1
|
Porter JC, Inshaw J, Solis VJ, Denneny E, Evans R, Temkin MI, De Vasconcelos N, Aramburu IV, Hoving D, Basire D, Crissell T, Guinto J, Webb A, Esmail H, Johnston V, Last A, Rampling T, Lippert L, Helbig ET, Kurth F, Williams B, Flynn A, Lukey PT, Birault V, Papayannopoulos V. Anti-inflammatory therapy with nebulized dornase alfa for severe COVID-19 pneumonia: a randomized unblinded trial. eLife 2024; 12:RP87030. [PMID: 39009040 PMCID: PMC11251720 DOI: 10.7554/elife.87030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024] Open
Abstract
Background Prinflammatory extracellular chromatin from neutrophil extracellular traps (NETs) and other cellular sources is found in COVID-19 patients and may promote pathology. We determined whether pulmonary administration of the endonuclease dornase alfa reduced systemic inflammation by clearing extracellular chromatin. Methods Eligible patients were randomized (3:1) to the best available care including dexamethasone (R-BAC) or to BAC with twice-daily nebulized dornase alfa (R-BAC + DA) for seven days or until discharge. A 2:1 ratio of matched contemporary controls (CC-BAC) provided additional comparators. The primary endpoint was the improvement in C-reactive protein (CRP) over time, analyzed using a repeated-measures mixed model, adjusted for baseline factors. Results We recruited 39 evaluable participants: 30 randomized to dornase alfa (R-BAC +DA), 9 randomized to BAC (R-BAC), and included 60 CC-BAC participants. Dornase alfa was well tolerated and reduced CRP by 33% compared to the combined BAC groups (T-BAC). Least squares (LS) mean post-dexamethasone CRP fell from 101.9 mg/L to 23.23 mg/L in R-BAC +DA participants versus a 99.5 mg/L to 34.82 mg/L reduction in the T-BAC group at 7 days; p=0.01. The anti-inflammatory effect of dornase alfa was further confirmed with subgroup and sensitivity analyses on randomised participants only, mitigating potential biases associated with the use of CC-BAC participants. Dornase alfa increased live discharge rates by 63% (HR 1.63, 95% CI 1.01-2.61, p=0.03), increased lymphocyte counts (LS mean: 1.08 vs 0.87, p=0.02) and reduced circulating cf-DNA and the coagulopathy marker D-dimer (LS mean: 570.78 vs 1656.96 μg/mL, p=0.004). Conclusions Dornase alfa reduces pathogenic inflammation in COVID-19 pneumonia, demonstrating the benefit of cost-effective therapies that target extracellular chromatin. Funding LifeArc, Breathing Matters, The Francis Crick Institute (CRUK, Medical Research Council, Wellcome Trust). Clinical trial number NCT04359654.
Collapse
Affiliation(s)
- Joanna C Porter
- UCL Respiratory, University College LondonLondonUnited Kingdom
- University College London Hospitals NHS TrustLondonUnited Kingdom
| | | | | | - Emma Denneny
- UCL Respiratory, University College LondonLondonUnited Kingdom
- University College London Hospitals NHS TrustLondonUnited Kingdom
| | - Rebecca Evans
- University College London Hospitals NHS TrustLondonUnited Kingdom
| | - Mia I Temkin
- Antimicrobial Defence Lab, The Francis Crick InstituteLondonUnited Kingdom
| | | | | | - Dennis Hoving
- Antimicrobial Defence Lab, The Francis Crick InstituteLondonUnited Kingdom
| | - Donna Basire
- UCL Respiratory, University College LondonLondonUnited Kingdom
| | - Tracey Crissell
- University College London Hospitals NHS TrustLondonUnited Kingdom
| | - Jesusa Guinto
- University College London Hospitals NHS TrustLondonUnited Kingdom
| | - Alison Webb
- University College London Hospitals NHS TrustLondonUnited Kingdom
| | - Hanif Esmail
- University College London Hospitals NHS TrustLondonUnited Kingdom
- National Institute for Health Research, University College London Hospital Biomedical Research CentreLondonUnited Kingdom
| | - Victoria Johnston
- University College London Hospitals NHS TrustLondonUnited Kingdom
- National Institute for Health Research, University College London Hospital Biomedical Research CentreLondonUnited Kingdom
| | - Anna Last
- University College London Hospitals NHS TrustLondonUnited Kingdom
- Clinical Research Department, London School of Hygiene and Tropical MedicineLondonUnited Kingdom
| | - Thomas Rampling
- University College London Hospitals NHS TrustLondonUnited Kingdom
- National Institute for Health Research, University College London Hospital Biomedical Research CentreLondonUnited Kingdom
| | - Lena Lippert
- Charité – Universitätsmedizin Berlin, Department of Infectious Diseases and Respiratory MedicineBerlinGermany
| | - Elisa Theresa Helbig
- Charité – Universitätsmedizin Berlin, Department of Infectious Diseases and Respiratory MedicineBerlinGermany
| | - Florian Kurth
- Charité – Universitätsmedizin Berlin, Department of Infectious Diseases and Respiratory MedicineBerlinGermany
| | - Bryan Williams
- University College London Hospitals NHS TrustLondonUnited Kingdom
- National Institute for Health Research, University College London Hospital Biomedical Research CentreLondonUnited Kingdom
| | | | | | | | | |
Collapse
|
2
|
Nickerson R, Thornton CS, Johnston B, Lee AHY, Cheng Z. Pseudomonas aeruginosa in chronic lung disease: untangling the dysregulated host immune response. Front Immunol 2024; 15:1405376. [PMID: 39015565 PMCID: PMC11250099 DOI: 10.3389/fimmu.2024.1405376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/14/2024] [Indexed: 07/18/2024] Open
Abstract
Pseudomonas aeruginosa is a highly adaptable opportunistic pathogen capable of exploiting barriers and immune defects to cause chronic lung infections in conditions such as cystic fibrosis. In these contexts, host immune responses are ineffective at clearing persistent bacterial infection, instead driving a cycle of inflammatory lung damage. This review outlines key components of the host immune response to chronic P. aeruginosa infection within the lung, beginning with initial pathogen recognition, followed by a robust yet maladaptive innate immune response, and an ineffective adaptive immune response that propagates lung damage while permitting bacterial persistence. Untangling the interplay between host immunity and chronic P. aeruginosa infection will allow for the development and refinement of strategies to modulate immune-associated lung damage and potentiate the immune system to combat chronic infection more effectively.
Collapse
Affiliation(s)
- Rhea Nickerson
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Christina S. Thornton
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Brent Johnston
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Amy H. Y. Lee
- Department of Molecular Biology and Biochemistry, Faculty of Science, Simon Fraser University, Burnaby, BC, Canada
| | - Zhenyu Cheng
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
3
|
King PT, Dousha L. Neutrophil Extracellular Traps and Respiratory Disease. J Clin Med 2024; 13:2390. [PMID: 38673662 PMCID: PMC11051312 DOI: 10.3390/jcm13082390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/26/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Extracellular traps made by neutrophils (NETs) and other leukocytes such as macrophages and eosinophils have a key role in the initial immune response to infection but are highly inflammatory and may contribute to tissue damage. They are particularly relevant to lung disease, with the pulmonary anatomy facilitating their ability to fully extend into the airways/alveolar space. There has been a rapid expansion in the number of published studies demonstrating their role in a variety of important respiratory diseases including chronic obstructive pulmonary disease, cystic fibrosis, bronchiectasis, asthma, pneumonia, COVID-19, rhinosinusitis, interstitial lung disease and lung cancer. The expression of NETs and other traps is a specific process, and diagnostic tests need to differentiate them from other inflammatory pathways/causes of cell death that are also characterised by the presence of extracellular DNA. The specific targeting of this pathway by relevant therapeutics may have significant clinical benefit; however, current clinical trials/evidence are at a very early stage. This review will provide a broad overview of the role of NETs and their possible treatment in respiratory disease.
Collapse
Affiliation(s)
- Paul T. King
- Monash Lung, Sleep, Allergy and Immunology, Monash Medical Centre, 246 Clayton Rd, Clayton, Melbourne, VIC 3168, Australia;
- Department of Medicine, Monash University, Clayton, Melbourne, VIC 3168, Australia
| | - Lovisa Dousha
- Monash Lung, Sleep, Allergy and Immunology, Monash Medical Centre, 246 Clayton Rd, Clayton, Melbourne, VIC 3168, Australia;
- Department of Medicine, Monash University, Clayton, Melbourne, VIC 3168, Australia
| |
Collapse
|
4
|
Marra D, Karapantsios T, Caserta S, Secchi E, Holynska M, Labarthe S, Polizzi B, Ortega S, Kostoglou M, Lasseur C, Karapanagiotis I, Lecuyer S, Bridier A, Noirot-Gros MF, Briandet R. Migration of surface-associated microbial communities in spaceflight habitats. Biofilm 2023; 5:100109. [PMID: 36909662 PMCID: PMC9999172 DOI: 10.1016/j.bioflm.2023.100109] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 02/05/2023] [Accepted: 02/17/2023] [Indexed: 02/26/2023] Open
Abstract
Astronauts are spending longer periods locked up in ships or stations for scientific and exploration spatial missions. The International Space Station (ISS) has been inhabited continuously for more than 20 years and the duration of space stays by crews could lengthen with the objectives of human presence on the moon and Mars. If the environment of these space habitats is designed for the comfort of astronauts, it is also conducive to other forms of life such as embarked microorganisms. The latter, most often associated with surfaces in the form of biofilm, have been implicated in significant degradation of the functionality of pieces of equipment in space habitats. The most recent research suggests that microgravity could increase the persistence, resistance and virulence of pathogenic microorganisms detected in these communities, endangering the health of astronauts and potentially jeopardizing long-duration manned missions. In this review, we describe the mechanisms and dynamics of installation and propagation of these microbial communities associated with surfaces (spatial migration), as well as long-term processes of adaptation and evolution in these extreme environments (phenotypic and genetic migration), with special reference to human health. We also discuss the means of control envisaged to allow a lasting cohabitation between these vibrant microscopic passengers and the astronauts.
Collapse
Affiliation(s)
- Daniele Marra
- Department of Chemical, Materials and Industrial Production Engineering (DICMaPi), University of Naples, Federico II, Piazzale Tecchio 80, 80125, Naples, Italy
- CEINGE, Advanced Biotechnologies, Via Gaetano Salvatore, 486, 80145, Naples, Italy
| | - Thodoris Karapantsios
- Division of Chemical Technology, School of Chemistry, Aristotle University of Thessaloniki, University Box 116, 541 24, Thessaloniki, Greece
| | - Sergio Caserta
- Department of Chemical, Materials and Industrial Production Engineering (DICMaPi), University of Naples, Federico II, Piazzale Tecchio 80, 80125, Naples, Italy
- CEINGE, Advanced Biotechnologies, Via Gaetano Salvatore, 486, 80145, Naples, Italy
| | - Eleonora Secchi
- Department of Civil, Environmental and Geomatic Engineering, Institute of Environmental Engineering, ETH Zurich, 8093, Zurich, Switzerland
| | | | - Simon Labarthe
- University of Bordeaux, IMB, UMR 5251, CNRS, IMB, Memphis Team, INRIA, Talence, France
| | - Bastien Polizzi
- Laboratoire de Mathématiques de Besançon, Université Bourgogne Franche-Comté, CNRS UMR-6623, Besançon, France
| | | | - Margaritis Kostoglou
- Division of Chemical Technology, School of Chemistry, Aristotle University of Thessaloniki, University Box 116, 541 24, Thessaloniki, Greece
| | | | - Ioannis Karapanagiotis
- Division of Chemical Technology, School of Chemistry, Aristotle University of Thessaloniki, University Box 116, 541 24, Thessaloniki, Greece
| | | | - Arnaud Bridier
- Fougères Laboratory, Antibiotics, Biocides, Residues and Resistance Unit, ANSES, Fougères, France
| | | | - Romain Briandet
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| |
Collapse
|
5
|
Jarrahi A, Khodadadi H, Moore NS, Lu Y, Awad ME, Salles EL, Vaibhav K, Baban B, Dhandapani KM. Recombinant human DNase-I improves acute respiratory distress syndrome via neutrophil extracellular trap degradation. J Thromb Haemost 2023; 21:2473-2484. [PMID: 37196848 PMCID: PMC10185489 DOI: 10.1016/j.jtha.2023.04.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/21/2023] [Accepted: 04/28/2023] [Indexed: 05/19/2023]
Abstract
BACKGROUND Respiratory failure is the primary cause of death in patients with COVID-19, whereas coagulopathy is associated with excessive inflammation and multiorgan failure. Neutrophil extracellular traps (NETs) may exacerbate inflammation and provide a scaffold for thrombus formation. OBJECTIVES The goal of this study was to determine whether degradation of NETs by recombinant human DNase-I (rhDNase), a safe, Food and Drug Administration-approved drug, reduces excessive inflammation, reverses aberrant coagulation, and improves pulmonary perfusion after experimental acute respiratory distress syndrome (ARDS). METHODS Intranasal poly(I:C), a synthetic double-stranded RNA, was administered to adult mice for 3 consecutive days to simulate a viral infection, and these subjects were randomized to treatment arms, which received either an intravenous placebo or rhDNase. The effects of rhDNase on immune activation, platelet aggregation, and coagulation were assessed in mice and donor human blood. RESULTS NETs were observed in bronchoalveolar lavage fluid and within regions of hypoxic lung tissue after experimental ARDS. The administration of rhDNase mitigated peribronchiolar, perivascular, and interstitial inflammation induced by poly(I:C). In parallel, rhDNase degraded NETs, attenuated platelet-NET aggregates, reduced platelet activation, and normalized the clotting time to improve regional perfusion, as observed using gross morphology, histology, and microcomputed tomographic imaging in mice. Similarly, rhDNase reduced NETs and attenuated platelet activation in human blood. CONCLUSION NETs exacerbate inflammation and promote aberrant coagulation by providing a scaffold for aggregated platelets after experimental ARDS. Intravenous administration of rhDNase degrades NETs and attenuates coagulopathy in ARDS, providing a promising translational approach to improve pulmonary structure and function after ARDS.
Collapse
Affiliation(s)
- Abbas Jarrahi
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Hesam Khodadadi
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Nicholas S Moore
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Yujiao Lu
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Mohamed E Awad
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Evila L Salles
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Kumar Vaibhav
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Babak Baban
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, Georgia, USA; Department of Surgery, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Krishnan M Dhandapani
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, Georgia, USA.
| |
Collapse
|
6
|
Abdelhamid AG, Yousef AE. Combating Bacterial Biofilms: Current and Emerging Antibiofilm Strategies for Treating Persistent Infections. Antibiotics (Basel) 2023; 12:1005. [PMID: 37370324 DOI: 10.3390/antibiotics12061005] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 05/29/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Biofilms are intricate multicellular structures created by microorganisms on living (biotic) or nonliving (abiotic) surfaces. Medically, biofilms often lead to persistent infections, increased antibiotic resistance, and recurrence of infections. In this review, we highlighted the clinical problem associated with biofilm infections and focused on current and emerging antibiofilm strategies. These strategies are often directed at disrupting quorum sensing, which is crucial for biofilm formation, preventing bacterial adhesion to surfaces, impeding bacterial aggregation in viscous mucus layers, degrading the extracellular polymeric matrix, and developing nanoparticle-based antimicrobial drug complexes which target persistent cells within the biofilm core. It is important to acknowledge, however, that the use of antibiofilm agents faces obstacles, such as limited effectiveness in vivo, potential cytotoxicity to host cells, and propensity to elicit resistance in targeted biofilm-forming microbes. Emerging next generation antibiofilm strategies, which rely on multipronged approaches, were highlighted, and these benefit from current advances in nanotechnology, synthetic biology, and antimicrobial drug discovery. The assessment of current antibiofilm mitigation approaches, as presented here, could guide future initiatives toward innovative antibiofilm therapeutic strategies. Enhancing the efficacy and specificity of some emerging antibiofilm strategies via careful investigations, under conditions that closely mimic biofilm characteristics within the human body, could bridge the gap between laboratory research and practical application.
Collapse
Affiliation(s)
- Ahmed G Abdelhamid
- Department of Food Science and Technology, The Ohio State University, 2015 Fyffe Court, Columbus, OH 43210, USA
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha 13518, Egypt
| | - Ahmed E Yousef
- Department of Food Science and Technology, The Ohio State University, 2015 Fyffe Court, Columbus, OH 43210, USA
- Department of Microbiology, The Ohio State University, 105 Biological Sciences Building, 484 West 12th Avenue, Columbus, OH 43210, USA
| |
Collapse
|
7
|
Volpi S, Carnovale V, Colombo C, Raia V, Blasi F, Pappagallo G. Use of mucoactive agents in cystic fibrosis: A consensus survey of Italian specialists. Health Sci Rep 2022; 5:e604. [PMID: 35677472 PMCID: PMC9169509 DOI: 10.1002/hsr2.604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/27/2022] [Accepted: 02/06/2022] [Indexed: 11/12/2022] Open
Abstract
Background The goal of mucoactive therapies in cystic fibrosis (CF) is to enhance sputum clearance and to reduce a progressive decline in lung function over the patient's lifetime. We aimed to investigate the level of consensus among specialists from Italian CF Centers on appropriateness of therapeutic use of dornase alfa (rhDNase) for CF patients. Method A consensus on appropriate prescribing in CF mucoactive agents was appraised by an online Delphi method, based on a panel of 27 pulmonologists, coordinated by a Scientific Committee of six experts in medical care of patients with CF. Results Full or very high consensus was reached on several issues related to therapeutic use of dornase alfa for CF patients in clinical practice. Conclusions The consensus reached on a number of topics regarding use of mucoactive agents in patients with CF can help guide clinicians in daily practice based on expert experience and define the most appropriate therapeutic strategy for the individual patient.
Collapse
Affiliation(s)
- Sonia Volpi
- Cystic Fibrosis Center Azienda Ospedialiera Universitaria Integrata Verona Italy
| | - Vincenzo Carnovale
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Cystic Fibrosis Center Milan Italy
| | - Carla Colombo
- Department of Translational Medical Science, Cystic Fibrosis Centre, Adult Unit University “Federico II” Naples Italy
| | - Valeria Raia
- Section of Pediatrics, Department of Translational Medical Sciences “University Federico II” Naples Italy
| | - Francesco Blasi
- Department of Internal Medicine Respiratory Unit and Adult Cystic Fibrosis Center Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico Milano Milan Italy
- Department of Pathophysiology and Transplantation Università degli Studi di Milano Milan Italy
| | | | | |
Collapse
|
8
|
Colombo C, Cipolli M, Daccò V, Medino P, Alghisi F, Ambroni M, Badolato R, Battistini F, Bignamini E, Casciaro R, Ciciriello F, Collura M, Comello I, Francalanci M, Ficili F, Folino A, Leonardi S, Leonetti G, Lucanto MC, Lucca F, Maschio M, Mencarini V, Messore B, Pisi G, Pizzamiglio G, Poli P, Raia V, Riberi L, Ros M, Rotolo N, Sepe A, Taccetti G, Vitullo P, Alicandro G. Clinical course and risk factors for severe COVID-19 among Italian patients with cystic fibrosis: a study within the Italian Cystic Fibrosis Society. Infection 2022; 50:671-679. [PMID: 34874541 PMCID: PMC8649681 DOI: 10.1007/s15010-021-01737-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/23/2021] [Indexed: 12/28/2022]
Abstract
PURPOSE To describe the clinical course of COVID-19 in patients with cystic fibrosis (CF) and to identify risk factors for severe COVID-19. METHODS We conducted a prospective study within the Italian CF Society. CF centers collected baseline and follow-up data of patients with virologically confirmed SARS-CoV-2 infection between March 2020 and June 2021. Odds ratios (ORs) for severe SARS-CoV-2 (as defined by hospital admission) were estimated by logistic regression models. RESULTS The study included 236 patients with positive molecular test for SARS-CoV-2. Six patients died, 43 patients were admitted to hospital, 4 admitted to intensive care unit. Pancreatic insufficiency was associated with increased risk of severe COVID-19 (OR 4.04, 95% CI 1.52; 10.8). After adjusting for age and pancreatic insufficiency, forced expiratory volume in one second (FEVp) < 40% (OR 4.54, 95% CI 1.56; 13.2), oxygen therapy (OR 12.3, 95% CI 2.91-51.7), underweight (OR 2.92, 95% CI 1.12; 7.57), organ transplantation (OR 7.31, 95% CI 2.59; 20.7), diabetes (OR 2.67, 95% CI 1.23; 5.80) and liver disease (OR 3.67, 95% CI 1.77; 7.59) were associated with increased risk of severe COVID-19, while use of dornase alfa was associated with a reduced risk (OR 0.34, 95% CI 0.13-0.88). No significant changes were observed in FEVp from baseline to a median follow-up of 2 months (median difference: 0, interquartile range: - 4; 5, P = 0.62). CONCLUSION Clinical features indicative of severe form of CF are associated with increased risk of COVID-19 hospitalization. SARS-CoV-2 infected patients do not experience a deterioration of respiratory function.
Collapse
Affiliation(s)
- Carla Colombo
- Pediatric Cystic Fibrosis Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Commenda 9, 20122, Milano, Italy.
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milano, Italy.
| | - Marco Cipolli
- Cystic Fibrosis Center, Azienda Opedaliera-Universitaria Integrata Di Verona, Verona, Italy
| | - Valeria Daccò
- Pediatric Cystic Fibrosis Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Commenda 9, 20122, Milano, Italy
| | - Paola Medino
- Pediatric Cystic Fibrosis Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Commenda 9, 20122, Milano, Italy
| | - Federico Alghisi
- Cystic Fibrosis Center, Ospedale Pediatrico Bambin Gesù, Roma, Italy
| | - Maura Ambroni
- Cystic Fibrosis Center, Ospedale Maurizio Bufalini, Cesena, Italy
| | - Raffaele Badolato
- Cystic Fibrosis Center, ASST Spedali Civili Di Brescia and Università Degli Studi Di Brescia, Brescia, Italy
| | | | - Elisabetta Bignamini
- Pediatric Cystic Fibrosis Center, Ospedale Infantile Regina Margherita, Torino, Italy
| | - Rosaria Casciaro
- Cystic Fibrosis Center, Istituto Giannina Gaslini, Genova, Italy
| | | | - Mirella Collura
- Cystic Fibrosis Center, Ospedale Giovanni Di Cristina, Palermo, Italy
| | - Isabella Comello
- Cystic Fibrosis Support Center, Ospedale S. Maria Di Ca' Foncello, Treviso, Italy
| | - Michela Francalanci
- Cystic Fibrosis Center, Azienda Opedaliero-Universitaria Meyer, Firenze, Italy
| | - Francesca Ficili
- Cystic Fibrosis Center, Ospedale Giovanni Di Cristina, Palermo, Italy
| | - Anna Folino
- Pediatric Cystic Fibrosis Center, Ospedale Infantile Regina Margherita, Torino, Italy
| | - Salvatore Leonardi
- Cystic Fibrosis Center, Azienda Opedaliero-Universitaria Policlinico Vittorio Emanuele, Catania, Italy
| | - Giuseppina Leonetti
- Pediatric Cystic Fibrosis Center, Azienda Universitaria Ospedaliera Consorziale Policlinico, Bari, Italy
| | - Maria Cristina Lucanto
- Cystic Fibrosis Hub Center, Azienda Ospedaliera Universitaria Policlinico G. Martino, Messina, Italy
| | - Francesca Lucca
- Cystic Fibrosis Center, Azienda Opedaliera-Universitaria Integrata Di Verona, Verona, Italy
| | - Massimo Maschio
- Cystic Fibrosis Center, IRCCS Materno Infantile Burlo Garofolo, Trieste, Italy
| | - Valeria Mencarini
- Cystic Fibrosis Center, Presidio Ospedaliero di Gubbio e Gualdo Tadino, Gubbio, Italy
| | - Barbara Messore
- Adult Cystic Fibrosis Center, Azienda Ospedaliero-Universitaria San Luigi Gonzaga, Orbassano, Italy
| | - Giovanna Pisi
- Cystic Fibrosis Center, Azienda Opedaliero-Universitaria di Parma, Parma, Italy
| | - Giovanna Pizzamiglio
- Adult Cystic Fibrosis Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Piercarlo Poli
- Cystic Fibrosis Center, ASST Spedali Civili Di Brescia and Università Degli Studi Di Brescia, Brescia, Italy
| | - Valeria Raia
- Cystic Fibrosis Center, Azienda Opedaliera-Universitaria Federico II, Napoli, Italy
| | - Luca Riberi
- Adult Cystic Fibrosis Center, Azienda Ospedaliero-Universitaria San Luigi Gonzaga, Orbassano, Italy
| | - Mirco Ros
- Cystic Fibrosis Support Center, Ospedale S. Maria Di Ca' Foncello, Treviso, Italy
| | - Novella Rotolo
- Cystic Fibrosis Center, Azienda Opedaliero-Universitaria Policlinico Vittorio Emanuele, Catania, Italy
| | - Angela Sepe
- Cystic Fibrosis Center, Azienda Opedaliera-Universitaria Federico II, Napoli, Italy
| | - Giovanni Taccetti
- Cystic Fibrosis Center, Azienda Opedaliero-Universitaria Meyer, Firenze, Italy
| | - Pamela Vitullo
- Cystic Fibrosis Support Center, Ospedale G. Tatarella di Cerignola, Cerignola, Italy
| | - Gianfranco Alicandro
- Pediatric Cystic Fibrosis Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Commenda 9, 20122, Milano, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
9
|
Lahiri T, Sullivan JS. Recent advances in the early treatment of cystic fibrosis: Bridging the gap to highly effective modulator therapy. Pediatr Pulmonol 2022; 57 Suppl 1:S60-S74. [PMID: 34473419 DOI: 10.1002/ppul.25660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/22/2021] [Accepted: 09/01/2021] [Indexed: 11/08/2022]
Abstract
Highly effective modulator therapy (HEMT) for cystic fibrosis (CF) has been touted as one of the greatest advances to date in CF care. As these therapies are now available for many older children and adults with CF, marked improvement of their nutritional status, pulmonary and gastrointestinal symptoms has been observed. However, most infants and younger children are not current candidates for HEMT due to age and/or cystic fibrosis transmembrane conductance regulator (CFTR) mutation. For these young children, it is essential to provide rigorous monitoring and care to avoid potential disease sequelae while awaiting HEMT availability. The following article highlights recent advances in the care of infants and young children with CF with regard to surveillance and treatment of nutritional, pulmonary, and gastrointestinal disorders. Recent clinical trials in this population are also reviewed.
Collapse
Affiliation(s)
- Thomas Lahiri
- Divisions of Pediatric Pulmonology and Gastroenterology, University of Vermont Children's Hospital, Burlington, Vermont, USA
| | - Jillian S Sullivan
- Divisions of Pediatric Pulmonology and Gastroenterology, University of Vermont Children's Hospital, Burlington, Vermont, USA
| |
Collapse
|
10
|
Anderson S, Atkins P, Bäckman P, Cipolla D, Clark A, Daviskas E, Disse B, Entcheva-Dimitrov P, Fuller R, Gonda I, Lundbäck H, Olsson B, Weers J. Inhaled Medicines: Past, Present, and Future. Pharmacol Rev 2022; 74:48-118. [PMID: 34987088 DOI: 10.1124/pharmrev.120.000108] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/06/2021] [Indexed: 12/21/2022] Open
Abstract
The purpose of this review is to summarize essential pharmacological, pharmaceutical, and clinical aspects in the field of orally inhaled therapies that may help scientists seeking to develop new products. After general comments on the rationale for inhaled therapies for respiratory disease, the focus is on products approved approximately over the last half a century. The organization of these sections reflects the key pharmacological categories. Products for asthma and chronic obstructive pulmonary disease include β -2 receptor agonists, muscarinic acetylcholine receptor antagonists, glucocorticosteroids, and cromones as well as their combinations. The antiviral and antibacterial inhaled products to treat respiratory tract infections are then presented. Two "mucoactive" products-dornase α and mannitol, which are both approved for patients with cystic fibrosis-are reviewed. These are followed by sections on inhaled prostacyclins for pulmonary arterial hypertension and the challenging field of aerosol surfactant inhalation delivery, especially for prematurely born infants on ventilation support. The approved products for systemic delivery via the lungs for diseases of the central nervous system and insulin for diabetes are also discussed. New technologies for drug delivery by inhalation are analyzed, with the emphasis on those that would likely yield significant improvements over the technologies in current use or would expand the range of drugs and diseases treatable by this route of administration. SIGNIFICANCE STATEMENT: This review of the key aspects of approved orally inhaled drug products for a variety of respiratory diseases and for systemic administration should be helpful in making judicious decisions about the development of new or improved inhaled drugs. These aspects include the choices of the active ingredients, formulations, delivery systems suitable for the target patient populations, and, to some extent, meaningful safety and efficacy endpoints in clinical trials.
Collapse
Affiliation(s)
- Sandra Anderson
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia (S.A.); Inhaled Delivery Solutions LLC, Durham, North Carolina (P.A.); Emmace Consulting AB Medicon Village, Lund, Sweden (P.B., H.L., B.O.); Insmed Inc., Bridgewater, New Jersey (D.C.); Aerogen Pharma Corporation, San Mateo, California (A.C.); Woolcock Institute of Medical Research, Glebe, New South Wales, Australia (E.D.); Drug Development, Pharmacology and Clinical Pharmacology Consulting, Mainz, Germany (B.D.); Preferred Regulatory Consulting, San Mateo, California (P.E-.D.); Clayton, CA (R.F.); Respidex LLC, Dennis, Massachusetts (I.G.); and cystetic Medicines, Inc., Burlingame, California (J.W.)
| | - Paul Atkins
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia (S.A.); Inhaled Delivery Solutions LLC, Durham, North Carolina (P.A.); Emmace Consulting AB Medicon Village, Lund, Sweden (P.B., H.L., B.O.); Insmed Inc., Bridgewater, New Jersey (D.C.); Aerogen Pharma Corporation, San Mateo, California (A.C.); Woolcock Institute of Medical Research, Glebe, New South Wales, Australia (E.D.); Drug Development, Pharmacology and Clinical Pharmacology Consulting, Mainz, Germany (B.D.); Preferred Regulatory Consulting, San Mateo, California (P.E-.D.); Clayton, CA (R.F.); Respidex LLC, Dennis, Massachusetts (I.G.); and cystetic Medicines, Inc., Burlingame, California (J.W.)
| | - Per Bäckman
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia (S.A.); Inhaled Delivery Solutions LLC, Durham, North Carolina (P.A.); Emmace Consulting AB Medicon Village, Lund, Sweden (P.B., H.L., B.O.); Insmed Inc., Bridgewater, New Jersey (D.C.); Aerogen Pharma Corporation, San Mateo, California (A.C.); Woolcock Institute of Medical Research, Glebe, New South Wales, Australia (E.D.); Drug Development, Pharmacology and Clinical Pharmacology Consulting, Mainz, Germany (B.D.); Preferred Regulatory Consulting, San Mateo, California (P.E-.D.); Clayton, CA (R.F.); Respidex LLC, Dennis, Massachusetts (I.G.); and cystetic Medicines, Inc., Burlingame, California (J.W.)
| | - David Cipolla
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia (S.A.); Inhaled Delivery Solutions LLC, Durham, North Carolina (P.A.); Emmace Consulting AB Medicon Village, Lund, Sweden (P.B., H.L., B.O.); Insmed Inc., Bridgewater, New Jersey (D.C.); Aerogen Pharma Corporation, San Mateo, California (A.C.); Woolcock Institute of Medical Research, Glebe, New South Wales, Australia (E.D.); Drug Development, Pharmacology and Clinical Pharmacology Consulting, Mainz, Germany (B.D.); Preferred Regulatory Consulting, San Mateo, California (P.E-.D.); Clayton, CA (R.F.); Respidex LLC, Dennis, Massachusetts (I.G.); and cystetic Medicines, Inc., Burlingame, California (J.W.)
| | - Andrew Clark
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia (S.A.); Inhaled Delivery Solutions LLC, Durham, North Carolina (P.A.); Emmace Consulting AB Medicon Village, Lund, Sweden (P.B., H.L., B.O.); Insmed Inc., Bridgewater, New Jersey (D.C.); Aerogen Pharma Corporation, San Mateo, California (A.C.); Woolcock Institute of Medical Research, Glebe, New South Wales, Australia (E.D.); Drug Development, Pharmacology and Clinical Pharmacology Consulting, Mainz, Germany (B.D.); Preferred Regulatory Consulting, San Mateo, California (P.E-.D.); Clayton, CA (R.F.); Respidex LLC, Dennis, Massachusetts (I.G.); and cystetic Medicines, Inc., Burlingame, California (J.W.)
| | - Evangelia Daviskas
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia (S.A.); Inhaled Delivery Solutions LLC, Durham, North Carolina (P.A.); Emmace Consulting AB Medicon Village, Lund, Sweden (P.B., H.L., B.O.); Insmed Inc., Bridgewater, New Jersey (D.C.); Aerogen Pharma Corporation, San Mateo, California (A.C.); Woolcock Institute of Medical Research, Glebe, New South Wales, Australia (E.D.); Drug Development, Pharmacology and Clinical Pharmacology Consulting, Mainz, Germany (B.D.); Preferred Regulatory Consulting, San Mateo, California (P.E-.D.); Clayton, CA (R.F.); Respidex LLC, Dennis, Massachusetts (I.G.); and cystetic Medicines, Inc., Burlingame, California (J.W.)
| | - Bernd Disse
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia (S.A.); Inhaled Delivery Solutions LLC, Durham, North Carolina (P.A.); Emmace Consulting AB Medicon Village, Lund, Sweden (P.B., H.L., B.O.); Insmed Inc., Bridgewater, New Jersey (D.C.); Aerogen Pharma Corporation, San Mateo, California (A.C.); Woolcock Institute of Medical Research, Glebe, New South Wales, Australia (E.D.); Drug Development, Pharmacology and Clinical Pharmacology Consulting, Mainz, Germany (B.D.); Preferred Regulatory Consulting, San Mateo, California (P.E-.D.); Clayton, CA (R.F.); Respidex LLC, Dennis, Massachusetts (I.G.); and cystetic Medicines, Inc., Burlingame, California (J.W.)
| | - Plamena Entcheva-Dimitrov
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia (S.A.); Inhaled Delivery Solutions LLC, Durham, North Carolina (P.A.); Emmace Consulting AB Medicon Village, Lund, Sweden (P.B., H.L., B.O.); Insmed Inc., Bridgewater, New Jersey (D.C.); Aerogen Pharma Corporation, San Mateo, California (A.C.); Woolcock Institute of Medical Research, Glebe, New South Wales, Australia (E.D.); Drug Development, Pharmacology and Clinical Pharmacology Consulting, Mainz, Germany (B.D.); Preferred Regulatory Consulting, San Mateo, California (P.E-.D.); Clayton, CA (R.F.); Respidex LLC, Dennis, Massachusetts (I.G.); and cystetic Medicines, Inc., Burlingame, California (J.W.)
| | - Rick Fuller
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia (S.A.); Inhaled Delivery Solutions LLC, Durham, North Carolina (P.A.); Emmace Consulting AB Medicon Village, Lund, Sweden (P.B., H.L., B.O.); Insmed Inc., Bridgewater, New Jersey (D.C.); Aerogen Pharma Corporation, San Mateo, California (A.C.); Woolcock Institute of Medical Research, Glebe, New South Wales, Australia (E.D.); Drug Development, Pharmacology and Clinical Pharmacology Consulting, Mainz, Germany (B.D.); Preferred Regulatory Consulting, San Mateo, California (P.E-.D.); Clayton, CA (R.F.); Respidex LLC, Dennis, Massachusetts (I.G.); and cystetic Medicines, Inc., Burlingame, California (J.W.)
| | - Igor Gonda
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia (S.A.); Inhaled Delivery Solutions LLC, Durham, North Carolina (P.A.); Emmace Consulting AB Medicon Village, Lund, Sweden (P.B., H.L., B.O.); Insmed Inc., Bridgewater, New Jersey (D.C.); Aerogen Pharma Corporation, San Mateo, California (A.C.); Woolcock Institute of Medical Research, Glebe, New South Wales, Australia (E.D.); Drug Development, Pharmacology and Clinical Pharmacology Consulting, Mainz, Germany (B.D.); Preferred Regulatory Consulting, San Mateo, California (P.E-.D.); Clayton, CA (R.F.); Respidex LLC, Dennis, Massachusetts (I.G.); and cystetic Medicines, Inc., Burlingame, California (J.W.)
| | - Hans Lundbäck
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia (S.A.); Inhaled Delivery Solutions LLC, Durham, North Carolina (P.A.); Emmace Consulting AB Medicon Village, Lund, Sweden (P.B., H.L., B.O.); Insmed Inc., Bridgewater, New Jersey (D.C.); Aerogen Pharma Corporation, San Mateo, California (A.C.); Woolcock Institute of Medical Research, Glebe, New South Wales, Australia (E.D.); Drug Development, Pharmacology and Clinical Pharmacology Consulting, Mainz, Germany (B.D.); Preferred Regulatory Consulting, San Mateo, California (P.E-.D.); Clayton, CA (R.F.); Respidex LLC, Dennis, Massachusetts (I.G.); and cystetic Medicines, Inc., Burlingame, California (J.W.)
| | - Bo Olsson
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia (S.A.); Inhaled Delivery Solutions LLC, Durham, North Carolina (P.A.); Emmace Consulting AB Medicon Village, Lund, Sweden (P.B., H.L., B.O.); Insmed Inc., Bridgewater, New Jersey (D.C.); Aerogen Pharma Corporation, San Mateo, California (A.C.); Woolcock Institute of Medical Research, Glebe, New South Wales, Australia (E.D.); Drug Development, Pharmacology and Clinical Pharmacology Consulting, Mainz, Germany (B.D.); Preferred Regulatory Consulting, San Mateo, California (P.E-.D.); Clayton, CA (R.F.); Respidex LLC, Dennis, Massachusetts (I.G.); and cystetic Medicines, Inc., Burlingame, California (J.W.)
| | - Jeffry Weers
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia (S.A.); Inhaled Delivery Solutions LLC, Durham, North Carolina (P.A.); Emmace Consulting AB Medicon Village, Lund, Sweden (P.B., H.L., B.O.); Insmed Inc., Bridgewater, New Jersey (D.C.); Aerogen Pharma Corporation, San Mateo, California (A.C.); Woolcock Institute of Medical Research, Glebe, New South Wales, Australia (E.D.); Drug Development, Pharmacology and Clinical Pharmacology Consulting, Mainz, Germany (B.D.); Preferred Regulatory Consulting, San Mateo, California (P.E-.D.); Clayton, CA (R.F.); Respidex LLC, Dennis, Massachusetts (I.G.); and cystetic Medicines, Inc., Burlingame, California (J.W.)
| |
Collapse
|
11
|
Gonçalves Wamosy RM, Castilho T, Almeida ACDS, de Assumpção MS, Ludwig Neto N, Schivinski CIS. Immediate effect of inhalation therapy combined with oscillatory positive expiratory pressure on the respiratory system of children with cystic fibrosis. Int J Clin Pract 2021; 75:e14659. [PMID: 34322960 DOI: 10.1111/ijcp.14659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 07/26/2021] [Indexed: 02/04/2023] Open
Abstract
INTRODUCTION It is recommended the association of inhalation therapies and physiotherapy on the management of cystic fibrosis (CF); however, it is still necessary to understand the effect on respiratory mechanics of these therapies combined. This study aimed to evaluate the immediate effect of inhalation with Dornase-Alfa (DNase) and hypertonic saline solution (HSS), as well as the impact of these inhalation therapies associated with an oral high-frequency oscillation (OHFO) physiotherapy device, on the respiratory mechanics of children and adolescents with CF. METHOD Children/adolescents with CF were allocated into two groups (DNaseG and HSSG), where they performed inhalation therapy before using the OHFO device for physiotherapy. In each group, the Impulse Oscillometry System was conducted before and after inhalation therapy, and after OHFO. ANOVA was carried out to analyse the respiratory mechanics at different moments of DNaseG and HSSG. The Mann-Whitney test compared the immediate effect of each inhalation therapy and after OHFO. RESULTS 30 children (6-14 years old) were studied. In DNaseG, the mean value of most oscillometric parameters decreased in the evaluated moments; in HSSG, only reactance showed an immediate increase. CONCLUSION Children/adolescents with CF showed an immediate decrease in airway resistance and reactance after the use of DNase and associated with OHFO, indicating improvement. The inhalation with HSS has an immediate effect on peripheral airways.
Collapse
Affiliation(s)
| | - Tayná Castilho
- University of the State of Santa Catarina (UDESC), Florianópolis, Santa Catarina, Brazil
| | | | | | - Norberto Ludwig Neto
- Children's Hospital Joana de Gusmão (HIJG), Florianópolis, Santa Catarina, Brazil
| | - Camila Isabel Santos Schivinski
- University of the State of Santa Catarina (UDESC), Florianópolis, Santa Catarina, Brazil
- State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| |
Collapse
|
12
|
King PT, Dousha L, Clarke N, Schaefer J, Carzino R, Sharma R, Wan KL, Anantharajah A, O'Sullivan K, Lu ZX, Holdsworth SR, Ranganathan S, Bardin PG, Armstrong DS. Phagocyte extracellular traps in children with neutrophilic airway inflammation. ERJ Open Res 2021; 7:00883-2020. [PMID: 34164555 PMCID: PMC8215332 DOI: 10.1183/23120541.00883-2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/16/2021] [Indexed: 12/02/2022] Open
Abstract
Childhood lung infection is often associated with prominent neutrophilic airway inflammation and excess production of proteases such as neutrophil elastase (NE). The mechanisms responsible for this inflammation are not well understood. One potentially relevant pathway is the production of extracellular traps by neutrophils (NETs) and macrophages (METs). The aim of this study was to measure NET and MET expression in children and the effect of deoxyribonculease (DNase) 1 and α1-antitrypsin (AAT) on this process. We studied 76 children (median age of 4.0 years) with cystic fibrosis or chronic cough who underwent investigational bronchoscopy. NETs, METs and neutrophil elastase activity in bronchoalveolar lavage (BAL) samples were measured using confocal microscopy and functional assays. The effects of DNase 1 and AAT on NET/MET expression and neutrophil elastase activity were examined in vitro. Both subject groups had airway neutrophilia with prominent BAL production of NETs with neutrophil elastase co-expression; the mean %±standard error of the mean of neutrophils expressing NETs in the cystic fibrosis group was 23.3±2.8% and in the non-cystic fibrosis group was 28.4±3.9%. NET expression was higher in subjects who had detectable neutrophil elastase activity (p≤0.0074). The percentage of macrophages expressing METs in the cystic fibrosis group was 10.7±1.2% and in the non-cystic fibrosis group was 13.2±1.9%. DNase 1 decreased NET/MET expression (p<0.0001), but increased neutrophil elastase activity (p≤0.0137). The combination of AAT and DNase 1 reduced neutrophil elastase activity (p≤0.0049). We observed prominent extracellular trap formation in symptomatic children with and without cystic fibrosis. This innate inflammatory response was down-regulated by a combination of currently available therapeutics. Prominent extracellular trap formation may be observed in young children with airway inflammation, with and without cystic fibrosis. This innate inflammatory response is down-regulated by a combination of currently available therapeutics.https://bit.ly/3bDaWyC
Collapse
Affiliation(s)
- Paul T King
- Monash Lung and Sleep, Monash Medical Centre, Melbourne, Australia.,Monash University Dept of Medicine, Monash Medical Centre, Melbourne, Victoria, Australia
| | - Lovisa Dousha
- Monash Lung and Sleep, Monash Medical Centre, Melbourne, Australia.,Monash University Dept of Medicine, Monash Medical Centre, Melbourne, Victoria, Australia
| | - Nadeene Clarke
- Paediatric Respiratory Medicine, Royal Children's Hospital, Melbourne, Australia.,Murdoch Children's Research Institute, Melbourne, Australia
| | - Jennifer Schaefer
- Monash Lung and Sleep, Monash Medical Centre, Melbourne, Australia.,Monash Children's Hospital, Melbourne, Australia
| | - Rosemary Carzino
- Paediatric Respiratory Medicine, Royal Children's Hospital, Melbourne, Australia.,Murdoch Children's Research Institute, Melbourne, Australia
| | - Roleen Sharma
- Monash Lung and Sleep, Monash Medical Centre, Melbourne, Australia.,Monash University Dept of Medicine, Monash Medical Centre, Melbourne, Victoria, Australia
| | - Ken L Wan
- Dept of Biochemistry, Monash Pathology, Monash Health, Melbourne, Australia
| | - Aveena Anantharajah
- Monash Lung and Sleep, Monash Medical Centre, Melbourne, Australia.,Monash Children's Hospital, Melbourne, Australia
| | - Kim O'Sullivan
- Monash University Dept of Medicine, Monash Medical Centre, Melbourne, Victoria, Australia
| | - Zhong X Lu
- Monash University Dept of Medicine, Monash Medical Centre, Melbourne, Victoria, Australia.,Dept of Biochemistry, Monash Pathology, Monash Health, Melbourne, Australia
| | - Stephen R Holdsworth
- Monash University Dept of Medicine, Monash Medical Centre, Melbourne, Victoria, Australia.,Dept of Immunology, Monash Health, Melbourne, Australia
| | - Sarath Ranganathan
- Paediatric Respiratory Medicine, Royal Children's Hospital, Melbourne, Australia.,Murdoch Children's Research Institute, Melbourne, Australia.,Dept of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Philip G Bardin
- Monash Lung and Sleep, Monash Medical Centre, Melbourne, Australia.,Monash University Dept of Medicine, Monash Medical Centre, Melbourne, Victoria, Australia.,Hudson Institute of Medical Research, Melbourne, Australia
| | - David S Armstrong
- Monash Lung and Sleep, Monash Medical Centre, Melbourne, Australia.,Monash Children's Hospital, Melbourne, Australia.,Monash University Dept of Paediatrics, Monash Medical Centre, Melbourne, Australia
| |
Collapse
|
13
|
Mucus, Microbiomes and Pulmonary Disease. Biomedicines 2021; 9:biomedicines9060675. [PMID: 34199312 PMCID: PMC8232003 DOI: 10.3390/biomedicines9060675] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/31/2021] [Accepted: 06/09/2021] [Indexed: 12/20/2022] Open
Abstract
The respiratory tract harbors a stable and diverse microbial population within an extracellular mucus layer. Mucus provides a formidable defense against infection and maintaining healthy mucus is essential to normal pulmonary physiology, promoting immune tolerance and facilitating a healthy, commensal lung microbiome that can be altered in association with chronic respiratory disease. How one maintains a specialized (healthy) microbiome that resists significant fluctuation remains unknown, although smoking, diet, antimicrobial therapy, and infection have all been observed to influence microbial lung homeostasis. In this review, we outline the specific role of polymerizing mucin, a key functional component of the mucus layer that changes during pulmonary disease. We discuss strategies by which mucin feed and spatial orientation directly influence microbial behavior and highlight how a compromised mucus layer gives rise to inflammation and microbial dysbiosis. This emerging field of respiratory research provides fresh opportunities to examine mucus, and its function as predictors of infection risk or disease progression and severity across a range of chronic pulmonary disease states and consider new perspectives in the development of mucolytic treatments.
Collapse
|
14
|
Activation of Deoxyribonuclease I by Nicotinamide as a New Strategy to Attenuate Tetracycline-Resistant Biofilms of Cutibacterium acnes. Pharmaceutics 2021; 13:pharmaceutics13060819. [PMID: 34072745 PMCID: PMC8228415 DOI: 10.3390/pharmaceutics13060819] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 12/11/2022] Open
Abstract
Biofilms of Cutibacterium (C.) acnes (formerly Propionibacterium acnes) are responsible for the persistence and antibiotic resistance of acne vulgaris. In addition to the standard treatments for acne vulgaris, a common adjunctive treatment is the topical administration of nicotinamide (NAM). However, the effects of NAM on biofilms of C. acnes have never been explored. This study comprehensively investigates the effects of NAM against biofilms of C. acnes using in vitro and in vivo approaches. The results showed that NAM potentiated the efficacy of suboptimal dosing of tetracycline against C. acnes. Moreover, NAM alone decreased the formation and increased the degradation of biofilms in C. acnes. The antibiofilm effect of NAM against C. acnes was further enhanced in combination with deoxyribonuclease (DNase) I, an enzyme with known antibiofilm properties. The computational molecular docking, surface plasmon resonance analysis, and enzymatic kinetic assay demonstrated that NAM binds to DNase I and accelerated its reaction. In conclusion, NAM activates DNase I to attenuate biofilms of C. acnes. This offers valuable insights into the strategies against biofilms that are worth elaborating on in other biofilm-related chronic cutaneous infections in the future.
Collapse
|
15
|
Gillan JL, Davidson DJ, Gray RD. Targeting cystic fibrosis inflammation in the age of CFTR modulators: focus on macrophages. Eur Respir J 2020; 57:13993003.03502-2020. [PMID: 33303535 DOI: 10.1183/13993003.03502-2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/18/2020] [Indexed: 11/05/2022]
Abstract
Cystic fibrosis (CF) is a life-shortening, multi-organ, autosomal recessive disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. The most prominent clinical manifestation in CF is the development of progressive lung disease characterised by an intense, chronic inflammatory airway response that culminates in respiratory failure and, ultimately, death. In recent years, a new class of therapeutics that have the potential to correct the underlying defect in CF, known as CFTR modulators, have revolutionised the field. Despite the exciting success of these drugs, their impact on airway inflammation, and its long-term consequences, remains undetermined. In addition, studies querying the absolute requirement for infection as a driver of CF inflammation have challenged the traditional consensus on CF pathogenesis, and also emphasise the need to prioritise complementary anti-inflammatory treatments in CF. Macrophages, often overlooked in CF research despite their integral role in other chronic inflammatory pathologies, have increasingly become recognised as key players in the initiation, perpetuation and resolution of CF lung inflammation, perhaps as a direct result of CFTR dysfunction. These findings suggest that macrophages may be an important target for novel anti-inflammatory interventional strategies to effectively treat CF lung function decline. This review will consider evidence for the efficacy of anti-inflammatory drugs in the treatment of CF, the potential role of macrophages, and the significance of targeting these pathways at a time when rectifying the basic defect in CF, through use of novel CFTR modulator therapies, is becoming increasingly viable.
Collapse
Affiliation(s)
- Jonathan L Gillan
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, Edinburgh, UK
| | - Donald J Davidson
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, Edinburgh, UK
| | - Robert D Gray
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, Edinburgh, UK
| |
Collapse
|
16
|
Affiliation(s)
- Rossella Grande
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara , Chieti, Italy.,Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara , Chieti, Italy
| | - Valentina Puca
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara , Chieti, Italy.,Department of Medicine and Aging Science, "G. d'Annunzio" University of Chieti-Pescara , Chieti, Italy
| | - Raffaella Muraro
- Department of Medical, Oral, and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara , Chieti, Italy
| |
Collapse
|
17
|
Okur HK, Yalcin K, Tastan C, Demir S, Yurtsever B, Karakus GS, Kancagi DD, Abanuz S, Seyis U, Zengin R, Hemsinlioglu C, Kara M, Yildiz ME, Deliceo E, Birgen N, Pelit NB, Cuhadaroglu C, Kocagoz AS, Ovali E. Preliminary report of in vitro and in vivo effectiveness of dornase alfa on SARS-CoV-2 infection. New Microbes New Infect 2020; 37:100756. [PMID: 32922804 PMCID: PMC7476504 DOI: 10.1016/j.nmni.2020.100756] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 09/02/2020] [Accepted: 09/02/2020] [Indexed: 12/21/2022] Open
Abstract
Dornase alfa, the recombinant form of the human DNase I enzyme, breaks down neutrophil extracellular traps (NET) that include a vast amount of DNA fragments, histones, microbicidal proteins and oxidant enzymes released from necrotic neutrophils in the highly viscous mucus of cystic fibrosis patients. Dornase alfa has been used for decades in patients with cystic fibrosis to reduce the viscoelasticity of respiratory tract secretions, to decrease the severity of respiratory tract infections, and to improve lung function. Previous studies have linked abnormal NET formations to lung diseases, especially to acute respiratory distress syndrome (ARDS). It is well known that novel coronavirus disease 2019 (COVID-19) pneumonia progresses to ARDS and even multiple organ failure. High blood neutrophil levels are an early indicator of COVID-19 and predict severe respiratory diseases. Also it is reported that mucus structure in COVID-19 is very similar to that in cystic fibrosis due to the accumulation of excessive NET in the lungs. In this study, we showed the recovery of three individuals with COVID-19 after including dornase alfa in their treatment. We followed clinical improvement in the radiological analysis (two of three cases), oxygen saturation (Spo2), respiratory rate, disappearance of dyspnoea, coughing and a decrease in NET formation and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral load after the treatment. Also here, we share our preliminary results suggesting that dornase alfa has an anti-viral effect against SARS-CoV-2 infection in a green monkey kidney cell line, Vero, and a bovine kidney cell line, MDBK, without determined cytotoxicity on healthy peripheral blood mononuclear cells.
Collapse
Affiliation(s)
- H K Okur
- Acibadem Altunizade Hospital, Chest Disease Unit, Istanbul, Turkey
| | - K Yalcin
- Acibadem Labcell Cellular Therapy Laboratory, Istanbul, Turkey.,Medical Park Goztepe Hospital, Paediatric Bone Marrow Transplantation Unit, Istanbul, Turkey
| | - C Tastan
- Acibadem Labcell Cellular Therapy Laboratory, Istanbul, Turkey
| | - S Demir
- Genetic and Bioengineering Department, Yeditepe University, Istanbul, Turkey
| | - B Yurtsever
- Acibadem Labcell Cellular Therapy Laboratory, Istanbul, Turkey
| | - G S Karakus
- Acibadem Labcell Cellular Therapy Laboratory, Istanbul, Turkey
| | - D D Kancagi
- Acibadem Labcell Cellular Therapy Laboratory, Istanbul, Turkey
| | - S Abanuz
- Acibadem Labcell Cellular Therapy Laboratory, Istanbul, Turkey
| | - U Seyis
- Acibadem Labcell Cellular Therapy Laboratory, Istanbul, Turkey
| | - R Zengin
- Acibadem Altunizade Hospital, Infectious Disease Unit, Istanbul, Turkey
| | - C Hemsinlioglu
- Acibadem Labcell Cellular Therapy Laboratory, Istanbul, Turkey
| | - M Kara
- Acibadem Altunizade Hospital, Internal Medicine Unit Department of Endocrinology, Istanbul, Turkey
| | - M E Yildiz
- Acibadem Altunizade Hospital, Radiology Unit, Istanbul, Turkey
| | - E Deliceo
- Acibadem Mehmet Ali Aydinlar University, School of Medicine, Department of Pediatrics, Istanbul, Turkey
| | - N Birgen
- Acibadem Altunizade Hospital, Cellular Therapy Centre, Istanbul, Turkey
| | - N B Pelit
- Acibadem Labcell Cellular Therapy Laboratory, Istanbul, Turkey
| | - C Cuhadaroglu
- Acibadem Altunizade Hospital, Chest Disease Unit, Istanbul, Turkey
| | - A S Kocagoz
- Acibadem Altunizade Hospital, Infectious Disease Unit, Istanbul, Turkey
| | - E Ovali
- Acibadem Labcell Cellular Therapy Laboratory, Istanbul, Turkey
| |
Collapse
|
18
|
Abstract
Human deoxyribonuclease I (DNase I) is an endonuclease that catalyzes the hydrolysis of extracellular DNA and is just one of the numerous types of nucleases found in nature. The enzymatic mechanism for a single turnover is reasonably well understood based on biochemical and structural studies that are consistent with divalent metal ion dependent nonspecific nicking of a phosphodiester bond in one of the strands of double stranded DNA. Recombinant human DNase I (rhDNase I, rhDNase, Pulmozyme®, dornase alfa) has been expressed in mammalian cell culture in Chinese hamster ovary cells and developed clinically where it is aerosolized into the airways for treatment of pulmonary disease in patients with cystic fibrosis (CF). rhDNase I hydrolyzes the DNA in purulent sputum of CF patients and reduces sputum viscoelasticity. Reduction of high molecular weight DNA into smaller fragments by treatment with aerosolized rhDNase I has been proposed as the mechanism to reduce the mucus viscosity and improve mucus clearability from obstructed airways in patients. The improved clearance of the purulent mucus enhances pulmonary function and reduces recurrent exacerbations of respiratory symptoms. rhDNase I was approved for clinical use in 1993 and has been widely used as a safe and effective therapy for CF patients. The use of rhDNase I has also been investigated in other diseases where exogenous DNA has been implicated in the disease pathology.
Collapse
|
19
|
Khan MA, Ali ZS, Sweezey N, Grasemann H, Palaniyar N. Progression of Cystic Fibrosis Lung Disease from Childhood to Adulthood: Neutrophils, Neutrophil Extracellular Trap (NET) Formation, and NET Degradation. Genes (Basel) 2019; 10:genes10030183. [PMID: 30813645 PMCID: PMC6471578 DOI: 10.3390/genes10030183] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 02/11/2019] [Indexed: 12/11/2022] Open
Abstract
Genetic defects in cystic fibrosis (CF) transmembrane conductance regulator (CFTR) gene cause CF. Infants with CFTR mutations show a peribronchial neutrophil infiltration prior to the establishment of infection in their lung. The inflammatory response progressively increases in children that include both upper and lower airways. Infectious and inflammatory response leads to an increase in mucus viscosity and mucus plugging of small and medium-size bronchioles. Eventually, neutrophils chronically infiltrate the airways with biofilm or chronic bacterial infection. Perpetual infection and airway inflammation destroy the lungs, which leads to increased morbidity and eventual mortality in most of the patients with CF. Studies have now established that neutrophil cytotoxins, extracellular DNA, and neutrophil extracellular traps (NETs) are associated with increased mucus clogging and lung injury in CF. In addition to opportunistic pathogens, various aspects of the CF airway milieux (e.g., airway pH, salt concentration, and neutrophil phenotypes) influence the NETotic capacity of neutrophils. CF airway milieu may promote the survival of neutrophils and eventual pro-inflammatory aberrant NETosis, rather than the anti-inflammatory apoptotic death in these cells. Degrading NETs helps to manage CF airway disease; since DNAse treatment release cytotoxins from the NETs, further improvements are needed to degrade NETs with maximal positive effects. Neutrophil-T cell interactions may be important in regulating viral infection-mediated pulmonary exacerbations in patients with bacterial infections. Therefore, clarifying the role of neutrophils and NETs in CF lung disease and identifying therapies that preserve the positive effects of neutrophils, while reducing the detrimental effects of NETs and cytotoxic components, are essential in achieving innovative therapeutic advances.
Collapse
Affiliation(s)
- Meraj A Khan
- Translational Medicine, Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.
| | - Zubair Sabz Ali
- Translational Medicine, Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.
| | - Neil Sweezey
- Translational Medicine, Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.
- Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5G 1X8, Canada.
- Division of Respiratory Medicine, Department of Paediatrics, The Hospital for Sick Children, and University of Toronto, Toronto, ON M5G 1X8, Canada.
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON M5G 1X8, Canada.
| | - Hartmut Grasemann
- Translational Medicine, Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.
- Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5G 1X8, Canada.
- Division of Respiratory Medicine, Department of Paediatrics, The Hospital for Sick Children, and University of Toronto, Toronto, ON M5G 1X8, Canada.
| | - Nades Palaniyar
- Translational Medicine, Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.
- Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5G 1X8, Canada.
- Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON M5G 1X8, Canada.
| |
Collapse
|
20
|
Sepe A, Villella VR, Cimbalo C, Castaldo A, Nunziata F, Corcione A, Bona G, Maiuri L, Raia V. Inhaled medications in cystic fibrosis beyond antibiotics. Minerva Pediatr 2019; 71:371-375. [PMID: 30761821 DOI: 10.23736/s0026-4946.19.05509-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Structural lung disease begins very early in children with cystic fibrosis (CF), often in the first three months of life. Inhaled medications represent an attractive therapeutic approach in CF that are routinely used as early intervention strategies. Two aerosolized solutions, hypertonic saline and dornase alfa, have significant potential benefits by improving mucociliary clearance, with minimal associated side-effects. In particular, they favor rehydration of airway surface liquid and cleavage of extracellular DNA in the airways, respectively, consequently reducing rate of pulmonary disease exacerbations. Indirect anti-inflammatory effects have been documented for both drugs, addressing each of the three interrelated elements in the vicious cycle of lung disease in CF: airway obstruction, inflammation and infection. This short review aimed to summarize the main papers that support potential clinical impact of inhaled solutions on pulmonary disease in CF.
Collapse
Affiliation(s)
- Angela Sepe
- Department of Translational Medical Sciences, University Federico II, Naples, Italy.,Department of Pediatrics, University Federico II, Naples, Italy
| | - Valeria R Villella
- European Institute for Research in Cystic Fibrosis, San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Cimbalo
- Department of Translational Medical Sciences, University Federico II, Naples, Italy.,Department of Pediatrics, University Federico II, Naples, Italy
| | - Alice Castaldo
- Department of Translational Medical Sciences, University Federico II, Naples, Italy.,Department of Public Health, University Federico II, Naples, Italy
| | - Francesco Nunziata
- Department of Translational Medical Sciences, University Federico II, Naples, Italy.,Department of Pediatrics, University Federico II, Naples, Italy
| | - Adele Corcione
- Department of Translational Medical Sciences, University Federico II, Naples, Italy.,Department of Pediatrics, University Federico II, Naples, Italy
| | - Gianni Bona
- Department of Health Sciences, University of Eastern Piedmont, Novara, Italy
| | - Luigi Maiuri
- European Institute for Research in Cystic Fibrosis, San Raffaele Scientific Institute, Milan, Italy.,Department of Health Sciences, University of Eastern Piedmont, Novara, Italy
| | - Valeria Raia
- Department of Translational Medical Sciences, University Federico II, Naples, Italy - .,Department of Pediatrics, University Federico II, Naples, Italy
| |
Collapse
|
21
|
Newsome S, Daniel R, Carr S, Bilton D, Keogh R. Investigating the effects of long-term dornase alfa use on lung function using registry data. J Cyst Fibros 2019; 18:110-117. [DOI: 10.1016/j.jcf.2018.08.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 07/29/2018] [Accepted: 08/02/2018] [Indexed: 12/21/2022]
|
22
|
Targeting Cytokines as Evolving Treatment Strategies in Chronic Inflammatory Airway Diseases. Int J Mol Sci 2018; 19:ijms19113402. [PMID: 30380761 PMCID: PMC6275012 DOI: 10.3390/ijms19113402] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/25/2018] [Accepted: 10/27/2018] [Indexed: 12/13/2022] Open
Abstract
Cytokines are key players in the initiation and propagation of inflammation in chronic inflammatory airway diseases such as chronic obstructive pulmonary disease (COPD), bronchiectasis and allergic asthma. This makes them attractive targets for specific novel anti-inflammatory treatment strategies. Recently, both interleukin-1 (IL-1) and IL-6 have been associated with negative health outcomes, mortality and a pro-inflammatory phenotype in COPD. IL-6 in COPD was shown to correlate negatively with lung function, and IL-1beta was induced by cigarette smoke in the bronchial epithelium, causing airway inflammation. Furthermore, IL-8 has been shown to be a pro-inflammatory marker in bronchiectasis, COPD and allergic asthma. Clinical trials using specific cytokine blockade therapies are currently emerging and have contributed to reduce exacerbations and steroid use in COPD. Here, we present a review of the current understanding of the roles of cytokines in the pathophysiology of chronic inflammatory airway diseases. Furthermore, outcomes of clinical trials in cytokine blockade as novel treatment strategies for selected patient populations with those diseases will be discussed.
Collapse
|
23
|
Elborn JS, Ahuja S, Springman E, Mershon J, Grosswald R, Rowe SM. EMPIRE-CF: A phase II randomized placebo-controlled trial of once-daily, oral acebilustat in adult patients with cystic fibrosis - Study design and patient demographics. Contemp Clin Trials 2018; 72:86-94. [PMID: 30056216 DOI: 10.1016/j.cct.2018.07.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/23/2018] [Accepted: 07/23/2018] [Indexed: 12/15/2022]
Abstract
Inflammation causes irreparable damage in the cystic fibrosis (CF) lung. Despite high standards of care and the advent of new therapies, inflammation continues to cause significant loss of lung function and morbidity. Acebilustat is a once-daily, oral molecule with anti-inflammatory activity through the inhibition of LTA4 hydrolase and modulation of LTB4. It has potential to reduce lung function decline and pulmonary exacerbations in patients with CF and is currently being tested in a Phase II multicenter, randomized, double-blind, placebo-controlled, parallel-group study (EMPIRE-CF). Strict inclusion criteria based on modeling of the Cystic Fibrosis Foundation Patient Registry data were selected to enrich the trial with patients most likely to benefit from chronic anti-inflammatory therapy that reduces lung function decline. 200 patients between 18 and 30 years of age, with an FEV1 percent predicted (pp) ≥50%, and ≥1 exacerbation in the past year have been enrolled. Patients are randomized 1:1:1 to placebo, acebilustat 50 mg or 100 mg for 48 weeks, taken concomitantly with their current standard of care, and stratified based on concomitant CFTR modulator use, baseline FEV1pp (50% to 75% and >75%), and number of exacerbations in the past year (1 or >1). The primary endpoints are absolute change from baseline in FEV1pp and safety outcomes. Secondary endpoints include rate of pulmonary exacerbations and time to first pulmonary exacerbation. Biomarkers of inflammation will also be assessed. EMPIRE-CF is expected to identify the optimal patient population, dose, duration and endpoints for future acebilustat trials, and widen understanding of the drug's efficacy in patients with CF.
Collapse
Affiliation(s)
- J Stuart Elborn
- National Heart and Lung Institute, Imperial College and Royal Brompton Hospital, London, UK.
| | - Sanjeev Ahuja
- Celtaxsys, Inc., 201 17th St NW #530, Atlanta, GA, USA.
| | | | - John Mershon
- Celtaxsys, Inc., 201 17th St NW #530, Atlanta, GA, USA.
| | | | - Steven M Rowe
- Departments of Medicine, Pediatrics, Cell Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA; Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
24
|
Abstract
Chronic infections are often associated with the presence of a biofilm, a community of microorganisms coexisting within a protective matrix of extracellular polymeric substance. Living within a biofilm can make resident microbes significantly more tolerant to antibiotics in comparison to planktonic, free-floating cells. Thus, agents that can degrade biofilms are being pursued for clinical applications. While biofilm degrading and dispersing agents may represent attractive adjunctive therapies for biofilm-associated chronic infections, very little is known about how the host responds to the sudden dispersal of biofilm cells. In this study, we found that large-scale, in vivo dispersal of motile biofilm bacteria by glycoside hydrolases caused lethal septicemia in the absence of antibiotic therapy in a mouse wound model. However, when administered prudently, biofilm degrading enzymes had the potential to potentiate the efficacy of antibiotics and help resolve biofilm-associated wound infections.
Collapse
Affiliation(s)
- Derek Fleming
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, Texas, 79430, USA
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, Texas, 79430, USA
| | - Kendra Rumbaugh
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, Texas, 79430, USA.
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, Texas, 79430, USA.
- Department of the TTUHSC Surgery Burn Center of Research Excellence, Texas Tech University Health Sciences Center, Lubbock, Texas, 79430, USA.
| |
Collapse
|
25
|
King PT. The Role of the Immune Response in the Pathogenesis of Bronchiectasis. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6802637. [PMID: 29744361 PMCID: PMC5878907 DOI: 10.1155/2018/6802637] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 02/15/2018] [Indexed: 12/16/2022]
Abstract
Bronchiectasis is a prevalent respiratory condition characterised by permanent and abnormal dilation of the lung airways (bronchi). There are a large variety of causative factors that have been identified for bronchiectasis; all of these compromise the function of the immune response to fight infection. A triggering factor may lead to the establishment of chronic infection in the lower respiratory tract. The bacteria responsible for the lower respiratory tract infection are usually found as commensals in the upper respiratory tract microbiome. The consequent inflammatory response to infection is largely responsible for the pathology of this condition. Both innate and adaptive immune responses are activated. The literature has highlighted the central role of neutrophils in the pathogenesis of bronchiectasis. Proteases produced in the lung by the inflammatory response damage the airways and lead to the pathological dilation that is the pathognomonic feature of bronchiectasis. The small airways demonstrate infiltration with lymphoid follicles that may contribute to localised small airway obstruction. Despite aggressive treatment, most patients will have persistent disease. Manipulating the immune response in bronchiectasis may potentially have therapeutic potential.
Collapse
Affiliation(s)
- Paul T. King
- Monash Lung and Sleep and Monash University Department of Medicine, Monash Medical Centre, 246 Clayton Rd, Clayton, Melbourne, VIC 3168, Australia
| |
Collapse
|
26
|
Law SM, Gray RD. Neutrophil extracellular traps and the dysfunctional innate immune response of cystic fibrosis lung disease: a review. J Inflamm (Lond) 2017; 14:29. [PMID: 29299029 PMCID: PMC5745605 DOI: 10.1186/s12950-017-0176-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 12/14/2017] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Cystic Fibrosis (CF) is a devastating genetic disease characterised primarily by unrelenting lung inflammation and infection resulting in premature death and significant morbidity. Neutrophil Extracellular Traps (NETs) are possibly key to inflammation in the disease. This review aims to draw together existing research investigating NETs in the context of a dysfunctional innate immune system in CF. MAIN BODY NETs have a limited anti-microbial role in CF and studies have shown they are present in higher numbers in CF airways and their protein constituents correlate with lung function decline. Innate immune system cells express CFTR and myeloid-specific CFTR KO mice have greater neutrophil recruitment and higher pro-inflammatory cytokine production to both sterile and bacterial inflammatory challenges. CFTR KO neutrophils have impaired anti-microbial capacity and intrinsic abnormalities in the pH of their cytoplasm, abnormal protein trafficking, increased neutrophil elastase and myeloperoxidase function, and decreased hypochlorite concentrations in their phagolysosomes. Furthermore, neutrophils from CF patients have less intrinsic apoptosis and may be therefore more likely to make NETs. CFTR KO macrophages have high intraphagolysosomal pH and increased toll-like receptor 4 on their cell surface membranes, which inhibit their anti-microbial capacity and render them hyper-responsive to inflammatory stimuli, respectively. Pharmacological treatments for CF target these intrinsic abnormalities of immune dysfunction. Emerging evidence suggests that the absence of CFTR from neutrophils affects NETosis and the interaction of NETs with macrophages. CONCLUSION Current evidence suggests that NETs contribute to inflammation and lung destruction rather than working effectively in their anti-microbial capacity. Further studies focussing on the pro-inflammatory nature of NET constituents are required to identify the exact mechanistic role of NETs in CF and potential therapeutic interventions.
Collapse
Affiliation(s)
- Sheonagh M. Law
- MRC Centre for Inflammation Research, The Queen’s Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ UK
| | - Robert D. Gray
- MRC Centre for Inflammation Research, The Queen’s Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ UK
| |
Collapse
|
27
|
Koo H, Allan RN, Howlin RP, Hall-Stoodley L, Stoodley P. Targeting microbial biofilms: current and prospective therapeutic strategies. Nat Rev Microbiol 2017; 15:740-755. [PMID: 28944770 PMCID: PMC5685531 DOI: 10.1038/nrmicro.2017.99] [Citation(s) in RCA: 1004] [Impact Index Per Article: 143.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Biofilm formation is a key virulence factor for a wide range of microorganisms that cause chronic infections. The multifactorial nature of biofilm development and drug tolerance imposes great challenges for the use of conventional antimicrobials and indicates the need for multi-targeted or combinatorial therapies. In this Review, we focus on current therapeutic strategies and those under development that target vital structural and functional traits of microbial biofilms and drug tolerance mechanisms, including the extracellular matrix and dormant cells. We emphasize strategies that are supported by in vivo or ex vivo studies, highlight emerging biofilm-targeting technologies and provide a rationale for multi-targeted therapies aimed at disrupting the complex biofilm microenvironment.
Collapse
Affiliation(s)
- Hyun Koo
- Biofilm Research Labs, Levy Center for Oral Health, Department of Orthodontics and Divisions of Pediatric Dentistry & Community Oral Health, School of Dental Medicine, University of Pennsylvania, PA, USA
| | - Raymond N Allan
- Clinical and Experimental Sciences, Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, UK
- Southampton NIHR Wellcome Trust Clinical Research Facility, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Robert P Howlin
- Centre for Biological Sciences, University of Southampton, Southampton, UK
- Southampton NIHR Respiratory Biomedical Research Unit, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Luanne Hall-Stoodley
- Southampton NIHR Respiratory Biomedical Research Unit, University Hospital Southampton NHS Foundation Trust, Southampton, UK
- Department of Microbial Infection and Immunity, Centre for Microbial Interface Biology, The Ohio State University, Columbus, Ohio, USA
| | - Paul Stoodley
- Department of Microbial Infection and Immunity, Centre for Microbial Interface Biology, The Ohio State University, Columbus, Ohio, USA
- Depts. Orthopaedics and Microbiology, The Ohio State University, Columbus, Ohio, USA
- National Center for Advanced Tribology at Southampton (nCATS), Faculty of Engineering and the Environment, University of Southampton, UK
| |
Collapse
|
28
|
Cockx M, Gouwy M, Van Damme J, Struyf S. Chemoattractants and cytokines in primary ciliary dyskinesia and cystic fibrosis: key players in chronic respiratory diseases. Cell Mol Immunol 2017; 15:312-323. [PMID: 29176750 DOI: 10.1038/cmi.2017.118] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 09/29/2017] [Accepted: 10/04/2017] [Indexed: 12/12/2022] Open
Abstract
Patients with primary ciliary dyskinesia (PCD) and cystic fibrosis (CF), two inherited disorders, suffer from recurrent airway infections characterized by persistent bacterial colonization and uncontrollable inflammation. Although present in high counts, neutrophils fail to clear infection in the airways. High levels of C-X-C motif chemokine ligand 8/interleukin-8 (CXCL8/IL-8), the most potent chemokine to attract neutrophils to sites of infection, are detected in the sputum of both patient groups and might cause the high neutrophil influx in the airways. Furthermore, in CF, airway neutrophils are highly activated because of the genetic defect and the high levels of proinflammatory chemoattractants and cytokines (e.g., CXCL8/IL-8, tumor necrosis factor-α and IL-17). The overactive state of neutrophils leads to lung damage and fuels the vicious circle of infection, excessive inflammation and tissue damage. The inflammatory process in CF airways is well characterized, whereas the lung pathology in PCD is far less studied. The knowledge of CF lung pathology could be useful to guide molecular investigations of the inflammatory processes in PCD lungs. Current available therapies can not completely remedy the chronic airway infections in these diseases. This review gives an overview of the role that chemoattractants and cytokines play in these neutrophil-dominated lung pathologies. Finally, the most frequently applied treatments in CF and PCD and new experimental therapies to reduce neutrophil-dominated airway inflammation are described.
Collapse
Affiliation(s)
- Maaike Cockx
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, 3000, Leuven, Belgium
| | - Mieke Gouwy
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, 3000, Leuven, Belgium
| | - Jo Van Damme
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, 3000, Leuven, Belgium.
| | - Sofie Struyf
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, 3000, Leuven, Belgium
| |
Collapse
|
29
|
Deoxyribonuclease 1 reduces pathogenic effects of cigarette smoke exposure in the lung. Sci Rep 2017; 7:12128. [PMID: 28935869 PMCID: PMC5608940 DOI: 10.1038/s41598-017-12474-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 09/08/2017] [Indexed: 12/31/2022] Open
Abstract
Our aim was to investigate if deoxyribonuclease (DNase) 1 is a potential therapeutic agent to reduce pathogenic effects of cigarette smoke exposure in the lung. Cigarette smoke causes protease imbalance with excess production of proteases, which is a key process in the pathogenesis of emphysema. The mechanisms responsible for this effect are not well-defined. Our studies demonstrate both in vitro and in vivo that cigarette smoke significantly increases the expression of neutrophil and macrophage extracellular traps with coexpression of the pathogenic proteases, neutrophil elastase and matrix metalloproteinases 9 and 12. This response to cigarette smoke was significantly reduced by the addition of DNase 1, which also significantly decreased macrophage numbers and lung proteolysis. DNase 1, a treatment currently in clinical use, can diminish the pathogenic effects of cigarette smoke.
Collapse
|
30
|
Mirra V, Werner C, Santamaria F. Primary Ciliary Dyskinesia: An Update on Clinical Aspects, Genetics, Diagnosis, and Future Treatment Strategies. Front Pediatr 2017; 5:135. [PMID: 28649564 PMCID: PMC5465251 DOI: 10.3389/fped.2017.00135] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 05/22/2017] [Indexed: 01/26/2023] Open
Abstract
Primary ciliary dyskinesia (PCD) is an orphan disease (MIM 244400), autosomal recessive inherited, characterized by motile ciliary dysfunction. The estimated prevalence of PCD is 1:10,000 to 1:20,000 live-born children, but true prevalence could be even higher. PCD is characterized by chronic upper and lower respiratory tract disease, infertility/ectopic pregnancy, and situs anomalies, that occur in ≈50% of PCD patients (Kartagener syndrome), and these may be associated with congenital heart abnormalities. Most patients report a daily year-round wet cough or nose congestion starting in the first year of life. Daily wet cough, associated with recurrent infections exacerbations, results in the development of chronic suppurative lung disease, with localized-to-diffuse bronchiectasis. No diagnostic test is perfect for confirming PCD. Diagnosis can be challenging and relies on a combination of clinical data, nasal nitric oxide levels plus cilia ultrastructure and function analysis. Adjunctive tests include genetic analysis and repeated tests in ciliary culture specimens. There are currently 33 known genes associated with PCD and correlations between genotype and ultrastructural defects have been increasingly demonstrated. Comprehensive genetic testing may hopefully screen young infants before symptoms occur, thus improving survival. Recent surprising advances in PCD genetic designed a novel approach called "gene editing" to restore gene function and normalize ciliary motility, opening up new avenues for treating PCD. Currently, there are no data from randomized clinical trials to support any specific treatment, thus, management strategies are usually extrapolated from cystic fibrosis. The goal of treatment is to prevent exacerbations, slowing the progression of lung disease. The therapeutic mainstay includes airway clearance maneuvers mainly with nebulized hypertonic saline and chest physiotherapy, and prompt and aggressive administration of antibiotics. Standardized care at specialized centers using a multidisciplinary approach that imposes surveillance of lung function and of airway biofilm composition likely improves patients' outcome. Pediatricians, neonatologists, pulmonologists, and ENT surgeons should maintain high awareness of PCD and refer patients to the specialized center before sustained irreversible lung damage develops. The recent creation of a network of PCD clinical centers, focusing on improving diagnosis and treatment, will hopefully help to improve care and knowledge of PCD patients.
Collapse
Affiliation(s)
- Virginia Mirra
- Department of Translational Medical Sciences, Federico II University, Naples, Italy
- Department of Pediatrics, Federico II University, Naples, Italy
| | - Claudius Werner
- Department of General Pediatrics, University Children’s Hospital Muenster, Muenster, Germany
| | - Francesca Santamaria
- Department of Translational Medical Sciences, Federico II University, Naples, Italy
- Department of Pediatrics, Federico II University, Naples, Italy
| |
Collapse
|
31
|
da Cunha AA, Nuñez NK, de Souza RG, Moraes Vargas MH, Silveira JS, Antunes GL, Durante LDS, Porto BN, Marczak ES, Jones MH, Pitrez PM. Recombinant human deoxyribonuclease therapy improves airway resistance and reduces DNA extracellular traps in a murine acute asthma model. Exp Lung Res 2016; 42:66-74. [PMID: 27070484 DOI: 10.3109/01902148.2016.1143537] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PURPOSE Asthma is a highly prevalent chronic inflammatory lung disease characterized by airway hyperresponsiveness to allergens, airway edema, and increased mucus secretion. Such mucus can be liquefied by recombinant human deoxyribonuclease (rhDNase), in which efficacy of rhDNase has been well documented in patients with cystic fibrosis, but little studied in asthma. In the present study, we investigated whether rhDNase intranasal administration improved inflammation and pulmonary function in an experimental model of asthma. METHODS Mice were sensitized by two subcutaneous injections of ovalbumin (OVA), on days 0 and 7, followed by three intranasal challenges with OVA on days 14, 15, and 16. A control group, replacing OVA by DPBS, was included. On days 15 and 16, after 2 hours of OVA challenge, mice received 1 mg/mL of intranasal rhDNase. RESULTS We showed that rhDNase decreased significantly the airway resistance and reduced EETs formation and globet cells hyperplasia. CONCLUSIONS Our results suggest that extracellular DNA in mucus play a role in lower airways obstruction in OVA asthma protocol and that the treatment with rhDNase improved lung function and DNA extracellular traps, with no direct cellular anti-inflammatory effects.
Collapse
Affiliation(s)
- Aline Andrea da Cunha
- a Laboratory of Pediatric Respirology, Infant Center, Institute of Biomedical Research , Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre , Brazil
| | - Nailê Karine Nuñez
- a Laboratory of Pediatric Respirology, Infant Center, Institute of Biomedical Research , Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre , Brazil
| | - Rodrigo Godinho de Souza
- a Laboratory of Pediatric Respirology, Infant Center, Institute of Biomedical Research , Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre , Brazil
| | - Mauro Henrique Moraes Vargas
- a Laboratory of Pediatric Respirology, Infant Center, Institute of Biomedical Research , Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre , Brazil
| | - Josiane Silva Silveira
- a Laboratory of Pediatric Respirology, Infant Center, Institute of Biomedical Research , Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre , Brazil
| | - Géssica Luana Antunes
- a Laboratory of Pediatric Respirology, Infant Center, Institute of Biomedical Research , Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre , Brazil
| | - Laíse da Silva Durante
- a Laboratory of Pediatric Respirology, Infant Center, Institute of Biomedical Research , Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre , Brazil
| | - Bárbara Nery Porto
- b Laboratory of Clinical and Experimental Immunology, Infant Center, Institute of Biomedical Research , Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre , Brazil
| | - Elisa Simon Marczak
- c Laboratory of Cellular and Molecular Immunology, Institute of Biomedical Research , Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre , Brazil
| | - Marcus Herbert Jones
- d Laboratory of Respiratory Physiology, Infant Center, Institute of Biomedical Research , Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre , Brazil
| | - Paulo Márcio Pitrez
- a Laboratory of Pediatric Respirology, Infant Center, Institute of Biomedical Research , Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre , Brazil
| |
Collapse
|
32
|
Harun SN, Wainwright C, Klein K, Hennig S. A systematic review of studies examining the rate of lung function decline in patients with cystic fibrosis. Paediatr Respir Rev 2016; 20:55-66. [PMID: 27259460 DOI: 10.1016/j.prrv.2016.03.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 02/17/2016] [Accepted: 03/03/2016] [Indexed: 12/11/2022]
Abstract
A systematic review was performed (i) to describe the reported overall rate of progression of CF lung disease quantified as FEV1%predicted decline with age, (ii) to summarise identified influencing risk factors and (iii) to review methods used to analyse CF lung disease progression data. A search of publications providing FEV1%predicted values over age was conducted in PUBMED and EMBASE. Baseline and rate of FEV1%predicted decline were summarised overall and by identified risk factors. Thirty-nine studies were included and reported variable linear rates of lung function decline in patients with CF. The overall weighted mean FEV1%predicted over age was graphically summarised and showed a nonlinear, time-variant decline of lung function. Compared to their peers, Pseudomonas aeruginosa infection and pancreatic insufficiency were most commonly associated with lower baseline and more rapid FEV1%predicted declines respectively. Considering nonlinear models and drop-out in lung disease progression, analysis is lacking and more studies are warranted.
Collapse
Affiliation(s)
- Sabariah Noor Harun
- School of Pharmacy, The University of Queensland, Brisbane QLD 4072, Australia, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM, Pulau Pinang, Malaysia.
| | - Claire Wainwright
- Department of Respiratory and Sleep Medicine Lady Cilento Children's Hospital South Brisbane, Queensland 4101, Queensland Children's Medical Research Institute, Herston Rd, Herston QLD, 4029, and School of Medicine, The University of Queensland Brisbane, QLD 4072, Australia.
| | - Kerenaftali Klein
- Statistics/Clinical Trials and Biostatistics Unit, QIMR Berghofer Medical Research Institute, Royal Brisbane Hospital QLD 4029 Australia.
| | - Stefanie Hennig
- School of Pharmacy, The University of Queensland, Brisbane QLD 4072, Australia.
| |
Collapse
|
33
|
Abstract
Respiratory system involvement in cystic fibrosis is the leading cause of morbidity and mortality. Defects in the cystic fibrosis transmembrane regulator (CFTR) gene throughout the sinopulmonary tract result in recurrent infections with a variety of organisms including Pseudomonas aeruginosa, methicillin-resistant Staphylococcus aureus, and nontuberculous mycobacteria. Lung disease occurs earlier in life than once thought and ideal methods of monitoring lung function, decline, or improvement with therapy are debated. Treatment of sinopulmonary disease may include physiotherapy, mucus-modifying and antiinflammatory agents, antimicrobials, and surgery. In the new era of personalized medicine, CFTR correctors and potentiators may change the course of disease.
Collapse
Affiliation(s)
- Danielle M Goetz
- Pediatric Pulmonology, Jacobs School of Medicine, Women & Children's Hospital of Buffalo, State University of New York, 219 Bryant Street, Buffalo, NY 14222, USA.
| | - Shipra Singh
- Pediatric Pulmonology, Jacobs School of Medicine, Women & Children's Hospital of Buffalo, State University of New York, 219 Bryant Street, Buffalo, NY 14222, USA
| |
Collapse
|
34
|
Edmondson C, Davies JC. Current and future treatment options for cystic fibrosis lung disease: latest evidence and clinical implications. Ther Adv Chronic Dis 2016; 7:170-83. [PMID: 27347364 PMCID: PMC4907071 DOI: 10.1177/2040622316641352] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Treatment for cystic fibrosis (CF) has conventionally targeted downstream consequences of the defect such as mucus plugging and infection. More recently, significant advances have been made in treating the root cause of the disease, namely a defective CF transmembrane conductance regulator (CFTR) gene. This review summarizes current pulmonary treatment options and highlights advances in research and development of new therapies.
Collapse
Affiliation(s)
- Claire Edmondson
- Royal Brompton & Harefield NHS Foundation Trust, Paediatric Respiratory Medicine, London, UK
| | - Jane C. Davies
- Imperial College London, Paediatric Respirology and Experimental Medicine, London SW7 2AZ, UK
| |
Collapse
|
35
|
Murphy MP, Caraher E. Current and Emerging Therapies for the Treatment of Cystic Fibrosis or Mitigation of Its Symptoms. Drugs R D 2016; 16:1-17. [PMID: 26747453 PMCID: PMC4767716 DOI: 10.1007/s40268-015-0121-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Clinical presentation of the chronic, heritable condition cystic fibrosis (CF) is complex, with a diverse range of symptoms often affecting multiple organs with varying severity. The primary source of morbidity and mortality is due to progressive destruction of the airways attributable to chronic inflammation arising from microbial colonisation. Antimicrobial therapy combined with practises to remove obstructive mucopurulent deposits form the cornerstone of current therapy. However, new treatment options are emerging which offer, for the first time, the opportunity to effect remission from the underlying cause of CF. Here, we discuss these therapies, their mechanisms of action, and their successes and failures in order to illustrate the shift in the nature of how CF will likely be managed into the future.
Collapse
Affiliation(s)
- Mark P Murphy
- Centre for Microbial-Host Interactions, Centre of Applied Science for Health, Institute of Technology Tallaght, Dublin 24, Ireland.
| | - Emma Caraher
- Centre for Microbial-Host Interactions, Centre of Applied Science for Health, Institute of Technology Tallaght, Dublin 24, Ireland.
| |
Collapse
|
36
|
Spielberg DR, Clancy JP. Cystic Fibrosis and Its Management Through Established and Emerging Therapies. Annu Rev Genomics Hum Genet 2016; 17:155-75. [PMID: 26905785 DOI: 10.1146/annurev-genom-090314-050024] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cystic fibrosis (CF) is the most common life-shortening autosomal recessive disorder in the Caucasian population and occurs in many other ethnicities worldwide. The daily treatment burden is substantial for CF patients even when they are well, with numerous pharmacologic and physical therapies targeting lung disease requiring the greatest time commitment. CF treatments continue to advance with greater understanding of factors influencing long-term morbidity and mortality. In recent years, in-depth understanding of genetic and protein structure-function relationships has led to the introduction of targeted therapies for patients with specific CF genotypes. With these advances, CF has become a model of personalized or precision medicine. The near future will see greater access to targeted therapies for most patients carrying common mutations, which will mandate individualized bench-to-bedside methodologies for those with rare genotypes.
Collapse
Affiliation(s)
- David R Spielberg
- Department of Pediatrics, Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center and University of Cincinnati, Cincinnati, Ohio 45229; ,
| | - John P Clancy
- Department of Pediatrics, Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center and University of Cincinnati, Cincinnati, Ohio 45229; ,
| |
Collapse
|
37
|
Hoo ZH, Curley R, Campbell MJ, Walters SJ, Hind D, Wildman MJ. Accurate reporting of adherence to inhaled therapies in adults with cystic fibrosis: methods to calculate "normative adherence". Patient Prefer Adherence 2016; 10:887-900. [PMID: 27284242 PMCID: PMC4883819 DOI: 10.2147/ppa.s105530] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Preventative inhaled treatments in cystic fibrosis will only be effective in maintaining lung health if used appropriately. An accurate adherence index should therefore reflect treatment effectiveness, but the standard method of reporting adherence, that is, as a percentage of the agreed regimen between clinicians and people with cystic fibrosis, does not account for the appropriateness of the treatment regimen. We describe two different indices of inhaled therapy adherence for adults with cystic fibrosis which take into account effectiveness, that is, "simple" and "sophisticated" normative adherence. METHODS TO CALCULATE NORMATIVE ADHERENCE Denominator adjustment involves fixing a minimum appropriate value based on the recommended therapy given a person's characteristics. For simple normative adherence, the denominator is determined by the person's Pseudomonas status. For sophisticated normative adherence, the denominator is determined by the person's Pseudomonas status and history of pulmonary exacerbations over the previous year. Numerator adjustment involves capping the daily maximum inhaled therapy use at 100% so that medication overuse does not artificially inflate the adherence level. THREE ILLUSTRATIVE CASES Case A is an example of inhaled therapy under prescription based on Pseudomonas status resulting in lower simple normative adherence compared to unadjusted adherence. Case B is an example of inhaled therapy under-prescription based on previous exacerbation history resulting in lower sophisticated normative adherence compared to unadjusted adherence and simple normative adherence. Case C is an example of nebulizer overuse exaggerating the magnitude of unadjusted adherence. CONCLUSION Different methods of reporting adherence can result in different magnitudes of adherence. We have proposed two methods of standardizing the calculation of adherence which should better reflect treatment effectiveness. The value of these indices can be tested empirically in clinical trials in which there is careful definition of treatment regimens related to key patient characteristics, alongside accurate measurement of health outcomes.
Collapse
Affiliation(s)
- Zhe Hui Hoo
- School of Health and Related Research (ScHARR), University of Sheffield, Sheffield, UK
- Sheffield Adult Cystic Fibrosis Centre, Northern General Hospital, University of Sheffield, Sheffield, UK
| | - Rachael Curley
- School of Health and Related Research (ScHARR), University of Sheffield, Sheffield, UK
- Sheffield Adult Cystic Fibrosis Centre, Northern General Hospital, University of Sheffield, Sheffield, UK
| | - Michael J Campbell
- School of Health and Related Research (ScHARR), University of Sheffield, Sheffield, UK
| | - Stephen J Walters
- School of Health and Related Research (ScHARR), University of Sheffield, Sheffield, UK
| | - Daniel Hind
- Sheffield Clinical Trials Research Unit, University of Sheffield, Sheffield, UK
| | - Martin J Wildman
- School of Health and Related Research (ScHARR), University of Sheffield, Sheffield, UK
- Sheffield Adult Cystic Fibrosis Centre, Northern General Hospital, University of Sheffield, Sheffield, UK
- Correspondence: Martin J Wildman, Sheffield Adult Cystic Fibrosis Centre, Brearley Outpatient, Northern General Hospital, Herries Road, Sheffield S5 7AU, UK, Tel +44 114 271 5212, Fax +44 114 226 6280, Email
| |
Collapse
|
38
|
Extracellular DNA Acidifies Biofilms and Induces Aminoglycoside Resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 2015; 60:544-53. [PMID: 26552982 DOI: 10.1128/aac.01650-15] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 11/04/2015] [Indexed: 12/16/2022] Open
Abstract
Biofilms consist of surface-adhered bacterial communities encased in an extracellular matrix composed of DNA, exopolysaccharides, and proteins. Extracellular DNA (eDNA) has a structural role in the formation of biofilms, can bind and shield biofilms from aminoglycosides, and induces antimicrobial peptide resistance mechanisms. Here, we provide evidence that eDNA is responsible for the acidification of Pseudomonas aeruginosa planktonic cultures and biofilms. Further, we show that acidic pH and acidification via eDNA constitute a signal that is perceived by P. aeruginosa to induce the expression of genes regulated by the PhoPQ and PmrAB two-component regulatory systems. Planktonic P. aeruginosa cultured in exogenous 0.2% DNA or under acidic conditions demonstrates a 2- to 8-fold increase in aminoglycoside resistance. This resistance phenotype requires the aminoarabinose modification of lipid A and the production of spermidine on the bacterial outer membrane, which likely reduce the entry of aminoglycosides. Interestingly, the additions of the basic amino acid L-arginine and sodium bicarbonate neutralize the pH and restore P. aeruginosa susceptibility to aminoglycosides, even in the presence of eDNA. These data illustrate that the accumulation of eDNA in biofilms and infection sites can acidify the local environment and that acidic pH promotes the P. aeruginosa antibiotic resistance phenotype.
Collapse
|
39
|
Brown HL, Hanman K, Reuter M, Betts RP, van Vliet AHM. Campylobacter jejuni biofilms contain extracellular DNA and are sensitive to DNase I treatment. Front Microbiol 2015. [PMID: 26217328 PMCID: PMC4498105 DOI: 10.3389/fmicb.2015.00699] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Biofilms make an important contribution to survival and transmission of bacterial pathogens in the food chain. The human pathogen Campylobacter jejuni is known to form biofilms in vitro in food chain-relevant conditions, but the exact roles and composition of the extracellular matrix are still not clear. Extracellular DNA has been found in many bacterial biofilms and can be a major component of the extracellular matrix. Here we show that extracellular DNA is also an important component of the C. jejuni biofilm when attached to stainless steel surfaces, in aerobic conditions and on conditioned surfaces. Degradation of extracellular DNA by exogenous addition of DNase I led to rapid biofilm removal, without loss of C. jejuni viability. Following treatment of a surface with DNase I, C. jejuni was unable to re-establish a biofilm population within 48 h. Similar results were obtained by digesting extracellular DNA with restriction enzymes, suggesting the need for high molecular weight DNA. Addition of C. jejuni genomic DNA containing an antibiotic resistance marker resulted in transfer of the antibiotic resistance marker to susceptible cells in the biofilm, presumably by natural transformation. Taken together, this suggest that eDNA is not only an important component of C. jejuni biofilms and subsequent food chain survival of C. jejuni, but may also contribute to the spread of antimicrobial resistance in C. jejuni. The degradation of extracellular DNA with enzymes such as DNase I is a rapid method to remove C. jejuni biofilms, and is likely to potentiate the activity of antimicrobial treatments and thus synergistically aid disinfection treatments.
Collapse
Affiliation(s)
- Helen L Brown
- Gut Health and Food Safety Programme, Institute of Food Research Norwich, UK ; Cardiff School of Health Sciences, Cardiff Metropolitan University Cardiff, UK
| | - Kate Hanman
- Gut Health and Food Safety Programme, Institute of Food Research Norwich, UK
| | - Mark Reuter
- Gut Health and Food Safety Programme, Institute of Food Research Norwich, UK
| | | | | |
Collapse
|
40
|
Brown HL, Reuter M, Hanman K, Betts RP, van Vliet AHM. Prevention of biofilm formation and removal of existing biofilms by extracellular DNases of Campylobacter jejuni. PLoS One 2015; 10:e0121680. [PMID: 25803828 PMCID: PMC4372405 DOI: 10.1371/journal.pone.0121680] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 02/02/2015] [Indexed: 12/31/2022] Open
Abstract
The fastidious nature of the foodborne bacterial pathogen Campylobacter jejuni contrasts with its ability to survive in the food chain. The formation of biofilms, or the integration into existing biofilms by C. jejuni, is thought to contribute to food chain survival. As extracellular DNA (eDNA) has previously been proposed to play a role in C. jejuni biofilms, we have investigated the role of extracellular DNases (eDNases) produced by C. jejuni in biofilm formation. A search of 2791 C. jejuni genomes highlighted that almost half of C. jejuni genomes contains at least one eDNase gene, but only a minority of isolates contains two or three of these eDNase genes, such as C. jejuni strain RM1221 which contains the cje0256, cje0566 and cje1441 eDNase genes. Strain RM1221 did not form biofilms, whereas the eDNase-negative strains NCTC 11168 and 81116 did. Incubation of pre-formed biofilms of NCTC 11168 with live C. jejuni RM1221 or with spent medium from a RM1221 culture resulted in removal of the biofilm. Inactivation of the cje1441 eDNase gene in strain RM1221 restored biofilm formation, and made the mutant unable to degrade biofilms of strain NCTC 11168. Finally, C. jejuni strain RM1221 was able to degrade genomic DNA from C. jejuni NCTC 11168, 81116 and RM1221, whereas strain NCTC 11168 and the RM1221 cje1441 mutant were unable to do so. This was mirrored by an absence of eDNA in overnight cultures of C. jejuni RM1221. This suggests that the activity of eDNases in C. jejuni affects biofilm formation and is not conducive to a biofilm lifestyle. These eDNases do however have a potential role in controlling biofilm formation by C. jejuni strains in food chain relevant environments.
Collapse
Affiliation(s)
- Helen L. Brown
- Institute of Food Research, Norwich Research Park, Colney Lane, Norwich, NR4 7UA, United Kingdom
| | - Mark Reuter
- Institute of Food Research, Norwich Research Park, Colney Lane, Norwich, NR4 7UA, United Kingdom
| | - Kate Hanman
- Institute of Food Research, Norwich Research Park, Colney Lane, Norwich, NR4 7UA, United Kingdom
| | - Roy P. Betts
- Campden BRI, Station Road, Chipping Campden, Gloucestershire, GL55 6LD, United Kingdom
| | - Arnoud H. M. van Vliet
- Institute of Food Research, Norwich Research Park, Colney Lane, Norwich, NR4 7UA, United Kingdom
- * E-mail:
| |
Collapse
|
41
|
King PT, Sharma R, O’Sullivan K, Selemidis S, Lim S, Radhakrishna N, Lo C, Prasad J, Callaghan J, McLaughlin P, Farmer M, Steinfort D, Jennings B, Ngui J, Broughton BRS, Thomas B, Essilfie AT, Hickey M, Holmes PW, Hansbro P, Bardin PG, Holdsworth SR. Nontypeable Haemophilus influenzae induces sustained lung oxidative stress and protease expression. PLoS One 2015; 10:e0120371. [PMID: 25793977 PMCID: PMC4368769 DOI: 10.1371/journal.pone.0120371] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 01/21/2015] [Indexed: 12/24/2022] Open
Abstract
Nontypeable Haemophilus influenzae (NTHi) is a prevalent bacterium found in a variety of chronic respiratory diseases. The role of this bacterium in the pathogenesis of lung inflammation is not well defined. In this study we examined the effect of NTHi on two important lung inflammatory processes 1), oxidative stress and 2), protease expression. Bronchoalveolar macrophages were obtained from 121 human subjects, blood neutrophils from 15 subjects, and human-lung fibroblast and epithelial cell lines from 16 subjects. Cells were stimulated with NTHi to measure the effect on reactive oxygen species (ROS) production and extracellular trap formation. We also measured the production of the oxidant, 3-nitrotyrosine (3-NT) in the lungs of mice infected with this bacterium. NTHi induced widespread production of 3-NT in mouse lungs. This bacterium induced significantly increased ROS production in human fibroblasts, epithelial cells, macrophages and neutrophils; with the highest levels in the phagocytic cells. In human macrophages NTHi caused a sustained, extracellular production of ROS that increased over time. The production of ROS was associated with the formation of macrophage extracellular trap-like structures which co-expressed the protease metalloproteinase-12. The formation of the macrophage extracellular trap-like structures was markedly inhibited by the addition of DNase. In this study we have demonstrated that NTHi induces lung oxidative stress with macrophage extracellular trap formation and associated protease expression. DNase inhibited the formation of extracellular traps.
Collapse
Affiliation(s)
- Paul T. King
- Monash University Department of Medicine/Monash Medical Centre, Melbourne, Australia
- Monash Lung and Sleep, Monash Medical Centre, Melbourne, Australia
- * E-mail:
| | - Roleen Sharma
- Monash University Department of Medicine/Monash Medical Centre, Melbourne, Australia
- Monash Lung and Sleep, Monash Medical Centre, Melbourne, Australia
| | - Kim O’Sullivan
- Monash University Department of Medicine/Monash Medical Centre, Melbourne, Australia
| | | | - Steven Lim
- Monash University Department of Medicine/Monash Medical Centre, Melbourne, Australia
| | | | - Camden Lo
- Monash Micro Imaging, Monash University, Melbourne, Australia
| | - Jyotika Prasad
- Monash Lung and Sleep, Monash Medical Centre, Melbourne, Australia
| | - Judy Callaghan
- Monash Micro Imaging, Monash University, Melbourne, Australia
| | - Peter McLaughlin
- Monash Lung and Sleep, Monash Medical Centre, Melbourne, Australia
| | - Michael Farmer
- Monash Lung and Sleep, Monash Medical Centre, Melbourne, Australia
| | - Daniel Steinfort
- Monash Lung and Sleep, Monash Medical Centre, Melbourne, Australia
| | - Barton Jennings
- Monash Lung and Sleep, Monash Medical Centre, Melbourne, Australia
| | - James Ngui
- Clinical Immunology, Monash Medical Centre, Melbourne, Australia
| | | | - Belinda Thomas
- Monash Lung and Sleep, Monash Medical Centre, Melbourne, Australia
- Monash Institute of Medical Research, Melbourne, Australia
| | - Ama-Tawiah Essilfie
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
| | - Michael Hickey
- Monash University Department of Medicine/Monash Medical Centre, Melbourne, Australia
| | - Peter W. Holmes
- Monash Lung and Sleep, Monash Medical Centre, Melbourne, Australia
| | - Philip Hansbro
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
| | - Philip G. Bardin
- Monash Lung and Sleep, Monash Medical Centre, Melbourne, Australia
- Monash Institute of Medical Research, Melbourne, Australia
| | - Stephen R. Holdsworth
- Monash University Department of Medicine/Monash Medical Centre, Melbourne, Australia
| |
Collapse
|
42
|
Hugo CJ, van der Merwe M. South African adolescents with cystic fibrosis: a qualitative exploration of their bio-psychosocial fields. J Child Adolesc Ment Health 2014; 26:177-91. [PMID: 25533405 DOI: 10.2989/17280583.2014.898643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OBJECTIVE This qualitative case study explored risk factors and protective factors in the bio-psychosocial fields of adolescents living with cystic fibrosis (CF). METHOD Semi-structured interviews were conducted with adolescents in the middle and late adolescent years (15-22 years) who had the defining characteristics of CF and were living in Gauteng province. FINDINGS Themes emerged from individual interviews. The fundamental human need to be understood and to understand was negatively affected as the illness affected socialisation and learning. Participants experienced an array of emotions including loss and bereavement linked to their illness and when friends with CF died. Constructive internal dialogue and positive thinking emerged as protective variables. Participants generally showed awareness of how they regulated their contact with the illness and how they self-regulate. Despite the severity of their symptoms and the taxing demands of managing CF, participants expressed hope for the future and could find some meaning in the illness. CONCLUSION Adolescents with CF who participated in this study indicated that they felt different from their peers. Apart from the general developmental tasks typical to adolescence they faced the challenge of managing a severe chronic and potentially terminal illness.
Collapse
Affiliation(s)
- Carina Jacobie Hugo
- a At the time of research - MA Psychology student, Centre for Child, Youth and Family Studies , Faculty of Health Sciences, North-West University , Potchefstroom
| | | |
Collapse
|
43
|
Daniels MLA, Noone PG. Genetics, diagnosis, and future treatment strategies for primary ciliary dyskinesia. Expert Opin Orphan Drugs 2014; 3:31-44. [PMID: 26998415 DOI: 10.1517/21678707.2015.989212] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Primary ciliary dyskinesia (PCD) is a genetically heterogeneous recessive disorder resulting in chronic oto-sino-pulmonary disease. While PCD is estimated to occur in 1 in 20,000 individuals, fewer than 1,000 patients in the US have a well-established diagnosis. AREAS COVERED We provide an overview of the clinical manifestations of PCD, describe the evolution of diagnostic methods, and critique the literature on management of PCD. EXPERT OPINION Although interest in clinical studies in non-CF bronchiectasis has increased in recent years, some of whom enroll patients with PCD, the literature regarding therapy for PCD as a distinct entity is lacking, as the numbers are small, and there have been no sub-analyses published. However, with improved screening and diagnostic methods, the development of clinical and research consortiums, and actively enrolling registries of PCD patients, the environment is conducive to perform longitudinal studies of disease course and therapeutic studies to alter that course.
Collapse
Affiliation(s)
- M Leigh Anne Daniels
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Peadar G Noone
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
44
|
|
45
|
Abstract
Cystic fibrosis is a disease that still causes a reduced life expectancy. The treatment burden remains high for affected individuals with often a combination of multiple oral and inhaled medications, as well as physiotherapy, required on a daily basis. In this article, we look at an overview of the pathogenesis, how this might lead to treatment options and look at some of the available new therapies, all in the aim of increasing life expectancy and reducing treatment burden.
Collapse
Affiliation(s)
- Jane C Davies
- Imperial College, London, UK Royal Brompton and Harefield NHS Foundation Trust, London, UK
| | | | | |
Collapse
|
46
|
Noni M, Katelari A, Dimopoulos G, Kourlaba G, Spoulou V, Alexandrou-Athanassoulis H, Doudounakis SE, Tzoumaka-Bakoula C. Inhaled corticosteroids and Aspergillus fumigatus isolation in cystic fibrosis. Med Mycol 2014; 52:715-22. [PMID: 25056962 DOI: 10.1093/mmy/myu038] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aspergillus fumigatus isolation in cultures from respiratory specimens of patients with cystic fibrosis (CF) is quite common; however, the role of A. fumigatus as a pathogen and whether its presence is associated with progression of pulmonary disease remain unclear. We investigated the association between inhaled corticosteroids and the recovery of A. fumigatus by performing a retrospective cohort study of CF patients born between 1988 and 1996. The patients' medical records from their first visit to the CF Center until December 2010 were reviewed. Outcomes were the occurrence of A. fumigatus first isolation, chronic colonization, or the last visit at the CF Center. A number of possible confounders were included in the multivariate logistic regression analysis in order to identify an independent association between inhaled corticosteroids and colonization status. A total of 121 patients were included in the study. Thirty-nine patients (32.2%) had at least one positive culture and 14 (11.6%) developed chronic colonization. Multivariate logistic regression analysis was used to determine the independent effect of inhaled corticosteroids on the odds of first isolation (odds ratio [OR], 1.165; 95% confidence interval [CI], 1.015-1.337; P = 0.029) and chronic colonization (OR, 1.180; 95% CI, 1.029-1.353; P = 0.018). In conclusion, A. fumigatus first isolation and chronic colonization are associated with the duration of inhaled corticosteroid treatment.
Collapse
Affiliation(s)
- Maria Noni
- Department of Cystic Fibrosis, "Aghia Sophia" Children's Hospital, Medical School, University of Athens, Athens, Greece
| | - Anna Katelari
- Department of Cystic Fibrosis, "Aghia Sophia" Children's Hospital, Medical School, University of Athens, Athens, Greece
| | - George Dimopoulos
- Department of Critical Care, University Hospital "Attikon," Medical School, University of Athens, Athens, Greece
| | - Georgia Kourlaba
- Department of Cystic Fibrosis, "Aghia Sophia" Children's Hospital, Medical School, University of Athens, Athens, Greece
| | - Vana Spoulou
- Department of Infectious Diseases, "Aghia Sophia" Children's Hospital, Athens, Greece
| | | | | | - Chryssa Tzoumaka-Bakoula
- Department of Pediatrics, "P & A Kyriakou" Children's Hospital, Medical School, University of Athens, Athens, Greece
| |
Collapse
|
47
|
|
48
|
Abstract
A great deal of excitement and hope has followed the successful trials and US Food and Drug Administration approval of the drug ivacaftor (Kalydeco), the first therapy available that targets the underlying defect that causes cystic fibrosis (CF). Although this drug has currently demonstrated a clinical benefit for a small minority of the CF population, the developmental pathway established by ivacaftor paves the way for other CF transmembrane conductance regulator (CFTR) modulators that may benefit many more patients. In addition to investigating CFTR modulators, researchers are actively developing numerous other innovative CF therapies. In this review, we use the catalog of treatments currently under evaluation with the support of the Cystic Fibrosis Foundation, known as the Cystic Fibrosis Foundation Therapeutics Pipeline, as a platform to discuss the variety of candidate treatments for CF lung disease that promise to improve CF care. Many of these approaches target the individual components of the relentless cycle of airway obstruction, inflammation, and infection characteristic of lung disease in CF, whereas others are aimed directly at the gene defect, or the resulting dysfunctional protein, that instigates this cycle. We discuss how new findings from the laboratory have informed not only the development of novel therapeutics, but also the rationales for their use and the outcomes used to measure their effects. By reviewing the breadth of candidate treatments currently in development, as well as the recent progress in CF therapies reflected by the evolution of the therapeutics pipeline over the past few years, we hope to build upon the optimism and anticipation generated by the recent success of Kalydeco.
Collapse
Affiliation(s)
- Lucas R Hoffman
- Seattle Children's Hospital and the University of Washington School of Medicine, Seattle, WA.
| | - Bonnie W Ramsey
- Seattle Children's Hospital and the University of Washington School of Medicine, Seattle, WA
| |
Collapse
|
49
|
Lewenza S. Extracellular DNA-induced antimicrobial peptide resistance mechanisms in Pseudomonas aeruginosa. Front Microbiol 2013; 4:21. [PMID: 23419933 PMCID: PMC3572637 DOI: 10.3389/fmicb.2013.00021] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Accepted: 01/28/2013] [Indexed: 12/17/2022] Open
Abstract
Extracellular DNA (eDNA) is in the environment, bodily fluids, in the matrix of biofilms, and accumulates at infection sites. eDNA can function as a nutrient source, a universal biofilm matrix component, and an innate immune effector in eDNA traps. In biofilms, eDNA is required for attachment, aggregation, and stabilization of microcolonies. We have recently shown that eDNA can sequester divalent metal cations, which has interesting implications on antibiotic resistance. eDNA binds metal cations and thus activates the Mg2+-responsive PhoPQ and PmrAB two-component systems. In Pseudomonas aeruginosa and many other Gram-negative bacteria, the PhoPQ/PmrAB systems control various genes required for virulence and resisting killing by antimicrobial peptides (APs), including the pmr genes (PA3552–PA3559) that are responsible for the addition of aminoarabinose to lipid A. The PA4773–PA4775 genes are a second DNA-induced cluster and are required for the production of spermidine on the outer surface, which protects the outer membrane from AP treatment. Both modifications mask the negative surface charges and limit membrane damage by APs. DNA-enriched biofilms or planktonic cultures have increased antibiotic resistance phenotypes to APs and aminoglycosides. These dual antibiotic resistance and immune evasion strategies may be expressed in DNA-rich environments and contribute to long-term survival.
Collapse
Affiliation(s)
- Shawn Lewenza
- Snyder Institute for Chronic Diseases, University of Calgary Calgary, AB, Canada ; Department of Microbiology, Immunology and Infectious Diseases, University of Calgary Calgary, AB, Canada
| |
Collapse
|
50
|
Sawicki GS, Ren CL, Konstan MW, Millar SJ, Pasta DJ, Quittner AL. Treatment complexity in cystic fibrosis: trends over time and associations with site-specific outcomes. J Cyst Fibros 2013; 12:461-7. [PMID: 23352205 DOI: 10.1016/j.jcf.2012.12.009] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 12/21/2012] [Accepted: 12/21/2012] [Indexed: 11/16/2022]
Abstract
BACKGROUND Patients with cystic fibrosis (CF) have increasing treatment complexity and high treatment burden. We describe trends in treatment complexity and evaluate its relationship with health outcomes. METHODS Using Epidemiologic Study of Cystic Fibrosis (ESCF) data, we developed a treatment complexity score (TCS) from 37 chronic therapies and assessed change by age group (6-13, 14-17, and 18+ years) over a three year period. Differences in average site TCS were evaluated by quartiles based on FEV1, BMI, or Treatment Burden score on the Cystic Fibrosis Questionnaire-Revised (CFQ-R). RESULTS TCS scores were calculated for 7252 individual patients (42% child, 16% adolescent, 43% adult) across 153 sites. In 2003, mean TCS was 11.1 for children, 11.8 for adolescents, and 12.1 for adults. In all 3 age groups, TCS increased over 3 years; the increase in TCS from 2003-2005 for children was 1.25 (95% CI 1.16-1.34), for adolescents 0.77 (0.62-0.93), and for adults 1.20 (1.08-1.31) (all P<0.001 for trend over time). At the site level, there were no significant differences in mean TCS based on FEV1 quartile. Mean TCS was higher in the highest BMI z-score quartile. Across all 3 versions of the CFQ-R, mean TCS was lower at sites in the highest quartiles (lowest burden) for CFQ-R treatment burden scores. CONCLUSION Treatment complexity was highest among adults with CF, although over 3 years, we observed a significant increase in treatment complexity in all age groups. Such increases in treatment complexity pose a challenge to patient self-management and adherence. Future research is needed to understand the associations between treatment complexity and subsequent health outcomes to reduce treatment burden and improve disease management.
Collapse
|