44100 Pakistan
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Centre, Park Road, Islamabad, 45500 Pakistan
| | - Hussain Ali
- Biological Production Division, National Institute of Health, Islamabad, Pakistan
| | - Murtaza Husnain
- Department of Biochemistry, Quaid-i-Azam University, Islamabad, 44100 Pakistan
| | - Tariq Aziz
- Department of Zoology, Quaid-i-Azam University, Islamabad, 44100 Pakistan
| | - Syeda Shazia Adeel
- Biological Production Division, National Institute of Health, Islamabad, Pakistan
| | - Naeil Muhammad
- Animal Production Department, Faculty of Agriculture, Zagazig University, Zagazig, 44519 Egypt
| | - Shakira Ghazanfar
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Centre, Park Road, Islamabad, 45500 Pakistan
| |
Collapse
|
5
|
Siddiqui AJ, Adnan M, Bardakci F, Molehin AJ. Editorial: Host immune response and regulation to parasitic infections: therapeutic approaches and defence strategies. Front Immunol 2023; 14:1215086. [PMID: 37292194 PMCID: PMC10244874 DOI: 10.3389/fimmu.2023.1215086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 05/15/2023] [Indexed: 06/10/2023] Open
Affiliation(s)
- Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Ha’il, Ha’il, Saudi Arabia
| | - Mohd Adnan
- Department of Biology, College of Science, University of Ha’il, Ha’il, Saudi Arabia
| | - Fevzi Bardakci
- Department of Biology, College of Science, University of Ha’il, Ha’il, Saudi Arabia
| | - Adebayo James Molehin
- Department of Microbiology and Immunology, College of Graduate Studies, Midwestern University, Glendale, AZ, United States
| |
Collapse
|
6
|
Siddiqui AJ, Bhardwaj J, Saxena J, Jahan S, Snoussi M, Bardakci F, Badraoui R, Adnan M. A Critical Review on Human Malaria and Schistosomiasis Vaccines: Current State, Recent Advancements, and Developments. Vaccines (Basel) 2023; 11:vaccines11040792. [PMID: 37112704 PMCID: PMC10146311 DOI: 10.3390/vaccines11040792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/07/2023] Open
Abstract
Malaria and schistosomiasis are two major parasitic diseases that remain leading causes of morbidity and mortality worldwide. Co-infections of these two parasites are common in the tropics, where both diseases are endemic. The clinical consequences of schistosomiasis and malaria are determined by a variety of host, parasitic, and environmental variables. Chronic schistosomiasis causes malnutrition and cognitive impairments in children, while malaria can cause fatal acute infections. There are effective drugs available to treat malaria and schistosomiasis. However, the occurrence of allelic polymorphisms and the rapid selection of parasites with genetic mutations can confer reduced susceptibility and lead to the emergence of drug resistance. Moreover, the successful elimination and complete management of these parasites are difficult due to the lack of effective vaccines against Plasmodium and Schistosoma infections. Therefore, it is important to highlight all current vaccine candidates undergoing clinical trials, such as pre-erythrocytic and erythrocytic stage malaria, as well as a next-generation RTS,S-like vaccine, the R21/Matrix-M vaccine, that conferred 77% protection against clinical malaria in a Phase 2b trial. Moreover, this review also discusses the progress and development of schistosomiasis vaccines. Furthermore, significant information is provided through this review on the effectiveness and progress of schistosomiasis vaccines currently under clinical trials, such as Sh28GST, Sm-14, and Sm-p80. Overall, this review provides insights into recent progress in malarial and schistosomiasis vaccines and their developmental approaches.
Collapse
Affiliation(s)
- Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Ha’il, Ha’il P.O. Box 2440, Saudi Arabia
| | - Jyoti Bhardwaj
- Division of Infectious Diseases, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Juhi Saxena
- Department of Biotechnology, University Institute of Biotechnology, Chandigarh University, Gharuan, NH-95, Ludhiana—Chandigarh State Hwy, Mohali 140413, India
| | - Sadaf Jahan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Mejdi Snoussi
- Department of Biology, College of Science, University of Ha’il, Ha’il P.O. Box 2440, Saudi Arabia
- Laboratory of Genetics, Biodiversity and Valorization of Bio-Resources (LR11ES41), Higher Institute of Biotechnology of Monastir, University of Monastir, Avenue TaharHaddas BP74, Monastir 5000, Tunisia
| | - Fevzi Bardakci
- Department of Biology, College of Science, University of Ha’il, Ha’il P.O. Box 2440, Saudi Arabia
| | - Riadh Badraoui
- Department of Biology, College of Science, University of Ha’il, Ha’il P.O. Box 2440, Saudi Arabia
- Section of Histology-Cytology, Medicine Faculty of Tunis, University of Tunis El Manar, Tunis 1017, Tunisia
| | - Mohd Adnan
- Department of Biology, College of Science, University of Ha’il, Ha’il P.O. Box 2440, Saudi Arabia
| |
Collapse
|
7
|
Deng S, Graham ML, Chen XM. The Complexity of Interferon Signaling in Host Defense against Protozoan Parasite Infection. Pathogens 2023; 12:319. [PMID: 36839591 PMCID: PMC9962834 DOI: 10.3390/pathogens12020319] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Protozoan parasites, such as Plasmodium, Leishmania, Toxoplasma, Cryptosporidium, and Trypanosoma, are causative agents of health-threatening diseases in both humans and animals, leading to significant health risks and socioeconomic losses globally. The development of effective therapeutic and prevention strategies for protozoan-caused diseases requires a full understanding of the pathogenesis and protective events occurring in infected hosts. Interferons (IFNs) are a family of cytokines with diverse biological effects in host antimicrobial defense and disease pathogenesis, including protozoan parasite infection. Type II IFN (IFN-γ) has been widely recognized as the essential defense cytokine in intracellular protozoan parasite infection, whereas recent studies also revealed the production and distinct function of type I and III IFNs in host defense against these parasites. Decoding the complex network of the IFN family in host-parasite interaction is critical for exploring potential new therapeutic strategies against intracellular protozoan parasite infection. Here, we review the complex effects of IFNs on the host defense against intracellular protozoan parasites and the crosstalk between distinct types of IFN signaling during infections.
Collapse
Affiliation(s)
- Silu Deng
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE 68178, USA
| | - Marion L. Graham
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL 60612, USA
| | - Xian-Ming Chen
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
8
|
Xie J, Zhong Q, Wu WT, Chen JJ. Multi-omics data reveals the important role of glycerophospholipid metabolism in the crosstalk between gut and brain in depression. J Transl Med 2023; 21:93. [PMID: 36750892 PMCID: PMC9903503 DOI: 10.1186/s12967-023-03942-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/30/2023] [Indexed: 02/09/2023] Open
Abstract
BACKGROUND Gut microbiota plays a critical role in the onset and development of depression, but the underlying molecular mechanisms are unclear. This study was conducted to observe the characteristics of gut microbiota, lipid metabolism and neurotransmitters in Gut-Liver-Brain axis in depressed mice (DM), and identify some novel perceptions on relationships between gut microbiota and depression. METHODS A mouse model of depression was built used chronic unpredictable mild stress (CUMS). Fecal samples (measuring gut microbiota compositions, microbial genes and lipid metabolites), liver samples (measuring lipid metabolites), and hippocampus (measuring neurotransmitters) were collected. Both univariate and multivariate statistical analyses were used to identify the differential gut microbiota, metabolic signatures and neurotransmitters in DM. RESULTS There were significant differences on both microbial and metabolic signatures between DM and control mice (CM): 71 significantly changed operational taxonomic units (OTUs) (60.56% belonged to phylum Firmicutes) and 405 differential lipid metabolites (51.11% belonged to Glycerophospholipid (GP) metabolism) were identified. Functional analysis showed that depressive-like behaviors (DLB)-related differential microbial genes were mainly enriched in GP metabolism. Weighted correlation network analysis (WGCNA) showed that DLB-related differential metabolites mainly belonged to GPs. Meanwhile, seven differential neurotransmitters were identified. Comprehensive analysis found that Lachnospiraceae and gamma-aminobutyric acid (GABA) were significantly correlated with 94.20% and 53.14% differential GPs, respectively, and GABA was significantly correlated with three main DLB phenotypes. CONCLUSION Our results provided novel perceptions on the role of Gut-Liver-Brain axis in the onset of depression, and showed that GP metabolism might be the bridge between gut microbiota and depression. "Lachnospiraceae-GP metabolism-GABA" held the promise as a potential way between gut microbiota and brain functions in DM.
Collapse
Affiliation(s)
- Jing Xie
- grid.190737.b0000 0001 0154 0904Chongqing Emergency Medical Center, Central Hospital of Chongqing University, Chongqing, 400010 China
| | - Qi Zhong
- grid.203458.80000 0000 8653 0555Institute of Life Sciences, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016 China
| | - Wen-tao Wu
- grid.203458.80000 0000 8653 0555Institute of Life Sciences, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016 China
| | - Jian-jun Chen
- grid.203458.80000 0000 8653 0555Institute of Life Sciences, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016 China
| |
Collapse
|
9
|
An Overview of Malaria Transmission Mechanisms, Control, and Modeling. Med Sci (Basel) 2022; 11:medsci11010003. [PMID: 36649040 PMCID: PMC9844307 DOI: 10.3390/medsci11010003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/11/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
In sub-Saharan Africa, malaria is a leading cause of mortality and morbidity. As a result of the interplay between many factors, the control of this disease can be challenging. However, few studies have demonstrated malaria's complexity, control, and modeling although this perspective could lead to effective policy recommendations. This paper aims to be a didactic material providing the reader with an overview of malaria. More importantly, using a system approach lens, we intend to highlight the debated topics and the multifaceted thematic aspects of malaria transmission mechanisms, while showing the control approaches used as well as the model supporting the dynamics of malaria. As there is a large amount of information on each subject, we have attempted to provide a basic understanding of malaria that needs to be further developed. Nevertheless, this study illustrates the importance of using a multidisciplinary approach to designing next-generation malaria control policies.
Collapse
|
10
|
Omar M, Abdelal HO. Nitric oxide in parasitic infections: a friend or foe? J Parasit Dis 2022; 46:1147-1163. [PMID: 36457767 PMCID: PMC9606182 DOI: 10.1007/s12639-022-01518-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/20/2022] [Indexed: 11/28/2022] Open
Abstract
The complex interaction between the host and the parasite remains a puzzling question. Control of parasitic infections requires an efficient immune response that must be balanced against destructive pathological consequences. Nitric oxide is a nitrogenous free radical which has many molecular targets and serves diverse functions. Apart from being a signaling messenger, nitric oxide is critical for controlling numerous infections. There is still controversy surrounding the exact role of nitric oxide in the immune response against different parasitic species. It proved protective against intracellular protozoa, as well as extracellular helminths. At the same time, it plays a pivotal role in stimulating detrimental pathological changes in the infected hosts. Several reports have discussed the anti-parasitic and immunoregulatory functions of nitric oxide, which could directly influence the control of the infection. Nevertheless, there is scarce literature addressing the harmful cytotoxic impacts of this mediator. Thus, this review provides insights into the most updated concepts and controversies regarding the dual nature and opposing sides of nitric oxide during the course of different parasitic infections.
Collapse
Affiliation(s)
- Marwa Omar
- Department of Medical Parasitology, Faculty of Medicine, Zagazig University, Gameyet Almohafza St. 1, Menya Al-Kamh, City of Zagazig, 44511 Sharkia Governorate Egypt
| | - Heba O. Abdelal
- LIS: Cross-National Data Center, Maison des Sciences Humaines - 5e étage, 11- porte des Sciences, L-4366 Esch-Belval, Luxembourg
| |
Collapse
|
11
|
Chaturvedi R, Mohan M, Kumar S, Chandele A, Sharma A. Profiles of host immune impairment in Plasmodium and SARS-CoV-2 infections. Heliyon 2022; 8:e11744. [PMID: 36415655 PMCID: PMC9671871 DOI: 10.1016/j.heliyon.2022.e11744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 07/21/2022] [Accepted: 11/11/2022] [Indexed: 11/19/2022] Open
Abstract
Over the past two decades, many countries have reported a steady decline in reported cases of malaria, and a few countries, like China, have been declared malaria-free by the World Health Organization. In 2020 the number of deaths from malaria has declined since 2000. The COVID-19 pandemic has adversely affected overall public health efforts and thus it is feasible that there might be a resurgence of malaria. COVID-19 and malaria share some similarities in the immune responses of the patient and these two diseases also share overlapping early symptoms such as fever, headache, nausea, and muscle pain/fatigue. In the absence of early diagnostics, there can be a misdiagnosis of the infection(s) that can pose additional challenges due to delayed treatment. In both SARS-CoV-2 and Plasmodium infections, there is a rapid release of cytokines/chemokines that play a key role in disease pathophysiology. In this review, we have discussed the cytokine/chemokine storm observed during COVID-19 and malaria. We observed that: (1) the severity in malaria and COVID-19 is likely a consequence primarily of an uncontrolled 'cytokine storm'; (2) five pro-inflammatory cytokines (IL-6, IL-10, TNF-α, type I IFN, and IFN-γ) are significantly increased in severe/critically ill patients in both diseases; (3) Plasmodium and SARS-CoV-2 share some similar clinical manifestations and thus may result in fatal consequences if misdiagnosed during onset.
Collapse
Affiliation(s)
- Rini Chaturvedi
- Molecular Medicine Group, International Center for Genetic Engineering and Biotechnology, New Delhi, Delhi, India
| | - Mradul Mohan
- Parasite-Host Biology Group, National Institute of Malaria Research, New Delhi, Delhi, India,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sanjeev Kumar
- ICGEB-Emory Vaccine Program, International Center for Genetic Engineering and Biotechnology, New Delhi, Delhi, India
| | - Anmol Chandele
- ICGEB-Emory Vaccine Program, International Center for Genetic Engineering and Biotechnology, New Delhi, Delhi, India
| | - Amit Sharma
- Molecular Medicine Group, International Center for Genetic Engineering and Biotechnology, New Delhi, Delhi, India,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India,Corresponding author
| |
Collapse
|
12
|
Tekalign E, Tadege G, Fisseha N, Nureye D. Suppressive, Curative, and Prophylactic Effects of Maesa lanceolata Forssk. against Rodent Malaria Parasite Plasmodium berghei. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8901555. [PMID: 36411769 PMCID: PMC9675603 DOI: 10.1155/2022/8901555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 09/17/2022] [Accepted: 10/18/2022] [Indexed: 11/12/2023]
Abstract
The artemisinin partial resistance is believed to be spread to artemisinin-based combination therapy partner drugs. As a result, new antiplasmodial compounds are required to treat resistant malaria infections. In the invention of antimalarial substances, claimed medical plants are precious resources. So, the current study was designed to assess the antiplasmodial effects of Maesa lanceolata in mice. In this study, preliminary phytoconstituent and in vivo acute oral toxicity tests were done. Early infection, established infection, and residual infection tests were employed to determine the antimalarial effects of the test drugs. Three doses (200, 400, and 600 mg/kg) of the extracts were provided orally to the test mice. Analysis of variance (one-way) followed by post hoc Tukey's test was used to analyze the difference between and within groups. Terpenoids, tannins, saponins, flavonoids, and alkaloids were detected in the phytochemical constituent analysis. Both 80% methanolic crude extract and solvent fractions had no toxic result at the 2000 mg/kg dose. All test drug doses suppressed parasite levels in a significant manner at all tests. The activity of chloroform fraction (maximum percentage suppression, 81.28%) overwhelms the crude extract activity. The curative effects of 80% methanolic crude extract, with a maximum of 80.22% parasitemia suppression, were greater than its suppressive and prophylactic effects. The 400 mg/kg dose of chloroform fraction resulted in a maximum survival period (18 days) than other doses of tested materials. The results of this investigation provide support for the activity of M. lanceolata leaf extract against malaria.
Collapse
Affiliation(s)
- Eyob Tekalign
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Mizan-Tepi University, P.O. Box 260, Mizan-Aman, Ethiopia
| | - Getnet Tadege
- Department of Pharmacy, School of Pharmacy, College of Medicine and Health Sciences, Mizan-Tepi University, Mizan-Aman, Ethiopia
| | - Nebeyi Fisseha
- Department of Pharmacy, School of Pharmacy, College of Medicine and Health Sciences, Mizan-Tepi University, Mizan-Aman, Ethiopia
| | - Dejen Nureye
- Department of Pharmacy, School of Pharmacy, College of Medicine and Health Sciences, Mizan-Tepi University, Mizan-Aman, Ethiopia
| |
Collapse
|
13
|
Identification of Survival Risk and Immune-Related Characteristics of Kidney Renal Clear Cell Carcinoma. J Immunol Res 2022; 2022:6149369. [PMID: 35832648 PMCID: PMC9273399 DOI: 10.1155/2022/6149369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/14/2022] [Indexed: 12/02/2022] Open
Abstract
Background Immunity exerts momentous functions in the progression and treatment of kidney renal clear cell carcinoma (KIRC). A better understanding of the relationship between KIRC and immunity may make a great contribution to evaluating the prognosis and immune-related therapeutic response of KIRC. Methods A series of information such as RNA sequence, clinical data, and tumor mutation burden (TMB) of KIRC patients were downloaded through The Cancer Genome Atlas (TCGA). Next, combining the survival information and gene expression data of TCGA and Gene Expression Omnibus (GEO), we established an immune gene-related prognosis model (IGRPM) and analyzed it. Then we constructed a nomogram which was convenient for clinicians to judge the prognosis of KIRC. Last but not the least, the expressions of some genes used to construct IGRPM in early KIRC, and adjacent normal tissues were verified through real-time fluorescence quantitative polymerase chain reaction (RT-qPCR). Perl (strawberry-perl-5.30.0.1-64bit), R software (4.0.3), and GraphPad Prism 7 were used to process the relevant data. Results The single-sample gene set enrichment analysis (ssGSEA) showed that there were significant differences in StromalScore, ImmuneScore, ESTIMATEScore, TumorPurity, 22 kinds of human immune cells infiltration, and HLA genes expression between high immunity group (Immunity_H) and low immunity group (Immunity_L). The Immunity_H expressed more immune-related genes and enriched more immune-related functions than the Immunity_L. In addition, compared with the low-risk group, the high-risk group had worse survival outcome and higher TMB. Combining IGRPM-based risk characteristic and TMB, we found that low-TMB + low-risk was the most beneficial to the survival outcome of KIRC patients. The risk characteristic based on IGRPM could be used as an independent prognostic factor for KIRC, and the nomogram constructed for evaluating the prognosis of KIRC showed excellent predictive potential. The RT-qPCR results suggested that not all the genes used to construct IGRPM showed differential expression in early KIRC compared with adjacent normal tissues, but all these genes had significant influence on the prognosis of KIRC. Conclusion These comprehensive immune assessments and survival predictions, integrating multiple aspects of data and clinical information, can provide additional value to the current Tumor Node Metastasis staging system for risk stratification of KIRC and may facilitate the development of KIRC immunotherapy.
Collapse
|
14
|
Siddiqui AJ, Bhardwaj J, Hamadou WS, Goyal M, Jahan S, Ashraf SA, Jamal A, Sharma P, Sachidanandan M, Badraoui R, Snoussi M, Adnan M. Impact of chemoprophylaxis immunisation under halofantrine (CPS-HF) drug cover in Plasmodium yoelii Swiss mice malaria model. Folia Parasitol (Praha) 2022; 69. [PMID: 35145048 DOI: 10.14411/fp.2022.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 11/28/2021] [Indexed: 11/19/2022]
Abstract
In the present study, we have investigated the role of antimalarial drug halofantrine (HF) in inducing the sterile protection against challenges with sporozoites of the live infectious Plasmodium yoelii (Killick-Kendrick, 1967) in Swiss mice malaria model. We observed that during the first to third sequential sporozoite inoculation cycles, blood-stage patency remains the same in the control and chemoprophylaxis under HF drug cover (CPS-HF) groups. However, a delayed blood-stage infection was observed during the fourth and fifth sporozoite challenges and complete sterile protection was produced following the sixth sporozoite challenge in CPS-HF mice. We also noticed a steady decline in liver stage parasite load after 3th to 6th sporozoite challenge cycle in CPS-HF mice. CPS-HF immunisation results in a significant up-regulation of pro-inflammatory cytokines (IFN-γ, TNF-α, IL-12 and iNOS) and down-regulation of anti-inflammatory cytokines (IL-10 and TGF-β) mRNA expression in hepatic mononuclear cells (HMNC) and spleen cells in the immunised CPS-HF mice (after 6th sporozoite challenge) compared to control. Overall, our study suggests that the repetitive sporozoite inoculation under HF drug treatment develops a strong immune response that confers protection against subsequent challenges with sporozoites of P. yoelii.
Collapse
Affiliation(s)
- Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia.,Molecular Parasitology and Immunology Division, CSIR-Central Drug Research Institute, Lucknow, India.,Both authors have contributed equally to this work and share first authorship.,Corresponding author
| | - Jyoti Bhardwaj
- Indiana University, School of Medicine, Indianapolis, Indiana, United States.,Molecular Parasitology and Immunology Division, CSIR-Central Drug Research Institute, Lucknow, India.,Both authors have contributed equally to this work and share first authorship
| | - Walid Sabri Hamadou
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Manish Goyal
- Molecular Parasitology and Immunology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Sadaf Jahan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah, Saudi Arabia
| | - Syed Amir Ashraf
- Department of Clinical Nutrition, College of Applied Medial Sciences, University of Hail, Hail, Saudi Arabia
| | - Arshad Jamal
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Pankaj Sharma
- Molecular Parasitology and Immunology Division, CSIR-Central Drug Research Institute, Lucknow, India.,Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, U.S.A
| | | | - Riadh Badraoui
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Mejdi Snoussi
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| |
Collapse
|
15
|
Patel M, Siddiqui AJ, Hamadou WS, Surti M, Awadelkareem AM, Ashraf SA, Alreshidi M, Snoussi M, Rizvi SMD, Bardakci F, Jamal A, Sachidanandan M, Adnan M. Inhibition of Bacterial Adhesion and Antibiofilm Activities of a Glycolipid Biosurfactant from Lactobacillus rhamnosus with Its Physicochemical and Functional Properties. Antibiotics (Basel) 2021; 10:1546. [PMID: 34943758 PMCID: PMC8698754 DOI: 10.3390/antibiotics10121546] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/02/2022] Open
Abstract
Biosurfactants derived from different microbes are an alternative to chemical surfactants, which have broad applications in food, oil, biodegradation, cosmetic, agriculture, pesticide and medicine/pharmaceutical industries. This is due to their environmentally friendly, biocompatible, biodegradable, effectiveness to work under various environmental conditions and non-toxic nature. Lactic acid bacteria (LAB)-derived glycolipid biosurfactants can play a major role in preventing bacterial attachment, biofilm eradication and related infections in various clinical settings and industries. Hence, it is important to explore and identify the novel molecule/method for the treatment of biofilms of pathogenic bacteria. In the present study, a probiotic Lactobacillus rhamnosus (L. rhamnosus) strain was isolated from human breast milk. Firstly, its ability to produce biosurfactants, and its physicochemical and functional properties (critical micelle concentration (CMC), reduction in surface tension, emulsification index (% EI24), etc.) were evaluated. Secondly, inhibition of bacterial adhesion and biofilm eradication by cell-bound biosurfactants from L. rhamnosus was performed against various biofilm-forming pathogens (B. subtilis, P. aeruginosa, S. aureus and E. coli). Finally, bacterial cell damage, viability of cells within the biofilm, exopolysaccharide (EPS) production and identification of the structural analogues of the crude biosurfactant via gas chromatography-mass spectrometry (GC-MS) analysis were also evaluated. As a result, L. rhamnosus was found to produce 4.32 ± 0.19 g/L biosurfactant that displayed a CMC of 3.0 g/L and reduced the surface tension from 71.12 ± 0.73 mN/m to 41.76 ± 0.60 mN/m. L. rhamnosus cell-bound crude biosurfactant was found to be effective against all the tested bacterial pathogens. It displayed potent anti-adhesion and antibiofilm ability by inhibiting the bacterial attachment to surfaces, leading to the disruption of biofilm formation by altering the integrity and viability of bacterial cells within biofilms. Our results also confirm the ability of the L. rhamnosus cell-bound-derived biosurfactant to damage the architecture of the biofilm matrix, as a result of the reduced total EPS content. Our findings may be further explored as a green alternative/approach to chemically synthesized toxic antibiofilm agents for controlling bacterial adhesion and biofilm eradication.
Collapse
Affiliation(s)
- Mitesh Patel
- Bapalal Vaidya Botanical Research Centre, Department of Biosciences, Veer Narmad South Gujarat University, Surat 395007, India; (M.P.); (M.S.)
| | - Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (A.J.S.); (W.S.H.); (M.A.); (M.S.); (F.B.); (A.J.)
| | - Walid Sabri Hamadou
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (A.J.S.); (W.S.H.); (M.A.); (M.S.); (F.B.); (A.J.)
| | - Malvi Surti
- Bapalal Vaidya Botanical Research Centre, Department of Biosciences, Veer Narmad South Gujarat University, Surat 395007, India; (M.P.); (M.S.)
| | - Amir Mahgoub Awadelkareem
- Department of Clinical Nutrition, College of Applied Medial Sciences, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (A.M.A.); (S.A.A.)
| | - Syed Amir Ashraf
- Department of Clinical Nutrition, College of Applied Medial Sciences, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (A.M.A.); (S.A.A.)
| | - Mousa Alreshidi
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (A.J.S.); (W.S.H.); (M.A.); (M.S.); (F.B.); (A.J.)
| | - Mejdi Snoussi
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (A.J.S.); (W.S.H.); (M.A.); (M.S.); (F.B.); (A.J.)
| | - Syed Mohd Danish Rizvi
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail P.O. Box 2440, Saudi Arabia;
| | - Fevzi Bardakci
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (A.J.S.); (W.S.H.); (M.A.); (M.S.); (F.B.); (A.J.)
| | - Arshad Jamal
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (A.J.S.); (W.S.H.); (M.A.); (M.S.); (F.B.); (A.J.)
| | - Manojkumar Sachidanandan
- Department of Oral Radiology, College of Dentistry, University of Hail, Hail P.O. Box 2440, Saudi Arabia;
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (A.J.S.); (W.S.H.); (M.A.); (M.S.); (F.B.); (A.J.)
| |
Collapse
|
16
|
Adnan M, Siddiqui AJ, Hamadou WS, Ashraf SA, Hassan MI, Snoussi M, Badraoui R, Jamal A, Bardakci F, Awadelkareem AM, Sachidanandan M, Patel M. Functional and Structural Characterization of Pediococcus pentosaceus-Derived Biosurfactant and Its Biomedical Potential against Bacterial Adhesion, Quorum Sensing, and Biofilm Formation. Antibiotics (Basel) 2021; 10:antibiotics10111371. [PMID: 34827310 PMCID: PMC8614858 DOI: 10.3390/antibiotics10111371] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 11/26/2022] Open
Abstract
Biosurfactants are surface-active molecules of microbial origin and alternatives to synthetic surfactants with various applications. Due to their environmental-friendliness, biocompatibility, biodegradability, effectiveness to work under various environmental conditions, and non-toxic nature, they have been recently recognized as potential agents with therapeutic and commercial importance. The biosurfactant produced by various probiotic lactic acid bacteria (LAB) has enormous applications in different fields. Thus, in vitro assessment of biofilm development prevention or disruption by natural biosurfactants derived from probiotic LAB is a plausible approach that can lead to the discovery of novel antimicrobials. Primarily, this study aims to isolate, screen, and characterize the functional and biomedical potential of biosurfactant synthesized by probiotic LAB Pediococcus pentosaceus (P. pentosaceus). Characterization consists of the assessment of critical micelle concentration (CMC), reduction in surface tension, and emulsification index (% EI24). Evaluation of antibacterial, antibiofilm, anti-QS, and anti-adhesive activities of cell-bound biosurfactants were carried out against different human pathogenic bacteria (B. subtilis, P. aeruginosa, S. aureus, and E. coli). Moreover, bacterial cell damage, viability of cells within the biofilm, and exopolysaccharide (EPS) production were also evaluated. As a result, P. pentosaceus was found to produce 4.75 ± 0.17 g/L biosurfactant, which displayed a CMC of 2.4 ± 0.68 g/L and reduced the surface tension from 71.11 ± 1.12 mN/m to 38.18 ± 0.58 mN/m. P. pentosaceus cells bound to the crude biosurfactant were found to be effective against all tested bacterial pathogens. It exhibited an anti-adhesion ability and impeded the architecture of the biofilm matrix by affecting the viability and integrity of bacterial cells within biofilms and reducing the total EPS content. Furthermore, the crude biosurfactant derived from P. pentosaceus was structurally characterized as a lipoprotein by GC-MS analysis, which confirms the presence of lipids and proteins. Thus, our findings represent the potent anti-adhesion and antibiofilm potential of P. pentosaceus crude biosurfactant for the first time, which may be explored further as an alternative to antibiotics or chemically synthesized toxic antibiofilm agents.
Collapse
Affiliation(s)
- Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (A.J.S.); (W.S.H.); (M.S.); (R.B.); (A.J.); (F.B.)
- Correspondence: (M.A.); (M.P.)
| | - Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (A.J.S.); (W.S.H.); (M.S.); (R.B.); (A.J.); (F.B.)
| | - Walid Sabri Hamadou
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (A.J.S.); (W.S.H.); (M.S.); (R.B.); (A.J.); (F.B.)
| | - Syed Amir Ashraf
- Department of Clinical Nutrition, College of Applied Medial Sciences, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (S.A.A.); (A.M.A.)
| | - Md Imtaiyaz Hassan
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 10025, India;
| | - Mejdi Snoussi
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (A.J.S.); (W.S.H.); (M.S.); (R.B.); (A.J.); (F.B.)
- Laboratory of Genetics, Biodiversity and Valorisation of Bioresources, High Institute of Biotechnology, University of Monastir, Monastir 5000, Tunisia
| | - Riadh Badraoui
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (A.J.S.); (W.S.H.); (M.S.); (R.B.); (A.J.); (F.B.)
- Section of Histology-Cytology, Medicine Faculty of Tunis, University of Tunis El Manar, La Rabta-Tunis 1007, Tunisia
| | - Arshad Jamal
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (A.J.S.); (W.S.H.); (M.S.); (R.B.); (A.J.); (F.B.)
| | - Fevzi Bardakci
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (A.J.S.); (W.S.H.); (M.S.); (R.B.); (A.J.); (F.B.)
| | - Amir Mahgoub Awadelkareem
- Department of Clinical Nutrition, College of Applied Medial Sciences, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (S.A.A.); (A.M.A.)
| | - Manojkumar Sachidanandan
- Department of Oral Radiology, College of Dentistry, University of Hail, Hail P.O. Box 2440, Saudi Arabia;
| | - Mitesh Patel
- Bapalal Vaidya Botanical Research Center, Department of Biosciences, Veer Narmad South Gujarat University, Surat 395007, India
- Correspondence: (M.A.); (M.P.)
| |
Collapse
|
17
|
Chemoprophylaxis under sporozoites-lumefantrine (CPS-LMF) immunization induce protective immune responses against Plasmodium yoelii sporozoites infection in mice. 3 Biotech 2021; 11:465. [PMID: 34745816 DOI: 10.1007/s13205-021-03022-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/06/2021] [Indexed: 01/16/2023] Open
Abstract
Malaria represents one of the major life-threatening diseases that poses a huge socio-economic impact, worldwide. Chemoprophylaxis vaccination using a relatively low number of wild-type infectious sporozoites represents an attractive and effective vaccine strategy against malaria. However, the role of immune responses to pre-erythrocytic versus blood-stage parasites in protection against different antimalarial drugs remains unclear. Here, in the present study, we explored the immune responses against the repetitive inoculation of live Plasmodium yoelii (P. yoelii) sporozoites in an experimental Swiss mouse model under antimalarial drug lumefantrine chemoprophylaxis (CPS-LMF). We monitored the liver stage parasitic load, pro/anti-inflammatory cytokines expression, and erythrocytic stage patency, following repetitive cycles of sporozoites inoculations. It was found that repetitive sporozoites inoculation under CPS-LMF results in delayed blood-stage infection during the fourth sporozoites challenge, while sterile protection was produced in mice following the fifth cycle of sporozoites challenge. Intriguingly, we observed a significant up-regulation of pro-inflammatory cytokines (IFN-γ, TNF-α and IL-12) and iNOS response and down-regulation of anti-inflammatory cytokines (IL-4, IL-10 and TGF-β) in the liver HMNC (hepatic mononuclear cells) and spleen cells after 4th and 5th cycle of sporozoites challenge in the CPS-LMF mice. Meanwhile, we also noticed that the liver stage parasites load under CPS-LMF immunization has gradually reduced after 2nd, 3rd, 4th and 5th sporozoites challenge. Overall, our study suggests that chemoprophylaxis vaccination under LMF drug cover develops strong immune responses and confer superior long-lasting protection against P. yoelii sporozoites. Furthermore, this vaccination strategy can be used to study the protective and stage-specific immunity against new protective antigens. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-03022-0.
Collapse
|
18
|
Siddiqui AJ, Jahan S, Ashraf SA, Alreshidi M, Ashraf MS, Patel M, Snoussi M, Singh R, Adnan M. Current status and strategic possibilities on potential use of combinational drug therapy against COVID-19 caused by SARS-CoV-2. J Biomol Struct Dyn 2021; 39:6828-6841. [PMID: 32752944 PMCID: PMC7484586 DOI: 10.1080/07391102.2020.1802345] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/21/2020] [Indexed: 01/01/2023]
Abstract
The spread of new coronavirus infection starting December 2019 as novel SARS-CoV-2, identified as the causing agent of COVID-19, has affected all over the world and been declared as pandemic. Approximately, more than 8,807,398 confirmed cases of COVID-19 infection and 464,483 deaths have been reported globally till the end of 21 June 2020. Until now, there is no specific drug therapy or vaccine available for the treatment of COVID-19. However, some potential antimalarial drugs like hydroxychloroquine and azithromycin, antifilarial drug ivermectin and antiviral drugs have been tested by many research groups worldwide for their possible effect against the COVID-19. Hydroxychloroquine and ivermectin have been identified to act by creating the acidic condition in cells and inhibiting the importin (IMPα/β1) mediated viral import. There is a possibility that some other antimalarial drugs/antibiotics in combination with immunomodulators may help in combatting this pandemic disease. Therefore, this review focuses on the current use of various drugs as single agents (hydroxychloroquine, ivermectin, azithromycin, favipiravir, remdesivir, umifenovir, teicoplanin, nitazoxanide, doxycycline, and dexamethasone) or in combinations with immunomodulators additionally. Furthermore, possible mode of action, efficacy and current stage of clinical trials of various drug combinations against COVID-19 disease has also been discussed in detail.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Sadaf Jahan
- Department of Medical Laboratory, College of Applied Medical Sciences, Majmaah University, Al Majma'ah, Saudi Arabia
| | - Syed Amir Ashraf
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Hail, Hail, Saudi Arabia
| | - Mousa Alreshidi
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Mohammad Saquib Ashraf
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, Shaqra University, Al Dawadimi, Saudi Arabia
| | - Mitesh Patel
- Bapalal Vaidya Botanical Research Centre, Department of Biosciences, Veer Narmad South Gujarat University, Surat, Gujarat, India
| | - Mejdi Snoussi
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
- Laboratory of Genetics, Biodiversity and Valorization of Bio-resources, Higher Institute of Biotechnology of Monastir, University of Monastir, Monastir, Tunisia
| | - Ritu Singh
- Department of Environmental Sciences, School of Earth Sciences, Central University of Rajasthan, Ajmer, India
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| |
Collapse
|
19
|
Li G, Liu H, Feng R, Kang TS, Wang W, Ko CN, Wong CY, Ye M, Ma DL, Wan JB, Leung CH. A bioactive ligand-conjugated iridium(III) metal-based complex as a Keap1-Nrf2 protein-protein interaction inhibitor against acetaminophen-induced acute liver injury. Redox Biol 2021; 48:102129. [PMID: 34526248 PMCID: PMC8710994 DOI: 10.1016/j.redox.2021.102129] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/30/2021] [Accepted: 09/07/2021] [Indexed: 01/04/2023] Open
Abstract
Hepatotoxicity caused by an overdose of acetaminophen (APAP) is the leading reason for acute drug-related liver failure. Nuclear factor erythroid-2-related factor 2 (Nrf2) is a protein that helps to regulate redox homeostasis and coordinate stress responses via binding to the Kelch-like ECH-associated protein 1 (Keap1). Targeting the Keap1-Nrf2 interaction has recently emerged as a potential strategy to alleviate liver injury caused by APAP. Here, we designed and synthesized a number of iridium (III) and rhodium (III) complexes bearing ligands with reported activity against oxidative stress, which is associated with Nrf2 transcriptional activation. The iridium (III) complex 1 bearing a bioactive ligand 2,9-dimethyl-1,10-phenanthroline and 4-chloro-2-phenylquinoline, a derivative of the bioactive ligand 2-phenylquinoline, was identified as a direct small-molecule inhibitor of the Keap1–Nrf2 protein-protein interaction. 1 could stabilize Keap1 protein, upregulate HO-1 and NQO1, and promote Nrf2 nuclear translocation in normal liver cells. Moreover, 1 reversed APAP-induced liver damage by disrupting Keap1–Nrf2 interaction and without inducing organ damage and immunotoxicity in mice. Our study demonstrates the identification of a selective and efficacious antagonist of Keap1–Nrf2 interaction possessed good cellular permeability in cellulo and ideal pharmacokinetic parameters in vivo, and, more importantly, validates the feasibility of conjugating metal complexes with bioactive ligands to generate metal-based drug leads as non-toxic Keap1–Nrf2 interaction inhibitors for treating APAP-induced acute liver injury. 1 reversed APAP-induced liver damage by disrupting Keap1–Nrf2 interaction without inducing organ damage or immunotoxicity. Complex 1 possessed good cellular permeability in cellulo and ideal pharmacokinetic parameters in vivo. Conjugating metal complexes with bioactive ligands opens a novel avenue for the treatment of APAP-induced liver damage.
Collapse
Affiliation(s)
- Guodong Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Hao Liu
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Ruibing Feng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Tian-Shu Kang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Wanhe Wang
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China; Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Chung-Nga Ko
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Chun-Yuen Wong
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Hong Kong SAR, China
| | - Min Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China.
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China.
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China; Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Macao SAR, China.
| |
Collapse
|
20
|
Adnan M, Siddiqui AJ, Hamadou WS, Snoussi M, Badraoui R, Ashraf SA, Jamal A, Awadelkareem AM, Sachidanandan M, Hadi S, Khan MA, Patel M. Deciphering the Molecular Mechanism Responsible for Efficiently Inhibiting Metastasis of Human Non-Small Cell Lung and Colorectal Cancer Cells Targeting the Matrix Metalloproteinases by Selaginella repanda. PLANTS (BASEL, SWITZERLAND) 2021; 10:979. [PMID: 34068885 PMCID: PMC8156211 DOI: 10.3390/plants10050979] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 12/23/2022]
Abstract
Selaginella species are known to have antimicrobial, antioxidant, anti-inflammatory, anti-diabetic as well as anticancer effects. However, no study has examined the cytotoxic and anti-metastatic efficacy of Selaginella repanda (S. repanda) to date. Therefore, this study aimed to evaluate the potential anti-metastatic properties of ethanol crude extract of S. repanda in human non-small-cell lung (A-549) and colorectal cancer (HCT-116) cells with possible mechanisms. Effect of S. repanda crude extract on the growth, adhesion, migration and invasion of the A-549 and HCT-116 were investigated. We demonstrated that S. repanda crude extract inhibited cell growth of metastatic cells in a dose and time dependent manner. Incubation of A-549 and HCT-116 cells with 100-500 µg/mL of S. repanda crude extract significantly inhibited cell adhesion to gelatin coated surface. In the migration and invasion assay, S. repanda crude extract also significantly inhibited cellular migration and invasion in both A-549 and HCT-116 cells. Moreover, reverse transcription-polymerase chain reaction, and real-time PCR (RT-PCR) analysis revealed that the activity and mRNA level of matrix metalloproteinase-9 (MMP-9), matrix metalloproteinase-2 (MMP-2) and membrane type 1-matrix metalloproteinase (MT1-MMP) were inhibited. While the activity of tissue inhibitor matrix metalloproteinase 1 (TIMP-1); an inhibitor of MMPs was stimulated by S. repanda crude extract in a concentration-dependent manner. Therefore, the present study not only indicated the inhibition of motility and invasion of malignant cells by S. repanda, but also revealed that such effects were likely associated with the decrease in MMP-2/-9 expression of both A-549 and HCT-116 cells. This further suggests that S. repanda could be used as a potential source of anti-metastasis agent in pharmaceutical development for cancer therapy.
Collapse
Affiliation(s)
- Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (M.A.); (A.J.S.); (W.S.H.); (M.S.); (R.B.); (A.J.)
| | - Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (M.A.); (A.J.S.); (W.S.H.); (M.S.); (R.B.); (A.J.)
| | - Walid Sabri Hamadou
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (M.A.); (A.J.S.); (W.S.H.); (M.S.); (R.B.); (A.J.)
| | - Mejdi Snoussi
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (M.A.); (A.J.S.); (W.S.H.); (M.S.); (R.B.); (A.J.)
| | - Riadh Badraoui
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (M.A.); (A.J.S.); (W.S.H.); (M.S.); (R.B.); (A.J.)
- Section of Histology-Cytology, Medicine Faculty of Tunis, University of Tunis El Manar, La Rabta-Tunis 1007, Tunisia
| | - Syed Amir Ashraf
- Department of Clinical Nutrition, College of Applied Medial Sciences, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (S.A.A.); (A.M.A.)
| | - Arshad Jamal
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (M.A.); (A.J.S.); (W.S.H.); (M.S.); (R.B.); (A.J.)
| | - Amir Mahgoub Awadelkareem
- Department of Clinical Nutrition, College of Applied Medial Sciences, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (S.A.A.); (A.M.A.)
| | - Manojkumar Sachidanandan
- Department of Oral Radiology, College of Dentistry, University of Hail, Hail P.O. Box 2440, Saudi Arabia;
| | - Sibte Hadi
- School of Forensic and Applied Sciences, University of Central Lancashire, Preston PR1 2HE, UK;
| | - Mushtaq Ahmad Khan
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, UAE University, Al Ain 17666, United Arab Emirates
| | - Mitesh Patel
- Bapalal Vaidya Botanical Research Centre, Department of Biosciences, Veer Narmad South Gujarat University, Surat 394230, India
| |
Collapse
|
21
|
Kung YL, Lu CY, Badrealam KF, Kuo WW, Shibu MA, Day CH, Chen RJ, Lu SY, Padma VV, Huang CY. Cardioprotective potential of amygdalin against angiotensin II induced cardiac hypertrophy, oxidative stress and inflammatory responses through modulation of Nrf2 and NF-κB activation. ENVIRONMENTAL TOXICOLOGY 2021; 36:926-934. [PMID: 33448586 DOI: 10.1002/tox.23094] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/27/2020] [Indexed: 06/12/2023]
Abstract
Heart failure (HF) and cardiac hypertrophy is an unfavorable outcome of pathological cardiac remodeling and represents the most important contributing factor for HF and cardiac hypertrophy. Amygdalin (AMG) is a cyanogenic glycoside derived from bitter almonds. Accumulating evidences have highlighted their pharmacological potentials against various diseases. However, there is no report delineating the potential of AMG against angiotensin (Ang II) induced cardiac injuries. Thus, the present study was performed to explore whether AMG could ameliorate Ang II induced cardiomyopathies and thereby ascertain the underlying mechanisms thereof. To this end, H9c2 cells were treated with Ang II and thereafter treated with various concentration of AMG and finally the cardio-protective effects of AMG were analyzed through Western blotting, immunofluorescence, and insilico analysis. Our results showed that the cardiomyocyte cell size, inflammatory markers and cytokines(pNF-κB, TNF-α, iNOS and COX-2) were markedly increased following Ang II treatment; nevertheless, treatment with AMG led to considerable decrement in the Ang II induced enlargement of the cardiomyocytes, and attenuate the expression of hypertrophic markers(ANP, BNP and MHC-7), inflammatory markers and cytokines. Additionally, oxidative stress related proteins (Nrf2, catalase, SOD-2, and GPX-4) were markedly increased following AMG treatment. Molecular docking reveals the interaction of AMG with Nrf2 possessing good binding affinity. Cumulatively, our study highlights the cardio-protective role of AMG against Ang II induced cardiomyopathies, including oxidative stress and inflammation effects. The intriguing in vitro results warrants the need of further animal studies to truly ascertain their potentialities.
Collapse
Affiliation(s)
- Yen-Lun Kung
- Integration of Chinese medicine and Modern medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Cheng-You Lu
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Khan Fareen Badrealam
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan
- Ph.D. Program for Biotechnology Industry, China Medical University, Taichung, Taiwan
| | - Marthandam Asokan Shibu
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | | | - Ray-Jade Chen
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shang-Yeh Lu
- Division of Cardiovascular Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | | | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Biological Science and Technology, Asia University, Taichung, Taiwan
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
22
|
β-Sitosterol Alters the Inflammatory Response in CLP Rat Model of Sepsis by Modulation of NF κB Signaling. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5535562. [PMID: 33997001 PMCID: PMC8105092 DOI: 10.1155/2021/5535562] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/29/2021] [Accepted: 04/17/2021] [Indexed: 11/20/2022]
Abstract
Purpose Sepsis originates from the host inflammatory response, especially to bacterial infections, and is considered one of the main causes of death in intensive care units. Various agents have been developed to inhibit mediators of the inflammatory response; one prospective agent is β-sitosterol (βS), a phytosterol with a structure similar to cholesterol. This study is aimed at evaluating the effects of βS on the biomarkers of inflammation and liver function in cecal ligation and puncture- (CLP-) induced septic rats. Methods Thirty male Wistar rats were divided equally into six groups as follows: sham, CLP, CLP+dexamethasone (DX, 0.2 mg/kg), CLP+βS (1 mg/kg), CLP+imipenem (IMI, 20 mg/kg), and CLP+IMI (20 mg/kg)+βS (1 mg/kg). Serum levels of IL-1β, IL-6, IL-10, AST, ALT, and liver glutathione (GSH) were assessed by ELISA. Liver expression levels of TNF-α and NF-κBi mRNAs were evaluated by RT-qPCR. Results Serum concentrations of IL-1β, IL-6, IL-10, ALT, and AST and mRNA levels of TNF-α and NF-κBi were all significantly higher in septic rats than in normal rats (p < 0.05). Liver GSH content was markedly lower in the CLP group than that in the sham group. βS-treated rats had remarkably lower levels of IL-1β, IL-6, IL-10, TNF-α, NF-κBi, AST, and ALT (51.79%, 62.63%, 41.46%, 54.35%, 94.37%, 95.30%, 34.87%, and 46.53% lower, respectively) and greater liver GSH content (35.71% greater) compared to the CLP group (p < 0.05). Conclusion βS may play a protective role in the septic process by mitigating inflammation. This effect is at least partly mediated by inhibition of the NF-κB signaling pathway. Thus, βS can be considered as a supplementary treatment in septic patients.
Collapse
|
23
|
Lin YM, Badrealam KF, Kuo CH, Daddam J, Asokan Shibu M, Lin KH, Ho TJ, Viswanadha VP, Kuo WW, Huang CY. Small Molecule Compound Nerolidol attenuates Hypertension induced hypertrophy in spontaneously hypertensive rats through modulation of Mel-18-IGF-IIR signalling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 84:153450. [PMID: 33611212 DOI: 10.1016/j.phymed.2020.153450] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 12/16/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Cardiovascular diseases are caused by multitudes of stress factors like hypertension and their outcomes are associated with high mortality and morbidity worldwide. Nerolidol, a naturally occurring sesquiterpene found in several plant species, embodies various pharmacological benefits against numerous health disorders. However, their effects on hypertension induced cardiac complications are not completely understood. PURPOSE The present study is to elucidate the efficacy of nerolidol against hypertension related cardiac hypertrophy in spontaneously hypertensive rats (SHRs). STUDY DESIGN For preliminary in vitro studies, H9c2 cardiomyoblasts cells were challenged with 200 nM Angiotensin-II (AngII) for 12 h and were then treated with nerolidol for 24 h. The hypertrophic effect in H9c2 cells were analyzed by actin staining and the modulations in hypertrophic protein markers and mediators were determined by Western blotting analysis. For in vivo experiments, sixteen week-old male Wistar Kyoto (WKY) and SHRs were segregated into five groups (n = 9): Control WKY, hypertensive SHRs, SHRs with low dose (75 mg/kg b.w/day) nerolidol, SHRs with high dose (150 mg/kg b.w/day) nerolidol and SHR rats treated with an anti-hypertensive drug captopril (50 mg/kg b.w/day). Nerolidol treatment was given orally for 8 weeks and were analysed through Echocardiography. After euthanasia, hematoxylin and eosin staining, Immunohistochemical analysis and Western blotting was performed on left ventricle tissue. RESULTS Western blotting analysis revealed that nerolidol significantly attenuates AngII induced expression of hypertrophic markers ANP and BNP in H9c2 cardiomyoblasts. In addition, actin staining further ascertained the potential of nerolidol to ameliorate AngII induced cardiac hypertrophy. Moreover, nerolidol administration suppressed the hypertrophic signalling mediators like calcineurin, GATA4, Mel-18, HSF-2 and IGFIIR in a dose-dependent fashion. In silico studies also ascertained the role of Mel-18 in the ameliorative effects of nerolidol. Further, these intriguing in vitro results were further confirmed in in vivo SHR model. Oral neraolidol in SHRs efficiently reduced blood pressure and ameliorated hypertension induced cardiac hypertrophic effects by effectively reducing the levels of proteins involved in cardiac MeL-18-HSF2-IGF-IIR signalling. CONCLUSION Collectively, the data reveals that the cardioprotective effect of nerolidol against hypertension induced hypertrophy involves reduction in blood pressure and regulation of the cardiac Mel-18-IGFIIR signalling cascade.
Collapse
Affiliation(s)
- Yueh-Min Lin
- Department of Pathology, Changhua Christian Hospital, Changhua 500, Taiwan; Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management, Taipei 11260, Taiwan
| | - Khan Farheen Badrealam
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Chia-Hua Kuo
- Laboratory of Exercise Biochemistry, University of Taipei, Taiwan
| | - Jayasimharayalu Daddam
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Marthandam Asokan Shibu
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Kuan-Ho Lin
- College of Medicine, China Medical University, Taichung, Taiwan; Department of Emergency Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Tsung-Jung Ho
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Hualien 97002, Taiwan; Department of Chinese Medicine, Hualien Tzu Chi Hospital, Hualien 97002, Taiwan; School of Post-Baccalaureate Chinese Medicine, College of Medicine, Tzu Chi University, Hualien 97004, Taiwan
| | | | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung; Ph.D. Program for Biotechnology Industry, China Medical University, Taichuang 406, Taiwan
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan; Department of Biological Science and Technology, Asia University, Taichung, Taiwan; Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien 970, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan.
| |
Collapse
|
24
|
Lin YM, Badrealam KF, Kuo WW, Lai PF, Shao-Tsu Chen W, Hsuan Day C, Ho TJ, Viswanadha VP, Shibu MA, Huang CY. Nerolidol improves cardiac function in spontaneously hypertensive rats by inhibiting cardiac inflammation and remodelling associated TLR4/ NF-κB signalling cascade. Food Chem Toxicol 2021; 147:111837. [PMID: 33212213 DOI: 10.1016/j.fct.2020.111837] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 12/15/2022]
Abstract
Toll-like receptor 4 (TLR4) is an important mediator of hypertension and AngII induced cardiac inflammation and remodelling. In this study, the potential of nerolidol to ameliorate hypertension induced cardiac injuries and the underlying mechanism of action was explored by using in vitro and in vivo models. The in vitro analysis was performed on AngII challenged H9c2 cells and their ability to overcome cardiac inflammation and cardiac remodelling effects was determined by evaluating TLR4/NF-κB signalling cascade using Western blot analysis and immunofluorescence. The results were further ascertained using in vivo experiments. Eighteen week old male rats were randomly allocated into different groups i.e. Wistar Kyoto (WKY) rats, hypertensive SHRs, SHRs treated with a low-dose (75 mg/kg b.w) and high-dose of nerolidol (150 mg/kg b.w) and SHRs treated with captopril (50 mg/kg b.w) through oral gauge and finally analysed through echocardiography, histopathological techniques and molecular analysis. The results show that nerilodol target TLR4/NF-κB signalling and thereby attenuate hypertension associated inflammation and oxidative stress thereby provides effective cardioprotection. Echocardiography analysis showed that nerolidol improved cardiac functional characteristics including Ejection Fraction and Fractional Shortening in the SHRs. Collectively, the data of the study demonstrates nerolidol as a cardio-protective agent against hypertension induced cardiac remodelling.
Collapse
Affiliation(s)
- Yueh-Min Lin
- Department of Pathology, Changhua Christian Hospital, Changhua, 500, Taiwan; Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management, Taipei, 11260, Taiwan
| | - Khan Farheen Badrealam
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Pei Fang Lai
- Emergency Department, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien, Taiwan
| | - William Shao-Tsu Chen
- Department of Psychiatry, Tzu Chi General Hospital, 707, Section 3, Chung-Yang Road, Hualien, 97004, Taiwan; School of Medicine Tzu Chi University, 701, Section 3, Chung-Yang Road, Hualien, 97004, Taiwan
| | - Cecilia Hsuan Day
- Department of Nursing, Mei Ho University, Pingguang Road, Pingtung, Taiwan
| | - Tsung-Jung Ho
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien, Taiwan; Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan; School of Post‑Baccalaureate Chinese Medicine, College of Medicine, Tzu Chi University, Buddhist Tzu Chi Medical Foundation, Hualien, 97004, Taiwan
| | | | - Marthandam Asokan Shibu
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 404, Taiwan; Department of Biological Science and Technology, Asia University, Taichung, Taiwan; Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, 970, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan.
| |
Collapse
|
25
|
Siddiqui AJ, Danciu C, Ashraf SA, Moin A, Singh R, Alreshidi M, Patel M, Jahan S, Kumar S, Alkhinjar MIM, Badraoui R, Snoussi M, Adnan M. Plants-Derived Biomolecules as Potent Antiviral Phytomedicines: New Insights on Ethnobotanical Evidences against Coronaviruses. PLANTS 2020; 9:plants9091244. [PMID: 32967179 PMCID: PMC7570315 DOI: 10.3390/plants9091244] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 02/07/2023]
Abstract
SARS-CoV-2 infection (COVID-19) is in focus over all known human diseases, because it is destroying the world economy and social life, with increased mortality rate each day. To date, there is no specific medicine or vaccine available against this pandemic disease. However, the presence of medicinal plants and their bioactive molecules with antiviral properties might also be a successful strategy in order to develop therapeutic agents against SARS-CoV-2 infection. Thus, this review will summarize the available literature and other information/data sources related to antiviral medicinal plants, with possible ethnobotanical evidence in correlation with coronaviruses. The identification of novel antiviral compounds is of critical significance, and medicinal plant based natural compounds are a good source for such discoveries. In depth search and analysis revealed several medicinal plants with excellent efficacy against SARS-CoV-1 and MERS-CoV, which are well-known to act on ACE-2 receptor, 3CLpro and other viral protein targets. In this review, we have consolidated the data of several medicinal plants and their natural bioactive metabolites, which have promising antiviral activities against coronaviruses with detailed modes of action/mechanism. It is concluded that this review will be useful for researchers worldwide and highly recommended for the development of naturally safe and effective therapeutic drugs/agents against SARS-CoV-2 infection, which might be used in therapeutic protocols alone or in combination with chemically synthetized drugs.
Collapse
Affiliation(s)
- Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Hail, Hail PO Box 2440, Saudi Arabia; (M.A.); (R.B.); (M.S.); (M.A.)
- Correspondence: (A.J.S.); (C.D.); Tel.: +40-744-648-855 (C.D.)
| | - Corina Danciu
- Department of Pharmacognosy, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania
- Correspondence: (A.J.S.); (C.D.); Tel.: +40-744-648-855 (C.D.)
| | - Syed Amir Ashraf
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Hail, Hail PO Box 2440, Saudi Arabia;
| | - Afrasim Moin
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail PO Box 2440, Saudi Arabia;
| | - Ritu Singh
- Department of Environmental Sciences, School of Earth Sciences, Central University of Rajasthan, Ajmer, Rajasthan 305817, India;
| | - Mousa Alreshidi
- Department of Biology, College of Science, University of Hail, Hail PO Box 2440, Saudi Arabia; (M.A.); (R.B.); (M.S.); (M.A.)
| | - Mitesh Patel
- Bapalal Vaidya Botanical Research Centre, Department of Biosciences, Veer Narmad South Gujarat University, Surat, Gujarat 395007, India;
| | - Sadaf Jahan
- Department of Medical Laboratory, College of Applied Medical Sciences, Majmaah University, Al Majma’ah 15341, Saudi Arabia;
| | - Sanjeev Kumar
- Department of Environmental Sciences, Central University of Jharkhand, Ranchi 835205, India;
| | - Mulfi I. M. Alkhinjar
- Saudi Center for Disease Prevention and Control, Al Aarid, King Abdulaziz Rd, Riyadh 13354, Saudi Arabia;
| | - Riadh Badraoui
- Department of Biology, College of Science, University of Hail, Hail PO Box 2440, Saudi Arabia; (M.A.); (R.B.); (M.S.); (M.A.)
- Section of Histology-Cytology, Medicine College of Tunis, University of Tunis El Manar, La Rabta-Tunis 1007, Tunisia
- Laboratory of Histo-Embryology and Cytogenetic, Medicine College of Sfax, University of Sfax, Sfax 3029, Tunisia
| | - Mejdi Snoussi
- Department of Biology, College of Science, University of Hail, Hail PO Box 2440, Saudi Arabia; (M.A.); (R.B.); (M.S.); (M.A.)
- Laboratory of Genetics, Biodiversity and Valorization of Bio-Resources, Higher Institute of Biotechnology of Monastir, University of Monastir, Monastir 5000, Tunisia
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail PO Box 2440, Saudi Arabia; (M.A.); (R.B.); (M.S.); (M.A.)
| |
Collapse
|
26
|
Patel M, Ashraf MS, Siddiqui AJ, Ashraf SA, Sachidanandan M, Snoussi M, Adnan M, Hadi S. Profiling and Role of Bioactive Molecules from Puntius sophore (Freshwater/Brackish Fish) Skin Mucus with Its Potent Antibacterial, Antiadhesion, and Antibiofilm Activities. Biomolecules 2020; 10:E920. [PMID: 32560562 PMCID: PMC7355610 DOI: 10.3390/biom10060920] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/04/2020] [Accepted: 06/04/2020] [Indexed: 12/19/2022] Open
Abstract
Epidermal fish mucus comprises of diverse bioactive metabolites which plays an immense role in defense mechanisms and other important cellular activities. Primarily, this study aims to screen the unexplored mucus extract of Puntius sophore(P. sophore) for its antagonistic potential against common pathogens, which are commonly implicated in foodborne and healthcare associated infections, with effects on their adhesion and biofilm formation. Profiling of the skin mucus was carried out by High Resolution-Liquid Chromatography Mass Spectrometry (HR-LCMS), followed by antibacterial activity and assessment of antibiofilm potency and efficacy on the development, formation, and texture of biofilms. Furthermore, bacterial cell damage, viability within the biofilm, checkerboard test, and cytotoxicity were also evaluated. As a result, P. sophore mucus extract was found to be effective against all tested strains. It also impedes the architecture of biofilm matrix by affecting the viability and integrity of bacterial cells within biofilms and reducing the total exopolysaccharide content. A synergy was observed between P. sophore mucus extract and gentamicin for Escherichia coli(E. coli), Pseudomonas aeruginosa(P. aeruginosa), and Bacillus subtilis(B. subtilis), whereas, an additive effect for Staphylococcus aureus(S. aureus). Thus, our findings represent the potent bioactivities of P. sophore mucus extract for the first time, which could be explored further as an alternative to antibiotics or chemically synthesized antibiofilm agents.
Collapse
Affiliation(s)
- Mitesh Patel
- Bapalal Vaidya Botanical Research Centre, Department of Biosciences, Veer Narmad South Gujarat University, Surat, Gujarat 395007, India;
| | - Mohammad Saquib Ashraf
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, Shaqra University, Al Dawadimi 17472, Saudi Arabia;
| | - Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Hail, Saudi Arabia; (A.J.S.); (M.S.)
| | - Syed Amir Ashraf
- Department of Clinical Nutrition, College of Applied Medial Sciences, University of Hail, P.O. Box 2440, Hail, Saudi Arabia;
| | - Manojkumar Sachidanandan
- Department of Oral Radiology, College of Dentistry, University of Hail, P.O. Box 2440, Hail, Saudi Arabia;
| | - Mejdi Snoussi
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Hail, Saudi Arabia; (A.J.S.); (M.S.)
- Laboratory of Bioresources: Integrative Biology and Valorization, (LR14-ES06), University of Monastir, Higher Institute of Biotechnology of Monastir, Avenue Tahar Haddad, BP 74, Monastir 5000, Tunisia
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Hail, Saudi Arabia; (A.J.S.); (M.S.)
| | - Sibte Hadi
- School of Forensic and Applied Sciences, University of Central Lancashire, Preston PR1 2HE, UK
| |
Collapse
|
27
|
Cordycepin for Health and Wellbeing: A Potent Bioactive Metabolite of an Entomopathogenic Cordyceps Medicinal Fungus and Its Nutraceutical and Therapeutic Potential. Molecules 2020; 25:molecules25122735. [PMID: 32545666 PMCID: PMC7356751 DOI: 10.3390/molecules25122735] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 12/18/2022] Open
Abstract
Cordyceps is a rare naturally occurring entomopathogenic fungus usually found at high altitudes on the Himalayan plateau and a well-known medicinal mushroom in traditional Chinese medicine. Cordyceps contains various bioactive components, out of which, cordycepin is considered most vital, due to its utmost therapeutic as well as nutraceutical potential. Moreover, the structure similarity of cordycepin with adenosine makes it an important bioactive component, with difference of only hydroxyl group, lacking in the 3′ position of its ribose moiety. Cordycepin is known for various nutraceutical and therapeutic potential, such as anti-diabetic, anti-hyperlipidemia, anti-fungal, anti-inflammatory, immunomodulatory, antioxidant, anti-aging, anticancer, antiviral, hepato-protective, hypo-sexuality, cardiovascular diseases, antimalarial, anti-osteoporotic, anti-arthritic, cosmeceutical etc. which makes it a most valuable medicinal mushroom for helping in maintaining good health. In this review, effort has been made to bring altogether the possible wide range of cordycepin’s nutraceutical potential along with its pharmacological actions and possible mechanism. Additionally, it also summarizes the details of cordycepin based nutraceuticals predominantly available in the market with expected global value. Moreover, this review will attract the attention of food scientists, nutritionists, pharmaceutical and food industries to improve the use of bioactive molecule cordycepin for nutraceutical purposes with commercialization to aid and promote healthy lifestyle, wellness and wellbeing.
Collapse
|
28
|
Ashraf SA, Adnan M, Patel M, Siddiqui AJ, Sachidanandan M, Snoussi M, Hadi S. Fish-based Bioactives as Potent Nutraceuticals: Exploring the Therapeutic Perspective of Sustainable Food from the Sea. Mar Drugs 2020; 18:E265. [PMID: 32443645 PMCID: PMC7281228 DOI: 10.3390/md18050265] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/02/2020] [Accepted: 05/11/2020] [Indexed: 12/11/2022] Open
Abstract
Recent developments in nutraceuticals and functional foods have confirmed that bioactive components present in our diet play a major therapeutic role against human diseases. Moreover, there is a huge emphasis on food scientists for identifying and producing foods with better bioactive activity, which can ultimately provide wellness and well-being to human health. Among the several well-known foods with bioactive constituents, fish has always been considered important, due to its rich nutritional values and by-product application in food industries. Nutritionists, food scientists, and other scientific communities have been working jointly to uncover new bioactive molecules that could increase the potential and therapeutic benefits of these bioactive components. Despite the innumerable benefits of fish and known fish bioactive molecules, its use by food or pharmaceutical industries is scarce, and even research on fish-based nutraceuticals is not promising. Therefore, this review focuses on the current information/data available regarding fish bioactive components, its application as nutraceuticals for therapeutic purposes in the treatment of chronic diseases, ethnic issues related to consumption of fish or its by-products. Especial emphasis is given on the utilization of fish wastes and its by-products to fulfill the world demand for cheap dietary supplements specifically for underdeveloped/least developed countries.
Collapse
Affiliation(s)
- Syed Amir Ashraf
- Department of Clinical Nutrition, College of Applied Medial Sciences, University of Hail, Hail PO Box 2440, Saudi Arabia;
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail PO Box 2440, Saudi Arabia; (A.J.S.); (M.S.)
| | - Mitesh Patel
- Bapalal Vaidya Botanical Research Centre, Department of Biosciences, Veer Narmad South Gujarat University, Surat 395007, Gujarat, India;
| | - Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Hail, Hail PO Box 2440, Saudi Arabia; (A.J.S.); (M.S.)
| | - Manojkumar Sachidanandan
- Department of Oral Radiology, College of Dentistry, University of Hail, Hail PO Box 2440, Saudi Arabia;
| | - Mejdi Snoussi
- Department of Biology, College of Science, University of Hail, Hail PO Box 2440, Saudi Arabia; (A.J.S.); (M.S.)
- Laboratory of Bioresources: Integrative Biology and Valorization, (LR14-ES06), University of Monastir, Higher Institute of Biotechnology of Monastir, Avenue Tahar Haddad, BP 74, Monastir 5000, Tunisia
| | - Sibte Hadi
- School of Forensic and Applied Sciences, University of Central Lancashire, Preston PR1 2HE, UK
| |
Collapse
|