1
|
Šakić B. The MRL Model: A Valuable Tool in Studies of Autoimmunity-Brain Interactions. Methods Mol Biol 2025; 2868:221-246. [PMID: 39546233 DOI: 10.1007/978-1-0716-4200-9_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
The link between systemic autoimmunity, brain pathology, and aberrant behavior is still largely unexplored field of biomedical science. Accumulating evidence points to causal relationships between immune factors, neurodegeneration, and neuropsychiatric manifestations. By documenting autoimmunity-associated neuronal degeneration and cytotoxicity of the cerebrospinal fluid from disease-affected subjects, the murine MRL model has shown high validity in revealing principal pathogenic circuits. In addition, unlike any other autoimmune strain, MRL mice produce antibodies commonly found in patients suffering from lupus and other autoimmune disorders. This review highlights the importance of the MRL model as a useful preparation for understanding the links between the immune system and brain function.
Collapse
Affiliation(s)
- Boris Šakić
- Department of Psychiatry and Behavioral Neurosciences, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
2
|
Feng Y, Qin J, Wang P, Lai Y, Tang L, Zhang X, Ren H, Yang M, Huang Q. Intermittent fasting attenuates cognitive dysfunction and systemic disease activity in mice with neuropsychiatric systemic lupus erythematosus. Life Sci 2024; 355:122999. [PMID: 39173994 DOI: 10.1016/j.lfs.2024.122999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/08/2024] [Accepted: 08/18/2024] [Indexed: 08/24/2024]
Abstract
AIMS Cognitive dysfunction and systemic disease activity are common manifestations of neuropsychiatric systemic lupus erythematosus (NPSLE), a condition that affects a patient's health and quality of life. Clinical and preclinical studies have demonstrated that intermittent fasting (IF) improves health conditions and quality of life. Therefore, we aimed to test whether IF improves cognitive dysfunction and systemic disease activities in mice with NPSLE and to examine the underlying mechanisms. MAIN METHODS NPSLE-prone MRL/lpr mice underwent 8 weeks of alternate-day fasting or ad libitum feeding, followed by behavioral tests to assess cognitive manifestations and biochemical tests to evaluate systemic disease activities. KEY FINDINGS IF significantly improved cognitive functionality, decreased blood-brain barrier permeability, and reduced the activation of astrocytes and microglia in the hippocampi of MRL/lpr mice. IF also improved systemic disease activities, including reduced kidney glomerular injury and interstitial inflammation, peripheral blood autoantibody titer, and splenic T lymphocyte contents. Mechanistic studies demonstrated that IF attenuates cognitive dysfunction by facilitating the microglial transition to the M2-like phenotype via the AMPK/PPARγ/NF-κB pathway. SIGNIFICANCE Together, observations from this study suggest a potential therapeutic benefit of IF in the treatment of cognitive dysfunction in patients with NPSLE.
Collapse
Affiliation(s)
- Yi Feng
- Department of Rheumatology and Immunology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jiayu Qin
- Department of Rheumatology and Immunology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Pan Wang
- Department of Rheumatology and Immunology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yanxia Lai
- Department of Rheumatology and Immunology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ling Tang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xian Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Hao Ren
- Department of Rheumatology and Immunology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Min Yang
- Department of Rheumatology and Immunology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Qin Huang
- Department of Rheumatology and Immunology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
3
|
Garcia SJ, Mike EV, Zhang J, Cuda CM, Putterman C. Lipocalin-2 drives neuropsychiatric and cutaneous disease in MRL/lpr mice. Front Immunol 2024; 15:1466868. [PMID: 39399497 PMCID: PMC11466786 DOI: 10.3389/fimmu.2024.1466868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/03/2024] [Indexed: 10/15/2024] Open
Abstract
Introduction Approximately 20-40% of patients with systemic lupus erythematosus (SLE) experience neuropsychiatric SLE (NPSLE), which often manifests as cognitive dysfunction and depression. Currently, there are no approved treatments for NPSLE because its underlying mechanisms are unclear. Identifying relevant mediators and understanding their contribution to pathogenesis are crucial for developing targeted treatment options. Lipocalin 2 (LCN2) is a multifunctional acute-phase protein that plays important roles in immune cell differentiation, migration, and function. LCN2 has been implicated in models of neuroinflammatory disease. Methods We generated an LCN2-deficient MRL/lpr mouse to evaluate the effects of LCN2 on this classic NPSLE model. To evaluate the effects of LCN2 deficiency on behavior, the mice underwent a battery of behavioral tests evaluating depression, memory, and anxiety. Flow cytometry was used to quantify immune cell populations in the brain, blood, and secondary lymphoid organs. Cutaneous disease was quantified by scoring lesional skin, and skin infiltrates were quantified through immunofluorescent staining. Systemic disease was evaluated through measuring anti-nuclear antibodies by ELISA. Results In this study, we found that LCN2 deficiency significantly attenuates neuropsychiatric and cutaneous disease in MRL/lpr lupus prone mice, likely by decreasing local infiltration of immune cells into the brain and skin and reducing astrocyte activation in the hippocampus. Anti-nuclear antibodies and kidney disease were not affected by LCN2. Discussion As there was no effect on systemic disease, our results suggest that the inflammatory effects of LCN2 were localized to the skin and brain in this model. This study further establishes LCN2 as a potential target to ameliorate organ injury in SLE, including neuropsychiatric and cutaneous disease.
Collapse
Affiliation(s)
- Sayra J. Garcia
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Elise V. Mike
- Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, United States
| | - Jinghang Zhang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Carla M. Cuda
- Department of Medicine, Northwestern University, Chicago, IL, United States
| | - Chaim Putterman
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
- Azrieli Faculty of Medicine, Bar Ilan University, Zefat, Israel
| |
Collapse
|
4
|
Kim TA, Cruz G, Syty MD, Wang F, Wang X, Duan A, Halterman M, Xiong Q, Palop JJ, Ge S. Neural circuit mechanisms underlying aberrantly prolonged functional hyperemia in young Alzheimer's disease mice. Mol Psychiatry 2024:10.1038/s41380-024-02680-9. [PMID: 39043843 DOI: 10.1038/s41380-024-02680-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 07/25/2024]
Abstract
Neurovascular defects are one of the most common alterations in Alzheimer's disease (AD) pathogenesis, but whether these deficits develop before the onset of amyloid beta (Aβ) accumulation remains to be determined. Using in vivo optical imaging in freely moving mice, we explored activity-induced hippocampal microvascular blood flow dynamics in AppSAA knock-in and J20 mouse models of AD at early stages of disease progression. We found that prior to the onset of Aβ accumulation, there was a pathologically elevated blood flow response to context exploration, termed functional hyperemia. After the onset of Aβ accumulation, this context exploration-induced hyperemia declined rapidly relative to that in control mice. Using in vivo electrophysiology recordings to explore the neural circuit mechanism underlying this blood flow alteration, we found that hippocampal interneurons before the onset of Aβ accumulation were hyperactive during context exploration. Chemogenetic tests suggest that hyperactive activation of inhibitory neurons accounted for the elevated functional hyperemia. The suppression of nitric oxide (NO) produced from hippocampal interneurons in young AD mice decreased the accumulation of Aβ. Together, these findings reveal that neurovascular coupling is aberrantly elevated before Aβ deposition, and this hyperactive functional hyperemia declines rapidly upon Aβ accumulation.
Collapse
Affiliation(s)
- Thomas A Kim
- Medical Scientist Training Program (MSTP), Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
- Program in Neuroscience, Stony Brook University, Stony Brook, NY, 11794, USA
| | - George Cruz
- Program in Neuroscience, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Michelle D Syty
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Faye Wang
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Xinxing Wang
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Alexandra Duan
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Marc Halterman
- Department of Neurology, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Qiaojie Xiong
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794, USA.
| | - Jorge J Palop
- Gladstone Institute of Neurological Disease, San Francisco, CA, 94158, USA.
- Department of Neurology, University of California, San Francisco, CA, 94158, USA.
| | - Shaoyu Ge
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794, USA.
| |
Collapse
|
5
|
Korszun-Karbowniczak J, Krysiak ZJ, Saluk J, Niemcewicz M, Zdanowski R. The Progress in Molecular Transport and Therapeutic Development in Human Blood-Brain Barrier Models in Neurological Disorders. Cell Mol Neurobiol 2024; 44:34. [PMID: 38627312 PMCID: PMC11021242 DOI: 10.1007/s10571-024-01473-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 03/18/2024] [Indexed: 04/19/2024]
Abstract
The blood-brain barrier (BBB) is responsible for maintaining homeostasis within the central nervous system (CNS). Depending on its permeability, certain substances can penetrate the brain, while others are restricted in their passage. Therefore, the knowledge about BBB structure and function is essential for understanding physiological and pathological brain processes. Consequently, the functional models can serve as a key to help reveal this unknown. There are many in vitro models available to study molecular mechanisms that occur in the barrier. Brain endothelial cells grown in culture are commonly used to modeling the BBB. Current BBB platforms include: monolayer platforms, transwell, matrigel, spheroidal, and tissue-on-chip models. In this paper, the BBB structure, molecular characteristic, as well as its dysfunctions as a consequence of aging, neurodegeneration, or under hypoxia and neurotoxic conditions are presented. Furthermore, the current modelling strategies that can be used to study BBB for the purpose of further drugs development that may reach CNS are also described.
Collapse
Affiliation(s)
- Joanna Korszun-Karbowniczak
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine National Research Institute, 128 Szaserów Street, 04-141, Warsaw, Poland
- BioMedChem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, 21/23 Matejki Street, 90-237, Lodz, Poland
| | - Zuzanna Joanna Krysiak
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine National Research Institute, 128 Szaserów Street, 04-141, Warsaw, Poland.
| | - Joanna Saluk
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, Institute of Biochemistry, University of Lodz, 68 Narutowicza Street, 90-136, Lodz, Poland
| | - Marcin Niemcewicz
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, 68 Narutowicza Street, 90-136, Lodz, Poland
| | - Robert Zdanowski
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine National Research Institute, 128 Szaserów Street, 04-141, Warsaw, Poland
| |
Collapse
|
6
|
Reynolds J, Huang M, Li Y, Meineck M, Moeckel T, Weinmann-Menke J, Mohan C, Schwarting A, Putterman C. Constitutive knockout of interleukin-6 ameliorates memory deficits and entorhinal astrocytosis in the MRL/lpr mouse model of neuropsychiatric lupus. J Neuroinflammation 2024; 21:89. [PMID: 38600510 PMCID: PMC11007930 DOI: 10.1186/s12974-024-03085-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/31/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Neuropsychiatric lupus (NPSLE) describes the cognitive, memory, and affective emotional burdens faced by many lupus patients. While NPSLE's pathogenesis has not been fully elucidated, clinical imaging studies and cerebrospinal fluid (CSF) findings, namely elevated interleukin-6 (IL-6) levels, point to ongoing neuroinflammation in affected patients. Not only linked to systemic autoimmunity, IL-6 can also activate neurotoxic glial cells the brain. A prior pre-clinical study demonstrated that IL-6 can acutely induce a loss of sucrose preference; the present study sought to assess the necessity of chronic IL-6 exposure in the NPSLE-like disease of MRL/lpr lupus mice. METHODS We quantified 1308 proteins in individual serum or pooled CSF samples from MRL/lpr and control MRL/mpj mice using protein microarrays. Serum IL-6 levels were plotted against characteristic NPSLE neurobehavioral deficits. Next, IL-6 knockout MRL/lpr (IL-6 KO; n = 15) and IL-6 wildtype MRL/lpr mice (IL-6 WT; n = 15) underwent behavioral testing, focusing on murine correlates of learning and memory deficits, depression, and anxiety. Using qPCR, we quantified the expression of inflammatory genes in the cortex and hippocampus of MRL/lpr IL-6 KO and WT mice. Immunofluorescent staining was performed to quantify numbers of microglia (Iba1 +) and astrocytes (GFAP +) in multiple cortical regions, the hippocampus, and the amygdala. RESULTS MRL/lpr CSF analyses revealed increases in IL-17, MCP-1, TNF-α, and IL-6 (a priori p-value < 0.1). Serum levels of IL-6 correlated with learning and memory performance (R2 = 0.58; p = 0.03), but not motivated behavior, in MRL/lpr mice. Compared to MRL/lpr IL-6 WT, IL-6 KO mice exhibited improved novelty preference on object placement (45.4% vs 60.2%, p < 0.0001) and object recognition (48.9% vs 67.9%, p = 0.002) but equivalent performance in tests for anxiety-like disease and depression-like behavior. IL-6 KO mice displayed decreased cortical expression of aif1 (microglia; p = 0.049) and gfap (astrocytes; p = 0.044). Correspondingly, IL-6 KO mice exhibited decreased density of GFAP + cells compared to IL-6 WT in the entorhinal cortex (89 vs 148 cells/mm2, p = 0.037), an area vital to memory. CONCLUSIONS The inflammatory composition of MRL/lpr CSF resembles that of human NPSLE patients. Increased in the CNS, IL-6 is necessary to the development of learning and memory deficits in the MRL/lpr model of NPSLE. Furthermore, the stimulation of entorhinal astrocytosis appears to be a key mechanism by which IL-6 promotes these behavioral deficits.
Collapse
Affiliation(s)
- Joshua Reynolds
- Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York, NY, USA
| | - Michelle Huang
- Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York, NY, USA
| | - Yaxi Li
- University of Houston, Houston, TX, USA
| | - Myriam Meineck
- University Medical Center of the Johannes Gutenberg University, University of Mainz, Mainz, Germany
| | - Tamara Moeckel
- University Medical Center of the Johannes Gutenberg University, University of Mainz, Mainz, Germany
| | - Julia Weinmann-Menke
- University Medical Center of the Johannes Gutenberg University, University of Mainz, Mainz, Germany
| | | | - Andreas Schwarting
- University Medical Center of the Johannes Gutenberg University, University of Mainz, Mainz, Germany
| | - Chaim Putterman
- Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York, NY, USA.
- Azrieli Faculty of Medicine, Bar-Ilan University, Zefat, Israel.
| |
Collapse
|
7
|
Siegmund D, Zaitseva O, Wajant H. Fn14 and TNFR2 as regulators of cytotoxic TNFR1 signaling. Front Cell Dev Biol 2023; 11:1267837. [PMID: 38020877 PMCID: PMC10657838 DOI: 10.3389/fcell.2023.1267837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Tumor necrosis factor (TNF) receptor 1 (TNFR1), TNFR2 and fibroblast growth factor-inducible 14 (Fn14) belong to the TNF receptor superfamily (TNFRSF). From a structural point of view, TNFR1 is a prototypic death domain (DD)-containing receptor. In contrast to other prominent death receptors, such as CD95/Fas and the two TRAIL death receptors DR4 and DR5, however, liganded TNFR1 does not instruct the formation of a plasma membrane-associated death inducing signaling complex converting procaspase-8 into highly active mature heterotetrameric caspase-8 molecules. Instead, liganded TNFR1 recruits the DD-containing cytoplasmic signaling proteins TRADD and RIPK1 and empowers these proteins to trigger cell death signaling by cytosolic complexes after their release from the TNFR1 signaling complex. The activity and quality (apoptosis versus necroptosis) of TNF-induced cell death signaling is controlled by caspase-8, the caspase-8 regulatory FLIP proteins, TRAF2, RIPK1 and the RIPK1-ubiquitinating E3 ligases cIAP1 and cIAP2. TNFR2 and Fn14 efficiently recruit TRAF2 along with the TRAF2 binding partners cIAP1 and cIAP2 and can thereby limit the availability of these molecules for other TRAF2/cIAP1/2-utilizing proteins including TNFR1. Accordingly, at the cellular level engagement of TNFR2 or Fn14 inhibits TNFR1-induced RIPK1-mediated effects reaching from activation of the classical NFκB pathway to induction of apoptosis and necroptosis. In this review, we summarize the effects of TNFR2- and Fn14-mediated depletion of TRAF2 and the cIAP1/2 on TNFR1 signaling at the molecular level and discuss the consequences this has in vivo.
Collapse
Affiliation(s)
| | | | - Harald Wajant
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
8
|
Yang M, Ge H, Ji S, Li Y, Xu L, Bi Z, Bu B. TWEAK and Fn14 are overexpressed in immune-mediated necrotizing myopathy: implications for muscle damage and repair. Rheumatology (Oxford) 2023; 62:3732-3741. [PMID: 36916753 DOI: 10.1093/rheumatology/kead108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/12/2023] [Accepted: 02/27/2023] [Indexed: 03/15/2023] Open
Abstract
OBJECTIVES TNF-like weak inducer of apoptosis (TWEAK) and its sole receptor fibroblast growth factor-inducible 14 (Fn14) are involved in various inflammatory conditions. This study was performed to investigate the potential role of TWEAK/Fn14 in immune-mediated necrotizing myopathy (IMNM). METHODS Muscle biopsies from patients with IMNM (n = 37) and controls (n = 11) were collected. Human muscle cells were treated with TWEAK in vitro. Muscle biopsies and cultured muscle cells were analysed by immunostaining and quantitative PCR. Serum levels of TWEAK and Fn14 were detected by ELISA. RESULTS TWEAK and Fn14 were overexpressed in IMNM muscle biopsies. The percentage of Fn14-positive myofibers correlated with disease severity, myonecrosis, regeneration and inflammation infiltrates. Fn14-positive myofibers tended to be surrounded or invaded by CD68+ macrophages. TWEAK treatment had a harmful effect on cultured muscle cells by inducing the production of multiple chemokines and pro-inflammatory cytokines. Serum Fn14 levels were increased in patients with IMNM and correlated with muscle weakness. CONCLUSIONS TWEAK/Fn14 signalling was activated in IMNM, most likely aggravating muscle damage via amplifying inflammatory response and macrophages chemotaxis. Fn14 seems to be a biomarker for assessing disease severity in IMNM. In addition, Fn14 may also contribute to muscle injury repair.
Collapse
Affiliation(s)
- Mengge Yang
- Department of Neurology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huizhen Ge
- Department of Neurology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Suqiong Ji
- Department of Neurology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yue Li
- Department of Neurology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Li Xu
- Department of Neurology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhuajin Bi
- Department of Neurology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bitao Bu
- Department of Neurology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
9
|
Petrova R, Patil AR, Trinh V, McElroy KE, Bhakta M, Tien J, Wilson DS, Warren L, Stratton JR. Disease pathology signatures in a mouse model of Mucopolysaccharidosis type IIIB. Sci Rep 2023; 13:16699. [PMID: 37794029 PMCID: PMC10550979 DOI: 10.1038/s41598-023-42431-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 09/10/2023] [Indexed: 10/06/2023] Open
Abstract
Mucopolysaccharidosis type IIIB (MPS IIIB) is a rare and devastating childhood-onset lysosomal storage disease caused by complete loss of function of the lysosomal hydrolase α-N-acetylglucosaminidase. The lack of functional enzyme in MPS IIIB patients leads to the progressive accumulation of heparan sulfate throughout the body and triggers a cascade of neuroinflammatory and other biochemical processes ultimately resulting in severe mental impairment and early death in adolescence or young adulthood. The low prevalence and severity of the disease has necessitated the use of animal models to improve our knowledge of the pathophysiology and for the development of therapeutic treatments. In this study, we took a systematic approach to characterizing a classical mouse model of MPS IIIB. Using a series of histological, biochemical, proteomic and behavioral assays, we tested MPS IIIB mice at two stages: during the pre-symptomatic and early symptomatic phases of disease development, in order to validate previously described phenotypes, explore new mechanisms of disease pathology and uncover biomarkers for MPS IIIB. Along with previous findings, this study helps provide a deeper understanding of the pathology landscape of this rare disease with high unmet medical need and serves as an important resource to the scientific community.
Collapse
Affiliation(s)
- Ralitsa Petrova
- Biologics Discovery Science, Teva Pharmaceutical Industries Ltd, Redwood City, CA, USA.
| | - Abhijeet R Patil
- Genomics and Computational Biology, Teva Pharmaceutical Industries Ltd, West Chester, PA, USA
| | - Vivian Trinh
- Biologics Discovery Science, Teva Pharmaceutical Industries Ltd, Redwood City, CA, USA
| | - Kathryn E McElroy
- Biologics Discovery Science, Teva Pharmaceutical Industries Ltd, Redwood City, CA, USA
| | - Minoti Bhakta
- Biologics Discovery Science, Teva Pharmaceutical Industries Ltd, Redwood City, CA, USA
| | - Jason Tien
- Biologics Discovery Science, Teva Pharmaceutical Industries Ltd, Redwood City, CA, USA
| | - David S Wilson
- Biologics Discovery Science, Teva Pharmaceutical Industries Ltd, Redwood City, CA, USA
| | - Liling Warren
- Genomics and Computational Biology, Teva Pharmaceutical Industries Ltd, West Chester, PA, USA
| | - Jennifer R Stratton
- Biologics Discovery Science, Teva Pharmaceutical Industries Ltd, Redwood City, CA, USA.
| |
Collapse
|
10
|
Chen J, Doyle MF, Fang Y, Mez J, Crane PK, Scollard P, Satizabal CL, Alosco ML, Qiu WQ, Murabito JM, Lunetta KL. Peripheral inflammatory biomarkers are associated with cognitive function and dementia: Framingham Heart Study Offspring cohort. Aging Cell 2023; 22:e13955. [PMID: 37584418 PMCID: PMC10577533 DOI: 10.1111/acel.13955] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 08/17/2023] Open
Abstract
Inflammatory protein biomarkers induced by immune responses have been associated with cognitive decline and the pathogenesis of Alzheimer's disease (AD). Here, we investigate associations between a panel of inflammatory biomarkers and cognitive function and incident dementia outcomes in the well-characterized Framingham Heart Study Offspring cohort. Participants aged ≥40 years and dementia-free at Exam 7 who had a stored plasma sample were selected for profiling using the OLINK proteomics inflammation panel. Cross-sectional associations of the biomarkers with cognitive domain scores (N = 708, 53% female, 22% apolipoprotein E (APOE) ε4 carriers, 15% APOE ε2 carriers, mean age 61) and incident all-cause and AD dementia during up to 20 years of follow-up were tested. APOE genotype-stratified analyses were performed to explore effect modification. Higher levels of 12 and 3 proteins were associated with worse executive function and language domain factor scores, respectively. Several proteins were associated with more than one cognitive domain, including IL10, LIF-R, TWEAK, CCL19, IL-17C, MCP-4, and TGF-alpha. Stratified analyses suggested differential effects between APOE ε2 and ε4 carriers: most ε4 carrier associations were with executive function and memory domains, whereas most ε2 associations were with the visuospatial domain. Higher levels of TNFB and CDCP1 were associated with higher risks of incident all-cause and AD dementia. Our study found that TWEAK concentration was associated both with cognitive function and risks for AD dementia. The association of these inflammatory biomarkers with cognitive function and incident dementia may contribute to the discovery of therapeutic interventions for the prevention and treatment of cognitive decline.
Collapse
Affiliation(s)
- Jiachen Chen
- Boston University School of Public HealthDepartment of BiostatisticsBostonMassachusettsUSA
| | - Margaret F. Doyle
- Department of Pathology and Laboratory MedicineLarner College of Medicine, University of VermontBurlingtonVermontUSA
| | - Yuan Fang
- Boston University School of Public HealthDepartment of BiostatisticsBostonMassachusettsUSA
| | - Jesse Mez
- Boston University Chobanian & Avedisian School of Medicine, Boston University Alzheimer's Disease Research Center and CTE CenterBostonMassachusettsUSA
- Department of NeurologyBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
- Framingham Heart Study, National Heart, Lung, and Blood Institute and Boston University Chobanian & Avedisian School of MedicineFraminghamMassachusettsUSA
| | - Paul K. Crane
- Division of General Internal Medicine, Department of MedicineUniversity of WashingtonSeattleWashingtonUSA
| | - Phoebe Scollard
- Division of General Internal Medicine, Department of MedicineUniversity of WashingtonSeattleWashingtonUSA
| | | | - Claudia L. Satizabal
- Department of NeurologyBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
- University of Texas Health Science Center at San Antonio, Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesSan AntonioTexasUSA
| | - Michael L. Alosco
- Boston University Chobanian & Avedisian School of Medicine, Boston University Alzheimer's Disease Research Center and CTE CenterBostonMassachusettsUSA
- Department of NeurologyBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
| | - Wei Qiao Qiu
- Boston University Chobanian & Avedisian School of Medicine, Boston University Alzheimer's Disease Research Center and CTE CenterBostonMassachusettsUSA
- Department of PsychiatryBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
- Boston University Chobanian & Avedisian School of MedicineDepartment of Pharmacology & Experimental TherapeuticsBostonMassachusettsUSA
| | - Joanne M. Murabito
- Framingham Heart Study, National Heart, Lung, and Blood Institute and Boston University Chobanian & Avedisian School of MedicineFraminghamMassachusettsUSA
- Department of Medicine, Section of General Internal MedicineBoston University Chobanian & Avedisian School of Medicine and Boston Medical CenterBostonMassachusettsUSA
| | - Kathryn L. Lunetta
- Boston University School of Public HealthDepartment of BiostatisticsBostonMassachusettsUSA
| |
Collapse
|
11
|
Li X, Xu S, Liu J, Zhao Y, Han H, Li X, Wang Y. Treatment with 1,25-Dihydroxyvitamin D3 Delays Choroid Plexus Infiltration and BCSFB Injury in MRL/lpr Mice Coinciding with Activation of the PPARγ/NF-κB/TNF-α Pathway and Suppression of TGF-β/Smad Signaling. Inflammation 2023; 46:556-572. [PMID: 36269513 DOI: 10.1007/s10753-022-01755-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/26/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022]
Abstract
Neuropsychiatric systemic lupus erythematosus (NPSLE) is a serious complication of systemic lupus erythematosus (SLE) involving the nervous system with high morbidity and mortality. A key hypothesis in NPSLE is that a disrupted barrier allows autoantibodies and immune components of peripheral blood to penetrate into the central nervous system (CNS), resulting in inflammation and damage. The blood cerebrospinal fluid barrier (BCSFB), which consists of the choroid plexus and the hypothalamic tanycytes, has long been regarded as an immunological sanctuary site. 1,25-Dihydroxyvitamin D3 [1,25-(OH)2D3] is the active form of vitamin D, which plays multiple roles in inflammation and immunoregulation. In this study, we investigated the possible protective effects of 1,25-dihydroxyvitamin D3 against BCSFB dysfunction in NPSLE in MRL/lpr mice and explored the mechanism by which 1,25-dihydroxyvitamin D3 inhibits the progression of NPSLE. In this study, we found that supplementation with 1,25-dihydroxyvitamin D3 markedly improved serological and immunological indices, delayed inflammatory infiltration, delayed neuronal deformation, and upregulated the expression of brain-derived neurotrophic factor (BDNF) proteins in the brain. Furthermore, 1,25-dihydroxyvitamin D3 downregulated proinflammatory cytokines such as nuclear factor kappa-B (NF-κB) and tumor necrosis factor-α (TNF-α) by activating peroxisome proliferator-activated receptor γ (PPARγ), and it reduced the expression of the TGF-β/Smad signaling pathway. Our findings demonstrate that 1,25-dihydroxyvitamin D3 delayed cell infiltration into the choroid plexus and decreased markers suggestive of cognitive decline in MRL/lpr mice, and the mechanism may be related to protection against BCSFB disruption through activation of the anti-inflammatory PPARγ/NF-κB/TNF-α pathway as well as upregulation of BDNF and inhibition of the TGF-β/Smad signaling pathway. These findings provide a novel direction for the study of NPSLE.
Collapse
Affiliation(s)
- Xuewei Li
- Department of Rheumatology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Shuangli Xu
- Department of Neurology II, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Jie Liu
- Department of Nephrology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Yingzhe Zhao
- Department of Neurology II, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Huirong Han
- Department of Anesthesiology, Weifang Medical University, Weifang, Shandong, China
| | - Xiangling Li
- Department of Nephrology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China.
| | - Yanqiang Wang
- Department of Neurology II, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China.
| |
Collapse
|
12
|
Karino K, Kono M, Takeyama S, Kudo Y, Kanda M, Abe N, Aso K, Fujieda Y, Kato M, Oku K, Amengual O, Atsumi T. Inhibitor of NF-κB Kinase Subunit ε Contributes to Neuropsychiatric Manifestations in Lupus-Prone Mice Through Microglial Activation. Arthritis Rheumatol 2023; 75:411-423. [PMID: 36098515 DOI: 10.1002/art.42352] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 07/25/2022] [Accepted: 09/08/2022] [Indexed: 01/26/2023]
Abstract
OBJECTIVE Systemic lupus erythematosus (SLE) is a systemic autoimmune disease characterized by multiorgan dysfunction. Neuropsychiatric SLE (NPSLE) occurs in 30-40% of lupus patients and is the most severe presentation of SLE, frequently resulting in limitation of daily life. Recent studies have shown that microglia, tissue-resident macrophages in the central nervous system, are involved in the pathogenesis of NPSLE. This study was undertaken to explore new therapeutic targets for NPSLE focusing on microglia. METHODS RNA sequencing of microglia in MRL/lpr, lupus-prone mice, as well as that of microglia cultured in vitro with cytokines were performed. A candidate gene, which could be a therapeutic target for NPSLE, was identified, and its role in microglial activation and phagocytosis was investigated using specific inhibitors and small interfering RNA. The effect of intracerebroventricular administration of the inhibitor on the behavioral abnormalities of MRL/lpr was also evaluated. RESULTS Transcriptome analysis revealed the up-regulation of Ikbke, which encodes the inhibitor of NF-κB kinase subunit ɛ (IKBKε) in both microglia from MRL/lpr mice and cytokine-stimulated microglia in vitro. Intracerebroventricular administration of an IKBKε inhibitor ameliorated cognitive function and suppressed microglial activation in MRL/lpr mice. Mechanistically, IKBKε inhibition reduced glycolysis, which dampened microglial activation and phagocytosis. CONCLUSION These findings suggest that IKBKε plays a vital role in the pathogenesis of NPSLE via microglial activation, and it could serve as a therapeutic target for NPSLE.
Collapse
Affiliation(s)
- Kohei Karino
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Michihito Kono
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Shuhei Takeyama
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yuki Kudo
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Masatoshi Kanda
- Department of Rheumatology and Clinical Immunology, Sapporo Medical University, Sapporo, Japan
| | - Nobuya Abe
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Kuniyuki Aso
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yuichiro Fujieda
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Masaru Kato
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Kenji Oku
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan, and Department of Rheumatology and Infectious Diseases, School of Medicine, Kitasato University, Sagamihara, Japan
| | - Olga Amengual
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Tatsuya Atsumi
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
13
|
Fan Y, Liu X, Wu J, Ni J, Liang J, Hou Y, Dou H. Small molecule compound K-7174 attenuates neuropsychiatric manifestations in lupus-prone mice. Brain Res 2023; 1801:148203. [PMID: 36521514 DOI: 10.1016/j.brainres.2022.148203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/03/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
The neuropsychiatric manifestations of systemic lupus erythematosus (NPSLE) present significant morbidity and mortality due to frequent non-response or adverse effects of the current clinical drugs. The disruption of the blood-brain barrier (BBB) contributes to inflammatory NPSLE disease progression. K-7174, a highly piperazine-derived compound, inhibits leukocyte adhesion and inflammatory factor expression. The present study aimed to comprehensively assess the treatment effect of neurobehavioral deficits in MRL/lpr mice, a validated neuropsychiatric lupus model. The intraperitoneal injection of K-7174 alleviated lupus-like symptoms and improved cognitive dysfunction in MRL/lpr mice. Also, it significantly attenuated neuronal degeneration and decreased serum albumin deposition in the hippocampus. Furthermore, K-7174 acted directly on the brain microvascular endothelial bEnd.3 cells and reduced the BBB permeability, manifested by inhibiting the activation of brain microvascular endothelial cells and increasing the expression of tight junctions (TJs). Notably, in vitro experiments showed that K-7174 alleviates the decreased ZO1 and Occludin expression in bEnd.3 cells caused by lactate increase, improving cell permeability via the MCT4/NKAP/CREB signaling pathway. These findings suggested that K-7174 mediates the attenuation of NPSLE in MRL/lpr mice, indicating a promising therapeutic strategy for NPSLE.
Collapse
Affiliation(s)
- Yu Fan
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing 210093, China
| | - Xuan Liu
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing 210093, China
| | - Jinjin Wu
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing 210093, China
| | - Jiali Ni
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing 210093, China
| | - Jun Liang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing 210093, China.
| | - Huan Dou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing 210093, China.
| |
Collapse
|
14
|
Liao L, Li S, Upreti B, Wang X, Yang Y, Lou X, Li L, Cui R, Liu S, Cheng Y, Xu J. Status of TWEAK DNA methylation and mRNA expression in systemic lupus erythematosus. Lupus 2023; 32:171-179. [PMID: 36418949 DOI: 10.1177/09612033221141261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Draw upon research into the serum concentration, mRNA expression, and DNA methylation of TNF-like weak inducer of apoptosis (TWEAK) in the peripheral blood of systemic lupus erythematosus patients and healthy controls in an attempt to investigate the epigenetics associated with TWEAK in the pathogenesis of systemic lupus erythematosus (SLE). METHODS A total of 178 SLE patients (SLE group) and 131 sex-age matched healthy controls (HC group) were recruited. Enzyme-linked immunosorbent assays (ELISA) was used to detect serum protein concentration of TWEAK. TWEAK mRNA expression was analyzed by Real-time quantitative reverse transcriptase-polymerase chain reaction (RT-PCR). Methylation levels of the promotor of TWEAK were measured using quantitative DNA methylation analysis on the MassARRAY spectrometry. RESULTS Serum TWEAK concentrations were not statistically significant in SLE patients and HCs. Nevertheless, serum TWEAK concentrations were significantly lower in patients with renal involvement when compared to those without it. Serum TWEAK concentrations were reduced in clinically active patients (SLEDAI ≥ 10) compared with clinically stable patients (SLEDAI < 10). It was also significantly associated with SLEDAI. Compared with the HC group, the TWEAK mRNA expression in the SLE group was significantly lower. The global DNA methylation levels of TWEAK in the SLE group were observed to be significantly higher than the HC group. SLE patients with renal involvement, and the clinically active patients had higher TWEAK global methylation as well as exhibited variation in certain CpG island methylation. Furthermore, TWEAK methylation negatively correlated with TWEAK mRNA expression. CONCLUSION This study suggests that TWEAK DNA methylation is a valuable as a focus for epigenetic studies because of it potentially influencing TWEAK gene expression in SLE patients. Aberrant DNA methylation of TWEAK may be involved in the initiation and development of SLE.
Collapse
Affiliation(s)
- Li Liao
- Department of Rheumatology and Immunology, 36657First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Shu Li
- Department of Rheumatology and Immunology, 36657First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Bibhuti Upreti
- Department of Rheumatology and Immunology, 36657First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiangyu Wang
- Department of Rheumatology and Immunology, 36657First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yifan Yang
- Department of Rheumatology and Immunology, 36657First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xue Lou
- Department of Rheumatology and Immunology, 36657First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Luqiong Li
- Department of Rheumatology and Immunology, 36657First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ruomei Cui
- Department of Rheumatology and Immunology, 36657First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Shuang Liu
- Department of Rheumatology and Immunology, 36657First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yuqi Cheng
- Department of Psychiatry, 36657First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jian Xu
- Department of Rheumatology and Immunology, 36657First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
15
|
Mack ML, Huang W, Chang SL. Involvement of TRPM7 in Alcohol-Induced Damage of the Blood-Brain Barrier in the Presence of HIV Viral Proteins. Int J Mol Sci 2023; 24:1910. [PMID: 36768230 PMCID: PMC9916124 DOI: 10.3390/ijms24031910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/22/2022] [Accepted: 01/14/2023] [Indexed: 01/21/2023] Open
Abstract
Ethanol (EtOH) exerts its effects through various protein targets, including transient receptor potential melastatin 7 (TRPM7) channels, which play an essential role in cellular homeostasis. We demonstrated that TRPM7 is expressed in rat brain microvascular endothelial cells (rBMVECs), the major cellular component of the blood-brain barrier (BBB). Heavy alcohol drinking is often associated with HIV infection, however mechanisms underlying alcohol-induced BBB damage and HIV proteins, are not fully understood. We utilized the HIV-1 transgenic (HIV-1Tg) rat to mimic HIV-1 patients on combination anti-retroviral therapy (cART) and demonstrated TRPM7 expression in rBMVECs wass lower in adolescent HIV-1Tg rats compared to control animals, however control and HIV-1Tg rats expressed similar levels at 9 weeks, indicating persistent presence of HIV-1 proteins delayed TRPM7 expression. Binge exposure to EtOH (binge EtOH) decreased TRPM7 expression in control rBMVECs in a concentration-dependent manner, and abolished TRPM7 expression in HIV-1Tg rats. In human BMVECs (hBMVECs), TRPM7 expression was downregulated after treatment with EtOH, HIV-1 proteins, and in combination. Next, we constructed in vitro BBB models using BMVECs and found TRPM7 antagonists enhanced EtOH-mediated BBB integrity changes. Our study demonstrated alcohol decreased TRPM7 expression, whereby TRPM7 could be involved in the mechanisms underlying BBB alcohol-induced damage in HIV-1 patients on cART.
Collapse
Affiliation(s)
- Michelle L. Mack
- Institute of NeuroImmune Pharmacology, Seton Hall University, South Orange, NJ 07079, USA
- Department of Biological Sciences, Seton Hall University, South Orange, NJ 07079, USA
| | - Wenfei Huang
- Institute of NeuroImmune Pharmacology, Seton Hall University, South Orange, NJ 07079, USA
- Department of Biological Sciences, Seton Hall University, South Orange, NJ 07079, USA
| | - Sulie L. Chang
- Institute of NeuroImmune Pharmacology, Seton Hall University, South Orange, NJ 07079, USA
- Department of Biological Sciences, Seton Hall University, South Orange, NJ 07079, USA
| |
Collapse
|
16
|
Etter MM, Martins TA, Kulsvehagen L, Pössnecker E, Duchemin W, Hogan S, Sanabria-Diaz G, Müller J, Chiappini A, Rychen J, Eberhard N, Guzman R, Mariani L, Melie-Garcia L, Keller E, Jelcic I, Pargger H, Siegemund M, Kuhle J, Oechtering J, Eich C, Tzankov A, Matter MS, Uzun S, Yaldizli Ö, Lieb JM, Psychogios MN, Leuzinger K, Hirsch HH, Granziera C, Pröbstel AK, Hutter G. Severe Neuro-COVID is associated with peripheral immune signatures, autoimmunity and neurodegeneration: a prospective cross-sectional study. Nat Commun 2022; 13:6777. [DOI: 10.1038/s41467-022-34068-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 10/12/2022] [Indexed: 11/10/2022] Open
Abstract
AbstractGrowing evidence links COVID-19 with acute and long-term neurological dysfunction. However, the pathophysiological mechanisms resulting in central nervous system involvement remain unclear, posing both diagnostic and therapeutic challenges. Here we show outcomes of a cross-sectional clinical study (NCT04472013) including clinical and imaging data and corresponding multidimensional characterization of immune mediators in the cerebrospinal fluid (CSF) and plasma of patients belonging to different Neuro-COVID severity classes. The most prominent signs of severe Neuro-COVID are blood-brain barrier (BBB) impairment, elevated microglia activation markers and a polyclonal B cell response targeting self-antigens and non-self-antigens. COVID-19 patients show decreased regional brain volumes associating with specific CSF parameters, however, COVID-19 patients characterized by plasma cytokine storm are presenting with a non-inflammatory CSF profile. Post-acute COVID-19 syndrome strongly associates with a distinctive set of CSF and plasma mediators. Collectively, we identify several potentially actionable targets to prevent or intervene with the neurological consequences of SARS-CoV-2 infection.
Collapse
|
17
|
Jianing W, Jingyi X, Pingting Y. Neuropsychiatric lupus erythematosus: Focusing on autoantibodies. J Autoimmun 2022; 132:102892. [PMID: 36030137 DOI: 10.1016/j.jaut.2022.102892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 10/15/2022]
Abstract
Patients with systemic lupus erythematosus (SLE) frequently suffer from nervous system complications, termed neuropsychiatric lupus erythematosus (NPLE). NPLE accounts for the poor prognosis of SLE. Correct attribution of NP events to SLE is the primary principle in managing NPLE. The vascular injuries and neuroinflammation are the fundamental neuropathologic changes in NPLE. Specific autoantibody-mediated central nerve system (CNS) damages distinguish NPLE from other CNS disorders. Though the central antibodies in NPLE are generally thought to be raised from the periphery immune system, they may be produced in the meninges and choroid plexus. On this basis, abnormal activation of microglia and disease-associated microglia (DAM) should be the common mechanisms of NPLE and other CNS disturbances. Improved understanding of both characteristic and sharing features of NPLE might yield further options for managing this disease.
Collapse
Affiliation(s)
- Wang Jianing
- Department of Rheumatology and Immunology, The First Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Xu Jingyi
- Department of Rheumatology and Immunology, The First Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Yang Pingting
- Department of Rheumatology and Immunology, The First Hospital of China Medical University, Shenyang, 110001, People's Republic of China.
| |
Collapse
|
18
|
Wang M, Wang Z, Zhang S, Wu Y, Zhang L, Zhao J, Wang Q, Tian X, Li M, Zeng X. Progress in the Pathogenesis and Treatment of Neuropsychiatric Systemic Lupus Erythematosus. J Clin Med 2022; 11:4955. [PMID: 36078885 PMCID: PMC9456588 DOI: 10.3390/jcm11174955] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 11/16/2022] Open
Abstract
Neuropsychiatric systemic lupus erythematosus (NPSLE) has a broad spectrum of subtypes with diverse severities and prognoses. Ischemic and inflammatory mechanisms, including autoantibodies and cytokine-mediated pathological processes, are key components of the pathogenesis of NPSLE. Additional brain-intrinsic elements (such as the brain barrier and resident microglia) are also important facilitators of NPSLE. An improving understanding of NPSLE may provide further options for managing this disease. The attenuation of neuropsychiatric disease in mouse models demonstrates the potential for novel targeted therapies. Conventional therapeutic algorithms include symptomatic, anti-thrombotic, and immunosuppressive agents that are only supported by observational cohort studies, therefore performing controlled clinical trials to guide further management is essential and urgent. In this review, we aimed to present the latest pathogenetic mechanisms of NPSLE and discuss the progress in its management.
Collapse
Affiliation(s)
| | | | - Shangzhu Zhang
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing 100730, China
| | | | | | | | | | | | - Mengtao Li
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing 100730, China
| | | |
Collapse
|
19
|
Sim TM, Mak A, Tay SH. Insights into the role of neutrophils in neuropsychiatric systemic lupus erythematosus: Current understanding and future directions. Front Immunol 2022; 13:957303. [PMID: 36016935 PMCID: PMC9396336 DOI: 10.3389/fimmu.2022.957303] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/19/2022] [Indexed: 12/12/2022] Open
Abstract
Central nervous system (CNS) involvement of systemic lupus erythematosus (SLE), termed neuropsychiatric SLE (NPSLE), is a major and debilitating manifestation of the disease. While patients with SLE mostly complain of common neuropsychological symptoms such headache and mild mood disorders that may not even be technically attributed to SLE, many SLE patients present with life-threatening NPSLE syndromes such as cerebrovascular disease, seizures and psychosis that are equally challenging in terms of early diagnosis and therapy. While we are just beginning to unravel some mysteries behind the immunologic basis of NPSLE, advancements in the mechanistic understanding of the complex pathogenic processes of NPSLE have been emerging through recent murine and human studies. The pathogenic pathways implicated in NPSLE are multifarious and various immune effectors such as cell-mediated inflammation, autoantibodies and cytokines including type I interferons have been found to act in concert with the disruption of the blood-brain barrier (BBB) and other neurovascular interfaces. Beyond antimicrobial functions, neutrophils are emerging as decision-shapers during innate and adaptive immune responses. Activated neutrophils have been recognized to be involved in ischemic and infective processes in the CNS by releasing neutrophil extracellular traps (NETs), matrix metalloproteinase-9 and proinflammatory cytokines. In the context of NPSLE, these mechanisms contribute to BBB disruption, neuroinflammation and externalization of modified proteins on NETs that serve as autoantigens. Neutrophils that sediment within the peripheral blood mononuclear cell fraction after density centrifugation of blood are generally defined as low-density neutrophils (LDNs) or low-density granulocytes. LDNs are a proinflammatory subset of neutrophils that are increased with SLE disease activity and are primed to undergo NETosis and release cytokines such as interferon-α and tumor necrosis factor. This review discusses the immunopathogenesis of NPSLE with a focus on neutrophils as a core mediator of the disease and potential target for translational research in NPSLE.
Collapse
|
20
|
Fonager SV, Winther G, Wittenborn TR, Jensen L, Fahlquist-Hagert C, Hansen LA, Füchtbauer EM, Romero-Ramos M, Degn SE. Increased maternofoetal transfer of antibodies in a murine model of systemic lupus erythematosus, but no immune activation and neuroimmune sequelae in offspring. J Neuroimmunol 2022; 370:577927. [PMID: 35858501 DOI: 10.1016/j.jneuroim.2022.577927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/27/2022] [Accepted: 07/09/2022] [Indexed: 10/17/2022]
Abstract
Maternally transferred autoantibodies can negatively impact the development and health of offspring, increasing the risk of neurodevelopmental disorders. We used embryo transfers to examine maternofoetal immune imprinting in the autoimmune BXSB/MpJ mouse model. Anti-double-stranded DNA antibodies and total immunoglobulins were measured, using allotypes of the IgG subclass to distinguish maternally transferred antibodies from those produced endogenously. Frequencies of germinal center and plasma cells were analysed by flow cytometry. Microglial morphology in offspring CNS was assessed using immunohistochemistry. In contrast to prior findings, our results indicate that BXSB/MpJ mothers display a mild autoimmune phenotype, which does not significantly impact the offspring.
Collapse
Affiliation(s)
- Sofie Vestergaard Fonager
- Department of Biomedicine, Aarhus University, Denmark; Department of Molecular Biology and Genetics, Aarhus University, Denmark
| | | | | | | | | | | | | | - Marina Romero-Ramos
- Department of Biomedicine, Aarhus University, Denmark; DANDRITE, Danish Research Institute of Translational Neuroscience, Aarhus University, 8000, Aarhus C, Denmark
| | | |
Collapse
|
21
|
Mrak D, Bonelli M, Radner H. Neuropsychiatric Systemic Lupus Erythematosus: a remaining challenge. Curr Pharm Des 2022; 28:881-891. [PMID: 35549864 DOI: 10.2174/1381612828666220512102824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 04/13/2022] [Indexed: 11/22/2022]
Abstract
Systemic Lupus Erythematosus (SLE) is an autoimmune disease, which affects a wide range of organs with variable clinical features. Involvement of the nervous system is a challenging and multifaceted manifestation of the disease, presenting with a broad range of symptoms. Neuropsychiatric lupus (NPSLE) encompasses seven syndromes of the peripheral and 12 of the central nervous system, associated with a high disease burden. Despite advances in the management of SLE, NP manifestations still pose a challenge to clinicians. First, diagnosis and attribution to SLE is difficult due to the lack of specific biomarkers or imaging modalities. Second, therapeutic options are limited, and evidence is mainly based on case reports and expert consensus, as clinical trials are sparse. Moreover, no validated outcome measure on disease activity exists. Current recommendations for treatment include supportive as well as immunosuppressive medication, depending on the type and severity of manifestations. As NPSLE manifestations are increasingly recognized, a broader spectrum of therapeutic options can be expected.
Collapse
Affiliation(s)
- Daniel Mrak
- Medical University of Vienna, Vienna, Austria
| | - Michael Bonelli
- Division of Rheumatology, Medical University of Vienna, Vienna, Austria
| | - Helga Radner
- Division of Rheumatology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
22
|
Wen J, Patel C, Diglio F, Baker K, Marshall G, Li S, Cole PD. Cognitive impairment persists at least 1 year after juvenile rats are treated with methotrexate. Neuropharmacology 2022; 206:108939. [PMID: 34986414 PMCID: PMC8792316 DOI: 10.1016/j.neuropharm.2021.108939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/21/2021] [Accepted: 12/28/2021] [Indexed: 11/24/2022]
Abstract
Methotrexate (MTX) is widely employed for children with cancer, but is also associated with persistent cognitive deficits among survivors. The present study investigated the mechanisms behind long-term cognitive dysfunction after juvenile animals are treated with MTX. Male and female Long-Evans rats were treated with a combination of 6 systemic doses (0.5 mg/kg/dose intraperitoneally) and 4 intrathecal doses (1 mg/kg) beginning at post-natal age 3 weeks, a schedule designed to mimic repeated exposure given to children with leukemia. Behavioral testing was conducted at 60-61 weeks of age, followed by analysis of brain histolopathology. This MTX regimen had no acute toxicity and no effect on growth. The spatial memory and visual memory deficits observed at 13 and 17 weeks of age persisted 1 year after MTX exposure in both females and males. Significantly decreased cell proliferation and increased hippocampal microglial activation were observed in MTX-treated females when compared to the controls, with a similar trend in the male groups. In addition, MTX treatment significantly increased the number of TUNEL positive cells in the periventricular area. Our study demonstrates that a clinically relevant regimen of systemic and intrathecal MTX induces persistent deficits in cognition, lasting approximately 1 year after the last injection. The mechanisms behind MTX-induced deficits are likely multifactorial, including suppression of neurogenesis, microglial activation, and increased brain cell apoptosis. Our study suggests female and male animals differ in susceptibility to MTX-induced neurotoxicity and provides insights for developing therapeutic approaches to prevent treatment related cognitive impairment among children with ALL.
Collapse
Affiliation(s)
- Jing Wen
- Department of Pediatrics, Goryeb Children's Hospital-Atlantic Health, Morristown, NJ, 07960, USA; Division of Pediatric Hematology/Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Chadni Patel
- Rutgers Graduate Program in Cellular and Molecular Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA; Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Frank Diglio
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Kayla Baker
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Gregory Marshall
- Rutgers Graduate Program in Cellular and Molecular Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA; Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Shengguo Li
- Division of Pediatric Hematology/Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Peter D Cole
- Division of Pediatric Hematology/Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA.
| |
Collapse
|
23
|
Identification of Key Determinants of Cerebral Malaria Development and Inhibition Pathways. mBio 2022; 13:e0370821. [PMID: 35073748 PMCID: PMC8787489 DOI: 10.1128/mbio.03708-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cerebral malaria (CM), coma caused by Plasmodium falciparum-infected red blood cells (iRBCs), is the deadliest complication of malaria. The mechanisms that lead to CM development are incompletely understood. Here we report on the identification of activation and inhibition pathways leading to mouse CM with supporting evidence from the analysis of human specimens. We find that CM suppression can be induced by vascular injury when sporozoites exit the circulation to infect the liver and that CM suppression is mediated by the release of soluble factors into the circulation. Among these factors is insulin like growth factor 1 (IGF1), administration of which inhibits CM development in mice. IMPORTANCE Liver infection by Plasmodium sporozoites is a required step for infection of the organism. We found that alternate pathways of sporozoite liver infection differentially influence cerebral malaria (CM) development. CM is one of the primary causes of death following malaria infection. To date, CM research has focused on how CM phenotypes develop but no successful therapeutic treatment or prognostic biomarkers are available. Here we show for the first time that sporozoite liver invasion can trigger CM-inhibitory immune responses. Importantly, we identified a number of early-stage prognostic CM inhibitory biomarkers, many of which had never been associated with CM development. Serological markers identified using a mouse model are directly relevant to human CM.
Collapse
|
24
|
Koga T, Ichinose K, Tsokos GC. Tissue resident cell processes determine organ damage in systemic lupus erythematosus. Clin Immunol 2022; 234:108919. [PMID: 34974170 DOI: 10.1016/j.clim.2021.108919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/23/2021] [Accepted: 12/25/2021] [Indexed: 11/19/2022]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease that affects almost any organ. Multiple immunological abnormalities involving every domain of the immune system contribute to the expression of the disease. It is now recognized that elements of the immune system instigate processes in tissue resident cells which execute organ damage. Although correction of ongoing immune aberrations is important in the control of disease activity, targeting tissue specific injurious processes may prove desirable in limiting organ damage.
Collapse
Affiliation(s)
- Tomohiro Koga
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan; Center for Bioinformatics and Molecular Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.
| | - Kunihiro Ichinose
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.
| | - George C Tsokos
- Division of Rheumatology and Clinical Immunology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
25
|
Luo Z, Fitting S, Robinson C, Benitez A, Li M, Wu Y, Fu X, Amato D, Ning W, Funderburg N, Wang X, Zhou Z, Yu X, Wagner A, Cong X, Xu W, Maas K, Wolf BJ, Huang L, Yu J, Scott A, Mcrae-Clark A, Hamlett ED, Jiang W. Chronic cannabis smoking-enriched oral pathobiont drives behavioral changes, macrophage infiltration, and increases β-amyloid protein production in the brain. EBioMedicine 2021; 74:103701. [PMID: 34826801 PMCID: PMC8626580 DOI: 10.1016/j.ebiom.2021.103701] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/24/2021] [Accepted: 11/03/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Little is known about chronic cannabis smoking-associated oral microbiome and its effects on central nervous system (CNS) functions. METHODS In the current study, we have analyzed the saliva microbiome in individuals who chronically smoked cannabis with cannabis use disorder (n = 16) and in non-smoking controls (n = 27). The saliva microbiome was analyzed using microbial 16S rRNA sequencing. To investigate the function of cannabis use-associated oral microbiome, mice were orally inoculated with live Actinomyces meyeri, Actinomyces odontolyticus, or Neisseria elongata twice per week for six months, which mimicked human conditions. FINDINGS We found that cannabis smoking in humans was associated with oral microbial dysbiosis. The most increased oral bacteria were Streptococcus and Actinomyces genus and the most decreased bacteria were Neisseria genus in chronic cannabis smokers compared to those in non-smokers. Among the distinct species bacteria in cannabis smokers, the enrichment of Actinomyces meyeri was inversely associated with the age of first cannabis smoking. Strikingly, oral exposure of Actinomyces meyeri, an oral pathobiont, but not the other two control bacteria, decreased global activity, increased macrophage infiltration, and increased β-amyloid 42 protein production in the mouse brains. INTERPRETATION This is the first study to reveal that long-term oral cannabis exposure is associated oral enrichment of Actinomyces meyeri and its contributions to CNS abnormalities.
Collapse
Affiliation(s)
- Zhenwu Luo
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Ave., Charleston, SC 29425, USA
| | - Sylvia Fitting
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Catrina Robinson
- Department of Neurology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Andreana Benitez
- Department of Neurology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Min Li
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Ave., Charleston, SC 29425, USA
| | - Yongxia Wu
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Ave., Charleston, SC 29425, USA
| | - Xiaoyu Fu
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Ave., Charleston, SC 29425, USA; Department of Infectious Disease, Key Laboratory of Hunan Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Davide Amato
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Wangbin Ning
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Ave., Charleston, SC 29425, USA; Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Nicholas Funderburg
- Division of Medical Laboratory Science, School of Health and Rehabilitation Sciences, Ohio State University College of Medicine, Columbus, OH, USA
| | - Xu Wang
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Ave., Charleston, SC 29425, USA; Department of Urology, Capital Medical University Affiliated XuanWu Hospital, 45 Changchun Street, Xicheng District, Beijing 100053, China
| | - Zejun Zhou
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Xuezhong Yu
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Ave., Charleston, SC 29425, USA
| | - Amanda Wagner
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Xiaomei Cong
- Department of Pediatrics, School of Medicine, School of Nursing, Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
| | - Wanli Xu
- Department of Pediatrics, School of Medicine, School of Nursing, Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
| | - Kendra Maas
- Microbial Analysis, Resources, and Services, University of Connecticut, Storrs, CT, USA
| | - Bethany J Wolf
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Lei Huang
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jeremy Yu
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolic Diseases, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Alison Scott
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA
| | - Aimee Mcrae-Clark
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Eric D Hamlett
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA.
| | - Wei Jiang
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Ave., Charleston, SC 29425, USA; Department of Medicine, Division of Infectious Diseases, Medical University of South Carolina, Charleston, SC 29425, USA.
| |
Collapse
|
26
|
Abós B, Pérez-Fernández E, Morel E, Perdiguero P, Tafalla C. Pro-Inflammatory and B Cell Regulating Capacities of TWEAK in Rainbow Trout ( Oncorhynchus mykiss). Front Immunol 2021; 12:748836. [PMID: 34659247 PMCID: PMC8517431 DOI: 10.3389/fimmu.2021.748836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/15/2021] [Indexed: 11/22/2022] Open
Abstract
Tumor necrosis factor (TNF)-like weak inducer of apoptosis or TWEAK is a member of the TNF superfamily involved in the regulation of many biological processes. In mammals, TWEAK has been shown to play a role in some autoimmune or inflammatory conditions, but its immune role is not yet clearly defined. In teleost fish, although a few studies have identified homologues to mammalian TWEAK, their biological effects have never been investigated. In the current study, we have studied the transcriptional regulation of two TWEAK homologues (TWEAK 1 and 2) identified in rainbow trout (Oncorhynchus mykiss) throughout different tissues, in response to parasitic or viral infections, or in head kidney (HK) leukocytes stimulated with different stimuli. Although the transcription of both homologues was modulated when HK leukocytes were exposed to several immune stimuli, only TWEAK 1 was significantly modulated upon pathogenic exposure. Thus, we performed a characterization of the functions exerted by this cytokine in HK leukocytes. Recombinant TWEAK 1 strongly up-regulated the transcription of pro-inflammatory genes and antimicrobial peptides in HK leukocytes, with differential transcriptional effects in IgM+ B cells, IgM- lymphocytes and myeloid cells. TWEAK 1 also increased the survival and promoted the differentiation of B cells in HK leukocyte cultures. Our results demonstrate that in teleost fish, TWEAK 1 is involved in the response to different types of pathogens, through the modulation of antimicrobial and pro-inflammatory genes in different leukocytes subsets. Furthermore, a role for TWEAK as a B cell differentiation factor has also been established in rainbow trout.
Collapse
Affiliation(s)
- Beatriz Abós
- Animal Health Research Center (CISA), Centro Nacional Instituto de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Elena Pérez-Fernández
- Animal Health Research Center (CISA), Centro Nacional Instituto de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Esther Morel
- Animal Health Research Center (CISA), Centro Nacional Instituto de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Pedro Perdiguero
- Animal Health Research Center (CISA), Centro Nacional Instituto de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Carolina Tafalla
- Animal Health Research Center (CISA), Centro Nacional Instituto de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| |
Collapse
|
27
|
Dias-Santos A, Tavares Ferreira J, Pinheiro S, Cunha JP, Alves M, Papoila AL, Moraes-Fontes MF, Proença R. Retinal and choroidal thickness changes in systemic lupus erythematosus patients: a longitudinal study. Eye (Lond) 2021; 35:2771-2780. [PMID: 33235342 PMCID: PMC8452661 DOI: 10.1038/s41433-020-01292-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 11/02/2020] [Accepted: 11/05/2020] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND/OBJECTIVES To prospectively evaluate changes in peripapillary retinal nerve fibre layer (pRNFL), in all macular layers and in choroidal thickness (CT) in a cohort of systemic lupus erythematosus (SLE) patients without ophthalmologic manifestations. To associate those changes with ophthalmic characteristics, disease activity state, medication and systemic comorbidities. SUBJECTS/METHODS Prospective cohort study of 68 previously diagnosed SLE patients. In two study visits (V1 and V2) at least 12 months apart, patients underwent a complete ophthalmologic examination including spectral domain-optical coherence tomography (SD-OCT) and an autoimmune disease specialist assessment. Automatic retinal segmentation was performed. pRNFL was determined globally and in the six peripapillary sectors and each macular layer thickness was determined in the nine early treatment diabetic retinopathy study (ETDRS) subfields. CT was manually measured at 13 locations in the posterior pole. Only one eye per patient was randomly selected for inclusion. Generalised linear mixed effects models were employed. RESULTS Sixty-five patients completed the study. The median follow-up time was twelve months. At V2, pRNFL was significantly thinner globally (p = 0.006) and in the temporal inferior sector (p = 0.017). Patients under chronic medication with anticoagulants or antihypertensives had significantly thinner pRNFL in some locations. No significant changes were observed in macular layers or choroidal thickness between study visits. CONCLUSIONS SLE patients presented early SD-OCT signs of neurodegeneration, evidenced by a progressive reduction in pRNFL thickness. Regardless of study visit, baseline chronic medication with anticoagulants or antihypertensives was associated with lower pRNFL thickness, accounting for a deleterious effect of cardiovascular risk factors.
Collapse
Affiliation(s)
- Arnaldo Dias-Santos
- grid.9983.b0000 0001 2181 4263Department of Ophthalmology, Centro Hospitalar Universitário de Lisboa Central, Lisbon, Portugal ,grid.421304.0Department of Ophthalmology, Hospital CUF Descobertas, Lisbon, Portugal ,grid.10772.330000000121511713NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Joana Tavares Ferreira
- grid.9983.b0000 0001 2181 4263Department of Ophthalmology, Centro Hospitalar Universitário de Lisboa Central, Lisbon, Portugal ,grid.421304.0Department of Ophthalmology, Hospital CUF Descobertas, Lisbon, Portugal ,grid.10772.330000000121511713NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Sofia Pinheiro
- grid.9983.b0000 0001 2181 4263Autoimmune Disease Unit, Unidade de Doenças Auto-imunes/Serviço Medicina 3, Hospital de Santo António dos Capuchos, Centro Hospitalar Universitário de Lisboa Central, Lisbon, Portugal
| | - João Paulo Cunha
- grid.9983.b0000 0001 2181 4263Department of Ophthalmology, Centro Hospitalar Universitário de Lisboa Central, Lisbon, Portugal ,grid.10772.330000000121511713NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Marta Alves
- grid.9983.b0000 0001 2181 4263Epidemiology and Statistics Unit, Research Center, Centro Hospitalar Universitário de Lisboa Central, Lisbon, Portugal ,grid.9983.b0000 0001 2181 4263CEAUL (Center of Statistics and its Applications), Universidade de Lisboa, Lisbon, Portugal
| | - Ana L. Papoila
- grid.10772.330000000121511713NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal ,grid.9983.b0000 0001 2181 4263Epidemiology and Statistics Unit, Research Center, Centro Hospitalar Universitário de Lisboa Central, Lisbon, Portugal ,grid.9983.b0000 0001 2181 4263CEAUL (Center of Statistics and its Applications), Universidade de Lisboa, Lisbon, Portugal
| | - Maria Francisca Moraes-Fontes
- grid.10772.330000000121511713NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal ,grid.9983.b0000 0001 2181 4263Autoimmune Disease Unit, Unidade de Doenças Auto-imunes/Serviço de Medicina 7.2, Hospital Curry Cabral, Centro Hospitalar Universitário de Lisboa Central, Lisbon, Portugal ,grid.418346.c0000 0001 2191 3202Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Rui Proença
- grid.28911.330000000106861985Department of Ophthalmology, Centro Hospitalar Universitário de Coimbra, Coimbra, Portugal ,grid.8051.c0000 0000 9511 4342Faculdade de Medicina, Universidade de Coimbra, Coimbra, Portugal
| |
Collapse
|
28
|
TWEAKing the Hippocampus: The Effects of TWEAK on the Genomic Fabric of the Hippocampus in a Neuropsychiatric Lupus Mouse Model. Genes (Basel) 2021; 12:genes12081172. [PMID: 34440346 PMCID: PMC8392718 DOI: 10.3390/genes12081172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 11/17/2022] Open
Abstract
Neuropsychiatric manifestations of systemic lupus erythematosus (SLE), specifically cognitive dysfunction and mood disorders, are widely prevalent in SLE patients, and yet poorly understood. TNF-like weak inducer of apoptosis (TWEAK) has previously been implicated in the pathogenesis of neuropsychiatric lupus (NPSLE), and we have recently shown its effects on the transcriptome of the cortex of the lupus-prone mice model MRL/lpr. As the hippocampus is thought to be an important focus of NPSLE processes, we explored the TWEAK-induced transcriptional changes that occur in the hippocampus, and isolated several genes (Dnajc28, Syne2, transthyretin) and pathways (PI3K-AKT, as well as chemokine-signaling and neurotransmission pathways) that are most differentially affected by TWEAK activation. While the functional roles of these genes and pathways within NPSLE need to be further investigated, an interesting link between neuroinflammation and neurodegeneration appears to emerge, which may prove to be a promising novel direction in NPSLE research.
Collapse
|
29
|
Seet D, Allameen NA, Tay SH, Cho J, Mak A. Cognitive Dysfunction in Systemic Lupus Erythematosus: Immunopathology, Clinical Manifestations, Neuroimaging and Management. Rheumatol Ther 2021; 8:651-679. [PMID: 33993432 PMCID: PMC8217391 DOI: 10.1007/s40744-021-00312-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 04/22/2021] [Indexed: 12/23/2022] Open
Abstract
Cognitive dysfunction (CD) is a common yet often clinically subtle manifestation that considerably impacts the health-related quality of life in patients with systemic lupus erythaematosus (SLE). Given the inconsistencies in CD assessment and challenges in its attribution to SLE, the reported prevalence of CD differs widely, ranging from 3 to 88%. The clinical presentation of CD in SLE is non-specific and may manifest concurrently with overt neuropsychiatric illness such as psychosis or mood disorders or as isolated impairment of attention, working memory, executive dysfunction or processing speed. Despite the lack of standardized and sensitive neuropsychological tests and validated diagnostic biomarkers of CD in SLE, significant progress has been made in identifying pathogenic neural pathways and neuroimaging. Furthermore, several autoantibodies, cytokines, pro-inflammatory mediators and metabolic factors have been implicated in the pathogenesis of CD in SLE. Abrogation of the integrity of the blood-brain barrier (BBB) and ensuing autoantibody-mediated neurotoxicity, complement and microglial activation remains the widely accepted mechanism of SLE-related CD. Although several functional neuroimaging modalities have consistently demonstrated abnormalities that correlate with CD in SLE patients, a consensus remains to be reached as to their clinical utility in diagnosing CD. Given the multifactorial aetiology of CD, a multi-domain interventional approach that addresses the risk factors and disease mechanisms of CD in a concurrent fashion is the favourable therapeutic direction. While cognitive rehabilitation and exercise training remain important, specific pharmacological agents that target microglial activation and maintain the BBB integrity are potential candidates for the treatment of SLE-related CD.
Collapse
Affiliation(s)
- Dominic Seet
- Division of Rheumatology, Department of Medicine, University Medicine Cluster, National University Health System, 1E Kent Ridge Road, Level 10, NUHS Tower Block, Singapore, 119228 Singapore
| | - Nur Azizah Allameen
- Division of Rheumatology, Department of Medicine, University Medicine Cluster, National University Health System, 1E Kent Ridge Road, Level 10, NUHS Tower Block, Singapore, 119228 Singapore
| | - Sen Hee Tay
- Division of Rheumatology, Department of Medicine, University Medicine Cluster, National University Health System, 1E Kent Ridge Road, Level 10, NUHS Tower Block, Singapore, 119228 Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jiacai Cho
- Division of Rheumatology, Department of Medicine, University Medicine Cluster, National University Health System, 1E Kent Ridge Road, Level 10, NUHS Tower Block, Singapore, 119228 Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Anselm Mak
- Division of Rheumatology, Department of Medicine, University Medicine Cluster, National University Health System, 1E Kent Ridge Road, Level 10, NUHS Tower Block, Singapore, 119228 Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
30
|
Browne K, Zhang E, Sullivan JK, Evonuk KS, DeSilva TM, Jorgensen TN. Lupus-prone B6.Nba2 male and female mice display anti-DWEYS reactivity and a neuropsychiatric phenotype. Brain Behav Immun 2021; 94:175-184. [PMID: 33607233 PMCID: PMC10874234 DOI: 10.1016/j.bbi.2021.02.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Neuropsychiatric lupus (NPSLE), a manifestation of the autoimmune disease systemic lupus erythematosus (SLE), is characterized by psychiatric symptoms including anxiety and depression and upregulated autoantibodies. The B6.Nba2 spontaneous mouse model develops SLE, but has not previously been tested for NPSLE. METHODS We investigated the NPSLE phenotype in male and female B6.Nba2 mice (n = 12 each) and age- and sex-matched B6 controls (n = 10 each) via behavioral assessments for anxiety, depression, and memory deficits. Serum anti-dsDNA, anti-nRNP, anti-DWEYS peptide reactive IgG autoantibody levels and soluble TWEAK levels were determined by ELISA. Hippocampal regions were stained for activated microglia and neurons. RESULTS Both male and female B6.Nba2 mice showed elevated anti-dsDNA IgG, anti-nRNP IgG and anti-DWEYS reactive antibodies, elevated serum soluble TWEAK levels, and a strong anxiety and depression phenotype (p < 0.05-0.0001). Male B6.Nba2 mice developed this phenotype at a slightly older age than females. Female B6.Nba2 mice displayed reduced numbers of neurons in the hippocampal region compared to female B6 controls (p < 0.05). CONCLUSION The B6.Nba2 mouse model recapitulates many known NPSLE phenotypes, making it a promising model to investigate the development of NPSLE in the context of SLE.
Collapse
Affiliation(s)
- Kim Browne
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Emily Zhang
- Cleveland Clinic at Lerner College of Medicine at Case Western Reserve University, Cleveland, OH, USA
| | - James K Sullivan
- Cleveland Clinic at Lerner College of Medicine at Case Western Reserve University, Cleveland, OH, USA
| | - Kirsten S Evonuk
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Tara M DeSilva
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Trine N Jorgensen
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| |
Collapse
|
31
|
The neurology of lupus. J Neurol Sci 2021; 424:117419. [PMID: 33832774 DOI: 10.1016/j.jns.2021.117419] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/30/2020] [Accepted: 03/24/2021] [Indexed: 12/19/2022]
|
32
|
da Silva-Candal A, López-Dequidt I, Rodriguez-Yañez M, Ávila-Gómez P, Pumar JM, Castillo J, Sobrino T, Campos F, Iglesias-Rey R, Hervella P. sTWEAK is a marker of early haematoma growth and leukoaraiosis in intracerebral haemorrhage. Stroke Vasc Neurol 2021; 6:528-535. [PMID: 33758070 PMCID: PMC8717766 DOI: 10.1136/svn-2020-000684] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/24/2020] [Accepted: 01/16/2021] [Indexed: 11/17/2022] Open
Abstract
Objective To study the association between early growth of haematoma with biomarkers of endothelial dysfunction such as leukoaraiosis (LA) and the soluble tumour necrosis factor-like weak inducer of apoptosis (sTWEAK) in patients with intracerebral haemorrhage (ICH). Methods This is a retrospective observational study of patients with nontraumatic ICH. Clinical and biochemical parameters were analysed. sTWEAK levels were measured by ELISA. LA was analysed in the hemisphere without haemorrhage to avoid interference with the acute injury. The main endpoint was the haematoma growth evaluated by the difference in volume between the second and the initial neuroimage. Poor functional outcome, defined as a modified Rankin Scale >2 at 3 months, was considered as secondary endpoint. Receiver operating characteristic curve analysis was performed to stablish the best cut-off for sTWEAK levels associated with haematoma growth. Results We included 653 patients with ICH in our analysis (71.1±11.9 years, 44% women). Haematoma growth was observed in 188 patients (28.8%). sTWEAK levels ≥5600 pg/mL predicted ICH growth with a sensitivity of 84% and a specificity of 87%. sTWEAK levels ≥5600 pg/mL and the presence of LA were associated with haematoma growth (OR: 42.46; (CI 95% 22.67 to 79.52) and OR: 2.73 (CI 95% 1.39 to 5.34), respectively). Also, the presence of LA (OR: 4.31 (CI 95% 2.89 to 6.42)) and the interaction between ICH growth and sTWEAK (OR: 2.23 (CI 95% 1.40 to 3.55)) were associated with poor functional outcome at 3 months. Conclusion sTWEAKs, together with the presence and grade of LA, are biomarkers able to predict ICH growth and poor functional outcome in patients with ICH.
Collapse
Affiliation(s)
- Andrés da Silva-Candal
- Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Iria López-Dequidt
- Department of Neurology, Hospital Clínico Universitario, Santiago de Compostela, Spain
| | | | - Paulo Ávila-Gómez
- Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - José Manuel Pumar
- Department of Neuroradiology, Hospital Clínico Universitario, Santiago de Compostela, Spain
| | - José Castillo
- Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Tomás Sobrino
- Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Francisco Campos
- Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Ramón Iglesias-Rey
- Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Pablo Hervella
- Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| |
Collapse
|
33
|
Govoni M, Hanly JG. The management of neuropsychiatric lupus in the 21st century: still so many unmet needs? Rheumatology (Oxford) 2021; 59:v52-v62. [PMID: 33280014 PMCID: PMC7719041 DOI: 10.1093/rheumatology/keaa404] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/03/2020] [Indexed: 02/06/2023] Open
Abstract
Neuropsychiatric (NP) events occur in the majority of patients with SLE and predominantly affect the CNS in addition to the peripheral and autonomic systems. Approximately 30% of all NP events are attributable to SLE (NPSLE) and present most frequently around the time of SLE onset. NPSLE is associated with increased morbidity and mortality and the proposed pathogenesis includes both ischaemic and neuroinflammatory mechanisms. Following diagnosis and causal attribution, the treatment of NPSLE is tailored to the type of NP event, the predominant putative pathogenic pathway and the activity and severity of the clinical event. There is a dearth of controlled clinical trials to guide management, but therapeutic options include symptomatic, antithrombotic and immunosuppressive agents that are supported by observational cohort studies. Our objective was to review what is currently known about NPSLE and to identify deficiencies in diagnostic biomarkers, novel therapies and clinical trials for this manifestation of SLE.
Collapse
Affiliation(s)
- Marcello Govoni
- Rheumatology Unit, S. Anna Hospital - Ferrara (loc. Cona), Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - John G Hanly
- Division of Rheumatology, Department of Medicine and Department of Pathology, Queen Elizabeth II Health Sciences Center and Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
34
|
Yang J, Ma K, Zhang C, Liu Y, Liang F, Hu W, Bian X, Yang S, Fu X. Burns Impair Blood-Brain Barrier and Mesenchymal Stem Cells Can Reverse the Process in Mice. Front Immunol 2020; 11:578879. [PMID: 33240266 PMCID: PMC7677525 DOI: 10.3389/fimmu.2020.578879] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/07/2020] [Indexed: 12/17/2022] Open
Abstract
Neurological syndromes are observed in numerous patients who suffer burns, which add to the economic burden of societies and families. Recent studies have implied that blood-brain barrier (BBB) dysfunction is the key factor that induces these central nervous system (CNS) syndromes in peripheral traumatic disease, e.g., surgery and burns. However, the effect of burns on BBB and the underlying mechanism remains, largely, to be determined. The present study aimed to investigate the effect of burns on BBB and the potential of umbilical cord-derived mesenchymal stem cells (UC-MSCs), which have strong anti-inflammatory and repairing ability, to protect the integrity of BBB. BBB permeability was evaluated using dextran tracer (immunohistochemistry imaging and spectrophotometric quantification) and western blot, interleukin (IL)-6, and IL-1β levels in blood and brain were measured by enzyme-linked immunosorbent assay. Furthermore, transmission electron microscopy (TEM) was used to detect transcellular vesicular transport (transcytosis) in BBB. We found that burns increased mouse BBB permeability to both 10-kDa and 70-kDa dextran. IL-6 and IL-1β levels increased in peripheral blood and CNS after burns. In addition, burns decreased the level of tight junction proteins (TJs), including claudin-5, occludin, and ZO-1, which indicated increased BBB permeability due to paracellular pathway. Moreover, increased vesicular density after burns suggested increased transcytosis in brain microvascular endothelial cells. Finally, administering UC-MSCs at 1 h after burns effectively reversed these adverse effects and protected the integrity of BBB. These results suggest that burns increase BBB permeability through both paracellular pathway and transcytosis, the potential mechanism of which might be through increasing IL-6 and IL-1β levels and decreasing Mfsd2a level, and appropriate treatment with UC-MSCs can reverse these effects and protect the integrity of BBB after burns.
Collapse
Affiliation(s)
- Jie Yang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, Chinese People's Liberation Army (PLA) General Hospital and PLA Medical College, Beijing, China.,Department of Dermatology, Fourth Medical Center, PLA General Hospital, Beijing, China
| | - Kui Ma
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, Chinese People's Liberation Army (PLA) General Hospital and PLA Medical College, Beijing, China
| | - Cuiping Zhang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, Chinese People's Liberation Army (PLA) General Hospital and PLA Medical College, Beijing, China
| | - Yufan Liu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, Chinese People's Liberation Army (PLA) General Hospital and PLA Medical College, Beijing, China.,Department of Dermatology, Fourth Medical Center, PLA General Hospital, Beijing, China
| | - Feng Liang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, Chinese People's Liberation Army (PLA) General Hospital and PLA Medical College, Beijing, China
| | - Wenzhi Hu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, Chinese People's Liberation Army (PLA) General Hospital and PLA Medical College, Beijing, China
| | - Xiaowei Bian
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, Chinese People's Liberation Army (PLA) General Hospital and PLA Medical College, Beijing, China.,Tianjin Medical University, Tianjin, China
| | - Siming Yang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, Chinese People's Liberation Army (PLA) General Hospital and PLA Medical College, Beijing, China.,Department of Dermatology, Fourth Medical Center, PLA General Hospital, Beijing, China
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, Chinese People's Liberation Army (PLA) General Hospital and PLA Medical College, Beijing, China.,Department of Dermatology, Fourth Medical Center, PLA General Hospital, Beijing, China
| |
Collapse
|
35
|
Dai JX, Cai JY, Sun J, Lin Q, Yu ZQ. Serum soluble tumor necrosis factor-like weak inducer of apoptosis is a potential biomarker for outcome prediction of patients with aneurysmal subarachnoid hemorrhage. Clin Chim Acta 2020; 510:354-359. [DOI: 10.1016/j.cca.2020.07.052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 12/17/2022]
|
36
|
Abstract
PROPOSE OF REVIEW Neuropsychiatric systemic lupus erythematosus (NPSLE) is an emerging frontier in lupus care encompassing a wide spectrum of clinical manifestations. Its pathogenesis remains poorly understood because of the complexity of pathophysiologic mechanisms involved and limited access to tissue. We highlight recent advances in the pathophysiology of neuropsychiatric lupus. RECENT FINDINGS Disruption of blood-brain barrier (BBB) facilitating entrance of neurotoxic antibodies into the central nervous system (CNS), neuroinflammation and cerebral ischemia are the key mechanisms. Disruption of the BBB may occur not only at the traditional BBB, but also at the blood-cerebrospinal fluid barrier. Certain autoantibodies, such as anti-N-methyl-D-aspartate receptors, antiribosomal P and antiphospholipid antibodies may cause injury in subsets of patients with diffuse neuropsychiatric disease. Activation of microglia via autoantibodies, interferon-a or other immune reactants, may amplify the inflammatory response and promote neuronal damage. New inflammatory pathways, such as TWEAK/Fn14, Bruton's tyrosine kinase, Nogo-a and ACE may represent additional potential targets of therapy. Novel neuroimaging techniques suggest alterations in brain perfusion and metabolism, increased concentration of neurometabolites, indicative of glial activation, vasculopathy and neuronal impairment. SUMMARY NPSLE encompasses a diverse phenotype with distinct pathogenic mechanisms, which could be targeted by novel therapies or repositioning of existing drugs.
Collapse
|
37
|
Wang M, Xie Z, Xu J, Feng Z. TWEAK/Fn14 axis in respiratory diseases. Clin Chim Acta 2020; 509:139-148. [PMID: 32526219 DOI: 10.1016/j.cca.2020.06.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/31/2020] [Accepted: 06/03/2020] [Indexed: 02/08/2023]
Abstract
Tumor necrosis factor-like weak inducer of apoptosis (TWEAK) is a well known multifunctional cytokine extensively distributed in cell types and tissues. Accumulating evidence has shown that TWEAK binding to the receptor factor-inducible 14 (Fn14) participates in diverse pathologic processes including cell proliferation and death, angiogenesis, carcinogenesis and inflammation. Interestingly, alterations of intracellular signaling cascades are correlated to the development of respiratory disease. Recently, a several lines of evidence suggests that TWEAK in lung tissues are closely associated with these signaling pathways. In this review, we explore if TWEAK could provide a novel therapeutic strategy for managing respiratory disease in general and pulmonary arterial hypertension (PAH), obstructive sleep apnea syndrome (OSAS), asthma, idiopathic pulmonary fibrosis (IPF), chronic obstructive pulmonary disease (COPD) and non-small cell lung cancer (NSCLC), specifically.
Collapse
Affiliation(s)
- Min Wang
- Department of Otorhinolaryngology, University of South China Affiliated Nanhua Hospital, Hengyang 421002, China
| | - Zhijuan Xie
- Department of Nephrology, The First Affiliated Hospital of University of South China, Hengyang 421001, China
| | - Jin Xu
- School of Pharmaceutical Sciences, Changsha Medical University, Changsha 410219, Hunan, China.
| | - Zhuyu Feng
- Department of Critical Care Medicine, University of South China Affiliated Nanhua Hospital, Hengyang 421002, China.
| |
Collapse
|
38
|
Balajkova V, Olejarova M, Moravcova R, Kozelek P, Posmurova M, Hulejova H, Senolt L. Is serum TWEAK a useful biomarker of neuropsychiatric systemic lupus erythematosus? Physiol Res 2020; 69:339-346. [PMID: 32199014 DOI: 10.33549/physiolres.934308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The aim of this study was to determine the role of the tumor necrosis factor like weak inducer of apoptosis (TWEAK) as a serum biomarker of neuropsychiatric involvement in systemic lupus erythematosus (NPSLE). Levels of TWEAK levels were measured in sera of 92 patients with systemic lupus erythematosus (SLE), including 28 patients with neuropsychiatric lupus, and in 59 healthy controls using ELISA. All SLE patients underwent rheumatological, neurological and psychiatric assessment. We found no significant differences in TWEAK levels, between SLE patients and the healthy controls (p=0.2411). Similarly, no difference was observed between subgroup of NPSLE and healthy controls (p=0.7658). The mean SLE disease activity (SLEDAI) was 13.25. No correlations between TWEAK levels with disease activity (SLEDAI, r=0.2113, p=0.2805) or the most common NPSLE manifestations such as headache (r=0.2079), seizures (r=0.1101), cerebrovascular disease (r= 0.2347), cognitive dysfunction (r=0.1597) and anxiety (r=0.1397) were observed. Our data do not support the use of serum TWEAK as a discriminating biomarker for NPSLE. The role of the TWEAK in NPSLE remains to be investigated.
Collapse
Affiliation(s)
- V Balajkova
- Department of Rheumatology, First Faculty of Medicine Charles University, Prague, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
39
|
Chen J, Jia F, Ren K, Luo M, Min X, Wang P, Xiao S, Xia Y. Inhibition of suppressor of cytokine signaling 1 mediates the profibrotic effect of TWEAK/Fn14 signaling on kidney cells. Cell Signal 2020; 71:109615. [PMID: 32217132 DOI: 10.1016/j.cellsig.2020.109615] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/22/2020] [Accepted: 03/23/2020] [Indexed: 12/18/2022]
Abstract
Tumor necrosis factor-like weak inducer of apoptosis (TWEAK) engagement with the receptor Fn14 contributes to the fibrotic process of kidney cells in systemic lupus erythematosus. Downregulation of the protein suppressor of cytokine signaling 1 (SOCS1) correlates with amplified production of proinflammatory factors and cell apoptosis, which participate in the pathogenesis of lupus nephritis. To elucidate the potential role of SOCS1 in TWEAK/Fn14 signaling, we determined the SOCS1 levels in primary kidney cells from MRL/MpJ (control strain) or MRL/lpr (lupus-prone) mice. These cells (mesangial cells, glomerular endothelial cells, and tubular epithelial cells) were also evaluated after stimulation with TWEAK (0 to 250 ng/mL). The results showed that the lupus-prone cells exhibited reduced SOCS1 expression. TWEAK induced the production of profibrotic factors (laminin, fibronectin, (CC motif) ligand 20, etc.) in kidney cells from both mouse strains. TWEAK stimulation also decreased both the mRNA and protein levels of SOCS1 in all cells. Moreover, the effect of TWEAK on mesangial cells was amplified by pre-transfection of SOCS1 siRNA but was partly reduced with SOCS1 overexpression by adenoviral delivery. Therefore, TWEAK/Fn14 activation contributes to renal fibrosis in lupus nephritis involving the depression of SOCS1 function.
Collapse
Affiliation(s)
- Jingyun Chen
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Fangyan Jia
- Department of Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Kaixuan Ren
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Mai Luo
- Core Research Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Xiaoyun Min
- Core Research Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Ping Wang
- Department of Immunology and Microbiology, Wannan Medical College, Wuhu 241002, China
| | - Shengxiang Xiao
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Yumin Xia
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China.
| |
Collapse
|
40
|
Schwartz N, Stock AD, Putterman C. Neuropsychiatric lupus: new mechanistic insights and future treatment directions. Nat Rev Rheumatol 2020; 15:137-152. [PMID: 30659245 DOI: 10.1038/s41584-018-0156-8] [Citation(s) in RCA: 229] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Patients with systemic lupus erythematosus (SLE) frequently show symptoms of central nervous system (CNS) involvement, termed neuropsychiatric SLE (NPSLE). The CNS manifestations of SLE are diverse and have a broad spectrum of severity and prognostic implications. Patients with NPSLE typically present with nonspecific symptoms, such as headache and cognitive impairment, but might also experience devastating features, such as memory loss, seizures and stroke. Some features of NPSLE, in particular those related to coagulopathy, have been characterized and an evidence-based treatment algorithm is available. The cognitive and affective manifestations of NPSLE, however, remain poorly understood. Various immune effectors have been evaluated as contributors to its pathogenesis, including brain-reactive autoantibodies, cytokines and cell-mediated inflammation. Additional brain-intrinsic elements (such as resident microglia, the blood-brain barrier and other neurovascular interfaces) are important facilitators of NPSLE. As yet, however, no unifying model has been found to underlie the pathogenesis of NPSLE, suggesting that this disease has multiple contributors and perhaps several distinct aetiologies. This heterogeneity presents a challenge for clinicians who have traditionally relied on empirical judgement in choosing treatment modalities for patients with NPSLE. Improved understanding of this manifestation of SLE might yield further options for managing this disease.
Collapse
Affiliation(s)
- Noa Schwartz
- Division of Rheumatology, Hospital for Special Surgery, New York, NY, USA
| | - Ariel D Stock
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Chaim Putterman
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, USA. .,Division of Rheumatology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA.
| |
Collapse
|
41
|
Liu Q, Wang H, Wang X, Lu M, Tan X, Peng L, Tan F, Xiao T, Xiao S, Xia Y. Experimental atopic dermatitis is dependent on the TWEAK/Fn14 signaling pathway. Clin Exp Immunol 2020; 199:56-67. [PMID: 31515807 PMCID: PMC6904660 DOI: 10.1111/cei.13373] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2019] [Indexed: 12/23/2022] Open
Abstract
Tumor necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK) acts through its receptor fibroblast growth factor inducible 14 (Fn14), and participates in skin inflammation. Both TWEAK and Fn14 are highly expressed in skin lesions of patients with atopic dermatitis. The purpose of this study was to further explore the effect of Fn14 inhibition on experimental atopic dermatitis. Experimental atopic dermatitis was induced in the wild-type and Fn14 knock-out BALB/c mice. The effect of TWEAK/Fn14 interaction on keratinocytes was studied in an in-vitro model of atopic dermatitis. Fn14 deficiency ameliorates skin lesions in the mice model, accompanied by less infiltration of inflammatory cells and lower local levels of proinflammatory cytokines, including TWEAK, TNF-α and interleukin (IL)-17. Fn14 deficiency also attenuates the up-regulation of TNFR1 in skin lesions of atopic dermatitis. Moreover, topical TWEAK exacerbates skin lesion in the wild-type but not in the Fn14 knock-out mice. In vitro, TWEAK enhances the expressions of IL-17, IL-18 and IFN-γ in keratinocytes under atopic dermatitis-like inflammation. These results suggest that Fn14 deficiency protects mice from experimental atopic dermatitis, involving the attenuation of inflammatory responses and keratinocyte apoptosis. In the context of atopic dermatitis-like inflammation, TWEAK modulates keratinocytes via a TNFR1-mediated pathway.
Collapse
Affiliation(s)
- Q. Liu
- Department of DermatologyThe Second Affiliated HospitalXi’an Jiaotong UniversityXi’anChina
| | - H. Wang
- Department of DermatologyThe Second Affiliated HospitalXi’an Jiaotong UniversityXi’anChina
| | - X. Wang
- Department of DermatologyThe Second Affiliated HospitalXi’an Jiaotong UniversityXi’anChina
| | - M. Lu
- Department of DermatologyThe Second Affiliated HospitalXi’an Jiaotong UniversityXi’anChina
| | - X. Tan
- Department of DermatologyThe Second Affiliated HospitalXi’an Jiaotong UniversityXi’anChina
| | - L. Peng
- Department of DermatologyThe Second Affiliated HospitalXi’an Jiaotong UniversityXi’anChina
| | - F. Tan
- Department of DermatologyThe Second Affiliated HospitalXi’an Jiaotong UniversityXi’anChina
| | - T. Xiao
- Department of DermatologyThe Second Affiliated HospitalXi’an Jiaotong UniversityXi’anChina
| | - S. Xiao
- Department of DermatologyThe Second Affiliated HospitalXi’an Jiaotong UniversityXi’anChina
| | - Y. Xia
- Department of DermatologyThe Second Affiliated HospitalXi’an Jiaotong UniversityXi’anChina
| |
Collapse
|
42
|
Intracerebroventricular administration of lupus serum induces microglia activation and leukocyte adhesion in the cerebromicrovasculature of mice. J Neuroimmunol 2019; 334:576994. [PMID: 31207553 DOI: 10.1016/j.jneuroim.2019.576994] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 05/28/2019] [Accepted: 06/09/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND Central nervous system (CNS) involvement is commonly seen in the patients with system lupus erythematosus (SLE). Mechanisms underlying CNS damage in SLE remain largely unknown. Accumulating evidence suggest that activation of microglia in CNS plays an important role in the inflammatory responses in neurological diseases. The aim of this study is to examine the involvement of microglia in the CNS inflammatory responses induced by circulating serum of SLE patients. METHODS We performed intracerebroventricular (ICV) injection of serums collected from SLE patients or healthy controls to mice, and examined phenotypic changes of microglia, the levels of cytokines, chemokine and adhesion molecules in the brain. Intravital microscopy was used to observe leukocyte rolling and adhesion in the cerebromicrovasculature. We further examined whether minocycline can block inflammatory responses induced by SLE serum. In vitro experiments were conducted to examine whether IgGs from the sera of SLE patients or healthy control can activate the primary cultured microglia. RESULTS We found that ICV injection of SLE serum increases morphological activation of microglia in the cortex and hippocampus. Inflammatory mediators including pro-inflammatory cytokines (IL-1, IL-6 and TNF-α), chemokine (CCL2 and CCL5) and adhesion molecules (P-selectin and ICAM-1) were significantly elevated in the brains of SLE-serum-treated mice. Using intravital microscopy, we demonstrated that SLE serum promotes leukocyte rolling and adhesion. Furthermore, suppression of microglia activation by systemically using minocycline could decrease the levels of inflammatory molecular, and prevent leukocyte rolling and adhesion. The in vitro experiments revealed that IgG from SLE sera could be engulfed by microglia and stimulated the microglia to secret pro-inflammatory cytokines. CONCLUSION Our data suggest that the activation of microglia, which promotes leukocyte adhesion to the brain microvasculature, is an important pathological mechanism of CNS involvement in SLE.
Collapse
|
43
|
Gai HY, Wu C, Zhang Y, Wang D. Long non-coding RNA CHRF modulates the progression of cerebral ischemia/reperfusion injury via miR-126/SOX6 signaling pathway. Biochem Biophys Res Commun 2019; 514:550-557. [PMID: 31060778 DOI: 10.1016/j.bbrc.2019.04.161] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 04/24/2019] [Indexed: 01/11/2023]
Abstract
Ischemic stroke remains as a major cause for disability and death in the world. Long non-coding RNA (lncRNA) cardiac hypertrophy-related factor (CHRF) has been suggested as a crucial modulator in cardiac injury and various human cancers. Nevertheless, its effects and mechanism on ischemic stroke remains unclear. In this study, we found that CHRF was significantly correlated with miR-126, and miR-126 expression was decreased in the ischemic core following ischemia, while CHRF expression was increased according to the in vivo and in vitro experiments. Additionally, miR-126 significantly reduced oxygen-glucose deprivation and reoxygenation (OGD/R)-triggered apoptosis using TUNEL and flow cytometry analysis. Moreover, CHRF played as a competing endogenous RNA (ceRNA) and competed with Sex-determining region Y box 6 (SOX6) to direct binding with miR-126, subsequently regulating ischemic neuronal death. CHRF knockdown in vivo markedly prevented ischemic damage and alleviated neurological dysfunctions. Thereby, these results revealed a new molecular mechanism of lncRNA CHRF through targeting miR-126/SOX6 signaling to modulate ischemic neuronal injury, providing solid evidence to develop promising therapeutic strategies against cerebral ischemic stroke.
Collapse
Affiliation(s)
- Hai-Yun Gai
- Department of Encephalopathy, Xi'an Hospital of Traditional Chinese Medicine, Xi'an, Shanxi, 710021, China
| | - Chen Wu
- Department of Neurology, Xinjiang PLA Urumqi General Hospital, Urumqi, Xinjiang, 830000, China
| | - Yan Zhang
- Department of Acupuncture Rehabilitation, Xi'an Hospital of Traditional Chinese Medicine, Xian, Shanxi, 710021, China
| | - Dong Wang
- Department of Third Neurology, The Second Affiliated Hospital of Xi'an Medical University, Xi'an City, Shanxi, 710038, China.
| |
Collapse
|
44
|
Tang B, Zhong Z, Qiu Z, Wu HP, Hu JY, Ma JP, Wu JP. Serum soluble TWEAK levels in severe traumatic brain injury and its prognostic significance. Clin Chim Acta 2019; 495:227-232. [PMID: 31009601 DOI: 10.1016/j.cca.2019.04.070] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/13/2019] [Accepted: 04/17/2019] [Indexed: 01/03/2023]
Abstract
BACKGROUND Severe traumatic brain injury (sTBI) is characterized by a high mortality. Tumor necrosis factor-like weak inducer of apoptosis (TWEAK) participates in inflammation. We determined serum soluble TWEAK (sTWEAK) levels with respect to its prognostic ability. METHODS This was a single-center prospective, observational study that was performed from December 2014 to December 2017. A total of 114 sTBI patients who met the inclusion criteria and 114 randomly selected healthy controls were included in the study. Serum sTWEAK levels were gauged. Patients were followed-up until death or completion of 6 months. Poor outcome was referred to as Glasgow outcome scale score of 1-3. RESULTS In comparison with controls, patients displayed predominantly higher serum sTWEAK levels. Serum sTWEAK levels were strongly correlated with Glasgow coma scale scores and serum C-reactive protein levels. 32 patients (28.1%) died and 60 patients (52.6%) suffered from a poor outcome. Receiver operating characteristic curve analysis clearly showed that serum sTWEAK levels had substantially high predictive performance for 6-month mortality and poor outcome. Serum sTWEAK emerged as an independent predictor for 6-month mortality, overall survival and poor outcome. CONCLUSIONS Raised serum sTWEAK levels are closely related to increasing inflammatory response, elevated trauma severity and worse clinical outcome after sTBI.
Collapse
Affiliation(s)
- Bei Tang
- Department of Critical Care Medicine, The First People's Hospital of Jiande City, 599 Yanzhou Main Road, Jiande 311600, China
| | - Ze Zhong
- Department of Critical Care Medicine, The First People's Hospital of Jiande City, 599 Yanzhou Main Road, Jiande 311600, China.
| | - Zheng Qiu
- Department of Neurosurgery, The First People's Hospital of Jiande City, 599 Yanzhou Main Road, Jiande 311600, China
| | - Hui-Ping Wu
- Department of Critical Care Medicine, The First People's Hospital of Jiande City, 599 Yanzhou Main Road, Jiande 311600, China
| | - Jia-Yuan Hu
- Department of Critical Care Medicine, The First People's Hospital of Jiande City, 599 Yanzhou Main Road, Jiande 311600, China
| | - Jian-Ping Ma
- Department of Critical Care Medicine, The First People's Hospital of Jiande City, 599 Yanzhou Main Road, Jiande 311600, China
| | - Jin-Ping Wu
- Department of Critical Care Medicine, The First People's Hospital of Jiande City, 599 Yanzhou Main Road, Jiande 311600, China
| |
Collapse
|
45
|
Hu G, Liang L, Liu Y, Liu J, Tan X, Xu M, Peng L, Zhai S, Li Q, Chu Z, Zeng W, Xia Y. TWEAK/Fn14 Interaction Confers Aggressive Properties to Cutaneous Squamous Cell Carcinoma. J Invest Dermatol 2019; 139:796-806. [DOI: 10.1016/j.jid.2018.09.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 09/08/2018] [Accepted: 09/27/2018] [Indexed: 12/13/2022]
|
46
|
Al Taweel AAI, Hamed AM, Abdelrahman AMN, Hassan MNI. Tumor Necrosis Factor-like Weak Inducer of Apoptosis: A Novel Serum Marker in Patients with Severe Alopecia. Int J Trichology 2019; 11:113-117. [PMID: 31360039 PMCID: PMC6580803 DOI: 10.4103/ijt.ijt_9_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background Alopecia areata (AA) is a common form of nonscarring hair loss of scalp and/or body. Genetic predisposition, autoimmunity, and environmental factors play a major role in the etiopathogenesis of AA. Tumor necrosis factor-like weak inducer of apoptosis (TWEAK) is a multifunctional cytokine expressed on various cell types and tissues and acts through binding to its sole receptor factor-inducible 14 (Fn14). TWEAK/Fn14 activation contributes to various pathological processes, including cell proliferation and death, angiogenesis, carcinogenesis, and inflammation. Aim The aim of this current study was to measure serum levels of TWEAK in patients with AA and to assess the correlation between it and severity of the disease. Subjects and Methods This study included 50 patients who had patchy AA, in addition to 50 apparently healthy controls. Severity of AA was assessed using Severity of Alopecia Tool Score. Serum TWEAK levels in all participants were determined using ELISA technique and were correlated with the severity of the disease. Results Mean serum levels of TWEAK were significantly higher in AA patients, with a positive significant correlation between serum levels of TWEAK and severity of the disease. Conclusion TWEAK as a novel marker of many autoimmune inflammatory dermatological diseases, could be a promising marker in the diagnosis of AA, and also can be used as a prognostic marker for its severity.
Collapse
Affiliation(s)
| | - Ahmed Mohamed Hamed
- Department of Dermatology and Andrology, Faculty of Medicine, Benha Univesity, Banha, Egypt
| | | | - Mona Nady Ibrahim Hassan
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Benha Univesity, Banha, Egypt
| |
Collapse
|
47
|
Liu J, Liu Y, Peng L, Li J, Wu K, Xia L, Wu J, Wang S, Wang X, Liu Q, Zeng W, Xia Y. TWEAK/Fn14 Signals Mediate Burn Wound Repair. J Invest Dermatol 2019; 139:224-234. [DOI: 10.1016/j.jid.2018.05.036] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 04/24/2018] [Accepted: 05/02/2018] [Indexed: 01/20/2023]
|
48
|
Hanly JG, Kozora E, Beyea SD, Birnbaum J. Review: Nervous System Disease in Systemic Lupus Erythematosus: Current Status and Future Directions. Arthritis Rheumatol 2018; 71:33-42. [PMID: 29927108 DOI: 10.1002/art.40591] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 06/19/2018] [Indexed: 12/17/2022]
Abstract
The American College of Rheumatology's case definitions for 19 neuropsychiatric syndromes in systemic lupus erythematosus (SLE) constitute a comprehensive classification of nervous system events in this disease. However, additional strategies are needed to determine whether a neuropsychiatric syndrome is attributable to SLE versus a competing comorbidity. Cognitive function is a clinical surrogate of overall brain health, with applications in both diagnosis and determination of clinical outcomes. Ischemic and inflammatory mechanisms are both key components of the immunopathogenesis of neuropsychiatric SLE (NPSLE), including abnormalities of the blood-brain barrier and autoantibody-mediated production of proinflammatory cytokines. Advances in neuroimaging provide a platform to assess novel disease mechanisms in a noninvasive way. The convergence of more rigorous clinical characterization, validation of biomarkers, and brain neuroimaging provides opportunities to determine the efficacy of novel targeted therapies in the treatment of NPSLE.
Collapse
Affiliation(s)
- John G Hanly
- Queen Elizabeth II Health Sciences Centre and Dalhousie University, Halifax, Nova Scotia, Canada
| | - Elizabeth Kozora
- National Jewish Health, Denver, Colorado, and University of Colorado School of Medicine, Aurora
| | - Steven D Beyea
- Dalhousie University, Biomedical Translational Imaging Centre, Izaak Walton Killam Health Centre and Queen Elizabeth II Health Sciences Centre, Halifax, Nova Scotia, Canada
| | - Julius Birnbaum
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
49
|
Duarte-Delgado NP, Lujan TP, Arbeláez-Cortés Á, García-Valencia J, Zapata A, Rojas M, Restrepo-Escobar M, Vásquez G, Ortiz-Reyes BL. Identification of Levels of Serum Amyloid A and Apolipoprotein A1 in Serum Proteomic Analysis of Neuropsychiatric Systemic Lupus Erythematosus Patients. Autoimmune Dis 2018; 2018:6728541. [PMID: 30584474 PMCID: PMC6280257 DOI: 10.1155/2018/6728541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 10/12/2018] [Accepted: 11/05/2018] [Indexed: 11/17/2022] Open
Abstract
Neuropsychiatric Systemic Lupus Erythematosus (NPSLE) has multiple pathogenic mechanisms that cause diverse manifestations and whose diagnosis is challenging because of the absence of appropriate diagnostic tests. In the present study the application of proteomics using two-dimensional electrophoresis (2D) and mass spectrometry (MS) allowed the comparison of the protein profile of the serum low and high abundance protein fractions of NPSLE patients (NPSLE group) and SLE without neuropsychiatric syndromes (SLE group), Neuropsychiatric syndromes not associated with SLE (NPnoSLE groups), and healthy controls (CTRL group). The gels obtained were digitalized and analyzed with the PDQuest software. The statistical analysis of the spots was performed using the nonparametric Kruskal Wallis and Dunn's multiple comparison tests. Two spots showed significant differences and were identified by MS. Spot 4009 was significantly lower in NPSLE with regard to NPnoSLE (p= 0,004) and was identified as apolipoprotein A1 (APOA1) (score 809-1132). Spot 8001 was significantly higher in NPSLE regarding CTRL and NPnoSLE (p= 0,01 y 0,03, respectively) and was identified as serum amyloid A (SAA) (score 725-2488). The proinflammatory high density lipoproteins (HDL) have been described in SLE. In this HDL the decrease of APOA1 is followed by an increase in SAA. This altered level of both proteins may be related to the inflammatory state that is characteristic of an autoimmune disease like SLE, but this is not specific for NPSLE.
Collapse
Affiliation(s)
| | | | | | - Jenny García-Valencia
- Universidad de Antioquia, Facultad de Medicina, Grupo Académico en Epidemiología Clínica (GRAEPIC), Medellín, Colombia
- Clínica de Salud Mental Integral S.A.S.-SAMEIN, Medellín, Colombia
| | - Adriana Zapata
- Clínica de Salud Mental Integral S.A.S.-SAMEIN, Medellín, Colombia
| | - Mauricio Rojas
- Universidad de Antioquia, Facultad de Medicina, Grupo de Inmunología Celular e Inmunogenética (GICIG), Medellín, Colombia
| | - Mauricio Restrepo-Escobar
- Universidad de Antioquia, Facultad de Medicina, Grupo de Reumatología Universidad de Antioquia (GRUA), Medellín, Colombia
| | - Gloria Vásquez
- Universidad de Antioquia, Facultad de Medicina, Grupo de Inmunología Celular e Inmunogenética (GICIG), Medellín, Colombia
- Universidad de Antioquia, Facultad de Medicina, Grupo de Reumatología Universidad de Antioquia (GRUA), Medellín, Colombia
| | - Blanca L. Ortiz-Reyes
- Universidad de Antioquia, Facultad de Medicina, Grupo de Inmunología Celular e Inmunogenética (GICIG), Medellín, Colombia
| |
Collapse
|
50
|
Bendorius M, Po C, Muller S, Jeltsch-David H. From Systemic Inflammation to Neuroinflammation: The Case of Neurolupus. Int J Mol Sci 2018; 19:E3588. [PMID: 30428632 PMCID: PMC6274746 DOI: 10.3390/ijms19113588] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/06/2018] [Accepted: 11/09/2018] [Indexed: 12/17/2022] Open
Abstract
It took decades to arrive at the general consensus dismissing the notion that the immune system is independent of the central nervous system. In the case of uncontrolled systemic inflammation, the relationship between the two systems is thrown off balance and results in cognitive and emotional impairment. It is specifically true for autoimmune pathologies where the central nervous system is affected as a result of systemic inflammation. Along with boosting circulating cytokine levels, systemic inflammation can lead to aberrant brain-resident immune cell activation, leakage of the blood⁻brain barrier, and the production of circulating antibodies that cross-react with brain antigens. One of the most disabling autoimmune pathologies known to have an effect on the central nervous system secondary to the systemic disease is systemic lupus erythematosus. Its neuropsychiatric expression has been extensively studied in lupus-like disease murine models that develop an autoimmunity-associated behavioral syndrome. These models are very useful for studying how the peripheral immune system and systemic inflammation can influence brain functions. In this review, we summarize the experimental data reported on murine models developing autoimmune diseases and systemic inflammation, and we explore the underlying mechanisms explaining how systemic inflammation can result in behavioral deficits, with a special focus on in vivo neuroimaging techniques.
Collapse
Affiliation(s)
- Mykolas Bendorius
- UMR 7242 Biotechnologie et Signalisation Cellulaire, École Supérieure de Biotechnologie de Strasbourg (ESBS), Laboratoire d'Excellence Médalis, Université de Strasbourg/CNRS, 67412 Illkirch, France.
| | - Chrystelle Po
- ICube UMR 7357, Université de Strasbourg/CNRS, Fédération de Médecine Translationnelle de Strasbourg, 67000 Strasbourg, France.
| | - Sylviane Muller
- UMR 7242 Biotechnologie et Signalisation Cellulaire, École Supérieure de Biotechnologie de Strasbourg (ESBS), Laboratoire d'Excellence Médalis, Université de Strasbourg/CNRS, 67412 Illkirch, France.
- University of Strasbourg Institute for Advanced Study (USIAS), 67000 Strasbourg, France.
| | - Hélène Jeltsch-David
- UMR 7242 Biotechnologie et Signalisation Cellulaire, École Supérieure de Biotechnologie de Strasbourg (ESBS), Laboratoire d'Excellence Médalis, Université de Strasbourg/CNRS, 67412 Illkirch, France.
| |
Collapse
|