1
|
Wang F, Zang Z, Zhao Q, Xiaoyang C, Lei X, Wang Y, Ma Y, Cao R, Song X, Tang L, Deyholos MK, Zhang J. Advancement of Research Progress on Synthesis Mechanism of Cannabidiol (CBD). ACS Synth Biol 2024; 13:2008-2018. [PMID: 38900848 PMCID: PMC11264327 DOI: 10.1021/acssynbio.4c00239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 06/22/2024]
Abstract
Cannabis sativa L. is a multipurpose crop with high value for food, textiles, and other industries. Its secondary metabolites, including cannabidiol (CBD), have potential for broad application in medicine. With the CBD market expanding, traditional production may not be sufficient. Here we review the potential for the production of CBD using biotechnology. We describe the chemical and biological synthesis of cannabinoids, the associated enzymes, and the application of metabolic engineering, synthetic biology, and heterologous expression to increasing production of CBD.
Collapse
Affiliation(s)
- Fu Wang
- Faculty
of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Zhenyuan Zang
- Faculty
of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Qian Zhao
- Faculty
of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Chunxiao Xiaoyang
- Faculty
of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Xiujuan Lei
- College
of Chinese Medicinal Materials, Jilin Agricultural
University, Changchun 130118, China
| | - Yingping Wang
- College
of Chinese Medicinal Materials, Jilin Agricultural
University, Changchun 130118, China
| | - Yiqiao Ma
- Faculty
of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Rongan Cao
- College
of Food Science, Heilongjiang Bayi Agricultural
University, Daqing 163319, China
| | - Xixia Song
- Institute
of Industrial Crops of Heilongjiang Academy of Agricultural Sciences, Haerbin 150000, China
| | - Lili Tang
- Institute
of Industrial Crops of Heilongjiang Academy of Agricultural Sciences, Haerbin 150000, China
| | - Michael K. Deyholos
- Department
of Biology, University of British Columbia,
Okanagan, Kelowna, BC V1V 1V7, Canada
| | - Jian Zhang
- Faculty
of Agronomy, Jilin Agricultural University, Changchun 130118, China
- Department
of Biology, University of British Columbia,
Okanagan, Kelowna, BC V1V 1V7, Canada
| |
Collapse
|
2
|
Jordan EN, Shirali Hossein Zade R, Pillay S, van Lent P, Abeel T, Kayser O. Integrated omics of Saccharomyces cerevisiae CENPK2-1C reveals pleiotropic drug resistance and lipidomic adaptations to cannabidiol. NPJ Syst Biol Appl 2024; 10:63. [PMID: 38821949 PMCID: PMC11143246 DOI: 10.1038/s41540-024-00382-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 05/13/2024] [Indexed: 06/02/2024] Open
Abstract
Yeast metabolism can be engineered to produce xenobiotic compounds, such as cannabinoids, the principal isoprenoids of the plant Cannabis sativa, through heterologous metabolic pathways. However, yeast cell factories continue to have low cannabinoid production. This study employed an integrated omics approach to investigate the physiological effects of cannabidiol on S. cerevisiae CENPK2-1C yeast cultures. We treated the experimental group with 0.5 mM CBD and monitored CENPK2-1C cultures. We observed a latent-stationary phase post-diauxic shift in the experimental group and harvested samples in the inflection point of this growth phase for transcriptomic and metabolomic analysis. We compared the transcriptomes of the CBD-treated yeast and the positive control, identifying eight significantly overexpressed genes with a log fold change of at least 1.5 and a significant adjusted p-value. Three notable genes were PDR5 (an ABC-steroid and cation transporter), CIS1, and YGR035C. These genes are all regulated by pleiotropic drug resistance linked promoters. Knockout and rescue of PDR5 showed that it is a causal factor in the post-diauxic shift phenotype. Metabolomic analysis revealed 48 significant spectra associated with CBD-fed cell pellets, 20 of which were identifiable as non-CBD compounds, including fatty acids, glycerophospholipids, and phosphate-salvage indicators. Our results suggest that mitochondrial regulation and lipidomic remodeling play a role in yeast's response to CBD, which are employed in tandem with pleiotropic drug resistance (PDR). We conclude that bioengineers should account for off-target product C-flux, energy use from ABC-transport, and post-stationary phase cell growth when developing cannabinoid-biosynthetic yeast strains.
Collapse
Affiliation(s)
- Erin Noel Jordan
- Technical Biochemistry, TU Dortmund University, Emil-Figge-Straße 66, 44227, Dortmund, Germany.
| | - Ramin Shirali Hossein Zade
- Delft Bioinformatics Lab, Delft University of Technology Van Mourik, Broekmanweg 6, 2628 XE, Delft, The Netherlands
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
- Leiden Center for Computational Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Stephanie Pillay
- Delft Bioinformatics Lab, Delft University of Technology Van Mourik, Broekmanweg 6, 2628 XE, Delft, The Netherlands
| | - Paul van Lent
- Delft Bioinformatics Lab, Delft University of Technology Van Mourik, Broekmanweg 6, 2628 XE, Delft, The Netherlands
| | - Thomas Abeel
- Delft Bioinformatics Lab, Delft University of Technology Van Mourik, Broekmanweg 6, 2628 XE, Delft, The Netherlands
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA, 02142, USA
| | - Oliver Kayser
- Technical Biochemistry, TU Dortmund University, Emil-Figge-Straße 66, 44227, Dortmund, Germany.
| |
Collapse
|
3
|
Jordan EN, Schmidt C, Kayser O. Foldseek reveals a CBGA prenylating enzyme GlyMa_02G168000 from Glycine max. Biochem Biophys Res Commun 2024; 696:149471. [PMID: 38219483 DOI: 10.1016/j.bbrc.2024.149471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 01/03/2024] [Indexed: 01/16/2024]
Abstract
The present research provides an application for an aromatic prenyltransferase from Glycine max for use in heterologous microorganism expression to generate cannabinoids. The known cannabinoid prenyltransferase CsPT04 was queried in FoldSeek. An enzyme derived from Glycine max known as GLYMA_02G168000, which is a predicted homogentisate solanyltransferase, was identified and found to have affinity for the prenylation of geranyldiphosphate (GPP) and olivetolic acid (OA) to produce cannabigerolic acid (CBGA) and cannabigerol (CBG). The in vitro production of CBGA was accomplished through the heterologous expression of this prenyltransferase in Saccharomyces cerevisiae. After growing the yeast cells, a purified microsomal fraction was harvested, which was rich in the membrane-bound prenyltransferase GlyMa_02G168000. Addition of purified microsomal fraction to a reaction matrix facilitated the successful prenylation of externally supplied OA with GPP, culminating in the production of CBGA. Structural comparisons revealed a notably closer similarity between GLYMA_02G168000 and CsPT04, compared to the similarity of other cannabinoid prenyltransferases with CsPT04. Herein, a novel application for a homogentisate solanyltransferase has been established towards the production of cannabinoids.
Collapse
Affiliation(s)
- Erin Noel Jordan
- Technical Biochemistry, TU Dortmund University, Emil-Figge-Straße 66, 44227, Dortmund, Germany
| | - Christina Schmidt
- Technical Biochemistry, TU Dortmund University, Emil-Figge-Straße 66, 44227, Dortmund, Germany
| | - Oliver Kayser
- Technical Biochemistry, TU Dortmund University, Emil-Figge-Straße 66, 44227, Dortmund, Germany.
| |
Collapse
|
4
|
Schmidt C, Aras M, Kayser O. Engineering cannabinoid production in Saccharomyces cerevisiae. Biotechnol J 2024; 19:e2300507. [PMID: 38403455 DOI: 10.1002/biot.202300507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 02/27/2024]
Abstract
Phytocannabinoids are natural products with highly interesting pharmacological properties mainly produced by plants. The production of cannabinoids in a heterologous host system has gained interest in recent years as a promising alternative to production from plant material. However, the systems reported so far do not achieve industrially relevant titers, highlighting the need for alternative systems. Here, we show the production of the cannabinoids cannabigerolic acid and cannabigerol from glucose and hexanoic acid in a heterologous yeast system using the aromatic prenyltransferase NphB from Streptomyces sp. strain CL190. The production was significantly increased by introducing a fusion protein consisting of ERG20WW and NphB. Furthermore, we improved the production of the precursor olivetolic acid to a titer of 56 mg L-1 . The implementation of the cannabinoid synthase genes enabled the production of Δ9 -tetrahydrocannabinolic acid, cannabidiolic acid as well as cannabichromenic acid, where the heterologous biosynthesis of cannabichromenic acid in a yeast system was demonstrated for the first time. In addition, we found that the product spectrum of the cannabinoid synthases localized to the vacuoles of the yeast cells was highly dependent on extracellular pH, allowing for easy manipulation. Finally, using a fed-batch approach, we showed cannabigerolic acid and olivetolic acid titers of up to 18.2 mg L-1 and 117 mg L-1 , respectively.
Collapse
Affiliation(s)
- Christina Schmidt
- Technical Biochemistry Laboratory, Faculty of Biochemical and Chemical Engineering, TU Dortmund University, Dortmund, Germany
| | - Marco Aras
- Technical Biochemistry Laboratory, Faculty of Biochemical and Chemical Engineering, TU Dortmund University, Dortmund, Germany
| | - Oliver Kayser
- Technical Biochemistry Laboratory, Faculty of Biochemical and Chemical Engineering, TU Dortmund University, Dortmund, Germany
| |
Collapse
|
5
|
Bolaños-Martínez OC, Malla A, Rosales-Mendoza S, Vimolmangkang S. Harnessing the advances of genetic engineering in microalgae for the production of cannabinoids. Crit Rev Biotechnol 2023; 43:823-834. [PMID: 35762029 DOI: 10.1080/07388551.2022.2071672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/24/2022] [Accepted: 04/16/2022] [Indexed: 11/03/2022]
Abstract
Cannabis is widely recognized as a medicinal plant owing to bioactive cannabinoids. However, it is still considered a narcotic plant, making it hard to be accessed. Since the biosynthetic pathway of cannabinoids is disclosed, biotechnological methods can be employed to produce cannabinoids in heterologous systems. This would pave the way toward biosynthesizing any cannabinoid compound of interest, especially minor substances that are less produced by a plant but have a high medicinal value. In this context, microalgae have attracted increasing scientific interest given their unique potential for biopharmaceutical production. In the present review, the current knowledge on cannabinoid production in different hosts is summarized and the biotechnological potential of microalgae as an emerging platform for synthetic production is put in perspective. A critical survey of genetic requirements and various transformation approaches are also discussed.
Collapse
Affiliation(s)
- Omayra C Bolaños-Martínez
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand
| | - Ashwini Malla
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand
| | - Sergio Rosales-Mendoza
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
- Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Sornkanok Vimolmangkang
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
6
|
The B1080/B1192 molecular marker identifies hemp plants with functional THCA synthase and total THC content above legal limit. Gene 2023; 858:147198. [PMID: 36641078 DOI: 10.1016/j.gene.2023.147198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
In Cannabis sativa L. the presence of delta 9-tetrahydrocannabinolic acid (THCA) above legal limit is a challenging issue that still restricts the industrial exploitation of this promising crop. In recent years, the interest of entrepreneurs and growers who see hemp as a dynamic and profitable crop was joined by the growing knowledge on C. sativa genetics and genomics, accelerated by the application of high throughput tools. Despite the renewed interest in the species, much remains to be clarified, especially about the long-standing problem of THCA in hemp inflorescences, which could even result in the seizure of the whole harvest. Although several hypotheses have been formulated on the accumulation of this metabolite in industrial varieties, none is conclusive yet. In this work, individuals of a population of the hemp cultivar 'FINOLA' obtained from commercial seeds were investigated for total THC level and examined at molecular level. A marker linked to THCA synthase was found at a high incidence in both male and female plants, suggesting a considerable genetic variability within the seed batch. Full-length sequences encoding for putatively functional THCA synthases were isolated for the first time from the genome of both female and male plants of an industrial hemp variety and, using transcriptional analysis, the THCA synthase expression was quantified in mature inflorescences of individuals identified by the marker. Biochemical analyses finally demonstrated for these plants a 100% association between the predicted and actual chemotype.
Collapse
|
7
|
Dupuis JH, Cheung LKY, Newman L, Dee DR, Yada RY. Precision cellular agriculture: The future role of recombinantly expressed protein as food. Compr Rev Food Sci Food Saf 2023; 22:882-912. [PMID: 36546356 DOI: 10.1111/1541-4337.13094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/16/2022] [Accepted: 11/27/2022] [Indexed: 12/24/2022]
Abstract
Cellular agriculture is a rapidly emerging field, within which cultured meat has attracted the majority of media attention in recent years. An equally promising area of cellular agriculture, and one that has produced far more actual food ingredients that have been incorporated into commercially available products, is the use of cellular hosts to produce soluble proteins, herein referred to as precision cellular agriculture (PCAg). In PCAg, specific animal- or plant-sourced proteins are expressed recombinantly in unicellular hosts-the majority of which are yeast-and harvested for food use. The numerous advantages of PCAg over traditional agriculture, including a smaller carbon footprint and more consistent products, have led to extensive research on its utility. This review is the first to survey proteins currently being expressed using PCAg for food purposes. A growing number of viable expression hosts and recent advances for increased protein yields and process optimization have led to its application for producing milk, egg, and muscle proteins; plant hemoglobin; sweet-tasting plant proteins; and ice-binding proteins. Current knowledge gaps present research opportunities for optimizing expression hosts, tailoring posttranslational modifications, and expanding the scope of proteins produced. Considerations for the expansion of PCAg and its implications on food regulation, society, ethics, and the environment are also discussed. Considering the current trajectory of PCAg, food proteins from any biological source can likely be expressed recombinantly and used as purified food ingredients to create novel and tailored food products.
Collapse
Affiliation(s)
- John H Dupuis
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Lennie K Y Cheung
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Lenore Newman
- Food and Agriculture Institute, University of the Fraser Valley, Abbotsford, British Columbia, Canada
| | - Derek R Dee
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Rickey Y Yada
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
8
|
Kosalková K, Barreiro C, Sánchez-Orejas IC, Cueto L, García-Estrada C. Biotechnological Fungal Platforms for the Production of Biosynthetic Cannabinoids. J Fungi (Basel) 2023; 9:jof9020234. [PMID: 36836348 PMCID: PMC9963667 DOI: 10.3390/jof9020234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/07/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Cannabinoids are bioactive meroterpenoids comprising prenylated polyketide molecules that can modulate a wide range of physiological processes. Cannabinoids have been shown to possess various medical/therapeutic effects, such as anti-convulsive, anti-anxiety, anti-psychotic, antinausea, and anti-microbial properties. The increasing interest in their beneficial effects and application as clinically useful drugs has promoted the development of heterologous biosynthetic platforms for the industrial production of these compounds. This approach can help circumvent the drawbacks associated with extraction from naturally occurring plants or chemical synthesis. In this review, we provide an overview of the fungal platforms developed by genetic engineering for the biosynthetic production of cannabinoids. Different yeast species, such as Komagataella phaffii (formerly P. pastoris) and Saccharomyces cerevisiae, have been genetically modified to include the cannabinoid biosynthetic pathway and to improve metabolic fluxes in order to increase cannabinoid titers. In addition, we engineered the filamentous fungus Penicillium chrysogenum for the first time as a host microorganism for the production of Δ9-tetrahydrocannabinolic acid from intermediates (cannabigerolic acid and olivetolic acid), thereby showing the potential of filamentous fungi as alternative platforms for cannabinoid biosynthesis upon optimization.
Collapse
Affiliation(s)
- Katarina Kosalková
- INBIOTEC (Instituto de Biotecnología de León), Av. Real 1, 24006 León, Spain
| | - Carlos Barreiro
- INBIOTEC (Instituto de Biotecnología de León), Av. Real 1, 24006 León, Spain
- Área de Bioquímica y Biología Molecular, Departamento de Biología Molecular, Campus de Vegazana, Universidad de León, 24007 León, Spain
| | | | - Laura Cueto
- INBIOTEC (Instituto de Biotecnología de León), Av. Real 1, 24006 León, Spain
| | - Carlos García-Estrada
- INBIOTEC (Instituto de Biotecnología de León), Av. Real 1, 24006 León, Spain
- Departamento de Ciencias Biomédicas, Campus de Vegazana, Universidad de León, 24007 León, Spain
- Correspondence: ; Tel.: +34-987-293-693
| |
Collapse
|
9
|
Wiles D, Shanbhag BK, O'Brien M, Doblin MS, Bacic A, Beddoe T. Heterologous production of Cannabis sativa-derived specialised metabolites of medicinal significance - Insights into engineering strategies. PHYTOCHEMISTRY 2022; 203:113380. [PMID: 36049526 DOI: 10.1016/j.phytochem.2022.113380] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 08/08/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
Cannabis sativa L. has been known for at least 2000 years as a source of important, medically significant specialised metabolites and several bio-active molecules have been enriched from multiple chemotypes. However, due to the many levels of complexity in both the commercial cultivation of cannabis and extraction of its specialised metabolites, several heterologous production approaches are being pursued in parallel. In this review, we outline the recent achievements in engineering strategies used for heterologous production of cannabinoids, terpenes and flavonoids along with their strength and weakness. We provide an overview of the specialised metabolism pathway in C. sativa and a comprehensive list of the specialised metabolites produced along with their medicinal significance. We highlight cannabinoid-like molecules produced by other species. We discuss the key biosynthetic enzymes and their heterologous production using various hosts such as microbial and eukaryotic systems. A brief discussion on complementary production strategies using co-culturing and cell-free systems is described. Various approaches to optimise specialised metabolite production through co-expression, enzyme engineering and pathway engineering are discussed. We derive insights from recent advances in metabolic engineering of hosts with improved precursor supply and suggest their application for the production of C. sativa speciality metabolites. We present a collation of non-conventional hosts with speciality traits that can improve the feasibility of commercial heterologous production of cannabis-based specialised metabolites. We provide a perspective of emerging research in synthetic biology, allied analytical techniques and plant heterologous platforms as focus areas for heterologous production of cannabis specialised metabolites in the future.
Collapse
Affiliation(s)
- Danielle Wiles
- Department of Animal, Plant and Soil Sciences and AgriBio Centre for AgriBioscience, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, 3083, Australia; Australian Research Council Research Hub for Medicinal Agriculture, AgriBio Centre for AgriBioscience, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Bhuvana K Shanbhag
- Department of Animal, Plant and Soil Sciences and AgriBio Centre for AgriBioscience, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, 3083, Australia; Australian Research Council Research Hub for Medicinal Agriculture, AgriBio Centre for AgriBioscience, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Martin O'Brien
- Department of Animal, Plant and Soil Sciences and AgriBio Centre for AgriBioscience, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, 3083, Australia; Australian Research Council Research Hub for Medicinal Agriculture, AgriBio Centre for AgriBioscience, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Monika S Doblin
- Department of Animal, Plant and Soil Sciences and AgriBio Centre for AgriBioscience, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, 3083, Australia; Australian Research Council Research Hub for Medicinal Agriculture, AgriBio Centre for AgriBioscience, La Trobe University, Bundoora, VIC, 3086, Australia; La Trobe Institute for Agriculture & Food, Department of Animal, Plant and Soil Science, AgriBio Centre for AgriBioscience, La Trobe University, Bundoora, VIC, Australia
| | - Antony Bacic
- Department of Animal, Plant and Soil Sciences and AgriBio Centre for AgriBioscience, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, 3083, Australia; Australian Research Council Research Hub for Medicinal Agriculture, AgriBio Centre for AgriBioscience, La Trobe University, Bundoora, VIC, 3086, Australia; La Trobe Institute for Agriculture & Food, Department of Animal, Plant and Soil Science, AgriBio Centre for AgriBioscience, La Trobe University, Bundoora, VIC, Australia
| | - Travis Beddoe
- Department of Animal, Plant and Soil Sciences and AgriBio Centre for AgriBioscience, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, 3083, Australia; Australian Research Council Research Hub for Medicinal Agriculture, AgriBio Centre for AgriBioscience, La Trobe University, Bundoora, VIC, 3086, Australia.
| |
Collapse
|
10
|
Ito Y, Ishigami M, Terai G, Nakamura Y, Hashiba N, Nishi T, Nakazawa H, Hasunuma T, Asai K, Umetsu M, Ishii J, Kondo A. A streamlined strain engineering workflow with genome-wide screening detects enhanced protein secretion in Komagataella phaffii. Commun Biol 2022; 5:561. [PMID: 35676418 PMCID: PMC9177720 DOI: 10.1038/s42003-022-03475-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 05/11/2022] [Indexed: 11/26/2022] Open
Abstract
Expression of secreted recombinant proteins burdens the protein secretion machinery, limiting production. Here, we describe an approach to improving protein production by the non-conventional yeast Komagataella phaffii comprised of genome-wide screening for effective gene disruptions, combining them in a single strain, and recovering growth reduction by adaptive evolution. For the screen, we designed a multiwell-formatted, streamlined workflow to high-throughput assay of secretion of a single-chain small antibody, which is cumbersome to detect but serves as a good model of proteins that are difficult to secrete. Using the consolidated screening system, we evaluated >19,000 mutant strains from a mutant library prepared by a modified random gene-disruption method, and identified six factors for which disruption led to increased antibody production. We then combined the disruptions, up to quadruple gene knockouts, which appeared to contribute independently, in a single strain and observed an additive effect. Target protein and promoter were basically interchangeable for the effects of knockout genes screened. We finally used adaptive evolution to recover reduced cell growth by multiple gene knockouts and examine the possibility for further enhancing protein secretion. Our successful, three-part approach holds promise as a method for improving protein production by non-conventional microorganisms.
Collapse
Affiliation(s)
- Yoichiro Ito
- Engineering Biology Research Center, Kobe University, Kobe, Japan
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan
| | - Misa Ishigami
- Technology Research Association of Highly Efficient Gene Design (TRAHED), Kobe, Japan
| | - Goro Terai
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Chiba, Japan
| | - Yasuyuki Nakamura
- Engineering Biology Research Center, Kobe University, Kobe, Japan
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan
| | - Noriko Hashiba
- Technology Research Association of Highly Efficient Gene Design (TRAHED), Kobe, Japan
| | - Teruyuki Nishi
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan
- Bio-Pharma Research Laboratories, Kaneka Corporation, Takasago, Japan
| | - Hikaru Nakazawa
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Tomohisa Hasunuma
- Engineering Biology Research Center, Kobe University, Kobe, Japan
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan
| | - Kiyoshi Asai
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Chiba, Japan
| | - Mitsuo Umetsu
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Jun Ishii
- Engineering Biology Research Center, Kobe University, Kobe, Japan.
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan.
| | - Akihiko Kondo
- Engineering Biology Research Center, Kobe University, Kobe, Japan.
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan.
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Japan.
| |
Collapse
|
11
|
|
12
|
Murovec J, Eržen JJ, Flajšman M, Vodnik D. Analysis of Morphological Traits, Cannabinoid Profiles, THCAS Gene Sequences, and Photosynthesis in Wide and Narrow Leaflet High-Cannabidiol Breeding Populations of Medical Cannabis. FRONTIERS IN PLANT SCIENCE 2022; 13:786161. [PMID: 35283868 PMCID: PMC8907982 DOI: 10.3389/fpls.2022.786161] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Cannabis sativa L. is one of the oldest cultivated crops, used in medicine for millennia due to therapeutic characteristics of the phytocannabinoids it contains. Its medicinal properties are highly influenced by the chemotype, that is, the ratio of the two main cannabinoids cannabidiol (CBD) and Δ-9-tetrahydrocannabinol (THC). Based on published data, the chemotype should correlate with plant morphology, genetics, and photosynthetic properties. In this work, we investigated leaf morphology, plant growth characteristics, cannabinoid profiles, THCAS gene sequences, and plant photosynthetic traits in two breeding populations of medical cannabis (MX-CBD-11 and MX-CBD-707). The populations differed significantly in morphological traits. The MX-CBD-11 plants were taller, less branched, and their leaves had narrower leaflets than the bushier, wideleaved MX-CBD-707 plants, and there were significant differences between populations in the dry biomass of different plant parts. Based on these morphological differences, MX-CBD-11 was designated as a narrow leaflet drug type or vernacular "Sativa" type, while MX-CBD-707 was classified as wide leaflet drug type or "Indica" type. Chemical characterisation revealed a discrepancy between the expected chemotypes based on plant morphology; although both populations have high CBD, within each Type II (CBD/THC intermediate) and Type III (CBD dominant) plants were detected. The THCAS gene sequence analysis clustered the plants based on their chemotypes and showed high similarity to the THCAS sequences deposited in NCBI. In silico complementary analysis, using published molecular markers for chemotype determination, showed their low discrimination power in our two populations, demonstrating the genotype dependence of the molecular markers. Basic photosynthetic traits derived from light and CO2 response curves were similar in the populations. However, measurements of gas exchange under chamber conditions revealed higher stomatal conductivity and photosynthesis in MX-CBD-707 plants, which were also characterised by higher day respiration. The results of this study showed that based on visual appearance and some morphological measurements, it is not possible to determine a plant's chemotype. Visually homogenous plants had different cannabinoid profiles and, vice versa, morphologically distinct plants contained similar CBD and THC content. The two chemotypes identified in our experimental plants therefore did not correlate with plant visual appearance, leaf morphometry, and photosynthetic properties of the populations studied. Correlation was only demonstrated with the respect to THCAS sequences, which showed great discrimination power between the chemotypes.
Collapse
|
13
|
Han M, Wang W, Gong X, Zhou J, Xu C, Li Y. Increased expression of recombinant chitosanase by co-expression of Hac1p in the yeast Pichia pastoris. Protein Pept Lett 2021; 28:1434-1441. [PMID: 34749599 DOI: 10.2174/0929866528666211105111155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/13/2021] [Accepted: 09/20/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Pichia pastoris is one of the most popular eukaryotic hosts for producing heterologous proteins, while increasing secretion of target proteins is still a top priority for their application in industrial fields. Recently, the research effort to enhance protein production therein has focused on up-regulating the unfolded protein response (UPR). OBJECTIVE We evaluated the effects of activated UPR via Hac1p co-expression with the promoter AOX1 (PAOX1) or GAP (PGAP) on expression of recombinant chitosanase (rCBS) in P. pastoris. METHOD The DNA sequence encoding the chitosanase was chemically synthesized and cloned into pPICZαA and the resulted pPICZαA/rCBS was transformed into P. pastoris for expressing rCBS. The P. pastoris HAC1i cDNA was chemically synthesized and cloned into pPIC3.5K to give pPIC3.5K/Hac1p. The HAC1i cDNA was cloned into pGAPZB and then inserted with HIS4 gene from pAO815 to construct the vector pGAPZB/Hac1p/HIS4. For co-expression of Hac1p, the two plasmids pPIC3.5K/Hac1p and pGAPZB/Hac1p/HIS4 were transformed into P. pastoris harboring the CBS gene. The rCBS was assessed based on chitosanase activity and analyzed by SDS-PAGE. The enhanced Kar2p was detected with western blotting to evaluate UPR. RESULTS Hac1p co-expression with PAOX1 enhanced rCBS secretion by 41% at 28°C. Although the level of UPR resulted from Hac1p co-expression with PAOX1 was equivalent to that with PGAP in terms of the quantity of Kar2p (a hallmark of the UPR), substitution of PGAP for PAOX1 further increased rCBS production by 21%. The methanol-utilizing phenotype of P. pastoris did not affect rCBS secretion with co-expression of Hac1p or not. Finally, Hac1p co-expression with PAOX1 or PGAP promoted rCBS secretion from 22 to 30°C and raised the optimum induction temperature. CONCLUSION The study indicated that Hac1p co-expression with PAOX1 or PGAP is an effective strategy to trigger UPR of P. pastoris and a feasible means for improving production of rCBS therein.
Collapse
Affiliation(s)
- Minghai Han
- College of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang. China
| | - Weixian Wang
- College of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang. China
| | - Xun Gong
- College of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang. China
| | - Jianli Zhou
- College of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang. China
| | - Cunbin Xu
- College of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang. China
| | - Yinfeng Li
- College of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang. China
| |
Collapse
|
14
|
Blatt-Janmaat K, Qu Y. The Biochemistry of Phytocannabinoids and Metabolic Engineering of Their Production in Heterologous Systems. Int J Mol Sci 2021; 22:ijms22052454. [PMID: 33671077 PMCID: PMC7957758 DOI: 10.3390/ijms22052454] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 12/12/2022] Open
Abstract
The medicinal properties of cannabis and the its legal status in several countries and jurisdictions has spurred the massive growth of the cannabis economy around the globe. The value of cannabis stems from its euphoric activity offered by the unique phytocannabinoid tetrahydrocannabinol (THC). However, this is rapidly expanding beyond THC owing to other non-psychoactive phytocannabinoids with new bioactivities that will contribute to their development into clinically useful drugs. The discovery of the biosynthesis of major phytocannabinoids has allowed the exploration of their heterologous production by synthetic biology, which may lead to the industrial production of rare phytocannabinoids or novel synthetic cannabinoid pharmaceuticals that are not easily offered by cannabis plants. This review summarizes the biosynthesis of major phytocannabinoids in detail, the most recent development of their metabolic engineering in various systems, and the engineering approaches and strategies used to increase the yield.
Collapse
Affiliation(s)
- Kaitlyn Blatt-Janmaat
- Department of Chemistry, University of New Brunswick, Fredericton, NB E3B 5A3, Canada;
| | - Yang Qu
- Department of Chemistry, University of New Brunswick, Fredericton, NB E3B 5A3, Canada;
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
- Correspondence:
| |
Collapse
|
15
|
Thomas F, Schmidt C, Kayser O. Bioengineering studies and pathway modeling of the heterologous biosynthesis of tetrahydrocannabinolic acid in yeast. Appl Microbiol Biotechnol 2020; 104:9551-9563. [PMID: 33043390 PMCID: PMC7595985 DOI: 10.1007/s00253-020-10798-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/07/2020] [Accepted: 07/21/2020] [Indexed: 12/30/2022]
Abstract
Heterologous biosynthesis of tetrahydrocannabinolic acid (THCA) in yeast is a biotechnological process in Natural Product Biotechnology that was recently introduced. Based on heterologous genes from Cannabis sativa and Streptomyces spp. cloned into Saccharomyces cerevisiae, the heterologous biosynthesis was fully embedded as a proof of concept. Low titer and insufficient biocatalytic rate of most enzymes require systematic optimization of recombinant catalyst by protein engineering and consequent C-flux improvement of the yeast chassis for sufficient precursor (acetyl-CoA), energy (ATP), and NADH delivery. In this review basic principles of in silico analysis of anabolic pathways towards olivetolic acid (OA) and cannabigerolic acid (CBGA) are elucidated and discussed to identify metabolic bottlenecks. Based on own experimental results, yeasts are discussed as potential platform organisms to be introduced as potential cannabinoid biofactories. Especially feeding strategies and limitations in the committed mevalonate and olivetolic acid pathways are in focus of in silico and experimental studies to validate the scientific and commercial potential as a realistic alternative to the plant Cannabis sativa.Key points• First time critical review of the heterologous process for recombinant THCA/CBDA production and critical review of bottlenecks and limitations for a bioengineered technical process• Integrative approach of protein engineering, systems biotechnology, and biochemistry of yeast physiology and biosynthetic cannabinoid enzymes• Comparison of NphB and CsPT aromatic prenyltransferases as rate-limiting catalytic steps towards cannabinoids in yeast as platform organisms Graphical abstract.
Collapse
Affiliation(s)
- Fabian Thomas
- TU Dortmund University, Technical Biochemistry, Emil-Figge-Strasse 66, 44227, Dortmund, Germany
| | - Christina Schmidt
- TU Dortmund University, Technical Biochemistry, Emil-Figge-Strasse 66, 44227, Dortmund, Germany
| | - Oliver Kayser
- TU Dortmund University, Technical Biochemistry, Emil-Figge-Strasse 66, 44227, Dortmund, Germany.
| |
Collapse
|
16
|
New frontiers: harnessing pivotal advances in microbial engineering for the biosynthesis of plant-derived terpenoids. Curr Opin Biotechnol 2020; 65:88-93. [DOI: 10.1016/j.copbio.2020.02.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 01/30/2020] [Accepted: 02/02/2020] [Indexed: 01/01/2023]
|
17
|
Song W, Zhang N, Yang M, Zhou Y, He N, Zhang G. Multiple strategies to improve the yield of chitinase a from Bacillus licheniformis in Pichia pastoris to obtain plant growth enhancer and GlcNAc. Microb Cell Fact 2020; 19:181. [PMID: 32933546 PMCID: PMC7493387 DOI: 10.1186/s12934-020-01440-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 09/10/2020] [Indexed: 12/26/2022] Open
Abstract
Chitinase and chitin-oligosaccaride can be used in multiple field, so it is important to develop a high-yield chitinase producing strain. Here, a recombinant Pichia pastoris with 4 copies of ChiA gene from Bacillus licheniformis and co-expression of molecular chaperon HAC1 was constructed. The amount of recombinant ChiA in the supernatant of high-cell-density fermentation reaches a maximum of 12.7 mg/mL, which is 24-fold higher than that reported in the previous study. The recombinant ChiA can hydrolyze 30% collodidal chitin with 74% conversion ratio, and GlcNAc is the most abundant hydrolysis product, followed by N, N′-diacetylchitobiose. Combined with BsNagZ, the hydrolysate of ChiA can be further transformed into GlcNAc with 88% conversion ratio. Additionally, the hydrolysate of ChiA can obviously accelerate the germination growth of rice and wheat, increasing the seedling height and root length by at least 1.6 folds within 10 days.
Collapse
Affiliation(s)
- Wen Song
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Nuo Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Mo Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Yuling Zhou
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Nisha He
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| | - Guimin Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
18
|
Jiang H, Horwitz AA, Wright C, Tai A, Znameroski EA, Tsegaye Y, Warbington H, Bower BS, Alves C, Co C, Jonnalagadda K, Platt D, Walter JM, Natarajan V, Ubersax JA, Cherry JR, Love JC. Challenging the workhorse: Comparative analysis of eukaryotic micro-organisms for expressing monoclonal antibodies. Biotechnol Bioeng 2019; 116:1449-1462. [PMID: 30739333 PMCID: PMC6836876 DOI: 10.1002/bit.26951] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/31/2019] [Accepted: 02/06/2019] [Indexed: 01/09/2023]
Abstract
For commercial protein therapeutics, Chinese hamster ovary (CHO) cells have an established history of safety, proven capability to express a wide range of therapeutic proteins and high volumetric productivities. Expanding global markets for therapeutic proteins and increasing concerns for broadened access of these medicines has catalyzed consideration of alternative approaches to this platform. Reaching these objectives likely will require an order of magnitude increase in volumetric productivity and a corresponding reduction in the costs of manufacture. For CHO-based manufacturing, achieving this combination of targeted improvements presents challenges. Based on a holistic analysis, the choice of host cells was identified as the single most influential factor for both increasing productivity and decreasing costs. Here we evaluated eight wild-type eukaryotic micro-organisms with prior histories of recombinant protein expression. The evaluation focused on assessing the potential of each host, and their corresponding phyla, with respect to key attributes relevant for manufacturing, namely (a) growth rates in industry-relevant media, (b) adaptability to modern techniques for genome editing, and (c) initial characterization of product quality. These characterizations showed that multiple organisms may be suitable for production with appropriate engineering and development and highlighted that yeast in general present advantages for rapid genome engineering and development cycles.
Collapse
Affiliation(s)
- Hanxiao Jiang
- Research and Development, Amyris Inc., Emeryville, California
| | | | - Chapman Wright
- Engineering & Technology, Biogen, Cambridge, Massachusetts
| | - Anna Tai
- Research and Development, Amyris Inc., Emeryville, California
| | | | - Yoseph Tsegaye
- Research and Development, Amyris Inc., Emeryville, California
| | | | | | | | - Carl Co
- Engineering & Technology, Biogen, Cambridge, Massachusetts
| | | | - Darren Platt
- Research and Development, Amyris Inc., Emeryville, California
| | | | | | | | - Joel R Cherry
- Research and Development, Amyris Inc., Emeryville, California
| | | |
Collapse
|
19
|
A cell-free platform for the prenylation of natural products and application to cannabinoid production. Nat Commun 2019; 10:565. [PMID: 30718485 PMCID: PMC6362252 DOI: 10.1038/s41467-019-08448-y] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 01/10/2019] [Indexed: 12/13/2022] Open
Abstract
Prenylation of natural compounds adds structural diversity, alters biological activity, and enhances therapeutic potential. Because prenylated compounds often have a low natural abundance, alternative production methods are needed. Metabolic engineering enables natural product biosynthesis from inexpensive biomass, but is limited by the complexity of secondary metabolite pathways, intermediate and product toxicities, and substrate accessibility. Alternatively, enzyme catalyzed prenyl transfer provides excellent regio- and stereo-specificity, but requires expensive isoprenyl pyrophosphate substrates. Here we develop a flexible cell-free enzymatic prenylating system that generates isoprenyl pyrophosphate substrates from glucose to prenylate an array of natural products. The system provides an efficient route to cannabinoid precursors cannabigerolic acid (CBGA) and cannabigerovarinic acid (CBGVA) at >1 g/L, and a single enzymatic step converts the precursors into cannabidiolic acid (CBDA) and cannabidivarinic acid (CBDVA). Cell-free methods may provide a powerful alternative to metabolic engineering for chemicals that are hard to produce in living organisms. Producing individual cannabinoids by metabolically engineered microbes has proven challenging. Here, the authors develop a cell-free enzymatic prenylating system to generate isoprenyl pyrophosphate substrates directly from glucose and produce both common and rare cannabinoids at >1 g/L.
Collapse
|
20
|
Efficient Heterologous Production of Rhizopus oryzae Lipase via Optimization of Multiple Expression-Related Helper Proteins. Int J Mol Sci 2018; 19:ijms19113372. [PMID: 30373304 PMCID: PMC6274836 DOI: 10.3390/ijms19113372] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 10/25/2018] [Accepted: 10/25/2018] [Indexed: 12/20/2022] Open
Abstract
This study is dedicated to efficiently produce Rhizopus oryzae lipase (ROL) by optimizing the expression of multiple expression-related helper proteins in Pichia pastoris. A series of engineered strains harboring different copy numbers of the ROL gene and different copies of the chaperone Pdi gene were first constructed to examine the influence of Pdi gene copy number on ROL production. The results showed that multiple copies of Pdi gene did not significantly improve ROL expression. Then, the effect of the co-overexpression of 10 expression-related helper proteins on ROL secretion was investigated by screening 20 colonies of each transformants. The data from shaking-flask fermentation suggested that Ssa4, Bmh2, Sso2, Pdi, Bip, Hac1, and VHb had positive effects on ROL expression. Subsequently, Ssa4, Bmh2, and Sso2, which all participate in vesicular trafficking and strongly promote ROL expression, were combined to further improve ROL production level. ROL activity of the screened strain GS115/5ROL-Ssa4-Sso2-Bmh2 4# attained 5230 U/mL. Furthermore, when the helper proteins Pdi, Bip, Hac1, and VHb were individually co-expressed with ROL in the strain GS115/5ROL-Ssa4-Sso2-Bmh2 4#, lipase activity increased to 5650 U/mL in the strain GS115/5ROL-Ssa4-Sso2-Bmh2-VHb 9#. Additionally, the maximum ROL activity of 41,700 U/mL was achieved in a 3 L bioreactor for high-density fermentation via a sorbitol–methanol co-feeding strategy, reaching almost twofold the value of the initial strain GS115/pAOα-5ROL 11#. Thus, the strategies in this study significantly increased ROL expression level, which is of great potential for the large-scale production of ROL in P. pastoris.
Collapse
|
21
|
Elucidation of structure-function relationship of THCA and CBDA synthase from Cannabis sativaL. J Biotechnol 2018; 284:17-26. [PMID: 30053500 DOI: 10.1016/j.jbiotec.2018.07.031] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 07/23/2018] [Accepted: 07/24/2018] [Indexed: 12/22/2022]
Abstract
Cannabinoids are secondary natural products from the plant Cannabis sativaL. Therapeutic indications of cannabinoids currently comprise a significant area of medicinal research. We have expressed the Δ9-tetrahydrocannabinolic acid synthase (THCAS) and cannabidiolic acid synthase (CBDAS) recombinantly in Komagataella phaffii and could detect eight different products with a cannabinoid scaffold after conversion of the precursor cannabigerolic acid (CBGA). Besides five products remaining to be identified, both enzymes were forming three major cannabinoids of C. sativa - Δ9-tetrahydrocannabinolic acid (THCA), cannabidiolic acid (CBDA) and cannabichromenic acid (CBCA). In pursuit of improved enzyme properties for a biotechnological cannabinoid production, we performed site-directed mutagenesis to investigate the glycosylation pattern, the C-terminal berberine-bridge-enzyme (BBE) domain, the active site and the product specificity of both enzymes. The THCAS variant T_N89Q+N499Q (lacking two glycosylation sites) exerted about two-fold increased activity compared to wild-type enzyme. Variant T_H494C+R532C (additional disulfide bridge) exerted about 1.7-fold increased activity compared to wild-type enzyme and a shifted temperature optimum from 52 °C to 57 °C. We generated two CBDAS variants, C_S116A and C_A414V, with 2.8 and 3.3-fold increased catalytic activities for CBDA production. C_A414V additionally showed a broadened pH spectrum and a 19-fold increased catalytic activity for THCA production. These studies lay the groundwork for further research as well as biotechnological cannabinoid production.
Collapse
|
22
|
Walker RSK, Pretorius IS. Applications of Yeast Synthetic Biology Geared towards the Production of Biopharmaceuticals. Genes (Basel) 2018; 9:E340. [PMID: 29986380 PMCID: PMC6070867 DOI: 10.3390/genes9070340] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/01/2018] [Accepted: 07/02/2018] [Indexed: 12/18/2022] Open
Abstract
Engineered yeast are an important production platform for the biosynthesis of high-value compounds with medical applications. Recent years have witnessed several new developments in this area, largely spurred by advances in the field of synthetic biology and the elucidation of natural metabolic pathways. This minireview presents an overview of synthetic biology applications for the heterologous biosynthesis of biopharmaceuticals in yeast and demonstrates the power and potential of yeast cell factories by highlighting several recent examples. In addition, an outline of emerging trends in this rapidly-developing area is discussed, hinting upon the potential state-of-the-art in the years ahead.
Collapse
Affiliation(s)
- Roy S K Walker
- Department of Molecular Sciences, Macquarie University, Sydney 2109, Australia.
| | | |
Collapse
|
23
|
Russo EB. The Case for the Entourage Effect and Conventional Breeding of Clinical Cannabis: No "Strain," No Gain. FRONTIERS IN PLANT SCIENCE 2018; 9:1969. [PMID: 30687364 PMCID: PMC6334252 DOI: 10.3389/fpls.2018.01969] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 12/19/2018] [Indexed: 05/02/2023]
Abstract
The topic of Cannabis curries controversy in every sphere of influence, whether politics, pharmacology, applied therapeutics or even botanical taxonomy. Debate as to the speciation of Cannabis, or a lack thereof, has swirled for more than 250 years. Because all Cannabis types are eminently capable of cross-breeding to produce fertile progeny, it is unlikely that any clear winner will emerge between the "lumpers" vs. "splitters" in this taxonomical debate. This is compounded by the profusion of Cannabis varieties available through the black market and even the developing legal market. While labeled "strains" in common parlance, this term is acceptable with respect to bacteria and viruses, but not among Plantae. Given that such factors as plant height and leaflet width do not distinguish one Cannabis plant from another and similar difficulties in defining terms in Cannabis, the only reasonable solution is to characterize them by their biochemical/pharmacological characteristics. Thus, it is best to refer to Cannabis types as chemical varieties, or "chemovars." The current wave of excitement in Cannabis commerce has translated into a flurry of research on alternative sources, particularly yeasts, and complex systems for laboratory production have emerged, but these presuppose that single compounds are a desirable goal. Rather, the case for Cannabis synergy via the "entourage effect" is currently sufficiently strong as to suggest that one molecule is unlikely to match the therapeutic and even industrial potential of Cannabis itself as a phytochemical factory. The astounding plasticity of the Cannabis genome additionally obviates the need for genetic modification techniques.
Collapse
|