1
|
Wang Z, Hou X, Shang G, Deng G, Luo K, Peng M. Exploring Fatty Acid β-Oxidation Pathways in Bacteria: From General Mechanisms to DSF Signaling and Pathogenicity in Xanthomonas. Curr Microbiol 2024; 81:336. [PMID: 39223428 DOI: 10.1007/s00284-024-03866-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Fatty acids (FAs) participate in extensive physiological activities such as energy metabolism, transcriptional control, and cell signaling. In bacteria, FAs are degraded and utilized through various metabolic pathways, including β-oxidation. Over the past ten years, significant progress has been made in studying FA oxidation in bacteria, particularly in E. coli, where the processes and roles of FA β-oxidation have been comprehensively elucidated. Here, we provide an update on the new research achievements in FAs β-oxidation in bacteria. Using Xanthomonas as an example, we introduce the oxidation process and regulation mechanism of the DSF-family quorum sensing signal. Based on current findings, we propose the specific enzymes required for β-oxidation of several specific FAs. Finally, we discuss the future outlook on scientific issues that remain to be addressed. This paper supplies theoretical guidance for further study of the FA β-oxidation pathway with particular emphasis on its connection to the pathogenicity mechanisms of bacteria.
Collapse
Affiliation(s)
- Zhiyong Wang
- Hubei Engineering Research Center of Selenium Food Nutrition and Health Intelligent Technology College of Biological and Food Engineering, Hubei Minzu University, Enshi, 445000, China
| | - Xue Hou
- Hubei Engineering Research Center of Selenium Food Nutrition and Health Intelligent Technology College of Biological and Food Engineering, Hubei Minzu University, Enshi, 445000, China
| | - Guohui Shang
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Guangai Deng
- Hubei Engineering Research Center of Selenium Food Nutrition and Health Intelligent Technology College of Biological and Food Engineering, Hubei Minzu University, Enshi, 445000, China
| | - Kai Luo
- Hubei Engineering Research Center of Selenium Food Nutrition and Health Intelligent Technology College of Biological and Food Engineering, Hubei Minzu University, Enshi, 445000, China
| | - Mu Peng
- Hubei Engineering Research Center of Selenium Food Nutrition and Health Intelligent Technology College of Biological and Food Engineering, Hubei Minzu University, Enshi, 445000, China.
| |
Collapse
|
2
|
Zhang C, Wei G, Zhou N, Wang Y, Feng J, Wang X, Zhang A, Chen K. Systematic Engineering of Escherichia coli for Efficient Production of Pseudouridine from Glucose and Uracil. ACS Synth Biol 2024; 13:1303-1311. [PMID: 38529630 DOI: 10.1021/acssynbio.4c00028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
In this study, we proposed a biological approach to efficiently produce pseudouridine (Ψ) from glucose and uracil in vivo using engineered Escherichia coli. By screening host strains and core enzymes, E. coli MG1655 overexpressing Ψ monophosphate (ΨMP) glycosidase and ΨMP phosphatase was obtained, which displayed the highest Ψ concentration. Then, optimization of the RBS sequences, enhancement of ribose 5-phosphate supply in the cells, and overexpression of the membrane transport protein UraA were investigated. Finally, fed-batch fermentation of Ψ in a 5 L fermentor can reach 27.5 g/L with a yield of 89.2 mol % toward uracil and 25.6 mol % toward glucose within 48 h, both of which are the highest to date. In addition, the Ψ product with a high purity of 99.8% can be purified from the fermentation broth after crystallization. This work provides an efficient and environmentally friendly protocol for allowing for the possibility of Ψ bioproduction on an industrial scale.
Collapse
Affiliation(s)
- Chi Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Guoguang Wei
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Ning Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yingying Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jia Feng
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xin Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Alei Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Kequan Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
3
|
Kong X, Gui Q, Liu H, Qian F, Wang P. Efficient Synthesis of Chiral Aryl Alcohol with a Novel Kosakonia radicincitans Isolate in Tween 20/L-carnitine: Lysine-Containing Synergistic Reaction System. Appl Biochem Biotechnol 2024; 196:1509-1526. [PMID: 37428385 DOI: 10.1007/s12010-023-04641-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2023] [Indexed: 07/11/2023]
Abstract
Chiral trifluoromethyl alcohols as vital intermediates are of great interest in fine chemicals and especially in pharmaceutical synthesis. In this work, a novel isolate Kosakonia radicincitans ZJPH202011 was firstly employed as biocatalyst for the synthesis of (R)-1-(4-bromophenyl)-2,2,2-trifluoroethanol ((R)-BPFL) with good enantioselectivity. By optimizing fermentation conditions and bioreduction parameters in aqueous buffer system, the substrate concentration of 1-(4-bromophenyl)-2,2,2-trifluoroethanone (BPFO) was doubled from 10 to 20 mM, and the enantiomeric excess (ee) value for (R)-BPFL increased from 88.8 to 96.4%. To improve biocatalytic efficiency by strengthening the mass-transfer rate, natural deep-eutectic solvents, surfactants and cyclodextrins (CDs) were introduced separately in the reaction system as cosolvent. Among them, L-carnitine: lysine (C: Lys, molar ratio 1:2), Tween 20 and γ-CD manifested higher (R)-BPFL yield compared with other same kind of cosolvents. Furthermore, based on the excellent performance of both Tween 20 and C: Lys (1:2) in enhancing BPFO solubility and ameliorating cell permeability, a Tween 20/C: Lys (1:2)-containing integrated reaction system was then established for efficient bioproduction of (R)-BPFL. After optimizing the critical factors involved in BPFO bioreduction in this synergistic reaction system, BPFO loading increased up to 45 mM and the yield reached 90.0% within 9 h, comparatively only 37.6% yield was acquired in neat aqueous buffer. This is the first report on K. radicincitans cells as new biocatalyst applied in (R)-BPFL preparation, and the developed Tween 20/C: Lys-containing synergistic reaction system has great potential for the synthesis of various chiral alcohols.
Collapse
Affiliation(s)
- Xiangxin Kong
- Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Qian Gui
- Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Hanyu Liu
- Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Feng Qian
- Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Pu Wang
- Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
| |
Collapse
|
4
|
Zhang Q, Li N, Lyv Y, Yu S, Zhou J. Engineering caveolin-mediated endocytosis in Saccharomyces cerevisiae. Synth Syst Biotechnol 2022; 7:1056-1063. [PMID: 35845314 PMCID: PMC9263866 DOI: 10.1016/j.synbio.2022.06.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 11/04/2022] Open
Abstract
As a potential substitute for fatty acids, common low-cost oils could be used to produce acetyl-CoA derivatives, which meet the needs of low-cost industrial production. However, oils are hydrophobic macromolecules and cannot be directly transported into cells. In this study, caveolin was expressed in Saccharomyces cerevisiae to absorb exogenous oils. The expression of caveolin fused with green fluorescent protein showed that caveolin mediated the formation of microvesicles in S. cerevisiae and the addition of 5,6-carboxyfluorescein showed that caveolae had the ability to transport exogenous substances into cells. The intracellular and extracellular triacylglycerol levels were then detected after the addition of soybean oil pre-stained with Nile Red, which proved that caveolae had the ability to absorb the exogenous oils. Lastly, caveolin for oils absorption and lipase from Bacillus pumilus for oil hydrolysis were co-expressed in the naringenin-producing Saccharomyces cerevisiae strain, resulting in naringenin production increasing from 222 mg/g DCW (dry cell weight) (231 mg/L) to 269 mg/g DCW (241 mg/L). These results suggested that the caveolin-mediated transporter independent oil transport system would provide a promising strategy for the transport of hydrophobic substrates.
Collapse
|
5
|
Biundo A, Stamm A, Gorgoglione R, Syrén PO, Curia S, Hauer B, Capriati V, Vitale P, Perna F, Agrimi G, Pisano I. REGIO- AND STEREOSELECTIVE BIOCATALYTIC HYDRATION OF FATTY ACIDS FROM WASTE COOKING OILS EN ROUTE TO HYDROXY FATTY ACIDS AND BIO-BASED POLYESTERS. Enzyme Microb Technol 2022; 163:110164. [DOI: 10.1016/j.enzmictec.2022.110164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/17/2022] [Accepted: 11/19/2022] [Indexed: 11/27/2022]
|
6
|
Lee HR, Kwon SY, Choi SA, Lee JH, Lee HS, Park JB. Valorization of Soy Lecithin by Enzyme Cascade Reactions Including a Phospholipase A2, a Fatty Acid Double-Bond Hydratase, and/or a Photoactivated Decarboxylase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10818-10825. [PMID: 36001340 DOI: 10.1021/acs.jafc.2c04012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A huge amount of phospholipids or lecithin is produced as a byproduct in the vegetable oil industry. However, most are just used as a feed additive. This study has focused on enzymatic valorization of lecithin. This was exploited by enzymatic transformation of soy lecithin into lysolecithin liposomes, including functional free fatty acids, hydroxy fatty acids, hydrocarbons, or secondary fatty alcohols. One of the representative examples was the preparation of lysolecithin liposomes containing secondary fatty alcohols [e.g., 9-Hydroxyheptadec-11-ene (9) and 9-heptadecanol (10)] by using a phospholipase A2 from Streptomyces violaceoruber, a fatty acid double-bond hydratase from Stenotrophomonas maltophilia, and a photoactivated decarboxylase from Chlorella variabilis NC64A. The engineered liposomes turned out to range ca. 144 nm in diameter by dynamic light scattering analysis. Thereby, this study will contribute to application of functional fatty acids and their derivatives as well as valorization of lecithin for the food and cosmetic industries.
Collapse
Affiliation(s)
- Hyo-Ran Lee
- Department of Food Science and Biotechnology, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Seung-Yeon Kwon
- Department of Food Science and Biotechnology, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Su-Ah Choi
- Department of Food Science and Biotechnology, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Jeong-Hoo Lee
- Docsmedi Co.,Ltd., 143 Gangseong-ro, Ilsanseo-gu, Goyang-si 10387, Gyeonggi-do, Republic of Korea
| | - Hye-Seong Lee
- Department of Food Science and Biotechnology, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Jin-Byung Park
- Department of Food Science and Biotechnology, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| |
Collapse
|
7
|
Wang L, Wang L, Wang R, Wang Z, Wang J, Yuan H, Su J, Li Y, Yang S, Han T. Efficient Biosynthesis of 10-Hydroxy-2-decenoic Acid Using a NAD(P)H Regeneration P450 System and Whole-Cell Catalytic Biosynthesis. ACS OMEGA 2022; 7:17774-17783. [PMID: 35664602 PMCID: PMC9161381 DOI: 10.1021/acsomega.2c00972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/21/2022] [Indexed: 06/15/2023]
Abstract
10-Hydroxy-2-decenoic acid (10-HDA) is an α,β-unsaturated medium-chain carboxylic acid containing a terminal hydroxyl group. It has various unique properties and great economic value. We improved the two-step biosynthesis method of 10-HDA. The conversion rate of the intermediate product trans-2-decenoic acid in the first step of 10-HDA synthesis could reach 93.1 ± 1.3% by combining transporter overexpression and permeation technology strategies. Moreover, the extracellular trans-2-decenoic acid content was five times greater than the intracellular content when 2.0% (v/v) triton X-100 and 1.2% (v/v) tween-80 were each used. In the second step of 10-HDA synthesis, we regenerated NAD(P)H by overexpressing a glucose dehydrogenase with the P450 enzyme (CYP153A33/M228L-CPRBM3) in Escherichia coli, improving the catalytic performance of the trans-2-decenoic acid terminal hydroxylation. Finally, the yield of 10-HDA was 486.5 mg/L using decanoic acid as the substrate with two-step continuous biosynthesis. Our research provides a simplified production strategy to promote the two-step continuous whole-cell catalytic biosynthesis of 10-HDA and other α,β-unsaturated carboxylic acid derivatives.
Collapse
Affiliation(s)
- Li Wang
- State
Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong 250353, China
- Key
Laboratory of Shandong Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, China
| | - Leilei Wang
- State
Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong 250353, China
- Key
Laboratory of Shandong Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, China
| | - Ruiming Wang
- State
Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong 250353, China
- Key
Laboratory of Shandong Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, China
| | - Zhaoyun Wang
- State
Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong 250353, China
- Key
Laboratory of Shandong Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, China
| | - Junqing Wang
- State
Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong 250353, China
- Key
Laboratory of Shandong Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, China
| | - Haibo Yuan
- State
Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong 250353, China
- Key
Laboratory of Shandong Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, China
| | - Jing Su
- State
Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong 250353, China
- Key
Laboratory of Shandong Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, China
| | - Yan Li
- Shandong
Freda Biotech Co., Ltd, Jinan, Shandong 250101, China
| | - Suzhen Yang
- Shandong
Freda Biotech Co., Ltd, Jinan, Shandong 250101, China
| | - Tingting Han
- Shandong
Freda Biotech Co., Ltd, Jinan, Shandong 250101, China
| |
Collapse
|
8
|
Zubkov IN, Nepomnyshchiy AP, Kondratyev VD, Sorokoumov PN, Sivak KV, Ramsay ES, Shishlyannikov SM. Adaptation of Pseudomonas helmanticensis to fat hydrolysates and SDS: fatty acid response and aggregate formation. J Microbiol 2021; 59:1104-1111. [PMID: 34697784 DOI: 10.1007/s12275-021-1214-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 01/15/2023]
Abstract
An essential part of designing any biotechnological process is examination of the physiological state of producer cells in different phases of cultivation. The main marker of a bacterial cell's state is its fatty acid (FA) profile, reflecting membrane lipid composition. Consideration of FA composition enables assessment of bacterial responses to cultivation conditions and helps biotechnologists understand the most significant factors impacting cellular metabolism. In this work, soil SDS-degrading Pseudomonas helmanticensis was studied at the fatty acid profile level, including analysis of rearrangement between planktonic and aggregated forms. The set of substrates included fat hydrolysates, SDS, and their mixtures with glucose. Such media are useful in bioplastic production since they can help incrementally lower overall costs. Conventional gas chromatography-mass spectrometry was used for FA analysis. Acridine orange-stained aggregates were observed by epifluorescence microscopy. The bacterium was shown to change fatty acid composition in the presence of hydrolyzed fats or SDS. These changes seem to be driven by the depletion of metabolizable substrates in the culture medium. Cell aggregation has also been found to be a defense strategy, particularly with anionic surfactant (SDS) exposure. It was shown that simple fluidity indices (such as saturated/unsaturated FA ratios) do not always sufficiently characterize a cell's physiological state, and morphological examination is essential in cases where complex carbon sources are used.
Collapse
Affiliation(s)
- Ilya N Zubkov
- All-Russian Research Institute for Food Additives, Branch of V. M. Gorbatov Federal Research Center for Food Systems (RAS), 55 Liteyny Prospekt, Saint Petersburg, 191014, Russia.
| | - Anatoly P Nepomnyshchiy
- All-Russian Research Institute for Food Additives, Branch of V. M. Gorbatov Federal Research Center for Food Systems (RAS), 55 Liteyny Prospekt, Saint Petersburg, 191014, Russia
| | - Vadim D Kondratyev
- All-Russian Research Institute for Food Additives, Branch of V. M. Gorbatov Federal Research Center for Food Systems (RAS), 55 Liteyny Prospekt, Saint Petersburg, 191014, Russia
| | - Pavel N Sorokoumov
- All-Russian Research Institute for Food Additives, Branch of V. M. Gorbatov Federal Research Center for Food Systems (RAS), 55 Liteyny Prospekt, Saint Petersburg, 191014, Russia
| | - Konstantin V Sivak
- Smorodintsev Research Institute of Influenza, 15/17 Ulitsa Professora Popova, Saint Petersburg, 4197022, Russia
| | - Edward S Ramsay
- Smorodintsev Research Institute of Influenza, 15/17 Ulitsa Professora Popova, Saint Petersburg, 4197022, Russia
| | - Sergey M Shishlyannikov
- All-Russian Research Institute for Food Additives, Branch of V. M. Gorbatov Federal Research Center for Food Systems (RAS), 55 Liteyny Prospekt, Saint Petersburg, 191014, Russia
| |
Collapse
|
9
|
Song J, Baeg Y, Jeong H, Lee J, Oh D, Hollmann F, Park J. Bacterial Outer Membrane Vesicles as Nano‐Scale Bioreactors: A Fatty Acid Conversion Case Study. ChemCatChem 2021. [DOI: 10.1002/cctc.202100778] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ji‐Won Song
- Department of Food Science & Engineering Ewha Womans University Seoul 03760 Republic of Korea
| | - Yoonjin Baeg
- Department of Food Science & Engineering Ewha Womans University Seoul 03760 Republic of Korea
| | - Ha‐Yeon Jeong
- Department of Food Science & Engineering Ewha Womans University Seoul 03760 Republic of Korea
| | - Jinwon Lee
- Department of Chemical and Biomolecular Engineering Sogang University Seoul 04107 Republic of Korea
| | - Deok‐Kun Oh
- Department of Bioscience and Biotechnology Konkuk University Seoul 05029 Republic of Korea
| | - Frank Hollmann
- Department of Biotechnology Delft University of Technology Van der Maasweg 9 2629HZ Delft The Netherlands
| | - Jin‐Byung Park
- Department of Food Science & Engineering Ewha Womans University Seoul 03760 Republic of Korea
| |
Collapse
|
10
|
Zhang Y, Eser BE, Guo Z. A Bi-Enzymatic Cascade Pathway towards Optically Pure FAHFAs*. Chembiochem 2021; 22:2146-2153. [PMID: 33792147 DOI: 10.1002/cbic.202100070] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/31/2021] [Indexed: 01/28/2023]
Abstract
Recently discovered endogenous mammalian lipids, fatty acid esters of hydroxy fatty acids (FAHFAs), have been proved to have anti-inflammatory and anti-diabetic effects. Due to their extremely low abundancies in vivo, forging a feasible scenario for FAHFA synthesis is critical for their use in uncovering biological mechanisms or in clinical trials. Here, we showcase a fully enzymatic approach, a novel in vitro bi-enzymatic cascade system, enabling an effective conversion of nature-abundant fatty acids into FAHFAs. Two hydratases from Lactobacillus acidophilus were used for converting unsaturated fatty acids to various enantiomeric hydroxy fatty acids, followed by esterification with another fatty acid catalyzed by Candida antarctica lipase A (CALA). Various FAHFAs were synthesized in a semi-preparative scale using this bi-enzymatic approach in a one-pot two-step operation mode. In all, we demonstrate that the hydratase-CALA system offers a promising route for the synthesis of optically pure structure-diverse FAHFAs.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Biological and Chemical Engineering, Aarhus University, Gustav Wieds Vej 10, 8000, Aarhus, Denmark
| | - Bekir Engin Eser
- Department of Biological and Chemical Engineering, Aarhus University, Gustav Wieds Vej 10, 8000, Aarhus, Denmark
| | - Zheng Guo
- Department of Biological and Chemical Engineering, Aarhus University, Gustav Wieds Vej 10, 8000, Aarhus, Denmark
| |
Collapse
|
11
|
Salvador López JM, Van Bogaert INA. Microbial fatty acid transport proteins and their biotechnological potential. Biotechnol Bioeng 2021; 118:2184-2201. [PMID: 33638355 DOI: 10.1002/bit.27735] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 01/08/2021] [Accepted: 02/24/2021] [Indexed: 12/11/2022]
Abstract
Fatty acid metabolism has been widely studied in various organisms. However, fatty acid transport has received less attention, even though it plays vital physiological roles, such as export of toxic free fatty acids or uptake of exogenous fatty acids. Hence, there are important knowledge gaps in how fatty acids cross biological membranes, and many mechanisms and proteins involved in these processes still need to be determined. The lack of information is more predominant in microorganisms, even though the identification of fatty acids transporters in these cells could lead to establishing new drug targets or improvements in microbial cell factories. This review provides a thorough analysis of the current information on fatty acid transporters in microorganisms, including bacteria, yeasts and microalgae species. Most available information relates to the model organisms Escherichia coli and Saccharomyces cerevisiae, but transport systems of other species are also discussed. Intracellular trafficking of fatty acids and their transport through organelle membranes in eukaryotic organisms is described as well. Finally, applied studies and engineering efforts using fatty acids transporters are presented to show the applied potential of these transporters and to stress the need for further identification of new transporters and their engineering.
Collapse
Affiliation(s)
- José M Salvador López
- BioPort Group, Faculty of Bioscience Engineering, Centre for Synthetic Biology (CSB), Ghent University, Ghent, Belgium
| | - Inge N A Van Bogaert
- BioPort Group, Faculty of Bioscience Engineering, Centre for Synthetic Biology (CSB), Ghent University, Ghent, Belgium
| |
Collapse
|
12
|
Somboon K, Doble A, Bulmer D, Baslé A, Khalid S, van den Berg B. Uptake of monoaromatic hydrocarbons during biodegradation by FadL channel-mediated lateral diffusion. Nat Commun 2020; 11:6331. [PMID: 33303757 PMCID: PMC7728783 DOI: 10.1038/s41467-020-20126-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 11/12/2020] [Indexed: 01/25/2023] Open
Abstract
In modern societies, biodegradation of hydrophobic pollutants generated by industry is important for environmental and human health. In Gram-negative bacteria, biodegradation depends on facilitated diffusion of the pollutant substrates into the cell, mediated by specialised outer membrane (OM) channels. Here we show, via a combined experimental and computational approach, that the uptake of monoaromatic hydrocarbons such as toluene in Pseudomonas putida F1 (PpF1) occurs via lateral diffusion through FadL channels. Contrary to classical diffusion channels via which polar substrates move directly into the periplasmic space, PpF1 TodX and CymD direct their hydrophobic substrates into the OM via a lateral opening in the channel wall, bypassing the polar barrier formed by the lipopolysaccharide leaflet on the cell surface. Our study suggests that lateral diffusion of hydrophobic molecules is the modus operandi of all FadL channels, with potential implications for diverse areas such as biodegradation, quorum sensing and gut biology.
Collapse
Affiliation(s)
- Kamolrat Somboon
- School of Chemistry, University of Southampton, Southampton, SO17 1BJ, UK
| | - Anne Doble
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - David Bulmer
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Arnaud Baslé
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Syma Khalid
- School of Chemistry, University of Southampton, Southampton, SO17 1BJ, UK.
| | - Bert van den Berg
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
13
|
Schäfer L, Bühler K, Karande R, Bühler B. Rational Engineering of a Multi‐Step Biocatalytic Cascade for the Conversion of Cyclohexane to Polycaprolactone Monomers in
Pseudomonas taiwanensis. Biotechnol J 2020; 15:e2000091. [DOI: 10.1002/biot.202000091] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/13/2020] [Indexed: 02/03/2023]
Affiliation(s)
- Lisa Schäfer
- Department of Solar Materials Helmholtz‐Centre for Environmental Research ‐ UFZ Permoserstraße 15 Leipzig Saxony 04318 Germany
| | - Katja Bühler
- Department of Solar Materials Helmholtz‐Centre for Environmental Research ‐ UFZ Permoserstraße 15 Leipzig Saxony 04318 Germany
| | - Rohan Karande
- Department of Solar Materials Helmholtz‐Centre for Environmental Research ‐ UFZ Permoserstraße 15 Leipzig Saxony 04318 Germany
| | - Bruno Bühler
- Department of Solar Materials Helmholtz‐Centre for Environmental Research ‐ UFZ Permoserstraße 15 Leipzig Saxony 04318 Germany
| |
Collapse
|
14
|
Lee† HJ, Cho† A, Hwang Y, Park JB, Kim SK. Engineering of a Microbial Cell Factory for the Extracellular Production of Catalytically Active Phospholipase A 2 of Streptomyces violaceoruber. J Microbiol Biotechnol 2020; 30:1244-1251. [PMID: 32160693 PMCID: PMC9728194 DOI: 10.4014/jmb.2001.01052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 02/28/2020] [Indexed: 12/15/2022]
Abstract
Phospholipase A2 (PLA2) from Streptomyces violaceoruber is a lipolytic enzyme used in a wide range of industrial applications including production of lysolecithins and enzymatic degumming of edible oils. We have therefore investigated expression and secretion of PLA2 in two workhorse microbes, Pichia pastoris and Escherichia coli. The PLA2 was produced to an activity of 0.517 ± 0.012 U/ml in the culture broth of the recombinant P. pastoris. On the other hand, recombinant E. coli BL21 star (DE3), overexpressing the authentic PLA2 (P-PLA2), showed activity of 17.0 ± 1.3 U/ml in the intracellular fraction and 21.7 ± 0.7 U/ml in the culture broth. The extracellular PLA2 activity obtained with the recombinant E. coli system was 3.2-fold higher than the corresponding value reached in a previous study, which employed recombinant E. coli BL21 (DE3) overexpressing codon-optimized PLA2. Finally, we observed that the extracellular PLA2 from the recombinant E. coli P-PLA2 culture was able to hydrolyze 31.1 g/l of crude soybean lecithin, an industrial substrate, to a conversion yield of approximately 95%. The newly developed E. coli-based PLA2 expression system led to extracellular production of PLA2 to a productivity of 678 U/l·h, corresponding to 157-fold higher than that obtained with the P. pastoris-based system. This study will contribute to the extracellular production of a catalytically active PLA2.
Collapse
Affiliation(s)
- Hyun-Jae Lee†
- Department of Food Science and Technology, Chung-Ang University, Anseong, Gyeonggi 17546, Republic of Korea
| | - Ara Cho†
- Department of Food Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Yeji Hwang
- Department of Food Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jin-Byung Park
- Department of Food Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Sun-Ki Kim
- Department of Food Science and Technology, Chung-Ang University, Anseong, Gyeonggi 17546, Republic of Korea
| |
Collapse
|
15
|
Zhang Y, Eser BE, Kristensen P, Guo Z. Fatty acid hydratase for value-added biotransformation: A review. Chin J Chem Eng 2020. [DOI: 10.1016/j.cjche.2020.02.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Antimicrobial effects and membrane damage mechanism of blueberry (Vaccinium corymbosum L.) extract against Vibrio parahaemolyticus. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.107020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
17
|
Cha H, Hwang S, Lee D, Kumar AR, Kwon Y, Voß M, Schuiten E, Bornscheuer UT, Hollmann F, Oh D, Park J. Whole‐Cell Photoenzymatic Cascades to Synthesize Long‐Chain Aliphatic Amines and Esters from Renewable Fatty Acids. Angew Chem Int Ed Engl 2020; 59:7024-7028. [DOI: 10.1002/anie.201915108] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Indexed: 12/28/2022]
Affiliation(s)
- Hee‐Jeong Cha
- Department of Food Science & Engineering Ewha Womans University Seoul 03760 Republic of Korea
| | - Se‐Yeun Hwang
- Department of Food Science & Engineering Ewha Womans University Seoul 03760 Republic of Korea
| | - Da‐Som Lee
- Department of Food Science & Engineering Ewha Womans University Seoul 03760 Republic of Korea
| | - Akula Ravi Kumar
- Department of Food Science & Engineering Ewha Womans University Seoul 03760 Republic of Korea
- Department of Chemistry and Nanoscience Ewha Womans University Seoul 03760 Republic of Korea
| | - Yong‐Uk Kwon
- Department of Chemistry and Nanoscience Ewha Womans University Seoul 03760 Republic of Korea
| | - Moritz Voß
- Institute of Biochemistry Department of Biotechnology & Enzyme Catalysis Greifswald University 17487 Greifswald Germany
| | - Eva Schuiten
- Institute of Biochemistry Department of Biotechnology & Enzyme Catalysis Greifswald University 17487 Greifswald Germany
| | - Uwe T. Bornscheuer
- Institute of Biochemistry Department of Biotechnology & Enzyme Catalysis Greifswald University 17487 Greifswald Germany
| | - Frank Hollmann
- Department of Biotechnology Delft University of Technology Van der Maasweg 9 2629HZ Delft The Netherlands
| | - Deok‐Kun Oh
- Department of Bioscience and Biotechnology Konkuk University Seoul 05029 Republic of Korea
| | - Jin‐Byung Park
- Department of Food Science & Engineering Ewha Womans University Seoul 03760 Republic of Korea
| |
Collapse
|
18
|
Cha H, Hwang S, Lee D, Kumar AR, Kwon Y, Voß M, Schuiten E, Bornscheuer UT, Hollmann F, Oh D, Park J. Whole‐Cell Photoenzymatic Cascades to Synthesize Long‐Chain Aliphatic Amines and Esters from Renewable Fatty Acids. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915108] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Hee‐Jeong Cha
- Department of Food Science & EngineeringEwha Womans University Seoul 03760 Republic of Korea
| | - Se‐Yeun Hwang
- Department of Food Science & EngineeringEwha Womans University Seoul 03760 Republic of Korea
| | - Da‐Som Lee
- Department of Food Science & EngineeringEwha Womans University Seoul 03760 Republic of Korea
| | - Akula Ravi Kumar
- Department of Food Science & EngineeringEwha Womans University Seoul 03760 Republic of Korea
- Department of Chemistry and NanoscienceEwha Womans University Seoul 03760 Republic of Korea
| | - Yong‐Uk Kwon
- Department of Chemistry and NanoscienceEwha Womans University Seoul 03760 Republic of Korea
| | - Moritz Voß
- Institute of BiochemistryDepartment of Biotechnology & Enzyme CatalysisGreifswald University 17487 Greifswald Germany
| | - Eva Schuiten
- Institute of BiochemistryDepartment of Biotechnology & Enzyme CatalysisGreifswald University 17487 Greifswald Germany
| | - Uwe T. Bornscheuer
- Institute of BiochemistryDepartment of Biotechnology & Enzyme CatalysisGreifswald University 17487 Greifswald Germany
| | - Frank Hollmann
- Department of BiotechnologyDelft University of Technology Van der Maasweg 9 2629HZ Delft The Netherlands
| | - Deok‐Kun Oh
- Department of Bioscience and BiotechnologyKonkuk University Seoul 05029 Republic of Korea
| | - Jin‐Byung Park
- Department of Food Science & EngineeringEwha Womans University Seoul 03760 Republic of Korea
| |
Collapse
|
19
|
Schmidt S, Bornscheuer UT. Baeyer-Villiger monooxygenases: From protein engineering to biocatalytic applications. FLAVIN-DEPENDENT ENZYMES: MECHANISMS, STRUCTURES AND APPLICATIONS 2020; 47:231-281. [DOI: 10.1016/bs.enz.2020.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
20
|
Song JW, Seo JH, Oh DK, Bornscheuer UT, Park JB. Design and engineering of whole-cell biocatalytic cascades for the valorization of fatty acids. Catal Sci Technol 2020. [DOI: 10.1039/c9cy01802f] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This review presents the key factors to construct a productive whole-cell biocatalytic cascade exemplified for the biotransformation of renewable fatty acids.
Collapse
Affiliation(s)
- Ji-Won Song
- Department of Food Science and Engineering
- Ewha Womans University
- Seoul 03760
- Republic of Korea
| | - Joo-Hyun Seo
- Department of Bio and Fermentation Convergence Technology
- Kookmin University
- Seoul 02707
- Republic of Korea
| | - Doek-Kun Oh
- Department of Bioscience and Biotechnology
- Konkuk University
- Seoul 143-701
- Republic of Korea
| | - Uwe T. Bornscheuer
- Institute of Biochemistry
- Department of Biotechnology & Enzyme Catalysis
- Greifswald University
- 17487 Greifswald
- Germany
| | - Jin-Byung Park
- Department of Food Science and Engineering
- Ewha Womans University
- Seoul 03760
- Republic of Korea
- Institute of Molecular Microbiology and Biosystems Engineering
| |
Collapse
|
21
|
Fürst MJLJ, Gran-Scheuch A, Aalbers FS, Fraaije MW. Baeyer–Villiger Monooxygenases: Tunable Oxidative Biocatalysts. ACS Catal 2019. [DOI: 10.1021/acscatal.9b03396] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Maximilian J. L. J. Fürst
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, Groningen 9747AG, The Netherlands
| | - Alejandro Gran-Scheuch
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, Groningen 9747AG, The Netherlands
- Department of Chemical and Bioprocesses Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Santiago 7820436, Chile
| | - Friso S. Aalbers
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, Groningen 9747AG, The Netherlands
| | - Marco W. Fraaije
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, Groningen 9747AG, The Netherlands
| |
Collapse
|
22
|
He Q, Bennett GN, San KY, Wu H. Biosynthesis of Medium-Chain ω-Hydroxy Fatty Acids by AlkBGT of Pseudomonas putida GPo1 With Native FadL in Engineered Escherichia coli. Front Bioeng Biotechnol 2019; 7:273. [PMID: 31681749 PMCID: PMC6812396 DOI: 10.3389/fbioe.2019.00273] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/01/2019] [Indexed: 12/19/2022] Open
Abstract
Hydroxy fatty acids (HFAs) are valuable compounds that are widely used in medical, cosmetic and food fields. Production of ω-HFAs via bioconversion by engineered Escherichia coli has received a lot of attention because this process is environmentally friendly. In this study, a whole-cell bio-catalysis strategy was established to synthesize medium-chain ω-HFAs based on the AlkBGT hydroxylation system from Pseudomonas putida GPo1. The effects of blocking the β-oxidation of fatty acids (FAs) and enhancing the transportation of FAs on ω-HFAs bio-production were also investigated. When fadE and fadD were deleted, the consumption of decanoic acid decreased, and the yield of ω-hydroxydecanoic acid was enhanced remarkably. Additionally, the co-expression of the FA transporter protein, FadL, played an important role in increasing the conversion rate of ω-hydroxydecanoic acid. As a result, the concentration and yield of ω-hydroxydecanoic acid in NH03(pBGT-fadL) increased to 309 mg/L and 0.86 mol/mol, respectively. This whole-cell bio-catalysis system was further applied to the biosynthesis of ω-hydroxyoctanoic acid and ω-hydroxydodecanoic acid using octanoic acid and dodecanoic acid as substrates, respectively. The concentrations of ω-hydroxyoctanoic acid and ω-hydroxydodecanoic acid reached 275.48 and 249.03 mg/L, with yields of 0.63 and 0.56 mol/mol, respectively. This study demonstrated that the overexpression of AlkBGT coupled with native FadL is an efficient strategy to synthesize medium-chain ω-HFAs from medium-chain FAs in fadE and fadD mutant E. coli strains.
Collapse
Affiliation(s)
- Qiaofei He
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - George N. Bennett
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, United States
| | - Ka-Yiu San
- Department of Bioengineering, Rice University, Houston, TX, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, United States
| | - Hui Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, Shanghai, China
- Key Laboratory of Bio-based Material Engineering of China National Light Industry Council, Shanghai, China
| |
Collapse
|
23
|
Multi-level engineering of Baeyer-Villiger monooxygenase-based Escherichia coli biocatalysts for the production of C9 chemicals from oleic acid. Metab Eng 2019; 54:137-144. [DOI: 10.1016/j.ymben.2019.03.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 03/29/2019] [Accepted: 03/31/2019] [Indexed: 12/12/2022]
|
24
|
Shin J, Yu J, Park M, Kim C, Kim H, Park Y, Ban C, Seydametova E, Song YH, Shin CS, Chung KH, Woo JM, Chung H, Park JB, Kweon DH. Endocytosing Escherichia coli as a Whole-Cell Biocatalyst of Fatty Acids. ACS Synth Biol 2019; 8:1055-1066. [PMID: 31018087 DOI: 10.1021/acssynbio.8b00519] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Whole cell biocatalysts can be used to convert fatty acids into various value-added products. However, fatty acid transport across cellular membranes into the cytosol of microbial cells limits substrate availability and impairs membrane integrity, which in turn decreases cell viability and bioconversion activity. Because these problems are associated with the mechanism of fatty acid transport through membranes, a whole-cell biocatalyst that can form caveolae-like structures was generated to promote substrate endocytosis. Caveolin-1 ( CAV1) expression in Escherichia coli increased both the fatty acid transport rate and intracellular fatty acid concentrations via endocytosis of the supplemented substrate. Furthermore, fatty-acid endocytosis alleviated substrate cytotoxicity in E. coli. These traits attributed to bacterial endocytosis resulted in dramatically elevated biotransformation efficiencies in fed-batch and cell-recycle reaction systems when caveolae-forming E. coli was used for the bioconversion of ricinoleic acid (12-hydroxyoctadec-9-enoic acid) to ( Z)-11-(heptanoyloxy) undec-9-enoic acid. We propose that CAV1-mediated endocytosing E. coli represents a versatile tool for the biotransformation of hydrophobic substrates.
Collapse
Affiliation(s)
- Jonghyeok Shin
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jiwon Yu
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Myungseo Park
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Chakhee Kim
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hooyeon Kim
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Yunjeong Park
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Choongjin Ban
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Biomedical Institute for Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Emine Seydametova
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | | | | | - Kyung-Hwun Chung
- Electron Microscope Facility, Dental Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Ji-Min Woo
- Department of Food Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Hyunwoo Chung
- Department of Food Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jin-Byung Park
- Department of Food Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Dae-Hyuk Kweon
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Biomedical Institute for Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Center for Biologics, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
25
|
Lee D, Song J, Voß M, Schuiten E, Akula RK, Kwon Y, Bornscheuer U, Park J. Enzyme Cascade Reactions for the Biosynthesis of Long Chain Aliphatic Amines from Renewable Fatty Acids. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201801501] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Da‐Som Lee
- Department of Food Science & EngineeringEwha Womans University Seoul 03760 Republic of Korea
| | - Ji‐Won Song
- Department of Food Science & EngineeringEwha Womans University Seoul 03760 Republic of Korea
| | - Moritz Voß
- Institute of Biochemistry, Department of Biotechnology & Enzyme CatalysisGreifswald University 17487 Greifswald Germany
| | - Eva Schuiten
- Institute of Biochemistry, Department of Biotechnology & Enzyme CatalysisGreifswald University 17487 Greifswald Germany
| | - Ravi Kumar Akula
- Department of Chemistry and NanoscienceEwha Womans University Seoul 03760 Republic of Korea
| | - Yong‐Uk Kwon
- Department of Chemistry and NanoscienceEwha Womans University Seoul 03760 Republic of Korea
| | - Uwe Bornscheuer
- Institute of Biochemistry, Department of Biotechnology & Enzyme CatalysisGreifswald University 17487 Greifswald Germany
| | - Jin‐Byung Park
- Department of Food Science & EngineeringEwha Womans University Seoul 03760 Republic of Korea
| |
Collapse
|
26
|
Biosynthesis of ω-hydroxy fatty acids and related chemicals from natural fatty acids by recombinant Escherichia coli. Appl Microbiol Biotechnol 2018; 103:191-199. [DOI: 10.1007/s00253-018-9503-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/01/2018] [Accepted: 11/05/2018] [Indexed: 10/27/2022]
|
27
|
Biosynthesis of Nylon 12 Monomer, ω-Aminododecanoic Acid Using Artificial Self-Sufficient P450, AlkJ and ω-TA. Catalysts 2018. [DOI: 10.3390/catal8090400] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
ω-Aminododecanoic acid is considered as one of the potential monomers of Nylon 12, a high-performance member of the bioplastic family. The biosynthesis of ω-aminododecanoic acid from renewable sources is an attractive process in the polymer industry. Here, we constructed three artificial self-sufficient P450s (ArtssP450s) using CYP153A13 from Alcanivorax borkumensis and cytochrome P450 reductase (CPR) domains of natural self-sufficient P450s (CYP102A1, CYP102A5, and 102D1). Among them, artificial self-sufficient P450 (CYP153A13BM3CPR) with CYP102A1 CPR showed the highest catalytically activity for dodecanoic acid (DDA) substrate. This form of ArtssP450 was further co-expressed with ω-TA from Silicobacter pomeroyi and AlkJ from Pseudomonas putida GPo1. This single-cell system was used for the biotransformation of dodecanoic acid (DDA) to ω-aminododecanoic acid (ω-AmDDA), wherein we could successfully biosynthesize 1.48 mM ω-AmDDA from 10 mM DDA substrate in a one-pot reaction. The productivity achieved in the present study was five times higher than that achieved in our previously reported multistep biosynthesis method (0.3 mM).
Collapse
|
28
|
Sudheer PDVN, Seo D, Kim EJ, Chauhan S, Chunawala JR, Choi KY. Production of (Z)-11-(heptanoyloxy)undec-9-enoic acid from ricinoleic acid by utilizing crude glycerol as sole carbon source in engineered Escherichia coli expressing BVMO-ADH-FadL. Enzyme Microb Technol 2018; 119:45-51. [PMID: 30243386 DOI: 10.1016/j.enzmictec.2018.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/17/2018] [Accepted: 09/01/2018] [Indexed: 10/28/2022]
Abstract
Production of (Z)-11-(heptanoyloxy)undec-9-enoic acid from recinoleic acid was achieved by whole-cell biotransformation by Escherichia coli, utilizing crude glycerol as the sole carbon source. Whole-cell biotransformation resulted in ∼93% conversion of the substrate ricinoleic acid to (Z)-11-(heptanoyloxy)undec-9-enoic acid. We replaced the inducer-dependent promoter system (T7 and Rhm promotors) with a constitutive promoter system. This resulted in successful expression of ADH, FadL, and E6-BVMO, without costly inducer addition. Efficacy evaluation of the whole-cell biotransformation by inducer-free system by five different E. coli strains revealed that the highest product titer was accumulated in E. coli BW25113 strain. The engineered inducer-free system using crude glycerol as the sole carbon source showed competitive performance with induction systems. Optimized conditions resulted in the accumulation of 7.38 ± 0.42 mM (Z)-11-(heptanoyloxy)undec-9-enoic acid, and when 10 mM substrate was used as feed concentration, the product titer reached 2.35 g/L. The inducer-free construct with constitutive promoter system that this study established, which utilizes the waste by-product crude glycerol, will pave the way for the economic synthesis of many industrially important chemicals, like (Z)-11-(heptanoyloxy)undec-9-enoic acid.
Collapse
Affiliation(s)
- Pamidimarri D V N Sudheer
- Department of Environmental Engineering, College of Engineering, Ajou University, Suwon, Gyeonggi-do, South Korea
| | - Dahee Seo
- Department of Environmental Engineering, College of Engineering, Ajou University, Suwon, Gyeonggi-do, South Korea
| | - Eun-Joo Kim
- Department of Environmental Engineering, College of Engineering, Ajou University, Suwon, Gyeonggi-do, South Korea
| | - Sushma Chauhan
- Department of Chemical and Biochemical Engineering, Dongguk University-Seoul, Seoul 100-715, Republic of Korea
| | - J R Chunawala
- Process Design & Engineering Cell, Central Salt and Marine Chemicals Research Institute-CSIR, Bhavnagar, 364002, India
| | - Kwon-Young Choi
- Department of Environmental Engineering, College of Engineering, Ajou University, Suwon, Gyeonggi-do, South Korea.
| |
Collapse
|