1
|
Yan J, Chen D, Ye Z, Zhu X, Li X, Jiao H, Duan M, Zhang C, Cheng J, Xu L, Li H, Yan D. Molecular mechanisms and therapeutic significance of Tryptophan Metabolism and signaling in cancer. Mol Cancer 2024; 23:241. [PMID: 39472902 PMCID: PMC11523861 DOI: 10.1186/s12943-024-02164-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/24/2024] [Indexed: 11/02/2024] Open
Abstract
Tryptophan (Trp) metabolism involves three primary pathways: the kynurenine (Kyn) pathway (KP), the 5-hydroxytryptamine (serotonin, 5-HT) pathway, and the indole pathway. Under normal physiological conditions, Trp metabolism plays crucial roles in regulating inflammation, immunity, and neuronal function. Key rate-limiting enzymes such as indoleamine-2,3-dioxygenase (IDO), Trp-2,3-dioxygenase (TDO), and kynurenine monooxygenase (KMO) drive these metabolic processes. Imbalances in Trp metabolism are linked to various cancers and often correlate with poor prognosis and adverse clinical characteristics. Dysregulated Trp metabolism fosters tumor growth and immune evasion primarily by creating an immunosuppressive tumor microenvironment (TME). Activation of the KP results in the production of immunosuppressive metabolites like Kyn, which modulate immune responses and promote oncogenesis mainly through interaction with the aryl hydrocarbon receptor (AHR). Targeting Trp metabolism therapeutically has shown significant potential, especially with the development of small-molecule inhibitors for IDO1, TDO, and other key enzymes. These inhibitors disrupt the immunosuppressive signals within the TME, potentially restoring effective anti-tumor immune responses. Recently, IDO1 inhibitors have been tested in clinical trials, showing the potential to enhance the effects of existing cancer therapies. However, mixed results in later-stage trials underscore the need for a deeper understanding of Trp metabolism and its complex role in cancer. Recent advancements have also explored combining Trp metabolism inhibitors with other treatments, such as immune checkpoint inhibitors, chemotherapy, and radiotherapy, to enhance therapeutic efficacy and overcome resistance mechanisms. This review summarizes the current understanding of Trp metabolism and signaling in cancer, detailing the oncogenic mechanisms and clinical significance of dysregulated Trp metabolism. Additionally, it provides insights into the challenges in developing Trp-targeted therapies and future research directions aimed at optimizing these therapeutic strategies and improving patient outcomes.
Collapse
Affiliation(s)
- Jing Yan
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Henan, Zhengzhou, China
| | - Di Chen
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Zi Ye
- Department of Scientific Research, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xuqiang Zhu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Xueyuan Li
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Henan Jiao
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Mengjiao Duan
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Henan, Zhengzhou, China
| | - Chaoli Zhang
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Henan, Zhengzhou, China
| | - Jingliang Cheng
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Henan, Zhengzhou, China
| | - Lixia Xu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Hongjiang Li
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.
| | - Dongming Yan
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
2
|
Falah K, Zhang P, Nigam AK, Maity K, Chang G, Granados JC, Momper JD, Nigam SK. In Vivo Regulation of Small Molecule Natural Products, Antioxidants, and Nutrients by OAT1 and OAT3. Nutrients 2024; 16:2242. [PMID: 39064685 PMCID: PMC11280313 DOI: 10.3390/nu16142242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/27/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
The organic anion transporters OAT1 (SLC22A6) and OAT3 (SLC22A8) are drug transporters that are expressed in the kidney, with well-established roles in the in vivo transport of drugs and endogenous metabolites. A comparatively unexplored potential function of these drug transporters is their contribution to the in vivo regulation of natural products (NPs) and their effects on endogenous metabolism. This is important for the evaluation of potential NP interactions with other compounds at the transporter site. Here, we have analyzed the NPs present in several well-established databases from Asian (Chinese, Indian Ayurvedic) and other traditions. Loss of OAT1 and OAT3 in murine knockouts caused serum alterations of many NPs, including flavonoids, vitamins, and indoles. OAT1- and OAT3-dependent NPs were largely separable based on a multivariate analysis of chemical properties. Direct binding to the transporter was confirmed using in vitro transport assays and protein binding assays. Our in vivo and in vitro results, considered in the context of previous data, demonstrate that OAT1 and OAT3 play a pivotal role in the handling of non-synthetic small molecule natural products, NP-derived antioxidants, phytochemicals, and nutrients (e.g., pantothenic acid, thiamine). As described by remote sensing and signaling theory, drug transporters help regulate redox states by meditating the movement of endogenous antioxidants and nutrients between organs and organisms. Our results demonstrate how dietary antioxidants and other NPs might feed into these inter-organ and inter-organismal pathways.
Collapse
Affiliation(s)
- Kian Falah
- Department of Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Patrick Zhang
- Department of Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Anisha K. Nigam
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Koustav Maity
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Geoffrey Chang
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Jeffry C. Granados
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Jeremiah D. Momper
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Sanjay K. Nigam
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
- Department of Medicine (Nephrology), University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
3
|
Chrysopoulou M, Rinschen MM. Metabolic Rewiring and Communication: An Integrative View of Kidney Proximal Tubule Function. Annu Rev Physiol 2024; 86:405-427. [PMID: 38012048 DOI: 10.1146/annurev-physiol-042222-024724] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The kidney proximal tubule is a key organ for human metabolism. The kidney responds to stress with altered metabolite transformation and perturbed metabolic pathways, an ultimate cause for kidney disease. Here, we review the proximal tubule's metabolic function through an integrative view of transport, metabolism, and function, and embed it in the context of metabolome-wide data-driven research. Function (filtration, transport, secretion, and reabsorption), metabolite transformation, and metabolite signaling determine kidney metabolic rewiring in disease. Energy metabolism and substrates for key metabolic pathways are orchestrated by metabolite sensors. Given the importance of renal function for the inner milieu, we also review metabolic communication routes with other organs. Exciting research opportunities exist to understand metabolic perturbation of kidney and proximal tubule function, for example, in hypertension-associated kidney disease. We argue that, based on the integrative view outlined here, kidney diseases without genetic cause should be approached scientifically as metabolic diseases.
Collapse
Affiliation(s)
| | - Markus M Rinschen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark;
- III. Department of Medicine and Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Aarhus Institute of Advanced Studies, Aarhus University, Aarhus, Denmark
| |
Collapse
|
4
|
Ermakov VS, Granados JC, Nigam SK. Remote effects of kidney drug transporter OAT1 on gut microbiome composition and urate homeostasis. JCI Insight 2023; 8:e172341. [PMID: 37937647 PMCID: PMC10721261 DOI: 10.1172/jci.insight.172341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/12/2023] [Indexed: 11/09/2023] Open
Abstract
The organic anion transporter OAT1 (SLC22A6, originally identified as NKT) is a multispecific transporter responsible for the elimination by the kidney of small organic anions that derive from the gut microbiome. Many are uremic toxins associated with chronic kidney disease (CKD). OAT1 is among a group of "drug" transporters that act as hubs in a large homeostatic network regulating interorgan and interorganismal communication via small molecules. The Remote Sensing and Signaling Theory predicts that genetic deletion of such a key hub in the network results in compensatory interorganismal communication (e.g., host-gut microbe dynamics). Recent metabolomics data from Oat1-KO mice indicate that some of the most highly affected metabolites derive from bacterial tyrosine, tryptophan, purine, and fatty acid metabolism. Functional metagenomic analysis of fecal 16S amplicon and whole-genome sequencing revealed that loss of OAT1 was impressively associated with microbial pathways regulating production of urate, gut-derived p-cresol, tryptophan derivatives, and fatty acids. Certain changes, such as alterations in gut microbiome urate metabolism, appear compensatory. Thus, Oat1 in the kidney appears to mediate remote interorganismal communication by regulating the gut microbiome composition and metabolic capability. Since OAT1 function in the proximal tubule is substantially affected in CKD, our results may shed light on the associated alterations in gut-microbiome dynamics.
Collapse
Affiliation(s)
| | | | - Sanjay K. Nigam
- Department of Pediatrics, and
- Department of Medicine, Division of Nephrology, University of California, San Diego (UCSD), La Jolla, California, USA
| |
Collapse
|
5
|
Caetano-Pinto P, Stahl SH. Renal Organic Anion Transporters 1 and 3 In Vitro: Gone but Not Forgotten. Int J Mol Sci 2023; 24:15419. [PMID: 37895098 PMCID: PMC10607849 DOI: 10.3390/ijms242015419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Organic anion transporters 1 and 3 (OAT1 and OAT3) play a crucial role in kidney function by regulating the secretion of multiple renally cleared small molecules and toxic metabolic by-products. Assessing the activity of these transporters is essential for drug development purposes as they can significantly impact drug disposition and safety. OAT1 and OAT3 are amongst the most abundant drug transporters expressed in human renal proximal tubules. However, their expression is lost when cells are isolated and cultured in vitro, which is a persistent issue across all human and animal renal proximal tubule cell models, including primary cells and cell lines. Although it is well known that the overall expression of drug transporters is affected in vitro, the underlying reasons for the loss of OAT1 and OAT3 are still not fully understood. Nonetheless, research into the regulatory mechanisms of these transporters has provided insights into the molecular pathways underlying their expression and activity. In this review, we explore the regulatory mechanisms that govern the expression and activity of OAT1 and OAT3 and investigate the physiological changes that proximal tubule cells undergo and that potentially result in the loss of these transporters. A better understanding of the regulation of these transporters could aid in the development of strategies, such as introducing microfluidic conditions or epigenetic modification inhibitors, to improve their expression and activity in vitro and to create more physiologically relevant models. Consequently, this will enable more accurate assessment for drug development and safety applications.
Collapse
Affiliation(s)
- Pedro Caetano-Pinto
- Department of Urology, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| | - Simone H. Stahl
- CVRM Safety, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, 310 Darwin Building, Cambridge Science Park, Milton Road, Cambridge CB4 0WG, UK;
| |
Collapse
|
6
|
Ma Y, Ran F, Xin M, Gou X, Wang X, Wu X. Albumin-bound kynurenic acid is an appropriate endogenous biomarker for assessment of the renal tubular OATs-MRP4 channel. J Pharm Anal 2023; 13:1205-1220. [PMID: 38024860 PMCID: PMC10657973 DOI: 10.1016/j.jpha.2023.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/08/2023] [Accepted: 05/12/2023] [Indexed: 12/01/2023] Open
Abstract
Renal tubular secretion mediated by organic anion transporters (OATs) and the multidrug resistance-associated protein 4 (MRP4) is an important means of drug and toxin excretion. Unfortunately, there are no biomarkers to evaluate their function. The aim of this study was to identify and characterize an endogenous biomarker of the renal tubular OATs-MRP4 channel. Twenty-six uremic toxins were selected as candidate compounds, of which kynurenic acid was identified as a potential biomarker by assessing the protein-binding ratio and the uptake in OAT1-, OAT3-, and MRP4-overexpressing cell lines. OAT1/3 and MRP4 mediated the transcellular vectorial transport of kynurenic acid in vitro. Serum kynurenic acid concentration was dramatically increased in rats treated with a rat OAT1/3 (rOAT1/3) inhibitor and in rOAT1/3 double knockout (rOAT1/3-/-) rats, and the renal concentrations were markedly elevated by the rat MRP4 (rMRP4) inhibitor. Kynurenic acid was not filtered at the glomerulus (99% of albumin binding), and was specifically secreted in renal tubules through the OAT1/3-MRP4 channel with an appropriate affinity (Km) (496.7 μM and 382.2 μM for OAT1 and OAT3, respectively) and renal clearance half-life (t1/2) in vivo (3.7 ± 0.7 h). There is a strong correlation in area under the plasma drug concentration-time curve (AUC0-t) between cefmetazole and kynurenic acid, but not with creatinine, after inhibition of rOATs. In addition, the phase of increased kynurenic acid level is earlier than that of creatinine in acute kidney injury process. These results suggest that albumin-bound kynurenic acid is an appropriate endogenous biomarker for adjusting the dosage of drugs secreted by this channel or predicting kidney injury.
Collapse
Affiliation(s)
- Yanrong Ma
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Fenglin Ran
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Mingyan Xin
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Xueyan Gou
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Xinyi Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Xinan Wu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
7
|
El Chamieh C, Larabi IA, Laville SM, Jacquelinet C, Combe C, Fouque D, Laville M, Frimat L, Pecoits-Filho R, Lange C, Stengel B, Alencar De Pinho N, Alvarez JC, Massy ZA, Liabeuf S. Proton-Pump Inhibitors and Serum Concentrations of Uremic Toxins in Patients with Chronic Kidney Disease. Toxins (Basel) 2023; 15:toxins15040276. [PMID: 37104214 PMCID: PMC10143607 DOI: 10.3390/toxins15040276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/28/2023] Open
Abstract
Use of proton-pump inhibitors (PPIs) is common in patients with chronic kidney disease (CKD). PPIs and many uremic toxins (UTs) are eliminated by the kidney's tubular organic anion transporter system. In a cross-sectional study, we sought to evaluate the association between PPI prescription and serum concentrations of various UTs. We studied a randomly selected sub-group of participants in the CKD-REIN cohort (adult patients with a confirmed diagnosis of CKD and estimated glomerular filtration rate (eGFR) < 60 mL/min/1.73 m2) with available frozen samples collected at baseline. PPI prescription was recorded at baseline. Serum concentrations of 10 UTs were measured using a validated liquid chromatography tandem mass spectrometry technique. Multiple linear regression was performed, with the log UT concentration as the dependent variable. Of the 680 included patients (median age: 68 years; median eGFR: 32 mL/min/1.73 m2), 31% had PPI prescriptions at baseline. Patients using PPIs had higher levels of certain UTs in comparison to other patients, including total and free indoxyl sulfate (IS), total and free p-cresylsulfate, total and free p-cresylglucuronide (PCG), phenylacetylglutamine (PAG), free kynurenine, and free hippuric acid. After adjustment for baseline co-morbidities, number of co-prescribed drugs, and laboratory data, including eGFR, associations between PPI prescription and elevated serum concentrations of free and total IS, free and total PCG, and PAG remained significant. Our results indicate that PPI prescription is independently associated with serum UT retention. These findings are interesting to better understand the factors that may modulate serum UT concentration in CKD patients, however, they will need to be confirmed by longitudinal studies.
Collapse
Affiliation(s)
- Carolla El Chamieh
- Centre for Research in Epidemiology and Population Health (CESP), INSERM UMRS 1018, Université Paris-Saclay, Université Versailles Saint Quentin, 94807 Villejuif, France
| | - Islam Amine Larabi
- Department of Pharmacology and Toxicology, Raymond Poincaré Hospital, AP-HP, 92380 Garches, France
- UVSQ, Université Paris-Saclay, Inserm U1018, CESP, Équipe MOODS, MasSpecLab, 78180 Montigny-le-Bretonneux, France
| | - Solène M Laville
- Pharmacoepidemiology Unit, Department of Clinical Pharmacology, Amiens-Picardie University Medical Center, 80054 Amiens, France
- MP3CV Laboratory, Jules Verne University of Picardie, F-80054 Amiens, France
| | - Christian Jacquelinet
- Centre for Research in Epidemiology and Population Health (CESP), INSERM UMRS 1018, Université Paris-Saclay, Université Versailles Saint Quentin, 94807 Villejuif, France
- Biomedecine Agency, 93210 Saint Denis La Plaine, France
| | - Christian Combe
- Service de Néphrologie Transplantation Dialyse Aphérèse, Centre Hospitalier Universitaire de Bordeaux, 33076 Bordeaux, France
- INSERM, U1026, Univ. Bordeaux, 33076 Bordeaux, France
| | - Denis Fouque
- Nephrology Department, Centre Hospitalier Lyon Sud, Université de Lyon, Carmen, 69495 Pierre-Bénite, France
- Université de Lyon, CarMeN INSERM 1060, 69008 Lyon, France
| | | | - Luc Frimat
- Nephrology Department, CHRU de Nancy, 54000 Vandoeuvre-lès-Nancy, France
- Lorraine University, APEMAC, 54000 Vandoeuvre-lès-Nancy, France
| | - Roberto Pecoits-Filho
- Arbor Research Collaborative for Health, Ann Arbor, MI 48108, USA
- School of Medicine, Pontificia Universidade Catolica do Parana, Curitiba 80215-901, Brazil
| | - Céline Lange
- Centre for Research in Epidemiology and Population Health (CESP), INSERM UMRS 1018, Université Paris-Saclay, Université Versailles Saint Quentin, 94807 Villejuif, France
| | - Bénédicte Stengel
- Centre for Research in Epidemiology and Population Health (CESP), INSERM UMRS 1018, Université Paris-Saclay, Université Versailles Saint Quentin, 94807 Villejuif, France
| | - Natalia Alencar De Pinho
- Centre for Research in Epidemiology and Population Health (CESP), INSERM UMRS 1018, Université Paris-Saclay, Université Versailles Saint Quentin, 94807 Villejuif, France
| | - Jean-Claude Alvarez
- Department of Pharmacology and Toxicology, Raymond Poincaré Hospital, AP-HP, 92380 Garches, France
- UVSQ, Université Paris-Saclay, Inserm U1018, CESP, Équipe MOODS, MasSpecLab, 78180 Montigny-le-Bretonneux, France
| | - Ziad A Massy
- Centre for Research in Epidemiology and Population Health (CESP), INSERM UMRS 1018, Université Paris-Saclay, Université Versailles Saint Quentin, 94807 Villejuif, France
- Department of Nephrology, Ambroise Paré University Hospital, APHP, 92104 Boulogne-Billancourt, France
| | - Sophie Liabeuf
- Pharmacoepidemiology Unit, Department of Clinical Pharmacology, Amiens-Picardie University Medical Center, 80054 Amiens, France
- MP3CV Laboratory, Jules Verne University of Picardie, F-80054 Amiens, France
| |
Collapse
|
8
|
Masson HO, Borland D, Reilly J, Telleria A, Shrivastava S, Watson M, Bustillos L, Li Z, Capps L, Kellman BP, King ZA, Richelle A, Lewis NE, Robasky K. ImmCellFie: A user-friendly web-based platform to infer metabolic function from omics data. STAR Protoc 2023; 4:102069. [PMID: 36853701 PMCID: PMC9898792 DOI: 10.1016/j.xpro.2023.102069] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/02/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
Understanding cellular metabolism is important across biotechnology and biomedical research and has critical implications in a broad range of normal and pathological conditions. Here, we introduce the user-friendly web-based platform ImmCellFie, which allows the comprehensive analysis of metabolic functions inferred from transcriptomic or proteomic data. We explain how to set up a run using publicly available omics data and how to visualize the results. The ImmCellFie algorithm pushes beyond conventional statistical enrichment and incorporates complex biological mechanisms to quantify cell activity. For complete details on the use and execution of this protocol, please refer to Richelle et al. (2021).1.
Collapse
Affiliation(s)
- Helen O Masson
- Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA
| | - David Borland
- Renaissance Computing Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27517, USA
| | - Jason Reilly
- Renaissance Computing Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27517, USA
| | - Adrian Telleria
- Renaissance Computing Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27517, USA
| | - Shalki Shrivastava
- Renaissance Computing Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27517, USA
| | - Matt Watson
- Renaissance Computing Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27517, USA
| | - Luthfi Bustillos
- Renaissance Computing Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27517, USA
| | - Zerong Li
- Department of Pediatrics, UC San Diego, La Jolla, CA 92093, USA
| | - Laura Capps
- Renaissance Computing Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27517, USA
| | - Benjamin P Kellman
- Bioinformatics and Systems Biology Program, UC San Diego, La Jolla, CA 92093, USA; Department of Pediatrics, UC San Diego, La Jolla, CA 92093, USA
| | - Zachary A King
- Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA
| | - Anne Richelle
- Department of Pediatrics, UC San Diego, La Jolla, CA 92093, USA
| | - Nathan E Lewis
- Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA; Department of Pediatrics, UC San Diego, La Jolla, CA 92093, USA.
| | - Kimberly Robasky
- Renaissance Computing Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27517, USA; Department of Genetics, University of North Carolina at Chapel Hill, Chapel H0069ll, NC 27514, USA; School of Information and Library Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Carolina Health and Informatics Program, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
9
|
Granados JC, Watrous JD, Long T, Rosenthal SB, Cheng S, Jain M, Nigam SK. Regulation of Human Endogenous Metabolites by Drug Transporters and Drug Metabolizing Enzymes: An Analysis of Targeted SNP-Metabolite Associations. Metabolites 2023; 13:171. [PMID: 36837791 PMCID: PMC9958903 DOI: 10.3390/metabo13020171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/26/2023] Open
Abstract
Drug transporters and drug-metabolizing enzymes are primarily known for their role in the absorption, distribution, metabolism, and excretion (ADME) of small molecule drugs, but they also play a key role in handling endogenous metabolites. Recent cross-tissue co-expression network analyses have revealed a "Remote Sensing and Signaling Network" of multispecific, oligo-specific, and monospecific transporters and enzymes involved in endogenous metabolism. This includes many proteins from families involved in ADME (e.g., SLC22, SLCO, ABCC, CYP, UGT). Focusing on the gut-liver-kidney axis, we identified the endogenous metabolites potentially regulated by this network of ~1000 proteins by associating SNPs in these genes with the circulating levels of thousands of small, polar, bioactive metabolites, including free fatty acids, eicosanoids, bile acids, and other signaling metabolites that act in part via G-protein coupled receptors (GPCRs), nuclear receptors, and kinases. We identified 77 genomic loci associated with 7236 unique metabolites. This included metabolites that were associated with multiple, distinct loci, indicating coordinated regulation between multiple genes (including drug transporters and drug-metabolizing enzymes) of specific metabolites. We analyzed existing pharmacogenomic data and noted SNPs implicated in endogenous metabolite handling (e.g., rs4149056 in SLCO1B1) also affecting drug ADME. The overall results support the existence of close relationships, via interactions with signaling metabolites, between drug transporters and drug-metabolizing enzymes that are part of the Remote Sensing and Signaling Network, and with GPCRs and nuclear receptors. These analyses highlight the potential for drug-metabolite interactions at the interfaces of the Remote Sensing and Signaling Network and the ADME protein network.
Collapse
Affiliation(s)
- Jeffry C. Granados
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Jeramie D. Watrous
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA 92093, USA
| | - Tao Long
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA 92093, USA
| | - Sara Brin Rosenthal
- Center for Computational Biology and Bioinformatics, University of California San Diego, La Jolla, CA 92093, USA
| | - Susan Cheng
- Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Mohit Jain
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA 92093, USA
| | - Sanjay K. Nigam
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
10
|
Granados JC, Ermakov V, Maity K, Vera DR, Chang G, Nigam SK. The kidney drug transporter OAT1 regulates gut microbiome-dependent host metabolism. JCI Insight 2023; 8:e160437. [PMID: 36692015 PMCID: PMC9977316 DOI: 10.1172/jci.insight.160437] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/30/2022] [Indexed: 01/24/2023] Open
Abstract
Organic anion transporter 1 (OAT1/SLC22A6, NKT) is a multispecific drug transporter in the kidney with numerous substrates, including pharmaceuticals, endogenous metabolites, natural products, and uremic toxins. Here, we show that OAT1 regulates levels of gut microbiome-derived metabolites. We depleted the gut microbiome of Oat1-KO and WT mice and performed metabolomics to analyze the effects of genotype (KO versus WT) and microbiome depletion. OAT1 is an in vivo intermediary between the host and the microbes, with 40 of the 162 metabolites dependent on the gut microbiome also impacted by loss of Oat1. Chemoinformatic analysis revealed that the altered metabolites (e.g., indoxyl sulfate, p-cresol sulfate, deoxycholate) had more ring structures and sulfate groups. This indicates a pathway from gut microbes to liver phase II metabolism, to renal OAT1-mediated transport. The idea that multiple gut-derived metabolites directly interact with OAT1 was confirmed by in vitro transport and magnetic bead binding assays. We show that gut microbiome-derived metabolites dependent on OAT1 are impacted in a chronic kidney disease (CKD) model and human drug-metabolite interactions. Consistent with the Remote Sensing and Signaling Theory, our results support the view that drug transporters (e.g., OAT1, OAT3, OATP1B1, OATP1B3, MRP2, MRP4, ABCG2) play a central role in regulating gut microbe-dependent metabolism, as well as interorganismal communication between the host and microbiome.
Collapse
Affiliation(s)
| | | | - Koustav Maity
- Skaggs School of Pharmacy and Pharmaceutical Sciences
| | - David R. Vera
- Department of Radiology
- In Vivo Cancer and Molecular Imaging Program
| | - Geoffrey Chang
- Skaggs School of Pharmacy and Pharmaceutical Sciences
- Department of Pharmacology, School of Medicine
| | - Sanjay K. Nigam
- Department of Pediatrics, and
- Department of Medicine (Nephrology), UCSD, La Jolla, California, USA
| |
Collapse
|
11
|
Nigam SK, Granados JC. OAT, OATP, and MRP Drug Transporters and the Remote Sensing and Signaling Theory. Annu Rev Pharmacol Toxicol 2023; 63:637-660. [PMID: 36206988 DOI: 10.1146/annurev-pharmtox-030322-084058] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The coordinated movement of organic anions (e.g., drugs, metabolites, signaling molecules, nutrients, antioxidants, gut microbiome products) between tissues and body fluids depends, in large part, on organic anion transporters (OATs) [solute carrier 22 (SLC22)], organic anion transporting polypeptides (OATPs) [solute carrier organic (SLCO)], and multidrug resistance proteins (MRPs) [ATP-binding cassette, subfamily C (ABCC)]. Depending on the range of substrates, transporters in these families can be considered multispecific, oligospecific, or (relatively) monospecific. Systems biology analyses of these transporters in the context of expression patterns reveal they are hubs in networks involved in interorgan and interorganismal communication. The remote sensing and signaling theory explains how the coordinated functions of drug transporters, drug-metabolizing enzymes, and regulatory proteins play a role in optimizing systemic and local levels of important endogenous small molecules. We focus on the role of OATs, OATPs, and MRPs in endogenous metabolism and how their substrates (e.g., bile acids, short chain fatty acids, urate, uremic toxins) mediate interorgan and interorganismal communication and help maintain and restore homeostasis in healthy and disease states.
Collapse
Affiliation(s)
- Sanjay K Nigam
- Department of Pediatrics and Medicine (Nephrology), University of California San Diego, La Jolla, California, USA;
| | - Jeffry C Granados
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
12
|
Chen Y, Lu S, Zhang Y, Chen B, Zhou H, Jiang H. Examination of the emerging role of transporters in the assessment of nephrotoxicity. Expert Opin Drug Metab Toxicol 2022; 18:787-804. [PMID: 36420583 DOI: 10.1080/17425255.2022.2151892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
INTRODUCTION The kidney is vulnerable to various injuries based on its function in the elimination of many xenobiotics, endogenous substances and metabolites. Since transporters are critical for the renal elimination of those substances, it is urgent to understand the emerging role of transporters in nephrotoxicity. AREAS COVERED This review summarizes the contribution of major renal transporters to nephrotoxicity induced by some drugs or toxins; addresses the role of transporter-mediated endogenous metabolic disturbances in nephrotoxicity; and discusses the advantages and disadvantages of in vitro models based on transporter expression and function. EXPERT OPINION Due to the crucial role of transporters in the renal disposition of xenobiotics and endogenous substances, it is necessary to further elucidate their renal transport mechanisms and pay more attention to the underlying relationship between the transport of endogenous substances and nephrotoxicity. Considering the species differences in the expression and function of transporters, and the low expression of transporters in general cell models, in vitro humanized models, such as humanized 3D organoids, shows significant promise in nephrotoxicity prediction and mechanism study.
Collapse
Affiliation(s)
- Yujia Chen
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Shuanghui Lu
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Yingqiong Zhang
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China.,Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Binxin Chen
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Hui Zhou
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China.,Jinhua Institute of Zhejiang University, Jinhua, P.R. China
| | - Huidi Jiang
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China.,Jinhua Institute of Zhejiang University, Jinhua, P.R. China
| |
Collapse
|
13
|
Jamshidi N, Nigam SK. Drug transporters OAT1 and OAT3 have specific effects on multiple organs and gut microbiome as revealed by contextualized metabolic network reconstructions. Sci Rep 2022; 12:18308. [PMID: 36316339 PMCID: PMC9622871 DOI: 10.1038/s41598-022-21091-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 09/22/2022] [Indexed: 11/07/2022] Open
Abstract
In vitro and in vivo studies have established the organic anion transporters OAT1 (SLC22A6, NKT) and OAT3 (SLC22A8) among the main multi-specific "drug" transporters. They also transport numerous endogenous metabolites, raising the possibility of drug-metabolite interactions (DMI). To help understand the role of these drug transporters on metabolism across scales ranging from organ systems to organelles, a formal multi-scale analysis was performed. Metabolic network reconstructions of the omics-alterations resulting from Oat1 and Oat3 gene knockouts revealed links between the microbiome and human metabolism including reactions involving small organic molecules such as dihydroxyacetone, alanine, xanthine, and p-cresol-key metabolites in independent pathways. Interestingly, pairwise organ-organ interactions were also disrupted in the two Oat knockouts, with altered liver, intestine, microbiome, and skin-related metabolism. Compared to older models focused on the "one transporter-one organ" concept, these more sophisticated reconstructions, combined with integration of a multi-microbial model and more comprehensive metabolomics data for the two transporters, provide a considerably more complex picture of how renal "drug" transporters regulate metabolism across the organelle (e.g. endoplasmic reticulum, Golgi, peroxisome), cellular, organ, inter-organ, and inter-organismal scales. The results suggest that drugs interacting with OAT1 and OAT3 can have far reaching consequences on metabolism in organs (e.g. skin) beyond the kidney. Consistent with the Remote Sensing and Signaling Theory (RSST), the analysis demonstrates how transporter-dependent metabolic signals mediate organ crosstalk (e.g., gut-liver-kidney) and inter-organismal communication (e.g., gut microbiome-host).
Collapse
Affiliation(s)
- Neema Jamshidi
- grid.19006.3e0000 0000 9632 6718Department of Radiological Sciences, University of California, Los Angeles, Los Angeles, CA USA ,grid.266100.30000 0001 2107 4242Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA USA
| | - Sanjay K. Nigam
- grid.266100.30000 0001 2107 4242Departments of Pediatrics and Medicine (Nephrology), University of California, San Diego, La Jolla, CA USA
| |
Collapse
|
14
|
Granados JC, Bhatnagar V, Nigam SK. Blockade of Organic Anion Transport in Humans After Treatment With the Drug Probenecid Leads to Major Metabolic Alterations in Plasma and Urine. Clin Pharmacol Ther 2022; 112:653-664. [PMID: 35490380 PMCID: PMC9398954 DOI: 10.1002/cpt.2630] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/17/2022] [Indexed: 12/15/2022]
Abstract
Probenecid is used to treat gout and hyperuricemia as well as increase plasma levels of antiviral drugs and antibiotics. In vivo, probenecid mainly inhibits the renal SLC22 organic anion transporters OAT1 (SLC22A6), OAT3 (SLC22A8), and URAT1 (SLC22A12). To understand the endogenous role of these transporters in humans, we administered probenecid to 20 healthy participants and metabolically profiled the plasma and urine before and after dosage. Hundreds of metabolites were significantly altered, indicating numerous drug-metabolite interactions. We focused on potential OAT1 substrates by identifying 97 metabolites that were significantly elevated in the plasma and decreased in the urine, indicating OAT-mediated clearance. These included signaling molecules, antioxidants, and gut microbiome products. In contrast, urate was the only metabolite significantly decreased in the plasma and elevated in the urine, consistent with an effect on renal reuptake by URAT1. Additional support comes from metabolomics analyses of our Oat1 and Oat3 knockout mice, where over 50% of the metabolites that were likely OAT substrates in humans were elevated in the serum of the mice. Fifteen of these compounds were elevated in both knockout mice, whereas six were exclusive to the Oat1 knockout and 4 to the Oat3 knockout. These may be endogenous biomarkers of OAT function. We also propose a probenecid stress test to evaluate kidney proximal tubule organic anion transport function in kidney disease. Consistent with the Remote Sensing and Signaling Theory, the profound changes in metabolite levels following probenecid treatment support the view that SLC22 transporters are hubs in the regulation of systemic human metabolism.
Collapse
Affiliation(s)
- Jeffry C. Granados
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093
| | - Vibha Bhatnagar
- Department of Family Medicine, University of California San Diego, La Jolla, CA, 92093
| | - Sanjay K. Nigam
- Department of Pediatrics, University of California San Diego, La Jolla, CA, 92093
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093
| |
Collapse
|
15
|
A sensitive UPLC-MS/MS method for the simultaneous determination of the metabolites in the tryptophan pathway in rat plasma. J Pharm Biomed Anal 2022; 219:114979. [DOI: 10.1016/j.jpba.2022.114979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 11/22/2022]
|
16
|
Guan X, Xu J, Xiu M, Li X, Liu H, Wu F. Kynurenine pathway metabolites and therapeutic response to olanzapine in female patients with schizophrenia: A longitudinal study. CNS Neurosci Ther 2022; 28:1539-1546. [PMID: 35769008 PMCID: PMC9437236 DOI: 10.1111/cns.13895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 04/24/2022] [Accepted: 06/04/2022] [Indexed: 11/29/2022] Open
Abstract
AIM A metabolomics approach has recently been used to identify metabolites associated with response to antipsychotic treatment. This study was designed to identify the predictive biomarkers of response to olanzapine monotherapy using a metabolomics-based strategy. METHODS Twenty-five first-episode and drug-naïve female patients with schizophrenia were recruited and treated with olanzapine for 4 weeks. Psychiatric symptoms were assessed using the Positive and Negative Syndrome Scale (PANSS) at baseline and 4-week follow-up. RESULTS Positive subscore, general psychopathology subscore, and PANSS total score were significantly decreased after treatment. An ultra-performance liquid chromatography-mass spectrometry (UPLC-MS)-based metabolomics approach identified 72 differential metabolites after treatment. In addition, the baseline levels of methyl n-formylanthranilate (MNFT) were correlated with the rate of reduction in the positive subscore or PANSS total score. However, increase in MNFT after treatment was not associated with the rate of reduction in the PANSS total score or its subscores. Subsequent regression analysis revealed that the baseline MNFT levels predicted the treatment outcomes after olanzapine monotherapy for 4 weeks in patients with schizophrenia. CONCLUSIONS Our study results suggest that the baseline MNFT levels in the kynurenine pathway of tryptophan metabolism may be predictive of the treatment response to olanzapine in schizophrenia.
Collapse
Affiliation(s)
- Xiaoni Guan
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, China
| | - Jing Xu
- Qingdao Mental Health Center, Qingdao Medical University, Qingdao, China
| | - Meihong Xiu
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, China
| | - Xirong Li
- Department of Psychiatry, Shandong Mental Health Center, Shandong University, Jinan, China
| | - Haixia Liu
- Department of Psychiatry, Shandong Mental Health Center, Shandong University, Jinan, China
| | - Fengchun Wu
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| |
Collapse
|
17
|
Zhao J, Guo S, Schrodi SJ, He D. Trends in the Contribution of Genetic Susceptibility Loci to Hyperuricemia and Gout and Associated Novel Mechanisms. Front Cell Dev Biol 2022; 10:937855. [PMID: 35813212 PMCID: PMC9259951 DOI: 10.3389/fcell.2022.937855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 05/31/2022] [Indexed: 11/14/2022] Open
Abstract
Hyperuricemia and gout are complex diseases mediated by genetic, epigenetic, and environmental exposure interactions. The incidence and medical burden of gout, an inflammatory arthritis caused by hyperuricemia, increase every year, significantly increasing the disease burden. Genetic factors play an essential role in the development of hyperuricemia and gout. Currently, the search on disease-associated genetic variants through large-scale genome-wide scans has primarily improved our understanding of this disease. However, most genome-wide association studies (GWASs) still focus on the basic level, whereas the biological mechanisms underlying the association between genetic variants and the disease are still far from well understood. Therefore, we summarized the latest hyperuricemia- and gout-associated genetic loci identified in the Global Biobank Meta-analysis Initiative (GBMI) and elucidated the comprehensive potential molecular mechanisms underlying the effects of these gene variants in hyperuricemia and gout based on genetic perspectives, in terms of mechanisms affecting uric acid excretion and reabsorption, lipid metabolism, glucose metabolism, and nod-like receptor pyrin domain 3 (NLRP3) inflammasome and inflammatory pathways. Finally, we summarized the potential effect of genetic variants on disease prognosis and drug efficacy. In conclusion, we expect that this summary will increase our understanding of the pathogenesis of hyperuricemia and gout, provide a theoretical basis for the innovative development of new clinical treatment options, and enhance the capabilities of precision medicine for hyperuricemia and gout treatment.
Collapse
Affiliation(s)
- Jianan Zhao
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Shicheng Guo
- Computation and Informatics in Biology and Medicine, University of WI-Madison, Madison, WI, United States
- Department of Medical Genetics, School of Medicine and Public Health, University of WI-Madison, Madison, WI, United States
| | - Steven J. Schrodi
- Computation and Informatics in Biology and Medicine, University of WI-Madison, Madison, WI, United States
- Department of Medical Genetics, School of Medicine and Public Health, University of WI-Madison, Madison, WI, United States
| | - Dongyi He
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, Shanghai, China
- Arthritis Institute of Integrated Traditional and Western Medicine, Shanghai Chinese Medicine Research Institute, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
18
|
Ren T, Jones RS, Morris ME. Untargeted metabolomics identifies the potential role of monocarboxylate transporter 6 (MCT6/SLC16A5) in lipid and amino acid metabolism pathways. Pharmacol Res Perspect 2022; 10:e00944. [PMID: 35466588 PMCID: PMC9035569 DOI: 10.1002/prp2.944] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 12/05/2022] Open
Abstract
Monocarboxylate transporter 6 (MCT6; SLC16A5) is an orphan transporter protein with expression in multiple tissues. The endogenous function of MCT6 related to human health and disease remains unknown. Our previous transcriptomic and proteomic analyses in Mct6 knockout (KO) mice suggested that MCT6 may play a role in lipid and glucose homeostasis, but additional evidence is required. Thus, the objective of this study was to further explore the impact of MCT6 on metabolic function using untargeted metabolomic analysis in Mct6 KO mice. The plasma from male and female mice and livers from male mice were submitted for global metabolomics analysis to assess the relative changes in endogenous small molecules across the liver and systemic circulation associated with absence of Mct6. More than 782 compounds were detected with 101 and 51 metabolites significantly changed in plasma of male and female mice, respectively, and 100 metabolites significantly changed in the livers of male mice (p < .05). Significant perturbations in lipid metabolism were annotated in the plasma and liver metabolome, with additional alterations in the amino acid metabolism pathway in plasma samples from male and female mice. Elevated lipid diacylglycerol and altered fatty acid metabolite concentrations were found in liver and plasma samples of male Mct6 KO mice. Significant reduction of N-terminal acetylated amino acids was found in plasma samples of male and female Mct6 KO mice. In summary, the present study confirmed the significant role of MCT6 in lipid and amino acid homeostasis, suggesting its contribution in metabolic diseases.
Collapse
Affiliation(s)
- Tianjing Ren
- Department of Pharmaceutical SciencesSchool of Pharmacy and Pharmaceutical SciencesUniversity at BuffaloState University of New YorkBuffaloNew YorkUSA
| | - Robert S. Jones
- Drug Metabolism and PharmacokineticsGenentech, Inc.South San FranciscoCaliforniaUSA
| | - Marilyn E. Morris
- Department of Pharmaceutical SciencesSchool of Pharmacy and Pharmaceutical SciencesUniversity at BuffaloState University of New YorkBuffaloNew YorkUSA
| |
Collapse
|
19
|
What If Not All Metabolites from the Uremic Toxin Generating Pathways Are Toxic? A Hypothesis. Toxins (Basel) 2022; 14:toxins14030221. [PMID: 35324718 PMCID: PMC8953523 DOI: 10.3390/toxins14030221] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/02/2022] [Accepted: 03/14/2022] [Indexed: 12/21/2022] Open
Abstract
The topic of uremic toxicity has received broad attention from the nephrological community over the past few decades. An aspect that is much less often considered is the possibility that the metabolic pathways that generate uremic toxins also may produce molecules that benefit body functions. Here, we discuss this dualism based on the example of tryptophan-derived metabolites, which comprise elements that are mainly toxic, such as indoxyl sulfate, kynurenine and kynurenic acid, but also beneficial compounds, such as indole, melatonin and indole-3-propionic acid, and ambivalent (beneficial for some aspects and harmful for others) compounds such as serotonin. This dualism can also be perceived at the level of the main receptor of the tryptophan-derived metabolites, the aryl hydrocarbon receptor (AHR), which has also been linked to both harm and benefit. We hypothesize that these beneficial effects are the reason why uremic toxin generation remained preserved throughout evolution. This duality is also not unique for the tryptophan-derived metabolites, and in this broader context we discuss the remote sensing and signaling theory (RSST). The RSST proposes that transporters (e.g., organic anion transporter 1—OAT1; ATP-binding cassette transporter G—ABCG2) and drug metabolizing enzymes form a large network of proteins interacting to promote small molecule remote communication at the inter-organ (e.g., gut–liver–heart–brain–kidney) and inter-organismal (e.g., gut microbe–host) levels. These small molecules include gut microbe-derived uremic toxins as well as beneficial molecules such as those discussed here. We emphasize that this positive side of uremic metabolite production needs more attention, and that this dualism especially needs to be considered when assessing and conceiving of therapeutic interventions. These homeostatic considerations are central to the RSST and suggest that interventions be aimed at preserving or restoring the balance between positive and negative components rather than eliminating them all without distinction.
Collapse
|
20
|
The Interplay between Uremic Toxins and Albumin, Membrane Transporters and Drug Interaction. Toxins (Basel) 2022; 14:toxins14030177. [PMID: 35324674 PMCID: PMC8949274 DOI: 10.3390/toxins14030177] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 01/10/2023] Open
Abstract
Uremic toxins are a heterogeneous group of molecules that accumulate in the body due to the progression of chronic kidney disease (CKD). These toxins are associated with kidney dysfunction and the development of comorbidities in patients with CKD, being only partially eliminated by dialysis therapies. Importantly, drugs used in clinical treatments may affect the levels of uremic toxins, their tissue disposition, and even their elimination through the interaction of both with proteins such as albumin and cell membrane transporters. In this context, protein-bound uremic toxins (PBUTs) are highlighted for their high affinity for albumin, the most abundant serum protein with multiple binding sites and an ability to interact with drugs. Membrane transporters mediate the cellular influx and efflux of various uremic toxins, which may also compete with drugs as substrates, and both may alter transporter activity or expression. Therefore, this review explores the interaction mechanisms between uremic toxins and albumin, as well as membrane transporters, considering their potential relationship with drugs used in clinical practice.
Collapse
|
21
|
Zhen D, Liu J, Zhang XD, Song Z. Kynurenic Acid Acts as a Signaling Molecule Regulating Energy Expenditure and Is Closely Associated With Metabolic Diseases. Front Endocrinol (Lausanne) 2022; 13:847611. [PMID: 35282457 PMCID: PMC8908966 DOI: 10.3389/fendo.2022.847611] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 01/27/2022] [Indexed: 12/14/2022] Open
Abstract
Kynurenic acid (KYNA) is an important bio-active product of tryptophan metabolism. In addition to its well-known neuroprotective effects on mental health disorders, it has been proposed as a bio-marker for such metabolic diseases as atherosclerosis and diabetes. Emerging evidence suggests that KYNA acts as a signaling molecule controlling the networks involved in the balance of energy store and expenditure through GPR35 and AMPK signaling pathway. KYNA plays an important role in the pathogenesis and development of several endocrine and metabolic diseases. Exercise training promotes KYNA production in skeletal muscles and increases thermogenesis in the long term and limits weight gain, insulin resistance and inflammation. Additionally, KYNA is also present in breast milk and may act as an anti-obesity agent in infants. Although we are far from fully understanding the role of KYNA in our body, administration of KYNA, enzyme inhibitors or metabolites may serve as a potential therapeutic strategy for treating metabolic diseases. The present review provides a perspective on the current knowledge regarding the biological effects of KYNA in metabolic diseases and perinatal nutrition.
Collapse
Affiliation(s)
- Delong Zhen
- Shandong Institute of Endocrine and Metabolic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Junjun Liu
- Shandong Institute of Endocrine and Metabolic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Xu Dong Zhang
- Translational Research Institute, Henan Provincial People’s Hospital and People’s Hospital of Zhengzhou University, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Zehua Song
- Translational Research Institute, Henan Provincial People’s Hospital and People’s Hospital of Zhengzhou University, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
- ENNOVA Institute of Life Science and Technology, ENN Group, Langfang, China
- *Correspondence: Zehua Song,
| |
Collapse
|
22
|
Zhang P, Azad P, Engelhart DC, Haddad GG, Nigam SK. SLC22 Transporters in the Fly Renal System Regulate Response to Oxidative Stress In Vivo. Int J Mol Sci 2021; 22:13407. [PMID: 34948211 PMCID: PMC8706193 DOI: 10.3390/ijms222413407] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 12/12/2022] Open
Abstract
Several SLC22 transporters in the human kidney and other tissues are thought to regulate endogenous small antioxidant molecules such as uric acid, ergothioneine, carnitine, and carnitine derivatives. These transporters include those from the organic anion transporter (OAT), OCTN/OCTN-related, and organic cation transporter (OCT) subgroups. In mammals, it has been difficult to show a clear in vivo role for these transporters during oxidative stress. Ubiquitous knockdowns of related Drosophila SLC22s-including transporters homologous to those previously identified by us in mammals such as the "Fly-Like Putative Transporters" FLIPT1 (SLC22A15) and FLIPT2 (SLC22A16)-have shown modest protection against oxidative stress. However, these fly transporters tend to be broadly expressed, and it is unclear if there is an organ in which their expression is critical. Using two tissue-selective knockdown strategies, we were able to demonstrate much greater and longer protection from oxidative stress compared to previous whole fly knockdowns as well as both parent and WT strains (CG6126: p < 0.001, CG4630: p < 0.01, CG16727: p < 0.0001 and CG6006: p < 0.01). Expression in the Malpighian tubule and likely other tissues as well (e.g., gut, fat body, nervous system) appear critical for managing oxidative stress. These four Drosophila SLC22 genes are similar to human SLC22 transporters (CG6126: SLC22A16, CG16727: SLC22A7, CG4630: SLC22A3, and CG6006: SLC22A1, SLC22A2, SLC22A3, SLC22A6, SLC22A7, SLC22A8, SLC22A11, SLC22A12 (URAT1), SLC22A13, SLC22A14)-many of which are highly expressed in the kidney. Consistent with the Remote Sensing and Signaling Theory, this indicates an important in vivo role in the oxidative stress response for multiple SLC22 transporters within the fly renal system, perhaps through interaction with SLC22 counterparts in non-renal tissues. We also note that many of the human relatives are well-known drug transporters. Our work not only indicates the importance of SLC22 transporters in the fly renal system but also sets the stage for in vivo studies by examining their role in mammalian oxidative stress and organ crosstalk.
Collapse
Affiliation(s)
- Patrick Zhang
- Department of Biology, University of California San Diego, La Jolla, CA 92093, USA; (P.Z.); (D.C.E.)
| | - Priti Azad
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA; (P.A.); (G.G.H.)
| | - Darcy C. Engelhart
- Department of Biology, University of California San Diego, La Jolla, CA 92093, USA; (P.Z.); (D.C.E.)
| | - Gabriel G. Haddad
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA; (P.A.); (G.G.H.)
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA
- Rady Children’s Hospital, San Diego, CA 92123, USA
| | - Sanjay K. Nigam
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA; (P.A.); (G.G.H.)
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
23
|
Molecular Properties of Drugs Handled by Kidney OATs and Liver OATPs Revealed by Chemoinformatics and Machine Learning: Implications for Kidney and Liver Disease. Pharmaceutics 2021; 13:pharmaceutics13101720. [PMID: 34684013 PMCID: PMC8538396 DOI: 10.3390/pharmaceutics13101720] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 12/31/2022] Open
Abstract
In patients with liver or kidney disease, it is especially important to consider the routes of metabolism and elimination of small-molecule pharmaceuticals. Once in the blood, numerous drugs are taken up by the liver for metabolism and/or biliary elimination, or by the kidney for renal elimination. Many common drugs are organic anions. The major liver uptake transporters for organic anion drugs are organic anion transporter polypeptides (OATP1B1 or SLCO1B1; OATP1B3 or SLCO1B3), whereas in the kidney they are organic anion transporters (OAT1 or SLC22A6; OAT3 or SLC22A8). Since these particular OATPs are overwhelmingly found in the liver but not the kidney, and these OATs are overwhelmingly found in the kidney but not liver, it is possible to use chemoinformatics, machine learning (ML) and deep learning to analyze liver OATP-transported drugs versus kidney OAT-transported drugs. Our analysis of >30 quantitative physicochemical properties of OATP- and OAT-interacting drugs revealed eight properties that in combination, indicate a high propensity for interaction with "liver" transporters versus "kidney" ones based on machine learning (e.g., random forest, k-nearest neighbors) and deep-learning classification algorithms. Liver OATPs preferred drugs with greater hydrophobicity, higher complexity, and more ringed structures whereas kidney OATs preferred more polar drugs with more carboxyl groups. The results provide a strong molecular basis for tissue-specific targeting strategies, understanding drug-drug interactions as well as drug-metabolite interactions, and suggest a strategy for how drugs with comparable efficacy might be chosen in chronic liver or kidney disease (CKD) to minimize toxicity.
Collapse
|
24
|
Li Y, Talebi Z, Chen X, Sparreboom A, Hu S. Endogenous Biomarkers for SLC Transporter-Mediated Drug-Drug Interaction Evaluation. Molecules 2021; 26:5500. [PMID: 34576971 PMCID: PMC8466752 DOI: 10.3390/molecules26185500] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 12/31/2022] Open
Abstract
Membrane transporters play an important role in the absorption, distribution, metabolism, and excretion of xenobiotic substrates, as well as endogenous compounds. The evaluation of transporter-mediated drug-drug interactions (DDIs) is an important consideration during the drug development process and can guide the safe use of polypharmacy regimens in clinical practice. In recent years, several endogenous substrates of drug transporters have been identified as potential biomarkers for predicting changes in drug transport function and the potential for DDIs associated with drug candidates in early phases of drug development. These biomarker-driven investigations have been applied in both preclinical and clinical studies and proposed as a predictive strategy that can be supplanted in order to conduct prospective DDIs trials. Here we provide an overview of this rapidly emerging field, with particular emphasis on endogenous biomarkers recently proposed for clinically relevant uptake transporters.
Collapse
Affiliation(s)
| | | | | | | | - Shuiying Hu
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (Y.L.); (Z.T.); (X.C.); (A.S.)
| |
Collapse
|