1
|
Rajala RVS, Rajala A. From Insight to Eyesight: Unveiling the Secrets of the Insulin-Like Growth Factor Axis in Retinal Health. Aging Dis 2024; 15:1994-2002. [PMID: 38300646 PMCID: PMC11346401 DOI: 10.14336/ad.2024.0128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 01/29/2024] [Indexed: 02/02/2024] Open
Abstract
Insulin-like growth factor-1 (IGF-1) plays a diverse role in the retina, exerting its effects in both normal and diseased conditions. Deficiency of IGF-1 in humans leads to issues such as microcephaly, mental retardation, deafness, and postnatal growth failure. IGF-1 is produced in the retinal pigment epithelium (RPE) and activates the IGF-1 receptor (IGF-1R) in photoreceptor cells. When IGF-1R is absent in rod cells, it results in the degeneration of photoreceptors, emphasizing the neuroprotective function of IGF signaling in these cells. Contrastingly, in neovascular age-related macular degeneration (AMD), there is an overexpression of both IGF-1 and IGF-1R in RPE. The mechanisms behind this altered regulation of IGF-1 in diseased states are currently unknown. This comprehensive review provides recent insights into the role of IGF-1 in the health and disease of the retina, raising several unanswered questions that still need further investigation.
Collapse
Affiliation(s)
- Raju V S Rajala
- Departments of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma, USA
- Physiology, University of Oklahoma Health Sciences Center, Oklahoma, USA
- Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma, USA
- Dean McGee Eye Institute, Oklahoma, Oklahoma, USA
| | - Ammaji Rajala
- Departments of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma, USA
- Dean McGee Eye Institute, Oklahoma, Oklahoma, USA
| |
Collapse
|
2
|
ŞENEL E, TÜRK S, MALKAN ÜY, PEKER MÇ, TÜRK C, GÜNER HR, UÇAR G, İZDEŞ S, KAYAASLAN B, BAYHAN Gİ, EMEKSİZ S, HASANOĞLU İ, BEKTAŞ ŞG, BÜTÜN TÜRK Ş, ÖZCAN S, ERTÜRK A, AKDAĞ AG, YILMAZ A, HAZNEDAROĞLU İC. Pathobiological alterations affecting the distinct clinical courses of pediatric versus adult COVID-19 syndrome. Turk J Med Sci 2023; 53:1194-1204. [PMID: 38813031 PMCID: PMC10763797 DOI: 10.55730/1300-0144.5685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 10/26/2023] [Accepted: 05/31/2023] [Indexed: 05/31/2024] Open
Abstract
Background/aim The clinical presentation of pediatric coronavirus disease 2019 (COVID-19) is associated with a milder disease course than the adult COVID-19 syndrome. The disease course of COVID-19 has three clinicobiological phases: initiation, propagation, and complication. This study aimed to assess the pathobiological alterations affecting the distinct clinical courses of COVID-19 in pediatric age groups versus the adult population. We hypothesized that critical biogenomic marker expressions drive the mild clinical presentations of pediatric COVID-19. Materials and methods Blood samples were obtained from 72 patients with COVID-19 hospitalized at Ankara City Hospital between March and July 2021. Peripheral blood mononuclear cells were isolated using Ficoll-Paque and density-gradient sedimentation. The groups were compared using a t-test and limma analyses. Mean standardized gene expression levels were used to hierarchically cluster genes employing Euclidean Gene Cluster 3.0. The expression levels of identified genes were determined using reverse transcription-polymerase chain reaction. Results This study found that ANPEP gene expression was significantly downregulated in the pediatric group (p < 0.05, FC: 1.57) and IGF2R gene expression was significantly upregulated in the adult group (p < 0.05, FC: 2.98). The study results indicated that the expression of critical biogenomic markers, such as the first-phase (ACE2 and ANPEP) and second-phase (EGFR and IGF2R) receptor genes, was crucial in the genesis of mild clinical presentations of pediatric COVID-19. ANPEP gene expression was lower in pediatric COVID-19. Conclusion The interrelationship between the ANPEP and ACE2 genes may prevent the progression of COVID-19 from initiation to the propagating phase in pediatric patients. High IGF2R gene expression could potentially contribute to a protective effect and may be a contributing factor for the mild clinical course observed in pediatric patients.
Collapse
Affiliation(s)
- Emrah ŞENEL
- Department of Pediatric Surgery, Surgical Medical Sciences, Faculty of Medicine, Yıldırım Beyazıt University, Ankara City Hospital, Ankara,
Turkiye
| | - Seyhan TÜRK
- Department of Biochemistry, Faculty of Pharmacy, Hacettepe University, Ankara,
Turkiye
| | - Ümit Yavuz MALKAN
- Department of Hematology, Faculty of Medicine, Hacettepe University, Ankara,
Turkiye
| | - Mustafa Çağrı PEKER
- Department of Economics, Faculty of Economics and Administrative Sciences, Hacettepe University, Ankara,
Turkiye
| | - Can TÜRK
- Department of Medical Microbiology, Faculty of Medicine, Lokman Hekim University, Ankara,
Turkiye
| | - Hatice Rahmet GÜNER
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Yıldırım Beyazıt University, Ankara City Hospital, Ankara,
Turkiye
| | - Gülberk UÇAR
- Department of Biochemistry, Faculty of Pharmacy, Hacettepe University, Ankara,
Turkiye
| | - Seval İZDEŞ
- Department of Intensive Care Unit, Faculty of Medicine, Yıldırım Beyazıt University, Ankara City Hospital, Ankara,
Turkiye
| | - Bircan KAYAASLAN
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Yıldırım Beyazıt University, Ankara City Hospital, Ankara,
Turkiye
| | - Gülsüm İclal BAYHAN
- Department of Pediatric Infectious Diseases, Faculty of Medicine, Yıldırım Beyazıt University, Ankara City Hospital, Ankara,
Turkiye
| | - Serhat EMEKSİZ
- Department of Pediatric Intensive Care Unit, Faculty of Medicine, Yıldırım Beyazıt University, Ankara City Hospital, Ankara,
Turkiye
| | - İmran HASANOĞLU
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Yıldırım Beyazıt University, Ankara City Hospital, Ankara,
Turkiye
| | | | - Şeyma BÜTÜN TÜRK
- Department of Child Health and Diseases, Ankara City Hospital, Ankara,
Turkiye
| | - Serhan ÖZCAN
- Department of Child Intensive Care Unit, Kayseri City Training and Research Hospital, Kayseri,
Turkiye
| | - Ahmet ERTÜRK
- Department of Pediatric Surgery, Ankara City Hospital, Ankara,
Turkiye
| | - Ahmet Gökhan AKDAĞ
- Department of Intensive Care Unit, Ankara City Hospital, Ankara,
Turkiye
| | - Ayşegül YILMAZ
- Department of Medical Microbiology, Faculty of Medicine, Lokman Hekim University, Ankara,
Turkiye
| | | |
Collapse
|
3
|
Padovani-Claudio DA, Ramos CJ, Capozzi ME, Penn JS. Elucidating glial responses to products of diabetes-associated systemic dyshomeostasis. Prog Retin Eye Res 2023; 94:101151. [PMID: 37028118 PMCID: PMC10683564 DOI: 10.1016/j.preteyeres.2022.101151] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 04/08/2023]
Abstract
Diabetic retinopathy (DR) is a leading cause of blindness in working age adults. DR has non-proliferative stages, characterized in part by retinal neuroinflammation and ischemia, and proliferative stages, characterized by retinal angiogenesis. Several systemic factors, including poor glycemic control, hypertension, and hyperlipidemia, increase the risk of DR progression to vision-threatening stages. Identification of cellular or molecular targets in early DR events could allow more prompt interventions pre-empting DR progression to vision-threatening stages. Glia mediate homeostasis and repair. They contribute to immune surveillance and defense, cytokine and growth factor production and secretion, ion and neurotransmitter balance, neuroprotection, and, potentially, regeneration. Therefore, it is likely that glia orchestrate events throughout the development and progression of retinopathy. Understanding glial responses to products of diabetes-associated systemic dyshomeostasis may reveal novel insights into the pathophysiology of DR and guide the development of novel therapies for this potentially blinding condition. In this article, first, we review normal glial functions and their putative roles in the development of DR. We then describe glial transcriptome alterations in response to systemic circulating factors that are upregulated in patients with diabetes and diabetes-related comorbidities; namely glucose in hyperglycemia, angiotensin II in hypertension, and the free fatty acid palmitic acid in hyperlipidemia. Finally, we discuss potential benefits and challenges associated with studying glia as targets of DR therapeutic interventions. In vitro stimulation of glia with glucose, angiotensin II and palmitic acid suggests that: 1) astrocytes may be more responsive than other glia to these products of systemic dyshomeostasis; 2) the effects of hyperglycemia on glia are likely to be largely osmotic; 3) fatty acid accumulation may compound DR pathophysiology by promoting predominantly proinflammatory and proangiogenic transcriptional alterations of macro and microglia; and 4) cell-targeted therapies may offer safer and more effective avenues for DR treatment as they may circumvent the complication of pleiotropism in retinal cell responses. Although several molecules previously implicated in DR pathophysiology are validated in this review, some less explored molecules emerge as potential therapeutic targets. Whereas much is known regarding glial cell activation, future studies characterizing the role of glia in DR and how their activation is regulated and sustained (independently or as part of retinal cell networks) may help elucidate mechanisms of DR pathogenesis and identify novel drug targets for this blinding disease.
Collapse
Affiliation(s)
- Dolly Ann Padovani-Claudio
- Department of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, B3321A Medical Center North, 1161 21st Avenue South, Nashville, TN, 37232-0011, USA.
| | - Carla J Ramos
- Department of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, AA1324 Medical Center North, 1161 21st Avenue South, Nashville, TN, 37232-0011, USA.
| | - Megan E Capozzi
- Duke Molecular Physiology Institute, Duke University School of Medicine, 300 North Duke Street, Durham, NC, 27701, USA.
| | - John S Penn
- Department of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, B3307 Medical Center North, 1161 21st Avenue South, Nashville, TN, 37232-0011, USA.
| |
Collapse
|
4
|
Fitzgerald GS, Chuchta TG, McNay EC. Insulin‐like growth factor‐2 is a promising candidate for the treatment and prevention of Alzheimer's disease. CNS Neurosci Ther 2023; 29:1449-1469. [PMID: 36971212 PMCID: PMC10173726 DOI: 10.1111/cns.14160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 02/06/2023] [Accepted: 02/22/2023] [Indexed: 03/29/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia. Current AD treatments slow the rate of cognitive decline, but do not restore lost function. One reason for the low efficacy of current treatments is that they fail to target neurotrophic processes, which are thought to be essential for functional recovery. Bolstering neurotrophic processes may also be a viable strategy for preventative treatment, since structural losses are thought to underlie cognitive decline in AD. The challenge of identifying presymptomatic patients who might benefit from preventative treatment means that any such treatment must meet a high standard of safety and tolerability. The neurotrophic peptide insulin-like growth factor-2 (IGF2) is a promising candidate for both treating and preventing AD-induced cognitive decline. Brain IGF2 expression declines in AD patients. In rodent models of AD, exogenous IGF2 modulates multiple aspects of AD pathology, resulting in (1) improved cognitive function; (2) stimulation of neurogenesis and synaptogenesis; and, (3) neuroprotection against cholinergic dysfunction and beta amyloid-induced neurotoxicity. Preclinical evidence suggests that IGF2 is likely to be safe and tolerable at therapeutic doses. In the preventative treatment context, the intranasal route of administration is likely to be the preferred method for achieving the therapeutic effect without risking adverse side effects. For patients already experiencing AD dementia, routes of administration that deliver IGF2 directly access the CNS may be necessary. Finally, we discuss several strategies for improving the translational validity of animal models used to study the therapeutic potential of IGF2.
Collapse
Affiliation(s)
| | | | - E C McNay
- University at Albany, Albany, New York, USA
| |
Collapse
|
5
|
Iker Etchegaray J, Kelley S, Penberthy K, Karvelyte L, Nagasaka Y, Gasperino S, Paul S, Seshadri V, Raymond M, Marco AR, Pinney J, Stremska M, Barron B, Lucas C, Wase N, Fan Y, Unanue E, Kundu B, Burstyn-Cohen T, Perry J, Ambati J, Ravichandran KS. Phagocytosis in the retina promotes local insulin production in the eye. Nat Metab 2023; 5:207-218. [PMID: 36732622 PMCID: PMC10457724 DOI: 10.1038/s42255-022-00728-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/16/2022] [Indexed: 02/04/2023]
Abstract
The retina is highly metabolically active, relying on glucose uptake and aerobic glycolysis. Situated in close contact to photoreceptors, a key function of cells in the retinal pigment epithelium (RPE) is phagocytosis of damaged photoreceptor outer segments (POS). Here we identify RPE as a local source of insulin in the eye that is stimulated by POS phagocytosis. We show that Ins2 messenger RNA and insulin protein are produced by RPE cells and that this production correlates with RPE phagocytosis of POS. Genetic deletion of phagocytic receptors ('loss of function') reduces Ins2, whereas increasing the levels of the phagocytic receptor MerTK ('gain of function') increases Ins2 production in male mice. Contrary to pancreas-derived systemic insulin, RPE-derived local insulin is stimulated during starvation, which also increases RPE phagocytosis. Global or RPE-specific Ins2 gene deletion decreases retinal glucose uptake in starved male mice, dysregulates retinal physiology, causes defects in phototransduction and exacerbates photoreceptor loss in a mouse model of retinitis pigmentosa. Collectively, these data identify RPE cells as a phagocytosis-induced local source of insulin in the retina, with the potential to influence retinal physiology and disease.
Collapse
Affiliation(s)
- J Iker Etchegaray
- Center for Cell Clearance, University of Virginia, Charlottesville, VA, USA
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Shannon Kelley
- Center for Cell Clearance, University of Virginia, Charlottesville, VA, USA
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kristen Penberthy
- Center for Cell Clearance, University of Virginia, Charlottesville, VA, USA
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Laura Karvelyte
- Center for Cell Clearance, University of Virginia, Charlottesville, VA, USA
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Yosuke Nagasaka
- Center for Advanced Vision Science, University of Virginia, Charlottesville, VA, USA
| | - Sofia Gasperino
- Center for Cell Clearance, University of Virginia, Charlottesville, VA, USA
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Soumen Paul
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA
| | - Vikram Seshadri
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA
| | - Michael Raymond
- Center for Cell Clearance, University of Virginia, Charlottesville, VA, USA
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Ana Royo Marco
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Jonathan Pinney
- Center for Cell Clearance, University of Virginia, Charlottesville, VA, USA
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Marta Stremska
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Brady Barron
- Center for Cell Clearance, University of Virginia, Charlottesville, VA, USA
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Christopher Lucas
- Center for Cell Clearance, University of Virginia, Charlottesville, VA, USA
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
- University of Edinburgh, Edinburgh, UK
| | - Nishikant Wase
- Biomolecular Analysis Facility, University of Virginia, Charlottesville, VA, USA
| | - Yong Fan
- Drexel University, Philadelphia, PA, USA
| | - Emil Unanue
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Bijoy Kundu
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA
| | - Tal Burstyn-Cohen
- Hadassah Medical School, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Justin Perry
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jayakrishna Ambati
- Center for Advanced Vision Science, University of Virginia, Charlottesville, VA, USA
- Ophthalmology, University of Virginia, Charlottesville, VA, USA
| | - Kodi S Ravichandran
- Center for Cell Clearance, University of Virginia, Charlottesville, VA, USA.
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA.
- Hadassah Medical School, Hebrew University of Jerusalem, Jerusalem, Israel.
- VIB/UGent Inflammation Research Centre, and Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| |
Collapse
|
6
|
Nath M, Fort PE. αA-Crystallin Mediated Neuroprotection in the Retinal Neurons Is Independent of Protein Kinase B. Front Neurosci 2022; 16:912757. [PMID: 35669493 PMCID: PMC9163390 DOI: 10.3389/fnins.2022.912757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
Phosphatidylinositol 3-kinase (PI3K)/Akt signal pathway mediates pro-survival function in neurons. In the retina, PI3K/AKT/mTOR signaling pathway is related to the early pathogenesis of diabetic retinopathy. Signaling molecules in the membrane-initiated signaling pathway exhibiting neuroprotective function interacts with the PI3K/Akt pathway as an important survival pathway. Molecular chaperone α-crystallins are known to potentially interact and/or regulate various pro-survival and pro-apoptotic proteins to regulate cell survival. Among these demonstrated mechanisms, they are well-reported to regulate and inhibit apoptosis by interacting and sequestrating the proapoptotic proteins such as Bax and Bcl-Xs. We studied the importance of metabolic stress-induced enhanced Akt signaling and αA-crystallin interdependence for exhibiting neuroprotection in metabolically challenged retinal neurons. For the first time, this study has revealed that αA-crystallin and activated Akt are significantly neuroprotective in the stressed retinal neurons, independent of each other. Furthermore, the study also highlighted that significant inhibition of the PI3K-Akt pathway does not alter the neuroprotective ability of αA-crystallin in stressed retinal neurons. Interestingly, our study also demonstrated that in the absence of Akt activation, αA-crystallin inhibits the translocation of Bax in the mitochondria during metabolic stress, and this function is regulated by the phosphorylation of αA-crystallin on residue 148.
Collapse
Affiliation(s)
- Madhu Nath
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, United States
| | - Patrice Elie Fort
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, United States
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|