1
|
Shi Z, Zhang C, Sun M, Usman M, Cui Y, Zhang S, Ni B, Luo G. Syntrophic propionate degradation in anaerobic digestion facilitated by hydrochar: Microbial insights as revealed by genome-centric metatranscriptomics. ENVIRONMENTAL RESEARCH 2024; 261:119717. [PMID: 39094895 DOI: 10.1016/j.envres.2024.119717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/02/2024] [Accepted: 07/31/2024] [Indexed: 08/04/2024]
Abstract
Propionate is a model substrate for studying energy-limited syntrophic communities in anaerobic digestion, and syntrophic bacteria usually catalyze its degradation in syntrophy with methanogens. In the present study, metagenomics and metatranscriptomics were used to study the effect of the supportive material (e.g., hydrochar) on the key members of propionate degradation and their cooperation mechanism. The results showed that hydrochar increased the methane production rate (up to 57.1%) from propionate. The general transcriptional behavior of the microbiome showed that both interspecies H2 transfer (IHT) and direct interspecies electron transfer (DIET) played essential roles in the hydrochar-mediated methanation of propionate. Five highly active syntrophic propionate-oxidizing bacteria were identified by genome-centric metatranscriptomics. H85pel, a member of the family Pelotomaculaceae, was specifically enriched by hydrochar. Hydrochar enhanced the expression of the flagellum subunit, which interacted with methanogens and hydrogenases in H85pel, indicating that IHT was one of the essential factors promoting propionate degradation. Hydrochar also enriched H162tha belonging to the genus of Thauera. Hydrochar induced the expression of genes related to the complete propionate oxidation pathway, which did not produce acetate. Hydrochar and e-pili-mediated DIET were enhanced, which was another factor promoting propionate degradation. These findings improved the understanding of metabolic traits and cooperation between syntrophic propionate oxidizing bacteria (SPOB) and co-metabolizing partners and provided comprehensive transcriptional insights on function in propionate methanogenic systems.
Collapse
Affiliation(s)
- Zhijian Shi
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, China.
| | - Chao Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, China
| | - Meichen Sun
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, China
| | - Muhammad Usman
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Yong Cui
- Shanghai Wujiaochang Environmental Protection Technology Co., Ltd., Shanghai, 200438, China
| | - Shicheng Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, China; Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai, 200438, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Bingjie Ni
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Gang Luo
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, China; Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai, 200438, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
2
|
Akram J, Song C, El Mashad HM, Chen C, Zhang R, Liu G. Advances in microbial community, mechanisms and stimulation effects of direct interspecies electron transfer in anaerobic digestion. Biotechnol Adv 2024; 76:108398. [PMID: 38914350 DOI: 10.1016/j.biotechadv.2024.108398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 06/11/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
Anaerobic digestion (AD) has been proven to be an effective green technology for producing biomethane while reducing environmental pollution. The interspecies electron transfer (IET) processes in AD are critical for acetogenesis and methanogenesis, and these IET processes are carried out via mediated interspecies electron transfer (MIET) and direct interspecies electron transfer (DIET). The latter has recently become a topic of significant interest, considering its potential to allow diffusion-free electron transfer during the AD process steps. To date, different multi-heme c-type cytochromes, electrically conductive pili (e-pili), and other relevant accessories during DIET between microorganisms of different natures have been reported. Additionally, several studies have been carried out on metagenomics and metatranscriptomics for better detection of DIET, the role of DIET's stimulation in alleviating stressed conditions, such as high organic loading rates (OLR) and low pH, and the stimulation mechanisms of DIET in mixed cultures and co-cultures by various conductive materials. Keeping in view this significant research progress, this study provides in-depth insights into the DIET-active microbial community, DIET mechanisms of different species, utilization of various approaches for stimulating DIET, characterization approaches for effectively detecting DIET, and potential future research directions. This study can help accelerate the field's research progress, enable a better understanding of DIET in complex microbial communities, and allow its utilization to alleviate various inhibitions in complex AD processes.
Collapse
Affiliation(s)
- Jehangir Akram
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chao Song
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hamed M El Mashad
- Department of Biological and Agricultural Engineering, University of California, Davis, CA 95616, United States; Agricultural Engineering Department, Mansoura University, Egypt
| | - Chang Chen
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Ruihong Zhang
- Department of Biological and Agricultural Engineering, University of California, Davis, CA 95616, United States.
| | - Guangqing Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
3
|
Wu ZF, Li ZL, Liu QH, Yang ZM. Magnetite-boosted syntrophic conversion of acetate to methane during thermophilic anaerobic digestion. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 89:160-169. [PMID: 38214992 PMCID: wst_2023_421 DOI: 10.2166/wst.2023.421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
Using a batch thermophilic anaerobic system established with 60 mL serum bottles, the mechanism on how microbial enrichments obtained from magnetite-amended paddy soil via repeated batch cultivation affected methane production from acetate was investigated. Magnetite-amended enrichments (MAEs) can improve the methane production rate rather than the methane yield. Compared with magnetite-unamended enrichments, the methane production rate in MAE was improved by 50%, concomitant with the pronounced electrochemical response, high electron transfer capacity, and fast acetate degradation. The promoting effects might be ascribed to direct interspecies electron transfer facilitated by magnetite, where magnetite might function as electron conduits to link the acetate oxidizers (Anaerolineaceae and Peptococcaceae) with methanogens (Methanosarcinaceae). The findings demonstrated the potential application of MAE for boosting methanogenic performance during thermophilic anaerobic digestion.
Collapse
Affiliation(s)
- Zi-Fan Wu
- Fujian Key Laboratory of Pollution Control & Resource Reuse, College of Environmental and Resource Science, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, China; These authors contributed equally to this work. E-mail:
| | - Zhao-Long Li
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, China; These authors contributed equally to this work
| | - Qing-Hua Liu
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhi-Man Yang
- Fujian Key Laboratory of Pollution Control & Resource Reuse, College of Environmental and Resource Science, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, China
| |
Collapse
|
4
|
Yan X, Chen L, Peng P, Yang F, Dai L, Zhang H, Zhao F. Dual role of birnessite on the modulation of acid production and reinforcement of interspecific electron transfer in anaerobic digestion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167842. [PMID: 37848138 DOI: 10.1016/j.scitotenv.2023.167842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/24/2023] [Accepted: 10/12/2023] [Indexed: 10/19/2023]
Abstract
Achieving efficient anaerobic digestion of highly loaded substrates is one of the most challenging problems in the field of waste resourcing. Here, the addition of birnessite (2.0 g/L) to kitchen wastewater increased the acetate and final methane yields by 40.53 and 99.18 %, respectively, while reducing the yields of propionate and butyrate by 38.17 and 48.86 %, respectively. There were two main pathways for birnessite to enhance anaerobic digestion, one of which is to act as an electron acceptor, by inducing an alteration in the ratio of reduced-state coenzyme I in the microorganism, allowing the acid production process to proceed towards deeper oxidation. Another pathway enhances the interspecific electron transfer between bacteria and archaea and improves methane yield by optimizing the metabolic relationship. The Kyoto Encyclopedia of Genes and Genomes (KEGG) functional predictions suggest that the extracellular electron transport pathway of the microorganism is enhanced with the addition of birnessite and that its intracellular metabolic pathway is biased towards the nicotinamide adenine dinucleotide (NADH) generation pathway. This work demonstrated that anaerobic digestion facilitation by metallic minerals was not monolithic; that is, different properties of the minerals were employed to intensify the different stages of anaerobic digestion and obtain an amplification cascade.
Collapse
Affiliation(s)
- Xinyu Yan
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Science, 1799 Jimei Road, Xiamen 361021, Fujian, China; University of Chinese Academy of Sciences, 19 Yuquan Road, 100049 Beijing, China
| | - Lixiang Chen
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Science, 1799 Jimei Road, Xiamen 361021, Fujian, China
| | - Pin Peng
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Science, 1799 Jimei Road, Xiamen 361021, Fujian, China; University of Chinese Academy of Sciences, 19 Yuquan Road, 100049 Beijing, China
| | - Fan Yang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Science, 1799 Jimei Road, Xiamen 361021, Fujian, China
| | - Liping Dai
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Science, 1799 Jimei Road, Xiamen 361021, Fujian, China; University of Chinese Academy of Sciences, 19 Yuquan Road, 100049 Beijing, China
| | - Han Zhang
- Institute of Urban Environment, Chinese Academy of Science, 1799 Jimei Road, Xiamen 361021, Fujian, China
| | - Feng Zhao
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Science, 1799 Jimei Road, Xiamen 361021, Fujian, China.
| |
Collapse
|
5
|
Alam M, Dhar BR. Boosting thermophilic anaerobic digestion with conductive materials: Current outlook and future prospects. CHEMOSPHERE 2023; 343:140175. [PMID: 37714472 DOI: 10.1016/j.chemosphere.2023.140175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/15/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
Thermophilic anaerobic digestion (TAD) can provide superior process kinetics, higher methane yields, and more pathogen destruction than mesophilic anaerobic digestion (MAD). However, the broader application of TAD is still very limited, mainly due to process instabilities such as the accumulation of volatile fatty acids and ammonia inhibition in the digesters. An emerging technique to overcome the process disturbances in TAD and enhance the methane production rate is to add conductive materials (CMs) to the digester. Recent studies have revealed that CMs can promote direct interspecies electron transfer (DIET) among the microbial community, increasing the TAD performance. CMs exhibited a high potential for alleviating the accumulation of volatile fatty acids and inhibition caused by high ammonia levels. However, the types, properties, sources, and dosage of CMs can influence the process outcomes significantly, along with other process parameters such as the organic loading rates and the type of feedstocks. Therefore, it is imperative to critically review the recent research to understand the impacts of using different CMs in TAD. This review paper discusses the types and properties of CMs applied in TAD and the mechanisms of how they influence methanogenesis, digester start-up time, process disturbances, microbial community, and biogas desulfurization. The engineering challenges for industrial-scale applications and environmental risks were also discussed. Finally, critical research gaps have been identified to provide a framework for future research.
Collapse
Affiliation(s)
- Monisha Alam
- Civil and Environmental Engineering, University of Alberta, 116 Street NW, Edmonton, AB, T6G 1H9, Canada
| | - Bipro Ranjan Dhar
- Civil and Environmental Engineering, University of Alberta, 116 Street NW, Edmonton, AB, T6G 1H9, Canada.
| |
Collapse
|
6
|
Liu K, Lv L, Li W, Ren Z, Wang P, Liu X, Gao W, Sun L, Zhang G. A comprehensive review on food waste anaerobic co-digestion: Research progress and tendencies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:163155. [PMID: 37001653 DOI: 10.1016/j.scitotenv.2023.163155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/22/2023] [Accepted: 03/26/2023] [Indexed: 05/13/2023]
Abstract
Food waste (FW) anaerobic digestion systems are prone to imbalance during long-term operation, and the imbalance mechanism is complex. Anaerobic co-digestion (AcoD) of FW and other substrates can overcome the performance limitations of single digestion, allowing for the mutual use of multiple wastes and resource recovery. Research on the AcoD of FW has been widely conducted and successfully applied to a practical engineering scale. Therefore, this review describes the research progress of AcoD of FW with other substrates. By analyzing the problems and challenges faced by AcoD of FW, the synergistic effects and influencing factors of different biomass wastes are discussed, and improvement strategies to improve the performance of AcoD of FW are summarized from different reaction stages of anaerobic digestion. By combing the research progress of AcoD of FW, it provides a reference for the optimization and improvement of the performance of the co-digestion system.
Collapse
Affiliation(s)
- Kaili Liu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Longyi Lv
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China.
| | - Weiguang Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, PR China
| | - Zhijun Ren
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Pengfei Wang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Xiaoyang Liu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Wenfang Gao
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Li Sun
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Guangming Zhang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China.
| |
Collapse
|
7
|
Mu L, Wang Y, Xu F, Li J, Tao J, Sun Y, Song Y, Duan Z, Li S, Chen G. Emerging Strategies for Enhancing Propionate Conversion in Anaerobic Digestion: A Review. Molecules 2023; 28:3883. [PMID: 37175291 PMCID: PMC10180298 DOI: 10.3390/molecules28093883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/18/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Anaerobic digestion (AD) is a triple-benefit biotechnology for organic waste treatment, renewable production, and carbon emission reduction. In the process of anaerobic digestion, pH, temperature, organic load, ammonia nitrogen, VFAs, and other factors affect fermentation efficiency and stability. The balance between the generation and consumption of volatile fatty acids (VFAs) in the anaerobic digestion process is the key to stable AD operation. However, the accumulation of VFAs frequently occurs, especially propionate, because its oxidation has the highest Gibbs free energy when compared to other VFAs. In order to solve this problem, some strategies, including buffering addition, suspension of feeding, decreased organic loading rate, and so on, have been proposed. Emerging methods, such as bioaugmentation, supplementary trace elements, the addition of electronic receptors, conductive materials, and the degasification of dissolved hydrogen, have been recently researched, presenting promising results. But the efficacy of these methods still requires further studies and tests regarding full-scale application. The main objective of this paper is to provide a comprehensive review of the mechanisms of propionate generation, the metabolic pathways and the influencing factors during the AD process, and the recent literature regarding the experimental research related to the efficacy of various strategies for enhancing propionate biodegradation. In addition, the issues that must be addressed in the future and the focus of future research are identified, and the potential directions for future development are predicted.
Collapse
Affiliation(s)
- Lan Mu
- School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, China; (L.M.)
| | - Yifan Wang
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Fenglian Xu
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Jinhe Li
- Tianjin Capital Environmental Protection Group Co., Ltd., Tianjin 300133, China
| | - Junyu Tao
- School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, China; (L.M.)
| | - Yunan Sun
- School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, China; (L.M.)
| | - Yingjin Song
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China;
| | - Zhaodan Duan
- School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, China; (L.M.)
| | - Siyi Li
- School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, China; (L.M.)
| | - Guanyi Chen
- School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, China; (L.M.)
| |
Collapse
|
8
|
Zhao B, Chen L, Zhang M, Nie C, Yang Q, Yu K, Xia Y. Electric-Inducive Microbial Interactions in a Thermophilic Anaerobic Digester Revealed by High-Throughput Sequencing of Micron-Scale Single Flocs. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4367-4378. [PMID: 36791305 DOI: 10.1021/acs.est.2c08833] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Although conductive materials have been shown to improve efficiency in anaerobic digestion (AD) by modifying microbial interactions, the interacting network under thermophilic conditions has not been examined. To identify the true taxon-taxon associations within thermophilic anaerobic digestion (TAD) microbiome and reveal the influence of carbon cloth (CC) addition, we sampled micron-scale single flocs (40-70 μm) randomly isolated from lab-scale thermophilic digesters. Results revealed that CC addition not only significantly boosted methane yield by 25.3% but also increased the spatial heterogeneity of the community in the sludge medium. After CC addition, an evident translocation of Pseudomonas from the medium to the biofilm was observed, showing their remarkable capacity for biofilm formation. Additionally, Clostridium and Thermotogaceae tightly aggregated and steadily co-occurred in the medium and biofilm of the TAD microbiome, which might be associated with their unique extracellular sugar metabolizing style. Finally, CC induced syntrophic interaction between Syntrophomonas and denitrifiers of Rhodocyclaceae. The upregulated respiration-associated electron transferring genes (Cyst-c, complex III) on the cellular membranes of these collaborating partners indicated a potential coupling of the denitrification pathway with syntrophic acetate oxidation via direct interspecies electron transfer (DIET). These findings provide an insight into how conductive materials promote thermophilic digestion performance and open the path for improved community monitoring of biotreatment systems.
Collapse
Affiliation(s)
- Bixi Zhao
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Liming Chen
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Miao Zhang
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Cailong Nie
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qing Yang
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Kaiqiang Yu
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yu Xia
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
9
|
Fan X, He L, Shi S, Huang Y, He X, Zhou Y, Zhou J. The coupling system of magnetite-enhanced thermophilic hydrolysis-acidification and denitrification for refractory organics removal from anaerobic digestate food waste effluent (ADFE). BIORESOURCE TECHNOLOGY 2023; 371:128601. [PMID: 36632852 DOI: 10.1016/j.biortech.2023.128601] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/05/2023] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
The aim of this study was to remove the refractory organics from high-temperature anaerobic digestate food waste effluent by the coupling system of hydrolysis-acidification and denitrification. Iron-based materials (magnetite, zero-valent iron, and iron-carbon) were used to enhance the performance of thermophilic hydrolysis-acidification. Compared with the control group, magnetite had the best strengthening effect, increasing volatile fatty acids concentration and fluorescence intensity of easily biodegradable organics in the effluent by 47.6 % and 108.4 %, respectively. The coupling system of magnetite-enhanced thermophilic hydrolysis-acidification and denitrification achieved a nitrate removal efficiency of 91.2 % (influent NO3--N was 150 mg L-1), and reduced the fluorescence intensity of refractory organics by 33.8 %, compared with influent. Microbiological analysis indicated that magnetite increased the relative abundance of thermophilic hydrolytic acidifying bacteria, and coupling system enriched some genera simultaneously removing nitrate and refractory organics. This study provided fresh information on refractory organics and nitrogen removal of thermophilic wastewater biologically.
Collapse
Affiliation(s)
- Xing Fan
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Lei He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Shuohui Shi
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Yangyang Huang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Xuejie He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Ying Zhou
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Jian Zhou
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China.
| |
Collapse
|
10
|
Olatunji KO, Madyira DM, Ahmed NA, Ogunkunle O. Experimental evaluation of the influence of combined particle size pretreatment and Fe 3O 4 additive on fuel yields of Arachis Hypogea shells. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2023; 41:467-476. [PMID: 36128600 PMCID: PMC9925899 DOI: 10.1177/0734242x221122560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 07/03/2022] [Indexed: 06/15/2023]
Abstract
A smart energy recovery process can achieve maximum energy recovery from organic wastes. Pretreatment of feedstock is essential to biogas and methane yields during the anaerobic digestion process. This work combined particle size reduction with Fe3O4 nanoparticles to investigate their influence on biogas and methane yields from anaerobic digestion of Arachis hypogea shells. Twenty milligrams per litre of Fe3O4 nanoparticles was implemented with 2, 4, 6 and 8 mm particle sizes and a single treatment of Fe3O4 for 35 days. The treatments were compared with each other and were discovered to significantly (p < 0.05) enhance biogas yield by 37.40%, 50.10%, 54.40%, 51.40% and 35.50% compared with control, respectively. Specific biogas yield recorded was 966.2, 1406, 1552.7, 1317.4, 766.2 and 413 mL g-1 volatile solid. This study showed the combination of Fe3O4 with 6 mm particle size of Arachis hypogea shells produced the optimum biogas and methane yields. The addition of Fe3O4 to particle sizes below 6 mm resulted in over-accumulation of volatile fatty acids and lowered the gas yield. This can be applied on an industrial scale.
Collapse
Affiliation(s)
- Kehinde O Olatunji
- Kehinde O Olatunji, Department of
Mechanical Engineering Science, Faculty of Engineering and the Built
Environment, University of Johannesburg, B3 Lab 22, Johannesburg 200, South
Africa.
| | | | | | | |
Collapse
|
11
|
Al Hasani Z, Kumar Nayak J, Alhimali H, Al-Mamun A. Enhancing methane production of co-digested food waste with granular activated carbon coated with nano zero-valent iron in an anaerobic digester. BIORESOURCE TECHNOLOGY 2022; 363:127832. [PMID: 36029986 DOI: 10.1016/j.biortech.2022.127832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/18/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
Anaerobic digestion (AD) possesses dual benefits of waste treatment and energy generation. The use of conductive additives in AD matrix has potential to improve process yield. Hence, the study aimed to investigate a thermophilic AD (TAD) inserted by granular activated carbon coated with nano zero-valent iron (GAC/nZVI) in the matrix and was operated for mono-digestion and co-digestion of cow manure with food wastes (rice and bread) to check the bioprocess improvement. The results were compared with the control TAD without conductive additives. Biogas production increased by 11 folds upon using GAC/nZVI addition compared to the control TAD. Moreover, the addition of GAC/nZVI increased the methane in biogas by 20.7 folds compared to control one. With GAC/nZVI, the maximum COD removal of 78.29% and 85.21% were noticed for co-digestion and mono digestion, respectively. Such improvement of TAD performance was due to easy bacterial communication and electron exchange through the conductive particles.
Collapse
Affiliation(s)
- Zahra Al Hasani
- Department of Civil and Architectural Engineering, Sultan Qaboos University, P.O. Box 33, Al-Khoud 123, Muscat, Oman
| | - Jagdeep Kumar Nayak
- Department of Civil and Architectural Engineering, Sultan Qaboos University, P.O. Box 33, Al-Khoud 123, Muscat, Oman
| | - Halima Alhimali
- Department of Civil and Architectural Engineering, Sultan Qaboos University, P.O. Box 33, Al-Khoud 123, Muscat, Oman
| | - Abdullah Al-Mamun
- Department of Civil and Architectural Engineering, Sultan Qaboos University, P.O. Box 33, Al-Khoud 123, Muscat, Oman.
| |
Collapse
|
12
|
Xu XJ, Yan J, Yuan QK, Wang XT, Yuan Y, Ren NQ, Lee DJ, Chen C. Enhanced methane production in anaerobic digestion: A critical review on regulation based on electron transfer. BIORESOURCE TECHNOLOGY 2022; 364:128003. [PMID: 36155810 DOI: 10.1016/j.biortech.2022.128003] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Anaerobic digestion (AD) is a potential bioprocess for waste biomass utilization and energy conservation. Various iron/carbon-based CMs (e.g., magnetite, biochar, granular activated carbon (GAC), graphite and zero valent iron (ZVI)) have been supplemented in anaerobic digestors to improve AD performance. Generally, the supplementation of CMs has shown to improve methane production, shorten lag phase and alleviate environmental stress because they could serve as electron conduits and promote direct interspecies electron transfer (DIET). However, the CMs dosage varied greatly in previous studies and CMs wash out remains a challenge for its application in full-scale plants. Future work is recommended to standardize the CMs dosage and recover/reuse the CMs. Moreover, additional evidence is required to verify the electrotrophs involved in DIET.
Collapse
Affiliation(s)
- Xi-Jun Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Jin Yan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Qing-Kang Yuan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Xue-Ting Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Yuan Yuan
- College of Biological Engineering, Beijing Polytechnic, Beijing 10076, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Duu-Jong Lee
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; Department of Chemical Engineering & Materials Science, Yuan-Ze University, Chungli 320, Taiwan
| | - Chuan Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China.
| |
Collapse
|
13
|
Sun Y, Wang M, Liang L, Sun C, Wang X, Wang Z, Zhang Y. Continuously feeding fenton sludge into anaerobic digesters: Iron species change and operating stability. WATER RESEARCH 2022; 226:119283. [PMID: 36308793 DOI: 10.1016/j.watres.2022.119283] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Fenton sludge generated from the Fenton process contains a large number of ferric species and organic pollutants, which need to be properly treated before discharge. In this study, Fenton sludge as an Fe(III) source for dissimilatory iron reduction (DIR) was continuously added with increasing dosage into an anaerobic digester to enhance the treatment. Results showed continuously feeding Fenton sludge to the anaerobic digester did not deteriorate the performance and increased methane production and COD removal rate by 2.2 folds and 14.0%, respectively. The Fe content of sludge in the digester increased from 40.25 mg/g (dry weight) to 131.53 mg/g after continuously feeding for 77days, and then declined to 109.17 mg/g when the feeding was stopped. Mass balance analysis showed that 20.5 to 48.4% of Fe in the Fenton sludge was released to the effluent. After experiment, the ratio of reducible Fe species to the total Fe was 75.1%, which maintained the high activity in DIR. Microbial community analysis showed that iron-reducing bacteria were enriched with the addition of Fenton sludge and the sludge in the digester had a higher conductivity and capacitance to strengthen the electron transfer of DIR. All results suggested that feeding Fenton sludge into anaerobic digesters was a feasible method to dispose of Fenton sludge as well as to enhance the performance of anaerobic digestion.
Collapse
Affiliation(s)
- Ye Sun
- Dalian University of Technology School of Environmental Science and Technology, No.2 Linggong Road, Ganjingzi District. Dalian, Liaoning 116024, China
| | - Mingwei Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Lianfu Liang
- Dalian University of Technology School of Environmental Science and Technology, No.2 Linggong Road, Ganjingzi District. Dalian, Liaoning 116024, China
| | - Cheng Sun
- Dalian University of Technology School of Environmental Science and Technology, No.2 Linggong Road, Ganjingzi District. Dalian, Liaoning 116024, China
| | - Xuepeng Wang
- Dalian University of Technology School of Environmental Science and Technology, No.2 Linggong Road, Ganjingzi District. Dalian, Liaoning 116024, China
| | - Zhenxin Wang
- Dalian University of Technology School of Environmental Science and Technology, No.2 Linggong Road, Ganjingzi District. Dalian, Liaoning 116024, China
| | - Yaobin Zhang
- Dalian University of Technology School of Environmental Science and Technology, No.2 Linggong Road, Ganjingzi District. Dalian, Liaoning 116024, China.
| |
Collapse
|
14
|
Fe0-Supported Anaerobic Digestion for Organics and Nutrients Removal from Domestic Sewage. WATER 2022. [DOI: 10.3390/w14101623] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Results from different research suggest that metallic iron (Fe0) materials enhance anaerobic digestion (AD) systems to remove organics (chemical oxygen demand (COD)), phosphorus and nitrogen from polluted water. However, the available results are difficult to compare because they are derived from different experimental conditions. This research characterises the effects of Fe0 type and dosage in AD systems to simultaneously remove COD and nutrients (orthophosphate (PO43−), ammonium (NH4+), and nitrate (NO3− Lab-scale reactors containing domestic sewage (DS) were fed with various Fe0 dosages (0 to 30 g/L). Batch AD experiments were operated at 37 ± 0.5 °C for 76 days; the initial pH value was 7.5. Scrap iron (SI) and steel wool (SW) were used as Fe0 sources. Results show that: (i) SW performed better than SI on COD and PO43− removal (ii) optimum dosage for the organics and nutrients removal was 10 g/L SI (iii) (NO3− + NH4+) was the least removed pollutant (iv) maximum observed COD, PO43− and NO3− + NH4+ removal efficiencies were 88.0%, 98.0% and 40.0% for 10 g/L SI, 88.2%, 99.9%, 25.1% for 10 g/L SW, and 68.9%, 7.3% and 0.7% for the reference system. Fe0-supported AD significantly removed the organics and nutrients from DS.
Collapse
|
15
|
Chen L, Fang W, Chang J, Liang J, Zhang P, Zhang G. Improvement of Direct Interspecies Electron Transfer via Adding Conductive Materials in Anaerobic Digestion: Mechanisms, Performances, and Challenges. Front Microbiol 2022; 13:860749. [PMID: 35432222 PMCID: PMC9005980 DOI: 10.3389/fmicb.2022.860749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 03/09/2022] [Indexed: 11/30/2022] Open
Abstract
Anaerobic digestion is an effective and sustainable technology for resource utilization of organic wastes. Recently, adding conductive materials in anaerobic digestion to promote direct interspecies electron transfer (DIET) has become a hot topic, which enhances the syntrophic conversion of various organics to methane. This review comprehensively summarizes the recent findings of DIET mechanisms with different mediating ways. Meanwhile, the influence of DIET on anaerobic digestion performance and the underlying mechanisms of how DIET mediated by conductive materials influences the lag phase, methane production, and system stability are systematically explored. Furthermore, current challenges such as the unclear biological mechanisms, influences of non-DIET mechanisms, limitations of organic matters syntrophically oxidized by way of DIET, and problems in practical application of DIET mediated by conductive materials are discussed in detail. Finally, the future research directions for practical application of DIET are outlined.
Collapse
Affiliation(s)
- Le Chen
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China.,Engineering Research Center for Water Pollution Source Control and Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Wei Fang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China.,Engineering Research Center for Water Pollution Source Control and Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Jianning Chang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China.,Engineering Research Center for Water Pollution Source Control and Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Jinsong Liang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China.,Engineering Research Center for Water Pollution Source Control and Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Panyue Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China.,Engineering Research Center for Water Pollution Source Control and Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Guangming Zhang
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, China
| |
Collapse
|
16
|
Yu J, Liu J, Senthil Kumar P, Wei Y, Zhou M, Vo DVN, Xiao L. Promotion of methane production by magnetite via increasing acetogenesis revealed by metagenome-assembled genomes. BIORESOURCE TECHNOLOGY 2022; 345:126521. [PMID: 34896259 DOI: 10.1016/j.biortech.2021.126521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
Metal oxides are wildly studied to enhance anaerobic digestion and the methanogenic process, which is generally interpreted by increased direct interspecies electron transfer (DIET). Yet microbial mechanisms involved are under debate. Herein, methane production dynamics were analyzed, and acceleration on biogas accumulation was presented. Complementing previous findings, Fe3O4 nanoparticles stimulated bacterial fermentation rather than methanogenesis or syntropy between electro-microorganism and methanogen. More importantly, metagenome-assembled genomes proved that Fe3O4 nanoparticles increased acetogenesis by Parabacteroides chartae, which provided abundant substrates for acetoclastic methanogenesis. Interestingly, the weakly conductive V3O7·H2O nanowires increased potential hydrogen-producing bacteria, Brevundimonas, and electro-microorganisms, Clostridium and Rhodoferax, which is convenient for conducting DIET. Collectively, conductivity may not be a critical factor in mediating DIET and distinct strategies of metal oxides on methane production propose more possibilities, such as fermentation process.
Collapse
Affiliation(s)
- Jiafeng Yu
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, PR China
| | - Jian Liu
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, PR China
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai 603110 India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai 603110, India
| | - Yunwei Wei
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, PR China
| | - Meng Zhou
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Dai-Viet N Vo
- Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City 755414, Vietnam
| | - Leilei Xiao
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China.
| |
Collapse
|
17
|
Jadhav P, Bin Khalid Z, Mishra P, Bin Abd Wahid Z, Nasrullah M. Challenges and emerging approaches in life cycle assessment of engineered nanomaterials usage in anaerobic bioreactor. TECHNO-ECONOMICS AND LIFE CYCLE ASSESSMENT OF BIOREACTORS 2022:207-222. [DOI: 10.1016/b978-0-323-89848-5.00004-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
18
|
Yan Y, Yan M, Ravenni G, Angelidaki I, Fu D, Fotidis IA. Novel bioaugmentation strategy boosted with biochar to alleviate ammonia toxicity in continuous biomethanation. BIORESOURCE TECHNOLOGY 2022; 343:126146. [PMID: 34673199 DOI: 10.1016/j.biortech.2021.126146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
This study investigated for the first time if ammonia tolerant methanogenic consortia can be stored in gel (biogel) and used in a later time on-demand as bioaugmentation inocula, to efficiently relieve ammonia inhibition in continuous biomethanation systems. Moreover, wood biochar was assessed as a potential enhancer of the novel biogel bioaugmentation process. Three thermophilic (55 °C), continuous stirred-tank reactors (RBgel, RChar and RMix), operated at 4.5 g NH4+-N L-1 were exposed to biogel, biochar and mixture of biogel and biochar, respectively, while a fourth reactor (RCtrl) was used as control. The results showed that the methane production yields of RMix, RChar and RBgel increased by 28.6%, 20.2% and 10.7%, respectively compared to RCtrl. The highest methane yield was achieved by the synergistic interaction between biogel and biochar. Additionally, biogel stimulated a rapid recovery of Methanoculleus thermophilus sp. and syntrophic acetate oxidising bacteria populations.
Collapse
Affiliation(s)
- Yixin Yan
- School of Civil Engineering Southeast University, 210096, Nanjing, China; Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet Bygning 115, DK-2800, Kgs. Lyngby, Denmark
| | - Miao Yan
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet Bygning 115, DK-2800, Kgs. Lyngby, Denmark; NUS Environmental Research Institute, National University of Singapore, 1 Create Way, 138602, Singapore
| | - Giulia Ravenni
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Building 313, 4000, Roskilde, Denmark
| | - Irini Angelidaki
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Dafang Fu
- School of Civil Engineering Southeast University, 210096, Nanjing, China
| | - Ioannis A Fotidis
- School of Civil Engineering Southeast University, 210096, Nanjing, China; Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland; Faculty of Environment, Ionian University, 29100, Zakynthos, Greece.
| |
Collapse
|
19
|
Casals E, Barrena R, Gonzalez E, Font X, Sánchez A, Puntes V. Historical Perspective of the Addition of Magnetic Nanoparticles Into Anaerobic Digesters (2014-2021). FRONTIERS IN CHEMICAL ENGINEERING 2021. [DOI: 10.3389/fceng.2021.745610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The addition of magnetic nanoparticles to batch anaerobic digestion was first reported in 2014. Afterwards, the number of works dealing with this subject has been increasing year by year. The discovery of the enhancement of anaerobic digestion by adding iron-based nanoparticles has created a multidisciplinary emerging research field. As a consequence, in the last years, great efforts have been made to understand the enhancement mechanisms by which magnetic nanoparticles (NPs) addition enhances the anaerobic digestion process of numerous organic wastes. Some hypotheses point to the dissolution of iron as essential iron for anaerobic digestion development, and the state of oxidation of iron NPs that can reduce organic matter to methane. The evolution and trends of this novel topic are discussed in this manuscript. Perspectives on the needed works on this topic are also presented.
Collapse
|
20
|
Kong X, Niu J, Zhang W, Liu J, Yuan J, Li H, Yue X. Mini art review for zero valent iron application in anaerobic digestion and technical bottlenecks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 791:148415. [PMID: 34412392 DOI: 10.1016/j.scitotenv.2021.148415] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/21/2021] [Accepted: 06/08/2021] [Indexed: 06/13/2023]
Abstract
Zero valent iron (ZVI) has been used extensively to control environmental pollution owing to its strong reducibility and low cost. Herein, we evaluate the impact of ZVI (iron scrap and ZVI powder with different scales) on anaerobic digestion (AD) reactor performance improvement and syntrophic relationship stimulation among various microbial groups in the methanogenesis process. In recent studies, ZVI addition significantly enhanced methane and volatile fatty acid (VFA) yields and alleviated excessive acidification, ammonia accumulation, and odorous gas production. Further, we reviewed the changes in enzyme activity and microbial metabolism after the addition of ZVI throughout the reaction process. Certain innovative technologies, such as bioelectrochemical system assistance and combined usage of conductive materials, may improve AD performance compared to the use of ZVI alone, the mechanism of which has been discussed from various viewpoints. Furthermore, the primary technical bottlenecks, such as poor mass transfer efficiency in dry AD and high ZVI dosage, have been illustrated, and syntrophic methanogenesis regulated by ZVI addition can be further studied by conducting theoretical research.
Collapse
Affiliation(s)
- Xin Kong
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong 030600, PR China; School of Environment, Tsinghua University, Beijing 10084, PR China.
| | - Jianan Niu
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong 030600, PR China
| | - Wenjing Zhang
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong 030600, PR China
| | - Jianguo Liu
- School of Environment, Tsinghua University, Beijing 10084, PR China
| | - Jin Yuan
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong 030600, PR China
| | - Houfen Li
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong 030600, PR China
| | - Xiuping Yue
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong 030600, PR China
| |
Collapse
|
21
|
Li J, Li C, Zhao L, Pan X, Cai G, Zhu G. The application status, development and future trend of nano-iron materials in anaerobic digestion system. CHEMOSPHERE 2021; 269:129389. [PMID: 33385673 DOI: 10.1016/j.chemosphere.2020.129389] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 06/12/2023]
Abstract
Growing environment problem and emphasis of environmental protection motivate intense research efforts in exploring technology to improve treatment efficiency on refractory organic pollutants. Hence, finding a method to make up for the deficiency of anaerobic digestion (AD) is very attractive and challenging tasks. The recent spark in the interest for the usage of some nanomaterials as an additive to strengthen AD system. The adoption of iron compounds can influence the performance and stability in AD system. However, different iron species and compounds can influence AD system in significantly different ways, both positive and negative. Therefore, strengthening mechanism, treatment efficiency, microbial community changes in Nanoscale Zero Valent Iron (nZVI) and Fe3O4 nanoparticles (Fe3O4 NPs) added AD systems were summarized by this review. The strengthening effects of nZVI and Fe3O4 NPs in different pollutants treatment system were analyzed. Previous study on the effects of nZVI and Fe3O4 NPs addition on AD have reported the concentration of nZVI and Fe3O4 NPs, and the types and biodegradability of pollutants might be the key factors that determine the direction and extent of effect in AD system. This review provides a summary on the nZVI and Fe3O4 NPs added AD system to establish experiment systems and conduct follow-up experiments in future study.
Collapse
Affiliation(s)
- Junjie Li
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunxing Li
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| | - Lixin Zhao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agriculture Sciences, Beijing, 100081, China
| | - Xiaofang Pan
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Guanjing Cai
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Gefu Zhu
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| |
Collapse
|
22
|
Tang Y, Li Y, Zhang M, Xiong P, Liu L, Bao Y, Zhao Z. Link between characteristics of Fe(III) oxides and critical role in enhancing anaerobic methanogenic degradation of complex organic compounds. ENVIRONMENTAL RESEARCH 2021; 194:110498. [PMID: 33220246 DOI: 10.1016/j.envres.2020.110498] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/18/2020] [Accepted: 11/13/2020] [Indexed: 06/11/2023]
Abstract
Fe(III) oxides have been investigated to accelerate anaerobic methanogenic degradation of complex organic compounds. However, the critical role linked to the characteristics of different types of Fe(III) oxides is still unclear. Study presented here performed a side-by-side comparison of four types of Fe(III) oxides including Fe(III)-citrate, ferrihydrite, hematite and magnetite to evaluate their effectiveness in methanogenic degradation of phenol. Results showed that, amorphous Fe(III)-citrate group showed the fastest phenol degradation and Fe2+ release among all the groups, followed by poorly crystalline ferrihydrite. Although Fe(III)-citrate group also showed the fastest methane production rate, the efficiency of electron recovery in methane production was only 58-78%, which was evidently lower than that in both crystalline hematite (86-89%) and magnetite (93-97%) groups. Methane production rate with non-conductive ferrihydrite was nearly same as that with conductive magnetite, both of which were significantly higher than that with semi-conductive hematite. X-ray Diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analysis showed that sludge collected from hematite and magnetite group still respectively presented a relatively intact characteristic spectra involved in hematite and magnetite. Differently, the characteristic spectra involved in ferrihydrite was not evident in sludge collected from ferrihydrite group, whereas the characteristic spectra involved in magnetite was detected. Microbial community analysis showed that, both Fe(III)-citrate and ferrihydrite specially enriched Fe(III)-reducing bacteria capable of degrading phenol into fatty acids (Trichococcus and Caloramator) via dissimilatory Fe(III) reduction. Fe(III)-citrate also stimulated the growth of Syntrophus capable of degrading phenol/benzoate into acetate and proceeding direct interspecies electron transfer (DIET). In magnetite and hematite group, the abundance of Enterococcus species evidently increased, and they might proceed DIET with Methanothrix species in syntrophic conversion of fatty acids into methane.
Collapse
Affiliation(s)
- Yapeng Tang
- School of Ocean Science and Technology, Dalian University of Technology, Panjin, 124221, China
| | - Yang Li
- School of Ocean Science and Technology, Dalian University of Technology, Panjin, 124221, China.
| | - Mingqian Zhang
- School of Ocean Science and Technology, Dalian University of Technology, Panjin, 124221, China
| | - Pu Xiong
- School of Ocean Science and Technology, Dalian University of Technology, Panjin, 124221, China
| | - Lifen Liu
- School of Ocean Science and Technology, Dalian University of Technology, Panjin, 124221, China
| | - Yongming Bao
- School of Ocean Science and Technology, Dalian University of Technology, Panjin, 124221, China
| | - Zhiqiang Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
23
|
Zhu X, Blanco E, Bhatti M, Borrion A. Impact of metallic nanoparticles on anaerobic digestion: A systematic review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143747. [PMID: 33257063 DOI: 10.1016/j.scitotenv.2020.143747] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/30/2020] [Accepted: 11/01/2020] [Indexed: 06/12/2023]
Abstract
Anaerobic digestion (AD) is one of the most energy-efficient waste treatment technologies for biodegradable wastes. Owing to the increasing trend of metallic nanoparticle applications in industry, they are ubiquitous to the waste streams, which may lead to remarkable impacts on the performance of the AD process. This review addresses the knowledge gaps and summarises the findings from the academic articles published from 2010 to 2019 focusing on the influences on both AD processes of biochemical hydrogen-generation and methane-production from selected metallic nano-materials. Both qualitative and quantitative analyses were conducted with selected indicators to evaluate the metallic nanoparticles' influences on the AD process. The selected metallic nanoparticles were grouped in the view of their chemical formulations aiming to point out the possible mechanisms behind their effects on AD processes. In summary, most metallic nanoparticles with trace-element-base (e.g. iron, cobalt, nickel) have positive effects on both AD hydrogen-generation and methane-production processes in terms of gas production, effluent quality, as well as process optimisation. Within an optimum concentration, they serve as key nutrients providers, aid key enzymes and co-enzymes synthesis, and thus stimulate anaerobic microorganism activities. As for the nano-additives without trace-element base, their positive influences are relied on providing active sites for the microorganism, as well as absorbing inhibitory factors. Moreover, comparisons of these nano-additives' impacts on the two gas-production phases were conducted, while methane-production phases are found to be more sensitive to additions of these nanoparticles then hydrogen-production phase. Research perspectives and research gaps in this area are discussed.
Collapse
Affiliation(s)
- Xiaowen Zhu
- Department of Civil, Environmental and Geomatic Engineering, University College London, UK
| | - Edgar Blanco
- Anaero Technology Limited, Cowley Road, Cambridge, UK
| | - Manni Bhatti
- Department of Civil, Environmental and Geomatic Engineering, University College London, UK
| | - Aiduan Borrion
- Department of Civil, Environmental and Geomatic Engineering, University College London, UK.
| |
Collapse
|
24
|
Chang J, Wu Q, Yan X, Wang H, Lee LW, Liu Y, Liang P, Qiu Y, Huang X. Enhancement of nitrite reduction and enrichment of Methylomonas via conductive materials in a nitrite-dependent anaerobic methane oxidation system. ENVIRONMENTAL RESEARCH 2021; 193:110565. [PMID: 33275920 DOI: 10.1016/j.envres.2020.110565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 06/12/2023]
Abstract
Nitrite-dependent anaerobic methane-oxidizing (n-damo) process has a promising prospect in anaerobic wastewater treatment, utilizing methane as the sole electron source to remove nitrite. However, the metabolic activity of n-damo bacteria is too low for practical application. This study aimed to stimulate n-damo process by introducing conductive nano-magnetite and/or electron shuttle anthraquinone-2,6-disulfonate (AQDS), and also set a comparative treatment of adding insulated ferrihydrite. The results showed that the nitrite reduction rate was enhanced the most significantly in treatment with nano-magnetite, approximately 1.6 times higher than that of the control without any supplement. While ferrihydrite application showed an adverse effect on n-damo process. The well-known aerobic methane oxidizer Methylomonas spp. was found to be enriched under n-damo condition with the supplementation of nano-magnetite and/or AQDS, but abundance of n-damo bacteria did not exhibit significant increase. It was hypothesized that Methylomonas spp. could be survived under anaerobic n-damo condition using oxygen produced by n-damo bacteria for the self-growth, and the nitrite reduction could be promoted through the enhancement of microbial interspecies electron transfer triggered by the introduction of conductive materials. It opens a new direction for the stimulation of n-damo activity, which needs more evidences to verify the hypothetic mechanism.
Collapse
Affiliation(s)
- Jiali Chang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China; Division of Environmental Engineering, School of Chemistry, Resources and Environment, Leshan Normal University, Sichuan, 614000, China
| | - Qing Wu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Xiaoxu Yan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Han Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Liven Wenhui Lee
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Yanchen Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Peng Liang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Yong Qiu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
25
|
Kang HJ, Lee SH, Lim TG, Park JH, Kim B, Buffière P, Park HD. Recent advances in methanogenesis through direct interspecies electron transfer via conductive materials: A molecular microbiological perspective. BIORESOURCE TECHNOLOGY 2021; 322:124587. [PMID: 33358582 DOI: 10.1016/j.biortech.2020.124587] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 05/28/2023]
Abstract
Conductive materials can serve as biocatalysts during direct interspecies electron transfer for methanogenesis in anaerobic reactors. However, the mechanism promoting direct interspecies electron transfer in anaerobic reactors, particularly under environments in which diverse substrates and microorganisms coexist, remains to be elucidated from a scientific or an engineering point of view. Currently, many molecular microbiological approaches are employed to understand the fundamentals of this phenomenon. Here, the direct interspecies electron transfer mechanisms and relevant microorganisms identified to date using molecular microbiological methods were critically reviewed. Moreover, molecular microbiological methods for direct interspecies electron transfer used in previous studies and important findings thus revealed were analyzed. This review will help us better understand the phenomena of direct interspecies electron transfer using conductive materials and offer a framework for future molecular microbiological studies.
Collapse
Affiliation(s)
- Hyun-Jin Kang
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul, South Korea
| | - Sang-Hoon Lee
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul, South Korea
| | - Tae-Guen Lim
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul, South Korea
| | - Jeong-Hoon Park
- Sustainable Technology and Wellness R&D Group, Korea Institute of Industrial Technology (KITECH), Jeju-si, South Korea
| | - Boram Kim
- DEEP Laboratory, Université de Lyon, INSA Lyon, Lyon, France
| | - Pierre Buffière
- DEEP Laboratory, Université de Lyon, INSA Lyon, Lyon, France
| | - Hee-Deung Park
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul, South Korea.
| |
Collapse
|
26
|
Zhao Z, Li Y, Zhang Y, Lovley DR. Sparking Anaerobic Digestion: Promoting Direct Interspecies Electron Transfer to Enhance Methane Production. iScience 2020; 23:101794. [PMID: 33294801 PMCID: PMC7695907 DOI: 10.1016/j.isci.2020.101794] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Anaerobic digestion was one of the first bioenergy strategies developed, yet the interactions of the microbial community that is responsible for the production of methane are still poorly understood. For example, it has only recently been recognized that the bacteria that oxidize organic waste components can forge electrical connections with methane-producing microbes through biologically produced, protein-based, conductive circuits. This direct interspecies electron transfer (DIET) is faster than interspecies electron exchange via diffusive electron carriers, such as H2. DIET is also more resilient to perturbations such as increases in organic load inputs or toxic compounds. However, with current digester practices DIET rarely predominates. Improvements in anaerobic digestion associated with the addition of electrically conductive materials have been attributed to increased DIET, but experimental verification has been lacking. This deficiency may soon be overcome with improved understanding of the diversity of microbes capable of DIET, which is leading to molecular tools for determining the extent of DIET. Here we review the microbiology of DIET, suggest molecular strategies for monitoring DIET in anaerobic digesters, and propose approaches for re-engineering digester design and practices to encourage DIET.
Collapse
Affiliation(s)
- Zhiqiang Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003-9298, USA
| | - Yang Li
- School of Ocean Science and Technology, Dalian University of Technology, Panjin 124221, China
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003-9298, USA
| | - Yaobin Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Derek R. Lovley
- Electrobiomaterials Institute, Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 110819, China
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003-9298, USA
| |
Collapse
|
27
|
Abstract
Graphene materials (GMs) are being investigated for multiple microbiological applications because of their unique physicochemical characteristics including high electrical conductivity, large specific surface area, and robust mechanical strength. In the last decade, studies on the interaction of GMs with bacterial cells appear conflicting. On one side, GMs have been developed to promote the proliferation of electroactive bacteria on the surface of electrodes in bioelectrochemical systems or to accelerate interspecies electron transfer during anaerobic digestion. On the other side, GMs with antibacterial properties have been synthesized to prevent biofilm formation on membranes for water treatment, on medical equipment, and on tissue engineering scaffolds. In this review, we discuss the mechanisms and factors determining the positive or negative impact of GMs on bacteria. Furthermore, we examine the bacterial growth-promoting and antibacterial applications of GMs and debate their practicability.
Collapse
Affiliation(s)
- Tian Zhang
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, PR China
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, PR China
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, PR China
| | - Pier-Luc Tremblay
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, PR China
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, PR China
| |
Collapse
|
28
|
Yin Q, Gu M, Wu G. Inhibition mitigation of methanogenesis processes by conductive materials: A critical review. BIORESOURCE TECHNOLOGY 2020; 317:123977. [PMID: 32799079 DOI: 10.1016/j.biortech.2020.123977] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/02/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
Methanogenesis can be promoted by the addition of conductive materials. Although stimulating effects of conductive materials on methane (CH4) production has been extensively reported, the crucial roles on recovering methanogenic activities under inhibitory conditions have not been systematically discussed. This critical review presents the current findings on the effects of conductive materials in methanogenic systems under volatile fatty acids (VFAs), ammonia, sulfate, and nano-cytotoxicity stressed conditions. Conductive materials induce fast VFAs degradation, avoiding VFAs accumulation during anaerobic digestion. Under high ammonia concentrations, conductive materials may ensure sufficient energy conservation for methanogens to maintain intracellular pH and proton balance. When encountering the competition of sulfate-reducing bacteria, conductive materials can benefit electron competitive capability of methanogens, recovering CH4 production activity. Conductive nanomaterials stimulate the excretion of extracellular polymeric substances, which can prevent cells from nano-cytotoxicity. Future perspectives about unraveling mitigation mechanisms induced by conductive materials in methanogenesis processes are further discussed.
Collapse
Affiliation(s)
- Qidong Yin
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China
| | - Mengqi Gu
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China
| | - Guangxue Wu
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China.
| |
Collapse
|
29
|
Zhang L, Guo B, Mou A, Li R, Liu Y. Blackwater biomethane recovery using a thermophilic upflow anaerobic sludge blanket reactor: Impacts of effluent recirculation on reactor performance. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 274:111157. [PMID: 32805474 DOI: 10.1016/j.jenvman.2020.111157] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 07/03/2020] [Accepted: 07/29/2020] [Indexed: 06/11/2023]
Abstract
Thermophilic anaerobic digestion is a promising process for high-solid blackwater (BW) treatment due to improved hydrolysis rates, high methanogenesis efficiency, and pathogen removal, when compared with mesophilic treatment. In the present work, the effects of effluent recirculation (i.e., mixing) on thermophilic blackwater treatment were studied. A laboratory-scale thermophilic upflow anaerobic sludge blanket reactor was operated with and without effluent recirculation. The methanogenesis efficiency of the BW treatment increased from 45.0 ± 2.9% when effluent recirculation was applied to 56.7 ± 5.5% without effluent recirculation. Without effluent recirculation, the COD accumulation in the bioreactor was reduced from 17.2 to 3.8% and the effluent volatile fatty acids (VFA) concentration was reduced from 0.64 ± 0.18 to 0.15 ± 0.10 g/L. Further, both acetoclastic and hydrogenotrophic methanogenic activity increased from 101.3 ± 10.8 and 93.9 ± 6.1 to 120.4 ± 9.4 and 118.2 ± 13.2 mg CH4-COD/(gVSS⋅d), respectively, after effluent recirculation was discontinued. The predominant methanogens changed from Methanothermobacter (67%) with effluent recirculation to Methanosarcina (62%) without effluent recirculation. As compared to the effluent recirculation conditions, the enhanced biomethane recovery and treatment performance without effluent recirculation can be attributed to the close proximity of bacteria and archaea groups and the reduced VFA accumulation. Predicted functional gene comparison showed higher prevalence of function for intermediate metabolite transportation (transporters, ATP-binding cassette (ABC) transporters, and two-component system) after discontinuing effluent circulation, which contributed to improved syntrophic propionate oxidation and syntrophic acetate oxidization and enhanced hydrogenotrophic methanogenesis.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Canada
| | - Bing Guo
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Canada
| | - Anqi Mou
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Canada
| | - Ran Li
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Canada; College of Petroleum Engineering, Xi'an Shiyou University, Xi'an, 710065, Shaanxi Province, China
| | - Yang Liu
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Canada.
| |
Collapse
|
30
|
Ziganshina EE, Belostotskiy DE, Bulynina SS, Ziganshin AM. Effect of magnetite on anaerobic digestion of distillers grains and beet pulp: Operation of reactors and microbial community dynamics. J Biosci Bioeng 2020; 131:290-298. [PMID: 33172764 DOI: 10.1016/j.jbiosc.2020.10.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 10/23/2022]
Abstract
It has been previously shown that magnetite (Fe3O4) nanoparticles stimulate the anaerobic digestion process in several anaerobic reactors. Here we evaluate the effect of magnetite nanoparticles on the efficiency of anaerobic digestion of distillers grains with solubles and sugar beet pulp in mesophilic batch experiments. The addition of magnetite nanopowder had a positive effect on the anaerobic digestion process. CH4 was produced faster in the presence of 50 mg of Fe3O4 per 1 g of added total solids than from treatments without addition of Fe3O4. These results demonstrate that the addition of magnetite enhances the methanogenic decomposition of organic acids. Microbial community structure and dynamics were investigated based on bacterial and archaeal 16S rRNA genes, as well as mcrA genes encoding the methyl-CoM reductase. Depending on the reactor, Bacteroides, midas_1138, Petrimonas, unclassified Rikenellaceae (class Bacteroidia), Ruminiclostridium, Proteiniclasticum, Herbinix, and Intestinibacter (class Clostridia) were the main representatives of the bacterial communities. The archaeal communities in well-performed anaerobic reactors were mainly represented by representatives of the genera Methanosarcina and Methanobacterium. Based on our findings, Fe3O4 nanoparticles, when used properly, will improve biomethane production.
Collapse
Affiliation(s)
- Elvira E Ziganshina
- Department of Microbiology, Kazan (Volga Region) Federal University, Kazan 420008, Republic of Tatarstan, Russia
| | - Dmitry E Belostotskiy
- Department of Microbiology, Kazan (Volga Region) Federal University, Kazan 420008, Republic of Tatarstan, Russia
| | - Svetlana S Bulynina
- Department of Microbiology, Kazan (Volga Region) Federal University, Kazan 420008, Republic of Tatarstan, Russia
| | - Ayrat M Ziganshin
- Department of Microbiology, Kazan (Volga Region) Federal University, Kazan 420008, Republic of Tatarstan, Russia.
| |
Collapse
|
31
|
Iron-assisted biological wastewater treatment: Synergistic effect between iron and microbes. Biotechnol Adv 2020; 44:107610. [DOI: 10.1016/j.biotechadv.2020.107610] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 08/06/2020] [Accepted: 08/08/2020] [Indexed: 12/21/2022]
|
32
|
Mansor M, Xu J. Benefits at the nanoscale: a review of nanoparticle-enabled processes favouring microbial growth and functionality. Environ Microbiol 2020; 22:3633-3649. [PMID: 32705763 DOI: 10.1111/1462-2920.15174] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/17/2020] [Accepted: 07/21/2020] [Indexed: 11/29/2022]
Abstract
Nanoparticles are ubiquitous and co-occur with microbial life in every environment on Earth. Interactions between microbes and nanoparticles impact the biogeochemical cycles via accelerating various reaction rates and enabling biological processes at the smallest scales. Distinct from microbe-mineral interactions at large, microbe-nanoparticle interactions may involve higher levels of active recognition and utilization of the reactive, changeable, and thereby 'moldable' nano-sized inorganic phases by microbes, which has been given minimal attention in previous reviews. Here we have compiled the various cases of microbe-nanoparticle interactions with clear and potential benefits to the microbial cells and communities. Specifically, we discussed (i) the high bioavailabilities of nanoparticles due to increased specific surface areas and size-dependent solubility, with a focus on environmentally-relevant iron(III) (oxyhydr)oxides and pyrite, (ii) microbial utilization of nanoparticles as 'nano-tools' for electron transfer, chemotaxis, and storage units, and (iii) speculated benefits of precipitating 'moldable' nanoparticles in extracellular biomineralization. We further discussed emergent questions concerning cellular level responses to nanoparticle-associated cues, and the factors that affect nanoparticles' bioavailabilities beyond size-dependent effects. We end the review by proposing a framework towards more quantitative approaches and by highlighting promising techniques to guide future research in this exciting field.
Collapse
Affiliation(s)
- Muammar Mansor
- Geomicrobiology, Center for Applied Geoscience, University of Tuebingen, Tuebingen, 72076, Germany
| | - Jie Xu
- Department of Geological Sciences, the University of Texas at El Paso, El Paso, Texas, 79968, USA
| |
Collapse
|
33
|
Xing L, Wang Z, Gu M, Yin Q, Wu G. Coupled effects of ferroferric oxide supplement and ethanol co-metabolism on the methanogenic oxidation of propionate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 723:137992. [PMID: 32213408 DOI: 10.1016/j.scitotenv.2020.137992] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/24/2020] [Accepted: 03/15/2020] [Indexed: 06/10/2023]
Abstract
Direct interspecies electron transfer (DIET) is a new electron-transfer strategy for enhanced propionate degradation. Ethanol can enrich the DIET species of Geobacter and conductive ferroferric oxide (Fe3O4) can promote DIET. Therefore, coupled effects of ethanol and Fe3O4 on propionate degradation were investigated. The maximum CH4 production rate was increased by 81.4% by adding Fe3O4 when simultaneously fed with ethanol and propionate, while the improvement could not be observed without ethanol. The sludge conductivity and the electron transfer system activity by adding Fe3O4 were increased by 2.66 and 2.73 times, respectively. Besides, the relative abundance of functional microbes such as Geobacter, Syntrophobacter, Smithella, and Methanosaeta, and their functional genes were increased by the supplement of Fe3O4. The improvement of propionate degradation by adding Fe3O4 was largely attributed to the co-existence of ethanol degradation. The DIET between Geobacter and Methanosaeta might provide more energies or rapidly consume the oxidation products to promote the propionate degradation.
Collapse
Affiliation(s)
- Lizhen Xing
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, Shandong, China
| | - Zifan Wang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, Shandong, China
| | - Mengqi Gu
- Guangdong Province Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, Guangdong, China
| | - Qidong Yin
- Guangdong Province Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, Guangdong, China
| | - Guangxue Wu
- Guangdong Province Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, Guangdong, China.
| |
Collapse
|
34
|
Zhong D, Li J, Ma W, Qian F. Clarifying the synergetic effect of magnetite nanoparticles in the methane production process. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:17054-17062. [PMID: 32146670 DOI: 10.1007/s11356-020-07828-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 01/22/2020] [Indexed: 06/10/2023]
Abstract
Magnetite nanoparticles (Fe3O4 NPs) were applied in an anaerobic semi-continuous tank reactor (ASTR) to investigate its effect on the anaerobic digestion (AD) of acetate synthetic wastewater. The Fe3O4 NPs corrosion could create a more favorable micro-environment to enhance the methanogens activity. The chemical oxygen demand (COD) removal efficiency and methane production in test (ASTRT) were 31.1% and 101.5% higher than those in control (ASTRC). With the addition of Fe3O4 NPs, the concentration of key coenzyme (F420 and M) increased from averagely 0.523 and 5.352 μmol/g-VSS to 0.956 and 9.267 μmol/g-VSS, and the content of soluble microbial products (SMPs) significantly increased. Additionally, the high-throughput 16S rRNA gene sequencing further confirmed that the percentage of hydrogen-utilizing methanogens (Methanolinea) was up to 62.6% of total archaeal sequences. Fe3O4 NPs addition would accelerate electrons transfer from acids oxidizers to syntrophic methanogenesis, further stimulate acids oxidizers to decompose acetate to H2/CO2, and finally facilitate more methane production.
Collapse
Affiliation(s)
- Dan Zhong
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin, 150090, China
| | - Jinxin Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin, 150090, China
| | - Wencheng Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin, 150090, China.
| | - Fengyue Qian
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin, 150090, China
| |
Collapse
|
35
|
Yuan T, Ko JH, Zhou L, Gao X, Liu Y, Shi X, Xu Q. Iron oxide alleviates acids stress by facilitating syntrophic metabolism between Syntrophomonas and methanogens. CHEMOSPHERE 2020; 247:125866. [PMID: 31951955 DOI: 10.1016/j.chemosphere.2020.125866] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/06/2020] [Accepted: 01/06/2020] [Indexed: 06/10/2023]
Abstract
Anaerobic digestion (AD) is a promising technology for food waste management, but frequently restricted with long lag phase as a consequent of acidification. Two laboratory experiments were conducted to investigate the effects of iron materials on food waste AD. Experiment 1 compared the effects of iron oxide (IO) and zero valent iron (ZVI) on AD performance. The results showed that both IO and ZVI could enhance methane (CH4) generation, but IO showed better performance regarding the reduction of lag phase. The lag phase of the reactor supplemented with IO was 17.4% and 42.7% shorter than that of the reactor supplemented with ZVI and the control, respectively. Based on these results, experiment 2 was designed to examine the role of IO in alleviation of acid stress at high substrate to inoculum (SI) ratio. The results showed that supplemented IO into reactor could ensure a successful methanogenesis when operating at high SI ratio, while IO-free reactor was failed to generate CH4 although operating for 77 days. Supplementing IO into the reactor after 48 h of digestion could restore the CH4 generation, though its lag phase was 2.6 times of the reactor supplemented with IO at the beginning of the digestion. Microbial community structure analysis revealed that IO could simultaneously enrich Syntrophomonas and methanogens (i.e. Methanobacterium, Methanofollis and Methanosarcina), and might promote electron transfer between those two types of microbes, which were critical for achieving an effective methanogenesis.
Collapse
Affiliation(s)
- Tugui Yuan
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen, 518055, PR China
| | - Jae Hac Ko
- Department of Environmental Engineering, College of Ocean Sciences, Jeju National University, Jeju Special Self-Governing Province, 63243, Republic of Korea
| | - Lili Zhou
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen, 518055, PR China
| | - Xuemeng Gao
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen, 518055, PR China
| | - Ying Liu
- College of Life Sciences and Oceanography, Shenzhen University, Guangdong, 518055, PR China
| | - Xiaoyu Shi
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen, 518055, PR China
| | - Qiyong Xu
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen, 518055, PR China.
| |
Collapse
|
36
|
Ma W, Li H, Zhang W, Shen C, Wang L, Li Y, Li Q, Wang Y. TiO 2 nanoparticles accelerate methanogenesis in mangrove wetlands sediment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 713:136602. [PMID: 31955098 DOI: 10.1016/j.scitotenv.2020.136602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/30/2019] [Accepted: 01/07/2020] [Indexed: 06/10/2023]
Abstract
In this study, the response of methane (CH4) production to the addition of titanium dioxide nanoparticles (TiO2 NPs) with three types of short-chain fatty acids (sodium acetate, sodium propionate and sodium butyrate) as carbon sources in mangrove sediment was investigated. The results showed that the maximum CH4 formation rate increased by 45.2%, 32.7% and 48.6% and the maximum cumulative CH4 production increased by 25.2%, 7.7% and 6.3% with the addition of TiO2 NPs in the sodium acetate, sodium propionate and sodium butyrate systems, respectively. The microbial community analysis revealed that the electrogenic bacteria Proteiniclasticum and Pseudomonas, butyrate oxidizing bacteria Syntrophomonas and methanogens Methanobacterium and Methanosarcina were significantly enriched in the presence of TiO2 NPs, indicating that TiO2 NPs can enhance CH4 production by stimulating the growth of different species of methanogens and butyrate oxidizing bacteria. The enlarged distance between microbes, the enhanced conductivity of the sediment and the typical microorganisms for direct interspecies electron transfer (DIET) with the addition of TiO2 NPs suggest that the promoted DIET between distinct microorganisms could be another possible explanation for the improvement in CH4 production. It can be speculated that a weaker effect on methanogenesis increases under the natural concentration of TiO2 NPs compared with the experimental conditions; however, the amounts of TiO2 NPs are increasing enriched in wetland environments. Therefore, the findings of this study increase current knowledge about the effect of nanomaterials on global CH4 emissions and suggest that the discharge of wastewater containing TiO2 NPs from the synthesis and incorporation of TiO2 NPs in customer products needs to be monitored.
Collapse
Affiliation(s)
- Wende Ma
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Heng Li
- Key Laboratory of Estuarine Ecological Security and Environmental Health, Tan Kah Kee College, Xiamen University, Zhangzhou, China.
| | - Weidong Zhang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chengcheng Shen
- Key Laboratory of Estuarine Ecological Security and Environmental Health, Tan Kah Kee College, Xiamen University, Zhangzhou, China
| | - Liuying Wang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yixin Li
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Qingbiao Li
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yuanpeng Wang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
37
|
Nozhevnikova AN, Russkova YI, Litti YV, Parshina SN, Zhuravleva EA, Nikitina AA. Syntrophy and Interspecies Electron Transfer in Methanogenic Microbial Communities. Microbiology (Reading) 2020. [DOI: 10.1134/s0026261720020101] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
38
|
Abstract
Since the observation of direct interspecies electron transfer (DIET) in anaerobic mixed cultures in 2010s, the topic “DIET-stimulation” has been the main route to enhance the performance of anaerobic digestion (AD) under harsh conditions, such as high organic loading rate (OLR) and the toxicants’ presence. In this review article, we tried to answer three main questions: (i) What are the merits and strategies for DIET stimulation? (ii) What are the consequences of stimulation? (iii) What is the mechanism of action behind the impact of this stimulation? Therefore, we introduced DIET history and recent relevant findings with a focus on the theoretical advantages. Then, we reviewed the most recent articles by categorizing how DIET reaction was stimulated by adding conductive material (CM) and/or applying external voltage (EV). The emphasis was made on the enhanced performance (yield and/or production rate), CM type, applied EV, and mechanism of action for each stimulation strategy. In addition, we explained DIET-caused changes in microbial community structure. Finally, future perspectives and practical limitations/chances were explored in detail. We expect this review article will provide a better understanding for DIET pathway in AD and encourage further research development in a right direction.
Collapse
|
39
|
Xu Y, Wang M, Yu Q, Zhang Y. Enhancing methanogenesis from anaerobic digestion of propionate with addition of Fe oxides supported on conductive carbon cloth. BIORESOURCE TECHNOLOGY 2020; 302:122796. [PMID: 31982845 DOI: 10.1016/j.biortech.2020.122796] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 06/10/2023]
Abstract
In this study, a Fe2O3 supported on conductive carbon cloth (FC) was prepared and supplemented into anaerobic digestion reactors to improve propionate degradation. In the FC-supplemented reactors, the cumulative methane production and propionate degradation increased by 15.4% and 19.67% compared with those of the control, respectively. Less methane production with H2/CO2 as the sole substrate in the culture taken from the FC reactors suggested that interspecies hydrogen transfer in the FC reactors was weaker. These results suggested that direct interspecies electron transfer (DIET) was established in the FC reactors to improve the performance. Fe2O3 increased the secretion of electron shuttle components of extracellular polymeric substances to increase electron exchange capacity of biomass of the FC reactors, which further facilitated the DIET. Analysis on microbial communities confirmed that the abundance of microorganisms-related DIET in the FC reactors was higher than that in the control.
Collapse
Affiliation(s)
- Yanguang Xu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Mingwei Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Qilin Yu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yaobin Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
40
|
Igarashi K, Miyako E, Kato S. Direct Interspecies Electron Transfer Mediated by Graphene Oxide-Based Materials. Front Microbiol 2020; 10:3068. [PMID: 32010112 PMCID: PMC6978667 DOI: 10.3389/fmicb.2019.03068] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/19/2019] [Indexed: 11/30/2022] Open
Abstract
Conductive materials are known to promote direct interspecies electron transfer (DIET) by electrically bridging microbial cells. Previous studies have suggested that supplementation of graphene oxide (GO) based materials, including GO, and reduced GO (rGO), to anaerobic microbial communities, can promote DIET. This promotion mechanism is thought to be involved in electron transfer via rGO or biologically formed rGO. However, concrete evidence that rGO directly promotes DIET is still lacking. Furthermore, the effects of the physicochemical properties of GO-based materials on DIET efficiency have not been elucidated. In the current work, we investigated whether chemically and biologically reduced GO compounds can promote DIET in a defined model coculture system, and also examined the effects of surface properties on DIET-promoting efficiency. Supplementation of GO to a defined DIET coculture composed of an ethanol-oxidizing electron producer Geobacter metallireducens and a methane-producing electron consumer Methanosarcina barkeri promoted methane production from ethanol. X-ray photoelectron spectroscopy revealed that GO was reduced to rGO during cultivation by G. metallireducens activity. The stoichiometry of methane production from ethanol and the isotope labeling experiments clearly showed that biologically reduced GO induced DIET-mediated syntrophic methanogenesis. We also assessed the DIET-promoting efficiency of chemically reduced GO and its derivatives, including hydrophilic amine-functionalized rGO (rGO-NH2) and hydrophobic octadecylamine-functionalized rGO (rGO-ODA). While all tested rGO derivatives induced DIET, the rGO derivatives with higher hydrophilicity showed higher DIET-promoting efficiency. Optical microscope observation revealed that microbial cells, in particular, G. metallireducens, more quickly adhered to more hydrophilic GO-based materials. The superior ability to recruit microbial cells is a critical feature of the higher DIET-promoting efficiency of the hydrophilic materials. This study demonstrates that biologically and chemically reduced GO can promote DIET-mediated syntrophic methanogenesis. Our results also suggested that the surface hydrophilicity (i.e., affinity toward microbial cells) is one of the important determinants of the DIET-promoting efficiencies. These observations will provide useful guidance for the selection of conductive particles for the improvement of methanogenesis in anaerobic digesters.
Collapse
Affiliation(s)
- Kensuke Igarashi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Sapporo, Japan
| | - Eijiro Miyako
- Nanomaterials Research Institute, AIST, Tsukuba, Japan
| | - Souichiro Kato
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Sapporo, Japan.,Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| |
Collapse
|
41
|
Xu H, Chang J, Wang H, Liu Y, Zhang X, Liang P, Huang X. Enhancing direct interspecies electron transfer in syntrophic-methanogenic associations with (semi)conductive iron oxides: Effects and mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 695:133876. [PMID: 31756846 DOI: 10.1016/j.scitotenv.2019.133876] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/09/2019] [Accepted: 08/09/2019] [Indexed: 06/10/2023]
Abstract
Anaerobic digestion is an effective biological treatment process that produces methane by degrading organic compounds in waste/wastewater. It is a complicated microbial process by metabolic interactions among different types of microorganisms. In this process, efficient interspecies electron transfer between secondary fermenting bacteria and methanogens is the critical process for fast and effective methanogenesis. In syntrophic metabolism, hydrogen or formate has been considered as the conventional electron carrier transferring electrons from secondary fermenting bacteria to hydrogenotrophic methanogens. Recently, direct interspecies electron transfer (DIET) without the involvement of dissolved redox mediators is arousing great concerns and has been regarded as a more efficient and thermodynamically favorable interspecies electron transfer pathway for methanogenesis. Interspecies electron exchange through DIET is accomplished via the membrane-bound cytochromes or conductive pili. Several kinds of exogenously-added conductive or semiconductive iron oxides have been discovered to greatly enhance anaerobic methanogenesis through promoting DIET. Different (semi)conductive iron oxides give a boost to DIET through different mechanisms based on the physicochemical properties of the iron oxides and the reciprocal interactions between iron oxides and functional microorganisms. In this review, the current understanding of interspecies electron transfer in syntrophic-methanogenic consortions is summarized, the effects and deep-rooted mechanisms of (semi)conductive iron oxides on methanogenesis and DIET are discussed, and possible future perspectives and development directions are suggested for DIET via (semi)conductive iron oxides in anaerobic digestion.
Collapse
Affiliation(s)
- Hui Xu
- State Key Joint Laboratory of Environment Simulation and Pollution Control School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiali Chang
- State Key Joint Laboratory of Environment Simulation and Pollution Control School of Environment, Tsinghua University, Beijing 100084, China
| | - Han Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control School of Environment, Tsinghua University, Beijing 100084, China
| | - Yancheng Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiaoyuan Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control School of Environment, Tsinghua University, Beijing 100084, China
| | - Peng Liang
- State Key Joint Laboratory of Environment Simulation and Pollution Control School of Environment, Tsinghua University, Beijing 100084, China
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
42
|
Yin Q, Wu G. Advances in direct interspecies electron transfer and conductive materials: Electron flux, organic degradation and microbial interaction. Biotechnol Adv 2019; 37:107443. [DOI: 10.1016/j.biotechadv.2019.107443] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 07/23/2019] [Accepted: 08/27/2019] [Indexed: 10/26/2022]
|
43
|
Li Y, Ren C, Zhao Z, Yu Q, Zhao Z, Liu L, Zhang Y, Feng Y. Enhancing anaerobic degradation of phenol to methane via solubilizing Fe(III) oxides for dissimilatory iron reduction with organic chelates. BIORESOURCE TECHNOLOGY 2019; 291:121858. [PMID: 31377515 DOI: 10.1016/j.biortech.2019.121858] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/17/2019] [Accepted: 07/20/2019] [Indexed: 06/10/2023]
Abstract
The improved performances during anaerobic degradation of phenol to methane with Fe(OH)3 were usually inapparent, due to its lower solubility (unaccessible to dissimilatory iron reduction) and more positive reduction potential of Fe(III)/Fe(II) (unfavorable for enriching Fe(III)-reducing bacteria [IRBs]). In this study, citrate, the organic chelates, were used to solubilize Fe(III) with the aim of improving the phenol degradation and declining the reduction potential of Fe(III)/Fe(II). Results showed that, in the co-occurrence of citrate and Fe(OH)3, the degradation rates of phenol were about 1.3-fold rapider than that with sole Fe(OH)3. Analysis of cyclic voltammetry demonstrated that the reduction potential of Fe(III)/Fe(II) in the form of Fe(OH)3 (-0.41 to -0.28 V vs Ag/AgCl) declined to -0.61 to -0.41 V. As a result, the Fe(III)-reducing genera, such as Petrimonas and Shewanella, which held a great potential of proceeding syntrophic metabolism via direct interspecies electron transfer (DIET), were significantly enriched.
Collapse
Affiliation(s)
- Yang Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China; Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Food and Environment, Dalian University of Technology, Panjin 124221, China
| | - Chongyang Ren
- School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| | - Zisheng Zhao
- School of Water Conservancy and Environment, Zhengzhou University, Kexue Road 100, Zhengzhou 450001, China
| | - Qilin Yu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Zhiqiang Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Lifen Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Food and Environment, Dalian University of Technology, Panjin 124221, China
| | - Yaobin Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yujie Feng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
44
|
Kang HJ, Lee SH, Lim TG, Park HD. Effect of inoculum concentration on methanogenesis by direct interspecies electron transfer: Performance and microbial community composition. BIORESOURCE TECHNOLOGY 2019; 291:121881. [PMID: 31394488 DOI: 10.1016/j.biortech.2019.121881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 07/20/2019] [Accepted: 07/22/2019] [Indexed: 06/10/2023]
Abstract
To understand the effect of inoculum concentration on direct interspecies electron transfer (DIET) for methanogenesis, batch-type anaerobic bioreactors with different inoculum concentrations were operated with and without supplemented granular activated carbon (GAC). With decrease in inoculum concentration, GAC-supplemented bioreactors showed faster methane production rates and reduced lag times. Geobacter species were specifically enriched on the GAC surfaces under lower inoculum concentration conditions. Together, the relative abundance of aceticlastic methanogens (competitors of Geobacter species for acetate) gradually decreased when the inoculum concentration increased. These results suggested that the specific enrichment of Geobacter species by outcompeting with aceticlastic methanogens through low inoculum concentrations on GAC surfaces accelerated methanogenesis by DIET via GAC in anaerobic bioreactors. Taken together, the results of this study suggested that inoculum concentration is an important factor in stimulating DIET for methane production.
Collapse
Affiliation(s)
- Hyun-Jin Kang
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul, South Korea
| | - Sang-Hoon Lee
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul, South Korea
| | - Tae-Guen Lim
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul, South Korea
| | - Hee-Deung Park
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul, South Korea.
| |
Collapse
|
45
|
Karthikeyan R, Singh R, Bose A. Microbial electron uptake in microbial electrosynthesis: a mini-review. ACTA ACUST UNITED AC 2019; 46:1419-1426. [DOI: 10.1007/s10295-019-02166-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/23/2019] [Indexed: 10/27/2022]
Abstract
Abstract
Microbial electron uptake (EU) is the biological capacity of microbes to accept electrons from electroconductive solid materials. EU has been leveraged for sustainable bioproduction strategies via microbial electrosynthesis (MES). MES often involves the reduction of carbon dioxide to multi-carbon molecules, with electrons derived from electrodes in a bioelectrochemical system. EU can be indirect or direct. Indirect EU-based MES uses electron mediators to transfer electrons to microbes. Although an excellent initial strategy, indirect EU requires higher electrical energy. In contrast, the direct supply of cathodic electrons to microbes (direct EU) is more sustainable and energy efficient. Nonetheless, low product formation due to low electron transfer rates during direct EU remains a major challenge. Compared to indirect EU, direct EU is less well-studied perhaps due to the more recent discovery of this microbial capability. This mini-review focuses on the recent advances and challenges of direct EU in relation to MES.
Collapse
Affiliation(s)
- Rengasamy Karthikeyan
- grid.4367.6 0000 0001 2355 7002 Department of Biology Washington University in Saint Louis One Brookings Drive 63130 St. Louis MO USA
| | - Rajesh Singh
- grid.4367.6 0000 0001 2355 7002 Department of Biology Washington University in Saint Louis One Brookings Drive 63130 St. Louis MO USA
| | - Arpita Bose
- grid.4367.6 0000 0001 2355 7002 Department of Biology Washington University in Saint Louis One Brookings Drive 63130 St. Louis MO USA
| |
Collapse
|
46
|
Ryue J, Lin L, Liu Y, Lu W, McCartney D, Dhar BR. Comparative effects of GAC addition on methane productivity and microbial community in mesophilic and thermophilic anaerobic digestion of food waste. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.03.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
47
|
Fu L, Zhou T, Wang J, You L, Lu Y, Yu L, Zhou S. NanoFe 3O 4 as Solid Electron Shuttles to Accelerate Acetotrophic Methanogenesis by Methanosarcina barkeri. Front Microbiol 2019; 10:388. [PMID: 30891017 PMCID: PMC6411705 DOI: 10.3389/fmicb.2019.00388] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 02/13/2019] [Indexed: 12/13/2022] Open
Abstract
Magnetite nanoparticles (nanoFe3O4) have been reported to facilitate direct interspecies electron transfer (DIET) between syntrophic bacteria and methanogens thereby improving syntrophic methanogenesis. However, whether or how nanoFe3O4 affects acetotrophic methanogenesis remain unknown. Herein, we demonstrate the unique role of nanoFe3O4 in accelerating methane production from direct acetotrophic methanogenesis in Methanosarcina-enriched cultures, which was further confirmed by pure cultures of Methanosarcina barkeri. Compared with other nanomaterials of higher electrical conductivity such as carbon nanotubes and graphite, nanoFe3O4 with mixed valence Fe(II) and Fe(III) had the most significant stimulatory effect on methane production, suggesting its redox activity rather than electrical conductivity led to enhanced methanogenesis by M. barkeri. Cell morphology and spectroscopy analysis revealed that nanoFe3O4 penetrated into the cell membrane and cytoplasm of M. barkeri. These results provide the unprecedented possibility that nanoFe3O4 in the cell membrane of methanogens serve as electron shuttles to facilitate intracellular electron transfer and thus enhance methane production. This work has important implications not only for understanding the mechanisms of mineral-methanogen interaction but also for optimizing engineered methanogenic processes.
Collapse
Affiliation(s)
- Li Fu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China.,College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Ting Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jingyuan Wang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lexing You
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yahai Lu
- College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Linpeng Yu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
48
|
Zhuang L, Tang Z, Ma J, Yu Z, Wang Y, Tang J. Enhanced Anaerobic Biodegradation of Benzoate Under Sulfate-Reducing Conditions With Conductive Iron-Oxides in Sediment of Pearl River Estuary. Front Microbiol 2019; 10:374. [PMID: 30881355 PMCID: PMC6406033 DOI: 10.3389/fmicb.2019.00374] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 02/13/2019] [Indexed: 12/12/2022] Open
Abstract
Anaerobic biodegradation of aromatic compounds under sulfate-reducing conditions is important to marine sediments. Sulfate respiration by a single bacterial strain and syntrophic metabolism by a syntrophic bacterial consortium are primary strategies for sulfate-dependent biodegradation of aromatic compounds. The objective of this study was to investigate the potential of conductive iron oxides to facilitate the degradation of aromatic compounds under sulfate-reducing conditions in marine sediments, using benzoate as a model aromatic compound. Here, in anaerobic incubations of sediments from the Pearl River Estuary, the addition of hematite or magnetite (20 mM as Fe atom) enhanced the rates of sulfate-dependent benzoate degradation by 81.8 and 91.5%, respectively, compared with control incubations without iron oxides. Further experiments demonstrated that the rate of sulfate-dependent benzoate degradation accelerated with increased magnetite concentration (5, 10, and 20 mM). The detection of acetate as an intermediate product implied syntrophic benzoate degradation pathway, which was also supported by the abundance of putative acetate- or/and H2-utilizing sulfate reducers from microbial community analysis. Microbial reduction of iron oxides under sulfate-reducing conditions only accounted for 2–11% of electrons produced by benzoate oxidation, thus the stimulatory effect of conductive iron oxides on sulfate-dependent benzoate degradation was not mainly due to an increased pool of terminal electron acceptors. The enhanced rates of syntrophic benzoate degradation by the presence of conductive iron oxides probably resulted from the establishment of a direct interspecies electron transfer (DIET) between syntrophic partners. In the presence of magnetite, Bacteroidetes and Desulfobulbaceae with potential function of extracellular electron transfer might be involved in syntrophic benzoate degradation. Results from this study will contribute to the development of new strategies for in situ bioremediation of anaerobic sediments contaminated with aromatic compounds, and provide a new perspective for the natural attenuation of aromatic compounds in iron-rich marine sediments.
Collapse
Affiliation(s)
- Li Zhuang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, China
| | - Ziyang Tang
- Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-environmental Science and Technology, Guangzhou, China
| | - Jinlian Ma
- Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-environmental Science and Technology, Guangzhou, China
| | - Zhen Yu
- Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-environmental Science and Technology, Guangzhou, China
| | - Yueqiang Wang
- Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-environmental Science and Technology, Guangzhou, China
| | - Jia Tang
- Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-environmental Science and Technology, Guangzhou, China
| |
Collapse
|
49
|
Kato S, Wada K, Kitagawa W, Mayumi D, Ikarashi M, Sone T, Asano K, Kamagata Y. Conductive Iron Oxides Promote Methanogenic Acetate Degradation by Microbial Communities in a High-Temperature Petroleum Reservoir. Microbes Environ 2019; 34:95-98. [PMID: 30773516 PMCID: PMC6440731 DOI: 10.1264/jsme2.me18140] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Supplementation with conductive magnetite particles promoted methanogenic acetate degradation by microbial communities enriched from the production water of a high-temperature petroleum reservoir. A microbial community analysis revealed that Petrothermobacter spp. (phylum Deferribacteres), known as thermophilic Fe(III) reducers, predominated in the magnetite-supplemented enrichment, whereas other types of Fe(III) reducers, such as Thermincola spp. and Thermotoga spp., were dominant under ferrihydrite-reducing conditions. These results suggest that magnetite induced interspecies electron transfer via electric currents through conductive particles between Petrothermobacter spp. and methanogens. This is the first evidence for possible electric syntrophy in high-temperature subsurface environments.
Collapse
Affiliation(s)
- Souichiro Kato
- Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University.,Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Kaoru Wada
- Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University
| | - Wataru Kitagawa
- Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University.,Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| | | | | | - Teruo Sone
- Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University
| | - Kozo Asano
- Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University
| | - Yoichi Kamagata
- Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University.,Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST).,Bioproduction Research Institute, AIST
| |
Collapse
|
50
|
Liu C, Tong Q, Li Y, Wang N, Liu B, Zhang X. Biogas production and metal passivation analysis during anaerobic digestion of pig manure: effects of a magnetic Fe 3O 4/FA composite supplement. RSC Adv 2019; 9:4488-4498. [PMID: 35520184 PMCID: PMC9060600 DOI: 10.1039/c8ra09451a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/21/2019] [Indexed: 11/21/2022] Open
Abstract
Anaerobic digestion has been widely used to produce biogas renewable energy and stabilize fecal manure. In this work, magnetic fly ash composites (Fe3O4/FA) were synthesized and mixed with pig manure in different ratios to study their effects on biogas production and metal passivation during anaerobic digestion. The results showed that the use of 0.5% Fe3O4/FA presented the most positive impact on biogas production compared to anaerobic digestion without Fe3O4/FA, i.e., the total biogas and methane content increased by 13.81% and 35.13%, respectively. Variations in the concentration and speciation of heavy metals (i.e., Cu and Zn) with and without Fe3O4/FA during anaerobic digestion were also analyzed. The concentrations of Cu and Zn increased after anaerobic digestion, showing a significant "relative concentration effect". Additionally, sequential fractionation suggested that Cu was mainly present in organic matter, whereas Zn was mainly distributed in the oxidation states of iron and manganese. The addition of Fe3O4/FA enhanced the passivation of Cu and Zn in the solid digested residues, i.e., the residual states of Cu and Zn increased by 10.73% to 45.78% and 33.49% to 42.14% compared to the control, respectively. Moreover, better performance was found for the treatment with 2.5% Fe3O4/FA. X-ray diffraction (XRD) and scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX) analysis demonstrated that Fe3O4/FA deactivated heavy metals mainly via physical adsorption during anaerobic digestion, which can convert them into stable mineral precipitates and thus decrease the solubility and mobility of these metals.
Collapse
Affiliation(s)
- Chunruan Liu
- School of Resources and Environmental Engineering, Anhui University Hefei 230601 Anhui China
| | - Qiao Tong
- School of Resources and Environmental Engineering, Anhui University Hefei 230601 Anhui China
| | - Yucheng Li
- School of Resources and Environmental Engineering, Anhui University Hefei 230601 Anhui China
| | - Ning Wang
- School of Resources and Environmental Engineering, Anhui University Hefei 230601 Anhui China
| | - Bingxiang Liu
- School of Resources and Environmental Engineering, Anhui University Hefei 230601 Anhui China
| | - Xuesheng Zhang
- School of Resources and Environmental Engineering, Anhui University Hefei 230601 Anhui China
| |
Collapse
|