1
|
Sun M, Gao AX, Liu X, Yang Y, Ledesma-Amaro R, Bai Z. High-throughput process development from gene cloning to protein production. Microb Cell Fact 2023; 22:182. [PMID: 37715258 PMCID: PMC10503041 DOI: 10.1186/s12934-023-02184-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/19/2023] [Indexed: 09/17/2023] Open
Abstract
In the post-genomic era, the demand for faster and more efficient protein production has increased, both in public laboratories and industry. In addition, with the expansion of protein sequences in databases, the range of possible enzymes of interest for a given application is also increasing. Faced with peer competition, budgetary, and time constraints, companies and laboratories must find ways to develop a robust manufacturing process for recombinant protein production. In this review, we explore high-throughput technologies for recombinant protein expression and present a holistic high-throughput process development strategy that spans from genes to proteins. We discuss the challenges that come with this task, the limitations of previous studies, and future research directions.
Collapse
Affiliation(s)
- Manman Sun
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214112, China
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, UK
| | - Alex Xiong Gao
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Xiuxia Liu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214112, China
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| | - Yankun Yang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214112, China
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, UK.
| | - Zhonghu Bai
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214112, China.
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
2
|
Rehfeld JS, Kuhnke LM, Ude C, John GT, Beutel S. Investigation and evaluation of a 3D-printed optical modified cultivation vessel for improved scattered light measurement of biotechnologically relevant organisms. Eng Life Sci 2023; 23:e2300204. [PMID: 37664010 PMCID: PMC10472911 DOI: 10.1002/elsc.202300204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/13/2023] [Accepted: 08/11/2023] [Indexed: 09/05/2023] Open
Abstract
In the field of bioprocess development miniaturization, parallelization and flexibility play a key role reducing costs and time. To precisely meet these requirements, additive manufacturing (3D-printing) is an ideal technology. 3D-printing enables rapid prototyping and cost-effective fabrication of individually designed devices with complex geometries on demand. For successful bioprocess development, monitoring of process-relevant parameters, such as pH, dissolved oxygen (DO), and biomass, is crucial. Online monitoring is preferred as offline sampling is time-consuming and leads to loss of information. In this study, 3D-printed cultivation vessels with optical prisms are evaluated for the use in upstream processes of different industrially relevant microorganisms and cell lines. It was shown, that the 3D-printed optically modified well (OMW) is of benefit for a wide range of biotechnologically relevant microorganisms and even for mammalian suspension cells. Evaluation tests with Escherichia coli, Bacillus subtilis, Saccharomyces cerevisiae, and Chinese hamster ovary (CHO) cells were performed, providing highly reproducible results. Growth behavior of OMW cultures was comparable to behavior of shake flask (SF) cultivations and the signal to noise ratio in online biomass measurement was shown to be reduced up to 95.8% by using the OMW. Especially the cultivation phases with low turbidity respective optical densities below 1.0 rel.AU could be monitored accurately for the first time. Furthermore, it was demonstrated that the 3D-printed optics are transferable to different well geometries and sizes, enabling efficient biomass monitoring for individual requirements with tailor-made 3D-printed cultivation vessels in small scale.
Collapse
Affiliation(s)
- Johanna S. Rehfeld
- Institute of Technical ChemistryLeibniz University HannoverHannoverGermany
| | - Louis M. Kuhnke
- Institute of Technical ChemistryLeibniz University HannoverHannoverGermany
| | | | | | - Sascha Beutel
- Institute of Technical ChemistryLeibniz University HannoverHannoverGermany
| |
Collapse
|
3
|
Jouned MA, Kager J, Rajamanickam V, Herwig C, Barz T. A Unique Response Behavior in the Dissolved Oxygen Tension in E. coli Minibioreactor Cultivations with Intermittent Feeding. Bioengineering (Basel) 2023; 10:681. [PMID: 37370611 DOI: 10.3390/bioengineering10060681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/21/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Intermittent bolus feeding for E. coli cultivations in minibioreactor systems (MBRs) profoundly affects the cell metabolism. Bolus feeding leads to temporal substrate surplus and transient oxygen limitation, which triggers the formation of inhibitory byproducts. Due to the high oxygen demand right after the injection of the substrate, the dissolved oxygen tension (DOT) signal exhibits a negative pulse. This contribution describes and analyzes this DOT response in E. coli minibioreactor cultivations. In addition to gaining information on culture conditions, a unique response behavior in the DOT signal was observed in the analysis. This response appeared only at a dilution ratio per biomass unit higher than a certain threshold. The analysis highlights a plausible relationship between a metabolic adaptation behavior and the newly observed DOT signal segment not reported in the literature. A hypothesis that links particular DOT segments to specific metabolic states is proposed. The quantitative analysis and mechanistic model simulations support this hypothesis and show the possibility of obtaining cell physiological and growth parameters from the DOT signal.
Collapse
Affiliation(s)
- M Adnan Jouned
- ICEBE, TU Wien, Gumpendorfer Straße 1a 166/4, 1060 Vienna, Austria
| | - Julian Kager
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Building 228A, 2800 Kgs. Lyngby, Denmark
| | - Vignesh Rajamanickam
- Boehringer Ingelheim RCV GmbH & Co KG, Biopharmaceuticals Austria, Dr. Boehringer Gasse 5-11, 1120 Vienna, Austria
| | | | - Tilman Barz
- Center for Energy, AIT Austrian Institute of Technology GmbH, Giefinggasse 2, 1210 Vienna, Austria
| |
Collapse
|
4
|
Sparviero S, Barth L, Keil T, Dinter C, Berg C, Lattermann C, Büchs J. Black glucose-releasing silicon elastomer rings for fed-batch operation allow measurement of the oxygen transfer rate from the top and optical signals from the bottom for each well of a microtiter plate. BMC Biotechnol 2023; 23:5. [PMID: 36864427 PMCID: PMC9983259 DOI: 10.1186/s12896-023-00775-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 02/22/2023] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND In industrial microbial biotechnology, fed-batch processes are frequently used to avoid undesirable biological phenomena, such as substrate inhibition or overflow metabolism. For targeted process development, fed-batch options for small scale and high throughput are needed. One commercially available fed-batch fermentation system is the FeedPlate®, a microtiter plate (MTP) with a polymer-based controlled release system. Despite standardisation and easy incorporation into existing MTP handling systems, FeedPlates® cannot be used with online monitoring systems that measure optically through the transparent bottom of the plate. One such system that is broadly used in biotechnological laboratories, is the commercial BioLector. To allow for BioLector measurements, while applying the polymer-based feeding technology, positioning of polymer rings instead of polymer disks at the bottom of the well has been proposed. This strategy has a drawback: measurement requires an adjustment of the software settings of the BioLector device. This adjustment modifies the measuring position relative to the wells, so that the light path is no longer blocked by the polymer ring, but, traverses through the inner hole of the ring. This study aimed at overcoming that obstacle and allowing for measurement of fed-batch cultivations using a commercial BioLector without adjustment of the relative measurement position within each well. RESULTS Different polymer ring heights, colours and positions in the wells were investigated for their influence on maximum oxygen transfer capacity, mixing time and scattered light measurement. Several configurations of black polymer rings were identified that allow measurement in an unmodified, commercial BioLector, comparable to wells without rings. Fed-batch experiments with black polymer rings with two model organisms, E. coli and H. polymorpha, were conducted. The identified ring configurations allowed for successful cultivations, measuring the oxygen transfer rate and dissolved oxygen tension, pH, scattered light and fluorescence. Using the obtained online data, glucose release rates of 0.36 to 0.44 mg/h could be determined. They are comparable to formerly published data of the polymer matrix. CONCLUSION The final ring configurations allow for measurements of microbial fed-batch cultivations using a commercial BioLector without requiring adjustments of the instrumental measurement setup. Different ring configurations achieve similar glucose release rates. Measurements from above and below the plate are possible and comparable to measurements of wells without polymer rings. This technology enables the generation of a comprehensive process understanding and target-oriented process development for industrial fed-batch processes.
Collapse
Affiliation(s)
- Sarah Sparviero
- Aachener Verfahrenstechnik - Biochemical Engineering, RWTH Aachen University, Forckenbeckstr. 51, 52074, Aachen, Germany
| | - Laura Barth
- Aachener Verfahrenstechnik - Biochemical Engineering, RWTH Aachen University, Forckenbeckstr. 51, 52074, Aachen, Germany
| | - Timm Keil
- Aachener Verfahrenstechnik - Biochemical Engineering, RWTH Aachen University, Forckenbeckstr. 51, 52074, Aachen, Germany
| | - Carl Dinter
- Aachener Verfahrenstechnik - Biochemical Engineering, RWTH Aachen University, Forckenbeckstr. 51, 52074, Aachen, Germany
| | - Christoph Berg
- Aachener Verfahrenstechnik - Biochemical Engineering, RWTH Aachen University, Forckenbeckstr. 51, 52074, Aachen, Germany
| | | | - Jochen Büchs
- Aachener Verfahrenstechnik - Biochemical Engineering, RWTH Aachen University, Forckenbeckstr. 51, 52074, Aachen, Germany.
| |
Collapse
|
5
|
Biko OD, Viljoen-Bloom M, van Zyl WH. Medium optimization for enhanced production of recombinant lignin peroxidase in Pichia pastoris. Biotechnol Lett 2023; 45:105-113. [PMID: 36400875 DOI: 10.1007/s10529-022-03321-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/24/2022] [Accepted: 10/28/2022] [Indexed: 11/21/2022]
Abstract
OBJECTIVES Different cultivation conditions and parameters were evaluated to improve the production and secretion of a recombinant Phanerochaete chrysosporium lipH8 gene in Komagataella phaffii (Pichia pastoris). RESULTS The recombinant lipH8 gene with its native secretion signal was successfully cloned and expressed in Komagataella phaffii (Pichia pastoris) under the control of the alcohol oxidase 1 promoter (PAOX1). The results revealed that co-feeding with sorbitol and methanol increased rLiP secretion by 5.9-fold compared to the control conditions. The addition of 1 mM FeSO4 increased LiP activity a further 6.0-fold during the induction phase. Moreover, the combination of several optimal conditions and parameters yielded an extracellular rLiP activity of 20.05 U l-1, which is more than ten-fold higher relative to standard growth conditions (BMM10 medium, pH 6 and 30 °C). CONCLUSION Extracellular activity of a recombinant LiP expressed in P. pastoris increased more than ten-fold when co-feeding sorbitol and methanol as carbon sources, together with urea as nitrogen source, FeSO4 supplementation, lower pH and lower cultivation temperature.
Collapse
Affiliation(s)
- Odwa D Biko
- Department of Microbiology, Stellenbosch University, Private Bag X1, Stellenbosch, 7602, South Africa
| | - Marinda Viljoen-Bloom
- Department of Microbiology, Stellenbosch University, Private Bag X1, Stellenbosch, 7602, South Africa
| | - Willem H van Zyl
- Department of Microbiology, Stellenbosch University, Private Bag X1, Stellenbosch, 7602, South Africa.
| |
Collapse
|
6
|
Mowbray MR, Wu C, Rogers AW, Rio-Chanona EAD, Zhang D. A reinforcement learning-based hybrid modeling framework for bioprocess kinetics identification. Biotechnol Bioeng 2023; 120:154-168. [PMID: 36225098 PMCID: PMC10092184 DOI: 10.1002/bit.28262] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 07/18/2022] [Accepted: 10/09/2022] [Indexed: 11/09/2022]
Abstract
Constructing predictive models to simulate complex bioprocess dynamics, particularly time-varying (i.e., parameters varying over time) and history-dependent (i.e., current kinetics dependent on historical culture conditions) behavior, has been a longstanding research challenge. Current advances in hybrid modeling offer a solution to this by integrating kinetic models with data-driven techniques. This article proposes a novel two-step framework: first (i) speculate and combine several possible kinetic model structures sourced from process and phenomenological knowledge, then (ii) identify the most likely kinetic model structure and its parameter values using model-free Reinforcement Learning (RL). Specifically, Step 1 collates feasible history-dependent model structures, then Step 2 uses RL to simultaneously identify the correct model structure and the time-varying parameter trajectories. To demonstrate the performance of this framework, a range of in-silico case studies were carried out. The results show that the proposed framework can efficiently construct high-fidelity models to quantify both time-varying and history-dependent kinetic behaviors while minimizing the risks of over-parametrization and over-fitting. Finally, the primary advantages of the proposed framework and its limitation were thoroughly discussed in comparison to other existing hybrid modeling and model structure identification techniques, highlighting the potential of this framework for general bioprocess modeling.
Collapse
Affiliation(s)
- Max R Mowbray
- Department of Chemical Engineering, Centre for Process Integration, University of Manchester, Manchester, UK
| | - Chufan Wu
- Department of Chemical Engineering, Centre for Process Integration, University of Manchester, Manchester, UK
| | - Alexander W Rogers
- Department of Chemical Engineering, Centre for Process Integration, University of Manchester, Manchester, UK
| | | | - Dongda Zhang
- Department of Chemical Engineering, Centre for Process Integration, University of Manchester, Manchester, UK
| |
Collapse
|
7
|
Metabolomics and modelling approaches for systems metabolic engineering. Metab Eng Commun 2022; 15:e00209. [PMID: 36281261 PMCID: PMC9587336 DOI: 10.1016/j.mec.2022.e00209] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/21/2022] Open
Abstract
Metabolic engineering involves the manipulation of microbes to produce desirable compounds through genetic engineering or synthetic biology approaches. Metabolomics involves the quantitation of intracellular and extracellular metabolites, where mass spectrometry and nuclear magnetic resonance based analytical instrumentation are often used. Here, the experimental designs, sample preparations, metabolite quenching and extraction are essential to the quantitative metabolomics workflow. The resultant metabolomics data can then be used with computational modelling approaches, such as kinetic and constraint-based modelling, to better understand underlying mechanisms and bottlenecks in the synthesis of desired compounds, thereby accelerating research through systems metabolic engineering. Constraint-based models, such as genome scale models, have been used successfully to enhance the yield of desired compounds from engineered microbes, however, unlike kinetic or dynamic models, constraint-based models do not incorporate regulatory effects. Nevertheless, the lack of time-series metabolomic data generation has hindered the usefulness of dynamic models till today. In this review, we show that improvements in automation, dynamic real-time analysis and high throughput workflows can drive the generation of more quality data for dynamic models through time-series metabolomics data generation. Spatial metabolomics also has the potential to be used as a complementary approach to conventional metabolomics, as it provides information on the localization of metabolites. However, more effort must be undertaken to identify metabolites from spatial metabolomics data derived through imaging mass spectrometry, where machine learning approaches could prove useful. On the other hand, single-cell metabolomics has also seen rapid growth, where understanding cell-cell heterogeneity can provide more insights into efficient metabolic engineering of microbes. Moving forward, with potential improvements in automation, dynamic real-time analysis, high throughput workflows, and spatial metabolomics, more data can be produced and studied using machine learning algorithms, in conjunction with dynamic models, to generate qualitative and quantitative predictions to advance metabolic engineering efforts.
Collapse
|
8
|
Glaciers as microbial habitats: current knowledge and implication. J Microbiol 2022; 60:767-779. [DOI: 10.1007/s12275-022-2275-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/04/2022] [Accepted: 07/04/2022] [Indexed: 10/16/2022]
|
9
|
Sun M, Gao AX, Ledesma-Amaro R, Li A, Wang R, Nie J, Zheng P, Yang Y, Bai Z, Liu X. Hypersecretion of OmlA antigen in Corynebacterium glutamicum through high-throughput based development process. Appl Microbiol Biotechnol 2022; 106:2953-2967. [PMID: 35435456 DOI: 10.1007/s00253-022-11918-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/24/2022] [Accepted: 04/04/2022] [Indexed: 11/26/2022]
Abstract
Outer membrane lipoprotein A (OmlA) is a vaccine antigen against porcine contagious pleuropneumonia (PCP), a disease severely affecting the swine industry. Here, we aimed to systematically potentiate the secretory production of OmlA in Corynebacterium glutamicum (C. glutamicum), a widely used microorganism in the food industry, by establishing a holistic development process based on our high-throughput culture platform. The expression patterns, expression element combinations, medium composition, and induction conditions were comprehensively screened or optimized in microwell plates (MWPs), followed by fermentation parameter optimization in a 4 × 1 L parallel fermentation system (CUBER4). An unprecedented yield of 1.01 g/L OmlA was ultimately achieved in a 5-L bioreactor following the scaling-up strategy of fixed oxygen mass transfer coefficient (kLa), and the produced OmlA antigen showed well-protective immunity against Actinobacillus pleuropneumoniae challenge. This result provides a rapid and reliable pipeline to achieve the hyper-production of OmlA, and possibly other recombinant vaccines, in C. glutamicum. KEY POINTS: • Established a holistic development process and applied it to potentiate the secretion of OmlA. • The secretion of OmlA reached an unprecedented yield of 1.01 g/L. • The recombinant OmlA antigen induced efficient protective immunity.
Collapse
Affiliation(s)
- Manman Sun
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214112, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| | - Alex Xiong Gao
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, UK
| | - An Li
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214112, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| | - Rongbin Wang
- Department of Life Technologies, University of Turku, 20014, Turku, Finland
| | - Jianqi Nie
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214112, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| | - Pei Zheng
- Tecon Biology CO.Ltd, Urumqi, 830000, China
| | - Yankun Yang
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214112, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| | - Zhonghu Bai
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214112, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| | - Xiuxia Liu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214112, China.
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
10
|
Shariati FS, Norouzian D, Valizadeh V, Ahangari Cohan R, Keramati M. Rapid screening of high expressing Escherichia coli colonies using a novel dicistronic-autoinducible system. Microb Cell Fact 2021; 20:223. [PMID: 34895227 PMCID: PMC8666062 DOI: 10.1186/s12934-021-01711-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 11/23/2021] [Indexed: 11/25/2022] Open
Abstract
Background Identification of high-expressing colonies is one of the main concerns in the upstream process of recombinant protein development. The common method to screen high-producing colonies is SDS-PAGE, a laborious and time-consuming process, which is based on a random and qualitative way. The current study describes the design and development of a rapid screening system composed of a dicistronic expression system containing a reporter (enhanced green fluorescent protein, eGFP), protein model (staphylokinase, SAK), and a self-inducible system containing heat shock protein 27 (Hsp27). Results Dicistronic-autoinducible system expressed eGFP and SAK successfully in 5-ml and 1-L culture volumes. High expressing colonies were identified during 6 h via fluorescent signals. In addition, the biological activity of the protein model was confirmed semi-quantitatively and quantitatively through radial caseinolytic and chromogenic methods, respectively. There was a direct correlation between eGFP fluorescent intensity and SAK activity. The correlation and linearity of expression between the two genes were respectively confirmed with Pearson correlation and linear regression. Additionally, the precision, limit of detection (LOD), and limit of quantification (LOQ) were determined. The expression of eGFP and SAK was stable during four freeze–thaw cycles. In addition, the developed protocol showed that the transformants can be inoculated directly to the culture, saving time and reducing the error-prone step of colony picking. Conclusion The developed system is applicable for rapid screening of high-expressing colonies in most research laboratories. This system can be investigated for other recombinant proteins expressed in E. coli with a potential capability for automation and use at larger scales. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01711-2.
Collapse
Affiliation(s)
- Fatemeh Sadat Shariati
- Department of Nanobiotechnology, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran
| | - Dariush Norouzian
- Department of Nanobiotechnology, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran
| | - Vahideh Valizadeh
- Department of Nanobiotechnology, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran
| | - Reza Ahangari Cohan
- Department of Nanobiotechnology, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran.
| | - Malihe Keramati
- Department of Nanobiotechnology, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
11
|
Reiter A, Herbst L, Wiechert W, Oldiges M. Need for speed: evaluation of dilute and shoot-mass spectrometry for accelerated metabolic phenotyping in bioprocess development. Anal Bioanal Chem 2021; 413:3253-3268. [PMID: 33791825 PMCID: PMC8079306 DOI: 10.1007/s00216-021-03261-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/18/2021] [Accepted: 03/01/2021] [Indexed: 01/29/2023]
Abstract
With the utilization of small-scale and highly parallelized cultivation platforms embedded in laboratory robotics, microbial phenotyping and bioprocess development have been substantially accelerated, thus generating a bottleneck in bioanalytical bioprocess sample analytics. While microscale cultivation platforms allow the monitoring of typical process parameters, only limited information about product and by-product formation is provided without comprehensive analytics. The use of liquid chromatography mass spectrometry can provide such a comprehensive and quantitative insight, but is often limited by analysis runtime and throughput. In this study, we developed and evaluated six methods for amino acid quantification based on two strong cation exchanger columns and a dilute and shoot approach in hyphenation with either a triple-quadrupole or a quadrupole time-of-flight mass spectrometer. Isotope dilution mass spectrometry with 13C15N labeled amino acids was used to correct for matrix effects. The versatility of the methods for metabolite profiling studies of microbial cultivation supernatants is confirmed by a detailed method validation study. The methods using chromatography columns showed a linear range of approx. 4 orders of magnitude, sufficient response factors, and low quantification limits (7-443 nM) for single analytes. Overall, relative standard deviation was comparable for all analytes, with < 8% and < 11% for unbuffered and buffered media, respectively. The dilute and shoot methods with an analysis time of 1 min provided similar performance but showed a factor of up to 35 times higher throughput. The performance and applicability of the dilute and shoot method are demonstrated using a library of Corynebacterium glutamicum strains producing L-histidine, obtained from random mutagenesis, which were cultivated in a microscale cultivation platform.
Collapse
Affiliation(s)
- Alexander Reiter
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
- Institute of Biotechnology, RWTH Aachen University, 52062, Aachen, Germany
| | - Laura Herbst
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
- Institute of Biotechnology, RWTH Aachen University, 52062, Aachen, Germany
| | - Wolfgang Wiechert
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
- Computational Systems Biotechnology, RWTH Aachen University, 52062, Aachen, Germany
| | - Marco Oldiges
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.
- Institute of Biotechnology, RWTH Aachen University, 52062, Aachen, Germany.
| |
Collapse
|
12
|
Keil T, Dittrich B, Lattermann C, Büchs J. Optimized polymer-based glucose release in microtiter plates for small-scale E. coli fed-batch cultivations. J Biol Eng 2020; 14:24. [PMID: 32874201 PMCID: PMC7457294 DOI: 10.1186/s13036-020-00247-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/19/2020] [Indexed: 11/10/2022] Open
Abstract
Background Small-scale cultivation vessels, which allow fed-batch operation mode, become more and more important for fast and reliable early process development. Recently, the polymer-based feeding system was introduced to allow fed-batch conditions in microtiter plates. Maximum glucose release rates of 0.35 mg/h per well (48-well-plate) at 37 °C can be achieved with these plates, depending on the media properties. The fed-batch cultivation of fluorescent protein-expressing E. coli at oxygen transfer rate levels of 5 mmol/L/h proved to be superior compared to simple batch cultivations. However, literature suggests that higher glucose release rates than achieved with the currently available fed-batch microtiter plate are beneficial, especially for fast-growing microorganisms. During the fed-batch phase of the cultivation, a resulting oxygen transfer rate level of 28 mmol/L/h should be achieved. Results Customization of the polymer matrix enabled a considerable increase in the glucose release rate of more than 250% to up to 0.90 mg/h per well. Therefore, the molecular weight of the prepolymer and the addition of a hydrophilic PDMS-PEG copolymer allowed for the individual adjustment of a targeted glucose release rate. The newly developed polymer matrix was additionally invariant to medium properties like the osmotic concentration or the pH-value. The glucose release rate of the optimized matrix was constant in various synthetic and complex media. Fed-batch cultivations of E. coli in microtiter plates with the optimized matrix revealed elevated oxygen transfer rates during the fed-batch phase of approximately 28 mmol/L/h. However, these increased glucose release rates resulted in a prolonged initial batch phase and oxygen limitations. The newly developed polymer-based feeding system provides options to manufacture individual feed rates in a range from 0.24–0.90 mg/h per well. Conclusions The optimized polymer-based fed-batch microtiter plate allows higher reproducibility of fed-batch experiments since cultivation media properties have almost no influence on the release rate. The adjustment of individual feeding rates in a wide range supports the early process development for slow, average and fast-growing microorganisms in microtiter plates. The study underlines the importance of a detailed understanding of the metabolic behavior (through online monitoring techniques) to identify optimal feed rates.
Collapse
Affiliation(s)
- Timm Keil
- AVT - Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074 Aachen, Germany
| | - Barbara Dittrich
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52074 Aachen, Germany
| | | | - Jochen Büchs
- AVT - Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074 Aachen, Germany
| |
Collapse
|
13
|
Wang Q, Chen Y, Fu J, Yang Q, Feng L. High-throughput screening of lycopene-overproducing mutants of Blakeslea trispora by combining ARTP mutation with microtiter plate cultivation and transcriptional changes revealed by RNA-seq. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107664] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Sun Y, Liu Y, Pan J, Wang F, Li M. Perspectives on Cultivation Strategies of Archaea. MICROBIAL ECOLOGY 2020; 79:770-784. [PMID: 31432245 DOI: 10.1007/s00248-019-01422-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/01/2019] [Indexed: 06/10/2023]
Abstract
Archaea have been recognized as a major domain of life since the 1970s and occupy a key position in the tree of life. Recent advances in culture-independent approaches have greatly accelerated the research son Archaea. However, many hypotheses concerning the diversity, physiology, and evolution of archaea are waiting to be confirmed by culture-base experiments. Consequently, archaeal isolates are in great demand. On the other hand, traditional approaches of archaeal cultivation are rarely successful and require urgent improvement. Here, we review the current practices and applicable microbial cultivation techniques, to inform on potential strategies that could improve archaeal cultivation in the future. We first summarize the current knowledge on archaeal diversity, with an emphasis on cultivated and uncultivated lineages pertinent to future research. Possible causes for the low success rate of the current cultivation practices are then discussed to propose future improvements. Finally, innovative insights for archaeal cultivation are described, including (1) medium refinement for selective cultivation based on the genetic and transcriptional information; (2) consideration of the up-to-date archaeal culturing skills; and (3) application of multiple cultivation techniques, such as co-culture, direct interspecies electron transfer (DIET), single-cell isolation, high-throughput culturing (HTC), and simulation of the natural habitat. Improved cultivation efforts should allow successful isolation of as yet uncultured archaea, contributing to the much-needed physiological investigation of archaea.
Collapse
Affiliation(s)
- Yihua Sun
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, People's Republic of China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, People's Republic of China
| | - Yang Liu
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, People's Republic of China
| | - Jie Pan
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, People's Republic of China
| | - Fengping Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Meng Li
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, People's Republic of China.
| |
Collapse
|
15
|
Novel mutagenesis and screening technologies for food microorganisms: advances and prospects. Appl Microbiol Biotechnol 2020; 104:1517-1531. [DOI: 10.1007/s00253-019-10341-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/19/2019] [Accepted: 12/28/2019] [Indexed: 12/19/2022]
|
16
|
Portela RMC, Varsakelis C, Richelle A, Giannelos N, Pence J, Dessoy S, von Stosch M. When Is an In Silico Representation a Digital Twin? A Biopharmaceutical Industry Approach to the Digital Twin Concept. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2020; 176:35-55. [PMID: 32797270 DOI: 10.1007/10_2020_138] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Digital twins (DTs) are expected to render process development and life-cycle management much more cost-effective and time-efficient. A DT definition, a brief retrospect on their history and expectations for their deployment in today's business environment, and a detailed financial assessment of their attractive economic benefits are provided in this chapter. The argument that restrictive guidelines set forth by regulatory agencies would hinder the adoption of DTs in the (bio)pharmaceutical industry is revisited, concluding that those companies who collaborate with the agencies to further their technical capabilities will gain significant competitive advantage. The analyzed process development examples show high methodological readiness levels but low systematic adoption of technology. Given the technical feasibilities, financial opportunities, and regulatory encouragement, concerns regarding intellectual property and data sharing, though required to be taken into account, will at best delay an industry-wide adoption of DTs. In conclusion, it is expected that a strategic investment in DTs now will gain an advantage over competition that will be difficult to overcome by late adopters.
Collapse
Affiliation(s)
- Rui M C Portela
- Process Systems Biology and Engineering Center of Excellence, Technical Research and Development, GSK Biologicals, Rixensart, Belgium
| | - Christos Varsakelis
- VCDM, Technical Research and Development, GSK Biologicals, Rixensart, Belgium
| | - Anne Richelle
- Process Systems Biology and Engineering Center of Excellence, Technical Research and Development, GSK Biologicals, Rixensart, Belgium
| | - Nikolaos Giannelos
- VCDM, Technical Research and Development, GSK Biologicals, Rixensart, Belgium
| | - Julia Pence
- VCDM, Technical Research and Development, GSK Biologicals, Rixensart, Belgium
| | - Sandrine Dessoy
- VCDM, Technical Research and Development, GSK Biologicals, Rixensart, Belgium
| | - Moritz von Stosch
- Process Systems Biology and Engineering Center of Excellence, Technical Research and Development, GSK Biologicals, Rixensart, Belgium. .,DataHow AG, Zurich, Switzerland.
| |
Collapse
|
17
|
Microbioreactors for Process Development and Cell-Based Screening Studies. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2020; 179:67-100. [PMID: 32712680 DOI: 10.1007/10_2020_130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Microbioreactors (MBRs) have emerged as potent cultivation devices enabling automated small-scale experiments in parallel while enhancing their cost efficiency. The widespread use of MBRs has contributed to recent advances in industrial and pharmaceutical biotechnology, and they have proved to be indispensable tools in the development of many modern bioprocesses. Being predominantly applied in early stage process development, they open up new fields of research and enhance the efficacy of biotechnological product development. Their reduced reaction volume is associated with numerous inherent advantages - particularly the possibility for enabling parallel screening operations that facilitate high-throughput cultivations with reduced sample consumption (or the use of rare and expensive educts). As a result, multiple variables can be examined in a shorter time and with a lower expense. This leads to a simultaneous acceleration of research and process development along with decreased costs.MBRs range from simple miniaturized cultivations vessels (i.e., in the milliliter scale with limited possibilities for process control) to highly complex and automated small-scale microreactors with integrated sensors that allow for comprehensive screenings in very short time or a precise reflection of large-scale cultivation conditions. Progressive developments and improvements in manufacturing and automation techniques are already helping researchers to make use of the advantages that MBRs offer. This overview of current MBR systems surveys the diverse application for microbial and mammalian cell cultivations that have been developed in recent years.
Collapse
|
18
|
Tripathi NK, Shrivastava A. Recent Developments in Bioprocessing of Recombinant Proteins: Expression Hosts and Process Development. Front Bioeng Biotechnol 2019; 7:420. [PMID: 31921823 PMCID: PMC6932962 DOI: 10.3389/fbioe.2019.00420] [Citation(s) in RCA: 266] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 11/29/2019] [Indexed: 12/22/2022] Open
Abstract
Infectious diseases, along with cancers, are among the main causes of death among humans worldwide. The production of therapeutic proteins for treating diseases at large scale for millions of individuals is one of the essential needs of mankind. Recent progress in the area of recombinant DNA technologies has paved the way to producing recombinant proteins that can be used as therapeutics, vaccines, and diagnostic reagents. Recombinant proteins for these applications are mainly produced using prokaryotic and eukaryotic expression host systems such as mammalian cells, bacteria, yeast, insect cells, and transgenic plants at laboratory scale as well as in large-scale settings. The development of efficient bioprocessing strategies is crucial for industrial production of recombinant proteins of therapeutic and prophylactic importance. Recently, advances have been made in the various areas of bioprocessing and are being utilized to develop effective processes for producing recombinant proteins. These include the use of high-throughput devices for effective bioprocess optimization and of disposable systems, continuous upstream processing, continuous chromatography, integrated continuous bioprocessing, Quality by Design, and process analytical technologies to achieve quality product with higher yield. This review summarizes recent developments in the bioprocessing of recombinant proteins, including in various expression systems, bioprocess development, and the upstream and downstream processing of recombinant proteins.
Collapse
Affiliation(s)
- Nagesh K. Tripathi
- Bioprocess Scale Up Facility, Defence Research and Development Establishment, Gwalior, India
| | - Ambuj Shrivastava
- Division of Virology, Defence Research and Development Establishment, Gwalior, India
| |
Collapse
|
19
|
Jansen R, Tenhaef N, Moch M, Wiechert W, Noack S, Oldiges M. FeedER: a feedback-regulated enzyme-based slow-release system for fed-batch cultivation in microtiter plates. Bioprocess Biosyst Eng 2019; 42:1843-1852. [PMID: 31399865 PMCID: PMC6800402 DOI: 10.1007/s00449-019-02180-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 07/23/2019] [Indexed: 11/09/2022]
Abstract
With the advent of modern genetic engineering methods, microcultivation systems have become increasingly important tools for accelerated strain phenotyping and bioprocess engineering. While these systems offer sophisticated capabilities to screen batch processes, they lack the ability to realize fed-batch processes, which are used more frequently in industrial bioprocessing. In this study, a novel approach to realize a feedback-regulated enzyme-based slow-release system (FeedER), allowing exponential fed-batch for microscale cultivations, was realized by extending our existing Mini Pilot Plant technology with a customized process control system. By continuously comparing the experimental growth rates with predefined set points, the automated dosage of Amyloglucosidase enzyme for the cleavage of dextrin polymers into d-glucose monomers is triggered. As a prerequisite for stable fed-batch operation, a constant pH is maintained by automated addition of ammonium hydroxide. We show the successful application of FeedER to study fed-batch growth of different industrial model organisms including Corynebacterium glutamicum, Pichia pastoris, and Escherichia coli. Moreover, the comparative analysis of a C. glutamicum GFP producer strain, cultivated under microscale batch and fed-batch conditions, revealed two times higher product yields under slow growing fed-batch operation. In summary, FeedER enables to run 48 parallel fed-batch experiments in an automated and miniaturized manner, and thereby accelerates industrial bioprocess development at the screening stage.
Collapse
Affiliation(s)
- Roman Jansen
- Forschungszentrum Jülich, Institute of Bio- and Geosciences, Biotechnology (IBG-1), Jülich, Germany
| | - Niklas Tenhaef
- Forschungszentrum Jülich, Institute of Bio- and Geosciences, Biotechnology (IBG-1), Jülich, Germany.,Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Matthias Moch
- Forschungszentrum Jülich, Institute of Bio- and Geosciences, Biotechnology (IBG-1), Jülich, Germany
| | - Wolfgang Wiechert
- Forschungszentrum Jülich, Institute of Bio- and Geosciences, Biotechnology (IBG-1), Jülich, Germany.,RWTH Aachen University, Computational Systems Biotechnology (AVT.CSB), Aachen, Germany
| | - Stephan Noack
- Forschungszentrum Jülich, Institute of Bio- and Geosciences, Biotechnology (IBG-1), Jülich, Germany.,Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Marco Oldiges
- Forschungszentrum Jülich, Institute of Bio- and Geosciences, Biotechnology (IBG-1), Jülich, Germany. .,Institute of Biotechnology, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
20
|
Keil T, Landenberger M, Dittrich B, Selzer S, Büchs J. Precultures Grown under Fed‐Batch Conditions Increase the Reliability and Reproducibility of High‐Throughput Screening Results. Biotechnol J 2019; 14:e1800727. [DOI: 10.1002/biot.201800727] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 06/21/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Timm Keil
- AVT—Biochemical EngineeringRWTH Aachen UniversityForckenbeckstraße 51 52074 Aachen Germany
| | - Markus Landenberger
- AVT—Biochemical EngineeringRWTH Aachen UniversityForckenbeckstraße 51 52074 Aachen Germany
| | - Barbara Dittrich
- DWI—Leibniz Institute for Interactive MaterialsRWTH Aachen University52074 Aachen Germany
| | | | - Jochen Büchs
- AVT—Biochemical EngineeringRWTH Aachen UniversityForckenbeckstraße 51 52074 Aachen Germany
| |
Collapse
|
21
|
Morschett H, Loomba V, Huber G, Wiechert W, von Lieres E, Oldiges M. Laboratory-scale photobiotechnology-current trends and future perspectives. FEMS Microbiol Lett 2019; 365:4604817. [PMID: 29126108 DOI: 10.1093/femsle/fnx238] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 11/07/2017] [Indexed: 11/13/2022] Open
Abstract
Phototrophic bioprocesses are a promising puzzle piece in future bioeconomy concepts but yet mostly fail for economic reasons. Besides other aspects, this is mainly attributed to the omnipresent issue of optimal light supply impeding scale-up and -down of phototrophic processes according to classic established concepts. This MiniReview examines two current trends in photobiotechnology, namely microscale cultivation and modeling and simulation. Microphotobioreactors are a valuable and promising trend with microfluidic chips and microtiter plates as predominant design concepts. Providing idealized conditions, chip systems are preferably to be used for acquiring physiological data of microalgae while microtiter plate systems are more appropriate for process parameter and medium screenings. However, these systems are far from series technology and significant improvements especially regarding flexible light supply remain crucial. Whereas microscale is less addressed by modeling and simulation so far, benchtop photobioreactor design and operation have successfully been studied using such tools. This particularly includes quantitative model-assisted understanding of mixing, mass transfer, light dispersion and particle tracing as well as their relevance for microalgal performance. The ultimate goal will be to combine physiological data from microphotobioreactors with hybrid models to integrate metabolism and reactor simulation in order to facilitate knowledge-based scale transfer of phototrophic bioprocesses.
Collapse
Affiliation(s)
- Holger Morschett
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| | - Varun Loomba
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428 Jülich, Germany.,IBG-2: Plant Sciences, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| | - Gregor Huber
- IBG-2: Plant Sciences, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| | - Wolfgang Wiechert
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| | - Eric von Lieres
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| | - Marco Oldiges
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428 Jülich, Germany.,Institute of Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| |
Collapse
|
22
|
Kolmar JF, Thum O, Baganz F. Improving Product Specificity of Whole-Cell Alkane Oxidation in Nonconventional Media: A Multivariate Analysis Approach. Biotechnol J 2019; 14:e1800581. [PMID: 31231931 DOI: 10.1002/biot.201800581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 05/14/2019] [Indexed: 11/10/2022]
Abstract
Two-liquid-phase reaction media have long been used in bioconversions to supply or remove hydrophobic organic reaction substrates and products to reduce inhibitory and toxic effects on biocatalysts. In case of the terminal oxyfunctionalization of linear alkanes by the AlkBGT monooxygenase the excess alkane substrate is often used as a second phase to extract the alcohol, aldehyde, and acid products. However, the selection of other carrier phases or surfactants is complex due to a large number of parameters that are involved, such as biocompatibility, substrate bioavailability, and product extraction selectivity. This study combines systematic high-throughput screening with chemometrics to correlate physicochemical parameters of a range of cosolvents to product specificity and yield using a multivariate regression model. Partial least-squares regression shows that the defining factor for product specificity is the solubility properties of the reaction substrate and product in the cosolvent, as measured by Hansen solubility parameters. Thus the polarity of cosolvents determines the accumulation of either alcohol or acid products. Whereas usually the acid product accumulates during the reaction, by choosing a more polar cosolvent the 1-alcohol product can be accumulated. Especially with Tergitol as a cosolvent, a 3.2-fold improvement in the 1-octanol yield to 18.3 mmol L-1 is achieved relative to the control reaction without cosolvents.
Collapse
Affiliation(s)
- Johannes F Kolmar
- Department of Biochemical Engineering, Advanced Centre for Biochemical Engineering, University College London, Bernard Katz Building, Gower Street, London, WC1E 6BT, UK
| | - Oliver Thum
- Evonik Creavis GmbH, Paul-Baumann-Straße 1, 45772, Marl, Germany
| | - Frank Baganz
- Department of Biochemical Engineering, Advanced Centre for Biochemical Engineering, University College London, Bernard Katz Building, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|
23
|
Keil T, Dittrich B, Lattermann C, Habicher T, Büchs J. Polymer-based controlled-release fed-batch microtiter plate - diminishing the gap between early process development and production conditions. J Biol Eng 2019; 13:18. [PMID: 30833982 PMCID: PMC6387502 DOI: 10.1186/s13036-019-0147-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 02/11/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Fed-batch conditions are advantageous for industrial cultivations as they avoid unfavorable phenomena appearing in batch cultivations. Those are for example the formation of overflow metabolites, catabolite repression, oxygen limitation or inhibition due to elevated osmotic concentrations. For both, the early bioprocess development and the optimization of existing bioprocesses, small-scale reaction vessels are applied to ensure high throughput, low costs and prompt results. However, most conventional small-scale procedures work in batch operation mode, which stands in contrast to fed-batch conditions in large-scale bioprocesses. Extensive expenditure for installations and operation accompany almost all cultivation systems in the market allowing fed-batch conditions in small-scale. An alternative, more cost efficient enzymatic glucose release system is strongly influenced by environmental conditions. To overcome these issues, this study investigates a polymer-based fed-batch system for controlled substrate release in microtiter plates. RESULTS Immobilizing a solid silicone matrix with embedded glucose crystals at the bottom of each well of a microtiter plate is a suitable technique for implementing fed-batch conditions in microtiter plates. The results showed that the glucose release rate depends on the osmotic concentration, the pH and the temperature of the medium. Moreover, the applied nitrogen source proved to influence the glucose release rate. A new developed mathematical tool predicts the glucose release for various media conditions. The two model organisms E. coli and H. polymorpha were cultivated in the fed-batch microtiter plate to investigate the general applicability for microbial systems. Online monitoring of the oxygen transfer rate and offline analysis of substrate, product, biomass and pH confirmed that fed-batch conditions are comparable to large-scale cultivations. Furthermore, due to fed-batch conditions in microtiter plates, product formation could be enhanced by the factor 245 compared to batch cultivations. CONCLUSIONS The polymer-based fed-batch microtiter plate represents a sophisticated and cost efficient system to mimic typical industrial fed-batch conditions in small-scale. Thus, a more reliable strain screening and early process development can be performed. A systematical scale-down with low expenditure of work, time and money is possible.
Collapse
Affiliation(s)
- T. Keil
- AVT - Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074 Aachen, Germany
| | - B. Dittrich
- DWI – Leibniz Institute for Interactive Materials, RWTH Aachen University, Forckenbeckstraße 50, 52074 Aachen, Germany
| | - C. Lattermann
- Kuhner Shaker GmbH, Kaiserstraße 100, 52134 Herzogenrath, Germany
| | - T. Habicher
- AVT - Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074 Aachen, Germany
| | - J. Büchs
- AVT - Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074 Aachen, Germany
| |
Collapse
|
24
|
Guerra A, von Stosch M, Glassey J. Toward biotherapeutic product real-time quality monitoring. Crit Rev Biotechnol 2019; 39:289-305. [DOI: 10.1080/07388551.2018.1524362] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- André Guerra
- School of Chemical Engineering and Advanced Materials, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Moritz von Stosch
- School of Chemical Engineering and Advanced Materials, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Jarka Glassey
- School of Chemical Engineering and Advanced Materials, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
25
|
Zhu XD, Shi X, Wang SW, Chu J, Zhu WH, Ye BC, Zuo P, Wang YH. High-throughput screening of high lactic acid-producing Bacillus coagulans by droplet microfluidic based flow cytometry with fluorescence activated cell sorting. RSC Adv 2019; 9:4507-4513. [PMID: 35520173 PMCID: PMC9060631 DOI: 10.1039/c8ra09684h] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 01/04/2019] [Indexed: 01/17/2023] Open
Abstract
A high-throughput screening system based on droplet microfluidic sorting was developed and employed for screening of high lactic acid-producing Bacillus coagulans. In this system, water-in-oil-in-water (W/O/W) droplets, which were ∼12 pL in volume were used as picoliter-reactors for lactic acid fermentation. A fluorescent sensor was developed and used for monitoring pH which indicated the production of lactic acid. After fermentation, fluorescence activated cell sorting was performed with high sensitivity and speed. Using this microfluidic high-throughput screening system, we found a mutant with a yield of 76 g L−1 lactic acid which was 52% higher than its parent strain with a screening throughput exceeding 106 clones per h. A high-throughput screening system based on droplet microfluidic sorting was developed and employed for screening of high lactic acid-producing Bacillus coagulans.![]()
Collapse
Affiliation(s)
- Xu-Dong Zhu
- State Key Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- Shanghai
- China
| | - Xiang Shi
- State Key Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- Shanghai
- China
| | - Shu-Wen Wang
- Institute of Fine Chemicals
- East China University of Science and Technology
- Shanghai
- China
| | - Ju Chu
- State Key Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- Shanghai
- China
| | - Wei-Hong Zhu
- Institute of Fine Chemicals
- East China University of Science and Technology
- Shanghai
- China
| | - Bang-Ce Ye
- State Key Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- Shanghai
- China
| | - Peng Zuo
- State Key Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- Shanghai
- China
| | - Yong-Hong Wang
- State Key Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- Shanghai
- China
| |
Collapse
|
26
|
Fernandes AC, Semenova D, Panjan P, Sesay AM, Gernaey KV, Krühne U. Multi-function microfluidic platform for sensor integration. N Biotechnol 2018. [DOI: 10.1016/j.nbt.2018.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Hemmerich J, Tenhaef N, Steffens C, Kappelmann J, Weiske M, Reich SJ, Wiechert W, Oldiges M, Noack S. Less Sacrifice, More Insight: Repeated Low-Volume Sampling of Microbioreactor Cultivations Enables Accelerated Deep Phenotyping of Microbial Strain Libraries. Biotechnol J 2018; 14:e1800428. [PMID: 30318833 DOI: 10.1002/biot.201800428] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/26/2018] [Indexed: 12/18/2022]
Abstract
With modern genetic engineering tools, high number of potentially improved production strains can be created in a short time. This results in a bottleneck in the succeeding step of bioprocess development, which can be handled by accelerating quantitative microbial phenotyping. Miniaturization and automation are key technologies to achieve this goal. In this study, a novel workflow for repeated low-volume sampling of BioLector-based cultivation setups is presented. Six samples of 20 μL each can be taken automatically from shaken 48-well microtiter plates without disturbing cell population growth. The volume is sufficient for quantification of substrate and product concentrations by spectrophotometric-based enzyme assays. From transient concentration data and replicate cultures, valid performance indicators (titers, rates, yields) are determined through process modeling and random error propagation analysis. Practical relevance of the workflow is demonstrated with a set of five genome-reduced Corynebacterium glutamicum strains that are engineered for Sec-mediated heterologous cutinase secretion. Quantitative phenotyping of this strain library led to the identification of a strain with a 1.6-fold increase in cutinase yield. The prophage-free strain carries combinatorial deletions of three gene clusters (Δ3102-3111, Δ3263-3301, and Δ3324-3345) of which the last two likely contain novel target genes to foster rational engineering of heterologous cutinase secretion in C. glutamicum.
Collapse
Affiliation(s)
- Johannes Hemmerich
- Institute of Bio-und Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.,Bioeconomy Science Center (BioSC), c/o Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Niklas Tenhaef
- Institute of Bio-und Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Carmen Steffens
- Institute of Bio-und Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Jannick Kappelmann
- Institute of Bio-und Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Marc Weiske
- Institute of Bio-und Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Sebastian J Reich
- Institute of Bio-und Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Wolfgang Wiechert
- Institute of Bio-und Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.,Computational Systems Biotechnology (AVT.CSB), RWTH Aachen, 52062 Aachen, Germany.,Bioeconomy Science Center (BioSC), c/o Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Marco Oldiges
- Institute of Bio-und Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.,Institute for Biotechnology, RWTH Aachen, 52062 Aachen, Germany.,Bioeconomy Science Center (BioSC), c/o Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Stephan Noack
- Institute of Bio-und Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.,Bioeconomy Science Center (BioSC), c/o Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| |
Collapse
|
28
|
Kosa G, Vuoristo KS, Horn SJ, Zimmermann B, Afseth NK, Kohler A, Shapaval V. Assessment of the scalability of a microtiter plate system for screening of oleaginous microorganisms. Appl Microbiol Biotechnol 2018; 102:4915-4925. [PMID: 29644428 PMCID: PMC5954000 DOI: 10.1007/s00253-018-8920-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 02/19/2018] [Accepted: 03/07/2018] [Indexed: 12/01/2022]
Abstract
Recent developments in molecular biology and metabolic engineering have resulted in a large increase in the number of strains that need to be tested, positioning high-throughput screening of microorganisms as an important step in bioprocess development. Scalability is crucial for performing reliable screening of microorganisms. Most of the scalability studies from microplate screening systems to controlled stirred-tank bioreactors have been performed so far with unicellular microorganisms. We have compared cultivation of industrially relevant oleaginous filamentous fungi and microalga in a Duetz-microtiter plate system to benchtop and pre-pilot bioreactors. Maximal glucose consumption rate, biomass concentration, lipid content of the biomass, biomass, and lipid yield values showed good scalability for Mucor circinelloides (less than 20% differences) and Mortierella alpina (less than 30% differences) filamentous fungi. Maximal glucose consumption and biomass production rates were identical for Crypthecodinium cohnii in microtiter plate and benchtop bioreactor. Most likely due to shear stress sensitivity of this microalga in stirred bioreactor, biomass concentration and lipid content of biomass were significantly higher in the microtiter plate system than in the benchtop bioreactor. Still, fermentation results obtained in the Duetz-microtiter plate system for Crypthecodinium cohnii are encouraging compared to what has been reported in literature. Good reproducibility (coefficient of variation less than 15% for biomass growth, glucose consumption, lipid content, and pH) were achieved in the Duetz-microtiter plate system for Mucor circinelloides and Crypthecodinium cohnii. Mortierella alpina cultivation reproducibility might be improved with inoculation optimization. In conclusion, we have presented suitability of the Duetz-microtiter plate system for the reproducible, scalable, and cost-efficient high-throughput screening of oleaginous microorganisms.
Collapse
Affiliation(s)
- Gergely Kosa
- Faculty of Science and Technology, Norwegian University of Life Sciences, Postbox 5003, 1432, Ås, Norway.
| | - Kiira S Vuoristo
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Postbox 5003, 1432, Ås, Norway
| | - Svein Jarle Horn
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Postbox 5003, 1432, Ås, Norway
| | - Boris Zimmermann
- Faculty of Science and Technology, Norwegian University of Life Sciences, Postbox 5003, 1432, Ås, Norway
| | | | - Achim Kohler
- Faculty of Science and Technology, Norwegian University of Life Sciences, Postbox 5003, 1432, Ås, Norway
| | - Volha Shapaval
- Faculty of Science and Technology, Norwegian University of Life Sciences, Postbox 5003, 1432, Ås, Norway
| |
Collapse
|
29
|
Evolutionary engineering of industrial microorganisms-strategies and applications. Appl Microbiol Biotechnol 2018; 102:4615-4627. [DOI: 10.1007/s00253-018-8937-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 03/13/2018] [Accepted: 03/13/2018] [Indexed: 10/17/2022]
|
30
|
Hemmerich J, Noack S, Wiechert W, Oldiges M. Microbioreactor Systems for Accelerated Bioprocess Development. Biotechnol J 2018; 13:e1700141. [PMID: 29283217 DOI: 10.1002/biot.201700141] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 12/15/2017] [Indexed: 12/14/2022]
Abstract
In recent years, microbioreactor (MBR) systems have evolved towards versatile bioprocess engineering tools. They provide a unique solution to combine higher experimental throughput with extensive bioprocess monitoring and control, which is indispensable to develop economically and ecologically competitive bioproduction processes. MBR systems are based either on down-scaled stirred tank reactors or on advanced shaken microtiter plate cultivation devices. Importantly, MBR systems make use of optical measurements for non-invasive, online monitoring of important process variables like biomass concentration, dissolved oxygen, pH, and fluorescence. The application range of MBR systems can be further increased by integration into liquid handling robots, enabling automatization and, thus standardization, of various handling and operation procedures. Finally, the tight integration of quantitative strain phenotyping with bioprocess development under industrially relevant conditions greatly increases the probability of finding the right combination of producer strain and bioprocess control strategy. This review will discuss the current state of the art in the field of MBR systems and we can readily conclude that their importance for industrial biotechnology will further increase in the near future.
Collapse
Affiliation(s)
- Johannes Hemmerich
- Forschungszentrum Jülich, Institute of Bio- and Geosciences - Biotechnology (IBG-1), Wilhelm-Johnen Straße 1, 52425, Jülich, Germany.,Bioeconomy Science Center (BioSC), c/o Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Stephan Noack
- Forschungszentrum Jülich, Institute of Bio- and Geosciences - Biotechnology (IBG-1), Wilhelm-Johnen Straße 1, 52425, Jülich, Germany.,Bioeconomy Science Center (BioSC), c/o Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Wolfgang Wiechert
- RWTH Aachen University, Computational Systems Biotechnology (AVT.CSB), Forckenbeckstraße 51, 52074 Aachen, Germany.,Bioeconomy Science Center (BioSC), c/o Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Marco Oldiges
- Forschungszentrum Jülich, Institute of Bio- and Geosciences - Biotechnology (IBG-1), Wilhelm-Johnen Straße 1, 52425, Jülich, Germany.,RWTH Aachen University, Institute of Biotechnology, Worringer Weg 3, 52074 Aachen, Germany.,Bioeconomy Science Center (BioSC), c/o Forschungszentrum Jülich, 52425 Jülich, Germany
| |
Collapse
|
31
|
Tan JS, Abbasiliasi S, Kadkhodaei S, Tam YJ, Tang TK, Lee YY, Ariff AB. Microtiter miniature shaken bioreactor system as a scale-down model for process development of production of therapeutic alpha-interferon2b by recombinant Escherichia coli. BMC Microbiol 2018; 18:3. [PMID: 29439680 PMCID: PMC5810150 DOI: 10.1186/s12866-017-1145-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 12/20/2017] [Indexed: 11/23/2022] Open
Abstract
Background Demand for high-throughput bioprocessing has dramatically increased especially in the biopharmaceutical industry because the technologies are of vital importance to process optimization and media development. This can be efficiently boosted by using microtiter plate (MTP) cultivation setup embedded into an automated liquid-handling system. The objective of this study was to establish an automated microscale method for upstream and downstream bioprocessing of α-IFN2b production by recombinant Escherichia coli. The extraction performance of α-IFN2b by osmotic shock using two different systems, automated microscale platform and manual extraction in MTP was compared. Results The amount of α-IFN2b extracted using automated microscale platform (49.2 μg/L) was comparable to manual osmotic shock method (48.8 μg/L), but the standard deviation was 2 times lower as compared to manual osmotic shock method. Fermentation parameters in MTP involving inoculum size, agitation speed, working volume and induction profiling revealed that the fermentation conditions for the highest production of α-IFN2b (85.5 μg/L) was attained at inoculum size of 8%, working volume of 40% and agitation speed of 1000 rpm with induction at 4 h after the inoculation. Conclusion Although the findings at MTP scale did not show perfect scalable results as compared to shake flask culture, but microscale technique development would serve as a convenient and low-cost solution in process optimization for recombinant protein.
Collapse
Affiliation(s)
- Joo Shun Tan
- Bioprocess Technology, School of Industrial Technology, Universiti Sains Malaysia, 11800, Gelugor, Pulau Pinang, Malaysia
| | - Sahar Abbasiliasi
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Saeid Kadkhodaei
- Institute of Tropical Agriculture, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Yew Joon Tam
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Teck-Kim Tang
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Yee-Ying Lee
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Arbakariya B Ariff
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| |
Collapse
|
32
|
Ninety six well microtiter plate as microbioreactors for production of itaconic acid by six Aspergillus terreus strains. J Microbiol Methods 2018; 144:53-59. [DOI: 10.1016/j.mimet.2017.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/02/2017] [Accepted: 11/02/2017] [Indexed: 12/16/2022]
|
33
|
Jia B, Jeon CO. High-throughput recombinant protein expression in Escherichia coli: current status and future perspectives. Open Biol 2017; 6:rsob.160196. [PMID: 27581654 PMCID: PMC5008019 DOI: 10.1098/rsob.160196] [Citation(s) in RCA: 196] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 08/03/2016] [Indexed: 12/26/2022] Open
Abstract
The ease of genetic manipulation, low cost, rapid growth and number of previous studies have made Escherichia coli one of the most widely used microorganism species for producing recombinant proteins. In this post-genomic era, challenges remain to rapidly express and purify large numbers of proteins for academic and commercial purposes in a high-throughput manner. In this review, we describe several state-of-the-art approaches that are suitable for the cloning, expression and purification, conducted in parallel, of numerous molecules, and we discuss recent progress related to soluble protein expression, mRNA folding, fusion tags, post-translational modification and production of membrane proteins. Moreover, we address the ongoing efforts to overcome various challenges faced in protein expression in E. coli, which could lead to an improvement of the current system from trial and error to a predictable and rational design.
Collapse
Affiliation(s)
- Baolei Jia
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Che Ok Jeon
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
34
|
Kosa G, Shapaval V, Kohler A, Zimmermann B. FTIR spectroscopy as a unified method for simultaneous analysis of intra- and extracellular metabolites in high-throughput screening of microbial bioprocesses. Microb Cell Fact 2017; 16:195. [PMID: 29132358 PMCID: PMC5683213 DOI: 10.1186/s12934-017-0817-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 11/08/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Analyses of substrate and metabolites are often bottleneck activities in high-throughput screening of microbial bioprocesses. We have assessed Fourier transform infrared spectroscopy (FTIR), in combination with high throughput micro-bioreactors and multivariate statistical analyses, for analysis of metabolites in high-throughput screening of microbial bioprocesses. In our previous study, we have demonstrated that high-throughput (HTS) FTIR can be used for estimating content and composition of intracellular metabolites, namely triglyceride accumulation in oleaginous filamentous fungi. As a continuation of that research, in the present study HTS FTIR was evaluated as a unified method for simultaneous quantification of intra- and extracellular metabolites and substrate consumption. As a proof of concept, a high-throughput microcultivation of oleaginous filamentous fungi was conducted in order to monitor production of citric acid (extracellular metabolite) and triglyceride lipids (intracellular metabolites), as well as consumption of glucose in the cultivation medium. RESULTS HTS FTIR analyses of supernatant samples was compared with an attenuated total reflection (ATR) FTIR, which is an established method for bioprocess monitoring. Glucose and citric acid content of growth media was quantified by high performance liquid chromatography (HPLC). Partial least square regression (PLSR) between HPLC glucose and citric acid data and the corresponding FTIR spectral data was used to set up calibration models. PLSR results for HTS measurements were very similar to the results obtained with ATR methodology, with high coefficients of determination (0.91-0.98) and low error values (4.9-8.6%) for both glucose and citric acid estimates. CONCLUSIONS The study has demonstrated that intra- and extracellular metabolites, as well as nutrients in the cultivation medium, can be monitored by a unified approach by HTS FTIR. The proof-of-concept study has validated that HTS FTIR, in combination with Duetz microtiter plate system and chemometrics, can be used for high throughput screening of microbial bioprocesses. It can be anticipated that the approach, demonstrated here on single-cell oil production by filamentous fungi, can find general application in screening studies of microbial bioprocesses, such as production of single-cell proteins, biopolymers, polysaccharides, carboxylic acids, and other type of metabolites.
Collapse
Affiliation(s)
- Gergely Kosa
- Faculty of Science and Technology, Norwegian University of Life Sciences, Postbox 5003, 1432 Ås, Norway
- Nofima AS, Osloveien 1, 1430 Ås, Norway
| | - Volha Shapaval
- Faculty of Science and Technology, Norwegian University of Life Sciences, Postbox 5003, 1432 Ås, Norway
| | - Achim Kohler
- Faculty of Science and Technology, Norwegian University of Life Sciences, Postbox 5003, 1432 Ås, Norway
| | - Boris Zimmermann
- Faculty of Science and Technology, Norwegian University of Life Sciences, Postbox 5003, 1432 Ås, Norway
| |
Collapse
|
35
|
Glauche F, Glazyrina J, Cruz Bournazou MN, Kiesewetter G, Cuda F, Goelling D, Raab A, Lang C, Neubauer P. Detection of growth rate-dependent product formation in miniaturized parallel fed-batch cultivations. Eng Life Sci 2017; 17:1215-1220. [PMID: 32624749 PMCID: PMC6999230 DOI: 10.1002/elsc.201600029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 04/28/2017] [Accepted: 07/24/2017] [Indexed: 12/22/2022] Open
Abstract
Saccharomyces cerevisiae is a popular expression system for recombinant proteins. In most cases, production processes are performed as carbon-limited fed-batch cultures to avoid aerobic ethanol formation. Especially for constitutive expression systems, the specific product formation rate depends on the specific growth rate. The development of optimal feeding strategies strongly depends on laboratory-scale cultivations, which are time and resource consuming, especially when continuous experiments are carried out. It is therefore beneficial for accelerated process development to look at alternatives. In this study, S. cerevisiae AH22 secreting a heterologous endo-polygalacturonase (EPG) was characterized in microwell plates with an enzyme-based fed-batch medium. Through variation of the glucose release rate, different growth profiles were established and the impact on EPG secretion was analyzed. Product formation rates of 200-400 U (gx h)-1 were determined. As a reference, bioreactor experiments using the change-stat cultivation technique were performed. The growth-dependent product formation was analyzed over dilution rates of D = 0.01-0.35 with smooth change of D at a rate of 0.003 h-2. EPG production was found to be comparable with a qp of 400 U (gx h)-1 at D = 0.27 h-1. The presented results indicate that parallel miniaturized fed-batch cultures can be applied to determine product formation profiles of putative production strains. With further automation and parallelization of the concept, strain characterization can be performed in shorter time.
Collapse
Affiliation(s)
- Florian Glauche
- Chair of Bioprocess EngineeringTechnische Universität BerlinBerlinGermany
| | - Julia Glazyrina
- Chair of Bioprocess EngineeringTechnische Universität BerlinBerlinGermany
| | | | | | - Fabian Cuda
- Chair of Bioprocess EngineeringTechnische Universität BerlinBerlinGermany
| | | | | | | | - Peter Neubauer
- Chair of Bioprocess EngineeringTechnische Universität BerlinBerlinGermany
| |
Collapse
|
36
|
Morphology-driven downscaling of Streptomyces lividans to micro-cultivation. Antonie van Leeuwenhoek 2017; 111:457-469. [PMID: 29094245 PMCID: PMC5816114 DOI: 10.1007/s10482-017-0967-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 10/19/2017] [Indexed: 11/20/2022]
Abstract
Actinobacteria are prolific producers of secondary metabolites and industrially relevant enzymes. Growth of these mycelial micro-organisms in small culture volumes is challenging due to their complex morphology. Since morphology and production are typically linked, scaling down culture volumes requires better control over morphogenesis. In larger scale platforms, ranging from shake flasks to bioreactors, the hydrodynamics play an important role in shaping the morphology and determining product formation. Here, we report on the effects of agitation on the mycelial morphology of Streptomyces lividans grown in microtitre plates. Our work shows that at the appropriate agitation rates cultures can be scaled down to volumes as small as 100 µl while maintaining the same morphology as seen in larger scale platforms. Using image analysis and principal component analysis we compared the morphologies of the cultures; when agitated at 1400–1600 rpm the mycelial morphology in micro-cultures was similar to that obtained in shake flasks, while product formation was also maintained. Our study shows that the morphology of actinobacteria in micro-cultures can be controlled in a similar manner as in larger scale cultures by carefully controlling the mixing rate. This could facilitate high-throughput screening and upscaling.
Collapse
|
37
|
Goldrick S, Holmes W, Bond NJ, Lewis G, Kuiper M, Turner R, Farid SS. Advanced multivariate data analysis to determine the root cause of trisulfide bond formation in a novel antibody-peptide fusion. Biotechnol Bioeng 2017; 114:2222-2234. [PMID: 28500668 PMCID: PMC5600124 DOI: 10.1002/bit.26339] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 04/12/2017] [Accepted: 05/11/2017] [Indexed: 01/11/2023]
Abstract
Product quality heterogeneities, such as a trisulfide bond (TSB) formation, can be influenced by multiple interacting process parameters. Identifying their root cause is a major challenge in biopharmaceutical production. To address this issue, this paper describes the novel application of advanced multivariate data analysis (MVDA) techniques to identify the process parameters influencing TSB formation in a novel recombinant antibody-peptide fusion expressed in mammalian cell culture. The screening dataset was generated with a high-throughput (HT) micro-bioreactor system (AmbrTM 15) using a design of experiments (DoE) approach. The complex dataset was firstly analyzed through the development of a multiple linear regression model focusing solely on the DoE inputs and identified the temperature, pH and initial nutrient feed day as important process parameters influencing this quality attribute. To further scrutinize the dataset, a partial least squares model was subsequently built incorporating both on-line and off-line process parameters and enabled accurate predictions of the TSB concentration at harvest. Process parameters identified by the models to promote and suppress TSB formation were implemented on five 7 L bioreactors and the resultant TSB concentrations were comparable to the model predictions. This study demonstrates the ability of MVDA to enable predictions of the key performance drivers influencing TSB formation that are valid also upon scale-up. Biotechnol. Bioeng. 2017;114: 2222-2234. © 2017 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Stephen Goldrick
- Department of Biochemical Engineering, The Advanced Centre of Biochemical EngineeringUniversity College LondonGordon StreetWC1H 0AH LondonUnited Kingdom
- MedImmuneGranta ParkCambridge CB21 6GHUnited Kingdom
| | | | | | - Gareth Lewis
- MedImmuneGranta ParkCambridge CB21 6GHUnited Kingdom
| | - Marcel Kuiper
- MedImmuneGranta ParkCambridge CB21 6GHUnited Kingdom
| | | | - Suzanne S. Farid
- Department of Biochemical Engineering, The Advanced Centre of Biochemical EngineeringUniversity College LondonGordon StreetWC1H 0AH LondonUnited Kingdom
| |
Collapse
|
38
|
Xiong Y, Wang R, Peng L, You W, Wei J, Zhang S, Wu X, Guo J, Xu J, Lv Z, Fu Z. An integrated lncRNA, microRNA and mRNA signature to improve prognosis prediction of colorectal cancer. Oncotarget 2017; 8:85463-85478. [PMID: 29156733 PMCID: PMC5689623 DOI: 10.18632/oncotarget.20013] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 06/28/2017] [Indexed: 12/21/2022] Open
Abstract
Although the outcome of patients with colorectal cancer (CRC) has improved significantly, prognosis evaluation still presents challenges due to the disease heterogeneity. Increasing evidences revealed the close correlation between aberrant expression of certain RNAs and the prognosis. We envisioned that combined multiple types of RNAs into a single classifier could improve postoperative risk classification and add prognostic value to the current stage system. Firstly, differentially expressed RNAs including mRNAs, miRNAs and lncRNAs were identified by two different algorithms. Then survival and LASSO analysis was conducted to screen survival-related DERs and build a multi-RNA-based classifier for CRC patient stratification. The prognostic value of the classifier was self-validated in the TCGA CRC cohort and further validated in an external independent set. Finally, survival receiver operating characteristic analysis was used to assess the performance of prognostic prediction. We found that the multi-RNA-based classifier consisted by 12 mRNAs, 1miRNA and 1 lncRNA, which could divide the patients into high and low risk groups with significantly different overall survival (training set: HR 2.54, 95%CI 1.67-3.87, p<0.0001; internal testing set: HR 2.54, 95%CI 1.67-3.87, p<0.0001; validation set: HR 5.02, 95% CI 2.2–11.6; p=0·0002). In addition, the classifier is not only independent of clinical features but also with a similar prognostic ability to the well-established TNM stage (AUC of ROC 0.83 versus 0.74, 95% CI = 0.608-0.824, P =0.0878). Furthermore, combination of the multi-RNA-based classifier with clinical features was a more powerful predictor of prognosis than either of the two parameters alone. In conclusion, the multi-RNA-based classifier may have important clinical implications in the selection of patients with CRC who are at high risk of mortality and add prognostic value to the current stage system.
Collapse
Affiliation(s)
- Yongfu Xiong
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Rong Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Linglong Peng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wenxian You
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jinlai Wei
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Shouru Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xingye Wu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jinbao Guo
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jun Xu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Zhenbing Lv
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Zhongxue Fu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
39
|
Kosa G, Kohler A, Tafintseva V, Zimmermann B, Forfang K, Afseth NK, Tzimorotas D, Vuoristo KS, Horn SJ, Mounier J, Shapaval V. Microtiter plate cultivation of oleaginous fungi and monitoring of lipogenesis by high-throughput FTIR spectroscopy. Microb Cell Fact 2017; 16:101. [PMID: 28599651 PMCID: PMC5466753 DOI: 10.1186/s12934-017-0716-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 06/05/2017] [Indexed: 02/06/2023] Open
Abstract
Background Oleaginous fungi can accumulate lipids by utilizing a wide range of waste substrates. They are an important source for the industrial production of omega-6 polyunsaturated fatty acids (gamma-linolenic and arachidonic acid) and have been suggested as an alternative route for biodiesel production. Initial research steps for various applications include the screening of fungi in order to find efficient fungal producers with desired fatty acid composition. Traditional cultivation methods (shake flask) and lipid analysis (extraction-gas chromatography) are not applicable for large-scale screening due to their low throughput and time-consuming analysis. Here we present a microcultivation system combined with high-throughput Fourier transform infrared (FTIR) spectroscopy for efficient screening of oleaginous fungi. Results The microcultivation system enables highly reproducible fungal fermentations throughout 12 days of cultivation. Reproducibility was validated by FTIR and HPLC data. Analysis of FTIR spectral ester carbonyl peaks of fungal biomass offered a reliable high-throughput at-line method to monitor lipid accumulation. Partial least square regression between gas chromatography fatty acid data and corresponding FTIR spectral data was used to set up calibration models for the prediction of saturated fatty acids, monounsaturated fatty acids, polyunsaturated fatty acids, unsaturation index, total lipid content and main individual fatty acids. High coefficients of determination (R2 = 0.86–0.96) and satisfactory residual predictive deviation of cross-validation (RPDCV = 2.6–5.1) values demonstrated the goodness of these models. Conclusions We have demonstrated in this study, that the presented microcultivation system combined with rapid, high-throughput FTIR spectroscopy is a suitable screening platform for oleaginous fungi. Sample preparation for FTIR measurements can be automated to further increase throughput of the system. Electronic supplementary material The online version of this article (doi:10.1186/s12934-017-0716-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gergely Kosa
- Faculty of Science and Technology, Norwegian University of Life Sciences, Postbox 5003, 1432, Ås, Norway.
| | - Achim Kohler
- Faculty of Science and Technology, Norwegian University of Life Sciences, Postbox 5003, 1432, Ås, Norway
| | - Valeria Tafintseva
- Faculty of Science and Technology, Norwegian University of Life Sciences, Postbox 5003, 1432, Ås, Norway
| | - Boris Zimmermann
- Faculty of Science and Technology, Norwegian University of Life Sciences, Postbox 5003, 1432, Ås, Norway
| | - Kristin Forfang
- Faculty of Science and Technology, Norwegian University of Life Sciences, Postbox 5003, 1432, Ås, Norway
| | | | | | - Kiira S Vuoristo
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Postbox 5003, 1432, Ås, Norway
| | - Svein Jarle Horn
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Postbox 5003, 1432, Ås, Norway
| | - Jerome Mounier
- Université de Brest, EA3882 Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, IBSAM, ESIAB, Technopôle Brest Iroise, 29280, Plouzané, France
| | - Volha Shapaval
- Faculty of Science and Technology, Norwegian University of Life Sciences, Postbox 5003, 1432, Ås, Norway
| |
Collapse
|
40
|
Koepff J, Keller M, Tsolis KC, Busche T, Rückert C, Hamed MB, Anné J, Kalinowski J, Wiechert W, Economou A, Oldiges M. Fast and reliable strain characterization of Streptomyces lividans
through micro-scale cultivation. Biotechnol Bioeng 2017; 114:2011-2022. [DOI: 10.1002/bit.26321] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 02/15/2017] [Accepted: 04/17/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Joachim Koepff
- Forschungszentrum Jülich GmbH; Institute of Bio- and Geosciences; IBG-1: Biotechnology; Leo-Brandt-Straße 52428 Jülich Germany
| | - Matthias Keller
- Forschungszentrum Jülich GmbH; Institute of Bio- and Geosciences; IBG-1: Biotechnology; Leo-Brandt-Straße 52428 Jülich Germany
| | - Konstantinos C. Tsolis
- Laboratory of Molecular Bacteriology; Department of Microbiology and Immunology; Rega Institute for Medical Research; KU Leuven-University of Leuven; Leuven Belgium
| | - Tobias Busche
- Center for Biotechnology (CeBiTec), Microbial Genomics and Biotechnology; Bielefeld University; Bielefeld Germany
| | - Christian Rückert
- Center for Biotechnology (CeBiTec), Microbial Genomics and Biotechnology; Bielefeld University; Bielefeld Germany
| | - Mohamed B. Hamed
- Laboratory of Molecular Bacteriology; Department of Microbiology and Immunology; Rega Institute for Medical Research; KU Leuven-University of Leuven; Leuven Belgium
- Department of Molecular Biology Department; The National Research Centre, Dokki; Giza Egypt
| | - Jozef Anné
- Laboratory of Molecular Bacteriology; Department of Microbiology and Immunology; Rega Institute for Medical Research; KU Leuven-University of Leuven; Leuven Belgium
| | - Joern Kalinowski
- Center for Biotechnology (CeBiTec), Microbial Genomics and Biotechnology; Bielefeld University; Bielefeld Germany
| | - Wolfgang Wiechert
- Forschungszentrum Jülich GmbH; Institute of Bio- and Geosciences; IBG-1: Biotechnology; Leo-Brandt-Straße 52428 Jülich Germany
| | - Anastassios Economou
- Laboratory of Molecular Bacteriology; Department of Microbiology and Immunology; Rega Institute for Medical Research; KU Leuven-University of Leuven; Leuven Belgium
| | - Marco Oldiges
- Forschungszentrum Jülich GmbH; Institute of Bio- and Geosciences; IBG-1: Biotechnology; Leo-Brandt-Straße 52428 Jülich Germany
- Institute of Biotechnology; RWTH Aachen University; Worringer Weg 3 52074 Aachen Germany
| |
Collapse
|
41
|
Fan X, Wu H, Li G, Yuan H, Zhang H, Li Y, Xie X, Chen N. Improvement of uridine production of Bacillus subtilis by atmospheric and room temperature plasma mutagenesis and high-throughput screening. PLoS One 2017; 12:e0176545. [PMID: 28472077 PMCID: PMC5417507 DOI: 10.1371/journal.pone.0176545] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 04/12/2017] [Indexed: 12/30/2022] Open
Abstract
In the present study, a novel breeding strategy of atmospheric and room temperature plasma (ARTP) mutagenesis was used to improve the uridine production of engineered Bacillus subtilis TD12np. A high-throughput screening method was established using both resistant plates and 96-well microplates to select the ideal mutants with diverse phenotypes. Mutant F126 accumulated 5.7 and 30.3 g/L uridine after 30 h in shake-flask and 48 h in fed-batch fermentation, respectively, which represented a 4.4- and 8.7-fold increase over the parent strain. Sequence analysis of the pyrimidine nucleotide biosynthetic operon in the representative mutants showed that proline 1016 and glutamate 949 in the large subunit of B. subtilis carbamoyl phosphate synthetase were of importance for the allosteric regulation caused by uridine 5′-monophosphate. The proposed mutation method with efficient high-throughput screening assay was proved to be an appropriate strategy to obtain uridine-overproducing strain.
Collapse
Affiliation(s)
- Xiaoguang Fan
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin, P. R. China
- Key Laboratory of Microbial Engineering of China Light Industry, Tianjin University of Science and Technology, Tianjin, China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Heyun Wu
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin, P. R. China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Guoliang Li
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin, P. R. China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Hui Yuan
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin, P. R. China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Hongchao Zhang
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin, P. R. China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Yanjun Li
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin, P. R. China
- Key Laboratory of Microbial Engineering of China Light Industry, Tianjin University of Science and Technology, Tianjin, China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Xixian Xie
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin, P. R. China
- Key Laboratory of Microbial Engineering of China Light Industry, Tianjin University of Science and Technology, Tianjin, China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
- * E-mail: (XX); (NC)
| | - Ning Chen
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin, P. R. China
- Key Laboratory of Microbial Engineering of China Light Industry, Tianjin University of Science and Technology, Tianjin, China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
- * E-mail: (XX); (NC)
| |
Collapse
|
42
|
Rodrigues CJC, Pereira RFS, Fernandes P, Cabral JMS, de Carvalho CCCR. Cultivation-based strategies to find efficient marine biocatalysts. Biotechnol J 2017; 12. [PMID: 28294564 DOI: 10.1002/biot.201700036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/02/2017] [Accepted: 03/10/2017] [Indexed: 11/05/2022]
Abstract
Marine bacteria have evolved to survive in the marine environment by using unique physiological, biochemical and metabolic features and the ability to produce enzymes and compounds which may have commercial value. The Azores archipelago presents several ecosystems with strong volcanic activity where bacteria thrive under e.g. high temperatures. In this study, samples collected in the island of São Miguel were screened for biocatalysts possessing e.g. lipase, esterase, amylase, and inulinase activities. After isolation of several hundred bacterial strains, high throughput screening methods allowed the fast identification of biocatalysts. The first cultivation tests were performed on 24-wells microtiter plates with online oxygen monitoring and bacteria able to grow within 24 h were selected for further process development. Bacteria able to produce the desired enzymes were selected for the first round of tests. Four Bacillus strains presented high inulinase activity. The next step in process development was the determination of key parameters for enzyme activity such as temperature, pH, salinity and substrate concentration. The highest inulinase activity, 2.2 gsugars /gprotein h, was attained when the supernatant of a culture of a Bacillus subtilis strain was used in a magnetically stirred bioreactor. This study demonstrates how bacterial strains from marine environments may be used successfully in biotechnological processes.
Collapse
Affiliation(s)
- Carlos J C Rodrigues
- iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Ricardo F S Pereira
- iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Pedro Fernandes
- iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Joaquim M S Cabral
- iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Carla C C R de Carvalho
- iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
43
|
Development of a method for efficient cost-effective screening of Aspergillus niger mutants having increased production of glucoamylase. Biotechnol Lett 2017; 39:739-744. [DOI: 10.1007/s10529-017-2291-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 01/19/2017] [Indexed: 10/20/2022]
|
44
|
Cruz Bournazou M, Barz T, Nickel D, Lopez Cárdenas D, Glauche F, Knepper A, Neubauer P. Online optimal experimental re-design in robotic parallel fed-batch cultivation facilities. Biotechnol Bioeng 2016; 114:610-619. [DOI: 10.1002/bit.26192] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 09/29/2016] [Indexed: 11/07/2022]
Affiliation(s)
- M.N. Cruz Bournazou
- Chair of Bioprocess Engineering; Institute of Biotechnology, Technische Universität Berlin; Berlin Germany
| | - T. Barz
- Department of Energy; Austrian Institute of Technology GmbH; Vienna Austria
| | - D.B. Nickel
- Chair of Bioprocess Engineering; Institute of Biotechnology, Technische Universität Berlin; Berlin Germany
| | - D.C. Lopez Cárdenas
- Chair of Bioprocess Engineering; Institute of Biotechnology, Technische Universität Berlin; Berlin Germany
| | - F. Glauche
- Chair of Bioprocess Engineering; Institute of Biotechnology, Technische Universität Berlin; Berlin Germany
| | - A. Knepper
- Chair of Bioprocess Engineering; Institute of Biotechnology, Technische Universität Berlin; Berlin Germany
| | - P. Neubauer
- Chair of Bioprocess Engineering; Institute of Biotechnology, Technische Universität Berlin; Berlin Germany
| |
Collapse
|
45
|
Recent advances in high-throughput 13C-fluxomics. Curr Opin Biotechnol 2016; 43:104-109. [PMID: 27838571 DOI: 10.1016/j.copbio.2016.10.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 10/21/2016] [Accepted: 10/25/2016] [Indexed: 12/11/2022]
Abstract
The rise of high throughput (HT) strain engineering tools accompanying the area of synthetic biology is supporting the generation of a large number of microbial cell factories. A current bottleneck in process development is our limited capacity to rapidly analyze the metabolic state of the engineered strains, and in particular their intracellular fluxes. HT 13C-fluxomics workflows have not yet become commonplace, despite the existence of several HT tools at each of the required stages. This includes cultivation and sampling systems, analytics for isotopic analysis, and software for data processing and flux calculation. Here, we review recent advances in the field and highlight bottlenecks that must be overcome to allow the emergence of true HT 13C-fluxomics workflows.
Collapse
|
46
|
Glauche F, Pilarek M, Bournazou MNC, Grunzel P, Neubauer P. Design of experiments-based high-throughput strategy for development and optimization of efficient cell disruption protocols. Eng Life Sci 2016; 17:1166-1172. [PMID: 32624744 DOI: 10.1002/elsc.201600030] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 05/26/2016] [Accepted: 07/25/2016] [Indexed: 01/13/2023] Open
Abstract
Efficient and reproducible cell lysis is a crucial step during downstream processing of intracellular products. The composition of an optimal lysis buffer should be chosen depending on the organism, its growth status, the applied detection methods, and even the target molecule. Especially for high-throughput applications, where sample volumes are limited, the adaptation of a lysis buffer to the specific campaign is an urgent need. Here, we present a general design of experiments-based strategy suitable for eight constituents and demonstrate the strength of this approach by the development of an efficient lysis buffer for Gram-negative bacteria, which is applicable in a high-throughput format in a short time. The concentrations of four lysis-inducing chemical agents EDTA, lysozyme, Triton X-100, and polymyxin B were optimized for maximal soluble protein concentration and ß-galactosidase activity in a 96-well format on a Microlab Star liquid handling platform under design of experiments methodology. The resulting lysis buffer showed the same performance as a commercially available lysis buffer. The developed protocol resulted in an optimized buffer within only three runs. The established procedure can be easily applied to adapt the lysis buffer to other strains and target molecules.
Collapse
Affiliation(s)
- Florian Glauche
- Chair of Bioprocess Engineering, Institute of Biotechnology Technische Universität Berlin Berlin Germany
| | - Maciej Pilarek
- Faculty of Chemical and Process Engineering Warsaw University of Technology Warsaw Poland
| | | | - Petra Grunzel
- Chair of Bioprocess Engineering, Institute of Biotechnology Technische Universität Berlin Berlin Germany
| | - Peter Neubauer
- Chair of Bioprocess Engineering, Institute of Biotechnology Technische Universität Berlin Berlin Germany
| |
Collapse
|
47
|
Tripathi NK. Production and Purification of Recombinant Proteins fromEscherichia coli. CHEMBIOENG REVIEWS 2016. [DOI: 10.1002/cben.201600002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
48
|
Freier L, Hemmerich J, Schöler K, Wiechert W, Oldiges M, von Lieres E. Framework for Kriging-based iterative experimental analysis and design: Optimization of secretory protein production inCorynebacterium glutamicum. Eng Life Sci 2016. [DOI: 10.1002/elsc.201500171] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Lars Freier
- Institute for Bio- and Geosciences, Biotechnology (IBG-1); Forschungszentrum Jülich; Jülich Germany
| | - Johannes Hemmerich
- Institute for Bio- and Geosciences, Biotechnology (IBG-1); Forschungszentrum Jülich; Jülich Germany
- BioEconomy Science Center; (BioSC)
| | - Katja Schöler
- Institute for Bio- and Geosciences, Biotechnology (IBG-1); Forschungszentrum Jülich; Jülich Germany
- BioEconomy Science Center; (BioSC)
| | - Wolfgang Wiechert
- Institute for Bio- and Geosciences, Biotechnology (IBG-1); Forschungszentrum Jülich; Jülich Germany
- BioEconomy Science Center; (BioSC)
| | - Marco Oldiges
- Institute for Bio- and Geosciences, Biotechnology (IBG-1); Forschungszentrum Jülich; Jülich Germany
- BioEconomy Science Center; (BioSC)
- Institute of Biotechnology; RWTH Aachen University; Aachen Germany
| | - Eric von Lieres
- Institute for Bio- and Geosciences, Biotechnology (IBG-1); Forschungszentrum Jülich; Jülich Germany
- Institute of Biotechnology; RWTH Aachen University; Aachen Germany
| |
Collapse
|
49
|
Engineering microbial consortia for controllable outputs. ISME JOURNAL 2016; 10:2077-84. [PMID: 26967105 PMCID: PMC4989317 DOI: 10.1038/ismej.2016.26] [Citation(s) in RCA: 198] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 11/29/2015] [Accepted: 12/30/2015] [Indexed: 01/06/2023]
Abstract
Much research has been invested into engineering microorganisms to perform desired biotransformations; nonetheless, these efforts frequently fall short of expected results due to the unforeseen effects of biofeedback regulation and functional incompatibility. In nature, metabolic function is compartmentalized into diverse organisms assembled into robust consortia, in which the division of labor is thought to lead to increased community efficiency and productivity. Here we consider whether and how consortia can be designed to perform bioprocesses of interest beyond the metabolic flexibility limitations of a single organism. Advances in post-genomic analysis of microbial consortia and application of high-resolution global measurements now offer the promise of systems-level understanding of how microbial consortia adapt to changes in environmental variables and inputs of carbon and energy. We argue that, when combined with appropriate modeling frameworks, systems-level knowledge can markedly improve our ability to predict the fate and functioning of consortia. Here we articulate our collective perspective on the current and future state of microbial community engineering and control while placing specific emphasis on ecological principles that promote control over community function and emergent properties.
Collapse
|
50
|
Schmideder A, Hensler S, Lang M, Stratmann A, Giesecke U, Weuster-Botz D. High-cell-density cultivation and recombinant protein production with Komagataella pastoris in stirred-tank bioreactors from milliliter to cubic meter scale. Process Biochem 2016. [DOI: 10.1016/j.procbio.2015.11.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|