1
|
Weiss D, Yeung N, Ramachandra AB, Humphrey JD. Transcriptional regulation of postnatal aortic development. Cells Dev 2024; 180:203971. [PMID: 39426523 DOI: 10.1016/j.cdev.2024.203971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/14/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
The aorta exhibits tremendous changes in geometry, composition, and mechanical properties during postnatal development. These changes are necessarily driven by transcriptional changes, both genetically programmed and mechano-responsive, but there has not been a careful comparison of time-course changes in the transcriptional profile and biomechanical phenotype. Here, we show that the greatest period of differential gene expression in the normal postnatal mouse aorta occurs prior to weaning at three weeks of age though with important evolution of many transcripts thereafter. We identify six general temporal patterns, including transcripts that monotonically decrease to lower or increase to higher steady state values as well as those that either peak or dip prior to or near weaning. We show that diverse transcripts within individual groupings correlate well over time, and that sub-sets of these groups correlate well with the developmental progression of different biomechanical metrics that are expected to be involved in mechano-sensing. In particular, expression of genes for elastin and elastin-associated glycoproteins tend to correlate well with the ratio of systolic-to-diastolic stress whereas genes for collagen fibers correlate well with the daily rate of change of systolic stress and genes for mechano-sensing proteins tend to correlate well with the systolic stress itself. We conclude that different groupings of genes having different temporal expression patterns correlate well with different measures of the wall mechanics, hence emphasizing a need for age-dependent, gene-specific computational modeling of postnatal development.
Collapse
Affiliation(s)
- D Weiss
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Department of Mechanical & Materials Engineering, University of Denver, Denver, CO, USA
| | - N Yeung
- School of the Biological Sciences, University of Cambridge, Cambridge, UK
| | - A B Ramachandra
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Department of Mechanical Engineering, Iowa State University, Ames, IA, USA
| | - J D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
2
|
Zhang W, Jadidi M, Razian SA, Holzapfel GA, Kamenskiy A, Nordsletten DA. A viscoelastic constitutive framework for aging muscular and elastic arteries. Acta Biomater 2024; 188:223-241. [PMID: 39303831 DOI: 10.1016/j.actbio.2024.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
The evolution of arterial biomechanics and microstructure with age and disease plays a critical role in understanding the health and function of the cardiovascular system. Accurately capturing these adaptative processes and their effects on the mechanical environment is critical for predicting arterial responses. This challenge is exacerbated by the significant differences between elastic and muscular arteries, which have different structural organizations and functional demands. In this study, we aim to shed light to these adaptive processes by comparing the viscoelastic mechanics of autologous thoracic aortas (TA) and femoropopliteal arteries (FPA) in different age groups. We have extended our fractional viscoelastic framework, originally developed for FPA, to both types of arteries. To evaluate this framework, we analyzed experimental mechanical data from TA and FPA specimens from 21 individuals aged 13 to 73 years. Each specimen was subjected to a multi-ratio biaxial mechanical extension and relaxation test complemented by bidirectional histology to quantify the structural density and microstructural orientations. Our new constitutive model accurately captured the mechanical responses and microstructural differences of the tissues and closely matched the experimentally measured densities. It was found that the viscoelastic properties of collagen and smooth muscle cells (SMCs) in both the FPA and TA remained consistent with age, but the viscoelasticity of the SMCs in the FPA was twice that of the TA. Additionally, changes in collagen nonlinearity with age were similar in both TA and FPA. This model provides valuable insights into arterial mechanophysiology and the effects of pathological conditions on vascular biomechanics. STATEMENT OF SIGNIFICANCE: Developing durable treatments for arterial diseases necessitates a deeper understanding of how mechanical properties evolve with age in response to mechanical environments. In this work, we developed a generalized viscoelastic constitutive model for both elastic and muscular arteries and analyzed both the thoracic aorta (TA) and the femoropopliteal artery (FPA) from 21 donors aged 13 to 73. The derived parameters correlate well with histology, allowing further examination of how viscoelasticity evolves with age. Correlation between the TA and FPA of the same donors suggest that the viscoelasticity of the FPA may be influenced by the TA, necessitating more detailed analysis. In summary, our new model proves to be a valuable tool for studying arterial mechanophysiology and exploring pathological impacts.
Collapse
Affiliation(s)
- Will Zhang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
| | - Majid Jadidi
- Department of Biomechanics, University of Nebraska at Omaha, NE, USA.
| | | | - Gerhard A Holzapfel
- Institute of Biomechanics, Graz University of Technology, Austria; Department of Structural Engineering, Norwegian University of Science and Technology, Trondheim, Norway.
| | - Alexey Kamenskiy
- Department of Biomechanics, University of Nebraska at Omaha, NE, USA.
| | - David A Nordsletten
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Division of Biomedical Engineering and Imaging Sciences, Department of Biomedical Engineering, King's College London, UK.
| |
Collapse
|
3
|
Khoukaz HB, Vadali M, Schoenherr A, Ramirez-Perez FI, Morales-Quinones M, Sun Z, Fujie S, Foote CA, Lyu Z, Zeng S, Augenreich MA, Cai D, Chen SY, Joshi T, Ji Y, Hill MA, Martinez-Lemus LA, Fay WP. PAI-1 Regulates the Cytoskeleton and Intrinsic Stiffness of Vascular Smooth Muscle Cells. Arterioscler Thromb Vasc Biol 2024; 44:2191-2203. [PMID: 38868940 PMCID: PMC11424258 DOI: 10.1161/atvbaha.124.320938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/01/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND Plasma concentration of PAI-1 (plasminogen activator inhibitor-1) correlates with arterial stiffness. Vascular smooth muscle cells (SMCs) express PAI-1, and the intrinsic stiffness of SMCs is a major determinant of total arterial stiffness. We hypothesized that PAI-1 promotes SMC stiffness by regulating the cytoskeleton and that pharmacological inhibition of PAI-1 decreases SMC and aortic stiffness. METHODS PAI-039, a specific inhibitor of PAI-1, and small interfering RNA were used to inhibit PAI-1 expression in cultured human SMCs. Effects of PAI-1 inhibition on SMC stiffness, F-actin (filamentous actin) content, and cytoskeleton-modulating enzymes were assessed. WT (wild-type) and PAI-1-deficient murine SMCs were used to determine PAI-039 specificity. RNA sequencing was performed to determine the effects of PAI-039 on SMC gene expression. In vivo effects of PAI-039 were assessed by aortic pulse wave velocity. RESULTS PAI-039 significantly reduced intrinsic stiffness of human SMCs, which was accompanied by a significant decrease in cytoplasmic F-actin content. PAI-1 gene knockdown also decreased cytoplasmic F-actin. PAI-1 inhibition significantly increased the activity of cofilin, an F-actin depolymerase, in WT murine SMCs, but not in PAI-1-deficient SMCs. RNA-sequencing analysis suggested that PAI-039 upregulates AMPK (AMP-activated protein kinase) signaling in SMCs, which was confirmed by Western blotting. Inhibition of AMPK prevented activation of cofilin by PAI-039. In mice, PAI-039 significantly decreased aortic stiffness and tunica media F-actin content without altering the elastin or collagen content. CONCLUSIONS PAI-039 decreases intrinsic SMC stiffness and cytoplasmic stress fiber content. These effects are mediated by AMPK-dependent activation of cofilin. PAI-039 also decreases aortic stiffness in vivo. These findings suggest that PAI-1 is an important regulator of the SMC cytoskeleton and that pharmacological inhibition of PAI-1 has the potential to prevent and treat cardiovascular diseases involving arterial stiffening.
Collapse
Affiliation(s)
- Hekmat B Khoukaz
- Departments of Medicine (H.B.K., M.V., F.I.R.-P., M.M.-Q., Y.J., L.A.M.-L., W.P.F.), University of Missouri, Columbia
| | - Manisha Vadali
- Departments of Medicine (H.B.K., M.V., F.I.R.-P., M.M.-Q., Y.J., L.A.M.-L., W.P.F.), University of Missouri, Columbia
| | - Alex Schoenherr
- Medical Pharmacology and Physiology (A.S., C.A.F., S.-Y.C., M.A.H., L.A.M.-L., W.P.F.), University of Missouri, Columbia
| | - Francisco I Ramirez-Perez
- Departments of Medicine (H.B.K., M.V., F.I.R.-P., M.M.-Q., Y.J., L.A.M.-L., W.P.F.), University of Missouri, Columbia
| | - Mariana Morales-Quinones
- Departments of Medicine (H.B.K., M.V., F.I.R.-P., M.M.-Q., Y.J., L.A.M.-L., W.P.F.), University of Missouri, Columbia
| | - Zhe Sun
- Dalton Cardiovascular Research Center (Z.S., M.A.H., L.A.M.-L., W.P.F.), University of Missouri, Columbia
| | - Shumpei Fujie
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan (S.F.)
| | - Christopher A Foote
- Medical Pharmacology and Physiology (A.S., C.A.F., S.-Y.C., M.A.H., L.A.M.-L., W.P.F.), University of Missouri, Columbia
| | - Zhen Lyu
- Electrical Engineering and Computer Science (Z.L., S.Z.), University of Missouri, Columbia
| | - Shuai Zeng
- Electrical Engineering and Computer Science (Z.L., S.Z.), University of Missouri, Columbia
| | - Marc A Augenreich
- Nutrition and Exercise Physiology (M.A.A.), University of Missouri, Columbia
| | - Dunpeng Cai
- Surgery (D.C., S.-Y.C.), University of Missouri, Columbia
| | - Shi-You Chen
- Medical Pharmacology and Physiology (A.S., C.A.F., S.-Y.C., M.A.H., L.A.M.-L., W.P.F.), University of Missouri, Columbia
- Surgery (D.C., S.-Y.C.), University of Missouri, Columbia
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO (S.-Y.C., W.P.F.)
| | - Trupti Joshi
- Health Management and Informatics (T.J.), University of Missouri, Columbia
| | - Yan Ji
- Departments of Medicine (H.B.K., M.V., F.I.R.-P., M.M.-Q., Y.J., L.A.M.-L., W.P.F.), University of Missouri, Columbia
| | - Michael A Hill
- Medical Pharmacology and Physiology (A.S., C.A.F., S.-Y.C., M.A.H., L.A.M.-L., W.P.F.), University of Missouri, Columbia
- Dalton Cardiovascular Research Center (Z.S., M.A.H., L.A.M.-L., W.P.F.), University of Missouri, Columbia
| | - Luis A Martinez-Lemus
- Departments of Medicine (H.B.K., M.V., F.I.R.-P., M.M.-Q., Y.J., L.A.M.-L., W.P.F.), University of Missouri, Columbia
- Medical Pharmacology and Physiology (A.S., C.A.F., S.-Y.C., M.A.H., L.A.M.-L., W.P.F.), University of Missouri, Columbia
- Dalton Cardiovascular Research Center (Z.S., M.A.H., L.A.M.-L., W.P.F.), University of Missouri, Columbia
| | - William P Fay
- Departments of Medicine (H.B.K., M.V., F.I.R.-P., M.M.-Q., Y.J., L.A.M.-L., W.P.F.), University of Missouri, Columbia
- Medical Pharmacology and Physiology (A.S., C.A.F., S.-Y.C., M.A.H., L.A.M.-L., W.P.F.), University of Missouri, Columbia
- Dalton Cardiovascular Research Center (Z.S., M.A.H., L.A.M.-L., W.P.F.), University of Missouri, Columbia
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO (S.-Y.C., W.P.F.)
| |
Collapse
|
4
|
Dwivedi KK, Rother J, Wagenseil JE. Age- and sex-specific biomechanics and extracellular matrix remodeling of the ascending aorta in a mouse model of severe Marfan syndrome. Am J Physiol Heart Circ Physiol 2024; 327:H1037-H1051. [PMID: 39212766 PMCID: PMC11482245 DOI: 10.1152/ajpheart.00391.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Thoracic aortic aneurysm (TAA) is associated with Marfan syndrome (MFS), a connective tissue disorder caused by mutations in fibrillin-1. Sexual dimorphism has been recorded for TAA outcomes in MFS, but detailed studies on the differences in TAA progression in males and females and their relationships to outcomes have not been performed. The aims of this study were to determine sex differences in the diameter dilatation, mechanical properties, and extracellular matrix (ECM) remodeling over time in a severe mouse model (Fbn1mgR/mgR = MU) of MFS-associated TAA that has a shortened life span. Male and female MU and wildtype (WT) mice were used at 1-4 mo of age. Blood pressure and in vivo diameters of the ascending thoracic aorta were recorded using a tail-cuff system and ultrasound imaging, respectively. Ex vivo mechanics and ECM remodeling of the aorta were characterized using a biaxial test system and multiphoton imaging, respectively. We showed that mechanical properties, such as structural and material stiffness, and ECM remodeling, such as elastic and collagen fiber content, correlated with diameter dilatation during TAA progression. Male MU mice had accelerated rates of diameter dilatation, stiffening, and ECM remodeling compared with female MU mice which may have contributed to their decreased life span. The correlation of mechanical properties and ECM remodeling with diameter dilatation suggests that they may be useful biomarkers for TAA progression. The differences in diameter dilatation and life spans in male and female MU mice indicate that sex is an important consideration for managing thoracic aortic aneurysm in MFS. NEW & NOTEWORTHY Using a mouse model (Fbn1mgR/mgR = MU) of severe thoracic aortic aneurysm in Marfan syndrome (MFS), we found that male MU aorta had an accelerated time line and increased amounts of dilatation, stiffening, and extracellular matrix (ECM) remodeling compared with female MU aorta that may have contributed to an increased risk of fatigue failure with cyclic loading over time and a reduced life span. We suggest that aortic stiffness may provide useful information for clinical management of aneurysms in MFS.
Collapse
MESH Headings
- Animals
- Marfan Syndrome/complications
- Marfan Syndrome/metabolism
- Marfan Syndrome/physiopathology
- Marfan Syndrome/genetics
- Marfan Syndrome/pathology
- Female
- Extracellular Matrix/metabolism
- Extracellular Matrix/pathology
- Male
- Aortic Aneurysm, Thoracic/physiopathology
- Aortic Aneurysm, Thoracic/metabolism
- Aortic Aneurysm, Thoracic/pathology
- Aortic Aneurysm, Thoracic/genetics
- Aortic Aneurysm, Thoracic/etiology
- Disease Models, Animal
- Aorta, Thoracic/physiopathology
- Aorta, Thoracic/pathology
- Aorta, Thoracic/metabolism
- Aorta, Thoracic/diagnostic imaging
- Biomechanical Phenomena
- Sex Factors
- Mice
- Fibrillin-1/genetics
- Fibrillin-1/metabolism
- Vascular Remodeling
- Age Factors
- Dilatation, Pathologic
- Mice, Inbred C57BL
- Vascular Stiffness
- Adipokines
Collapse
Affiliation(s)
- Krashn Kumar Dwivedi
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, Missouri, United States
| | - Jacob Rother
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, Missouri, United States
| | - Jessica E Wagenseil
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, Missouri, United States
| |
Collapse
|
5
|
Vargas AI, Tarraf SA, Jennings T, Bellini C, Amini R. Vascular Remodeling During Late-Gestation Pregnancy: An In-Vitro Assessment of the Murine Ascending Thoracic Aorta. J Biomech Eng 2024; 146:071004. [PMID: 38345599 DOI: 10.1115/1.4064744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Indexed: 03/20/2024]
Abstract
Maternal mortality due to cardiovascular disease is a rising concern in the U.S. Pregnancy triggers changes in the circulatory system, potentially influencing the structure of the central vasculature. Evidence suggests a link between a woman's pregnancy history and future cardiovascular health, but our understanding remains limited. To fill this gap, we examined the passive mechanics of the murine ascending thoracic aorta during late gestation. By performing biaxial mechanical testing on the ascending aorta, we were able to characterize the mechanical properties of both control and late-gestation tissues. By examining mechanical, structural, and geometric properties, we confirmed that remodeling of the aortic wall occurred. Morphological and mechanical properties of the tissue indicated an outward expansion of the tissue, as reflected in changes in wall thickness (∼12% increase) and luminal diameter (∼6% increase) at its physiologically loaded state in the pregnant group. With these geometric adaptations and despite increased hemodynamic loads, pregnancy did not induce significant changes in the tensile wall stress at the similar physiological pressure levels of the pregnant and control tissues. The alterations also included reduced intrinsic stiffness in the circumferential direction (∼18%) and reduced structural stiffness (∼26%) in the pregnant group. The observed vascular remodeling maintained the elastic stored energy of the aortic wall under systolic loads, indicating preservation of vascular function. Data from our study of pregnancy-related vascular remodeling will provide valuable insights for future investigations of maternal cardiovascular health.
Collapse
Affiliation(s)
- Ana I Vargas
- Department of Bioengineering, Northeastern University, Boston, MA 02115
| | - Samar A Tarraf
- Department of Bioengineering, Northeastern University, Boston, MA 02115
- Northeastern University
| | - Turner Jennings
- Department of Mechanical and Industrial Engineering, Department of Bioengineering, Northeastern University, Boston, MA 02115
- Northeastern University
| | - Chiara Bellini
- Department of Bioengineering, Northeastern University, Boston, MA 02115
| | - Rouzbeh Amini
- Department of Mechanical and Industrial Engineering, Department of Bioengineering, Northeastern University, Boston, MA 02115
| |
Collapse
|
6
|
Szafron JM, Heng EE, Boyd J, Humphrey JD, Marsden AL. Hemodynamics and Wall Mechanics of Vascular Graft Failure. Arterioscler Thromb Vasc Biol 2024; 44:1065-1085. [PMID: 38572650 PMCID: PMC11043008 DOI: 10.1161/atvbaha.123.318239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 03/12/2024] [Indexed: 04/05/2024]
Abstract
Blood vessels are subjected to complex biomechanical loads, primarily from pressure-driven blood flow. Abnormal loading associated with vascular grafts, arising from altered hemodynamics or wall mechanics, can cause acute and progressive vascular failure and end-organ dysfunction. Perturbations to mechanobiological stimuli experienced by vascular cells contribute to remodeling of the vascular wall via activation of mechanosensitive signaling pathways and subsequent changes in gene expression and associated turnover of cells and extracellular matrix. In this review, we outline experimental and computational tools used to quantify metrics of biomechanical loading in vascular grafts and highlight those that show potential in predicting graft failure for diverse disease contexts. We include metrics derived from both fluid and solid mechanics that drive feedback loops between mechanobiological processes and changes in the biomechanical state that govern the natural history of vascular grafts. As illustrative examples, we consider application-specific coronary artery bypass grafts, peripheral vascular grafts, and tissue-engineered vascular grafts for congenital heart surgery as each of these involves unique circulatory environments, loading magnitudes, and graft materials.
Collapse
Affiliation(s)
- Jason M Szafron
- Departments of Pediatrics (J.M.S., A.L.M.), Stanford University, CA
| | - Elbert E Heng
- Cardiothoracic Surgery (E.E.H., J.B.), Stanford University, CA
| | - Jack Boyd
- Cardiothoracic Surgery (E.E.H., J.B.), Stanford University, CA
| | - Jay D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT (J.D.H.)
| | | |
Collapse
|
7
|
Struczewska P, Razian SA, Townsend K, Jadidi M, Shahbad R, Zamani E, Gamache J, MacTaggart J, Kamenskiy A. Mechanical, structural, and physiologic differences between above and below-knee human arteries. Acta Biomater 2024; 177:278-299. [PMID: 38307479 PMCID: PMC11456514 DOI: 10.1016/j.actbio.2024.01.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/07/2024] [Accepted: 01/25/2024] [Indexed: 02/04/2024]
Abstract
Peripheral Artery Disease (PAD) affects the lower extremities and frequently results in poor clinical outcomes, especially in the vessels below the knee. Understanding the biomechanical and structural characteristics of these arteries is important for improving treatment efficacy, but mechanical and structural data on tibial vessels remain limited. We compared the superficial femoral (SFA) and popliteal (PA) arteries that comprise the above-knee femoropopliteal (FPA) segment to the infrapopliteal (IPA) anterior tibial (AT), posterior tibial (PT), and fibular (FA) arteries from the same 15 human subjects (average age 52, range 42-67 years, 87 % male). Vessels were imaged using μCT, evaluated with biaxial mechanical testing and constitutive modeling, and assessed for elastin, collagen, smooth muscle cells (SMCs), and glycosaminoglycans (GAGs). IPAs were more often diseased or calcified compared to the FPAs. They were also twice smaller, 53 % thinner, and significantly stiffer than the FPA longitudinally, but not circumferentially. IPAs experienced 48 % higher physiologic longitudinal stresses (62 kPa) but 27 % lower circumferential stresses (24 kPa) and similar cardiac cycle stretch of <1.02 compared to the FPA. IPAs had lower longitudinal pre-stretch (1.12) than the FPAs (1.29), but there were no differences in the stored elastic energy during pulsation. The physiologic circumferential stiffness was similar in the above and below-knee arteries (718 kPa vs 754 kPa). Structurally, IPAs had less elastin, collagen, and GAGs than the FPA, but maintained similar SMC content. Our findings contribute to a better understanding of segment-specific human lower extremity artery biomechanics and may inform the development of better medical devices for PAD treatment. STATEMENT OF SIGNIFICANCE: Peripheral Artery Disease (PAD) in the lower extremity arteries exhibits distinct characteristics and results in different clinical outcomes when treating arteries above and below the knee. However, their mechanical, structural, and physiologic differences are poorly understood. Our study compared above- and below-knee arteries from the same middle-aged human subjects and demonstrated distinct differences in size, structure, and mechanical properties, leading to variations in their physiological behavior. These insights could pave the way for creating location-specific medical devices and treatments for PAD, offering a more effective approach to its management. Our findings provide new, important perspectives for clinicians, researchers, and medical device developers interested in treating PAD in both above- and below-knee locations.
Collapse
Affiliation(s)
| | | | | | - Majid Jadidi
- Department of Biomechanics, University of Nebraska Omaha, Omaha, NE, USA
| | - Ramin Shahbad
- Department of Biomechanics, University of Nebraska Omaha, Omaha, NE, USA
| | - Elham Zamani
- Department of Biomechanics, University of Nebraska Omaha, Omaha, NE, USA
| | - Jennifer Gamache
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jason MacTaggart
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA
| | - Alexey Kamenskiy
- Department of Biomechanics, University of Nebraska Omaha, Omaha, NE, USA.
| |
Collapse
|
8
|
Hernández-Espinosa LC, Hernández-Muñoz R. Blood flow-bearing physical forces, endothelial glycocalyx, and liver enzyme mobilization: A hypothesis. J Gen Physiol 2024; 156:e202313462. [PMID: 38231124 PMCID: PMC10794122 DOI: 10.1085/jgp.202313462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/13/2023] [Accepted: 12/18/2023] [Indexed: 01/18/2024] Open
Abstract
Numerous elements involved in shear stress-induced signaling have been identified, recognizing their functions as mechanotransducing ion channels situated at cellular membranes. This form of mechanical signaling relies on transmembrane proteins and cytoplasmic proteins that restructure the cytoskeleton, contributing to mechanotransduction cascades. Notably, blood flow generates mechanical forces that significantly impact the structure and remodeling of blood vessels. The primary regulation of blood vessel responses occurs through hemodynamic forces acting on the endothelium. These mechanical events intricately govern endothelial biophysical, biochemical, and genetic responses. Endothelial cells, positioned on the intimal surface of blood vessels, have the capability to express components of the glycocalyx. This endothelial structure emerges as a pivotal factor in mechanotransduction and the regulation of vascular tone. The endothelial glycocalyx assumes diverse roles in both health and disease. Our findings propose a connection between the release of specific enzymes from the rat liver and variations in the hepatic blood flow/mass ratio. Importantly, this phenomenon is not correlated with liver necrosis. Consequently, this review serves as an exploration of the potential involvement of membrane proteins in a hypothetical mechanotransducing phenomenon capable of controlling the release of liver enzymes.
Collapse
Affiliation(s)
- Lorena Carmina Hernández-Espinosa
- Department of Cell Biology and Development, Institute of Cellular Physiology, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Rolando Hernández-Muñoz
- Department of Cell Biology and Development, Institute of Cellular Physiology, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| |
Collapse
|
9
|
Kailash KA, Hawes JZ, Cocciolone AJ, Bersi MR, Mecham RP, Wagenseil JE. Constitutive Modeling of Mouse Arteries Suggests Changes in Directional Coupling and Extracellular Matrix Remodeling That Depend on Artery Type, Age, Sex, and Elastin Amounts. J Biomech Eng 2024; 146:051001. [PMID: 37646627 DOI: 10.1115/1.4063272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023]
Abstract
Arterial stiffening occurs during natural aging, is associated with an increased risk of adverse cardiovascular events, and can follow different timelines in males and females. One mechanism of arterial stiffening includes remodeling of the extracellular matrix (ECM), which alters the wall material properties. We used elastin haploinsufficient (Eln+/-) and wildtype (Eln+/+) mice to investigate how material properties of two different arteries (ascending aorta and carotid artery) change with age, sex, and ECM composition. We used a constitutive model by Dong and Sun that is based on the Holzapfel-Gasser-Ogden (HGO) type, but does not require a discrete number of fibrous ECM families and allows varied deformation coupling. We find that the amount of deformation coupling for the best fit model depends on the artery type. We also find that remodeling to maintain homeostatic (i.e., young, wildtype) values of biomechanical parameters with age, sex, and ECM composition depends on the artery type, with ascending aorta being more adaptable than carotid artery. Fitted material constants indicate sex-dependent remodeling that may be important for determining the time course of arterial stiffening in males and females. We correlated fitted material constants with ECM composition measured by biochemical (ascending aorta) or histological (carotid artery) methods. We show significant correlations between ECM composition and material parameters for the mean values for each group, with biochemical measurements correlating more strongly than histological measurements. Understanding how arterial stiffening depends on age, sex, ECM composition, and artery type may help design effective, personalized clinical treatment strategies.
Collapse
Affiliation(s)
- Keshav A Kailash
- Biomedical Engineering, Washington University, St. Louis, MO 63130
| | - Jie Z Hawes
- Mechanical Engineering and Materials Science, Washington University, St. Louis, MO 63130
| | - Austin J Cocciolone
- Mechanical Engineering and Materials Science, Washington University, St. Louis, MO 63130
| | - Matthew R Bersi
- Mechanical Engineering and Materials Science, Washington University, St. Louis, MO 63130
| | - Robert P Mecham
- Cell Biology and Physiology, Washington University, St. Louis, MO 63130
| | - Jessica E Wagenseil
- Mechanical Engineering and Materials Science, Washington University, One Brookings Dr., MSC 1185-208-125, St. Louis, MO 63130
| |
Collapse
|
10
|
Gkousioudi A, Razzoli M, Moreira JD, Wainford RD, Zhang Y. Renal denervation restores biomechanics of carotid arteries in a rat model of hypertension. Sci Rep 2024; 14:495. [PMID: 38177257 PMCID: PMC10767006 DOI: 10.1038/s41598-023-50816-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/26/2023] [Indexed: 01/06/2024] Open
Abstract
The prevalence of hypertension increases with aging and is associated with increased arterial stiffness. Resistant hypertension is presented when drug treatments fail to regulate a sustained increased blood pressure. Given that the mechanisms between the sympathetic nervous system and the kidney play an important role in blood regulation, renal denervation (RDN) has emerged as a therapeutic potential in resistant hypertension. In this study, we investigated the effects of RDN on the biomechanical response and microstructure of elastic arteries. Common carotid arteries (CCA) excised from 3-month, 8-month, and 8-month denervated rats were subjected to biaxial extension-inflation test. Our results showed that hypertension developed in the 8-month-old rats. The sustained elevated blood pressure resulted in arterial remodeling which was manifested as a significant stress increase in both axial and circumferential directions after 8 months. RDN had a favorable impact on CCAs with a restoration of stresses in values similar to control arteries at 3 months. After biomechanical testing, arteries were imaged under a multi-photon microscope to identify microstructural changes in extracellular matrix (ECM). Quantification of multi-photon images showed no significant alterations of the main ECM components, elastic and collagen fibers, indicating that arteries remained intact after RDN. Regardless of the experimental group, our microstructural analysis of the multi-photon images revealed that reorientation of the collagen fibers might be the main microstructural mechanism taking place during pressurization with their straightening happening during axial stretching.
Collapse
Affiliation(s)
- Anastasia Gkousioudi
- Department of Mechanical Engineering, Boston University, 110 Cummington Mall, Boston, MA, 02215, USA
| | - Margherita Razzoli
- Department of Biomedical Engineering, Boston University, 110 Cummington Mall, Boston, MA, 02215, USA
| | - Jesse D Moreira
- Department of Pharmacology & Experimental Therapeutics, School of Medicine, Boston University Avedisian and Chobanian, Boston, MA, USA
| | - Richard D Wainford
- Department of Pharmacology & Experimental Therapeutics, School of Medicine, Boston University Avedisian and Chobanian, Boston, MA, USA.
- Division of Cardiology, School of Medicine, HSRB II, Emory University, 1750 Haygood Drive, Atlanta, GA, 30322, USA.
| | - Yanhang Zhang
- Department of Mechanical Engineering, Boston University, 110 Cummington Mall, Boston, MA, 02215, USA.
- Department of Biomedical Engineering, Boston University, 110 Cummington Mall, Boston, MA, 02215, USA.
- Division of Materials Science & Engineering, Boston University, 110 Cummington Mall, Boston, MA, 02215, USA.
| |
Collapse
|
11
|
Niestrawska JA, Spronck B, Cavinato C, Humphrey JD. Tempol improves aortic mechanics in a mouse model of hypertension. J Biomech 2024; 162:111911. [PMID: 38150954 PMCID: PMC10896091 DOI: 10.1016/j.jbiomech.2023.111911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/22/2023] [Accepted: 12/14/2023] [Indexed: 12/29/2023]
Abstract
Hypertension-induced arterial remodeling is thought to be a response to increases in both mechanical stress and oxidative stress. The superoxide dismutase mimetic Tempol has been shown to reduce adverse aortic remodeling in multiple murine models of hypertension but in the absence of a detailed assessment of the biaxial biomechanics. We show that concurrent treatment with Tempol in a common mouse model of systemic hypertension results in modest reductions in both wall thickening and circumferential material stiffness that yet work together to achieve a significant reduction in calculated aortic pulse wave velocity. Reducing elevated values of pulse wave velocity engenders multiple benefits to cardiovascular function.
Collapse
Affiliation(s)
- Justyna A Niestrawska
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Division of Macroscopic and Clinical Anatomy, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Bart Spronck
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands.
| | - Cristina Cavinato
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Laboratoire de Mécanique et Génie Civile, Université Montpellier, Montpellier, France
| | - Jay D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| |
Collapse
|
12
|
Gkousioudi A, Sigaeva T, Yu X, Seta F, Wainford RD, Zhang Y. Compromised homeostasis in aged carotid arteries revealed by microstructural studies of elastic lamellae. J Mech Behav Biomed Mater 2023; 148:106187. [PMID: 37875040 PMCID: PMC10877240 DOI: 10.1016/j.jmbbm.2023.106187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/26/2023]
Abstract
Healthy arteries are continuously subjected to diverse mechanical stimuli and adapt in order to maintain a mechanical homeostasis which is characterized by a uniform distribution of wall stresses. However, aging may compromise the homeostatic microenvironment within arteries. Structural heterogeneity has been suggested as a potential microstructural mechanism that could lead to homogeneous stress distribution across the arterial wall. Our previous study on the unfolding and stretching of the elastic lamellae revealed the underlying microstructural mechanism for equalizing the circumferential stresses through wall; inner elastic layers are wavier and unfold more than the outer layers which helps to evenly distribute lamellar stretching (Yu et al., 2018). In this study, we investigated the effect of aging on lamellar deformation and its implications for tissue homeostasis. Common carotid arteries from aged mice were imaged under a multi-photon microscope while subjected to biaxial extension and inflation at five different pressures ranging from 0 up to 120 mmHg. Lamellar unfolding during pressurization was then determined from the reconstructed cross-sectional images of elastic lamellae. Tissue-level circumferential stretch was combined with the lamellar unfolding to calculate lamellar stretching. Our results revealed that the straightness gradient of aged elastic lamellae is similar to the young ones. However, during pressurization, the inner elastic lamella of the aged mice unfolded significantly more than the inner layer in young arteries. An important finding of our study is the uneven increase in inter-lamellar space which contributed to a nonuniform stretching of the elastic lamellae of aged mice arteries, elevated stress gradient, and a shifting of the load-bearing component to adventitia. Our results shed light into the complex microstructural mechanisms that take place in aging and adversely affect arterial mechanical behavior and homeostasis.
Collapse
Affiliation(s)
- Anastasia Gkousioudi
- Department of Mechanical Engineering, Boston University, Boston, MA, United States
| | - Taisiya Sigaeva
- Department of Systems Design Engineering, University of Waterloo, Waterloo, Ontario, Canada; Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta, Canada
| | - Xunjie Yu
- Department of Mechanical Engineering, Boston University, Boston, MA, United States
| | - Francesca Seta
- Department of Medicine, Vascular Biology Section, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
| | - Richard D Wainford
- Department of Pharmacology & Experimental Therapeutics, Boston University Avedisian and Chobanian School of Medicine, Boston, MA, United States; Division of Cardiology, Emory University School of Medicine, Atlanta, GA, United States
| | - Yanhang Zhang
- Department of Mechanical Engineering, Boston University, Boston, MA, United States; Department of Biomedical Engineering, Boston University, Boston, MA, United States; Division of Materials Science and Engineering, Boston University, Boston, MA, United States.
| |
Collapse
|
13
|
Smoljkić M, Vander Sloten J, Segers P, Famaey N. In Vivo Material Properties of Human Common Carotid Arteries: Trends and Sex Differences. Cardiovasc Eng Technol 2023; 14:840-852. [PMID: 37973700 DOI: 10.1007/s13239-023-00691-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 10/18/2023] [Indexed: 11/19/2023]
Abstract
INTRODUCTION In vivo estimation of material properties of arterial tissue can provide essential insights into the development and progression of cardiovascular diseases. Furthermore, these properties can be used as an input to finite element simulations of potential medical treatments. MATERIALS AND METHODS This study uses non-invasively measured pressure, diameter and wall thickness of human common carotid arteries (CCAs) acquired in 103 healthy subjects. A non-linear optimization was performed to estimate material parameters of two different constitutive models: a phenomenological, isotropic model and a structural, anisotropic model. The effect of age, sex, body mass index and blood pressure on the parameters was investigated. RESULTS AND CONCLUSION Although both material models were able to model in vivo arterial behaviour, the structural model provided more realistic results in the supra-physiological domain. The phenomenological model predicted very high deformations for pressures above the systolic level. However, the phenomenological model has fewer parameters that were shown to be more robust. This is an advantage when only the physiological domain is of interest. The effect of stiffening with age, BMI and blood pressure was present for women, but not always for men. In general, sex had the biggest effect on the mechanical properties of CCAs. Stiffening trends with age, BMI and blood pressure were present but not very strong. The intersubject variability was high. Therefore, it can be concluded that finding a representative set of parameters for a certain age or BMI group would be very challenging. Instead, for purposes of patient-specific modelling of surgical procedures, we currently advise the use of patient-specific parameters.
Collapse
Affiliation(s)
- Marija Smoljkić
- Biomechanics Section, Mechanical Engineering Department, KU Leuven, Celestijnenlaan 300C, 3001, Heverlee, Leuven, Belgium
- Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Zagreb, Croatia
| | - Jos Vander Sloten
- Biomechanics Section, Mechanical Engineering Department, KU Leuven, Celestijnenlaan 300C, 3001, Heverlee, Leuven, Belgium
| | | | - Nele Famaey
- Biomechanics Section, Mechanical Engineering Department, KU Leuven, Celestijnenlaan 300C, 3001, Heverlee, Leuven, Belgium.
| |
Collapse
|
14
|
Unnersjö-Jess D, Ramdedovic A, Butt L, Plagmann I, Höhne M, Hackl A, Brismar H, Blom H, Schermer B, Benzing T. Advanced optical imaging reveals preferred spatial orientation of podocyte processes along the axis of glomerular capillaries. Kidney Int 2023; 104:1164-1169. [PMID: 37774923 DOI: 10.1016/j.kint.2023.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 07/21/2023] [Accepted: 08/17/2023] [Indexed: 10/01/2023]
Abstract
Mammalian kidneys filter enormous volumes of water and small solutes, a filtration driven by the hydrostatic pressure in glomerular capillaries, which is considerably higher than in most other tissues. Interdigitating cellular processes of podocytes form the slits for fluid filtration connected by the membrane-like slit diaphragm cell junction containing a mechanosensitive ion channel complex and allow filtration while counteracting hydrostatic pressure. Several previous publications speculated that podocyte processes may display a preferable orientation on glomerular capillaries instead of a random distribution. However, for decades, the controversy over spatially oriented filtration slits could not be resolved due to technical limitations of imaging technologies. Here, we used advanced high-resolution, three-dimensional microscopy with high data throughput to assess spatial orientation of podocyte processes and filtration slits quantitatively. Filtration-slit-generating secondary processes preferentially align along the capillaries' longitudinal axis while primary processes are preferably perpendicular to the longitudinal direction. This preferential orientation required maturation in development of the mice but was lost in mice with kidney disease due to treatment with nephrotoxic serum or with underlying heterologous mutations in the podocyte foot process protein podocin. Thus, the observation that podocytes maintain a preferred spatial orientation of their processes on glomerular capillaries goes well in line with the role of podocyte foot processes as mechanical buttresses to counteract mechanical forces resulting from pressurized capillaries. Future studies are needed to establish how podocytes establish and maintain their orientation and why orientation is lost under pathological conditions.
Collapse
Affiliation(s)
- David Unnersjö-Jess
- Department II of Internal Medicine and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany; MedTechLabs, BioClinicum, Karolinska University Hospital, Solna, Sweden; Science for Life Laboratory, Department of Applied Physics, Royal Institute of Technology, Solna, Sweden; Division of Renal Medicine, Department of Clinical Sciences, Intervention and Technology (CLINTEC), Karolinska Institute, Stockholm, Sweden.
| | - Amer Ramdedovic
- Department II of Internal Medicine and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
| | - Linus Butt
- Department II of Internal Medicine and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Ingo Plagmann
- Department II of Internal Medicine and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
| | - Martin Höhne
- Department II of Internal Medicine and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
| | - Agnes Hackl
- Department II of Internal Medicine and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
| | - Hjalmar Brismar
- Science for Life Laboratory, Department of Applied Physics, Royal Institute of Technology, Solna, Sweden; Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Hans Blom
- MedTechLabs, BioClinicum, Karolinska University Hospital, Solna, Sweden; Science for Life Laboratory, Department of Applied Physics, Royal Institute of Technology, Solna, Sweden
| | - Bernhard Schermer
- Department II of Internal Medicine and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
| | - Thomas Benzing
- Department II of Internal Medicine and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany.
| |
Collapse
|
15
|
Dalbosco M, Terzano M, Carniel TA, Fancello EA, Holzapfel GA. A two-scale numerical study on the mechanobiology of abdominal aortic aneurysms. J R Soc Interface 2023; 20:20230472. [PMID: 37907092 PMCID: PMC10618057 DOI: 10.1098/rsif.2023.0472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/11/2023] [Indexed: 11/02/2023] Open
Abstract
Abdominal aortic aneurysms (AAAs) are a serious condition whose pathophysiology is related to phenomena occurring at different length scales. To gain a better understanding of the disease, this work presents a multi-scale computational study that correlates AAA progression with microstructural and mechanical alterations in the tissue. Macro-scale geometries of a healthy aorta and idealized aneurysms with increasing diameter are developed on the basis of existing experimental data and subjected to physiological boundary conditions. Subsequently, microscopic representative volume elements of the abluminal side of each macro-model are employed to analyse the local kinematics at the cellular scale. The results suggest that the formation of the aneurysm disrupts the micromechanics of healthy tissue, which could trigger collagen growth and remodelling by mechanosensing cells. The resulting changes to the macro-mechanics and microstructure of the tissue seem to establish a new homeostatic state at the cellular scale, at least for the diameter range investigated.
Collapse
Affiliation(s)
- Misael Dalbosco
- Institute of Biomechanics, Graz University of Technology, Graz, Austria
- GRANTE—Department of Mechanical Engineering, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Michele Terzano
- Institute of Biomechanics, Graz University of Technology, Graz, Austria
| | - Thiago A. Carniel
- Polytechnic School, Community University of Chapecó Region, Chapecó, Santa Catarina, Brazil
- Graduate Program in Health Sciences, Community University of Chapecó Region, Chapecó, Santa Catarina, Brazil
| | - Eduardo A. Fancello
- GRANTE—Department of Mechanical Engineering, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
- LEBm—University Hospital, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Gerhard A. Holzapfel
- Institute of Biomechanics, Graz University of Technology, Graz, Austria
- Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
16
|
Ahmad F, Soe S, Albon J, Errington R, Theobald P. Quantifying the microstructural and biomechanical changes in the porcine ventricles during growth and remodelling. Acta Biomater 2023; 171:166-192. [PMID: 37797709 DOI: 10.1016/j.actbio.2023.09.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 09/19/2023] [Accepted: 09/26/2023] [Indexed: 10/07/2023]
Abstract
Cardiac tissue growth and remodelling (G & R) occur in response to the changing physiological demands of the heart after birth. The early shift to pulmonary circulation produces an immediate increase in ventricular workload, causing microstructural and biomechanical changes that serve to maintain overall physiological homoeostasis. Such cardiac G & R continues throughout life. Quantifying the tissue's mechanical and microstructural changes because of G & R is of increasing interest, dovetailing with the emerging fields of personalised and precision solutions. This study aimed to determine equibiaxial, and non-equibiaxial extension, stress-relaxation, and the underlying microstructure of the passive porcine ventricles tissue at four time points spanning from neonatal to adulthood. The three-dimensional microstructure was investigated via two-photon excited fluorescence and second-harmonic generation microscopy on optically cleared tissues, describing the 3D orientation, rotation and dispersion of the cardiomyocytes and collagen fibrils. The results revealed that during biomechanical testing, myocardial ventricular tissue possessed non-linear, anisotropic, and viscoelastic behaviour. An increase in stiffness and viscoelasticity was noted for the left and right ventricular free walls from neonatal to adulthood. Microstructural analyses revealed concomitant increases in cardiomyocyte rotation and dispersion. This study provides baseline data, describing the biomechanical and microstructural changes in the left and right ventricular myocardial tissue during G & R, which should prove valuable to researchers in developing age-specific, constitutive models for more accurate computational simulations. STATEMENT OF SIGNIFICANCE: There is a dearth of experimental data describing the growth and remodelling of left and right ventricular tissue. The published literature is fragmented, with data reported via different experimental techniques using tissues harvested from a variety of animals, with different gender and ages. This prevents developing a continuum of data spanning birth to death, so limiting the potential that can be leveraged to aid computational modelling and simulations. In this study, equibiaxial, non-equibiaxial, and stress-relaxation data are presented, describing directional-dependent material responses. The biomechanical data is consolidated with equivalent microstructural data, an important element for the development of future material models. Combined, these data describe microstructural and biomechanical changes in the ventricles, spanning G &R from neonatal to adulthood.
Collapse
Affiliation(s)
- Faizan Ahmad
- School of Engineering, Cardiff University, UK; School of Health Sciences, Birmingham City University, UK.
| | - Shwe Soe
- FET - Engineering, Design and Mathematics, University of West of England, UK
| | - Julie Albon
- School of Optometry and Vision Sciences, Cardiff University, UK; Viva Scientia Bioimaging Laboratories, Cardiff University, UK
| | | | | |
Collapse
|
17
|
Murphy AR, Allenby MC. In vitro microvascular engineering approaches and strategies for interstitial tissue integration. Acta Biomater 2023; 171:114-130. [PMID: 37717711 DOI: 10.1016/j.actbio.2023.09.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/10/2023] [Accepted: 09/12/2023] [Indexed: 09/19/2023]
Abstract
The increasing gap between clinical demand for tissue or organ transplants and the availability of donated tissue highlights the emerging opportunities for lab-grown or synthetically engineered tissue. While the field of tissue engineering has existed for nearly half a century, its clinical translation remains unrealised, in part, due to a limited ability to engineer sufficient vascular supply into fabricated tissue, which is necessary to enable nutrient and waste exchange, prevent cellular necrosis, and support tissue proliferation. Techniques to develop anatomically relevant, functional vascular networks in vitro have made significant progress in the last decade, however, the challenge now remains as to how best incorporate these throughout dense parenchymal tissue-like structures to address diffusion-limited development and allow for the fabrication of large-scale vascularised tissue. This review explores advances made in the laboratory engineering of vasculature structures and summarises recent attempts to integrate vascular networks together with sophisticated in vitro avascular tissue and organ-like structures. STATEMENT OF SIGNIFICANCE: The ability to grow full scale, functional tissue and organs in vitro is primarily limited by an inability to adequately diffuse oxygen and nutrients throughout developing cellularised structures, which generally results from the absence of perfusable vessel networks. Techniques to engineering both perfusable vascular networks and avascular miniaturised organ-like structures have recently increased in complexity, sophistication, and physiological relevance. However, integrating these two essential elements into a single functioning vascularised tissue structure represents a significant spatial and temporal engineering challenge which is yet to be surmounted. Here, we explore a range of vessel morphogenic phenomena essential for tissue-vascular co-development, as well as evaluate a range of recent noteworthy approaches for generating vascularised tissue products in vitro.
Collapse
Affiliation(s)
- A R Murphy
- School of Chemical Engineering, Faculty of Engineering, Architecture and Information Technology, The University of Queensland, St Lucia, QLD 4100, Australia
| | - M C Allenby
- School of Chemical Engineering, Faculty of Engineering, Architecture and Information Technology, The University of Queensland, St Lucia, QLD 4100, Australia; Centre for Biomedical Technologies, School of Medical, Mechanical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia.
| |
Collapse
|
18
|
Stephens SB, Shalhub S, Dodd N, Li J, Huang M, Oda S, Kancherla K, Doan TT, Prakash SK, Weigand JD, Asch FM, Beecroft T, Cecchi A, Shittu T, Preiss L, LeMaire SA, Devereux RB, Pyeritz RE, Holmes KW, Roman MJ, Lacro RV, Shohet RV, Krishnamurthy R, Eagle K, Byers P, Milewicz DM, Morris SA. Vertebral Tortuosity Is Associated With Increased Rate of Cardiovascular Events in Vascular Ehlers-Danlos Syndrome. J Am Heart Assoc 2023; 12:e029518. [PMID: 37776192 PMCID: PMC10727246 DOI: 10.1161/jaha.123.029518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/26/2023] [Indexed: 10/02/2023]
Abstract
Background Arterial tortuosity is associated with adverse events in Marfan and Loeys-Dietz syndromes but remains understudied in Vascular Ehlers-Danlos syndrome. Methods and Results Subjects with a pathogenic COL3A1 variant diagnosed at age <50 years were included from 2 institutions and the GenTAC Registry (National Registry of Genetically Triggered Thoracic Aortic Aneurysms and Cardiovascular Conditions). Height-adjusted vertebral artery tortuosity index (VTI-h) using magnetic resonance or computed tomography angiography was calculated. Associations between VTI-h and outcomes of (1) cardiovascular events (arterial dissection/rupture, aneurysm requiring intervention, stroke), or (2) hollow organ collapse/rupture at age <50 years were evaluated using receiver operator curve analysis (using outcome by age 30 years) and mixed-effects Poisson regression for incidence rate ratios. Of 65 subjects (54% male), median VTI-h was 12 (interquartile range, 8-16). Variants were missense in 46%, splice site in 31%, and null/gene deletion in 14%. Thirty-two subjects (49%) had 59 events, including 28 dissections, 5 arterial ruptures, 4 aneurysms requiring intervention, 4 strokes, 11 hollow organ ruptures, and 7 pneumothoraces. Receiver operator curve analysis suggested optimal discrimination at VTI-h ≥15.5 for cardiovascular events (sensitivity 70%, specificity 76%) and no association with noncardiovascular events (area under the curve, 0.49 [95% CI, 0.22-0.78]). By multivariable analysis, older age was associated with increased cardiovascular event rate while VTI-h ≥15.5 was not (incidence rate ratios, 1.79 [95% CI, 0.76-4.24], P=0.185). However, VTI-h ≥15.5 was associated with events among those with high-risk variants <40 years (incidence rate ratios, 4.14 [95% CI, 1.13-15.10], P=0.032), suggesting effect modification by genotype and age. Conclusions Increased arterial tortuosity is associated with a higher incidence rate of cardiovascular events in Vascular Ehlers-Danlos syndrome. Vertebral tortuosity index may be a useful biomarker for prognosis when evaluated in conjunction with genotype and age.
Collapse
Affiliation(s)
- Sara B. Stephens
- Division of Cardiology, Department of Pediatrics, Baylor College of MedicineTexas Children’s HospitalHoustonTXUSA
- Department of Epidemiology, Human Genetics & Environmental Sciences, School of Public HealthThe University of Texas Health Science Center at HoustonHoustonTXUSA
| | - Sherene Shalhub
- Division of Vascular and Endovascular Surgery, Department of SurgeryOregon Health & Science UniversityPortlandORUSA
| | - Nicholas Dodd
- Memorial Health University Medical CenterSavannahGAUSA
| | - Jesse Li
- Division of Medical Genetics, Department of Internal MedicineThe University of Texas Health Science CenterHoustonTXUSA
| | - Michael Huang
- Division of Medical Genetics, Department of Internal MedicineThe University of Texas Health Science CenterHoustonTXUSA
| | - Seitaro Oda
- Department of Diagnostic Radiology, Faculty of Life SciencesKumamoto UniversityKumamotoJapan
- National Registry of Genetically Triggered Thoracic Aortic Aneurysms and Cardiovascular Conditions (GenTAC)
| | - Kalyan Kancherla
- National Registry of Genetically Triggered Thoracic Aortic Aneurysms and Cardiovascular Conditions (GenTAC)
- MedStar Heart and Vascular InstituteWashingtonDCUSA
- CHI St. VincentLittle RockARUSA
| | - Tam T. Doan
- Division of Cardiology, Department of Pediatrics, Baylor College of MedicineTexas Children’s HospitalHoustonTXUSA
| | - Siddharth K. Prakash
- Division of Medical Genetics, Department of Internal MedicineThe University of Texas Health Science CenterHoustonTXUSA
| | - Justin D. Weigand
- Division of Cardiology, Department of Pediatrics, Baylor College of MedicineTexas Children’s HospitalHoustonTXUSA
| | - Federico M. Asch
- National Registry of Genetically Triggered Thoracic Aortic Aneurysms and Cardiovascular Conditions (GenTAC)
- MedStar Heart and Vascular InstituteWashingtonDCUSA
| | - Taylor Beecroft
- Division of Cardiology, Department of Pediatrics, Baylor College of MedicineTexas Children’s HospitalHoustonTXUSA
| | - Alana Cecchi
- Division of Medical Genetics, Department of Internal MedicineThe University of Texas Health Science CenterHoustonTXUSA
| | - Teniola Shittu
- Division of Cardiology, Department of Pediatrics, Baylor College of MedicineTexas Children’s HospitalHoustonTXUSA
| | | | - Scott A. LeMaire
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of SurgeryBaylor College of MedicineHoustonTXUSA
| | | | - Reed E. Pyeritz
- Division of Translational Medicine and Human GeneticsPerelman School of Medicine at the University of PennsylvaniaPAUSA
| | - Kathryn W. Holmes
- Section of Cardiology, Department of PediatricsOregon Health & Science University and OHSU Doernbecher Children’s HospitalPortlandORUSA
| | - Mary J. Roman
- Department of MedicineWeill Cornell MedicineNew YorkNY
| | - Ronald V. Lacro
- Department of CardiologyBoston Children’s HospitalBostonMAUSA
| | | | | | - Kim Eagle
- National Registry of Genetically Triggered Thoracic Aortic Aneurysms and Cardiovascular Conditions (GenTAC)
- Division of Cardiovascular Medicine, Frankel Cardiovascular Center, Department of Internal Medicine, Michigan MedicineUniversity of MichiganAnn ArborMIUSA
| | - Peter Byers
- Department of Laboratory Medicine and Pathology, Department of Medicine (Medical Genetics)University of WashingtonSeattleWAUSA
| | - Dianna M. Milewicz
- Division of Medical Genetics, Department of Internal MedicineThe University of Texas Health Science CenterHoustonTXUSA
| | - Shaine A. Morris
- Division of Cardiology, Department of Pediatrics, Baylor College of MedicineTexas Children’s HospitalHoustonTXUSA
| |
Collapse
|
19
|
van Asten JGM, Latorre M, Karakaya C, Baaijens FPT, Sahlgren CM, Ristori T, Humphrey JD, Loerakker S. A multiscale computational model of arterial growth and remodeling including Notch signaling. Biomech Model Mechanobiol 2023; 22:1569-1588. [PMID: 37024602 PMCID: PMC10511605 DOI: 10.1007/s10237-023-01697-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/31/2023] [Indexed: 04/08/2023]
Abstract
Blood vessels grow and remodel in response to mechanical stimuli. Many computational models capture this process phenomenologically, by assuming stress homeostasis, but this approach cannot unravel the underlying cellular mechanisms. Mechano-sensitive Notch signaling is well-known to be key in vascular development and homeostasis. Here, we present a multiscale framework coupling a constrained mixture model, capturing the mechanics and turnover of arterial constituents, to a cell-cell signaling model, describing Notch signaling dynamics among vascular smooth muscle cells (SMCs) as influenced by mechanical stimuli. Tissue turnover was regulated by both Notch activity, informed by in vitro data, and a phenomenological contribution, accounting for mechanisms other than Notch. This novel framework predicted changes in wall thickness and arterial composition in response to hypertension similar to previous in vivo data. The simulations suggested that Notch contributes to arterial growth in hypertension mainly by promoting SMC proliferation, while other mechanisms are needed to fully capture remodeling. The results also indicated that interventions to Notch, such as external Jagged ligands, can alter both the geometry and composition of hypertensive vessels, especially in the short term. Overall, our model enables a deeper analysis of the role of Notch and Notch interventions in arterial growth and remodeling and could be adopted to investigate therapeutic strategies and optimize vascular regeneration protocols.
Collapse
Affiliation(s)
- Jordy G M van Asten
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Marcos Latorre
- Center for Research and Innovation in Bioengineering, Universitat Politècnica de València, València, Spain
| | - Cansu Karakaya
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Frank P T Baaijens
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Cecilia M Sahlgren
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
- Faculty of Science and Engineering, Biosciences, Åbo Akademi, Turku, Finland
| | - Tommaso Ristori
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Jay D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Sandra Loerakker
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands.
| |
Collapse
|
20
|
Murtada SI, Latorre M, Humphrey JD. Remodeling of the uterine artery during and early after pregnancy in the mouse. Biomech Model Mechanobiol 2023; 22:1531-1540. [PMID: 36550244 DOI: 10.1007/s10237-022-01674-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022]
Abstract
Pregnancy associates with dramatic changes in maternal cardiovascular physiology that ensure that the utero-placental circulation can support the developing fetus. Particularly striking is the marked flow-induced remodeling of uterine arteries during pregnancy and their recovery following birth. Whereas details are available in the literature on alterations in hemodynamics within and changes in the dimensions of uterine arteries during and following pregnancy in mice, we report here the first biaxial biomechanical phenotyping of these arteries during this dynamic period of growth and remodeling (G&R). To gain additional insight into the measured G&R, we also use a computational constrained mixture model to describe and predict findings, including simulations related to complications that may arise during pregnancy. It is found that dramatic pregnancy-induced remodeling of the uterine artery is largely, but not completely, reversed in the postpartum period, which appears to be driven by increases in collagen turnover among other intramural changes. By contrast, data on the remodeling of the ascending aorta, an elastic artery, reveal modest changes that are fully recovered postpartum. There is strong motivation to continue biomechanical studies on this critical aspect of women's health, which has heretofore not received appropriate consideration from the biomechanics community.
Collapse
Affiliation(s)
- Sae-Il Murtada
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Marcos Latorre
- Center for Research and Innovation in Bioengineering, Universitat Politècnica de València, Valencia, Spain
| | - Jay D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
21
|
Gkousioudi A, Razzoli M, Moreira JD, Wainford RD, Zhang Y. Renal denervation restores biomechanics of carotid arteries in a rat model of hypertension. RESEARCH SQUARE 2023:rs.3.rs-3273236. [PMID: 37720022 PMCID: PMC10503847 DOI: 10.21203/rs.3.rs-3273236/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
The prevalence of hypertension increases with aging and is associated with increased arterial stiffness. Resistant hypertension is presented when drug treatments fail to regulate a sustained increased blood pressure. Given that the mechanisms between the sympathetic nervous system and the kidney play an important role in blood regulation, renal denervation (RDN) has emerged as a therapeutic potential in resistant hypertension. In this study, we investigated the effects of RDN on the biomechanical response and microstructure of elastic arteries. Common carotid arteries (CCA) were excised from 3-, 8- and 8-month-old denervated rats, and subjected to biaxial extension-inflation test. Our results showed that hypertension developed in the 8-month-old rats. The sustained elevated blood pressure resulted in arterial remodeling which was manifested as a significant stress increase in both axial and circumferential directions after 8 months. RDN had a favorable impact on CCAs with a restoration of stresses in values similar to control arteries at 3 months. After biomechanical testing, arteries were imaged under a multi-photon microscope to identify microstructural changes in extracellular matrix (ECM). Quantification of multi-photon images showed no significant alterations of the main ECM components, elastic and collagen fibers, indicating that arteries remained intact after RDN. Regardless of the experimental group, our microstructural analysis of the multi-photon images revealed that reorientation of the collagen fibers might be the main microstructural mechanism taking place during pressurization with their straightening happening during axial stretching.
Collapse
Affiliation(s)
| | | | - Jesse D Moreira
- Boston University Avedisian and Chobanian School of Medicine
| | | | | |
Collapse
|
22
|
Ekhator C, Devi M, Barker C, Safdar S, Irfan R, Malineni J, Hussain I, Bisharat P, Ramadhan A, Abdelaziz AM, Bellegarde SB, Saddique MN. Arterial Tortuosity Syndrome: Unraveling a Rare Vascular Disorder. Cureus 2023; 15:e44906. [PMID: 37692180 PMCID: PMC10491927 DOI: 10.7759/cureus.44906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2023] [Indexed: 09/12/2023] Open
Abstract
Arterial tortuosity syndrome (ATS) is a rare genetic disorder characterized by abnormal twists and turns of arteries, leading to cardiovascular complications. This syndrome, first reported around 55 years ago, is inherited in an autosomal recessive manner and affects both genders. ATS manifests primarily in childhood, with arterial abnormalities disrupting blood circulation, increasing shear stress, and causing complications, such as atherosclerosis and strokes. This article reviews the genetics, etiology, pathophysiology, clinical presentation, diagnosis, associated conditions, management, and challenges of ATS. The syndrome's genetic cause is linked to mutations in the SLC2A10 gene, affecting collagen and elastin synthesis. Arterial tortuosity, a complex phenomenon, arises from factors such as vessel elongation, anatomic fixation, and vessel diameter. ATS is one of many conditions associated with arterial tortuosity, including Marfan syndrome and Loeys-Dietz syndrome. Recent studies highlight arterial tortuosity's potential as a prognostic indicator for adverse cardiovascular events. Management requires a multidisciplinary approach, and surveillance and prevention play key roles. Despite challenges, advancements in understanding ATS offer hope for targeted therapies and improved patient care.
Collapse
Affiliation(s)
- Chukwuyem Ekhator
- Neuro-Oncology, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, USA
| | | | - Chad Barker
- Public Health, University of South Florida, Tampa, USA
| | | | | | - Jahnavi Malineni
- Medicine and Surgery, Maharajah's Institute of Medical Sciences, Vizianagaram, IND
| | - Iqbal Hussain
- Medicine and Surgery, Khyber Medical University, Peshawar, PAK
| | | | - Afif Ramadhan
- Medicine, Universal Scientific Education and Research Network (USERN), Yogyakarta, IDN
- Medicine, Faculty of Medicine, Public Health, and Nursing, Gadjah Mada University, Yogyakarta, IDN
| | - Ali M Abdelaziz
- Internal Medicine, Alexandria University Faculty of Medicine, Alexandria, EGY
| | - Sophia B Bellegarde
- Pathology and Laboratory Medicine, American University of Antigua, St. John's, ATG
| | | |
Collapse
|
23
|
Murtada SI, Kawamura Y, Cavinato C, Wang M, Ramachandra AB, Spronck B, Li DS, Tellides G, Humphrey JD. Biomechanical and transcriptional evidence that smooth muscle cell death drives an osteochondrogenic phenotype and severe proximal vascular disease in progeria. Biomech Model Mechanobiol 2023; 22:1333-1347. [PMID: 37149823 PMCID: PMC10544720 DOI: 10.1007/s10237-023-01722-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 04/11/2023] [Indexed: 05/08/2023]
Abstract
Hutchinson-Gilford Progeria Syndrome results in rapid aging and severe cardiovascular sequelae that accelerate near end-of-life. We found a progressive disease process in proximal elastic arteries that was less evident in distal muscular arteries. Changes in aortic structure and function were then associated with changes in transcriptomics assessed via both bulk and single cell RNA sequencing, which suggested a novel sequence of progressive aortic disease: adverse extracellular matrix remodeling followed by mechanical stress-induced smooth muscle cell death, leading a subset of remnant smooth muscle cells to an osteochondrogenic phenotype that results in an accumulation of proteoglycans that thickens the aortic wall and increases pulse wave velocity, with late calcification exacerbating these effects. Increased central artery pulse wave velocity is known to drive left ventricular diastolic dysfunction, the primary diagnosis in progeria children. It appears that mechanical stresses above ~ 80 kPa initiate this progressive aortic disease process, explaining why elastic lamellar structures that are organized early in development under low wall stresses appear to be nearly normal whereas other medial constituents worsen progressively in adulthood. Mitigating early mechanical stress-driven smooth muscle cell loss/phenotypic modulation promises to have important cardiovascular implications in progeria patients.
Collapse
Affiliation(s)
- Sae-Il Murtada
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Yuki Kawamura
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA
| | - Cristina Cavinato
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Molly Wang
- Department of Surgery, Yale School of Medicine, New Haven, CT, USA
| | | | - Bart Spronck
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Department of Biomedical Engineering, Maastricht University, Maastricht, Netherlands
| | - David S Li
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - George Tellides
- Department of Surgery, Yale School of Medicine, New Haven, CT, USA
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA
| | - Jay D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
24
|
Irons L, Cavinato C, Humphrey JD. Persistent non-homeostatic remodeling of aortic collagen following a brief episode of hypertension: A computational study. J Mech Behav Biomed Mater 2023; 144:105966. [PMID: 37327590 PMCID: PMC10353492 DOI: 10.1016/j.jmbbm.2023.105966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/23/2023] [Accepted: 06/06/2023] [Indexed: 06/18/2023]
Abstract
The healthy adult aorta exhibits a remarkable homeostatic ability to respond to sustained changes in hemodynamic loads under many circumstances, but this mechanical homeostasis can be compromised or lost in natural aging and diverse pathological processes. Herein, we investigate persistent non-homeostatic changes in the composition and mechanical properties of the thoracic aorta in adult wild-type mice following 14 days of angiotensin II-induced hypertension. We employ a multiscale computational model of arterial growth and remodeling driven by mechanosensitive and angiotensin II-related cell signaling pathways. We find that experimentally observed findings can only be recapitulated computationally if the collagen deposited during the transient period of hypertension has altered properties (deposition stretch, fiber angle, crosslinking) compared with the collagen produced in the original homeostatic state. Some of these changes are predicted to persist for at least six months after blood pressure is restored to normal levels, consistent with the experimental findings.
Collapse
Affiliation(s)
- Linda Irons
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Cristina Cavinato
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Jay D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
25
|
Xu Z, Chen Y, Wang Y, Han W, Xu W, Liao X, Zhang T, Wang G. Matrix stiffness, endothelial dysfunction and atherosclerosis. Mol Biol Rep 2023; 50:7027-7041. [PMID: 37382775 DOI: 10.1007/s11033-023-08502-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 04/28/2023] [Indexed: 06/30/2023]
Abstract
Atherosclerosis (AS) is the leading cause of the human cardiovascular diseases (CVDs). Endothelial dysfunction promotes the monocytes infiltration and inflammation that participate fundamentally in atherogenesis. Endothelial cells (EC) have been recognized as mechanosensitive cells and have different responses to distinct mechanical stimuli. Emerging evidence shows matrix stiffness-mediated EC dysfunction plays a vital role in vascular disease, but the underlying mechanisms are not yet completely understood. This article aims to summarize the effect of matrix stiffness on the pro-atherosclerotic characteristics of EC including morphology, rigidity, biological behavior and function as well as the related mechanical signal. The review also discusses and compares the contribution of matrix stiffness-mediated phagocytosis of macrophages and EC to AS progression. These advances in our understanding of the relationship between matrix stiffness and EC dysfunction open the avenues to improve the prevention and treatment of now-ubiquitous atherosclerotic diseases.
Collapse
Affiliation(s)
- Zichen Xu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Yi Chen
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection, Chongqing Key Laboratory of Nano/Micro Composite Material and Device, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Yi Wang
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Wenbo Han
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Wenfeng Xu
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection, Chongqing Key Laboratory of Nano/Micro Composite Material and Device, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Xiaoling Liao
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection, Chongqing Key Laboratory of Nano/Micro Composite Material and Device, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Tao Zhang
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection, Chongqing Key Laboratory of Nano/Micro Composite Material and Device, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China.
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China.
- Bioengineering College of Chongqing University, NO.174, Shazheng Street, Shapingba District, Chongqing, 400030, PR China.
| |
Collapse
|
26
|
Abdominal Aortic Wall Cross-coupled Stiffness Could Potentially Contribute to Aortic Length Remodeling. Artery Res 2022. [DOI: 10.1007/s44200-022-00022-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Abstract
Background
Wall stiffness of the abdominal aorta is an important factor in the cardiovascular risk assessment. We investigated abdominal aortic wall stiffness divided in direct and cross-coupled stiffness components with respect to sex and age.
Methods
Thirty healthy adult males (n = 15) and females were recruited and divided into three age groups: young, middle aged and elderly. Pulsatile diameter changes were determined noninvasively by an echo-tracking system, and intra-aortic pressure was measured simultaneously. A mechanical model was used to compute stress and stiffness in circumferential and longitudinal directions.
Results
Circumferential stretch had a higher impact on longitudinal wall stress than longitudinal stretch had on circumferential wall stress. Furthermore, there were an age-related and sex-independent increase in circumferential and longitudinal direct and cross-coupled stiffnesses and a decrease in circumferential and longitudinal stretch of the abdominal aortic wall. For the young group, females had a stiffer wall compared to males, while the male aortic wall grew stiffer with age at a higher rate, reaching a similar level to that of the females in the elderly group.
Conclusion
Temporal changes in aortic stiffness suggest an age-related change in wall constituents that is expressed in terms of circumferential remodeling impacting longitudinal stress. These mechanisms may be active in the development of aortic tortuosity. We observed an age-dependent increase in circumferential and longitudinal stiffnesses as well as decrease in stretch. A possible mechanism related to the observed changes could act via chemical alterations of wall constituents and changes in the physical distribution of fibers. Furthermore, modeling of force distribution in the wall of the human abdominal aorta may contribute to a better understanding of elastin–collagen interactions during remodeling of the aortic wall.
Collapse
|
27
|
Pineda-Castillo SA, Aparicio-Ruiz S, Burns MM, Laurence DW, Bradshaw E, Gu T, Holzapfel GA, Lee CH. Linking the region-specific tissue microstructure to the biaxial mechanical properties of the porcine left anterior descending artery. Acta Biomater 2022; 150:295-309. [PMID: 35905825 PMCID: PMC10230544 DOI: 10.1016/j.actbio.2022.07.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/14/2022] [Accepted: 07/20/2022] [Indexed: 11/16/2022]
Abstract
Coronary atherosclerosis is the main cause of death worldwide. Advancing the understanding of coronary microstructure-based mechanics is fundamental for the development of therapeutic tools and surgical procedures. Although the passive biaxial properties of the coronary arteries have been extensively explored, their regional differences and the relationship between tissue microstructure and mechanics have not been fully characterized. In this study, we characterized the passive biaxial mechanical properties and microstructural properties of the proximal, medial, and distal regions of the porcine left anterior descending artery (LADA). We also attempted to relate the biaxial stress-stretch response of the LADA and its respective birefringent responses to the polarized light for obtaining information about the load-dependent microstructural variations. We found that the LADA extensibility is reduced in the proximal-to-distal direction and that the medial region exhibits more heterogeneous mechanical behavior than the other two regions. We have also observed highly dynamic microstructural behavior where fiber families realign themselves depending on loading. In addition, we found that the microstructure of the distal region exhibited highly aligned fibers along the longitudinal axis of the artery. To verify this microstructural feature, we imaged the LADA specimens with multi-photon microscopy and observed that the adventitia microstructure transitioned from a random fiber network in the proximal region to highly aligned fibers in the distal region. Our findings could offer new perspectives for understanding coronary mechanics and aid in the development of tissue-engineered vascular grafts, which are currently limited due to their mismatch with native tissue in terms of mechanical properties and microstructural features. STATEMENT OF SIGNIFICANCE: The tissue biomechanics of coronary arteries is fundamental for the development of revascularization techniques such as coronary artery bypass. These therapeutics require a deep understanding of arterial mechanics, microstructure, and mechanobiology to prevent graft failure and reoperation. The present study characterizes the unique regional mechanical and microstructural properties of the porcine left anterior descending artery using biaxial testing, polarized-light imaging, and confocal microscopy. This comprehensive characterization provides an improved understanding of the collagen/elastin architecture in response to mechanical loads using a region-specific approach. The unique tissue properties obtained from this study will provide guidance for the selection of anastomotic sites in coronary artery bypass grafting and for the design of tissue-engineered vascular grafts.
Collapse
Affiliation(s)
- Sergio A Pineda-Castillo
- Biomechanics and Biomaterials Design Lab, School of Aerospace and Mechanical Engineering, The University of Oklahoma, USA; Stephenson School of Biomedical Engineering, The University of Oklahoma, USA
| | - Santiago Aparicio-Ruiz
- Biomechanics and Biomaterials Design Lab, School of Aerospace and Mechanical Engineering, The University of Oklahoma, USA
| | - Madison M Burns
- Biomechanics and Biomaterials Design Lab, School of Aerospace and Mechanical Engineering, The University of Oklahoma, USA
| | - Devin W Laurence
- Biomechanics and Biomaterials Design Lab, School of Aerospace and Mechanical Engineering, The University of Oklahoma, USA
| | - Elizabeth Bradshaw
- Biomechanics and Biomaterials Design Lab, School of Aerospace and Mechanical Engineering, The University of Oklahoma, USA
| | - Tingting Gu
- Samuel Roberts Noble Microscopy Laboratory, The University of Oklahoma, USA
| | - Gerhard A Holzapfel
- Institute of Biomechanics, Graz University of Technology, Austria; Department of Structural Engineering, Norwegian University of Science and Technology, Norway
| | - Chung-Hao Lee
- Biomechanics and Biomaterials Design Lab, School of Aerospace and Mechanical Engineering, The University of Oklahoma, USA.
| |
Collapse
|
28
|
Ramachandra AB, Mikush N, Sauler M, Humphrey JD, Manning EP. Compromised Cardiopulmonary Function in Fibulin-5 Deficient Mice. J Biomech Eng 2022; 144:081008. [PMID: 35171214 PMCID: PMC8990734 DOI: 10.1115/1.4053873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 02/08/2022] [Indexed: 11/08/2022]
Abstract
Competent elastic fibers are critical to the function of the lung and right circulation. Murine models of elastopathies can aid in understanding the functional roles of the elastin and elastin-associated glycoproteins that constitute elastic fibers. Here, we quantify together lung and pulmonary arterial structure, function, and mechanics with right heart function in a mouse model deficient in the elastin-associated glycoprotein fibulin-5. Differences emerged as a function of genotype, sex, and arterial region. Specifically, functional studies revealed increased lung compliance in fibulin-5 deficiency consistent with a histologically observed increased alveolar disruption. Biaxial mechanical tests revealed that the primary branch pulmonary arteries exhibit decreased elastic energy storage capacity and wall stress despite only modest differences in circumferential and axial material stiffness in the fibulin-5 deficient mice. Histological quantifications confirm a lower elastic fiber content in the fibulin-5 deficient pulmonary arteries, with fragmented elastic laminae in the outer part of the wall - likely the reason for reduced energy storage. Ultrasound measurements confirm sex differences in compromised right ventricular function in the fibulin-5 deficient mice. These results reveal compromised right heart function, but opposite effects of elastic fiber dysfunction on the lung parenchyma (significantly increased compliance) and pulmonary arteries (trend toward decreased distensibility), and call for further probing of ventilation-perfusion relationships in pulmonary pathologies. Amongst many other models, fibulin-5 deficient mice can contribute to our understanding of the complex roles of elastin in pulmonary health and disease.
Collapse
Affiliation(s)
| | - Nicole Mikush
- Translational Research Imaging Center, Yale School of Medicine, New Haven, CT 06520
| | - Maor Sauler
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510
| | - Jay D. Humphrey
- Department of Biomedical Engineering and Vascular Biology and Therapeutics Program, Yale University, New Haven, CT 06520
| | - Edward P. Manning
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510; West Haven Connecticut VA and Pulmonary and Critical Care Medicine, VA Connecticut Healthcare System, West Haven, CT 06516
| |
Collapse
|
29
|
Comparative Analysis of Arterial Compliance in Mice Genetically Null for Cathepsins K, L, or S. J Biomech 2022; 143:111266. [DOI: 10.1016/j.jbiomech.2022.111266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 08/02/2022] [Accepted: 08/10/2022] [Indexed: 11/18/2022]
|
30
|
Spronck B, Ramachandra AB, Moriyama L, Toczek J, Han J, Sadeghi MM, Humphrey JD. Deletion of matrix metalloproteinase-12 compromises mechanical homeostasis and leads to an aged aortic phenotype in young mice. J Biomech 2022; 141:111179. [PMID: 35759974 PMCID: PMC9585962 DOI: 10.1016/j.jbiomech.2022.111179] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 11/28/2022]
Abstract
Mechanical homeostasis emerges following normal development of the arterial wall and requires thereafter a slow balanced degradation and deposition of extracellular matrix constituents within an unchanging mechanical state. Recent findings suggest that homeostasis is compromised in arterial aging, which contributes to the structural stiffening that is characteristic of aged central arteries. Matrix metalloproteinases (MMPs) have strong proteolytic activity and play fundamental roles in matrix turnover. Here, we use Mmp12-/- mice to examine effects of a potent metalloelastase, MMP-12, on the biomechanical phenotype of the thoracic and abdominal aorta in young and naturally aged mice. A key finding is that germline deletion of the gene (Mmp12) that encodes MMP-12 alters biomechanical properties from normal more in young adult than in older adult mice. Consequently, percent changes in biomechanical properties during aortic aging are greater in wild-type than in MMP-12 deficient mice, though with similar overall decreases in elastic energy storage and distensibility and increases in calculated pulse wave velocity. Reduced elastic energy storage compromises the ability of the aorta to augment antegrade and retrograde blood flow while an increased pulse wave velocity can adversely affect end organs, both conditions being characteristic of aortic aging in humans. In summary, MMP-12 is fundamental for establishing homeostatic values of biomechanical metrics in the aorta and its absence leads to a pre-aged aortic phenotype in young mice.
Collapse
Affiliation(s)
- Bart Spronck
- Department of Biomedical Engineering, School of Engineering and Applied Science, Yale University, New Haven, CT, USA; Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands.
| | - Abhay B Ramachandra
- Department of Biomedical Engineering, School of Engineering and Applied Science, Yale University, New Haven, CT, USA
| | - Lauren Moriyama
- Department of Biomedical Engineering, School of Engineering and Applied Science, Yale University, New Haven, CT, USA
| | - Jakub Toczek
- Cardiovascular Medicine and Cardiovascular Research Center, Yale School of Medicine, New Haven, CT, USA; Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Jinah Han
- Cardiovascular Medicine and Cardiovascular Research Center, Yale School of Medicine, New Haven, CT, USA; Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Mehran M Sadeghi
- Cardiovascular Medicine and Cardiovascular Research Center, Yale School of Medicine, New Haven, CT, USA; Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA; Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA
| | - Jay D Humphrey
- Department of Biomedical Engineering, School of Engineering and Applied Science, Yale University, New Haven, CT, USA; Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
31
|
Sudre CH, Moriconi S, Rehwald R, Smith L, Tillin T, Barnes J, Atkinson D, Ourselin S, Chaturvedi N, Hughes AD, Jäger HR, Cardoso MJ. Accelerated vascular aging: Ethnic differences in basilar artery length and diameter, and its association with cardiovascular risk factors and cerebral small vessel disease. Front Cardiovasc Med 2022; 9:939680. [PMID: 35966566 PMCID: PMC9366336 DOI: 10.3389/fcvm.2022.939680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Background and aims Risk of stroke and dementia is markedly higher in people of South Asian and African Caribbean descent than white Europeans in the UK. This is unexplained by cardiovascular risk factors (CVRF). We hypothesized this might indicate accelerated early vascular aging (EVA) and that EVA might account for stronger associations between cerebral large artery characteristics and markers of small vessel disease. Methods 360 participants in a tri-ethnic population-based study (120 per ethnic group) underwent cerebral and vertebral MRI. Length and median diameter of the basilar artery (BA) were derived from Time of Flight images, while white matter hyperintensities (WMH) volumes were obtained from T1 and FLAIR images. Associations between BA characteristics and CVRF were assessed using multivariable linear regression. Partial correlation coefficients between WMH load and BA characteristics were calculated after adjustment for CVRF and other potential confounders. Results BA diameter was strongly associated with age in South Asians (+11.3 μm/year 95% CI = [3.05; 19.62]; p = 0.008), with unconvincing relationships in African Caribbeans (3.4 μm/year [-5.26, 12.12]; p = 0.436) or Europeans (2.6 μm/year [-5.75, 10.87]; p = 0.543). BA length was associated with age in South Asians (+0.34 mm/year [0.02; 0.65]; p = 0.037) and African Caribbeans (+0.39 mm/year [0.12; 0.65]; p = 0.005) but not Europeans (+0.08 mm/year [-0.26; 0.41]; p = 0.653). BA diameter (rho = 0.210; p = 0.022) and length (rho = 0.261; p = 0.004) were associated with frontal WMH load in South Asians (persisting after multivariable adjustment for CVRF). Conclusions Compared with Europeans, the basilar artery undergoes more accelerated EVA in South Asians and in African Caribbeans, albeit to a lesser extent. Such EVA may contribute to the higher burden of CSVD observed in South Asians and excess risk of stroke, vascular cognitive impairment and dementia observed in these ethnic groups.
Collapse
Affiliation(s)
- Carole H. Sudre
- MRC Unit for Lifelong Health and Ageing at UCL, Department of Population Science and Experimental Medicine, UCL Institute of Cardiovascular Science, University College London, London, United Kingdom,Department of Computer Science, Centre for Medical Image Computing, University College London, London, United Kingdom,School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom,*Correspondence: Carole H. Sudre
| | - Stefano Moriconi
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Rafael Rehwald
- Department of Radiology, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom,Neuroradiological Academic Unit, Department of Brain Repair and Rehabilitation, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Lorna Smith
- Centre for Medical Imaging, Division of Medicine, University College London, London, United Kingdom
| | - Therese Tillin
- MRC Unit for Lifelong Health and Ageing at UCL, Department of Population Science and Experimental Medicine, UCL Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Josephine Barnes
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, United Kingdom
| | - David Atkinson
- Centre for Medical Imaging, Division of Medicine, University College London, London, United Kingdom
| | - Sébastien Ourselin
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Nish Chaturvedi
- MRC Unit for Lifelong Health and Ageing at UCL, Department of Population Science and Experimental Medicine, UCL Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Alun D. Hughes
- MRC Unit for Lifelong Health and Ageing at UCL, Department of Population Science and Experimental Medicine, UCL Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - H. Rolf Jäger
- Neuroradiological Academic Unit, Department of Brain Repair and Rehabilitation, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - M. Jorge Cardoso
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| |
Collapse
|
32
|
Aortic tortuosity in Turner syndrome is associated with larger ascending aorta. Int J Cardiovasc Imaging 2022; 38:2479-2490. [DOI: 10.1007/s10554-022-02665-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/27/2022] [Indexed: 11/05/2022]
|
33
|
Kareem AK, Gabir MM, Ali IR, Ismail AE, Taib I, Darlis N, Almoayed OM. A review on femoropopliteal arterial deformation during daily lives and nickel-titanium stent properties. J Med Eng Technol 2022; 46:300-317. [PMID: 35234558 DOI: 10.1080/03091902.2022.2041749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The increasing number of studies on the behaviour of stent placement in recent decades provides a clear understanding of peripheral artery disease (PAD). The severe mechanical loads (axial tension and compression, bending, radial compression and torsion) deformation of the femoropopliteal artery (FPA) is responsible for the highest failure rate of permanent nickel-titanium (Nitinol) stents. Therefore, the purpose of this article is to review research papers that examined the deformation of the natural load environment of FPA, the properties of Nitinol and mechanical considerations. In conclusion, a better understanding of mechanical behaviour for FPA Nitinol stents contributes to increased mechanical performance and fatigue-life.
Collapse
Affiliation(s)
- Ali K Kareem
- Department of Biomedical Engineering, Al-Mustaqbal University College, Hillah, Iraq.,Faculty of Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn Malaysia (UTHM), Batu Pahat, Malaysia
| | - Mustafa M Gabir
- Air Conditioning and Refrigeration Techniques Engineering Department, Al-Mustaqbal University College, Hillah, Iraq
| | - Inas R Ali
- Business Administration Department, Al-Mustaqbal University College, Hillah, Iraq.,Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia, Muar, Malaysia
| | - Al E Ismail
- Faculty of Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn Malaysia (UTHM), Batu Pahat, Malaysia
| | - Ishkrizat Taib
- Faculty of Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn Malaysia (UTHM), Batu Pahat, Malaysia
| | - Nofrizalidris Darlis
- Faculty of Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn Malaysia (UTHM), Batu Pahat, Malaysia
| | - Omar M Almoayed
- Faculty of Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn Malaysia (UTHM), Batu Pahat, Malaysia
| |
Collapse
|
34
|
Zhang W, Sommer G, Niestrawska JA, Holzapfel GA, Nordsletten D. The effects of viscoelasticity on residual strain in aortic soft tissues. Acta Biomater 2022; 140:398-411. [PMID: 34823042 DOI: 10.1016/j.actbio.2021.11.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 11/15/2022]
Abstract
Residual stress is thought to play a critical role in modulating stress distributions in soft biological tissues and in maintaining the mechanobiological stress environment of cells. Residual stresses in arteries and other tissues are classically assessed through opening angle experiments, which demonstrate the continuous release of residual stresses over hours. These results are then assessed through nonlinear biomechanical models to provide estimates of the residual stresses in the intact state. Although well studied, these analyses typically focus on hyperelastic material models despite significant evidence of viscoelastic phenomena over both short and long timescales. In this work, we extended the state-of-the-art structural tensor model for arterial tissues from Holzapfel and Ogden for fractional viscoelasticity. Models were tuned to capture consistent levels of hysteresis observed in biaxial experiments, while also minimizing the fractional viscoelastic weighting and opening angles to correctly capture opening angle dynamics. Results suggest that a substantial portion of the human abdominal aorta is viscoelastic, but exhibits a low fractional order (i.e. more elastically). Additionally, a significantly larger opening angle in the fully unloaded state is necessary to produce comparable hysteresis in biaxial testing. As a consequence, conventional estimates of residual stress using hyperelastic approaches over-estimate their viscoelastic counterparts by a factor of 2. Thus, a viscoelastic approach, such as the one illustrated in this study, in combination with an additional source of rate-controlled viscoelastic data is necessary to accurately analyze the residual stress distribution in soft biological tissues. STATEMENT OF SIGNIFICANCE: Residual stress plays a crucial role in achieving a homeostatic stress environment in soft biological tissues. However, the analysis of residual stress typically focuses on hyperelastic material models despite evidence of viscoelastic behavior. This work is the first attempt at analyzing the effects of viscoelasticity on residual stress. The application of viscoelasticity was crucial for producing realistic opening dynamics in arteries. The overall residual stresses were estimated to be 50% less than those from using hyperelastic material models, while the opening angles were projected to be 25% more than those measured after 16 hours, suggesting underestimated residual strain. This study highlights the importance viscoelasticity in the analysis of residual stress even in weakly dissipative materials like the human aorta.
Collapse
Affiliation(s)
- Will Zhang
- Department of Biomedical Engineering, University of Michigan, North Campus Research Center, Building 20, 2800 Plymouth Rd, Ann Arbor 48109, USA.
| | - Gerhard Sommer
- Institute of Biomechanics, Graz University of Technology, AT, Austria
| | - Justyna A Niestrawska
- Gottfried Schatz Research Center, Division of Macroscopic and Clinical Anatomy, Medical University of Graz, Harrachgasse 21, 8010 Graz, Austria
| | - Gerhard A Holzapfel
- Institute of Biomechanics, Graz University of Technology, AT, Austria; Department of Structural Engineering, Norwegian University of Science and Technology, Trondheim, NO, Norway
| | - David Nordsletten
- Division of Biomedical Engineering and Imaging Sciences, Department of Biomedical Engineering, King's College London, UK; Departments of Biomedical Engineering and Cardiac Surgery, University of Michigan, Ann Arbor, USA
| |
Collapse
|
35
|
Athaide CE, Spronck B, Au JS. Physiological basis for longitudinal motion of the arterial wall. Am J Physiol Heart Circ Physiol 2022; 322:H689-H701. [PMID: 35213244 DOI: 10.1152/ajpheart.00567.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
As opposed to arterial distension in the radial plane, longitudinal wall motion (LWM) is a multiphasic and bidirectional displacement of the arterial wall in the anterograde (i.e., in the direction of blood flow) and retrograde (i.e., opposing direction of blood flow) directions. While initially disregarded as imaging artifact, LWM has been consistently reported in ultrasound investigations in the last decade and is reproducible beat-to-beat, albeit with large inter-individual variability across healthy and diseased populations. Emerging literature has sought to examine the mechanistic control of LWM to explain the shape and variability of the motion pattern but lacks considerations for key foundational vascular principles at the level of the arterial wall ultrastructure. The purpose of this review is to summarize the potential factors that underpin the causes and control of arterial LWM, spanning considerations from the arterial extracellular matrix to systems-level integrative theories. First, an overview of LWM and relevant aspects wall composition will be discussed, including major features of the multiphasic pattern, arterial wall extracellular components, tunica fiber orientations, and arterial longitudinal pre-stretch. Second, current theories on the systems-level physiological mechanisms driving LWM will be discussed in the context of available evidence including experimental human research, porcine studies, and mathematical models. Throughout, we discuss implications of these observations with suggestions for future priority research areas.
Collapse
Affiliation(s)
- Chloe E Athaide
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, ON, Canada
| | - Bart Spronck
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - Jason S Au
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
36
|
Hermans LHL, Van Kelle MAJ, Oomen PJA, Lopata R.GP, Loerakker S, Bouten CVC. Scaffold Geometry-Imposed Anisotropic Mechanical Loading Guides the Evolution of the Mechanical State of Engineered Cardiovascular Tissues in vitro. Front Bioeng Biotechnol 2022; 10:796452. [PMID: 35252127 PMCID: PMC8888825 DOI: 10.3389/fbioe.2022.796452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 01/28/2022] [Indexed: 11/13/2022] Open
Abstract
Cardiovascular tissue engineering is a promising approach to develop grafts that, in contrast to current replacement grafts, have the capacity to grow and remodel like native tissues. This approach largely depends on cell-driven tissue growth and remodeling, which are highly complex processes that are difficult to control inside the scaffolds used for tissue engineering. For several tissue engineering approaches, adverse tissue growth and remodeling outcomes were reported, such as aneurysm formation in vascular grafts, and leaflet retraction in heart valve grafts. It is increasingly recognized that the outcome of tissue growth and remodeling, either physiological or pathological, depends at least partly on the establishment of a homeostatic mechanical state, where one or more mechanical quantities in a tissue are maintained in equilibrium. To design long-term functioning tissue engineering strategies, understanding how scaffold parameters such as geometry affect the mechanical state of a construct, and how this state guides tissue growth and remodeling, is therefore crucial. Here, we studied how anisotropic versus isotropic mechanical loading—as imposed by initial scaffold geometry—influences tissue growth, remodeling, and the evolution of the mechanical state and geometry of tissue-engineered cardiovascular constructs in vitro. Using a custom-built bioreactor platform and nondestructive mechanical testing, we monitored the mechanical and geometric changes of elliptical and circular, vascular cell-seeded, polycaprolactone-bisurea scaffolds during 14 days of dynamic loading. The elliptical and circular scaffold geometries were designed using finite element analysis, to induce anisotropic and isotropic dynamic loading, respectively, with similar maximum stretch when cultured in the bioreactor platform. We found that the initial scaffold geometry-induced (an)isotropic loading of the engineered constructs differentially dictated the evolution of their mechanical state and geometry over time, as well as their final structural organization. These findings demonstrate that controlling the initial mechanical state of tissue-engineered constructs via scaffold geometry can be used to influence tissue growth and remodeling and determine tissue outcomes.
Collapse
Affiliation(s)
- L. H. L. Hermans
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| | - M. A. J. Van Kelle
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| | - P. J. A. Oomen
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| | - R .G. P. Lopata
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - S. Loerakker
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
- *Correspondence: S. Loerakker,
| | - C. V. C. Bouten
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| |
Collapse
|
37
|
Abstract
Vascular smooth muscle cells (VSMC) are now considered important contributors to the pathophysiological and biophysical mechanisms underlying arterial stiffening in aging. Here, we review mechanisms whereby VSMC stiffening alters vascular function and contributes to the changes in vascular stiffening observed in aging and cardiovascular disease. Vascular stiffening in arterial aging was historically associated with changes in the extracellular matrix; however, new evidence suggests that endothelial and vascular smooth muscle cell stiffness also contribute to overall blood vessel stiffness. Furthermore, VSMC play an integral role in regulating matrix deposition and vessel wall contractility via interaction between the actomyosin contractile unit and adhesion structures that anchor the cell within the extracellular matrix. Aged-induce phenotypic modulation of VSMC from a contractile to a synthetic phenotype is associated with decreased cellular contractility and increased cell stiffness. Aged VSMC also display reduced mechanosensitivity and adaptation to mechanical signals from their microenvironment due to impaired intracellular signaling. Finally, evidence for decreased contractility in arteries from aged animals demonstrate that changes at the cellular level result in decreased functional properties at the tissue level.
Collapse
|
38
|
Stone AJ, Tornifoglio B, Johnston RD, Shmueli K, Kerskens C, Lally C. Quantitative susceptibility mapping of carotid arterial tissue ex vivo: Assessing sensitivity to vessel microstructural composition. Magn Reson Med 2021; 86:2512-2527. [PMID: 34270122 DOI: 10.1002/mrm.28893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/27/2021] [Accepted: 05/31/2021] [Indexed: 01/01/2023]
Abstract
PURPOSE To characterize microstructural contributions to the magnetic susceptibility of carotid arteries. METHOD Arterial vessels were scanned using high-resolution quantitative susceptibility mapping (QSM) at 7 Tesla. Models of vessel degradation were generated using ex vivo porcine carotid arteries that were subjected to several different enzymatic digestion treatments that selectively removed microstructural components (smooth muscle cells, collagen, and elastin). Magnetic susceptibilities measured in these tissue models were compared to those in untreated (native) porcine arteries. Magnetic susceptibility measured in native porcine carotid arteries was further compared to the susceptibility of cadaveric human carotid arteries to investigate their similarity. RESULTS The magnetic susceptibility of native porcine vessels was diamagnetic (χnative = -0.1820 ppm), with higher susceptibilities in all models of vessel degradation (χelastin-degraded = -0.0163 ppm; χcollagen-degraded = -0.1158 ppm; χdecellularized = -0.1379 ppm; χfixed native = -0.2199 ppm). Magnetic susceptibility was significantly higher in collagen-degraded compared to native porcine vessels (Tukey-Kramer, P < .01) and between elastin-degraded and all other models (including native, Tukey-Kramer, P < .001). The susceptibility of fixed healthy human arterial tissue was diamagnetic, and no significant difference was found between fixed human and fixed porcine arterial tissue susceptibilities (analysis of variance, P > .05). CONCLUSIONS Magnetic susceptibility measured using QSM is sensitive to the microstructural composition of arterial vessels-most notably to collagen. The similarity of human and porcine arterial tissue susceptibility values provides a solid basis for translational studies. Because vessel microstructure becomes disrupted during the onset and progression of carotid atherosclerosis, QSM has the potential to provide a sensitive and specific marker of vessel disease.
Collapse
Affiliation(s)
- Alan J Stone
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Brooke Tornifoglio
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Robert D Johnston
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Karin Shmueli
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Christian Kerskens
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Caitríona Lally
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland.,Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
39
|
Abstract
Cells of the vascular wall are exquisitely sensitive to changes in their mechanical environment. In healthy vessels, mechanical forces regulate signaling and gene expression to direct the remodeling needed for the vessel wall to maintain optimal function. Major diseases of arteries involve maladaptive remodeling with compromised or lost homeostatic mechanisms. Whereas homeostasis invokes negative feedback loops at multiple scales to mediate mechanobiological stability, disease progression often occurs via positive feedback that generates mechanobiological instabilities. In this review, we focus on the cell biology, wall mechanics, and regulatory pathways associated with arterial health and how changes in these processes lead to disease. We discuss how positive feedback loops arise via biomechanical and biochemical means. We conclude that inflammation plays a central role in overriding homeostatic pathways and suggest future directions for addressing therapeutic needs.
Collapse
Affiliation(s)
- Jay D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06520, USA;
| | - Martin A Schwartz
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06520, USA;
- Department of Cell Biology, Department of Internal Medicine (Cardiology), and Cardiovascular Research Center, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
40
|
Gao J, Lee J, Phan A, Fowlkes JB. Velocity Vector Imaging to Assess Longitudinal Wall Motion of Adult Carotid Arteries. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2021; 40:1195-1207. [PMID: 32914417 DOI: 10.1002/jum.15501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 08/08/2020] [Accepted: 08/15/2020] [Indexed: 06/11/2023]
Abstract
OBJECTIVE We aimed to assess longitudinal wall motion of the common carotid artery (CCA) using velocity vector imaging (VVI). METHODS From October 2018 to July 2019, we prospectively performed VVI of 204 CCAs (102 adult volunteers, 57 men, 45 women) in young (n = 40, 20-44 y), mid-age (n = 30, 45-64 y), and senior (n = 32, ≥65 y) groups. VVI parameters of CCA included longitudinal motion pattern, motion parameters (strain, strain rate, displacement), and time-to-peak motion parameters (time-to-peak strain, time-to-peak strain rate, time-to-peak displacement). Statistical analyses included one-way ANOVA post-hoc testing to examine the difference in VVI parameters among the 3 age groups and in paired groups; unpaired t tests to examine the difference in VVI parameters between CCAs with and without atherosclerotic plaque, between hypertensive and normotensive subjects without atherosclerotic plaque; linear regression to analyze correlations of VVI parameters to age, carotid intima-media thickness; and intraclass correlation coefficient to test inter- and intra-observer reliability in performing VVI of the CCA. RESULTS Differences in VVI parameters and patterns among the 3 age groups, between hypertensive and normotensive, and CCAs with and without plaque were significant (p < .01). CCA motion- and time-to-peak motion parameters were correlated to age (R2 = 0.63-0.56) and carotid intima-media thickness (R2 = 0.29-0.22). CCA wall motion dyssynchrony was remarkable in seniors. The repeatability and reproducibility for performing carotid artery VVI were good (intraclass correlation coefficient > 0.85). CONCLUSIONS VVI is feasible to assess changes in longitudinal CCA wall mechanical properties and synchrony with aging, atherosclerosis, and hypertension.
Collapse
Affiliation(s)
- Jing Gao
- Rocky Vista University, Ivins, Utah
- Weill Cornell Medicine, Cornell University, New York, New York
| | | | | | - J Brian Fowlkes
- Department of Radiology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
41
|
Coccarelli A, Carson JM, Aggarwal A, Pant S. A framework for incorporating 3D hyperelastic vascular wall models in 1D blood flow simulations. Biomech Model Mechanobiol 2021; 20:1231-1249. [PMID: 33683514 PMCID: PMC8298378 DOI: 10.1007/s10237-021-01437-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 02/12/2021] [Indexed: 12/02/2022]
Abstract
We present a novel framework for investigating the role of vascular structure on arterial haemodynamics in large vessels, with a special focus on the human common carotid artery (CCA). The analysis is carried out by adopting a three-dimensional (3D) derived, fibre-reinforced, hyperelastic structural model, which is coupled with an axisymmetric, reduced order model describing blood flow. The vessel transmural pressure and lumen area are related via a Holzapfel–Ogden type of law, and the residual stresses along the thickness and length of the vessel are also accounted for. After a structural characterization of the adopted hyperelastic model, we investigate the link underlying the vascular wall response and blood-flow dynamics by comparing the proposed framework results against a popular tube law. The comparison shows that the behaviour of the model can be captured by the simpler linear surrogate only if a representative value of compliance is applied. Sobol’s multi-variable sensitivity analysis is then carried out in order to identify the extent to which the structural parameters have an impact on the CCA haemodynamics. In this case, the local pulse wave velocity (PWV) is used as index for representing the arterial transmission capacity of blood pressure waveforms. The sensitivity analysis suggests that some geometrical factors, such as the stress-free inner radius and opening angle, play a major role on the system’s haemodynamics. Subsequently, we quantified the differences in haemodynamic variables obtained from different virtual CCAs, tube laws and flow conditions. Although each artery presents a distinct vascular response, the differences obtained across different flow regimes are not significant. As expected, the linear tube law is unable to accurately capture all the haemodynamic features characterizing the current model. The findings from the sensitivity analysis are further confirmed by investigating the axial stretching effect on the CCA fluid dynamics. This factor does not seem to alter the pressure and flow waveforms. On the contrary, it is shown that, for an axially stretched vessel, the vascular wall exhibits an attenuation in absolute distension and an increase in circumferential stress, corroborating the findings of previous studies. This analysis shows that the new model offers a good balance between computational complexity and physics captured, making it an ideal framework for studies aiming to investigate the profound link between vascular mechanobiology and blood flow.
Collapse
Affiliation(s)
- Alberto Coccarelli
- Zienkiewicz Centre for Computational Engineering, College of Engineering, Swansea University, Swansea, UK.
| | - Jason M Carson
- Zienkiewicz Centre for Computational Engineering, College of Engineering, Swansea University, Swansea, UK
- Data Science Building, Swansea University Medical School, Swansea University, Swansea, UK
- HDR-UK Wales and Northern Ireland, Health Data Research UK, London, UK
| | - Ankush Aggarwal
- Glasgow Computational Engineering Centre, James Watt School of Engineering, University of Glasgow, Glasgow, UK
| | - Sanjay Pant
- Zienkiewicz Centre for Computational Engineering, College of Engineering, Swansea University, Swansea, UK
| |
Collapse
|
42
|
Brunet J, Pierrat B, Badel P. A Parametric Study on Factors Influencing the Onset and Propagation of Aortic Dissection Using the Extended Finite Element Method. IEEE Trans Biomed Eng 2021; 68:2918-2929. [PMID: 33523804 DOI: 10.1109/tbme.2021.3056022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Aortic dissection is a life-threatening event which starts most of the time with an intimal tear propagating along the aortic wall, while blood enters the medial layer and delaminates the medial lamellar units. Studies investigating the mechanisms underlying the initiation sequence of aortic dissection are rare in the literature, the majority of studies being focused on the propagation event. Numerical models can provide a deeper understanding of the phenomena involved during the initiation and the propagation of the initial tear, and how geometrical and mechanical parameters affect this event. In the present paper, we investigated the primary factors contributing to aortic dissection. METHODS A two-layer arterial model with an initial tear was developed, representing three different possible configurations depending on the initial direction of the tear. Anisotropic damage initiation criteria were developed based on uniaxial and shear experiments from the literature to predict the onset and the direction of crack propagation. We used the XFEM-based cohesive segment method to model the initiation and the early propagation of the tear along the aorta. A design of experiment was used to quantify the influence of 7 parameters reflecting crack geometry and mechanics of the wall on the critical pressure triggering the dissection and the directions of propagation of the tear. RESULTS The results showed that the obtained critical pressures (mean range from 206 to 251 mmHg) are in line with measurement from the literature. The medial tensile strength was found to be the most influential factor, suggesting that a medial degeneration is needed to reach a physiological critical pressure and to propagate a tear in an aortic dissection. The geometry of the tear and its location inside the aortic wall were also found to have an important role not only in the triggering of tear propagation, but also in the evolution of the tear into either aortic rupture or aortic dissection. A larger and deeper initial tear increases the risk of aortic dissection. CONCLUSION The numerical model was able to reproduce the behaviour of the aorta during the initiation and propagation of an aortic dissection. In addition to confirm multiple results from the literature, different types of tears were compared and the influence of several geometrical and mechanical parameters on the critical pressure and direction of propagation was evaluated with a parametric study for each tear configuration. SIGNIFICANCE Although these results should be experimentally validated, they allow a better understanding of the phenomena behind aortic dissection and can help in improving the diagnosis and treatment of this disease.
Collapse
|
43
|
Jadidi M, Razian SA, Anttila E, Doan T, Adamson J, Pipinos M, Kamenskiy A. Comparison of morphometric, structural, mechanical, and physiologic characteristics of human superficial femoral and popliteal arteries. Acta Biomater 2021; 121:431-443. [PMID: 33227490 PMCID: PMC7855696 DOI: 10.1016/j.actbio.2020.11.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/12/2020] [Accepted: 11/17/2020] [Indexed: 01/03/2023]
Abstract
Peripheral arterial disease differentially affects the superficial femoral (SFA) and the popliteal (PA) arteries, but their morphometric, structural, mechanical, and physiologic differences are poorly understood. SFAs and PAs from 125 human subjects (age 13-92, average 52±17 years) were compared in terms of radii, wall thickness, and opening angles. Structure and vascular disease were quantified using histology, mechanical properties were determined with planar biaxial extension, and constitutive modeling was used to calculate the physiologic stress-stretch state, elastic energy, and the circumferential physiologic stiffness. SFAs had larger radii than PAs, and both segments widened with age. Young SFAs were 5% thicker, but in old subjects the PAs were thicker. Circumferential (SFA: 96→193°, PA: 105→139°) and longitudinal (SFA: 139→306°, PA: 133→320°) opening angles increased with age in both segments. PAs were more diseased than SFAs and had 11% thicker intima. With age, intimal thickness increased 8.5-fold, but medial thickness remained unchanged (620μm) in both arteries. SFAs had 30% more elastin than the PAs, and its density decreased ~50% with age. SFAs were more compliant than PAs circumferentially, but there was no difference longitudinally. Physiologic circumferential stress and stiffness were 21% and 11% higher in the SFA than in the PA across all ages. The stored elastic energy decreased with age (SFA: 1.4→0.4kPa, PA: 2.5→0.3kPa). While the SFA and PA demonstrate appreciable differences, most of them are due to vascular disease. When pathology is the same, so are the mechanical properties, but not the physiologic characteristics that remain distinct due to geometrical differences.
Collapse
Affiliation(s)
- Majid Jadidi
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Sayed Ahmadreza Razian
- Department of Biomechanics, Biomechanics Research Building, University of Nebraska Omaha, Omaha, NE, USA
| | - Eric Anttila
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Tyler Doan
- Department of Biomechanics, Biomechanics Research Building, University of Nebraska Omaha, Omaha, NE, USA
| | - Josiah Adamson
- Department of Biomechanics, Biomechanics Research Building, University of Nebraska Omaha, Omaha, NE, USA
| | - Margarita Pipinos
- Department of Biomechanics, Biomechanics Research Building, University of Nebraska Omaha, Omaha, NE, USA
| | - Alexey Kamenskiy
- Department of Biomechanics, Biomechanics Research Building, University of Nebraska Omaha, Omaha, NE, USA.
| |
Collapse
|
44
|
van der Bruggen MM, Reesink KD, Spronck PJM, Bitsch N, Hameleers J, Megens RTA, Schalkwijk CG, Delhaas T, Spronck B. An integrated set-up for ex vivo characterisation of biaxial murine artery biomechanics under pulsatile conditions. Sci Rep 2021; 11:2671. [PMID: 33514757 PMCID: PMC7846753 DOI: 10.1038/s41598-021-81151-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/07/2020] [Indexed: 01/19/2023] Open
Abstract
Ex vivo characterisation of arterial biomechanics enables detailed discrimination of the various cellular and extracellular contributions to arterial stiffness. However, ex vivo biomechanical studies are commonly performed under quasi-static conditions, whereas dynamic biomechanical behaviour (as relevant in vivo) may differ substantially. Hence, we aim to (1) develop an integrated set-up for quasi-static and dynamic biaxial biomechanical testing, (2) quantify set-up reproducibility, and (3) illustrate the differences in measured arterial stiffness between quasi-static and dynamic conditions. Twenty-two mouse carotid arteries were mounted between glass micropipettes and kept fully vasodilated. While recording pressure, axial force (F), and inner diameter, arteries were exposed to (1) quasi-static pressure inflation from 0 to 200 mmHg; (2) 300 bpm dynamic pressure inflation (peaking at 80/120/160 mmHg); and (3) axial stretch (λz) variation at constant pressures of 10/60/100/140/200 mmHg. Measurements were performed in duplicate. Single-point pulse wave velocities (PWV; Bramwell-Hill) and axial stiffness coefficients (cax = dF/dλz) were calculated at the in vivo value of λz. Within-subject coefficients of variation were ~ 20%. Dynamic PWVs were consistently higher than quasi-static PWVs (p < 0.001); cax increased with increasing pressure. We demonstrated the feasibility of ex vivo biomechanical characterisation of biaxially-loaded murine carotid arteries under pulsatile conditions, and quantified reproducibility allowing for well-powered future study design.
Collapse
Affiliation(s)
- Myrthe M van der Bruggen
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, Universiteitssingel 50, Room 3.359, 6229ER, Maastricht, The Netherlands
| | - Koen D Reesink
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, Universiteitssingel 50, Room 3.359, 6229ER, Maastricht, The Netherlands
| | | | - Nicole Bitsch
- Muroidean Facility, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - Jeroen Hameleers
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, Universiteitssingel 50, Room 3.359, 6229ER, Maastricht, The Netherlands
| | - Remco T A Megens
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, Universiteitssingel 50, Room 3.359, 6229ER, Maastricht, The Netherlands.,Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität, Munich, Germany
| | - Casper G Schalkwijk
- Department of Internal Medicine, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Tammo Delhaas
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, Universiteitssingel 50, Room 3.359, 6229ER, Maastricht, The Netherlands
| | - Bart Spronck
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, Universiteitssingel 50, Room 3.359, 6229ER, Maastricht, The Netherlands. .,Department of Biomedical Engineering, School of Engineering & Applied Science, Yale University, New Haven, CT, USA.
| |
Collapse
|
45
|
Giudici A, Wilkinson IB, Khir AW. Review of the Techniques Used for Investigating the Role Elastin and Collagen Play in Arterial Wall Mechanics. IEEE Rev Biomed Eng 2021; 14:256-269. [PMID: 32746366 DOI: 10.1109/rbme.2020.3005448] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The arterial wall is characterised by a complex microstructure that impacts the mechanical properties of the vascular tissue. The main components consist of collagen and elastin fibres, proteoglycans, Vascular Smooth Muscle Cells (VSMCs) and ground matrix. While VSMCs play a key role in the active mechanical response of arteries, collagen and elastin determine the passive mechanics. Several experimental methods have been designed to investigate the role of these structural proteins in determining the passive mechanics of the arterial wall. Microscopy imaging of load-free or fixed samples provides useful information on the structure-function coupling of the vascular tissue, and mechanical testing provides information on the mechanical role of collagen and elastin networks. However, when these techniques are used separately, they fail to provide a full picture of the arterial micromechanics. More recently, advances in imaging techniques have allowed combining both methods, thus dynamically imaging the sample while loaded in a pseudo-physiological way, and overcoming the limitation of using either of the two methods separately. The present review aims at describing the techniques currently available to researchers for the investigation of the arterial wall micromechanics. This review also aims to elucidate the current understanding of arterial mechanics and identify some research gaps.
Collapse
|
46
|
Kostelnik CJ, Crouse KJ, Carver W, Eberth JF. Longitudinal histomechanical heterogeneity of the internal thoracic artery. J Mech Behav Biomed Mater 2021; 116:104314. [PMID: 33476887 DOI: 10.1016/j.jmbbm.2021.104314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 12/10/2020] [Accepted: 01/03/2021] [Indexed: 11/16/2022]
Abstract
The internal thoracic artery (ITA) is the principal choice for coronary artery bypass grafting (CABG) due to its mechanical compatibility, histological composition, anti-thrombogenic lumen, and single anastomotic junction. Originating at the subclavian artery, traversing the thoracic cavity, and terminating at the superior epigastric and musculophrenic bifurcation, bilateral ITAs follow a protracted circuitous pathway. The physiological hemodynamics, anatomical configuration, and perivascular changes that occur throughout this length influence the tissue's microstructure and gross mechanical properties. Since histomechanics play a major role in premature graft failure we used inflation-extension testing to quantify the regional material and biaxial mechanical properties at four distinct locations along the left (L) and right (R) ITA and fit the results to a structurally-motivated constitutive model. Our comparative analysis of 44 vessel segments revealed a significant increase in the amount of collagen but not smooth muscle and a significant decrease in elastin and elastic lamellae present with distance from the heart. A subsequent decrease in the total deformation energy and isotropic contribution to the strain energy was present in the LITA but not RITA. Circumferential stress and compliance generally decreased along the length of the LITA while axial stress increased in the RITA. When comparing RITAs to LITAs, some morphological and histological differences were found in proximal sections while distal sections revealed differences predominantly in compliance and axial stress. Overall, this information can be used to better guide graft selection, graft preparation, and xenograft-based tissue-engineering strategies for CABG.
Collapse
Affiliation(s)
- Colton J Kostelnik
- Biomedical Engineering Program, University of South Carolina, Columbia, SC, USA
| | - Kiersten J Crouse
- Mechanical Engineering Department, University of South Carolina, Columbia, SC, USA
| | - Wayne Carver
- Cell Biology and Anatomy Department, University of South Carolina, Columbia, SC, USA
| | - John F Eberth
- Biomedical Engineering Program, University of South Carolina, Columbia, SC, USA; Cell Biology and Anatomy Department, University of South Carolina, Columbia, SC, USA.
| |
Collapse
|
47
|
Jadidi M, Razian SA, Habibnezhad M, Anttila E, Kamenskiy A. Mechanical, structural, and physiologic differences in human elastic and muscular arteries of different ages: Comparison of the descending thoracic aorta to the superficial femoral artery. Acta Biomater 2021; 119:268-283. [PMID: 33127484 PMCID: PMC7738395 DOI: 10.1016/j.actbio.2020.10.035] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/28/2020] [Accepted: 10/22/2020] [Indexed: 12/23/2022]
Abstract
Elastic and muscular arteries differ in structure, function, and mechanical properties, and may adapt differently to aging. We compared the descending thoracic aortas (TA) and the superficial femoral arteries (SFA) of 27 tissue donors (average 41±18 years, range 13-73 years) using planar biaxial testing, constitutive modeling, and bidirectional histology. Both TAs and SFAs increased in size with age, with the outer radius increasing more than the inner radius, but the TAs thickened 6-fold and widened 3-fold faster than the SFAs. The circumferential opening angle did not change in the TA, but increased 2.4-fold in the SFA. Young TAs were relatively isotropic, but the anisotropy increased with age due to longitudinal stiffening. SFAs were 51% more compliant longitudinally irrespective of age. Older TAs and SFAs were stiffer, but the SFA stiffened 5.6-fold faster circumferentially than the TA. Physiologic stresses decreased with age in both arteries, with greater changes occurring longitudinally. TAs had larger circumferential, but smaller longitudinal stresses than the SFAs, larger cardiac cycle stretch, 36% lower circumferential stiffness, and 8-fold more elastic energy available for pulsation. TAs contained elastin sheets separated by smooth muscle cells (SMCs), collagen, and glycosaminoglycans, while the SFAs had SMCs, collagen, and longitudinal elastic fibers. With age, densities of elastin and SMCs decreased, collagen remained constant due to medial thickening, and the glycosaminoglycans increased. Elastic and muscular arteries demonstrate different morphological, mechanical, physiologic, and structural characteristics and adapt differently to aging. While the aortas remodel to preserve the Windkessel function, the SFAs maintain higher longitudinal compliance.
Collapse
Affiliation(s)
- Majid Jadidi
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | | | - Mahmoud Habibnezhad
- Department of Computer Science, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Eric Anttila
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Alexey Kamenskiy
- Department of Biomechanics, University of Nebraska Omaha, Omaha, NE, USA.
| |
Collapse
|
48
|
Weiss D, Cavinato C, Gray A, Ramachandra AB, Avril S, Humphrey JD, Latorre M. Mechanics-driven mechanobiological mechanisms of arterial tortuosity. SCIENCE ADVANCES 2020; 6:6/49/eabd3574. [PMID: 33277255 PMCID: PMC7821897 DOI: 10.1126/sciadv.abd3574] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/22/2020] [Indexed: 05/04/2023]
Abstract
Arterial tortuosity manifests in many conditions, including hypertension, genetic mutations predisposing to thoracic aortopathy, and vascular aging. Despite evidence that tortuosity disrupts efficient blood flow and that it may be an important clinical biomarker, underlying mechanisms remain poorly understood but are widely appreciated to be largely biomechanical. Many previous studies suggested that tortuosity may arise via an elastic structural buckling instability, but the novel experimental-computational approach used here suggests that tortuosity arises from mechanosensitive, cell-mediated responses to local aberrations in the microstructural integrity of the arterial wall. In particular, computations informed by multimodality imaging show that aberrations in elastic fiber integrity, collagen alignment, and collagen turnover can lead to a progressive loss of structural stability that entrenches during the development of tortuosity. Interpreted in this way, microstructural defects or irregularities of the arterial wall initiate the condition and hypertension is a confounding factor.
Collapse
Affiliation(s)
- Dar Weiss
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Cristina Cavinato
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Authia Gray
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | | | - Stephane Avril
- Mines Saint-Etienne, Centre CIS, INSERM, U 1059 Sainbiose University of Lyon, Univ Jean Monnet, Saint-Etienne, France
| | - Jay D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
| | - Marcos Latorre
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| |
Collapse
|
49
|
Humphrey JD. Mechanisms of Vascular Remodeling in Hypertension. Am J Hypertens 2020; 34:432-441. [PMID: 33245319 PMCID: PMC8140657 DOI: 10.1093/ajh/hpaa195] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/09/2020] [Accepted: 11/19/2020] [Indexed: 12/19/2022] Open
Abstract
Hypertension is both a cause and a consequence of central artery stiffening, which in turn is an initiator and indicator of myriad disease conditions and thus all-cause mortality. Such stiffening results from a remodeling of the arterial wall that is driven by mechanical stimuli and mediated by inflammatory signals, which together lead to differential gene expression and concomitant changes in extracellular matrix composition and organization. This review focuses on biomechanical mechanisms by which central arteries remodel in hypertension within the context of homeostasis-what promotes it, what prevents it. It is suggested that the vasoactive capacity of the wall and inflammatory burden strongly influence the ability of homeostatic mechanisms to adapt the arterial wall to high blood pressure or not. Maladaptation, often reflected by inflammation-driven adventitial fibrosis, not just excessive intimal-medial thickening, significantly diminishes central artery function and disturbs hemodynamics, ultimately compromising end organ perfusion and thus driving the associated morbidity and mortality. It is thus suggested that there is a need for increased attention to controlling both smooth muscle phenotype and inflammation in hypertensive remodeling of central arteries, with future studies of the often adaptive response of medium-sized muscular arteries promising to provide additional guidance.
Collapse
Affiliation(s)
- Jay D Humphrey
- Department of Biomedical Engineering, Vascular Biology and Therapeutics Program, Yale University, New Haven, Connecticut, USA,Correspondence: Jay D. Humphrey ()
| |
Collapse
|
50
|
Geith MA, Nothdurfter L, Heiml M, Agrafiotis E, Gruber M, Sommer G, Schratzenstaller TG, Holzapfel GA. Quantifying stent-induced damage in coronary arteries by investigating mechanical and structural alterations. Acta Biomater 2020; 116:285-301. [PMID: 32858190 DOI: 10.1016/j.actbio.2020.08.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/28/2020] [Accepted: 08/12/2020] [Indexed: 11/18/2022]
Abstract
Vascular damage develops with diverging severity during and after percutaneous coronary intervention with stent placement and is the prevailing stimulus for in-stent restenosis. Previous work has failed to link mechanical data obtained in a realistic in vivo or in vitro environment with data collected during imaging processes. We investigated whether specimens of porcine right coronary arteries soften when indented with a stent strut shaped structure, and if the softening results from damage mechanisms inside the fibrillar collagen structure. To simulate the multiaxial loading scenario of a stented coronary artery, we developed the testing device 'LAESIO' that can measure differences in the stress-stretch behavior of the arterial wall before and after the indentation of a strut-like stamp. The testing protocol was optimized according to preliminary experiments, more specifically equilibrium and relaxation tests. After chemical fixation of the specimens and subsequent tissue clearing, we performed three-dimensional surface and second-harmonic generation scans on the deformed specimens. We analyzed and correlated the mechanical response with structural parameters of high-affected tissue located next to the stamp indentation and low-affected tissue beyond the injured area. The results reveal that damage mechanisms, like tissue compression as well as softening, fiber dispersion, and the lesion extent, are direction-dependent, and the severity of them is linked to the strut orientation, indentation pressure, and position. The findings highlight the need for further investigations by applying the proposed methods to human coronary arteries. Additional data and insights might help to incorporate the observed damage mechanisms into material models for finite element analyses to perform more accurate simulations of stent-implantations.
Collapse
Affiliation(s)
- Markus A Geith
- Institute of Biomechanics, Graz University of Technology, Graz, Austria; Biomedical Engineering Department, King's College London, London, United Kingdom
| | | | - Manuel Heiml
- Institute of Biomechanics, Graz University of Technology, Graz, Austria
| | | | | | - Gerhard Sommer
- Institute of Biomechanics, Graz University of Technology, Graz, Austria
| | - Thomas G Schratzenstaller
- Medical Device Laboratory, Regensburg Center of Biomedical Engineering, Technical University of Applied Sciences Regensburg, Regensburg, Germany
| | - Gerhard A Holzapfel
- Institute of Biomechanics, Graz University of Technology, Graz, Austria; Department of Structural Engineering, Norwegian University of Science and Technology, Trondheim, Norway.
| |
Collapse
|