1
|
Veerasubramanian PK, Wynn TA, Quan J, Karlsson FJ. Targeting TNF/TNFR superfamilies in immune-mediated inflammatory diseases. J Exp Med 2024; 221:e20240806. [PMID: 39297883 PMCID: PMC11413425 DOI: 10.1084/jem.20240806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/19/2024] [Accepted: 08/26/2024] [Indexed: 09/26/2024] Open
Abstract
Dysregulated signaling from TNF and TNFR proteins is implicated in several immune-mediated inflammatory diseases (IMIDs). This review centers around seven IMIDs (rheumatoid arthritis, systemic lupus erythematosus, Crohn's disease, ulcerative colitis, psoriasis, atopic dermatitis, and asthma) with substantial unmet medical needs and sheds light on the signaling mechanisms, disease relevance, and evolving drug development activities for five TNF/TNFR signaling axes that garner substantial drug development interest in these focus conditions. The review also explores the current landscape of therapeutics, emphasizing the limitations of the approved biologics, and the opportunities presented by small-molecule inhibitors and combination antagonists of TNF/TNFR signaling.
Collapse
Affiliation(s)
| | - Thomas A. Wynn
- Inflammation and Immunology Research Unit, Pfizer, Inc., Cambridge, MA, USA
| | - Jie Quan
- Inflammation and Immunology Research Unit, Pfizer, Inc., Cambridge, MA, USA
| | | |
Collapse
|
2
|
Chen Z, Wang Z, Cui Y, Xie H, Yi L, Zhu Z, Ni J, Du R, Wang X, Zhu J, Ding F, Quan W, Zhang R, Wang Y, Yan X. Serum BAFF level is associated with the presence and severity of coronary artery disease and acute myocardial infarction. BMC Cardiovasc Disord 2024; 24:471. [PMID: 39227771 PMCID: PMC11370111 DOI: 10.1186/s12872-024-04146-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/27/2024] [Indexed: 09/05/2024] Open
Abstract
OBJECTIVE The aim of this study was to investigate the relationship between circulating levels of B cell activating factor (BAFF) and the presence and severity of coronary artery disease (CAD) and acute myocardial infarction (AMI) in humans, as its biological functions in this context remain unclear. METHODS Serum BAFF levels were measured in a cohort of 723 patients undergoing angiography, including 204 patients without CAD (control group), 220 patients with stable CAD (CAD group), and 299 patients with AMI (AMI group). Logistic regression analyses were used to assess the association between BAFF and CAD or AMI. RESULTS Significantly elevated levels of BAFF were observed in patients with CAD and AMI compared to the control group. Furthermore, BAFF levels exhibited a positive correlation with the SYNTAX score (r = 0.3002, P < 0.0001) and the GRACE score (r = 0.5684, P < 0.0001). Logistic regression analysis demonstrated that increased BAFF levels were an independent risk factor for CAD (adjusted OR 1.305, 95% CI 1.078-1.580) and AMI (adjusted OR 2.874, 95% CI 1.708-4.838) after adjusting for confounding variables. Additionally, elevated BAFF levels were significantly associated with a high GRACE score (GRACE score 155 to 319, adjusted OR 4.297, 95% CI 1.841-10.030). BAFF exhibited a sensitivity of 75.0% and specificity of 71.4% in differentiating CAD patients with a high SYNTAX score, and a sensitivity of 75.5% and specificity of 72.8% in identifying AMI patients with a high GRACE score. CONCLUSION Circulating BAFF levels serve as a valuable diagnostic marker for CAD and AMI. Elevated BAFF levels are associated with the presence and severity of these conditions, suggesting its potential as a clinically relevant biomarker in cardiovascular disease.
Collapse
Affiliation(s)
- Zhiyong Chen
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Ziyang Wang
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Yuke Cui
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Hongyang Xie
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Lei Yi
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Zhengbin Zhu
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Jingwei Ni
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Run Du
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Xiaoqun Wang
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Jinzhou Zhu
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Fenghua Ding
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Weiwei Quan
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Ruiyan Zhang
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China.
| | - Yueying Wang
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China.
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| | - Xiaoxiang Yan
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China.
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| |
Collapse
|
3
|
Skarlis C, Papadopoulos V, Raftopoulou S, Mavragani CP, Evangelopoulos ME. Association of B-cell activating factor gene variants with serum anti-JCV antibody positivity in male patients with multiple sclerosis under natalizumab treatment: Implications for progressive multifocal leukoencephalopathy risk stratification. J Neurol Sci 2024; 461:123046. [PMID: 38761670 DOI: 10.1016/j.jns.2024.123046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/20/2024]
Abstract
INTRODUCTION Progressive multifocal leukoencephalopathy (PML) is a potentially life-threatening complication among Multiple Sclerosis (MS) patients under natalizumab treatment, with serum anti-JCV antibody titers being used for stratification risk. Given the critical role of interferon (IFN)/B-cell activating factor (BAFF) axis in humoral immune responses against viruses, we explored whether it is involved in the generation of serum anti-JCV antibodies among these patients. METHODS 162 consecutive patients with relapsing-remitting MS under natalizumab treatment were included. Serum anti-JCV antibodies were measured at baseline, as well as 12 and 24 months after treatment initiation. Type I and II IFN-inducible genes and BAFF expression were quantitated in peripheral blood by qRT-PCR. Moreover, BAFF rs9514828, rs1041569, and rs9514827 gene variants were assessed by RFLP-PCR. RESULTS While type I and II IFN inducible gene expression were not associated with anti-JCV serum titers, the latter were significantly correlated with BAFF gene expression. Of interest, the TTT haplotype of the studied BAFF variants was more frequently detected in male, but not female anti-JCV (+) MS patients compared to anti-JCV (-) counterparts at baseline, as well as at 12 months and 24 months of natalizumab treatment. Measures of clinical validity/utility for the BAFF TTT haplotype showed 88% specificity, 45%, positive predictive value, and sensitivity of 70% for the discrimination of anti-JCV (+) male MS patients after 24 months of treatment. CONCLUSIONS Our study suggests an implication of the BAFF axis in the production of serum anti-JCV antibodies. Additionally, the BAFF TTT haplotype derived from the rs9514828, rs1041569, and rs9514827 variants may represent a novel risk factor for anti-JCV seropositivity and indirectly for PML development among male MS patients treated with natalizumab.
Collapse
Affiliation(s)
- Charalampos Skarlis
- Department of Physiology, School of Medicine, National and Kapodistrian University of Athens, M. Asias 75, 11527 Athens, Greece
| | - Vassilis Papadopoulos
- First Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Sylvia Raftopoulou
- Department of Physiology, School of Medicine, National and Kapodistrian University of Athens, M. Asias 75, 11527 Athens, Greece
| | - Clio P Mavragani
- Department of Physiology, School of Medicine, National and Kapodistrian University of Athens, M. Asias 75, 11527 Athens, Greece; Joint Academic Rheumatology Program, NKUA, Greece.
| | - Maria-Eleftheria Evangelopoulos
- First Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
4
|
Aringer M, Finzel S, Voll RE. [Immunopathogenesis of systemic lupus erythematosus]. Z Rheumatol 2024; 83:68-76. [PMID: 35551439 PMCID: PMC10847069 DOI: 10.1007/s00393-022-01214-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2022] [Indexed: 11/28/2022]
Abstract
Insights into the immunopathogenesis of systemic lupus erythematosus (SLE) help to understand the complex disease patterns and to develop new treatment strategies. The disease manifestations essentially result from autoantibodies, immune complexes and cytokines. Particularly the propensity towards developing various autoantibodies is central to the disease itself; autoantibody specificities lead to highly variable organ manifestations. This review article delineates the clinically relevant state of knowledge on SLE pathogenesis, with the goal to establish a model useful for clinical practice, which also helps to classify the novel therapeutic approaches.
Collapse
Affiliation(s)
- Martin Aringer
- Rheumatologie, Medizinische Klinik III und UniversitätsCentrum für Autoimmun- und Rheumatische Erkrankungen (UCARE), Universitätsklinikum und Medizinische Fakultät Carl Gustav Carus, TU Dresden, Fetscherstr. 74, 01307, Dresden, Deutschland.
| | - Stephanie Finzel
- Klinik für Rheumatologie und Klinische Immunologie & Centrum für chronische Immundefizienz, Universitätsklinikum Freiburg, Freiburg, Deutschland
| | - Reinhard E Voll
- Klinik für Rheumatologie und Klinische Immunologie & Centrum für chronische Immundefizienz, Universitätsklinikum Freiburg, Freiburg, Deutschland
| |
Collapse
|
5
|
Xu C, Cheng X, Wang X, Huang W, Liu Y, Ye H, Guan J, Shen J, Yi H. The immune response to arterial damage in a mouse model of intermittent hypoxia: a transcriptomics analysis. Sleep Breath 2023; 27:2397-2406. [PMID: 37391539 DOI: 10.1007/s11325-023-02866-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 05/24/2023] [Accepted: 05/31/2023] [Indexed: 07/02/2023]
Abstract
PURPOSE Mice can develop arterial damage and even atherosclerosis under intermittent hypoxia (IH); however, the specific mechanism of arterial damage induced by IH remains unclear. Hence, this research aimed to illustrate the underlying mechanism linking IH to arterial injury. MATERIALS AND METHODS The differential gene expression of the thoracic aorta under normoxia or IH mice was analyzed utilizing RNA sequencing. Furthermore, GO, KEGG pathway, and CIBERSORT analyses were carried out. For verification of the expression of candidate genes affected by IH, quantitative RT-qPCR (qRT-PCR) was conducted. Immunohistochemical (IHC) staining revealed immune cell infiltration in the thoracic aorta. RESULTS The thickness of the intima-media of the mouse aorta was increased, and the fiber structure was disordered under IH. Transcriptomics analysis showed that in the aorta, 1137 upregulated genes and 707 downregulated genes were affected by IH, significantly related to the activation of the immune system and cell adhesion. Furthermore, B cell infiltration around the aorta was observed under IH. CONCLUSIONS IH might lead to structural changes in the aorta by activating the immune response and enhancing cell adhesion.
Collapse
Affiliation(s)
- Chong Xu
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiangyu Cheng
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoting Wang
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weijun Huang
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yupu Liu
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haibo Ye
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Guan
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinhong Shen
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Hongliang Yi
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
6
|
Skarlis C, Papadopoulos V, Raftopoulou S, Mavragani CP, Evangelopoulos ME. B-cell activating factor gene variants in multiple sclerosis: Possible associations with disease susceptibility among females. Clin Immunol 2023; 257:109847. [PMID: 37995946 DOI: 10.1016/j.clim.2023.109847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/24/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023]
Abstract
Although B cells and B cell activating factor (BAFF) have been previously implicated in MS pathogenesis, data regarding the genetic influence of BAFF polymorphisms on MS susceptibility are limited. Here we aim to explore whether BAFF polymorphisms could contribute to MS susceptibility. 156 RRMS patients fulfilling the revised McDonald criteria for MS diagnosis and 220 HCs were enrolled. Clinical, laboratory, and imaging characteristics were recorded. BAFF rs9514827, rs1041569, and rs9514828 polymorphisms were assessed by RFLP-PCR in DNA samples extracted from whole peripheral blood. The BAFF rs1041569 TT genotype along with the CTT and TTC haplotypes were associated with significantly increased risk for MS development in female MS patients compared to healthy female counterparts. These findings were not confirmed in males. The rs1041569 BAFF variant together with the CTT and TTC BAFF haplotypes derived from the BAFF rs9514827, rs1041569, and rs9514828 polymorphisms may represent novel genetic contributors to the development of MS in females.
Collapse
Affiliation(s)
- Charalampos Skarlis
- Department of Physiology, School of Medicine, National and Kapodistrian University of Athens (NKUA), M. Asias 75, 11527, Athens, Greece
| | - Vassilis Papadopoulos
- First Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Sylvia Raftopoulou
- Department of Physiology, School of Medicine, National and Kapodistrian University of Athens (NKUA), M. Asias 75, 11527, Athens, Greece
| | - Clio P Mavragani
- Department of Physiology, School of Medicine, National and Kapodistrian University of Athens (NKUA), M. Asias 75, 11527, Athens, Greece; Joint Academic Rheumatology Program, NKUA, Greece.
| | - Maria-Eleftheria Evangelopoulos
- First Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
7
|
Blachut D, Przywara-Chowaniec B, Tomasik A, Kukulski T, Morawiec B. Update of Potential Biomarkers in Risk Prediction and Monitoring of Atherosclerosis in Systemic Lupus Erythematosus to Prevent Cardiovascular Disease. Biomedicines 2023; 11:2814. [PMID: 37893187 PMCID: PMC10604001 DOI: 10.3390/biomedicines11102814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Systemic lupus erythematosus is a chronic connective tissue disease associated with an increased risk of premature atherosclerosis. It is estimated that approximately 10% of SLE patients develop significant atherosclerosis each year, which is responsible for premature cardiovascular disease that is largely asymptomatic. This review summarizes the most recent reports from the past few years on biomarkers of atherosclerosis in SLE, mainly focusing on immune markers. Persistent chronic inflammation of the vascular wall is an important cause of cardiovascular disease (CVD) events related to endothelial dysfunction, cell proliferation, impaired production and function of nitric oxide and microangiopathic changes. Studies on pathogenic immune mediators involved in atherosclerosis will be crucial research avenues for preventing CVD.
Collapse
Affiliation(s)
- Dominika Blachut
- 2nd Department of Cardiology, Medical University of Silesia in Katowice, 41-800 Zabrze, Poland
| | | | | | | | | |
Collapse
|
8
|
Wu M, Mirkin S, Nagy S, McPhail MN, Demory Beckler M, Kesselman MM. Computed Tomography (CT) Calcium Scoring in Primary Prevention of Acute Coronary Syndrome and Future Cardiac Events in Patients With Systemic Lupus Erythematosus. Cureus 2023; 15:e47157. [PMID: 38022274 PMCID: PMC10653626 DOI: 10.7759/cureus.47157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a complex and chronic autoimmune disease that impacts multiple organ systems and presents with varying symptomatology that makes targeting treatment extremely difficult. The cardiovascular system and more specifically the coronary arteries are heavily affected by SLE causing increased atherosclerosis and subsequently increased acute coronary syndrome (ACS) and increased future cardiac events. ACS is a common occurrence in patients with SLE due to the premature development of atherosclerosis due to the dysregulation of pro-inflammatory cytokines. Calcium scoring has been effectively utilized to identify plaque burden in patients with coronary artery calcification (CAC). Calcium scoring is a score obtained from a computed tomography (CT) image using non-contrast imaging, which provides quantitative information regarding CAC and aids in assessing cardiovascular risk. A calcium score of zero Hounsfeild units can be obtained using CT calcium scoring which indicates no calcium is identified in the coronary arteries and is a strong negative risk predictor for coronary artery disease. Early screening of SLE patients with CT calcium scoring could aid in early detection and treatment subsequently leading to delay of premature coronary atherosclerosis and future cardiac events in this patient population. Multiple studies have used calcium scoring as a method to measure arterial calcification in SLE patients. The Society of Cardiovascular Imaging has now endorsed the idea of obtaining a baseline calcium artery score with a repeat progression scan in 3-5 years. Calcium scoring has also been identified as an effective initial tool for stratification and identification of possible ACS. The various advantages of early calcium scoring signify the further research needed to fully understand and implement the advantages calcium scoring has to offer patients with SLE.
Collapse
Affiliation(s)
- Michael Wu
- Osteopathic Medicine, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Fort Lauderdale, USA
| | - Sophia Mirkin
- Osteopathic Medicine, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Fort Lauderdale, USA
| | - Stephanie Nagy
- Rheumatology, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Fort Lauderdale, USA
| | - Marissa N McPhail
- Osteopathic Medicine, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Fort Lauderdale, USA
| | - Michelle Demory Beckler
- Microbiology and Immunology, Nova Southeastern University Dr. Kiran C. Patel College of Allopathic Medicine, Fort Lauderdale, USA
| | - Marc M Kesselman
- Rheumatology, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Fort Lauderdale, USA
| |
Collapse
|
9
|
Takemoto Y, Tanimine N, Yoshinaka H, Tanaka Y, Takafuta T, Sugiyama A, Tanaka J, Ohdan H. Multi-phasic gene profiling using candidate gene approach predict the capacity of specific antibody production and maintenance following COVID-19 vaccination in Japanese population. Front Immunol 2023; 14:1217206. [PMID: 37564647 PMCID: PMC10411726 DOI: 10.3389/fimmu.2023.1217206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/07/2023] [Indexed: 08/12/2023] Open
Abstract
Background Vaccination against severe acute respiratory syndrome coronavirus type 2 is highly effective in preventing infection and reducing the severity of coronavirus disease (COVID-19). However, acquired humoral immunity wanes within six months. Focusing on the different tempo of acquisition and attenuation of specific antibody titers in individuals, we investigated the impact of genetic polymorphisms on antibody production after COVID-19 vaccination. Methods In total 236 healthcare workers from a Japanese municipal hospital, who received two doses of the vaccine were recruited. We employed a candidate gene approach to identify the target genetic polymorphisms affecting antibody production after vaccination. DNA samples from the study populations were genotyped for 33 polymorphisms in 15 distinct candidate genes encoding proteins involved in antigen-presenting cell activation, T cell activation, T-B interaction, and B cell survival. We measured total anti-SARS-Cov2 spike IgG antibody titers and analyzed the association with genetic polymorphisms at several time points after vaccination using an unbiased statistical method, and stepwise logistic regression following multivariate regression. Results Significant associations were observed between seven SNPs in NLRP3, OAS1, IL12B, CTLA4, and IL4, and antibody titers at 3 weeks after the first vaccination as an initial response. Six SNPs in NLRP3, TNF, OAS1, IL12B, and CTLA4 were associated with high responders with serum antibody titer > 4000 BAU/ml as boosting effect at 3 weeks after the second vaccination. Analysis of long-term maintenance showed the significance of the three SNPs in IL12B, IL7R, and MIF for the maintenance of antibody titers and that in BAFF for attenuation of neutralizing antibodies. Finally, we proposed a predictive model composed of gene profiles to identify the individuals with rapid antibody attenuation by receiver operating characteristic (ROC) analysis (area under the curve (AUC)= 0.76, sensitivity = 82.5%, specificity=67.8%). Conclusions The candidate gene approach successfully showed shifting responsible gene profiles and initial and boosting effect mainly related to the priming phase into antibody maintenance including B cell survival, which traces the phase of immune reactions. These gene profiles provide valuable information for further investigation of humoral immunity against COVID-19 and for building a strategy for personalized vaccine schedules.
Collapse
Affiliation(s)
- Yuki Takemoto
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Naoki Tanimine
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hisaaki Yoshinaka
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yuka Tanaka
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Toshiro Takafuta
- Department of Internal Medicine, Hiroshima City Funairi Citizens Hospital, Hiroshima, Japan
| | - Aya Sugiyama
- Department of Epidemiology, Infectious Disease Control and Prevention, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Junko Tanaka
- Department of Epidemiology, Infectious Disease Control and Prevention, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hideki Ohdan
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
10
|
Fasano S, Milone A, Nicoletti GF, Isenberg DA, Ciccia F. Precision medicine in systemic lupus erythematosus. Nat Rev Rheumatol 2023; 19:331-342. [PMID: 37041269 DOI: 10.1038/s41584-023-00948-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2023] [Indexed: 04/13/2023]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease that has diverse clinical manifestations, ranging from restricted cutaneous involvement to life-threatening systemic organ involvement. The heterogeneity of pathomechanisms that lead to SLE contributes to between-patient variation in clinical phenotype and treatment response. Ongoing efforts to dissect cellular and molecular heterogeneity in SLE could facilitate the future development of stratified treatment recommendations and precision medicine, which is a considerable challenge for SLE. In particular, some genes involved in the clinical heterogeneity of SLE and some phenotype-related loci (STAT4, IRF5, PDGF genes, HAS2, ITGAM and SLC5A11) have an association with clinical features of the disease. An important part is also played by epigenetic varation (in DNA methylation, histone modifications and microRNAs) that influences gene expression and affects cell function without modifying the genome sequence. Immune profiling can help to identify an individual's specific response to a therapy and can potentially predict outcomes, using techniques such as flow cytometry, mass cytometry, transcriptomics, microarray analysis and single-cell RNA sequencing. Furthermore, the identification of novel serum and urinary biomarkers would enable the stratification of patients according to predictions of long-term outcomes and assessments of potential response to therapy.
Collapse
Affiliation(s)
- Serena Fasano
- Rheumatology Unit, Department of Precision Medicine, Università Degli Studi Della Campania "Luigi Vanvitelli", Naples, Italy.
| | - Alessandra Milone
- Rheumatology Unit, Department of Precision Medicine, Università Degli Studi Della Campania "Luigi Vanvitelli", Naples, Italy
| | - Giovanni Francesco Nicoletti
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, Università Degli Studi Della Campania "Luigi Vanvitelli", Naples, Italy
| | - David A Isenberg
- Department of Rheumatology, Division of Medicine, University College London, London, UK
| | - Francesco Ciccia
- Rheumatology Unit, Department of Precision Medicine, Università Degli Studi Della Campania "Luigi Vanvitelli", Naples, Italy.
| |
Collapse
|
11
|
Wang Z, Wang Y, Cui Y, Chen Z, Yi L, Zhu Z, Ni J, Du R, Wang X, Zhu J, Ding F, Quan W, Zhang R, Hu J, Yan X. Association of Serum BAFF Levels with Cardiovascular Events in ST-Segment Elevation Myocardial Infarction. J Clin Med 2023; 12:jcm12041692. [PMID: 36836225 PMCID: PMC9964977 DOI: 10.3390/jcm12041692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/12/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
OBJECTIVES The B cell activating factor (BAFF) is a B cell survival factor involved in atherosclerosis and ischemia-reperfusion (IR) injury. This study sought to investigate whether BAFF is a potential predictor of poor outcomes in patients with ST-segment elevation myocardial infarction (STEMI). METHODS We prospectively enrolled 299 patients with STEMI, and serum levels of BAFF were measured. All subjects were followed for three years. The primary endpoint was major adverse cardiovascular events (MACEs), including cardiovascular death, nonfatal reinfarction, hospitalization for heart failure (HF), and stroke. Multivariable Cox proportional hazards models were constructed to analyze the predictive value of BAFF for MACEs. RESULTS In multivariate analysis, BAFF was independently associated with risk of MACEs (adjusted HR 1.525, 95% CI 1.085-2.145; p = 0.015) and cardiovascular death (adjusted hazard ratio [HR] 3.632, 95% confidence interval [CI] 1.132-11.650, p = 0.030) after adjustment for traditional risk factors. Kaplan-Meier survival curves demonstrated that patients with BAFF levels above the cut-off value (1.46 ng/mL) were more likely to have MACEs (log-rank p < 0.0001) and cardiovascular death (log-rank p < 0.0001). In subgroup analysis, the impact of high BAFF on MACEs development was stronger in patients without dyslipidemia. Furthermore, the C-statistic and Integrated Discrimination Improvement (IDI) values for MACEs were improved with BAFF as an independent risk factor or when combined with cardiac troponin I. CONCLUSIONS This study suggests that higher BAFF levels in the acute phase are an independent predictor of the incidence of MACEs in patients with STEMI.
Collapse
Affiliation(s)
- Ziyang Wang
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yueying Wang
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yuke Cui
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhiyong Chen
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lei Yi
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhengbin Zhu
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jingwei Ni
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Run Du
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiaoqun Wang
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jinzhou Zhu
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Fenghua Ding
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Weiwei Quan
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ruiyan Zhang
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Correspondence: (R.Z.); (J.H.); (X.Y.); Tel./Fax: +86-21-6445-7177 (R.Z. & J.H. & X.Y.)
| | - Jian Hu
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Correspondence: (R.Z.); (J.H.); (X.Y.); Tel./Fax: +86-21-6445-7177 (R.Z. & J.H. & X.Y.)
| | - Xiaoxiang Yan
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Correspondence: (R.Z.); (J.H.); (X.Y.); Tel./Fax: +86-21-6445-7177 (R.Z. & J.H. & X.Y.)
| |
Collapse
|
12
|
Kintrilis N, Gravani F, Rapti A, Papaioannou M, Flessa CM, Nezos A, Antypa E, Papadaki I, Karageorgas Τ, Moutsopoulos HM, Mavragani CP. Subclinical atherosclerosis profiles in rheumatoid arthritis and primary Sjögren's syndrome: the impact of BAFF genetic variations. Rheumatology (Oxford) 2023; 62:958-968. [PMID: 35689637 DOI: 10.1093/rheumatology/keac337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/16/2022] [Accepted: 05/16/2022] [Indexed: 02/04/2023] Open
Abstract
OBJECTIVES RA and primary SS carry increased atherosclerotic risk, while B-cell activating factor holds a vital role in disease pathogenesis and atherosclerosis. We aimed to compare subclinical atherosclerosis profiles between the two clinical entities and define whether BAFF genetic variants alter atherosclerotic risk. METHODS DNA from 166 RA, 148 primary SS patients and 200 healthy controls of similar age and sex distribution was subjected to PCR-based assay for the detection of five single nucleotide polymorphisms of the BAFF gene (rs1224141, rs12583006, rs9514828, rs1041569 and rs9514827). Genotype and haplotype frequencies were determined by SNPStats software and statistical analysis was performed by SPSS and Graphpad Software. Subclinical atherosclerosis was defined by the presence of carotid/femoral plaque formation and arterial wall thickening. RESULTS Atherosclerotic plaque formation was more frequently detected in the RA vs primary SS group (80.7% vs 62.2%, P-value <0.001), along with higher rates of family CVD history, current steroid dose and serum inflammatory markers. The TT genotype of the rs1224141 variant was more prevalent in RA but not primary SS patients with plaque and arterial wall thickening vs their counterparts without. Regarding the rs1014569 variant, among RA patients the TT genotype increased the risk for plaque formation while in primary SS patients the AT genotype conferred increased risk. Haplotype GTTTT was protective in the RA cohort, while TATTT and TTCTT haplotypes increased susceptibility for arterial wall thickening in the primary SS cohort. CONCLUSIONS Increased inflammatory burden, higher steroid doses and distinct BAFF gene variations imply chronic inflammation and B-cell hyperactivity as key contributors for the augmented atherosclerotic risk among autoimmune patients.
Collapse
Affiliation(s)
- Nikolaos Kintrilis
- Department of Physiology, School of Medicine, National and Kapodistrian University of Athens
| | | | - Anna Rapti
- Department of Physiology, School of Medicine, National and Kapodistrian University of Athens.,Department of Rheumatology
| | - Myrto Papaioannou
- Department of Physiology, School of Medicine, National and Kapodistrian University of Athens
| | - Christina-Maria Flessa
- Department of Physiology, School of Medicine, National and Kapodistrian University of Athens
| | - Adrianos Nezos
- Department of Physiology, School of Medicine, National and Kapodistrian University of Athens
| | - Eleni Antypa
- Department of Radiology, G. Gennimatas General Hospital of Athens
| | | | - Τheofanis Karageorgas
- Department of Physiology, School of Medicine, National and Kapodistrian University of Athens
| | | | - Clio P Mavragani
- Department of Physiology, School of Medicine, National and Kapodistrian University of Athens.,Joint Academic Rheumatology Program, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| |
Collapse
|
13
|
Dhaouadi T, Rojbi I, Ghammouki S, Ben Nacef I, Adel M, Mekni S, Khiari K, Ben Abdallah T, Sfar I, Gorgi Y. Pre- and Post-treatment Serum BAFF Levels and BAFF Gene Polymorphisms in Patients with Graves' Disease. Endocr Res 2023; 48:16-26. [PMID: 36636836 DOI: 10.1080/07435800.2023.2167087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND B cell activating factor (BAFF), a crucial factor for B cell survival and differentiation, has been linked to several autoimmune conditions. The aim of this study was to evaluate the association of BAFF gene's polymorphisms with its serum levels and to assess their effect on Graves' disease (GD) susceptibility and presentation. METHODS Sixty-two GD patients and 152 healthy controls have been enrolled to investigate BAFF rs9514827 (-2841 T/C), rs1041569 (-2701 T/A) and rs9514828 (-871 C/T) gene's polymorphism by PCR-RFLP and serum BAFF level's kinetics under medical treatment by ELISA. RESULTS Median serum BAFF level at baseline was significantly higher in GD patients (841.7 pg/ml [685.23-1058.32]) comparatively to controls (495.75 pg/ml [383.17-595.7]), p = 7.29 E-25. A ROC curve was used to assess BAFF performances in GD diagnosis and revealed an AUC of 94.9% [0.919-0.979], p = 7.29 E-25. At a cutoff value of 654.9 pg/ml of BAFF at baseline, the sensitivity and the specificity were, respectively, 83.9% and 90.8%. BAFF level was significantly increased in smoking patients (1079.55 pg/ml [875.35-1203]) comparatively to nonsmokers (746.95 pg/ml [643.2-915.7]), p = 3.1 E-5. While -2841 T/C and -2701 T/A genotypes and alleles frequencies were similar between patients and controls, the -871*T allele was significantly more prevalent in patients (0.613) than in controls (0.477); p = .01, OR [95% CI] = 1.73 [1.13-2.65]. The three studied polymorphisms were not associated with serum BAFF level at baseline. CONCLUSION Serum BAFF level is significantly increased in GD especially in smoking patients. rs9514828 - 871*T allele might be a susceptibility variant for GD.
Collapse
Affiliation(s)
- Tarak Dhaouadi
- Research Laboratory in Immunology of Renal Transplantation and Immunopathology (LR03SP01), Charles Nicolle Hospital, Tunis El Manar University, Tunis, Tunisia
| | - Imen Rojbi
- Endocrinology Department, Charles Nicolle Hospital, Tunis, Tunisia
| | - Sameh Ghammouki
- Research Laboratory in Immunology of Renal Transplantation and Immunopathology (LR03SP01), Charles Nicolle Hospital, Tunis El Manar University, Tunis, Tunisia
| | | | - Meriem Adel
- Endocrinology Department, Charles Nicolle Hospital, Tunis, Tunisia
| | - Sabrine Mekni
- Endocrinology Department, Charles Nicolle Hospital, Tunis, Tunisia
| | - Karima Khiari
- Endocrinology Department, Charles Nicolle Hospital, Tunis, Tunisia
| | - Taïeb Ben Abdallah
- Research Laboratory in Immunology of Renal Transplantation and Immunopathology (LR03SP01), Charles Nicolle Hospital, Tunis El Manar University, Tunis, Tunisia
| | - Imen Sfar
- Research Laboratory in Immunology of Renal Transplantation and Immunopathology (LR03SP01), Charles Nicolle Hospital, Tunis El Manar University, Tunis, Tunisia
| | - Yousr Gorgi
- Research Laboratory in Immunology of Renal Transplantation and Immunopathology (LR03SP01), Charles Nicolle Hospital, Tunis El Manar University, Tunis, Tunisia
| |
Collapse
|
14
|
Subclinical Atherosclerosis Is Associated with Discrepancies in BAFF and APRIL Levels and Altered Breg Potential of Precursor-like Marginal Zone B-Cells in Long-Term HIV Treated Individuals. Vaccines (Basel) 2022; 11:vaccines11010081. [PMID: 36679926 PMCID: PMC9863280 DOI: 10.3390/vaccines11010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 01/01/2023] Open
Abstract
Chronic inflammation persists in people living with HIV (PLHIV) despite antiretrovial therapy (ART) and is involved in their premature development of cardiovascular diseases (CVD) such as atherosclerosis. We have previously reported that an excess of “B-cell activating factor” (BAFF), an important molecule for the selection and activation of first-line Marginal Zone (MZ) B-cell populations, is associated with deregulations of precursor-like MZ (MZp), whose potent B-cell regulatory (Breg) capacities are altered in PLHIV, early on and despite 1−2 years of ART. Based on these observations, and growing evidence that MZ populations are involved in atherosclerosis control, we designed a cross sectional study to explore the associations between BAFF and its analogue “A proliferation-inducing ligand” (APRIL) with subclinical CVD in long-time-treated individuals of the Canadian HIV and Aging Cohort Study (CHACS) imaging sub-study group. We also characterized the Breg profile of MZp from the blood of these individuals. Results were correlated with the total volume of atherosclerotic plaques (TPV) and with CVD risk factors and biomarkers. TPV was measured using cardiac computerised tomography angiography, and presence of CVD was defined as TPV > 0. We report that blood levels of BAFF are elevated and correlate positively with CVD and its risk factors in PLHIV from the CHACS, in contrast to APRIL levels, which correlate negatively with these factors. The expression levels of Breg markers such as NR4A3, CD39, CD73 and CD83 are significantly lower in PLHIV when compared to those of HIV-uninfected controls. In vitro experiments show that APRIL upregulates the expression of Breg markers by blood MZp from HIV-uninfected individuals, while this modulation is dampened by the addition of recombinant BAFF. Altogether, our observations suggest that strategies viewed to modulate levels of BAFF and/or APRIL could eventually represent a potential treatment target for CVD in PLHIV.
Collapse
|
15
|
Shater H, Fawzy M, Farid A, El-Amir A, Fouad S, Madbouly N. B-cell activating factor and A proliferation-inducing ligand in relation to intima-media thickness as biomarkers of premature atherosclerosis in systemic lupus erythematosus patients. Am J Med Sci 2022; 364:646-654. [PMID: 35580639 DOI: 10.1016/j.amjms.2022.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 03/10/2022] [Accepted: 05/06/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND The aim of this study was to assess the correlation of the serum B-cell activating factor (BAFF), A proliferation-inducing ligand (APRIL) and interleukin (IL)-21 with carotid intima-media thickness (cIMT) to evaluate their efficacy as non-invasive biomarkers for the risk of premature development of atherosclerosis. METHODS ELISA test was used to quantify serum BAFF, APRIL and IL-21 in 40 patients with systemic lupus erythematosus (SLE) and 20 healthy controls (HCs). The obtained results were correlated with disease duration, anti-double stranded DNA, complement proteins levels, lipid profile, cIMT and the Systemic Lupus Erythematosus Disease Activity Index (SLEDAI). RESULTS Serum BAFF, APRIL and IL-21 were significantly increased in SLE compared to HCs. Positive correlation was recorded between BAFF (r = 0.51) and APRIL (r = 0.52) with the cIMT. IL-21 correlated positively with SLEDAI (r = 0.33) and negatively with BAFF (r = -0.37) and APRIL (r = -0.44). According to the multiple logistic regression analysis, we found that low-density lipoprotein, serum BAFF and APRIL values were independent factors for cIMT in SLE. To discriminate premature atherosclerosis in patients with SLE, BAFF ≥455 pg/ml yielded 88.9% sensitivity with 100% specificity while APRIL ≥600 pg/ml yielded 95% sensitivity with 100% specificity. IL-21 ≥240 pg/ml yielded 66.7% sensitivity and 100% specificity. CONCLUSIONS Circulating BAFF and APRIL in patients with SLE were correlated to disease activity and cIMT, suggesting that they could be used as a peripheral blood biomarker for the occurrence of premature atherosclerosis in SLE.
Collapse
Affiliation(s)
- Hend Shater
- Immunology Division, Zoology Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Mary Fawzy
- Rheumatology and Immunology unit, Department of Internal Medicine, Cairo University, Cairo, Egypt
| | - Alyaa Farid
- Immunology Division, Zoology Department, Faculty of Science, Cairo University, Cairo, Egypt.
| | - Azza El-Amir
- Immunology Division, Zoology Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Salwa Fouad
- Immunology Division, Zoology Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Neveen Madbouly
- Immunology Division, Zoology Department, Faculty of Science, Cairo University, Cairo, Egypt
| |
Collapse
|
16
|
Harley ITW, Allison K, Scofield RH. Polygenic autoimmune disease risk alleles impacting B cell tolerance act in concert across shared molecular networks in mouse and in humans. Front Immunol 2022; 13:953439. [PMID: 36090990 PMCID: PMC9450536 DOI: 10.3389/fimmu.2022.953439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/19/2022] [Indexed: 11/23/2022] Open
Abstract
Most B cells produced in the bone marrow have some level of autoreactivity. Despite efforts of central tolerance to eliminate these cells, many escape to periphery, where in healthy individuals, they are rendered functionally non-responsive to restimulation through their antigen receptor via a process termed anergy. Broad repertoire autoreactivity may reflect the chances of generating autoreactivity by stochastic use of germline immunoglobulin gene segments or active mechanisms may select autoreactive cells during egress to the naïve peripheral B cell pool. Likewise, it is unclear why in some individuals autoreactive B cell clones become activated and drive pathophysiologic changes in autoimmune diseases. Both of these remain central questions in the study of the immune system(s). In most individuals, autoimmune diseases arise from complex interplay of genetic risk factors and environmental influences. Advances in genome sequencing and increased statistical power from large autoimmune disease cohorts has led to identification of more than 200 autoimmune disease risk loci. It has been observed that autoantibodies are detectable in the serum years to decades prior to the diagnosis of autoimmune disease. Thus, current models hold that genetic defects in the pathways that control autoreactive B cell tolerance set genetic liability thresholds across multiple autoimmune diseases. Despite the fact these seminal concepts were developed in animal (especially murine) models of autoimmune disease, some perceive a disconnect between human risk alleles and those identified in murine models of autoimmune disease. Here, we synthesize the current state of the art in our understanding of human risk alleles in two prototypical autoimmune diseases - systemic lupus erythematosus (SLE) and type 1 diabetes (T1D) along with spontaneous murine disease models. We compare these risk networks to those reported in murine models of these diseases, focusing on pathways relevant to anergy and central tolerance. We highlight some differences between murine and human environmental and genetic factors that may impact autoimmune disease development and expression and may, in turn, explain some of this discrepancy. Finally, we show that there is substantial overlap between the molecular networks that define these disease states across species. Our synthesis and analysis of the current state of the field are consistent with the idea that the same molecular networks are perturbed in murine and human autoimmune disease. Based on these analyses, we anticipate that murine autoimmune disease models will continue to yield novel insights into how best to diagnose, prognose, prevent and treat human autoimmune diseases.
Collapse
Affiliation(s)
- Isaac T. W. Harley
- Division of Rheumatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States
- Human Immunology and Immunotherapy Initiative (HI3), Department of Immunology, University of Colorado School of Medicine, Aurora, CO, United States
- Rheumatology Section, Medicine Service, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, United States
| | - Kristen Allison
- Division of Rheumatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States
- Human Immunology and Immunotherapy Initiative (HI3), Department of Immunology, University of Colorado School of Medicine, Aurora, CO, United States
| | - R. Hal Scofield
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Arthritis & Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
- Medical/Research Service, US Department of Veterans Affairs Medical Center, Oklahoma City, OK, United States
| |
Collapse
|
17
|
Wang Y, Su W, Li Y, Yuan J, Yao M, Su X, Wang Y. Analyzing the pathogenesis of systemic lupus erythematosus complicated by atherosclerosis using transcriptome data. Front Immunol 2022; 13:935545. [PMID: 35935949 PMCID: PMC9354579 DOI: 10.3389/fimmu.2022.935545] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/04/2022] [Indexed: 11/15/2022] Open
Abstract
Background Accumulating evidence supports the predisposition of systemic lupus erythematosus (SLE) to atherosclerosis (AS). However, the common pathogenesis of these two diseases remains unclear. This study aimed to explore the mechanisms of SLE complicated by AS. Methods Gene expression profiles of SLE (GSE50772) and AS (GSE100927) were downloaded from the Gene Expression Omnibus. We analyzed differentially expressed genes (DEGs) of SLE and AS and performed enrichment analyses separately. After analyzing the common DEGs (CDEGs), we performed functional enrichment analysis, protein-protein interaction (PPI) network analysis, and hub genes (HGs) identification of CDEGs. Then, we performed a co-expression analysis of HGs and verified their expression and diagnostic value. We further explored immune cell infiltration and analyzed the correlation between HGs and infiltrating immune cells (IICs). Finally, we verified the reliability of the screening pathway. Results We obtained 530 DEGs from the GSE50772 dataset and 448 DEGs from the GSE100927 dataset. The results of the enrichment analysis showed that there were many similar immune- and inflammation-related processes between the two diseases. We analyzed 26 CDEGs (two downregulated genes and 24 upregulated genes) and enrichment analysis highlighted the important role of the IL-17 signaling pathway. We identified five HGs (CCR1, CD163, IL1RN, MMP9, and SIGLEC1) using the CytoHubba plugin and HGs validation showed that the five HGs screened were reliable. Co-expression networks showed that five HGs can affect mononuclear cell migration. Immune cell infiltration analysis indicated monocytes in SLE and M0 macrophages in AS accounted for a high proportion of all IICs, and the difference in infiltration was obvious. We also found a significant positive correlation between CCR1, CD163, IL1RN, and MMP9 and monocytes in SLE, and a significant positive correlation between CCR1, IL1RN, MMP9, and SIGLEC1 and M0 macrophages in AS. Pathway validation also demonstrated that the IL-17 signaling pathway was a key pathway for the differentiation of monocytes into macrophages. Conclusions The five HGs may promote the differentiation of monocytes into macrophages by influencing the IL-17 signaling pathway, leading to SLE complicated by AS. Our study provides insights into the mechanisms of SLE complicated by AS.
Collapse
|
18
|
Liu Y, Yu X, Zhang W, Zhang X, Wang M, Ji F. Mechanistic insight into premature atherosclerosis and cardiovascular complications in systemic lupus erythematosus. J Autoimmun 2022; 132:102863. [PMID: 35853760 DOI: 10.1016/j.jaut.2022.102863] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/02/2022] [Indexed: 12/12/2022]
Abstract
Systemic lupus erythematosus (SLE) is associated with a significant risk of cardiovascular disease (CVD), which substantially increases disease mortality and morbidity. The overall mechanisms associated with the development of premature atherosclerosis and CVD in SLE remain unclear, but has been considered as a result of an intricate interplay between the profound immune dysregulation and traditional CVD risk factors. Aberrant systemic inflammation in SLE may lead to an abnormal lipid profile and dysfunction, which can further fuel the pro-atherosclerotic environment. The existence of a strong imbalance between endothelial damage and vascular repair/angiogenesis promotes vascular injury, which is the early step in the progression of atherosclerotic CVD. Profound innate and adaptive immune dysregulation, characterized by excessive type I interferon burden, aberrant macrophage, platelet and complements activation, neutrophil dysregulation and neutrophil extracellular traps formation, uncontrolled T cell activation, and excessive autoantibody production and immune complex formation, have been proposed to promote accelerated CVD in SLE. While designing targeted therapies to correct the dysregulated immune activation may be beneficial in the treatment of SLE-related CVD, much additional work is needed to determine how to translate these findings into clinical practice. Additionally, a number of biomarkers display diagnostic potentials in improving CVD risk stratification in SLE, further prospective studies will help understand which biomarker(s) will be the most impactful one(s) in assessing SLE-linked CVD. Continued efforts to identify novel mechanisms and to establish criteria for assessing CVD risk as well as predicting CVD progression are in great need to improve CVD outcomes in SLE.
Collapse
Affiliation(s)
- Yudong Liu
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, PR China; The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, PR China
| | - Xue Yu
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, PR China
| | - Wenduo Zhang
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, PR China
| | - Xuan Zhang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, PR China
| | - Min Wang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, PR China
| | - Fusui Ji
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, PR China.
| |
Collapse
|
19
|
Santillán-López E, Muñoz-Valle JF, Oregon-Romero E, Espinoza-García N, Treviño-Talavera BA, Salazar-Camarena DC, Marín-Rosales M, Cruz A, Alvarez-Gómez JA, Sagrero-Fabela N, Cerpa-Cruz S, Palafox-Sánchez CA. Analysis of TNFSF13B polymorphisms and BAFF expression in rheumatoid arthritis and primary Sjögren's syndrome patients. Mol Genet Genomic Med 2022; 10:e1950. [PMID: 35411715 PMCID: PMC9184664 DOI: 10.1002/mgg3.1950] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/17/2022] [Accepted: 04/01/2022] [Indexed: 11/11/2022] Open
Abstract
Background The increased expression of B cell‐activating factor (BAFF) has been linked to autoantibody production in autoimmune diseases (ADs). The aim of this study was to investigate the association among TNFSF13B gene (OMIM: 603969) single nucleotide polymorphisms (SNPs), TNFSF13B mRNA, and soluble BAFF (sBAFF) expression in patients with rheumatoid arthritis (RA) and primary Sjögren's syndrome (pSS). The diagnostic value of sBAFF also was evaluated by the area under the curve (AUC) of receiver operating characteristic or receptor (ROC) curves. Methods Genotypes of the TNFSF13B rs9514827 (−2841 T > C), rs1041569 (−2701 A > T) and rs9514828 (−871 C > T) SNPs were determined by PCR‐RFLP assay. TNFSF13B mRNA and sBAFF expression were performed by RT‐qPCR and ELISA, respectively. The study included 320 RA patients, 101 pSS patients, and 309 healthy subjects (HS). Results The rs9514828 T allele and the TAT haplotype were associated with an increased risk to develop RA. In both ADs, the TNFSF13B mRNA levels were increased in comparison with HS. The rs9514828 (−871 C > T) polymorphism was associated with increased gene expression in RA patients. Also, sBAFF levels were higher in both ADs, however pSS patients showed the highest sBAFF levels. sBAFF showed higher diagnostic performance for pSS with an AUC of 0.968, with a similar accuracy of anti‐SSA/Ro antibody diagnosis (AUC = 0.974). Conclusions Our findings demonstrate that the TNFSF13B rs9514828 (−871 C > T) polymorphism is a risk factor for RA in the western Mexican population. sBAFF levels may be a potential diagnosis biomarker in pSS.
Collapse
Affiliation(s)
- Enrique Santillán-López
- Doctorado en Ciencias Biomédicas (DCB), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - José Francisco Muñoz-Valle
- Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Edith Oregon-Romero
- Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Noemí Espinoza-García
- Doctorado en Ciencias en Biología Molecular en Medicina (DCBMM), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | | | - Diana Celeste Salazar-Camarena
- Grupo de Inmunología Molecular, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Miguel Marín-Rosales
- Grupo de Inmunología Molecular, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico.,Hospital General de Occidente, Secretaría de Salud Jalisco, Guadalajara, Mexico
| | - Alvaro Cruz
- Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Jhonatan Antonio Alvarez-Gómez
- Doctorado en Ciencias en Biología Molecular en Medicina (DCBMM), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Nefertari Sagrero-Fabela
- Doctorado en Ciencias Biomédicas (DCB), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Sergio Cerpa-Cruz
- Servicio de Reumatología, O.P.D. Hospital Civil de Guadalajara "Fray Antonio Alcalde", Guadalajara, Mexico
| | - Claudia Azucena Palafox-Sánchez
- Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico.,Grupo de Inmunología Molecular, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| |
Collapse
|
20
|
Moschetti L, Piantoni S, Vizzardi E, Sciatti E, Riccardi M, Franceschini F, Cavazzana I. Endothelial Dysfunction in Systemic Lupus Erythematosus and Systemic Sclerosis: A Common Trigger for Different Microvascular Diseases. Front Med (Lausanne) 2022; 9:849086. [PMID: 35462989 PMCID: PMC9023861 DOI: 10.3389/fmed.2022.849086] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/04/2022] [Indexed: 11/13/2022] Open
Abstract
This review describes the complex interplay between inflammation, vasculopathy and fibrosis that involve the heart and peripheral small vessels, leading to endothelial stiffness, vascular damage, and early aging in patients with systemic lupus erythematosus and systemic sclerosis, which represents two different models of vascular dysfunction among systemic autoimmune diseases. In fact, despite the fact that diagnostic methods and therapies have been significantly improved in the last years, affected patients show an excess of cardiovascular mortality if compared with the general population. In addition, we provide a complete overview on the new techniques which are used for the evaluation of endothelial dysfunction in a preclinical phase, which could represent a new approach in the assessment of cardiovascular risk in these patients.
Collapse
Affiliation(s)
- Liala Moschetti
- Rheumatology and Clinical immunology Unit, ASST Spedali Civili of Brescia, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Silvia Piantoni
- Rheumatology and Clinical immunology Unit, ASST Spedali Civili of Brescia, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- *Correspondence: Silvia Piantoni,
| | - Enrico Vizzardi
- Cardiology Unit, ASST Spedali Civili of Brescia, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | | | - Mauro Riccardi
- Cardiology Unit, ASST Spedali Civili of Brescia, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Franco Franceschini
- Rheumatology and Clinical immunology Unit, ASST Spedali Civili of Brescia, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Ilaria Cavazzana
- Rheumatology and Clinical immunology Unit, ASST Spedali Civili of Brescia, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| |
Collapse
|
21
|
Marginal Zone B-Cell Populations and Their Regulatory Potential in the Context of HIV and Other Chronic Inflammatory Conditions. Int J Mol Sci 2022; 23:ijms23063372. [PMID: 35328792 PMCID: PMC8949885 DOI: 10.3390/ijms23063372] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/11/2022] [Accepted: 03/17/2022] [Indexed: 12/12/2022] Open
Abstract
Inflammation in the context of Human Immunodeficiency Virus (HIV) establishes early and persists beyond antiretroviral therapy (ART). As such, we have shown excess B-cell activating factor (BAFF) in the blood of HIV-infected progressors, as soon as in the acute phase, and despite successful ART. Excess BAFF was associated with deregulation of the B-cell compartment; notably, with increased frequencies of a population sharing features of both transitional immature (TI) and marginal zone (MZ) B-cells, we termed Marginal Zone precursor-like (MZp). We have reported similar observations with HIV-transgenic mice, Simian Immunodeficiency Virus (SIV)-infected macaques, and more recently, with HIV-infected Beninese commercial sex workers, which suggests that excess BAFF and increased frequencies of MZp B-cells are reliable markers of inflammation in the context of HIV. Importantly, we have recently shown that in healthy individuals, MZps present an important regulatory B-cell (Breg) profile and function. Herein, we wish to review our current knowledge on MZ B-cell populations, especially their Breg status, and that of other B-cell populations sharing similar features. BAFF and its analog A Proliferation-Inducing Ligand (APRIL) are important in shaping the MZ B-cell pool; moreover, the impact that excess BAFF—encountered in the context of HIV and several chronic inflammatory conditions—may exert on MZ B-cell populations, Breg and antibody producing capacities is a threat to the self-integrity of their antibody responses and immune surveillance functions. As such, deregulations of MZ B-cell populations contribute to autoimmune manifestations and the development of MZ lymphomas (MZLs) in the context of HIV and other inflammatory diseases. Therefore, further comprehending the mechanisms regulating MZ B-cell populations and their functions could be beneficial to innovative therapeutic avenues that could be deployed to restore MZ B-cell immune competence in the context of chronic inflammation involving excess BAFF.
Collapse
|
22
|
Jha SB, Rivera AP, Flores Monar GV, Islam H, Puttagunta SM, Islam R, Kundu S, Sange I. Systemic Lupus Erythematosus and Cardiovascular Disease. Cureus 2022; 14:e22027. [PMID: 35282557 PMCID: PMC8910778 DOI: 10.7759/cureus.22027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2022] [Indexed: 12/14/2022] Open
|
23
|
Zhang Y, Tian J, Xiao F, Zheng L, Zhu X, Wu L, Zhao C, Wang S, Rui K, Zou H, Lu L. B cell-activating factor and its targeted therapy in autoimmune diseases. Cytokine Growth Factor Rev 2021; 64:57-70. [DOI: 10.1016/j.cytogfr.2021.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 12/18/2022]
|
24
|
Cardiovascular disease in systemic lupus erythematosus. RHEUMATOLOGY AND IMMUNOLOGY RESEARCH 2021; 2:157-172. [PMID: 35880242 PMCID: PMC9242526 DOI: 10.2478/rir-2021-0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 09/08/2021] [Indexed: 11/21/2022]
Abstract
There is a well-known increased risk for cardiovascular disease that contributes to morbidity and mortality in systemic lupus erythematosus (SLE). Major adverse cardiovascular events and subclinical atherosclerosis are both increased in this patient population. While traditional cardiac risk factors do contribute to the increased risk that is seen, lupus disease-related factors, medications, and genetic factors also impact the overall risk. SLE-specific inflammation, including oxidized lipids, cytokines, and altered immune cell subtypes all are likely to play a role in the pathogenesis of atherosclerotic plaques. Research is ongoing to identify biomarkers that can help clinicians to predict which SLE patients are at the greatest risk for cardiovascular disease (CVD). While SLE-specific treatment regimens for the prevention of cardiovascular events have not been identified, current strategies include minimization of traditional cardiac risk factors and lowering of overall lupus disease activity.
Collapse
|
25
|
Wright JA, Bazile C, Clark ES, Carlesso G, Boucher J, Kleiman E, Mahmoud T, Cheng LI, López-Rodríguez DM, Satterthwaite AB, Altman NH, Greidinger EL, Khan WN. Impaired B Cell Apoptosis Results in Autoimmunity That Is Alleviated by Ablation of Btk. Front Immunol 2021; 12:705307. [PMID: 34512628 PMCID: PMC8427801 DOI: 10.3389/fimmu.2021.705307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/30/2021] [Indexed: 01/23/2023] Open
Abstract
While apoptosis plays a role in B-cell self-tolerance, its significance in preventing autoimmunity remains unclear. Here, we report that dysregulated B cell apoptosis leads to delayed onset autoimmune phenotype in mice. Our longitudinal studies revealed that mice with B cell-specific deletion of pro-apoptotic Bim (BBimfl/fl ) have an expanded B cell compartment with a notable increase in transitional, antibody secreting and recently described double negative (DN) B cells. They develop greater hypergammaglobulinemia than mice lacking Bim in all cells and accumulate several autoantibodies characteristic of Systemic Lupus Erythematosus (SLE) and related Sjögren's Syndrome (SS) including anti-nuclear, anti-Ro/SSA and anti-La/SSB at a level comparable to NODH2h4 autoimmune mouse model. Furthermore, lymphocytes infiltrated the tissues including submandibular glands and formed follicle-like structures populated with B cells, plasma cells and T follicular helper cells indicative of ongoing immune reaction. This autoimmunity was ameliorated upon deletion of Bruton's tyrosine kinase (Btk) gene, which encodes a key B cell signaling protein. These studies suggest that Bim-mediated apoptosis suppresses and B cell tyrosine kinase signaling promotes B cell-mediated autoimmunity.
Collapse
Affiliation(s)
- Jacqueline A. Wright
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Cassandra Bazile
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Emily S. Clark
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Gianluca Carlesso
- Early Oncology Discovery, Early Oncology R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Justin Boucher
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Eden Kleiman
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Tamer Mahmoud
- Early Oncology Discovery, Early Oncology R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Lily I. Cheng
- Oncology Safety/Pathology, Clinical Pharmacology and Safety Sciences, AstraZeneca, Gaithersburg, MD, United States
| | - Darlah M. López-Rodríguez
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Anne B. Satterthwaite
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Norman H. Altman
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Eric L. Greidinger
- Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Wasif N. Khan
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, United States
| |
Collapse
|
26
|
Plastiras SC, Moutsopoulos HM. Arrhythmias and Conduction Disturbances in Autoimmune Rheumatic Disorders. Arrhythm Electrophysiol Rev 2021; 10:17-25. [PMID: 33936739 PMCID: PMC8076972 DOI: 10.15420/aer.2020.43] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Rhythm and conduction disturbances and sudden cardiac death are important manifestations of cardiac involvement in autoimmune rheumatic diseases (ARD), which have a serious impact on morbidity and mortality. While the underlying arrhythmogenic mechanisms are multifactorial, myocardial fibrosis plays a pivotal role. It accounts for a substantial portion of cardiac mortality and may manifest as atrial and ventricular arrhythmias, conduction system abnormalities, biventricular cardiac failure or sudden death. In patients with ARD, myocardial fibrosis is considered to be the hallmark of cardiac involvement as a result of inflammatory process or to coronary artery occlusive disease. Myocardial fibrosis constitutes the pathological substrates for reentrant circuits. The presence of supraventricular extra systoles, tachyarrhythmias, ventricular activity and conduction disturbances are not uncommon in patients with ARDs, more often in systemic lupus erythematosus, systemic sclerosis, rheumatoid arthritis, inflammatory muscle disorders and anti-neutrophil cytoplasm antibody-associated vasculitis. In this review, the type, the relative prevalence and the underlying mechanisms of rhythm and conduction disturbances in the emerging field of cardiorheumatology are provided.
Collapse
Affiliation(s)
- Sotiris C Plastiras
- Echocardiography Unit, Bioiatriki SA, Bioiatriki Healthcare Group, Athens, Greece
| | | |
Collapse
|
27
|
Ding X, Ren Y, He X. IFN-I Mediates Lupus Nephritis From the Beginning to Renal Fibrosis. Front Immunol 2021; 12:676082. [PMID: 33959133 PMCID: PMC8093624 DOI: 10.3389/fimmu.2021.676082] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/06/2021] [Indexed: 12/13/2022] Open
Abstract
Lupus nephritis (LN) is a common complication of systemic lupus erythematosus (SLE) and a major risk factor for morbidity and mortality. The abundant cell-free nucleic (DNA/RNA) in SLE patients, especially dsDNA, is a key substance in the pathogenesis of SLE and LN. The deposition of DNA/RNA-immune complexes (DNA/RNA-ICs) in the glomerulus causes a series of inflammatory reactions that lead to resident renal cell disturbance and eventually renal fibrosis. Cell-free DNA/RNA is the most effective inducer of type I interferons (IFN-I). Resident renal cells (rather than infiltrating immune cells) are the main source of IFN-I in the kidney. IFN-I in turn damages resident renal cells. Not only are resident renal cells victims, but also participants in this immunity war. However, the mechanism for generation of IFN-I in resident renal cells and the pathological mechanism of IFN-I promoting renal fibrosis have not been fully elucidated. This paper reviews the latest epidemiology of LN and its development process, discusses the mechanism for generation of IFN-I in resident renal cells and the role of IFN-I in the pathogenesis of LN, and may open a new perspective for the treatment of LN.
Collapse
Affiliation(s)
- Xuewei Ding
- Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Laboratory of Pediatric Nephrology, Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yi Ren
- Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Laboratory of Pediatric Nephrology, Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Pediatric Internal Medicine Department, Haikou Maternal and Child Health Hospital, Haikou, China
| | - Xiaojie He
- Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Laboratory of Pediatric Nephrology, Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
28
|
Capecchi R, Puxeddu I, Pratesi F, Migliorini P. New biomarkers in SLE: from bench to bedside. Rheumatology (Oxford) 2021; 59:v12-v18. [PMID: 32911542 PMCID: PMC7719038 DOI: 10.1093/rheumatology/keaa484] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/23/2020] [Indexed: 12/20/2022] Open
Abstract
Biomarkers may have a diagnostic or monitoring value, or may predict response to therapy or disease course. The aim of this review is to discuss new serum and urinary biomarkers recently proposed for the diagnosis and management of SLE patients. Novel sensitive and specific assays have been proposed to evaluate complement proteins, ‘old’ biomarkers that are still a cornerstone in the management of this disease. Chemokines and lectins have been evaluated as surrogate biomarkers of IFN signature. Other cytokines like the B cell activating factor (BAFF) family cytokines are directly related to perturbations of the B cell compartment as key pathogenetic mechanism of the disease. A large number of urine biomarkers have been proposed, either related to the migration and homing of leukocytes to the kidney or to the local regulation of inflammatory circuits and the survival of renal intrinsic cells. The combination of traditional disease-specific biomarkers and novel serum or urine biomarkers may represent the best choice to correctly classify, stage and treat patients with SLE.
Collapse
Affiliation(s)
- Riccardo Capecchi
- Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Ilaria Puxeddu
- Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Federico Pratesi
- Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Paola Migliorini
- Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
29
|
Croca SC, Griffin M, Farinha F, Isenberg DA, Nicolaides A, Rahman A. Total plaque area and plaque echogenicity are novel measures of subclinical atherosclerosis in patients with systemic lupus erythematosus. Rheumatology (Oxford) 2021; 60:4185-4198. [PMID: 33404639 DOI: 10.1093/rheumatology/keaa905] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 11/21/2020] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES Patients with SLE have an increased risk of developing cardiovascular disease (CVD). Multiple studies have shown that these patients have increased numbers of carotid plaques and greater intima-media thickness (IMT) than healthy controls. Measures such as total plaque area (TPA) and plaque echogenicity may be more sensitive and more relevant to cardiovascular risk than presence of plaque and IMT alone. Our objective was to produce the first report of TPA and echogenicity in a population of patients with SLE. METHODS One hundred patients with SLE and no history of clinical CVD were recruited. Clinical, serological and treatment variables were recorded and serum was tested for antibodies to apolipoprotein A-1 and high-density lipoprotein. Both carotid and both femoral artery bifurcations of each patient were scanned to determine IMT, TPA and echogenicity of plaques. Univariable and multivariable statistical analyses were carried out to define factors associated with each of these outcomes. RESULTS Thirty-six patients had carotid and/or femoral plaque. Increasing age was associated with presence of plaque and increased IMT. Triglyceride levels were associated with presence of plaque. Mean (s.d.) TPA was 60.8 (41.6) mm2. Patients taking prednisolone had higher TPA. Most plaques were echolucent, but increased echogenicity was associated with prednisolone therapy and persistent disease activity. CONCLUSION TPA and plaque echogenicity in patients with SLE are associated with different factors than those associated with presence of plaque and IMT. Longitudinal studies may show whether these outcome measures add value in the management of cardiovascular risk in SLE.
Collapse
Affiliation(s)
- Sara C Croca
- Division of Medicine, Centre for Rheumatology Research, University College London
| | - Maura Griffin
- Vascular Screening and Diagnostic Centre, London, UK.,Vascular Screening and Diagnostic Centre, Nicosia, Cyprus
| | - Filipa Farinha
- Division of Medicine, Centre for Rheumatology Research, University College London
| | - David A Isenberg
- Division of Medicine, Centre for Rheumatology Research, University College London
| | - Andrew Nicolaides
- Department of Surgery, Imperial College, London, UK.,University of Nicosia Medical School, Cyprus
| | - Anisur Rahman
- Division of Medicine, Centre for Rheumatology Research, University College London
| |
Collapse
|
30
|
Zhan T, Wang B, Fu J, Shao Y, Ye L, Shi H, Zheng L. Artesunate inhibits Sjögren's syndrome-like autoimmune responses and BAFF-induced B cell hyperactivation via TRAF6-mediated NF-κB signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 80:153381. [PMID: 33086170 DOI: 10.1016/j.phymed.2020.153381] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/07/2020] [Accepted: 10/12/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Hyperactivation of B cells by activators has been demonstrated to play a central role in the pathogenesis of Sjögren's syndrome (SS). In this study, we found that artesunate (ART) can attenuate BAFF-induced B cell hyperactivation and SS-like symptoms in NOD/Ltj mice. PURPOSE To determine the efficacy of ART in attenuating SS-like symptoms in vivo and explore the underlying mechanism in vitro. STUDY DESIGN ART was intragastrically injected into SS-like NOD/Ltj mice. The cytokine hsBAFF was used to activate Raji and Daudi B cells to mimic B cell hyperactivation in vitro. METHODS The efficacy of ART in inhibiting SS progression was studied in NOD/Ltj mice. Salivary flow rate, the number of lymphocytic infiltration foci, the level of autoantibodies and the extent of B cell infiltration were measured in the indicated groups. CCK-8 assays, flow cytometry-based EdU staining and Annexin V/PI staining were also used to detect the effect of ART on the survival and proliferation mechanism in BAFF-induced Raji and Daudi cells. Further studies determined that TRAF6 degradation is a potential mechanism by which ART determines B cell fate. RESULTS Treatment with ART inhibited lymphocytic foci formation, B cell infiltration and autoantibody secretion in SS-like NOD/Ltj mice. In vitro assay results indicated that ART effectively inhibited BAFF-induced viability, survival and proliferation of neoplastic B cells. Mechanistically, ART targeted BAFF-activated NFκB by regulating the proteasome-mediated degradation of TRAF6 in Raji and Daudi cells. CONCLUSION ART ameliorated murine SS-like symptoms and regulated TRAF6-NFκB signaling, thus determining survival and proliferation of B cells.
Collapse
Affiliation(s)
- Tianle Zhan
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Clinical Research Center of Oral Disease, Shanghai, China; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Baoli Wang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Clinical Research Center of Oral Disease, Shanghai, China; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Jiayao Fu
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Clinical Research Center of Oral Disease, Shanghai, China; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yanxiong Shao
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Clinical Research Center of Oral Disease, Shanghai, China; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Lei Ye
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Clinical Research Center of Oral Disease, Shanghai, China; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Huan Shi
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Clinical Research Center of Oral Disease, Shanghai, China; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China.
| | - Lingyan Zheng
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Clinical Research Center of Oral Disease, Shanghai, China; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China.
| |
Collapse
|
31
|
Möckel T, Basta F, Weinmann-Menke J, Schwarting A. B cell activating factor (BAFF): Structure, functions, autoimmunity and clinical implications in Systemic Lupus Erythematosus (SLE). Autoimmun Rev 2020; 20:102736. [PMID: 33333233 DOI: 10.1016/j.autrev.2020.102736] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 08/28/2020] [Indexed: 12/30/2022]
Abstract
The B cell activating factor (BAFF), or B lymphocyte stimulator (BLyS), is a B cell survival factor which supports autoreactive B cells and prevents their deletion. BAFF expression is closely linked with autoimmunity and is enhanced by genetic alterations and viral infections. Furthermore, BAFF seems to be involved in adipogenesis, atherosclerosis, neuro-inflammatory processes and ischemia reperfusion (I/R) injury. BAFF is commonly overexpressed in Systemic Lupus Erythematosus (SLE) and strongly involved in the pathogenesis of the disease. The relationship between BAFF levels, disease activity and damage accrual in SLE is controversial, but growing evidence is emerging on its role in renal involvement. Belimumab, a biologic BAFF inhibitor, has been the first biologic agent licensed for SLE therapy so far. As Rituximab (RTX) has been shown to increase BAFF levels following B cell depletion, the combination therapy of RTX plus belimumab (being evaluated in two RCT) seems to be a valuable option for several clinical scenarios. In this review we will highlight the growing body of evidence of immune and non-immune related BAFF expression in experimental and clinical settings.
Collapse
Affiliation(s)
- Tamara Möckel
- Department of Internal Medicine I, Division of Rheumatology and Clinical Immunology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.
| | - Fabio Basta
- Acura Rheumatology Center Rhineland Palatinate, Bad Kreuznach, Germany
| | - Julia Weinmann-Menke
- Department of Internal Medicine I, Division of Nephrology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Andreas Schwarting
- Department of Internal Medicine I, Division of Rheumatology and Clinical Immunology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany; Acura Rheumatology Center Rhineland Palatinate, Bad Kreuznach, Germany
| |
Collapse
|
32
|
Ding X, Xiang W, He X. IFN-I Mediates Dysfunction of Endothelial Progenitor Cells in Atherosclerosis of Systemic Lupus Erythematosus. Front Immunol 2020; 11:581385. [PMID: 33262760 PMCID: PMC7686511 DOI: 10.3389/fimmu.2020.581385] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/14/2020] [Indexed: 12/14/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a multi-system autoimmune disease including the cardiovascular system. Atherosclerosis is the most common cardiovascular complication of SLE and a significant risk factor for morbidity and mortality. Vascular damage/protection mechanism in SLE patients is out of balance, caused by the cascade reaction among oxidative stress, proinflammatory cytokines, Neutrophil Extracellular Traps, activation of B cells and autoantibodies and abnormal T cells. As a precursor cell repairing vascular endothelium, endothelial progenitor cells (EPCs) belong to the protective mechanism and show the reduced number and impaired function in SLE. However, the pathological mechanism of EPCs dysfunction in SLE remains ill-defined. This paper reviews the latest SLE epidemiology and pathogenesis, discusses the changes in the number and function of EPCs in SLE, expounds the role of EPCs in SLE atherosclerosis, and provides new guidance and theoretical basis for exploring novel targets for SLE treatment.
Collapse
Affiliation(s)
- Xuewei Ding
- Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
- Laboratory of Pediatric Nephrology, Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wei Xiang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, NHC Key Laboratory of Control of Tropical diseases (Hainan Medical University), Haikou, China
| | - Xiaojie He
- Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
- Laboratory of Pediatric Nephrology, Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
33
|
Wardowska A, Komorniczak M, Skoniecka A, Bułło-Piontecka B, Lisowska KA, Dębska-Ślizień MA, Pikuła M. Alterations in peripheral blood B cells in systemic lupus erythematosus patients with renal insufficiency. Int Immunopharmacol 2020; 83:106451. [PMID: 32248020 DOI: 10.1016/j.intimp.2020.106451] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/25/2020] [Accepted: 03/25/2020] [Indexed: 01/14/2023]
Abstract
OBJECTIVE Systemic lupus erythematosus (SLE) is one of the autoimmune diseases, believed to be closely related to hyperactivity of B cells, overproduction of autoantibodies and immune complex formation and deposition in affected tissue. The autoreactive inflammation leads to multiorgan damage with kidney dysfunction in the forefront. Studies on lupus nephritis (LN), affecting the majority of SLE patients, are mainly focused on cells causing local inflammation. The aim of our work was to detect alterations in more accessible peripheral blood B cells in the course of SLE focusing on the influence of renal insufficiency (RI) on those parameters. METHODS We performed a comprehensive flow cytometry analysis of B cell subpopulations, analyzed gene expression patterns with qPCR, and examined serum cytokine levels with multiplex cytokine/chemokine assay. RESULTS We discovered distribution of specific B cell subsets, especially CD38+ cells, plasmablasts, associated with the presence and severity of the disease. Changes in expression of MBD2, DNMT1 and APRIL genes were not only associated with activity of SLE but also were significantly changed in patients with RI. CONCLUSIONS All these results shed new light on the role of circulating B cells, their subpopulations, function, and activity in the SLE with kidney manifestation.
Collapse
Affiliation(s)
- Anna Wardowska
- Laboratory of Tissue Engineering and Regenerative Medicine, Department of Embryology, Medical University of Gdansk, Gdansk, Poland.
| | - Michał Komorniczak
- Department of Nephrology, Transplantology and Internal Diseases, Medical University of Gdansk, Gdansk, Poland
| | - Aneta Skoniecka
- Laboratory of Tissue Engineering and Regenerative Medicine, Department of Embryology, Medical University of Gdansk, Gdansk, Poland
| | - Barbara Bułło-Piontecka
- Department of Nephrology, Transplantology and Internal Diseases, Medical University of Gdansk, Gdansk, Poland
| | | | - M Alicja Dębska-Ślizień
- Department of Nephrology, Transplantology and Internal Diseases, Medical University of Gdansk, Gdansk, Poland
| | - Michał Pikuła
- Laboratory of Tissue Engineering and Regenerative Medicine, Department of Embryology, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
34
|
Demirkaya E, Sahin S, Romano M, Zhou Q, Aksentijevich I. New Horizons in the Genetic Etiology of Systemic Lupus Erythematosus and Lupus-Like Disease: Monogenic Lupus and Beyond. J Clin Med 2020; 9:E712. [PMID: 32151092 PMCID: PMC7141186 DOI: 10.3390/jcm9030712] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/12/2020] [Accepted: 02/21/2020] [Indexed: 02/05/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a clinically and genetically heterogeneous autoimmune disease. The etiology of lupus and the contribution of genetic, environmental, infectious and hormonal factors to this phenotype have yet to be elucidated. The most straightforward approach to unravel the molecular pathogenesis of lupus may rely on studies of patients who present with early-onset severe phenotypes. Typically, they have at least one of the following clinical features: childhood onset of severe disease (<5 years), parental consanguinity, and presence of family history for autoimmune diseases in a first-degree relative. These patients account for a small proportion of patients with lupus but they inform considerable knowledge about cellular pathways contributing to this inflammatory phenotype. In recent years with the aid of new sequencing technologies, novel or rare pathogenic variants have been reported in over 30 genes predisposing to SLE and SLE-like diseases. Future studies will likely discover many more genes with private variants associated to lupus-like phenotypes. In addition, genome-wide association studies (GWAS) have identified a number of common alleles (SNPs), which increase the risk of developing lupus in adult age. Discovery of a possible shared immune pathway in SLE patients, either with rare or common variants, can provide important clues to better understand this complex disorder, it's prognosis and can help guide new therapeutic approaches. The aim of this review is to summarize the current knowledge of the clinical presentation, genetic diagnosis and mechanisms of disease in patents with lupus and lupus-related phenotypes.
Collapse
Affiliation(s)
- Erkan Demirkaya
- Schulich School of Medicine & Dentistry, Department of Paediatrics, Division of Paediatric Rheumatology, University of Western Ontario, London, ON N6A 5W9, Canada;
| | - Sezgin Sahin
- Van Training and Research Hospital, Department of Paediatric Rheumatology, 65000 Van, Turkey;
| | - Micol Romano
- Schulich School of Medicine & Dentistry, Department of Paediatrics, Division of Paediatric Rheumatology, University of Western Ontario, London, ON N6A 5W9, Canada;
- Department of Pediatric Rheumatology, ASST-PINI-CTO, 20122 Milano, Italy
| | - Qing Zhou
- Life Sciences Institute, Zhejiang University, Hang Zhou 310058, China;
| | - Ivona Aksentijevich
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, MD 20892, USA;
| |
Collapse
|
35
|
Cinoku II, Mavragani CP, Moutsopoulos HM. Atherosclerosis: Beyond the lipid storage hypothesis. The role of autoimmunity. Eur J Clin Invest 2020; 50:e13195. [PMID: 31868918 DOI: 10.1111/eci.13195] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 12/04/2019] [Accepted: 12/09/2019] [Indexed: 12/15/2022]
Abstract
Atherosclerosis has long been considered as a lipid storage disease. Recent data suggest that autoimmune mechanisms seem to be involved in the pathophysiology of atherosclerosis. The presence of activated endothelial vascular cells, neutrophils, macrophages, T and to a lesser extent B cells in atherosclerotic plaques, together with the proinflammatory cytokine burden suggest mobilization of both innate and adaptive immune pathways in atherosclerosis pathobiology. The development of antibodies to oxidized low-density lipoprotein (ox-LDL), the experimental induction of atherosclerosis either via the transfer of T cells or immunization with autoantigens such as β2 glycoprotein Ι (β2-GPI) and heat shock proteins (HSP) further support the autoimmune nature of atherosclerosis. However, classical immunosuppressive and immune-modulatory drugs, successfully used in the therapy of autoimmune rheumatic diseases have shown limited benefits so far in the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Ilir I Cinoku
- Department of Physiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Clio P Mavragani
- Department of Physiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.,Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Haralampos M Moutsopoulos
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.,Academy of Athens, Athens, Greece
| |
Collapse
|
36
|
Kyaw T, Toh BH, Bobik A. Evolving BAFF targeted therapies for preventing acute myocardial infarctions and ischemic strokes. Expert Opin Ther Targets 2020; 24:7-12. [DOI: 10.1080/14728222.2020.1708325] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Tin Kyaw
- Vascular Biology and Atherosclerosis laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
- Centre for Inflammatory Diseases, Department of Medicine, Monash University, Clayton, Australia
| | - Ban-Hock Toh
- Centre for Inflammatory Diseases, Department of Medicine, Monash University, Clayton, Australia
| | - Alex Bobik
- Vascular Biology and Atherosclerosis laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
- Centre for Inflammatory Diseases, Department of Medicine, Monash University, Clayton, Australia
- Department of Immunology, Monash University, Melbourne, Australia
| |
Collapse
|
37
|
Thyroid eye disease: current and potential medical management. Int Ophthalmol 2020; 40:1035-1048. [PMID: 31919775 DOI: 10.1007/s10792-019-01258-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 12/28/2019] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Thyroid eye disease (TED) is the most frequent extra-thyroid manifestation of Graves' disease and it is more frequent in middle age and in female gender. Nowadays, the causal mechanisms of this disease are not completely understood, but the current available studies suggest that the main causative factor is the thyroid stimulating hormone receptor. MATERIALS AND METHODS To collect reports on TED medical management, a thorough literature search was performed in PubMed database. An additional search was made in Google Scholar to complete the collected items. RESULTS Among the indentified risk factors, tobacco habit is the most relevant. The main criteria to choose a suitable treatment are the activity and severity of the disease. Support measures can be used to improve the patient's symptoms in any phase of the disease. There is a large number of drugs proposed to manage TED, although with different reported rates of success. CONCLUSIONS Currently, the drugs of choice are corticosteroids in moderate-to-severe and in sight-threatening forms. The main problem of corticosteroids is their spectrum of side effects. Therefore, other alternatives are being suggested for medical management of this disease. The efficacy of these alternatives remains unclear.
Collapse
|
38
|
Flessa CM, Vlachiotis S, Nezos A, Andreakos E, Mavragani CP, Tektonidou MG. Independent association of low IFNλ1 gene expression and type I IFN score/IFNλ1 ratio with obstetric manifestations and triple antiphospholipid antibody positivity in primary antiphospholipid syndrome. Clin Immunol 2019; 209:108265. [PMID: 31639447 DOI: 10.1016/j.clim.2019.108265] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/24/2019] [Accepted: 09/30/2019] [Indexed: 12/28/2022]
Abstract
Recent data suggest an important role of type I interferons (IFN) in antiphospholipid syndrome (APS). Here we aimed to evaluate the interplay of type I and type III (or IFNλs) IFNs in APS and potential clinical and serological associations. Our findings suggest that patients with primary APS (PAPS) and systemic lupus erythematosus (SLE)/APS displayed increased type I IFN scores but decreased IFNλ1 gene expression levels compared to healthy individuals, as assessed with real-time qPCR analysis in isolated peripheral blood mononuclear cells (PBMCs). Type I IFN score/IFNλ1 ratio was remarkably higher in patients with PAPS and SLE/APS as well as in SLE patients with or without antiphospholipid antibodies (aPL) vs controls. In conclusion, our results reveal an association between low IFNλ1 expression and obstetric APS. Moreover, the type I IFN score/IFNλ1 ratio seems to be a potential marker of high risk APS given its associations with triple aPL positivity.
Collapse
Affiliation(s)
- Christina-Maria Flessa
- Department of Physiology, National and Kapodistrian University of Athens, Athens, Greece; First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Stelios Vlachiotis
- Laboratory of Immunobiology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Adrianos Nezos
- Department of Physiology, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelos Andreakos
- Laboratory of Immunobiology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Clio P Mavragani
- Department of Physiology, National and Kapodistrian University of Athens, Athens, Greece; Joint Academic Rheumatology Program, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria G Tektonidou
- First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece; Joint Academic Rheumatology Program, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
39
|
Spinelli FR, Barbati C, Cecarelli F, Morello F, Colasanti T, Vomero M, Massaro L, Orefice V, Alessandri C, Valesini G, Conti F. B lymphocyte stimulator modulates number and function of endothelial progenitor cells in systemic lupus erythematosus. Arthritis Res Ther 2019; 21:245. [PMID: 31752963 PMCID: PMC6868730 DOI: 10.1186/s13075-019-2015-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 09/24/2019] [Indexed: 01/10/2023] Open
Abstract
Background Circulating endothelial progenitor cells (EPCs) are biologic markers of endothelial function. In patients with systemic lupus erythematosus (SLE), the numerical reduction and functional impairment of EPCs contribute to the endothelial dysfunction. Through ex vivo and in vitro studies, we aimed at evaluating the effects of B lymphocyte stimulator (BLyS) on EPC colonies and endothelial cells and also investigating BLyS receptor expression on these cells. Methods EPCs were isolated from peripheral blood mononuclear cells (PBMC). In order to evaluate their ability to form colonies, EPCs were cultured on fibronectin-coated dishes and incubated with BlyS alone or BlyS and belimumab. Apoptosis of EPCs and endothelial cell line EA.hy926 was evaluated after 6, 12, and 24 h of incubation with BLyS and after 6 h with BLyS and belimumab. The expression of B cell activating factor-receptor (BAFF-R), B cell maturation antigen (BCMA), and transmembrane activator and calcium modulator and cyclophilin ligand (CAML) interactor (TACI) on EPCs and EA.hy926 was analyzed by cytofluorimetry. Results The number of EPC colonies was lower in patients than in controls. Moreover, the colonies from SLE patients were poorly organized compared to controls; the addition of belimumab restored the colony structure. Incubation with BLyS induced apoptosis of EPCs and EA.hy926 that was inhibited by the co-incubation with belimumab. BAFF-R and BCMA were expressed on both EPCs and EA.hy926, while TACI was expressed only on EPCs. Conclusions EPCs and endothelial cells preferentially express BAFF-R which could be involved in the pro-apoptotic effect of BlyS. Belimumab administration seems to restore the quantitative and qualitative changes of EPC colonies both ex vivo and in vitro.
Collapse
Affiliation(s)
- Francesca Romana Spinelli
- Department of Internal Medicine and Medical Specialties, Rheumatology, Sapienza University of Rome, Rome, Italy.
| | - Cristiana Barbati
- Department of Internal Medicine and Medical Specialties, Rheumatology, Sapienza University of Rome, Rome, Italy
| | - Fulvia Cecarelli
- Department of Internal Medicine and Medical Specialties, Rheumatology, Sapienza University of Rome, Rome, Italy
| | - Francesca Morello
- Department of Internal Medicine and Medical Specialties, Rheumatology, Sapienza University of Rome, Rome, Italy
| | - Tania Colasanti
- Department of Internal Medicine and Medical Specialties, Rheumatology, Sapienza University of Rome, Rome, Italy
| | - Marta Vomero
- Department of Internal Medicine and Medical Specialties, Rheumatology, Sapienza University of Rome, Rome, Italy
| | - Laura Massaro
- Department of Internal Medicine and Medical Specialties, Rheumatology, Sapienza University of Rome, Rome, Italy
| | - Valeria Orefice
- Department of Internal Medicine and Medical Specialties, Rheumatology, Sapienza University of Rome, Rome, Italy
| | - Cristiano Alessandri
- Department of Internal Medicine and Medical Specialties, Rheumatology, Sapienza University of Rome, Rome, Italy
| | - Guido Valesini
- Department of Internal Medicine and Medical Specialties, Rheumatology, Sapienza University of Rome, Rome, Italy
| | - Fabrizio Conti
- Department of Internal Medicine and Medical Specialties, Rheumatology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
40
|
Jackson SW, Davidson A. BAFF inhibition in SLE-Is tolerance restored? Immunol Rev 2019; 292:102-119. [PMID: 31562657 PMCID: PMC6935406 DOI: 10.1111/imr.12810] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 09/13/2019] [Indexed: 02/06/2023]
Abstract
The B cell activating factor (BAFF) inhibitor, belimumab, is the first biologic drug approved for the treatment of SLE, and exhibits modest, but durable, efficacy in decreasing disease flares and organ damage. BAFF and its homolog APRIL are TNF-like cytokines that support the survival and differentiation of B cells at distinct developmental stages. BAFF is a crucial survival factor for transitional and mature B cells that acts as rheostat for the maturation of low-affinity autoreactive cells. In addition, BAFF augments innate B cell responses via complex interactions with the B cell receptor (BCR) and Toll like receptor (TLR) pathways. In this manner, BAFF impacts autoreactive B cell activation via extrafollicular pathways and fine tunes affinity selection within germinal centers (GC). Finally, BAFF and APRIL support plasma cell survival, with differential impacts on IgM- and IgG-producing populations. Therapeutically, BAFF and combined BAFF/APRIL inhibition delays disease onset in diverse murine lupus strains, although responsiveness to BAFF inhibition is model dependent, in keeping with heterogeneity in clinical responses to belimumab treatment in humans. In this review, we discuss the mechanisms whereby BAFF/APRIL signals promote autoreactive B cell activation, discuss whether altered selection accounts for therapeutic benefits of BAFF inhibition, and address whether new insights into BAFF/APRIL family complexity can be exploited to improve human lupus treatments.
Collapse
Affiliation(s)
- Shaun W Jackson
- Seattle Children's Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
| | - Anne Davidson
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
| |
Collapse
|
41
|
Ntellas P, Dardiotis E, Sevdali E, Siokas V, Aloizou AM, Tsinti G, Germenis AE, Hadjigeorgiou GM, Eibel H, Speletas M. TNFRSF13C/BAFFR P21R and H159Y polymorphisms in multiple sclerosis. Mult Scler Relat Disord 2019; 37:101422. [PMID: 32172995 DOI: 10.1016/j.msard.2019.101422] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 09/24/2019] [Accepted: 09/28/2019] [Indexed: 01/13/2023]
Abstract
Recent studies implicate B cells in multiple sclerosis (MS) pathogenesis, and consequently, several molecules participating in B cell survival and proliferation, including B-cell activating factor (BAFF), have recently been analyzed in MS patients. BAFF mediates its function through binding to three receptors; among them, its interaction with the BAFF receptor (BAFFR) is crucial in mediating its survival function. Interestingly, two common polymorphisms of the TNFRSF13C gene, encoding BAFFR, P21R (rs77874543) and H159Y (rs61756766), have been reported to affect BAFFR assembly and signaling. In order to evaluate the possible contribution of BAFFR in MS pathogenesis and/or phenotype, we analyzed both TNFRSF13C/BAFFR polymorphisms in 486 MS patients in relation to their disease severity, their disability status and the age of disease onset and duration. As control group, we used allele frequencies extracted from the Exome Aggregation Consortium (ExAC) Browser. Interestingly, we found a higher prevalence of the H159Y polymorphism in MS patients, suggesting that enhanced BAFFR-signaling might contribute to the disease pathogenesis.
Collapse
Affiliation(s)
- Panagiotis Ntellas
- Department of Immunology & Histocompatibility, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Efthimios Dardiotis
- Department of Neurology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Eirini Sevdali
- Department of Immunology & Histocompatibility, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Vasileios Siokas
- Department of Neurology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Athina-Maria Aloizou
- Department of Neurology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Gerasimina Tsinti
- Department of Immunology & Histocompatibility, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Anastasios E Germenis
- Department of Immunology & Histocompatibility, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | | | - Hermann Eibel
- Centre for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
| | - Matthaios Speletas
- Department of Immunology & Histocompatibility, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece.
| |
Collapse
|
42
|
Nezos A, Evangelopoulos ME, Mavragani CP. Genetic contributors and soluble mediators in prediction of autoimmune comorbidity. J Autoimmun 2019; 104:102317. [PMID: 31444033 DOI: 10.1016/j.jaut.2019.102317] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 08/03/2019] [Indexed: 12/20/2022]
Abstract
Comorbidities including subclinical atherosclerosis, neuropsychological aberrations and lymphoproliferation represent a major burden among patients with systemic autoimmune diseases; they occur either as a result of intrinsic disease related characteristics including therapeutic interventions or traditional risk factors similar to those observed in general population. Soluble molecules recently shown to contribute to subclinical atherosclerosis in the context of systemic lupus erythematosus (SLE) include among others B-cell activating factor (BAFF), hyperhomocysteinemia, parathormone (PTH) levels and autoantibodies against oxidized lipids. Variations of the 5, 10- methylenetetrahydrofolate reductase (MTHFR) gene -the main genetic determinant of hyperhomocystenemia in humans-as well the interferon regulatory factor-8 (IRF8), FcγRIIA and BAFF genes have been all linked to subclinical atherosclerosis in SLE. BAFF variants have been also found to confer increased risk for subclinical atherosclerosis and lymphoma development in Sjogren's syndrome (SS) patients. Other genes shown to be implicated in SS lymphoproliferation include genes involved a. in inflammatory responses such as the NFκB regulator Tumor necrosis factor alpha-induced protein 3 (TNFAIP3) and the Leukocyte immunoglobulin-like receptor A3 (LILRA3) immunoreceptor, b. B cell activation and signaling (BAFF/BAFF-receptor), c. type I IFN pathway such as three-prime repair exonuclease 1 (TREX1), d. epigenetic processes including DNA methylation (MTHFR rs1801133, 677T allele) and e. genomic instability (MTHFR rs1801131, 1298C allele). Emerging soluble biomarkers for SS related lymphoma include mediators of B cell growth and germinal center formation such as BAFF, FMS-like tyrosine kinase 3 ligand (Flt-3L) and CXCL13 as well as inflammatory contributors such as inteleukin (IL)-17, IL-18, ASC, LILRA3 and the extracellular lipoprotein-associated phospholipase A2 (Lp-PLA2). In regard to fatigue and neuropsychologic features in the setting of SS, contributing factors such as BAFF variants, antibodies against neuropeptides, proteins involved in nervous system function as well as inflammatory cytokines have been reported.
Collapse
Affiliation(s)
- Adrianos Nezos
- Department of Physiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria-Eleutheria Evangelopoulos
- First Department of Neurology, Demyelinating Diseases Unit, Eginition Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Clio P Mavragani
- Department of Physiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece; Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece; Joint Academic Rheumatology Program, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece.
| |
Collapse
|
43
|
Hu S, Wang R, Zhang M, Liu K, Tao J, Tai Y, Zhou W, Wang Q, Wei W. BAFF promotes T cell activation through the BAFF-BAFF-R-PI3K-Akt signaling pathway. Biomed Pharmacother 2019; 114:108796. [PMID: 30921706 DOI: 10.1016/j.biopha.2019.108796] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/02/2019] [Accepted: 03/17/2019] [Indexed: 01/30/2023] Open
Abstract
B-cell activating factor from the tumor necrosis factor family (BAFF) has revealed its critical role in B cell proliferation and survival, as well as the pathogenesis of T-cell mediated autoimmune disease. However, the effect and molecular mechanisms of BAFF on T cell physiological function have not been fully elucidated. In this study it was seen that BAFF can promote the vitality of purified T cells, increase the proportion of CD3+CD4+, CD4+CD25+, CD4+CD154+, and CD4+CD69+ subgroups and reduce the proportion of CD4+CD62L+ subgroups. Negating BAFF activity with Atacicept (TACI-Fc) reverses vitality and activation of T cells. Furthermore, immunofluorescence detection revealed that BAFF promotes the expression of BAFF receptor (BAFF-R) and transmembrane activator and CAML interactor (TACI) in T cells. Flow cytometry displayed that BAFF/BAFF-R activates the PI3K-Akt signaling pathway while the application of PI3K inhibitor (wortmannin) illuminated that BAFF induces T cell vitality and activation through the PI3K-Akt signaling pathway. We conclude that BAFF is involved in not only the physiology of B cells, but also that of T cells. BAFF affects physiological T-cell activation through BAFF-R-mediated activation of the PI3K-Akt signaling pathway which mirrors one of the pathological mechanisms of T cell-mediated autoimmune diseases.
Collapse
Affiliation(s)
- Shanshan Hu
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China
| | - Rui Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China
| | - Mei Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China
| | - Kangkang Liu
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China
| | - Juan Tao
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China
| | - Yu Tai
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China
| | - Weijie Zhou
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China
| | - Qingtong Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China.
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China.
| |
Collapse
|
44
|
Marín-Rosales M, Cruz A, Salazar-Camarena DC, Santillán-López E, Espinoza-García N, Muñoz-Valle JF, Ramírez-Dueñas MG, Oregón-Romero E, Orozco-Barocio G, Palafox-Sánchez CA. High BAFF expression associated with active disease in systemic lupus erythematosus and relationship with rs9514828C>T polymorphism in TNFSF13B gene. Clin Exp Med 2019; 19:183-190. [DOI: 10.1007/s10238-019-00549-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 02/06/2019] [Indexed: 12/16/2022]
|
45
|
Koulouri V, Koutsilieris M, Mavragani CP. B cells and atherosclerosis in systemic lupus erythematosus. Expert Rev Clin Immunol 2019; 15:417-429. [DOI: 10.1080/1744666x.2019.1571411] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Vasiliki Koulouri
- Department of Physiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Michael Koutsilieris
- Department of Physiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Clio P. Mavragani
- Department of Physiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
46
|
Lane LC, Allinson KR, Campbell K, Bhatnagar I, Ingoe L, Razvi S, Cheetham T, Cordell HJ, Pearce SH, Mitchell AL. Analysis of BAFF gene polymorphisms in UK Graves' disease patients. Clin Endocrinol (Oxf) 2019; 90:170-174. [PMID: 30281845 DOI: 10.1111/cen.13872] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 09/26/2018] [Accepted: 09/28/2018] [Indexed: 12/30/2022]
Abstract
OBJECTIVE B lymphocyte activating factor (BAFF), a member of the tumour necrosis factor superfamily, is essential for B cell activation, differentiation and survival. Elevated circulating BAFF levels have been found in patients with several autoimmune conditions, including Graves' disease. In addition, BAFF gene variants have been associated with Graves' disease in a Taiwanese cohort, and with several other autoimmune conditions in non-Taiwanese populations. DESIGN AND METHODS We performed a case-control association study to investigate two BAFF polymorphisms (rs9514828 and rs4000607) in a UK cohort of 444 patients with Graves' disease. Genotype frequencies were compared to those from 447 local controls and more than 5000 healthy controls from the Wellcome Trust case-control consortium (WTCCC2). RESULTS There was a significant difference in the frequency of the AA genotype at rs4000607 between the Graves' disease cohort and both the local controls (P = 0.045) and the WTCCC2 controls (P = 4.56 × 10-6 ). Furthermore, the frequency of the A allele was found to be increased in the Graves' disease group compared to WTCCC2 controls (P = 0.02, OR 1.20 (95% CI 1.03-1.41). No association was observed at the rs9514828 locus. CONCLUSION Dysfunction of the humoral immune system is an obligatory pathophysiological component of Graves' disease, hence BAFF is an excellent functional candidate gene. We have demonstrated, for the first time, a significant association of the BAFF polymorphism rs4000607 with Graves' disease in a UK cohort. Further work to elucidate the role of BAFF in the pathogenesis of Graves' disease is now warranted.
Collapse
Affiliation(s)
- Laura C Lane
- Department of Paediatric Endocrinology, The Great North Children's Hospital, Newcastle-Upon-Tyne, UK
| | | | - Katy Campbell
- Institute of Genetic Medicine, Newcastle-Upon-Tyne, UK
| | | | - Lorna Ingoe
- Institute of Genetic Medicine, Newcastle-Upon-Tyne, UK
- Endocrine Unit, Royal Victoria Infirmary, Newcastle-Upon-Tyne, UK
| | - Salman Razvi
- Institute of Genetic Medicine, Newcastle-Upon-Tyne, UK
| | - Tim Cheetham
- Department of Paediatric Endocrinology, The Great North Children's Hospital, Newcastle-Upon-Tyne, UK
- Institute of Genetic Medicine, Newcastle-Upon-Tyne, UK
| | | | - Simon H Pearce
- Institute of Genetic Medicine, Newcastle-Upon-Tyne, UK
- Endocrine Unit, Royal Victoria Infirmary, Newcastle-Upon-Tyne, UK
| | - Anna L Mitchell
- Institute of Genetic Medicine, Newcastle-Upon-Tyne, UK
- Endocrine Unit, Royal Victoria Infirmary, Newcastle-Upon-Tyne, UK
| |
Collapse
|
47
|
Xue Z, Cui C, Liao Z, Xia S, Zhang P, Qin J, Guo Q, Chen S, Fu Q, Yin Z, Ye Z, Tang Y, Shen N. Identification of LncRNA Linc00513 Containing Lupus-Associated Genetic Variants as a Novel Regulator of Interferon Signaling Pathway. Front Immunol 2018; 9:2967. [PMID: 30619325 PMCID: PMC6305415 DOI: 10.3389/fimmu.2018.02967] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 12/03/2018] [Indexed: 12/13/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disease characterized by augmented type I interferon signaling. High-throughput technologies have identified plenty of SLE susceptibility single-nucleotide polymorphisms (SNPs) yet the exact roles of most of them are still unknown. Functional studies are principally focused on SNPs in the coding regions, with limited attention paid to the SNPs in non-coding regions. Long non-coding RNAs (lncRNAs) are important players in shaping the immune response and show relationship to autoimmune diseases. In order to reveal the role of SNPs located near SLE related lncRNAs, we performed a transcriptome profiling of SLE patients and identified linc00513 as a significantly over expressed lncRNA containing functional SLE susceptibility loci in the promoter region. The risk-associated G allele of rs205764 and A allele of rs547311 enhanced linc00513 promoter activity and related to increased expression of linc00513 in SLE. We also identified linc00513 to be a novel positive regulator of type I interferon pathway by promoting the phosphorylation of STAT1 and STAT2. Elevated linc00513 expression positively correlated with IFN score in SLE patients. Linc00513 expression was higher in active disease patients than those inactive ones. In conclusion, our data identify two functional promoter variants of linc00513 that contribute to increased level of linc00513 and confer susceptibility on SLE. The study provides new insights into the genetics of SLE and extends the role of lncRNAs in the pathogenesis of SLE.
Collapse
Affiliation(s)
- Zhixin Xue
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Chaojie Cui
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Zhuojun Liao
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Shiwei Xia
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Pingjing Zhang
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jialin Qin
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Qiang Guo
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Sheng Chen
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Qiong Fu
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Zhihua Yin
- Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
| | - Zhizhong Ye
- Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
| | - Yuanjia Tang
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Nan Shen
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|