1
|
Shvartsburg AA, Sadowski P, Poad BLJ, Blanksby SJ. Metal Polycation Adduction to Lipids Enables Superior Ion Mobility Separations with Ultrafast Ozone-Induced Dissociation. Anal Chem 2024; 96:15960-15969. [PMID: 39334534 DOI: 10.1021/acs.analchem.4c03071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2024]
Abstract
Specific lipid isomers are functionally critical, but their structural rigidity and usually minute geometry differences make separating them harder than other biomolecules. Such separations by ion mobility spectrometry (IMS) were recently enabled by new high-definition methods using dynamic electric fields, but major resolution gains are needed. Another problem of identifying many isomers with no unique fragments in ergodic collision-induced dissociation (CID) was partly addressed by the direct ozone-induced dissociation (OzID) that localizes the double bonds, but a low reaction efficiency has limited the sensitivity, dynamic range, throughput, and compatibility with other tools. Typically lipids are analyzed by MS as singly charged protonated, deprotonated, or ammoniated ions. Here, we explore the differential IMS (FAIMS) separations with OzID for exemplary lipids cationized by polyvalent metals. These multiply charged adducts have much greater FAIMS compensation voltages (UC) than the 1+ ions, with up to 10-fold resolution gain enabling baseline isomer separations even at a moderate resolving power of the SelexION stage. Concomitantly OzID speeds up by many orders of magnitude, producing a high yield of diagnostic fragments already in 1 ms. These capabilities can be ported to the superior high-definition FAIMS and high-pressure OzID systems to take lipidomic analyses to the next level.
Collapse
Affiliation(s)
- Alexandre A Shvartsburg
- Department of Chemistry, Wichita State University, 1845 Fairmount, Wichita, Kansas 67260, United States
| | - Pawel Sadowski
- Central Analytical Research Facility and Faculty of Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Berwyck L J Poad
- Central Analytical Research Facility and Faculty of Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Stephen J Blanksby
- Central Analytical Research Facility and Faculty of Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
| |
Collapse
|
2
|
Brydon SC, Poad BLJ, Fang M, Rustam YH, Young RSE, Mouradov D, Sieber OM, Mitchell TW, Reid GE, Blanksby SJ, Marshall DL. Cross-Validation of Lipid Structure Assignment Using Orthogonal Ion Activation Modalities on the Same Mass Spectrometer. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1976-1990. [PMID: 39037040 DOI: 10.1021/jasms.4c00221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
The onset and progression of cancer is associated with changes in the composition of the lipidome. Therefore, better understanding of the molecular mechanisms of these disease states requires detailed structural characterization of the individual lipids within the complex cellular milieu. Recently, changes in the unsaturation profile of membrane lipids have been observed in cancer cells and tissues, but assigning the position(s) of carbon-carbon double bonds in fatty acyl chains carried by membrane phospholipids, including the resolution of lipid regioisomers, has proven analytically challenging. Conventional tandem mass spectrometry approaches based on collision-induced dissociation of ionized glycerophospholipids do not yield spectra that are indicative of the location(s) of carbon-carbon double bonds. Ozone-induced dissociation (OzID) and ultraviolet photodissociation (UVPD) have emerged as alternative ion activation modalities wherein diagnostic product ions can enable de novo assignment of position(s) of unsaturation based on predictable fragmentation behaviors. Here, for the first time, OzID and UVPD (193 nm) mass spectra are acquired on the same mass spectrometer to evaluate the relative performance of the two modalities for lipid identification and to interrogate the respective fragmentation pathways under comparable conditions. Based on investigations of lipid standards, fragmentation rules for each technique are expanded to increase confidence in structural assignments and exclude potential false positives. Parallel application of both methods to unsaturated phosphatidylcholines extracted from isogenic colorectal cancer cell lines provides high confidence in the assignment of multiple double bond isomers in these samples and cross-validates relative changes in isomer abundance.
Collapse
Affiliation(s)
- Samuel C Brydon
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Berwyck L J Poad
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4001, Australia
- Central Analytical Research Facility, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Mengxuan Fang
- School of Chemistry, University of Melbourne, Parkville, VIC 3010, Australia
| | - Yepy H Rustam
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Reuben S E Young
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Dmitri Mouradov
- Personalized Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Oliver M Sieber
- Personalized Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Todd W Mitchell
- Molecular Horizons and School of Medical, Indigenous and Health Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Gavin E Reid
- School of Chemistry, University of Melbourne, Parkville, VIC 3010, Australia
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Stephen J Blanksby
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4001, Australia
- Central Analytical Research Facility, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - David L Marshall
- Central Analytical Research Facility, Queensland University of Technology, Brisbane, QLD 4001, Australia
| |
Collapse
|
3
|
Tie C, Cui X, Zhang Z, Geng Y, Liu T, Rong X, Zheng X. Novel Structure-Driven Predict-to-Hit Strategy for PC Double Bond Positional Isomer Identification Based on Negative LC-MRM Analysis. Anal Chem 2024. [PMID: 38330201 DOI: 10.1021/acs.analchem.3c04032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
As the predominant phospholipids in mammalian cells, phosphatidylcholines (PCs) have been demonstrated to play a crucial role in a multitude of vital biological processes. Research has highlighted the significance of the diversity in PC isomers as instigators of both physiological and pathological responses, particularly those with variations in the position of double bonds within their fatty chains. Profiling these PC isomers is paramount to advancing our understanding of their biological functions. Despite the availability of analytical methods utilizing high-resolution secondary mass spectrometry (MS2) fragmentation, a novel approach was imperative to facilitate large-scale profiling of PC isomers while ensuring accessibility, facility, and reliability. In this study, an innovative strategy centered around structure-driven predict-to-hit profiling of the double bond positional isomers for PCs was meticulously developed, employing negative reversed-phase liquid chromatography-multiple reaction monitoring (RPLC-MRM). This novel methodology heightened the sensitivity. The analysis of rat lung tissue samples resulted in the identification of 130 distinct PC isomers. This approach transcended the confines of available PC isomer standards, thereby broadening the horizons of PC-related biofunction investigations. By optimizing the quantitation reliability, the scale of sample analysis was judiciously managed. This work pioneers a novel paradigm for the exploration of PC isomers, distinct from the conventional methods reliant on high-resolution mass spectrometry (HRMS). It equips researchers with potent tools to further explore the biofunctional aspects of lipids.
Collapse
Affiliation(s)
- Cai Tie
- State Key Laboratory for Fine Exploration and Intelligent Development of Coal Resources, Ding 11 Xueyuan Road, Beijing 100083, China
- School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Ding 11 Xueyuan Road, Beijing 100083, China
| | - Xinge Cui
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifuyuan Wangfujing, Dongcheng District, Beijing 100730, China
| | - Zhijun Zhang
- School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Ding 11 Xueyuan Road, Beijing 100083, China
| | - Yicong Geng
- School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Ding 11 Xueyuan Road, Beijing 100083, China
| | - Ting Liu
- SCIEX, Analytical Instrument Trading Co., Ltd., 518 North Fuquan Road, Shanghai 200335, China
| | - Xiaojuan Rong
- Xinjiang Institute of Material Medica, 140 North Xinhua Road, Urumqi, Xinjiang 830004, China
| | - Xin Zheng
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifuyuan Wangfujing, Dongcheng District, Beijing 100730, China
| |
Collapse
|
4
|
Fan X, Sun AR, Young RSE, Afara IO, Hamilton BR, Ong LJY, Crawford R, Prasadam I. Spatial analysis of the osteoarthritis microenvironment: techniques, insights, and applications. Bone Res 2024; 12:7. [PMID: 38311627 PMCID: PMC10838951 DOI: 10.1038/s41413-023-00304-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/21/2023] [Accepted: 11/27/2023] [Indexed: 02/06/2024] Open
Abstract
Osteoarthritis (OA) is a debilitating degenerative disease affecting multiple joint tissues, including cartilage, bone, synovium, and adipose tissues. OA presents diverse clinical phenotypes and distinct molecular endotypes, including inflammatory, metabolic, mechanical, genetic, and synovial variants. Consequently, innovative technologies are needed to support the development of effective diagnostic and precision therapeutic approaches. Traditional analysis of bulk OA tissue extracts has limitations due to technical constraints, causing challenges in the differentiation between various physiological and pathological phenotypes in joint tissues. This issue has led to standardization difficulties and hindered the success of clinical trials. Gaining insights into the spatial variations of the cellular and molecular structures in OA tissues, encompassing DNA, RNA, metabolites, and proteins, as well as their chemical properties, elemental composition, and mechanical attributes, can contribute to a more comprehensive understanding of the disease subtypes. Spatially resolved biology enables biologists to investigate cells within the context of their tissue microenvironment, providing a more holistic view of cellular function. Recent advances in innovative spatial biology techniques now allow intact tissue sections to be examined using various -omics lenses, such as genomics, transcriptomics, proteomics, and metabolomics, with spatial data. This fusion of approaches provides researchers with critical insights into the molecular composition and functions of the cells and tissues at precise spatial coordinates. Furthermore, advanced imaging techniques, including high-resolution microscopy, hyperspectral imaging, and mass spectrometry imaging, enable the visualization and analysis of the spatial distribution of biomolecules, cells, and tissues. Linking these molecular imaging outputs to conventional tissue histology can facilitate a more comprehensive characterization of disease phenotypes. This review summarizes the recent advancements in the molecular imaging modalities and methodologies for in-depth spatial analysis. It explores their applications, challenges, and potential opportunities in the field of OA. Additionally, this review provides a perspective on the potential research directions for these contemporary approaches that can meet the requirements of clinical diagnoses and the establishment of therapeutic targets for OA.
Collapse
Affiliation(s)
- Xiwei Fan
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD, Australia
- School of Mechanical, Medical & Process Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| | - Antonia Rujia Sun
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD, Australia
- School of Mechanical, Medical & Process Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| | - Reuben S E Young
- Central Analytical Research Facility, Queensland University of Technology, Brisbane, QLD, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Isaac O Afara
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
- School of Electrical Engineering and Computer Science, Faculty of Engineering, Architecture and Information Technology, University of Queensland, Brisbane, QLD, Australia
| | - Brett R Hamilton
- Centre for Microscopy and Microanalysis, University of Queensland, Brisbane, QLD, Australia
| | - Louis Jun Ye Ong
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD, Australia
- School of Mechanical, Medical & Process Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| | - Ross Crawford
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD, Australia
- The Prince Charles Hospital, Brisbane, QLD, Australia
| | - Indira Prasadam
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD, Australia.
- School of Mechanical, Medical & Process Engineering, Queensland University of Technology, Brisbane, QLD, Australia.
| |
Collapse
|
5
|
Naylor CN, Nagy G. Permethylation and Metal Adduction: A Toolbox for the Improved Characterization of Glycolipids with Cyclic Ion Mobility Separations Coupled to Mass Spectrometry. Anal Chem 2023; 95:13725-13732. [PMID: 37650842 DOI: 10.1021/acs.analchem.3c03448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Lipids are an important class of molecules involved in various biological functions but remain difficult to characterize through mass-spectrometry-based methods because of their many possible isomers. Glycolipids, specifically, play important roles in cell signaling but display an even greater level of isomeric heterogeneity as compared to other lipid classes stemming from the introduction of a carbohydrate and its corresponding linkage position and α/β anomericity at the headgroup. While liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) remains the gold standard technique in lipidomics, it is still unable to characterize all isomeric species, thus presenting the need for new, orthogonal, methodologies. Ion mobility spectrometry-mass spectrometry (IMS-MS) can provide an additional dimension of information that supplements LC-MS/MS workflows, but has seen little use for glycolipid analyses. Herein, we present an analytical toolbox that enables the characterization of various glycolipid isomer sets using high-resolution cyclic ion mobility separations coupled with mass spectrometry (cIMS-MS). Specifically, we utilized a combination of both permethylation and metal adduction to fully resolve isomeric sphingolipids and ceramides with our cIMS-MS platform. We also introduce a new metric that can enable comparing peak-to-peak resolution across varying cIMS-MS pathlengths. Overall, we envision that our presented methodologies are highly amenable to existing LC-MS/MS-based workflows and can also have broad utility toward other omics-based analyses.
Collapse
Affiliation(s)
- Cameron N Naylor
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| | - Gabe Nagy
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| |
Collapse
|
6
|
Menzel JP, Young RSE, Benfield AH, Scott JS, Wongsomboon P, Cudlman L, Cvačka J, Butler LM, Henriques ST, Poad BLJ, Blanksby SJ. Ozone-enabled fatty acid discovery reveals unexpected diversity in the human lipidome. Nat Commun 2023; 14:3940. [PMID: 37402773 DOI: 10.1038/s41467-023-39617-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/15/2023] [Indexed: 07/06/2023] Open
Abstract
Fatty acid isomers are responsible for an under-reported lipidome diversity across all kingdoms of life. Isomers of unsaturated fatty acids are often masked in contemporary analysis by incomplete separation and the absence of sufficiently diagnostic methods for structure elucidation. Here, we introduce a comprehensive workflow, to discover unsaturated fatty acids through coupling liquid chromatography and mass spectrometry with gas-phase ozonolysis of double bonds. The workflow encompasses semi-automated data analysis and enables de novo identification in complex media including human plasma, cancer cell lines and vernix caseosa. The targeted analysis including ozonolysis enables structural assignment over a dynamic range of five orders of magnitude, even in instances of incomplete chromatographic separation. Thereby we expand the number of identified plasma fatty acids two-fold, including non-methylene-interrupted fatty acids. Detection, without prior knowledge, allows discovery of non-canonical double bond positions. Changes in relative isomer abundances reflect underlying perturbations in lipid metabolism.
Collapse
Affiliation(s)
- Jan Philipp Menzel
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Centre for Data Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Institute of Clinical Chemistry, Inselspital, Bern University Hospital, 3010, Bern, Switzerland
| | - Reuben S E Young
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Faculty of Science, Medicine and Health, School of Chemistry and Molecular Bioscience, Wollongong, NSW, Australia
| | - Aurélie H Benfield
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Translational Research Institute, Brisbane, QLD, 4102, Australia
| | - Julia S Scott
- South Australian Immunogenomics Cancer Institute and Freemasons Centre for Male Health and Wellbeing, University of Adelaide, Adelaide, SA, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Puttandon Wongsomboon
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Lukáš Cudlman
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 542/2, 16600, Prague, Czech Republic
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague 2, Czech Republic
| | - Josef Cvačka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 542/2, 16600, Prague, Czech Republic
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague 2, Czech Republic
| | - Lisa M Butler
- South Australian Immunogenomics Cancer Institute and Freemasons Centre for Male Health and Wellbeing, University of Adelaide, Adelaide, SA, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Sónia T Henriques
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Translational Research Institute, Brisbane, QLD, 4102, Australia
| | - Berwyck L J Poad
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Stephen J Blanksby
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD, 4000, Australia.
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia.
| |
Collapse
|
7
|
Zhang J, Zang Q, Xu W, Tang F. Rapid imaging of unsaturated lipids at isomer level using photoepoxidation. Talanta 2023; 261:124643. [PMID: 37196400 DOI: 10.1016/j.talanta.2023.124643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/29/2023] [Accepted: 05/02/2023] [Indexed: 05/19/2023]
Abstract
Unsaturated lipids play an essential role in living organisms, and their different isomers show significant functional differences. Therefore, in situ characterization of unsaturated lipids in tissues needs to be extended to isomer level. However, the exposure of tissue sections to an open environment for a long time may cause cell autolysis or corruption, and current unsaturated lipid imaging methods still face challenges in efficiency. This paper proposes an imaging method based on photoepoxidation coupled with air-flow-assisted desorption electrospray ionization mass spectrometry (AFADESI-MS) to rapidly realize the spatial characterization of unsaturated lipids at the isomer level. The technique has a fast response speed, high epoxide yield (>80%), and high diagnostic ion abundance. After 0.5 min of photoepoxidation, the derivation product yield ratio reached 24.6%. This method rapidly identified six glycerophospholipid isomers containing an 18:1 acyl chain in normal rat liver tissue. Then the imaging method was applied in nude mice lung cancer tissue and human thyroid cancer tissue, with only 3 min photoepoxidation. Results successfully characterized the location and range of unsaturated lipid isomers and revealed their enrichment in tumor tissue. In addition, the experiment shows that the variational trend of the ratio of unsaturated lipid isomers in different types of tumor samples is different. Based on the advantages of efficiency and convenience, this method is prospective for screening unsaturated lipid markers and pathological research of related diseases.
Collapse
Affiliation(s)
- Jian Zhang
- School of Life Science, Beijing Institute of Technology, No.5 Yard, Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Qingce Zang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, A2 Nanwei Road, Xicheng District, Beijing, 100050, China
| | - Wei Xu
- School of Life Science, Beijing Institute of Technology, No.5 Yard, Zhongguancun South Street, Haidian District, Beijing, 100081, China.
| | - Fei Tang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Zhongguancun Street, Hai Dian District, Beijing, 100084, China.
| |
Collapse
|
8
|
Grooms A, Nordmann AN, Badu-Tawiah AK. Plasma-Droplet Reaction Systems: A Direct Mass Spectrometry Approach for Enhanced Characterization of Lipids at Multiple Isomer Levels. ACS MEASUREMENT SCIENCE AU 2023; 3:32-44. [PMID: 36817012 PMCID: PMC9936802 DOI: 10.1021/acsmeasuresciau.2c00051] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/15/2022] [Accepted: 09/15/2022] [Indexed: 06/18/2023]
Abstract
Neutral triacylglyceride (TG) lipids are critical in cellular function, signaling, and energy storage. Multiple molecular pathways control TG structure via nonselective routes making them structurally complex and analytically challenging to characterize. The presence of C=C bond positional isomers exacerbates this challenge as complete structural elucidation is not possible by conventional tandem mass spectrometric methods such as collision-induced dissociation (CID), alone. Herein, we report a custom-made coaxial contained-electrospray ionization (ESI) emitter that allows the fusion of plasma discharge with charged microdroplets during electrospray (ES). Etched capillaries were incorporated into this contained-ES emitter, facilitating the generation of reactive oxygen species (ROS) at low (3 kV) ESI voltages and allowing stable ESI ion signal to be achieved at an unprecedented high (7 kV) spray voltage. The analytical utility of inducing plasma discharge during electrospray was investigated using online ionization of neutral TGs, in situ epoxidation of unsaturation sites, and C=C bond localization via conventional CID mass spectrometry. Collisional activation of the lipid epoxide generated during the online plasma-droplet fusion experiment resulted in a novel fragmentation pattern that showed a quadruplet of diagnostic ions for confident assignment of C=C bond positions and subsequent isomer differentiation. This phenomenon enabled the identification of a novel TG lipid, composed of conjugated linoleic acid, that is isomeric with two other TG lipids naturally found in extra virgin olive oil. To validate our findings, we analyzed various standards of TG lipids, including triolein, trilinolein, and trilinolenin, and isomeric mixtures in the positive-ion mode, each of which produced the expected quadruplet diagnostic fragment ions. Further validation was obtained by analyzing standards of free fatty acids expected from the hydrolysis of the TG lipids in the negative-ion mode, together with isomeric mixtures. The chemistry governing the gas-phase fragmentation of the lipid epoxides was carefully elucidated for each TG lipid analyzed. This comprehensive shotgun lipidomic approach has the potential to impact biomedical research since it can be accomplished on readily available mass spectrometers without the need for instrument modification.
Collapse
|
9
|
Xia F, Wan JB. Chemical derivatization strategy for mass spectrometry-based lipidomics. MASS SPECTROMETRY REVIEWS 2023; 42:432-452. [PMID: 34486155 DOI: 10.1002/mas.21729] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/02/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
Lipids, serving as the structural components of cellular membranes, energy storage, and signaling molecules, play the essential and multiple roles in biological functions of mammals. Mass spectrometry (MS) is widely accepted as the first choice for lipid analysis, offering good performance in sensitivity, accuracy, and structural characterization. However, the untargeted qualitative profiling and absolute quantitation of lipids are still challenged by great structural diversity and high structural similarity. In recent decade, chemical derivatization mainly targeting carboxyl group and carbon-carbon double bond of lipids have been developed for lipidomic analysis with diverse advantages: (i) offering more characteristic structural information; (ii) improving the analytical performance, including chromatographic separation and MS sensitivity; (iii) providing one-to-one chemical isotope labeling internal standards based on the isotope derivatization regent in quantitative analysis. Moreover, the chemical derivatization strategy has shown great potential in combination with ion mobility mass spectrometry and ambient mass spectrometry. Herein, we summarized the current states and advances in chemical derivatization-assisted MS techniques for lipidomic analysis, and their strengths and challenges are also given. In summary, the chemical derivatization-based lipidomic approach has become a promising and reliable technique for the analysis of lipidome in complex biological samples.
Collapse
Affiliation(s)
- Fangbo Xia
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, China
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, China
| |
Collapse
|
10
|
Young RSE, Flakelar CL, Narreddula VR, Jekimovs LJ, Menzel JP, Poad BLJ, Blanksby SJ. Identification of Carbon-Carbon Double Bond Stereochemistry in Unsaturated Fatty Acids by Charge-Remote Fragmentation of Fixed-Charge Derivatives. Anal Chem 2022; 94:16180-16188. [DOI: 10.1021/acs.analchem.2c03625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Reuben S. E. Young
- School of Chemistry and Physics, Queensland University of Technology, Brisbane 4001, Queensland, Australia
- Central Analytical Research Facility, Queensland University of Technology, Brisbane 4001, Queensland, Australia
| | - Clare L. Flakelar
- School of Behavioural and Health Sciences, Australian Catholic University, Brisbane 4014, Queensland, Australia
| | - Venkateswara R. Narreddula
- School of Chemistry and Physics, Queensland University of Technology, Brisbane 4001, Queensland, Australia
| | - Lachlan J. Jekimovs
- School of Chemistry and Physics, Queensland University of Technology, Brisbane 4001, Queensland, Australia
| | - Jan P. Menzel
- School of Chemistry and Physics, Queensland University of Technology, Brisbane 4001, Queensland, Australia
| | - Berwyck L. J. Poad
- School of Chemistry and Physics, Queensland University of Technology, Brisbane 4001, Queensland, Australia
- Central Analytical Research Facility, Queensland University of Technology, Brisbane 4001, Queensland, Australia
| | - Stephen J. Blanksby
- School of Chemistry and Physics, Queensland University of Technology, Brisbane 4001, Queensland, Australia
- Central Analytical Research Facility, Queensland University of Technology, Brisbane 4001, Queensland, Australia
| |
Collapse
|
11
|
Paulson A, Lee YJ. Novel Ambient Oxidation Trends in Fingerprint Aging Discovered by Kendrick Mass Defect Analysis. ACS CENTRAL SCIENCE 2022; 8:1328-1335. [PMID: 36188339 PMCID: PMC9523776 DOI: 10.1021/acscentsci.2c00408] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Indexed: 06/16/2023]
Abstract
A Kendrick mass defect (KMD) plot is an efficient way to disperse complex high-resolution mass spectral data in a visually informative two-dimensional format which allows for the rapid assignment of compound classes that differ by heteroatom content and/or unsaturation. Fingerprint lipid oxidation has the potential to be used to estimate the time since deposition of a fingerprint, but the mass spectra become extremely complex as the lipids degrade. We apply KMD plot analysis for the first time to sebaceous fingerprints aged for 0-7 days to characterize lipid degradation processes analyzed by MALDI-MS. In addition to the ambient ozonolysis of fingerprint lipids previously reported, we observed unique spectral features associated with epoxides and medium chain fatty acid degradation products that are correlated with fingerprint age. We propose an ambient epoxidation mechanism via a peroxyl radical intermediate and the prevalence of omega-10 fatty acyl chains in fingerprint lipids to explain the features observed by the KMD plot analysis. Our hypotheses are supported by an aging experiment performed in a sparse ozone condition and on-surface Paternò-Büchi reaction. A comprehensive understanding of fingerprint degradation processes, afforded by the KMD plots, provides crucial insights for considering which ions to monitor and which to avoid, when creating a robust model for time since deposition of fingerprints.
Collapse
|
12
|
Feng Y, Lv Y, Gu TJ, Chen B, Li L. Quantitative Analysis and Structural Elucidation of Fatty Acids by Isobaric Multiplex Labeling Reagents for Carbonyl-Containing Compound (SUGAR) Tags and m-CPBA Epoxidation. Anal Chem 2022; 94:13036-13042. [PMID: 36099193 PMCID: PMC9912774 DOI: 10.1021/acs.analchem.2c01917] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
In this study, a novel analytical method was developed to investigate fatty acids (FAs) for relative quantification, carbon-carbon double-bond localization, and cis-/trans-geometry differentiation by isobaric multiplex labeling reagents for carbonyl-containing compound (SUGAR) tag conjugation and meta-chloroperoxybenzoic acid (m-CPBA) epoxidation. FAs are essential components of cells and have diverse functions in energy storage and as complex lipid constituents. It has been reported that FAs play different roles in various biological processes such as the functional development of the brain. The comprehensive characterization and quantification of FAs are crucial to further elucidate their biological roles. However, it is challenging to perform relative quantification and structural elucidation of FAs using integrated mass spectrometry (MS)-based methods. Recently, our group developed isobaric multiplex SUGAR tags for quantitative glycomics. Besides aldehyde/ketone groups on glycans, hydrazide groups also possess reactivity toward carboxylic acids on FAs. In this study, we extended SUGAR tag labeling with FAs for the quantitative analysis by liquid chromatography (LC)-MS/MS in the positive ion mode and applied this strategy for the comparative analysis of FAs hydrolyzed from oil samples. In addition, to comprehensively elucidate the structures of unsaturated FAs, epoxidation by m-CPBA was performed before SUGAR tag labeling to enable carbon-carbon double-bond localization. Moreover, the cis- and trans-geometries of carbon-carbon double bonds in multiple pairs of monounsaturated FAs could also be differentiated in higher-energy collisional dissociation (HCD)-MS/MS. This study developed a high-throughput comprehensive FA analysis platform, which could be widely applied and utilized in biological and clinical studies.
Collapse
Affiliation(s)
- Yu Feng
- School of Pharmacy, University of Wisconsin─Madison, Madison, Wisconsin 53705, United States
| | - Yanni Lv
- School of Pharmacy, University of Wisconsin─Madison, Madison, Wisconsin 53705, United States.,School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, Shaanxi, People's Republic of China
| | - Ting-Jia Gu
- School of Pharmacy, University of Wisconsin─Madison, Madison, Wisconsin 53705, United States
| | - Bingming Chen
- School of Pharmacy, University of Wisconsin─Madison, Madison, Wisconsin 53705, United States
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin─Madison, Madison, Wisconsin 53705, United States.,Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
13
|
Tang S, Chen X, Ke Y, Wang F, Yan X. Voltage-Controlled Divergent Cascade of Electrochemical Reactions for Characterization of Lipids at Multiple Isomer Levels Using Mass Spectrometry. Anal Chem 2022; 94:12750-12756. [PMID: 36087069 PMCID: PMC10386884 DOI: 10.1021/acs.analchem.2c02375] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cascading divergent reactions in a single system is highly desirable for their intrinsic efficiency and potential to achieve multilevel structural characterization of complex biomolecules. In this work, two electrochemical reactions, interfacial electro-epoxidation and cobalt anodic corrosion, are divergently cascaded in nanoelectrospray (nESI) and can be switched at different voltages. We applied these reactions to lipid identification at multiple isomer levels using mass spectrometry (MS), which remains a great challenge in structural lipidomics. The divergent cascade reactions in situ derivatize lipids to produce epoxidized lipids and cobalt-adducted lipids at different voltages. These lipids are then fragmented upon low-energy collision-induced dissociation (CID), generating diagnostic fragments to indicate C═C locations and sn-positions that cannot be achieved by the low-energy CID of native lipids. We have demonstrated that lipid structural isomers show significantly different profiles in the analysis of healthy and cancerous mouse prostate samples using this strategy. The application of divergent cascade reactions in lipid identification allows the four-in-one analysis of lipid headgroups, fatty acyl chains, C═C locations, and sn-positions simply by tuning the nESI voltages within a single experiment. This feature as well as its low sample consumption, no need for an extra apparatus, and quantitative analysis capability show its great potential in lipidomics.
Collapse
Affiliation(s)
- Shuli Tang
- Department of Chemistry, Texas A&M University, 580 Ross Street, College Station, Texas 77843, United States
| | - Xi Chen
- Department of Chemistry, Texas A&M University, 580 Ross Street, College Station, Texas 77843, United States
| | - Yuepeng Ke
- Center for Translational Cancer Research, Texas A&M Institute of Biosciences and Technology, Texas A&M University, Houston, Texas 77030, United States
| | - Fen Wang
- Center for Translational Cancer Research, Texas A&M Institute of Biosciences and Technology, Texas A&M University, Houston, Texas 77030, United States
| | - Xin Yan
- Department of Chemistry, Texas A&M University, 580 Ross Street, College Station, Texas 77843, United States
| |
Collapse
|
14
|
Shields SWJ, Sanders JD, Brodbelt JS. Enhancing the Signal-to-Noise of Diagnostic Fragment Ions of Unsaturated Glycerophospholipids via Precursor Exclusion Ultraviolet Photodissociation Mass Spectrometry (PEx-UVPD-MS). Anal Chem 2022; 94:11352-11359. [PMID: 35917227 PMCID: PMC9484799 DOI: 10.1021/acs.analchem.2c02128] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Understanding and elucidating the diverse structures and functions of lipids has motivated the development of many innovative tandem mass spectrometry (MS/MS) strategies. Higher-energy activation methods, such as ultraviolet photodissociation (UVPD), generate unique fragment ions from glycerophospholipids that can be used to perform in-depth structural analysis and facilitate the deconvolution of isomeric lipid structures in complex samples. Although detailed characterization is central to the correlation of lipid structure to biological function, it is often impeded by the lack of sufficient instrument sensitivity for highly bioactive but low-abundance phospholipids. Here, we present precursor exclusion (PEx) UVPD, a simple yet powerful technique to enhance the signal-to-noise (S/N) of informative low-abundance fragment ions produced from UVPD of glycerophospholipids. Through the exclusion of the large population of undissociated precursor ions with an MS3 strategy, the S/N of diagnostic fragment ions from PC 18:0/18:2(9Z, 12Z) increased up to an average of 13x for PEx-UVPD compared to UVPD alone. These enhancements were extended to complex mixtures of lipids from bovine liver extract to confidently identify 35 unique structures using liquid chromatography PEx-UVPD. This methodology has the potential to advance lipidomics research by offering deeper structure elucidation and confident identification of biologically active lipids.
Collapse
Affiliation(s)
- Samuel W J Shields
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - James D Sanders
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
15
|
Zhu Z, Li X, Tang C, Shen J, Liu J, Ye Y. A derivatization strategy for comprehensive identification of 2- and 3-hydroxyl fatty acids by LC-MS. Anal Chim Acta 2022; 1216:339981. [DOI: 10.1016/j.aca.2022.339981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/10/2022] [Accepted: 05/21/2022] [Indexed: 11/01/2022]
|
16
|
Zhang W, Jian R, Zhao J, Liu Y, Xia Y. Deep-lipidotyping by mass spectrometry: recent technical advances and applications. J Lipid Res 2022; 63:100219. [PMID: 35489417 PMCID: PMC9213770 DOI: 10.1016/j.jlr.2022.100219] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 12/18/2022] Open
Abstract
In-depth structural characterization of lipids is an essential component of lipidomics. There has been a rapid expansion of mass spectrometry methods that are capable of resolving lipid isomers at various structural levels over the past decade. These developments finally make deep-lipidotyping possible, which provides new means to study lipid metabolism and discover new lipid biomarkers. In this review, we discuss recent advancements in tandem mass spectrometry (MS/MS) methods for identification of complex lipids beyond the species (known headgroup information) and molecular species (known chain composition) levels. These include identification at the levels of carbon-carbon double bond (C=C) location and sn-position as well as characterization of acyl chain modifications. We also discuss the integration of isomer-resolving MS/MS methods with different lipid analysis workflows and their applications in lipidomics. The results showcase the distinct capabilities of deep-lipidotyping in untangling the metabolism of individual isomers and sensitive phenotyping by using relative fractional quantitation of the isomers.
Collapse
Affiliation(s)
- Wenpeng Zhang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, P. R. China
| | - Ruijun Jian
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biological, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Jing Zhao
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biological, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Yikun Liu
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, P. R. China
| | - Yu Xia
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biological, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.
| |
Collapse
|
17
|
Morozumi S, Ueda M, Okahashi N, Arita M. Structures and functions of the gut microbial lipidome. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159110. [PMID: 34995792 DOI: 10.1016/j.bbalip.2021.159110] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/19/2021] [Accepted: 12/24/2021] [Indexed: 12/26/2022]
Abstract
Microbial lipids provide signals that are responsible for maintaining host health and controlling disease. The differences in the structures of microbial lipids have been shown to alter receptor selectivity and agonist/antagonist activity. Advanced lipidomics is an emerging field that helps to elucidate the complex bacterial lipid diversity. The use of cutting-edge technologies is expected to lead to the discovery of new functional metabolites involved in host homeostasis. This review aims to describe recent updates on functional lipid metabolites derived from gut microbiota, their structure-activity relationships, and advanced lipidomics technologies.
Collapse
Affiliation(s)
- Satoshi Morozumi
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Masahiro Ueda
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; JSR Bioscience and Informatics R&D Center, JSR Corporation, 3-103-9 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Nobuyuki Okahashi
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Makoto Arita
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan; Cellular and Molecular Epigenetics Laboratory, Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
| |
Collapse
|
18
|
Poad BLJ, Young RSE, Marshall DL, Trevitt AJ, Blanksby SJ. Accelerating Ozonolysis Reactions Using Supplemental RF-Activation of Ions in a Linear Ion Trap Mass Spectrometer. Anal Chem 2022; 94:3897-3903. [PMID: 35201768 DOI: 10.1021/acs.analchem.1c04915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Gas-phase ion-molecule reactions provide structural insights across a range of analytical applications. A hindrance to the wider use of ion-molecule reactions is that they are relatively slow compared to other ion activation modalities and can thereby impose a bottleneck on the time required to analyze each sample. Here we describe a method for accelerating the rate of ion-molecule reactions involving ozone, implemented by supplementary RF-activation of mass-selected ions within a linear ion trap. Reaction rate accelerations between 15-fold (for ozonolysis of alkenes in ionised lipids) and 90-fold (for ozonation of halide anions) are observed compared to thermal conditions. These enhanced reaction rates with ozone increase sample throughput, aligning the reaction time with the overall duty cycle of the mass spectrometer. We demonstrate that the acceleration is due to the supplementary RF-activation surmounting the activation barrier energy of the entrance channel of the ion-molecule reaction. This rate acceleration is subsequently shown to aid identification of new, low abundance lipid isomers and enables an equivalent increase in the number of lipid species that can be analyzed.
Collapse
Affiliation(s)
- Berwyck L J Poad
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, Queensland 4001, Australia.,Central Analytical Research Facility, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| | - Reuben S E Young
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| | - David L Marshall
- Central Analytical Research Facility, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| | - Adam J Trevitt
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2552, Australia
| | - Stephen J Blanksby
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, Queensland 4001, Australia.,Central Analytical Research Facility, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| |
Collapse
|
19
|
Berthias F, Poad BLJ, Thurman HA, Bowman AP, Blanksby SJ, Shvartsburg AA. Disentangling Lipid Isomers by High-Resolution Differential Ion Mobility Spectrometry/Ozone-Induced Dissociation of Metalated Species. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2827-2836. [PMID: 34751570 DOI: 10.1021/jasms.1c00251] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The preponderance and functional importance of isomeric biomolecules have become topical in biochemistry. Therefore, one must distinguish and identify all such forms across compound classes, over a wide dynamic range as minor species often have critical activities. With all the power of modern mass spectrometry for compositional assignments by accurate mass, the identical precursor and often fragment ion masses render this task a steep challenge. This is recognized in proteomics and epigenetics, where proteoforms are disentangled and characterized employing novel separations and non-ergodic dissociation mechanisms. This issue is equally pertinent to lipidomics, where the lack of isomeric depth has thwarted the deciphering of functional networks. Here we introduce a new platform, where the isomeric lipids separated by high-resolution differential ion mobility spectrometry (FAIMS) are identified using ozone-induced dissociation (OzID). Cationization by metals (here K+, Ag+, and especially Cu+) broadly improves the FAIMS resolution of isomers with alternative C═C double bond (DB) positions or stereochemistry, presumably via metal attaching to the DB and reshaping the ion around it. However, the OzID yield diminishes for Ag+ and vanishes for Cu+ adducts. Argentination still strikes the best compromise between efficient separation and diagnostic fragmentation for optimal FAIMS/OzID performance.
Collapse
Affiliation(s)
- Francis Berthias
- Department of Chemistry, Wichita State University, 1845 Fairmount, Wichita, Kansas 67260, United States
| | - Berwyck L J Poad
- Central Analytical Research Facility, Queensland University of Technology, Brisbane, QLD 4000, Australia
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Hayden A Thurman
- Department of Chemistry, Wichita State University, 1845 Fairmount, Wichita, Kansas 67260, United States
| | - Andrew P Bowman
- Department of Chemistry, Wichita State University, 1845 Fairmount, Wichita, Kansas 67260, United States
| | - Stephen J Blanksby
- Central Analytical Research Facility, Queensland University of Technology, Brisbane, QLD 4000, Australia
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Alexandre A Shvartsburg
- Department of Chemistry, Wichita State University, 1845 Fairmount, Wichita, Kansas 67260, United States
| |
Collapse
|
20
|
La Nasa J, Modugno F, Degano I. Liquid chromatography and mass spectrometry for the analysis of acylglycerols in art and archeology. MASS SPECTROMETRY REVIEWS 2021; 40:381-407. [PMID: 32643188 DOI: 10.1002/mas.21644] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 05/29/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
Lipid characterization in art and archeology, together with the study of lipid degradation processes, is an important research area in heritage science. Lipid-based materials have been used as food since ancient times, but also employed as illuminants and as ingredients in cosmetic, ritual, and pharmaceutical preparations. Both animal and plant lipids have also been processed to produce materials used in art and crafts, such as paint binders, varnishes, waterproofing agents, and coatings. Identifying the origin of the lipid materials is challenging when they are found in association with artistic historical objects. This is due to the inherent complex composition of lipids, their widespread occurrence, and the chemical alterations induced by ageing. The most common approach for lipid characterization in heritage objects entails profiling fatty acids by gas chromatography/mass spectrometry after saponification or transesterification. New developments in high-performance liquid chromatography coupled with mass spectrometry (HPLC-MS) for the characterization of acylglycerols, together with more efficient sample treatments, have fostered the introduction of liquid chromatography for characterizing the lipid profile in heritage objects. This review reports the latest developments and applications of HPLC-MS for the characterization of lipid materials in the field of heritage science. We describe the various approaches for sample pretreatment and highlight the advantages and limitations of HPLC-MS in the analysis of paint and archeological samples. © 2020 John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- Jacopo La Nasa
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi 13, Pisa, 56124, Italy
| | - Francesca Modugno
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi 13, Pisa, 56124, Italy
| | - Ilaria Degano
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi 13, Pisa, 56124, Italy
| |
Collapse
|
21
|
Magny R, Regazzetti A, Kessal K, Baudouin C, Mélik-Parsadaniantz S, Laprévote O, Brignole-Baudouin F, Auzeil N, Roulland E. Deepening of lipidome annotation by associating cross-metathesis reaction with mass spectrometry: application to an in vitro model of corneal toxicity. Anal Bioanal Chem 2021; 413:4825-4836. [PMID: 34125263 DOI: 10.1007/s00216-021-03438-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/20/2021] [Accepted: 05/26/2021] [Indexed: 12/17/2022]
Abstract
The in-depth knowledge of lipid biological functions needs a comprehensive structural annotation including a method to locate fatty acid unsaturations, which remains a thorny problem. For this purpose, we have associated Grubbs' cross-metathesis reaction and liquid chromatography hyphenated to tandem mass spectrometry to locate double bond positions in lipid species. The pretreatment of lipid-containing samples by Grubbs' catalyst and an appropriate alkene generates substituted lipids through cross-metathesis reaction under mild, chemoselective, and reproducible conditions. A systematic LC-MS/MS analysis of the reaction mixture allows locating unambiguously the double bonds in fatty acid side chains of phospholipids, glycerolipids, and sphingolipids. This method has been successfully applied at a nanomole scale to commercial standard mixtures consisting of 10 lipid subclasses as well as in lipid extracts of human corneal epithelial (HCE) cell line allowing to pinpoint double bond of more than 90 species. This method has also been useful to investigate the lipid homeostasis alteration in an in vitro model of corneal toxicity, i.e., HCE cells incubated with benzalkonium chloride. The association of cross-metathesis and tandem mass spectrometry appears suitable to locate double bond positions in lipids involved in relevant biological processes.
Collapse
Affiliation(s)
- Romain Magny
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012, Paris, France.,C-TAC, CiTCoM, UMR 8038, CNRS Université de Paris, Faculté de Pharmacie, 75006, Paris, France
| | - Anne Regazzetti
- C-TAC, CiTCoM, UMR 8038, CNRS Université de Paris, Faculté de Pharmacie, 75006, Paris, France
| | - Karima Kessal
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012, Paris, France.,CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, 75012, Paris, France
| | - Christophe Baudouin
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012, Paris, France.,CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, 75012, Paris, France.,Départment d'Ophthalmologie, Hôpital Ambroise Parée, AP HP, 92100, Boulogne, France.,Université Versailles St Quentin en Yvelines, 78180, Paris Saclay, Montigny-Le-Bretonneux, France
| | | | - Olivier Laprévote
- C-TAC, CiTCoM, UMR 8038, CNRS Université de Paris, Faculté de Pharmacie, 75006, Paris, France.,Hôpital Européen Georges Pompidou, AP-HP, Service de Biochimie, 75015, Paris, France
| | - Françoise Brignole-Baudouin
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012, Paris, France.,C-TAC, CiTCoM, UMR 8038, CNRS Université de Paris, Faculté de Pharmacie, 75006, Paris, France.,CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, 75012, Paris, France
| | - Nicolas Auzeil
- C-TAC, CiTCoM, UMR 8038, CNRS Université de Paris, Faculté de Pharmacie, 75006, Paris, France.
| | - Emmanuel Roulland
- C-TAC, CiTCoM, UMR 8038, CNRS Université de Paris, Faculté de Pharmacie, 75006, Paris, France.
| |
Collapse
|
22
|
Bonney JR, Prentice BM. Perspective on Emerging Mass Spectrometry Technologies for Comprehensive Lipid Structural Elucidation. Anal Chem 2021; 93:6311-6322. [PMID: 33856206 PMCID: PMC8177724 DOI: 10.1021/acs.analchem.1c00061] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Lipids and metabolites are of interest in many clinical and research settings because it is the metabolome that is increasingly recognized as a more dynamic and sensitive molecular measure of phenotype. The enormous diversity of lipid structures and the importance of biological structure-function relationships in a wide variety of applications makes accurate identification a challenging yet crucial area of research in the lipid community. Indeed, subtle differences in the chemical structures of lipids can have important implications in cellular metabolism and many disease pathologies. The speed, sensitivity, and molecular specificity afforded by modern mass spectrometry has led to its widespread adoption in the field of lipidomics on many different instrument platforms and experimental workflows. However, unambiguous and complete structural identification of lipids by mass spectrometry remains challenging. Increasingly sophisticated tandem mass spectrometry (MS/MS) approaches are now being developed and seamlessly integrated into lipidomics workflows to meet this challenge. These approaches generally either (i) alter the type of ion that is interrogated or (ii) alter the dissociation method in order to improve the structural information obtained from the MS/MS experiment. In this Perspective, we highlight recent advances in both ion type alteration and ion dissociation methods for lipid identification by mass spectrometry. This discussion is aimed to engage investigators involved in fundamental ion chemistry and technology developments as well as practitioners of lipidomics and its many applications. The rapid rate of technology development in recent years has accelerated and strengthened the ties between these two research communities. We identify the common characteristics and practical figures of merit of these emerging approaches and discuss ways these may catalyze future directions of lipid structural elucidation research.
Collapse
Affiliation(s)
- Julia R Bonney
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Boone M Prentice
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
23
|
Bouza M, Li Y, Wang AC, Wang ZL, Fernández FM. Triboelectric Nanogenerator Ion Mobility-Mass Spectrometry for In-Depth Lipid Annotation. Anal Chem 2021; 93:5468-5475. [PMID: 33720699 PMCID: PMC8292975 DOI: 10.1021/acs.analchem.0c05145] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lipids play a critical role in cell membrane integrity, signaling, and energy storage. However, in-depth structural characterization of lipids is still challenging and not routinely possible in lipidomics experiments. Techniques such as collision-induced dissociation (CID) tandem mass spectrometry (MS/MS), ion mobility (IM) spectrometry, and ultrahigh-performance liquid chromatography are not yet capable of fully characterizing double-bond and sn-chain position of lipids in a high-throughput manner. Herein, we report on the ability to structurally characterize lipids using large-area triboelectric nanogenerators (TENG) coupled with time-aligned parallel (TAP) fragmentation IM-MS analysis. Gas-phase lipid epoxidation during TENG ionization, coupled to mobility-resolved MS3 via TAP IM-MS, enabled the acquisition of detailed information on the presence and position of lipid C═C double bonds, the fatty acyl sn-chain position and composition, and the cis/trans geometrical C═C isomerism. The proposed methodology proved useful for the shotgun lipidomics analysis of lipid extracts from biological samples, enabling the detailed annotation of numerous lipid isobars.
Collapse
Affiliation(s)
- Marcos Bouza
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- NSF/NASA Center for Chemical Evolution, Atlanta, Georgia 30332, United States
| | - Yafeng Li
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Aurelia C Wang
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Zhong Lin Wang
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Facundo M Fernández
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- NSF/NASA Center for Chemical Evolution, Atlanta, Georgia 30332, United States
| |
Collapse
|
24
|
Randolph CE, Shenault DM, Blanksby SJ, McLuckey SA. Localization of Carbon-Carbon Double Bond and Cyclopropane Sites in Cardiolipins via Gas-Phase Charge Inversion Reactions. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:455-464. [PMID: 33370110 PMCID: PMC8557092 DOI: 10.1021/jasms.0c00348] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Cardiolipins (CLs) are comprised of two phosphatic acid moieties bound to a central glycerol backbone and are substituted with four acyl chains. Consequently, a vast number of distinct CL structures are possible in different biological contexts, representing a significant analytical challenge. Electrospray ionization tandem mass spectrometry (ESI-MS/MS) has become a widely used approach for the detection, characterization, and quantitation of complex lipids, including CLs. Central to this approach is fragmentation of the [CLs - H]- or [CL - 2H]2- anions by collision-induced dissociation (CID). Product ions in the resulting tandem mass spectra confirm the CL subclass assignment and reveal the numbers of carbons and degrees of unsaturation in each of the acyl chains. Conventional CID, however, affords limited structural elucidation of the fatty acyl chains, failing to discriminate isomers arising from different site(s) of unsaturation or cyclopropanation and potentially obscuring their metabolic origins. Here, we report the application of charge inversion ion/ion chemistry in the gas phase to enhance the structural elucidation of CLs. Briefly, CID of [CL - H]2- anions generated via negative ion ESI allowed for the assignment of individual fatty acyl substituents and phosphatidic acid moieties. Next, gas-phase derivatization of the resulting CL product ions, including fatty acyl carboxylate anions, was effected with gas-phase ion/ion charge inversion reactions with tris-phenanthroline magnesium reagent dications. Subsequent isolation and activation of the charge-inverted fatty acyl complex cations permitted the localization of both carbon-carbon double bond and cyclopropane motifs within each of the four acyl chains of CLs. This approach was applied to the de novo elucidation of unknown CLs in a biological extract revealing distinct isomeric populations and regiochemical relationships between double bonds and carbocyles.
Collapse
Affiliation(s)
- Caitlin E. Randolph
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA
| | | | - Stephen J. Blanksby
- Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Scott A. McLuckey
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA
| |
Collapse
|
25
|
Young RSE, Bowman AP, Williams ED, Tousignant KD, Bidgood CL, Narreddula VR, Gupta R, Marshall DL, Poad BLJ, Nelson CC, Ellis SR, Heeren RMA, Sadowski MC, Blanksby SJ. Apocryphal FADS2 activity promotes fatty acid diversification in cancer. Cell Rep 2021; 34:108738. [PMID: 33567271 DOI: 10.1016/j.celrep.2021.108738] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/18/2020] [Accepted: 01/19/2021] [Indexed: 12/21/2022] Open
Abstract
Canonical fatty acid metabolism describes specific enzyme-substrate interactions that result in products with well-defined chain lengths, degree(s), and positions of unsaturation. Deep profiling of lipids across a range of prostate cancer cell lines reveals a variety of fatty acids with unusual site(s) of unsaturation that are not described by canonical pathways. The structure and abundance of these unusual lipids correlate with changes in desaturase expression and are strong indicators of cellular phenotype. Gene silencing and stable isotope tracing demonstrate that direct Δ6 and Δ8 desaturation of 14:0 (myristic), 16:0 (palmitic), and 18:0 (stearic) acids by FADS2 generate new families of unsaturated fatty acids (including n-8, n-10, and n-12) that have rarely-if ever-been reported in human-derived cells. Isomer-resolved lipidomics reveals the selective incorporation of these unusual fatty acids into complex structural lipids and identifies their presence in cancer tissues, indicating functional roles in membrane structure and signaling.
Collapse
Affiliation(s)
- Reuben S E Young
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Andrew P Bowman
- M4I, The Maastricht MultiModal Molecular Imaging Institute, Division of Imaging Mass Spectrometry, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, the Netherlands
| | - Elizabeth D Williams
- Australian Prostate Cancer Research Centre-Queensland, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT), Princess Alexandra Hospital, Translational Research Institute, Brisbane, QLD 4000, Australia
| | - Kaylyn D Tousignant
- Australian Prostate Cancer Research Centre-Queensland, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT), Princess Alexandra Hospital, Translational Research Institute, Brisbane, QLD 4000, Australia
| | - Charles L Bidgood
- Australian Prostate Cancer Research Centre-Queensland, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT), Princess Alexandra Hospital, Translational Research Institute, Brisbane, QLD 4000, Australia
| | | | - Rajesh Gupta
- Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology, 2 George St., Brisbane, QLD 4000, Australia
| | - David L Marshall
- Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology, 2 George St., Brisbane, QLD 4000, Australia
| | - Berwyck L J Poad
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4000, Australia; Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology, 2 George St., Brisbane, QLD 4000, Australia
| | - Colleen C Nelson
- Australian Prostate Cancer Research Centre-Queensland, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT), Princess Alexandra Hospital, Translational Research Institute, Brisbane, QLD 4000, Australia
| | - Shane R Ellis
- M4I, The Maastricht MultiModal Molecular Imaging Institute, Division of Imaging Mass Spectrometry, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, the Netherlands; Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Ron M A Heeren
- M4I, The Maastricht MultiModal Molecular Imaging Institute, Division of Imaging Mass Spectrometry, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, the Netherlands
| | - Martin C Sadowski
- Australian Prostate Cancer Research Centre-Queensland, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT), Princess Alexandra Hospital, Translational Research Institute, Brisbane, QLD 4000, Australia; Institute of Pathology, University of Bern, Murtenstrasse 31, 3008 Bern, Switzerland.
| | - Stephen J Blanksby
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4000, Australia; Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology, 2 George St., Brisbane, QLD 4000, Australia.
| |
Collapse
|
26
|
Kulyk DS, Amoah E, Badu-Tawiah AK. High-Throughput Mass Spectrometry Screening Platform for Discovering New Chemical Reactions under Uncatalyzed, Solvent-Free Experimental Conditions. Anal Chem 2020; 92:15025-15033. [PMID: 33151666 DOI: 10.1021/acs.analchem.0c02960] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A gas-phase high-throughput reaction screening platform was developed for the first time to study chemical structures of closely related functional groups and for the discovery of novel organic reaction pathways. Experiments were performed using the contained atmospheric pressure chemical ionization (APCI) source that enabled nonthermal, nonequilibrium plasma chemistry to be monitored by mass spectrometry (MS) in real time. This contained-APCI MS platform allowed an array of reagents to be tested, resulting in the studies of multiple gas-phase reactions in parallel. By exposing headspace vapor of the selected reagents to corona discharge, solvent-free Borsche-Drecsel cyclization reaction, Katritzky chemistry, and Paal-Knorr pyrrole synthesis were examined in the gas phase, outside the high vacuum environment of the mass spectrometer. A new radical-mediated hydrazine coupling reaction was also discovered, which provided a selective pathway to synthesize secondary amines without using a catalyst. The mechanisms of these atmospheric pressure gas-phase reactions were explored through the direct capture of intermediates and via comparison with the corresponding bulk solution and droplet-phase reactions.
Collapse
Affiliation(s)
- Dmytro S Kulyk
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Enoch Amoah
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Abraham K Badu-Tawiah
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
27
|
Randolph CE, Blanksby SJ, McLuckey SA. Enhancing detection and characterization of lipids using charge manipulation in electrospray ionization-tandem mass spectrometry. Chem Phys Lipids 2020; 232:104970. [PMID: 32890498 PMCID: PMC7606777 DOI: 10.1016/j.chemphyslip.2020.104970] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/25/2020] [Accepted: 08/31/2020] [Indexed: 12/14/2022]
Abstract
Heightened awareness regarding the implication of disturbances in lipid metabolism with respect to prevalent human-related pathologies demands analytical techniques that provide unambiguous structural characterization and accurate quantitation of lipids in complex biological samples. The diversity in molecular structures of lipids along with their wide range of concentrations in biological matrices present formidable analytical challenges. Modern mass spectrometry (MS) offers an unprecedented level of analytical power in lipid analysis, as many advancements in the field of lipidomics have been facilitated through novel applications of and developments in electrospray ionization tandem mass spectrometry (ESI-MS/MS). ESI allows for the formation of intact lipid ions with little to no fragmentation and has become widely used in contemporary lipidomics experiments due to its sensitivity, reproducibility, and compatibility with condensed-phase modes of separation, such as liquid chromatography (LC). Owing to variations in lipid functional groups, ESI enables partial chemical separation of the lipidome, yet the preferred ion-type is not always formed, impacting lipid detection, characterization, and quantitation. Moreover, conventional ESI-MS/MS approaches often fail to expose diverse subtle structural features like the sites of unsaturation in fatty acyl constituents or acyl chain regiochemistry along the glycerol backbone, representing a significant challenge for ESI-MS/MS. To overcome these shortcomings, various charge manipulation strategies, including charge-switching, have been developed to transform ion-type and charge state, with aims of increasing sensitivity and selectivity of ESI-MS/MS approaches. Importantly, charge manipulation approaches afford enhanced ionization efficiency, improved mixture analysis performance, and access to informative fragmentation channels. Herein, we present a critical review of the current suite of solution-based and gas-phase strategies for the manipulation of lipid ion charge and type relevant to ESI-MS/MS.
Collapse
Affiliation(s)
- Caitlin E Randolph
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA
| | - Stephen J Blanksby
- Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Scott A McLuckey
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA.
| |
Collapse
|
28
|
Quantitative mass spectrometry-based analysis of proteins related to cattle and their products - Focus on cows' milk beta-casein proteoforms. Methods 2020; 186:112-118. [PMID: 32956783 DOI: 10.1016/j.ymeth.2020.09.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 09/11/2020] [Accepted: 09/16/2020] [Indexed: 12/29/2022] Open
Abstract
Modern mass spectrometers can accurately measure thousands of compounds in complex mixtures over a given liquid chromatograph method, depending on desired outcome and method duration. This stream of analytical chemistry has wide ranging application across food, pharma, environmental, forensics, clinical and research. With consistent pressure on both the ruminant production and product industries to face new and substantial challenges, liquid chromatography-mass spectrometry (LC-MS) is an ideal tool to identify, detect and quantify markers of breeding, production and adaption to support both research and industry to overcome these challenges. Herein, we provide a description of the theoretical basis and framework for LC-MS as a rapidly developing technique and highlight its application in measuring cattle and cattle product traits through protein quantitation with specific focus on beta-casein proteoforms.
Collapse
|
29
|
Gong M, Wei W, Hu Y, Jin Q, Wang X. Structure determination of conjugated linoleic and linolenic acids. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1153:122292. [PMID: 32755819 DOI: 10.1016/j.jchromb.2020.122292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/23/2020] [Accepted: 07/27/2020] [Indexed: 12/14/2022]
Abstract
Conjugated linoleic and linolenic acids (CLA and CLnA) can be found in dairy, ruminant meat and oilseeds, these types of unsaturated fatty acids consist of various positional and geometrical isomers, and have demonstrated health-promoting potential for human beings. Extensive reviews have reported the physiological effects of CLA, CLnA, while little is known regarding their isomer-specific effects. However, the isomers are difficult to identify, owing to (i) the similar retention time in common chromatographic methods; and (ii) the isomers are highly sensitive to high temperature, pH changes, and oxidation. The uncertainties in molecular structure have hindered investigations on the physiological effects of CLA and CLnA. Therefore, this review presents a summary of the currently available technologies for the structural determination of CLA and CLnA, including the presence confirmation, double bond position determination, and the potential stereo-isomer determination. Special focus has been projected to the novel techniques for structure determination of CLA and CLnA. Some possible future directions are also proposed.
Collapse
Affiliation(s)
- Mengyue Gong
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Wei Wei
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Yulin Hu
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, Ontario N6A 3K7, Canada
| | - Qingzhe Jin
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Xingguo Wang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
30
|
Advanced gas chromatography and mass spectrometry technologies for fatty acids and triacylglycerols analysis. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115957] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
31
|
Xu S, Wei F, Xie Y, Wu B, Lv X, Qin Z, Chen H. Localisation of C=C Bond and absolute quantification of unsaturated Fatty Acids in Vegetable Oils based on photochemical derivatisation reaction coupled with mass spectrometry. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Shuling Xu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences Key Laboratory of Oilseeds Processing of Ministry of Agriculture Key Laboratory of Biology and Genetic Improvement of Oil Crops, of Ministry of Agriculture P. R. China and Hubei Key Laboratory of Lipid Chemistry and Nutrition Hubei China
| | - Fang Wei
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences Key Laboratory of Oilseeds Processing of Ministry of Agriculture Key Laboratory of Biology and Genetic Improvement of Oil Crops, of Ministry of Agriculture P. R. China and Hubei Key Laboratory of Lipid Chemistry and Nutrition Hubei China
| | - Ya Xie
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences Key Laboratory of Oilseeds Processing of Ministry of Agriculture Key Laboratory of Biology and Genetic Improvement of Oil Crops, of Ministry of Agriculture P. R. China and Hubei Key Laboratory of Lipid Chemistry and Nutrition Hubei China
| | - Bangfu Wu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences Key Laboratory of Oilseeds Processing of Ministry of Agriculture Key Laboratory of Biology and Genetic Improvement of Oil Crops, of Ministry of Agriculture P. R. China and Hubei Key Laboratory of Lipid Chemistry and Nutrition Hubei China
| | - Xin Lv
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences Key Laboratory of Oilseeds Processing of Ministry of Agriculture Key Laboratory of Biology and Genetic Improvement of Oil Crops, of Ministry of Agriculture P. R. China and Hubei Key Laboratory of Lipid Chemistry and Nutrition Hubei China
| | - Zuojian Qin
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences Key Laboratory of Oilseeds Processing of Ministry of Agriculture Key Laboratory of Biology and Genetic Improvement of Oil Crops, of Ministry of Agriculture P. R. China and Hubei Key Laboratory of Lipid Chemistry and Nutrition Hubei China
| | - Hong Chen
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences Key Laboratory of Oilseeds Processing of Ministry of Agriculture Key Laboratory of Biology and Genetic Improvement of Oil Crops, of Ministry of Agriculture P. R. China and Hubei Key Laboratory of Lipid Chemistry and Nutrition Hubei China
| |
Collapse
|
32
|
Maddox SW, Fraser Caris RH, Baker KL, Burkus-Matesevac A, Peverati R, Chouinard CD. Ozone-Induced Cleavage of Endocyclic C═C Double Bonds within Steroid Epimers Produces Unique Gas-Phase Conformations. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:411-417. [PMID: 32031388 DOI: 10.1021/jasms.9b00058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Herein we demonstrate the first application of ozone-induced cleavage of endocyclic C═C double bonds for improved steroid isomer separation using ion mobility-mass spectrometry. Steroids represent a challenging biomolecular class for ion mobility (IM) separations due to their structural rigidity and subtle stereochemical differences. In this work, we compare the effects of ozonolysis on the relative mobilities of a model stereoisomer pair, testosterone and epitestosterone. A solution-phase ozonolysis approach is used due to its simplicity, relatively low cost, and potential for rapid, online analysis. Despite the presence of solvent-based addition products, we observe that these steroids undergo an ozone-based cleavage resulting in unique, stable gas-phase conformations. The resulting resolution between testosterone and epitestosterone, with collision cross section values of 176.6 and 193.3 Å2, respectively, demonstrates a significant improvement in comparison with previous IM-based approaches. The significantly smaller conformation observed for epitestosterone is stabilized by a three-point interaction between the oxygen-containing functional groups and a sodium ion; this same conformation cannot be sterically achieved by testosterone. Identification of this specific structural difference is strengthened by experimental results showing the disappearance of this conformation following in-source water loss, which eliminates the potential for that three-point interaction. Computational modeling of the lowest energy gas-phase structures for these ozone products corroborates the experimental results. In conclusion, this approach provides tremendous potential as a rapid IM separation method for steroid isomers and other endocyclic C═C double bond containing molecules.
Collapse
Affiliation(s)
- Samuel W Maddox
- Chemistry Program, Department of Biomedical and Chemical Engineering and Sciences , Florida Institute of Technology , Melbourne , Florida 32901 , United States
| | - Robert H Fraser Caris
- Chemistry Program, Department of Biomedical and Chemical Engineering and Sciences , Florida Institute of Technology , Melbourne , Florida 32901 , United States
| | - Kristie L Baker
- Chemistry Program, Department of Biomedical and Chemical Engineering and Sciences , Florida Institute of Technology , Melbourne , Florida 32901 , United States
| | - Aurora Burkus-Matesevac
- Chemistry Program, Department of Biomedical and Chemical Engineering and Sciences , Florida Institute of Technology , Melbourne , Florida 32901 , United States
| | - Roberto Peverati
- Chemistry Program, Department of Biomedical and Chemical Engineering and Sciences , Florida Institute of Technology , Melbourne , Florida 32901 , United States
| | - Christopher D Chouinard
- Chemistry Program, Department of Biomedical and Chemical Engineering and Sciences , Florida Institute of Technology , Melbourne , Florida 32901 , United States
| |
Collapse
|
33
|
Cao W, Cheng S, Yang J, Feng J, Zhang W, Li Z, Chen Q, Xia Y, Ouyang Z, Ma X. Large-scale lipid analysis with C=C location and sn-position isomer resolving power. Nat Commun 2020; 11:375. [PMID: 31953382 PMCID: PMC6969141 DOI: 10.1038/s41467-019-14180-4] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 12/16/2019] [Indexed: 12/18/2022] Open
Abstract
Lipids play a pivotal role in biological processes and lipid analysis by mass spectrometry (MS) has significantly advanced lipidomic studies. While the structure specificity of lipid analysis proves to be critical for studying the biological functions of lipids, current mainstream methods for large-scale lipid analysis can only identify the lipid classes and fatty acyl chains, leaving the C=C location and sn-position unidentified. In this study, combining photochemistry and tandem MS we develop a simple but effective workflow to enable large-scale and near-complete lipid structure characterization with a powerful capability of identifying C=C location(s) and sn-position(s) simultaneously. Quantitation of lipid structure isomers at multiple levels of specificity is achieved and different subtypes of human breast cancer cells are successfully discriminated. Remarkably, human lung cancer tissues can only be distinguished from adjacent normal tissues using quantitative results of both lipid C=C location and sn-position isomers.
Collapse
Affiliation(s)
- Wenbo Cao
- Department of Precision Instrument, State Key Laboratory of Precision Measurement Technology and Instruments, Tsinghua University, Beijing, 100084, China
| | - Simin Cheng
- Department of Precision Instrument, State Key Laboratory of Precision Measurement Technology and Instruments, Tsinghua University, Beijing, 100084, China
| | - Jing Yang
- Department of Precision Instrument, State Key Laboratory of Precision Measurement Technology and Instruments, Tsinghua University, Beijing, 100084, China
| | - Jiaxin Feng
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Wenpeng Zhang
- Department of Precision Instrument, State Key Laboratory of Precision Measurement Technology and Instruments, Tsinghua University, Beijing, 100084, China
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Zishuai Li
- Department of Precision Instrument, State Key Laboratory of Precision Measurement Technology and Instruments, Tsinghua University, Beijing, 100084, China
| | - Qinhua Chen
- Affiliated Dongfeng Hospital, Hubei University of Medicine, Shiyan, Hubei Province, 442000, China
| | - Yu Xia
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Zheng Ouyang
- Department of Precision Instrument, State Key Laboratory of Precision Measurement Technology and Instruments, Tsinghua University, Beijing, 100084, China.
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA.
| | - Xiaoxiao Ma
- Department of Precision Instrument, State Key Laboratory of Precision Measurement Technology and Instruments, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
34
|
Randolph CE, Blanksby SJ, McLuckey SA. Toward Complete Structure Elucidation of Glycerophospholipids in the Gas Phase through Charge Inversion Ion/Ion Chemistry. Anal Chem 2020; 92:1219-1227. [PMID: 31763816 PMCID: PMC6949391 DOI: 10.1021/acs.analchem.9b04376] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Shotgun lipidomics has recently gained popularity for lipid analysis. Conventionally, shotgun analysis of glycerophospholipids via direct electrospray ionization tandem mass spectrometry (ESI-MS/MS) provides glycerophospholipid (GPL) class (i.e., headgroup composition) and fatty acyl composition. Reliant on low-energy collision-induced dissociation (CID), traditional ESI-MS/MS fails to define fatty acyl regiochemistry along the glycerol backbone or carbon-carbon double bond position(s) in unsaturated fatty acyl substituents. Therefore, isomeric GPLs are often unresolved, representing a significant challenge for shotgun-MS approaches. We developed a top-down shotgun-MS method utilizing gas-phase ion/ion charge inversion chemistry that provides near-complete GPL structural identification. First, in negative ion mode, CID of mass-selected GPL anions generates fatty acyl carboxylate anions via fragmentation of ester bonds linking the fatty acyl substituents at the sn-1 and sn-2 positions of the glycerol backbone. Product anions, including fatty acyl carboxylate ions, were then derivatized in the mass spectrometer via an ion/ion charge inversion reaction with tris-phenanthroline magnesium dications. Subsequent CID of charge-inverted fatty acyl complex cations yielded isomer-specific product ion spectra that permit (i) unambiguous assignment of carbon-carbon double bond position(s) and (ii) relative quantitation of isomeric fatty acyl substituents. The outlined strategy was applied to the analysis of targeted GPLs extracted from human plasma, including several proposed plasma biomarkers. A single experiment thus facilitates assignment of the GPL headgroup, fatty acyl composition, carbon-carbon double bond position(s) in unsaturated fatty acyl chains, and, in some cases, fatty acyl sn-position and relative abundances for isomeric fatty acyl substituents. Ultimately, this MSn platform paired with ion/ion chemistry permitted identification of major, and some minor, isomeric contributors that are unresolved using conventional ESI-MS/MS.
Collapse
Affiliation(s)
- Caitlin E. Randolph
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA
| | - Stephen J. Blanksby
- Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Scott A. McLuckey
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA
| |
Collapse
|
35
|
Lin Q, Zhang D, Xia Y. Analysis of ether glycerophosphocholines at the level of CC locations from human plasma. Analyst 2020; 145:513-522. [DOI: 10.1039/c9an01515a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Near-complete structural characterization is achieved for ether PCs by coupling offline Paternò–Büchi derivatization with MS/MS.
Collapse
Affiliation(s)
- Qiaohong Lin
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P. R. China
| | - Donghui Zhang
- Department of Precision Instrument
- Tsinghua University
- Beijing 100084
- P. R. China
| | - Yu Xia
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P. R. China
| |
Collapse
|
36
|
Claes BSR, Takeo E, Fukusaki E, Shimma S, Heeren RMA. Imaging Isomers on a Biological Surface: A Review. Mass Spectrom (Tokyo) 2019; 8:A0078. [PMID: 32158629 PMCID: PMC7035452 DOI: 10.5702/massspectrometry.a0078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 10/31/2019] [Indexed: 12/30/2022] Open
Abstract
Mass spectrometry imaging is an imaging technology that allows the localization and identification of molecules on (biological) sample surfaces. Obtaining the localization of a compound in tissue is of great value in biological research. Yet, the identification of compounds remains a challenge. Mass spectrometry alone, even with high-mass resolution, cannot always distinguish between the subtle structural differences of isomeric compounds. This review discusses recent advances in mass spectrometry imaging of lipids, steroid hormones, amino acids and proteins that allow imaging with isomeric resolution. These improvements in detailed identification can give new insights into the local biological activity of isomers.
Collapse
Affiliation(s)
- Britt S. R. Claes
- Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry (IMS), Maastricht University
| | - Emi Takeo
- Department of Biotechnology, Graduate School of Engineering, Osaka University
| | - Eiichiro Fukusaki
- Department of Biotechnology, Graduate School of Engineering, Osaka University
| | - Shuichi Shimma
- Department of Biotechnology, Graduate School of Engineering, Osaka University
| | - Ron M. A. Heeren
- Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry (IMS), Maastricht University
| |
Collapse
|
37
|
Knowles SL, Vu N, Todd DA, Raja HA, Rokas A, Zhang Q, Oberlies NH. Orthogonal Method for Double-Bond Placement via Ozone-Induced Dissociation Mass Spectrometry (OzID-MS). JOURNAL OF NATURAL PRODUCTS 2019; 82:3421-3431. [PMID: 31823607 PMCID: PMC7004233 DOI: 10.1021/acs.jnatprod.9b00787] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Most often, the structures of secondary metabolites are solved using a suite of NMR techniques. However, there are times when it can be challenging to position double bonds, particularly those that are fully substituted or when there are multiple double bonds in similar chemical environments. Ozone-induced dissociation mass spectrometry (OzID-MS) serves as an orthogonal structure elucidation tool, using predictable fragmentation patterns that are generated after ozonolysis across a carbon-carbon double bond. This technique is finding growing use in the lipidomics community, suggestive of its potential value for secondary metabolites. This methodology was evaluated by confirming the double-bond positions in five fungal secondary metabolites, specifically, ent-sartorypyrone E (1), sartorypyrone A (2), sorbicillin (3), trichodermic acid A (4), and AA03390 (5). This demonstrated its potential with a variety of chemotypes, ranging from polyketides to terpenoids and including those in both conjugated and nonconjugated polyenes. In addition, the potential of using this methodology in the context of a mixture was piloted by studying Aspergillus fischeri, first examining a traditional extract and then sampling a live fungal culture in situ. While the intensity of signals varied from pure compound to extract to in situ, the utility of the technique was preserved.
Collapse
Affiliation(s)
- Sonja L. Knowles
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27412
| | - Ngoc Vu
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27412
| | - Daniel A. Todd
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27412
| | - Huzefa A. Raja
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27412
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37235
| | - Qibin Zhang
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27412
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, Kannapolis, NC 28081
| | - Nicholas H. Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27412
| |
Collapse
|
38
|
Esch P, Fischer M, Heiles S, Schäfer M. Olefinic reagents tested for peptide derivatization with switchable properties: Stable upon collision induced dissociation and cleavable by in-source Paternò-Büchi reactions. JOURNAL OF MASS SPECTROMETRY : JMS 2019; 54:976-986. [PMID: 31729095 DOI: 10.1002/jms.4474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/01/2019] [Accepted: 10/22/2019] [Indexed: 06/10/2023]
Abstract
This contribution is part of our ongoing efforts to develop innovative cross-linking (XL) reagents and protocols for facilitated peptide mixture analysis and efficient assignment of cross-linked peptide products. In this report, we combine in-source Paternò-Büchi (PB) photo-chemistry with a tandem mass spectrometry approach to selectively address the fragmentation of a tailor-made cross-linking reagent. The PB photochemistry, so far exclusively used for the identification of unsaturation sites in lipids and in lipidomics, is now introduced to the field of chemical cross-linking. Based on trans-3-hexenedioic acid, an olefinic homo bifunctional amine reactive XL reagent was designed and synthesized for this proof-of-principle study. Condensation products of the olefinic reagent with a set of exemplary peptides are used to test the feasibility of the concept. Benzophenone is photochemically reacted in the nano-electrospray ion source and forms oxetane PB reaction products. Subsequent CID-MS triggered retro-PB reaction of the respective isobaric oxetane molecular ions and delivers reliably and predictably two sets of characteristic fragment ions of the cross-linker. Based on these signature ion sets, a straightforward identification of covalently interconnected peptides in complex digests is proposed. Furthermore, CID-MSn experiments of the retro-PB reaction products deliver peptide backbone characteristic fragment ions. Additionally, the olefinic XL reagents exhibit a pronounced robustness upon CID-activation, without previous UV-excitation. These experiments document that a complete backbone fragmentation is possible, while the linker-moiety remains intact. This feature renders the new olefinic linkers switchable between a stable, noncleavable cross-linking mode and an in-source PB cleavable mode.
Collapse
Affiliation(s)
- Patrick Esch
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Heinrich Buff Ring 17, D-35392 Giessen, Germany
| | - Moritz Fischer
- Department of Chemistry, Institute of Organic Chemistry, University of Cologne, Greinstraße 4, D-50939, Cologne, Germany
| | - Sven Heiles
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Heinrich Buff Ring 17, D-35392 Giessen, Germany
| | - Mathias Schäfer
- Department of Chemistry, Institute of Organic Chemistry, University of Cologne, Greinstraße 4, D-50939, Cologne, Germany
| |
Collapse
|
39
|
Kong JY, Hilger RT, Jin C, Yerabolu R, Zimmerman JR, Replogle RW, Jarrell TM, Easterling L, Kumar R, Kenttämaa HI. Integration of a Multichannel Pulsed-Valve Inlet System to a Linear Quadrupole Ion Trap Mass Spectrometer for the Rapid Consecutive Introduction of Nine Reagents for Diagnostic Ion/Molecule Reactions. Anal Chem 2019; 91:15652-15660. [PMID: 31702133 DOI: 10.1021/acs.analchem.9b03768] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Gas-phase ion/molecule reactions have been used extensively for the structural elucidation of organic compounds in tandem mass spectrometry. Reagents for ion/molecule reactions can be introduced into a mass spectrometer via a continuous flow apparatus or through a pulsed inlet system. However, most of these approaches enable the use of only a single reagent at a time. In this work, a multichannel pulsed-valve inlet system was developed for the rapid consecutive introduction of up to nine different reagents or reagent systems into a linear quadrupole ion trap mass spectrometer for diagnostic gas-phase ion/molecule reactions. Automated triggering of the pulsed valves enabled these experiments to be performed on the high-performance liquid chromatography (HPLC) time scale. This enables high-throughput screening of several functionalities in analytes as they elute from an HPLC column.
Collapse
Affiliation(s)
- John Y Kong
- Department of Chemistry , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Ryan T Hilger
- Department of Chemistry , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Chunfen Jin
- Department of Chemistry , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Ravikiran Yerabolu
- Department of Chemistry , Purdue University , West Lafayette , Indiana 47907 , United States
| | - James R Zimmerman
- Department of Chemistry , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Randall W Replogle
- Department of Chemistry , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Tiffany M Jarrell
- Department of Chemistry , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Leah Easterling
- Department of Chemistry , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Rashmi Kumar
- Department of Chemistry , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Hilkka I Kenttämaa
- Department of Chemistry , Purdue University , West Lafayette , Indiana 47907 , United States
| |
Collapse
|
40
|
Hancock SE, Poad BLJ, Willcox MDP, Blanksby SJ, Mitchell TW. Analytical separations for lipids in complex, nonpolar lipidomes using differential mobility spectrometry. J Lipid Res 2019; 60:1968-1978. [PMID: 31511397 PMCID: PMC6824485 DOI: 10.1194/jlr.d094854] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 09/03/2019] [Indexed: 11/20/2022] Open
Abstract
Secretions from meibomian glands located within the eyelid (commonly known as meibum) are rich in nonpolar lipid classes incorporating very-long (22-30 carbons) and ultra-long (>30 carbons) acyl chains. The complex nature of the meibum lipidome and its preponderance of neutral, nonpolar lipid classes presents an analytical challenge, with typically poor chromatographic resolution, even between different lipid classes. To address this challenge, we have deployed differential mobility spectrometry (DMS)-MS to interrogate the human meibum lipidome and demonstrate near-baseline resolution of the two major nonpolar classes contained therein, namely wax esters and cholesteryl esters. Within these two lipid classes, we describe ion mobility behavior that is associated with the length of their acyl chains and location of unsaturation. This capability was exploited to profile the molecular speciation within each class and thus extend meibum lipidome coverage. Intriguingly, structure-mobility relationships in these nonpolar lipids show similar trends and inflections to those previously reported for other physicochemical properties of lipids (e.g., melting point and phase-transition temperatures). Taken together, these data demonstrate that differential ion mobility provides a powerful orthoganol separation technology for the analysis of neutral lipids in complex matrices, such as meibum, and may further provide a means to predict physicochemical properties of lipids that could assist in inferring their biological function(s).
Collapse
Affiliation(s)
- Sarah E Hancock
- School of Medicine and Molecular Horizons, University of Wollongong, Wollongong, Australia
- Illawarra Health and Medical Research Institute, Wollongong, Australia
| | - Berwyck L J Poad
- Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology, Brisbane, Australia
| | - Mark D P Willcox
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| | - Stephen J Blanksby
- Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology, Brisbane, Australia
| | - Todd W Mitchell
- School of Medicine and Molecular Horizons, University of Wollongong, Wollongong, Australia
- Illawarra Health and Medical Research Institute, Wollongong, Australia
| |
Collapse
|
41
|
Poad BLJ, Marshall DL, Harazim E, Gupta R, Narreddula VR, Young RSE, Duchoslav E, Campbell JL, Broadbent JA, Cvačka J, Mitchell TW, Blanksby SJ. Combining Charge-Switch Derivatization with Ozone-Induced Dissociation for Fatty Acid Analysis. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:2135-2143. [PMID: 31347025 DOI: 10.1007/s13361-019-02285-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/07/2019] [Accepted: 07/08/2019] [Indexed: 06/10/2023]
Abstract
The specific positions of carbon-carbon double bond(s) within an unsaturated fatty acid exert a significant effect on the physical and chemical properties of the lipid that ultimately inform its biological function(s). Contemporary liquid chromatography-mass spectrometry (MS) strategies based on electrospray ionization coupled to tandem MS can easily detect fatty acyl lipids but generally cannot reveal those specific site(s) of unsaturation. Herein, we describe a novel and versatile workflow whereby fatty acids are first converted to fixed charge N-(4-aminomethylphenyl)pyridinium (AMPP) derivatives and subsequently subjected to ozone-induced dissociation (OzID) on a modified triple quadrupole mass spectrometer. The AMPP modification enhances the detection of fatty acids introduced by direct infusion. Fragmentation of the derivatized fatty acids also provides diagnostic fragment ions upon collision-induced dissociation that can be targeted in precursor ion scans to subsequently trigger OzID analyses in an automated data-dependent workflow. It is these OzID analyses that provide unambiguous assignment of carbon-carbon double bond locations in the AMPP-derivatized fatty acids. The performance of this analysis pipeline is assessed in profiling the patterns of unsaturation in fatty acids within the complex biological secretion vernix caseosa. This analysis uncovers significant isomeric diversity within the fatty acid pool of this sample, including a number of hitherto unreported double bond positional isomers that hint at the activity of potentially new metabolic pathways.
Collapse
Affiliation(s)
- Berwyck L J Poad
- Central Analytical Research Facility, Queensland University of Technology, Brisbane, Australia.
| | - David L Marshall
- Central Analytical Research Facility, Queensland University of Technology, Brisbane, Australia
| | - Eva Harazim
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Rajesh Gupta
- Central Analytical Research Facility, Queensland University of Technology, Brisbane, Australia
| | - Venkateswara R Narreddula
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, Australia
| | - Reuben S E Young
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, Australia
| | | | | | - James A Broadbent
- SCIEX, Concord, ON, Canada
- CSIRO Agriculture and Food, St Lucia, Queensland, 4067, Australia
| | - Josef Cvačka
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Todd W Mitchell
- School of Medicine and Molecular Horizons, University of Wollongong, Wollongong, Australia
| | - Stephen J Blanksby
- Central Analytical Research Facility, Queensland University of Technology, Brisbane, Australia.
| |
Collapse
|
42
|
Cetraro N, Cody RB, Yew JY. Carbon-carbon double bond position elucidation in fatty acids using ozone-coupled direct analysis in real time mass spectrometry. Analyst 2019; 144:5848-5855. [PMID: 31482871 DOI: 10.1039/c9an01059a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The carbon-carbon double bond positions of unsaturated fatty acids can have markedly different effects on biological function and also serve as biomarkers of disease pathology, dietary history, and species identity. As such, there is great interest in developing methods for the facile determination of double bond position for natural product chemistry, the pharmaceutical industry, and forensics. We paired ozonolysis with direct analysis in real time mass spectrometry (DART MS) to cleave and rapidly identify carbon-carbon double bond position in fatty acids, fatty alcohols, wax esters, and crude fatty acid extracts. In addition, ozone exposure time and DART ion source temperature were investigated to identify optimal conditions. Our results reveal that brief, offline exposure to ozone-generated aldehyde and carboxylate products that are indicative of carbon-carbon double bond position. The relative abundance of diagnostic fragments quantitatively reflects the ratios of isobaric fatty acid positional isomers in a mixture with a correlation coefficient of 0.99. Lastly, the unsaturation profile generated from unfractionated, fatty acid extracts can be used to differentiate insect species and populations. The ability to rapidly elucidate lipid double bond position by combining ozonolysis with DART MS will be useful for lipid structural elucidation, assessing isobaric purity, and potentially distinguishing between animals fed on different diets or belonging to different ecological populations.
Collapse
Affiliation(s)
- Nicolas Cetraro
- Pacific Biosciences Research Center, University of Hawai'i at Mānoa, 1993 East West Road, Honolulu, USA 96822.
| | - Robert B Cody
- JEOL USA, Inc., 11 Dearborn Rd, Peabody, MA, USA 01960
| | - Joanne Y Yew
- Pacific Biosciences Research Center, University of Hawai'i at Mānoa, 1993 East West Road, Honolulu, USA 96822.
| |
Collapse
|
43
|
Marshall DL, Criscuolo A, Young RSE, Poad BLJ, Zeller M, Reid GE, Mitchell TW, Blanksby SJ. Mapping Unsaturation in Human Plasma Lipids by Data-Independent Ozone-Induced Dissociation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:1621-1630. [PMID: 31222675 DOI: 10.1007/s13361-019-02261-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/27/2019] [Accepted: 05/27/2019] [Indexed: 06/09/2023]
Abstract
Over 1500 different lipids have been reported in human plasma at the sum composition level. Yet the number of unique lipids present is surely higher, once isomeric contributions from double bond location(s) and fatty acyl regiochemistry are considered. In order to resolve this ambiguity, herein, we describe the incorporation of ozone-induced dissociation (OzID) into data-independent shotgun lipidomics workflows on a high-resolution hybrid quadrupole-Orbitrap platform. In this configuration, [M + Na]+ ions generated by electrospray ionization of a plasma lipid extract were transmitted through the quadrupole in 1 Da segments. Reaction of mass-selected lipid ions with ozone in the octopole collision cell yielded diagnostic ions for each double bond position. The increased ozone concentration in this region significantly improved ozonolysis efficiency compared with prior implementations on linear ion-trap devices. This advancement translates into increased lipidome coverage and improvements in duty cycle for data-independent MS/MS analysis using shotgun workflows. Grouping all precursor ions with a common OzID neutral loss enables straightforward classification of the lipidome by unsaturation position (with respect to the methyl terminus). Two-dimensional maps obtained from this analysis provide a powerful visualization of structurally related lipids and lipid isomer families within plasma. Global profiling of lipid unsaturation in plasma extracts reveals that most unsaturated lipids are present as isomeric mixtures. These new insights provide a unique picture of underlying metabolism that could in the future provide novel indicators of health and disease.
Collapse
Affiliation(s)
- David L Marshall
- Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology, Brisbane, QLD, 4000, Australia.
| | - Angela Criscuolo
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, Leipzig, Germany
- Center for Biotechnology and Biomedicine, Universität Leipzig, Leipzig, Germany
- Thermo Fisher Scientific (Bremen) GmbH, Hanna-Kunath Str. 11, 28199, Bremen, Germany
| | - Reuben S E Young
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, Australia
| | - Berwyck L J Poad
- Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Martin Zeller
- Thermo Fisher Scientific (Bremen) GmbH, Hanna-Kunath Str. 11, 28199, Bremen, Germany
| | - Gavin E Reid
- School of Chemistry, Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Australia
| | - Todd W Mitchell
- School of Medicine and Molecular Horizons, University of Wollongong, Wollongong, Australia
- Illawarra Health and Medical Research Institute, Wollongong, Australia
| | - Stephen J Blanksby
- Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology, Brisbane, QLD, 4000, Australia.
| |
Collapse
|
44
|
Randolph CE, Foreman DJ, Blanksby SJ, McLuckey SA. Generating Fatty Acid Profiles in the Gas Phase: Fatty Acid Identification and Relative Quantitation Using Ion/Ion Charge Inversion Chemistry. Anal Chem 2019; 91:9032-9040. [PMID: 31199126 PMCID: PMC6882335 DOI: 10.1021/acs.analchem.9b01333] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Representing the most fundamental lipid class, fatty acids (FA) play vital biological roles serving as energy sources, cellular signaling molecules, and key architectural components of complex lipids. Direct infusion electrospray ionization spectrometry, also known as shotgun lipidomics, has emerged as a rapid and powerful toolbox for lipid analysis. While shotgun lipidomics can be a sensitive approach to FA detection, the diverse molecular structure of FA presents challenges for unambiguous identification and the relative quantification of isomeric contributors. In particular, pinpointing double bond position(s) in unsaturated FA and determining the relative contribution of double bond isomers has limited the application of the shotgun approach. Recently, we reported the use of gas-phase ion/ion reactions to facilitate the identification of FA. Briefly, singly deprotonated FA anions undergo charge inversion when reacted in the gas phase with tris-phenanthroline magnesium dications by forming [FA - H + MgPhen]+ complex ions. These charge-inverted FA complex cations fragment upon ion-trap collision-induced dissociation (CID) to generate product ion spectra unique to individual FA isomers. Herein, we report the development of a mass spectral library comprised of [FA - H + MgPhen]+ product ion spectra. The developed FA library permits confident FA identification, including polyunsaturated FA isomers. Furthermore, we demonstrate the ability to determine relative contributions of isomeric FA using multiple linear regression analysis paired with gas-phase ion/ion reactions. We successfully applied the presented method to generate a FA profile for bovine liver phospholipidome based entirely on gas-phase chemistries.
Collapse
Affiliation(s)
- Caitlin E. Randolph
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, United States
| | - David J. Foreman
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, United States
| | - Stephen J. Blanksby
- Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - Scott A. McLuckey
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, United States
| |
Collapse
|
45
|
Reaction of ionised steryl esters with ozone in the gas phase. Chem Phys Lipids 2019; 221:198-206. [DOI: 10.1016/j.chemphyslip.2018.12.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/20/2018] [Accepted: 12/27/2018] [Indexed: 01/31/2023]
|
46
|
Xie X, Xia Y. Analysis of Conjugated Fatty Acid Isomers by the Paternò-Büchi Reaction and Trapped Ion Mobility Mass Spectrometry. Anal Chem 2019; 91:7173-7180. [DOI: 10.1021/acs.analchem.9b00374] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Xiaobo Xie
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yu Xia
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
47
|
Jeck V, Korf A, Vosse C, Hayen H. Localization of double-bond positions in lipids by tandem mass spectrometry succeeding high-performance liquid chromatography with post-column derivatization. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2019; 33 Suppl 1:86-94. [PMID: 30102803 DOI: 10.1002/rcm.8262] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/31/2018] [Accepted: 08/05/2018] [Indexed: 06/08/2023]
Affiliation(s)
- Viola Jeck
- University of Münster, Institute of Inorganic and Analytical Chemistry, Corrensstraße 30, 48149, Münster, Germany
| | - Ansgar Korf
- University of Münster, Institute of Inorganic and Analytical Chemistry, Corrensstraße 30, 48149, Münster, Germany
| | - Christian Vosse
- University of Münster, Institute of Inorganic and Analytical Chemistry, Corrensstraße 30, 48149, Münster, Germany
| | - Heiko Hayen
- University of Münster, Institute of Inorganic and Analytical Chemistry, Corrensstraße 30, 48149, Münster, Germany
| |
Collapse
|
48
|
Korf A, Jeck V, Schmid R, Helmer PO, Hayen H. Lipid Species Annotation at Double Bond Position Level with Custom Databases by Extension of the MZmine 2 Open-Source Software Package. Anal Chem 2019; 91:5098-5105. [PMID: 30892876 DOI: 10.1021/acs.analchem.8b05493] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In recent years, proprietary and open-source bioinformatics software tools have been developed for the identification of lipids in complex biological samples based on high-resolution mass spectrometry data. These existent software tools often rely on publicly available lipid databases, such as LIPID MAPS, which, in some cases, only contain a limited number of lipid species for a specific lipid class. Other software solutions implement their own lipid species databases, which are often confined regarding implemented lipid classes, such as phospholipids. To address these drawbacks, we provide an extension of the widely used open-source metabolomics software MZmine 2, which enables the annotation of detected chromatographic features as lipid species. The extension is designed for straightforward generation of a custom database for selected lipid classes. Furthermore, each lipid's sum formula of the created database can be rapidly modified to search for derivatization products, oxidation products, in-source fragments, or adducts. The versatility will be exemplified by a liquid chromatography-high resolution mass spectrometry data set with postcolumn Paternò-Büchi derivatization. The derivatization reaction was performed to pinpoint the double bond positions in diacylglyceryltrimethylhomoserine lipid species in a lipid extract of a green algae ( Chlamydomonas reinhardtii) sample. The developed Lipid Search module extension of MZmine 2 supports the identification of lipids as far as double bond position level.
Collapse
Affiliation(s)
- Ansgar Korf
- Institute of Inorganic and Analytical Chemistry , University of Münster , Corrensstraße 30 , 48149 Münster , Germany
| | - Viola Jeck
- Institute of Inorganic and Analytical Chemistry , University of Münster , Corrensstraße 30 , 48149 Münster , Germany
| | - Robin Schmid
- Institute of Inorganic and Analytical Chemistry , University of Münster , Corrensstraße 30 , 48149 Münster , Germany
| | - Patrick O Helmer
- Institute of Inorganic and Analytical Chemistry , University of Münster , Corrensstraße 30 , 48149 Münster , Germany
| | - Heiko Hayen
- Institute of Inorganic and Analytical Chemistry , University of Münster , Corrensstraße 30 , 48149 Münster , Germany
| |
Collapse
|
49
|
Abstract
In recent years, multiple mass-spectrometric methods have been developed to tackle fundamental analytical questions in the field of biology and biochemistry. One essential approach relies on the use of liquid chromatography (LC), for efficient compound separation, coupled to high-resolution mass spectrometry (HR-MS). Even though these techniques are highly sensitive allowing for the reliable measurement of several thousand mass features, the major bottleneck is to convert the measured masses into annotated lipid species. To overcome this problem, we present a simple, example-based workflow, which provides an introduction to basic strategies for the manual validation of LC-MS-based lipidomic data. The whole strategy makes use of a data-independent acquisition (DIA) method, where alternating MS measurement cycles using high and low-energy scans are used. This measurement strategy allows to reliably annotate lipids, based on the exact mass measurements of intact, but also fragmented lipids from continuously recorded spectra.
Collapse
|
50
|
Feng Y, Chen B, Yu Q, Li L. Identification of Double Bond Position Isomers in Unsaturated Lipids by m-CPBA Epoxidation and Mass Spectrometry Fragmentation. Anal Chem 2019; 91:1791-1795. [PMID: 30608661 PMCID: PMC6408215 DOI: 10.1021/acs.analchem.8b04905] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Lipids are highly diverse biomolecules associated with several biological functions including structural constituent, energy storage, and signal transduction. It is essential to characterize lipid structural isomers and further understand their biological roles. Unsaturated lipids contain one or multiple carbon-carbon double bonds. Identifying double bond position presents a major challenge in unsaturated lipid characterization. Recently, several advancements have been made for double bond localization by mass spectrometry (MS) analysis. However, many of these studies require complex chemical reactions or advanced mass spectrometers with special fragmentation techniques, which limits the application in lipidomics study. Here, an innovative meta-chloroperoxybenzoic acid ( m-CPBA) epoxidation reaction coupling with collision-induced dissociation (CID)-MS/MS strategy provides a new tool for unsaturated lipidomics analysis. The rapid epoxidation reaction was carried out by m-CPBA with high specificity. Complete derivatization was achieved in minutes without overoxidized byproduct. Moreover, diagnostic ion pair with 16 Da mass difference indicated localization of carbon-carbon double bond in MS/MS spectra. Multiple lipid classes were evaluated with this strategy and generated abundant fragments for structural analysis. Unsaturated lipid analysis of yeast extract using this strategy took less than 30 min, demonstrating the potential for high-throughput lipidomics analysis by this approach. This study opens a door for high throughput unsaturated lipid analysis with minimal requirement for instrumentation, which could be widely applied in lipidomics analysis.
Collapse
Affiliation(s)
- Yu Feng
- School of Pharmacy, University of Wisconsin–Madison, Madison, Wisconsin, United States
| | - Bingming Chen
- School of Pharmacy, University of Wisconsin–Madison, Madison, Wisconsin, United States
| | - Qinying Yu
- School of Pharmacy, University of Wisconsin–Madison, Madison, Wisconsin, United States
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin–Madison, Madison, Wisconsin, United States
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, United States
| |
Collapse
|