1
|
Lusk S, Moushey AM, Iwakoshi N, Wilson CG, Li A, Ray R. Exaggerated postnatal surge of orexin neurons and the effects of elimination of excess orexin on blood pressure and exaggerated chemoreflex in spontaneously hypertensive rats. Front Physiol 2024; 15:1341649. [PMID: 39469444 PMCID: PMC11513569 DOI: 10.3389/fphys.2024.1341649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 08/26/2024] [Indexed: 10/30/2024] Open
Abstract
An overactive orexin (OX) system is associated with neurogenic hypertension and an exaggerated chemoreflex in spontaneously hypertensive rats (SHRs). However, the chronology and mechanism of this association is unclear. We hypothesized that increased postnatal neurogenesis of OX neurons in SHRs precedes and contributes to the aberrant increase in mean arterial blood pressure (MAP) and the exaggerated response to hypercapnia during postnatal development. Using immunohistochemical methods and bromodeoxyuridine, we mapped the timeline of orexin neuron neurogenesis and maturation during early postnatal development. We then used whole-body plethysmography with EEG and EMG to map the development of mean arterial pressure (MAP) and state regulation. Finally, we used OX-targeted saporin toxin to determine the effects of eliminating excess OX neurons on the elevated MAP and exaggerated chemoreflex in adult SHRs. We found that both SHRs and Wistar-Kyoto (WKY) rats experienced postnatal increases in OX neurons. However, SHRs experienced a greater increase than WKY rats before P15, which led to significantly more OX neurons in SHRs than age-matched WKY controls by P15-16 (3,720 ± 780 vs. 2,406 ± 363, p = 0.005). We found that neurogenesis, as evidenced by BrdU staining in OX-positive neurons, was the primary contributor to the excess OX neurons in SHRs during early postnatal development. While SHRs develop more OX neurons by P15-16, SHRs and normotensive WKY control rats have similar MAP during postnatal development until P25 in wakefulness (81.6 ± 6.6 vs. 67.5 ± 6.8 mmHg, p = 0.006) and sleep (79.3 ± 6.1 vs. 66.6 ± 6.5, p = 0.009), about 10 days after the surge of OX neurons. By selectively eliminating excess (∼30%) OX neurons in SHRs, we saw a significantly lowered MAP and hypercapnic ventilatory chemoreflex compared to non-lesioned SHRs at P40. Additionally, we found unique signatures in state indicative of the attention defecit phenotype commonly associated with this model. We suggest that the postnatal increase of OX neurons, primarily attributed to exaggerated postnatal OX neurogenesis, may be necessary for the development of higher MAP and exaggerated chemoreflex in SHRs, and modulation of the overactive OX system may have a potential therapeutic effect during the pre-hypertensive period.
Collapse
Affiliation(s)
- Savannah Lusk
- Dartmouth College, Department of Molecular and Systems Biology, Hanover, NH, United States
| | - Alexander M. Moushey
- Dartmouth College, Department of Molecular and Systems Biology, Hanover, NH, United States
| | - Nicholas Iwakoshi
- Loma Linda University, Center for Perinatal Biology, Loma Linda, CA, United States
| | | | - Aihua Li
- Dartmouth College, Department of Molecular and Systems Biology, Hanover, NH, United States
| | - Russell Ray
- Baylor College of Medicine, Department of Neuroscience, Houston, TX, United States
| |
Collapse
|
2
|
Guo R, Vaughan DT, Rojo ALA, Huang YH. Sleep-mediated regulation of reward circuits: implications in substance use disorders. Neuropsychopharmacology 2023; 48:61-78. [PMID: 35710601 PMCID: PMC9700806 DOI: 10.1038/s41386-022-01356-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/22/2022] [Accepted: 05/27/2022] [Indexed: 12/11/2022]
Abstract
Our modern society suffers from both pervasive sleep loss and substance abuse-what may be the indications for sleep on substance use disorders (SUDs), and could sleep contribute to the individual variations in SUDs? Decades of research in sleep as well as in motivated behaviors have laid the foundation for us to begin to answer these questions. This review is intended to critically summarize the circuit, cellular, and molecular mechanisms by which sleep influences reward function, and to reveal critical challenges for future studies. The review also suggests that improving sleep quality may serve as complementary therapeutics for treating SUDs, and that formulating sleep metrics may be useful for predicting individual susceptibility to SUDs and other reward-associated psychiatric diseases.
Collapse
Affiliation(s)
- Rong Guo
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA
- Allen Institute, Seattle, WA, 98109, USA
| | - Dylan Thomas Vaughan
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA
- The Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA, USA
| | - Ana Lourdes Almeida Rojo
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA
- The Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA, USA
| | - Yanhua H Huang
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA.
- The Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
3
|
Abdelmissih S. A Bitter Experience That Enlightens the Future: COVID-19 Neurological Affection and Perspectives on the Orexigenic System. Cureus 2022; 14:e30788. [DOI: 10.7759/cureus.30788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
|
4
|
Morina IY, Romanova IV. Orexin-Immunopositive Structures in the Thalamic Reticular Nucleus. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022040135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Saad AK, Akour A, Mahboob A, AbuRuz S, Sadek B. Role of Brain Modulators in Neurodevelopment: Focus on Autism Spectrum Disorder and Associated Comorbidities. Pharmaceuticals (Basel) 2022; 15:612. [PMID: 35631438 PMCID: PMC9144645 DOI: 10.3390/ph15050612] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/08/2022] [Accepted: 05/12/2022] [Indexed: 02/04/2023] Open
Abstract
Autism spectrum disorder (ASD) and associated neurodevelopmental disorders share similar pathogenesis and clinical features. Pathophysiological changes in these diseases are rooted in early neuronal stem cells in the uterus. Several genetic and environmental factors potentially perturb neurogenesis and synaptogenesis processes causing incomplete or altered maturation of the brain that precedes the symptomology later in life. In this review, the impact of several endogenous neuromodulators and pharmacological agents on the foetus during pregnancy, manifested on numerous aspects of neurodevelopment is discussed. Within this context, some possible insults that may alter these modulators and therefore alter their role in neurodevelopment are high-lighted. Sometimes, a particular insult could influence several neuromodulator systems as is supported by recent research in the field of ASD and associated disorders. Dopaminergic hy-pothesis prevailed on the table for discussion of the pathogenesis of schizophrenia (SCH), atten-tion-deficit hyperactivity disorder (ADHD) and ASD for a long time. However, recent cumulative evidence suggests otherwise. Indeed, the neuromodulators that are dysregulated in ASD and comorbid disorders are as diverse as the causes and symptoms of this disease. Additionally, these neuromodulators have roles in brain development, further complicating their involvement in comorbidity. This review will survey the current understanding of the neuromodulating systems to serve the pharmacological field during pregnancy and to minimize drug-related insults in pa-tients with ASD and associated comorbidity disorders, e.g., SCH or ADHD.
Collapse
Affiliation(s)
- Ali K. Saad
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (A.K.S.); (A.A.); (S.A.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
| | - Amal Akour
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (A.K.S.); (A.A.); (S.A.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman P.O. Box 11942, Jordan
| | - Abdulla Mahboob
- Department of Chemistry, College of Sciences, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates;
| | - Salahdein AbuRuz
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (A.K.S.); (A.A.); (S.A.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman P.O. Box 11942, Jordan
| | - Bassem Sadek
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (A.K.S.); (A.A.); (S.A.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
| |
Collapse
|
6
|
Characterization of Hypothalamic MCH Neuron Development in a 3D Differentiation System of Mouse Embryonic Stem Cells. eNeuro 2022; 9:ENEURO.0442-21.2022. [PMID: 35437265 PMCID: PMC9047030 DOI: 10.1523/eneuro.0442-21.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 04/05/2022] [Accepted: 04/11/2022] [Indexed: 01/20/2023] Open
Abstract
Hypothalamic melanin-concentrating hormone (MCH) neurons are important regulators of multiple physiological processes, such as sleep, feeding, and memory. Despite the increasing interest in their neuronal functions, the molecular mechanism underlying MCH neuron development remains poorly understood. We report that a three-dimensional culture of mouse embryonic stem cells (mESCs) can generate hypothalamic-like tissues containing MCH-positive neurons, which reproduce morphologic maturation, neuronal connectivity, and neuropeptide/neurotransmitter phenotype of native MCH neurons. Using this in vitro system, we demonstrate that Hedgehog (Hh) signaling serves to produce major neurochemical subtypes of MCH neurons characterized by the presence or absence of cocaine- and amphetamine-regulated transcript (CART). Without exogenous Hh signals, mESCs initially differentiated into dorsal hypothalamic/prethalamic progenitors and finally into MCH+CART+ neurons through a specific intermediate progenitor state. Conversely, activation of the Hh pathway specified ventral hypothalamic progenitors that generate both MCH+CART− and MCH+CART+ neurons. These results suggest that in vivo MCH neurons may originate from multiple cell lineages that arise through early dorsoventral patterning of the hypothalamus. Additionally, we found that Hh signaling supports the differentiation of mESCs into orexin/hypocretin neurons, a well-defined cell group intermingled with MCH neurons in the lateral hypothalamic area (LHA). The present study highlights and improves the utility of mESC culture in the analysis of the developmental programs of specific hypothalamic cell types.
Collapse
|
7
|
Hypothalamic melanin-concentrating hormone regulates hippocampus-dorsolateral septum activity. Nat Neurosci 2022; 25:61-71. [PMID: 34980924 PMCID: PMC8741735 DOI: 10.1038/s41593-021-00984-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 11/10/2021] [Indexed: 12/15/2022]
Abstract
Hypothalamic melanin-concentrating hormone (MCH) polypeptide contributes to regulating energy homeostasis, sleep, and memory, though the mechanistic bases of its effects are unknown. Here, in mice, we uncover the physiological mechanism underlying the functional role of MCH signaling in projections to the dorsolateral septum (dLS), a region involved in routing hippocampal firing rhythms and encoding spatial memory based on such rhythms. Firing activity within the dLS in response to dorsal CA3 (dCA3) excitation is limited by strong feed-forward inhibition (FFI). We find that MCH synchronizes dLS neuronal firing with its dCA3 inputs by enhancing GABA release, which subsequently reduces the FFI and augments dCA3 excitatory input strength, both via presynaptic mechanisms. At the functional level, our data reveal a role for MCH signaling in the dLS in facilitating spatial memory. These findings support a model in which peptidergic signaling within the dLS modulates dorsal hippocampal output and supports memory encoding.
Collapse
|
8
|
Loiseau C, Casciato A, Barka B, Cayetanot F, Bodineau L. Orexin Neurons Contribute to Central Modulation of Respiratory Drive by Progestins on ex vivo Newborn Rodent Preparations. Front Physiol 2019; 10:1200. [PMID: 31611806 PMCID: PMC6776592 DOI: 10.3389/fphys.2019.01200] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 09/03/2019] [Indexed: 11/13/2022] Open
Abstract
Dysfunction of central respiratory CO2/H+ chemosensitivity is a pivotal factor that elicits deep hypoventilation in patients suffering from central hypoventilation syndromes. No pharmacological treatment is currently available. The progestin desogestrel has been suggested to allow recovery of respiratory response to CO2/H+ in patients suffering from central hypoventilation, but except the fact that supramedullary regions may be involved, mechanisms are still unknown. Here, we tested in neonates whether orexin systems contribute to desogestrel’s central effects on respiratory function. Using isolated ex vivo central nervous system preparations from newborn rats, we show orexin and almorexant, an antagonist of orexin receptors, supressed strengthening of the increase in respiratory frequency induced by prolonged metabolic acidosis under exposure to etonogestrel, the active metabolite of desogestrel. In parallel, almorexant suppressed the increase and enhanced increase in c-fos expression in respiratory-related brainstem structures induced by etonogestrel. These results suggest orexin signalisation is a key component of acidosis reinforcement of respiratory drive by etonogestrel in neonates. Although stage of development used is different as that for progestin clinical observations, presents results provide clues about conditions under which desogestrel or etonogestrel may enhance ventilation in patients suffering from central hypoventilation syndromes.
Collapse
Affiliation(s)
- Camille Loiseau
- Institut National de la Santé et de la Recherche Médicale, UMR_S1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Sorbonne Université, Paris, France
| | - Alexis Casciato
- Institut National de la Santé et de la Recherche Médicale, UMR_S1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Sorbonne Université, Paris, France
| | - Besma Barka
- Institut National de la Santé et de la Recherche Médicale, UMR_S1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Sorbonne Université, Paris, France
| | - Florence Cayetanot
- Institut National de la Santé et de la Recherche Médicale, UMR_S1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Sorbonne Université, Paris, France
| | - Laurence Bodineau
- Institut National de la Santé et de la Recherche Médicale, UMR_S1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Sorbonne Université, Paris, France
| |
Collapse
|
9
|
Li GY, Zhuang QX, Zhang XY, Wang JJ, Zhu JN. Ionic Mechanisms Underlying the Excitatory Effect of Orexin on Rat Subthalamic Nucleus Neurons. Front Cell Neurosci 2019; 13:153. [PMID: 31105528 PMCID: PMC6499184 DOI: 10.3389/fncel.2019.00153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 04/08/2019] [Indexed: 11/24/2022] Open
Abstract
Central orexinergic system deficiency results in cataplexy, a motor deficit characterized with a sudden loss of muscle tone, highlighting a direct modulatory role of orexin in motor control. However, the neural mechanisms underlying the regulation of orexin on motor function are still largely unknown. The subthalamic nucleus (STN), the only excitatory structure of the basal ganglia, holds a key position in the basal ganglia circuitry and motor control. Previous study has revealed a wide distribution of orexinergic fibers as well as orexin receptors in the basal ganglia including the STN. Therefore, in the present study, by using whole-cell patch clamp recording and immunostaining techniques, the direct effect of orexin on the STN neurons in brain slices, especially the underlying receptor and ionic mechanisms, were investigated. Our results show that orexin-A elicits an excitatory effect on STN neurons in rats. Tetrodotoxin (TTX) does not block the orexin-induced excitation on STN neurons, suggesting a direct postsynaptic action of the neuropeptide. The orexin-A-induced inward current on STN neurons is mediated by the activation of both OX1 and OX2 receptors. Immunofluorescence result shows that OX1 and OX2 receptors are co-expressed and co-localized in STN neurons. Furthermore, Na+-Ca2+ exchangers (NCXs) and inward rectifier K+ channels co-mediate the excitatory effect of orexin-A on STN neurons. These results demonstrate a dual receptor in conjunction with the downstream ionic mechanisms underlying the excitatory action of orexin on STN neurons, suggesting a potential modulation of the central orexinergic system on basal ganglia circuitry as well as its related motor control and motor diseases.
Collapse
Affiliation(s)
- Guang-Ying Li
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Qian-Xing Zhuang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xiao-Yang Zhang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Jian-Jun Wang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Jing-Ning Zhu
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
10
|
Arrigoni E, Chee MJS, Fuller PM. To eat or to sleep: That is a lateral hypothalamic question. Neuropharmacology 2018; 154:34-49. [PMID: 30503993 DOI: 10.1016/j.neuropharm.2018.11.017] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/08/2018] [Accepted: 11/12/2018] [Indexed: 12/15/2022]
Abstract
The lateral hypothalamus (LH) is a functionally and anatomically complex brain region that is involved in the regulation of many behavioral and physiological processes including feeding, arousal, energy balance, stress, reward and motivated behaviors, pain perception, body temperature regulation, digestive functions and blood pressure. Despite noteworthy experimental efforts over the past decades, the circuit, cellular and synaptic bases by which these different processes are regulated by the LH remains incompletely understood. This knowledge gap links in large part to the high cellular heterogeneity of the LH. Fortunately, the rapid evolution of newer genetic and electrophysiological tools is now permitting the selective manipulation, typically genetically-driven, of discrete LH cell populations. This, in turn, permits not only assignment of function to discrete cell groups, but also reveals that considerable synergistic and antagonistic interactions exist between key LH cell populations that regulate feeding and arousal. For example, we now know that while LH melanin-concentrating hormone (MCH) and orexin/hypocretin neurons both function as sensors of the internal metabolic environment, their roles regulating sleep and arousal are actually opposing. Additional studies have uncovered similarly important roles for subpopulations of LH GABAergic cells in the regulation of both feeding and arousal. Herein we review the role of LH MCH, orexin/hypocretin and GABAergic cell populations in the regulation of energy homeostasis (including feeding) and sleep-wake and discuss how these three cell populations, and their subpopulations, may interact to optimize and coordinate metabolism, sleep and arousal. This article is part of the Special Issue entitled 'Hypothalamic Control of Homeostasis'.
Collapse
Affiliation(s)
- Elda Arrigoni
- Department of Neurology, Beth Israel Deaconess Medical Center, Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02215, USA.
| | - Melissa J S Chee
- Department of Neuroscience, Carleton University, Ottawa, ON, K1S 5B6, Canada
| | - Patrick M Fuller
- Department of Neurology, Beth Israel Deaconess Medical Center, Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02215, USA
| |
Collapse
|
11
|
Li S, Yip A, Bird J, Seok BS, Chan A, Godden KE, Tam LD, Ghelardoni S, Balaban E, Martinez-Gonzalez D, Pompeiano M. Melanin-concentrating hormone (MCH) neurons in the developing chick brain. Brain Res 2018; 1700:19-30. [PMID: 30420052 DOI: 10.1016/j.brainres.2018.07.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/27/2018] [Accepted: 07/01/2018] [Indexed: 01/09/2023]
Abstract
The present study was undertaken because no previous developmental studies exist on MCH neurons in any avian species. After validating a commercially-available antibody for use in chickens, immunohistochemical examinations first detected MCH neurons around embryonic day (E) 8 in the posterior hypothalamus. This population increased thereafter, reaching a numerical maximum by E20. MCH-positive cell bodies were found only in the posterior hypothalamus at all ages examined, restricted to a region showing very little overlap with the locations of hypocretin/orexin (H/O) neurons. Chickens had fewer MCH than H/O neurons, and MCH neurons also first appeared later in development than H/O neurons (the opposite of what has been found in rodents). MCH neurons appeared to originate from territories within the hypothalamic periventricular organ that partially overlap with the source of diencephalic serotonergic neurons. Chicken MCH fibers developed exuberantly during the second half of embryonic development, and they became abundant in the same brain areas as in rodents, including the hypothalamus (by E12), locus coeruleus (by E12), dorsal raphe nucleus (by E20) and septum (by E20). These observations suggest that MCH cells may play different roles during development in chickens and rodents; but once they have developed, MCH neurons exhibit similar phenotypes in birds and rodents.
Collapse
Affiliation(s)
- SiHan Li
- Department of Psychology, McGill University, Montreal, QC H3A 1B1, Canada
| | - Alissa Yip
- Department of Psychology, McGill University, Montreal, QC H3A 1B1, Canada
| | - Jaimie Bird
- Department of Psychology, McGill University, Montreal, QC H3A 1B1, Canada
| | - Bong Soo Seok
- Department of Psychology, McGill University, Montreal, QC H3A 1B1, Canada
| | - Aimee Chan
- Department of Psychology, McGill University, Montreal, QC H3A 1B1, Canada
| | - Kyle E Godden
- Department of Psychology, McGill University, Montreal, QC H3A 1B1, Canada
| | - Laurel D Tam
- Department of Psychology, McGill University, Montreal, QC H3A 1B1, Canada
| | | | - Evan Balaban
- Department of Psychology, McGill University, Montreal, QC H3A 1B1, Canada
| | | | - Maria Pompeiano
- Department of Psychology, McGill University, Montreal, QC H3A 1B1, Canada.
| |
Collapse
|
12
|
Borniger JC, Ungerleider K, Zhang N, Karelina K, Magalang UJ, Weil ZM. Repetitive Brain Injury of Juvenile Mice Impairs Environmental Enrichment-Induced Modulation of REM Sleep in Adulthood. Neuroscience 2018; 375:74-83. [PMID: 29432885 DOI: 10.1016/j.neuroscience.2018.01.064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 01/30/2018] [Accepted: 01/31/2018] [Indexed: 10/18/2022]
Abstract
Traumatic brain injuries (TBIs) are a common and costly ongoing public health concern. Injuries that occur during childhood development can have particularly profound and long-lasting effects. One common consequence and potential mediator of negative outcomes of TBI is sleep disruption which occurs in a substantial proportion of TBI patients. These individuals report greater incidences of insomnia and sleep fragmentation combined with a greater overall sleep requirement meaning that many patients are chronically sleep-deprived. We sought to develop an animal model of developmental TBI-induced sleep dysfunction. Specifically, we tested the hypothesis that early (postnatal day 21), repeated closed head injuries in Swiss-Webster mice, would impair basal and homeostatic sleep responses in adulthood. Further, we asked whether environmental enrichment (EE), a manipulation that improves functional recovery following TBI and has been shown to alter sleep physiology, would prevent TBI-induced sleep dysfunction and alter sleep-modulatory peptide expression. In contrast to our hypothesis, the mild, repeated head injury that we used did not significantly alter basal or homeostatic sleep responses in mice housed in standard laboratory conditions. Sham-injured mice housed in enriched environments exhibited enhanced rapid eye movement (REM) sleep and expression of the REM-promoting peptide pro-melanin-concentrating hormone, an effect that was not apparent in TBI mice housed in enriched environments. Thus, TBI blocked the REM-enhancing effects of EE. This work has important implications for the management and rehabilitation of the TBI patient population.
Collapse
Affiliation(s)
- Jeremy C Borniger
- Department of Neuroscience, Behavioral Neuroendocrinology Group, Neuroscience Research Institute, Center for Brain and Spinal Cord Repair, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Kyra Ungerleider
- Department of Neuroscience, Behavioral Neuroendocrinology Group, Neuroscience Research Institute, Center for Brain and Spinal Cord Repair, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Ning Zhang
- Department of Neuroscience, Behavioral Neuroendocrinology Group, Neuroscience Research Institute, Center for Brain and Spinal Cord Repair, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Kate Karelina
- Department of Neuroscience, Behavioral Neuroendocrinology Group, Neuroscience Research Institute, Center for Brain and Spinal Cord Repair, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Ulysses J Magalang
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Zachary M Weil
- Department of Neuroscience, Behavioral Neuroendocrinology Group, Neuroscience Research Institute, Center for Brain and Spinal Cord Repair, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| |
Collapse
|
13
|
Presynaptic Regulation of Leptin in a Defined Lateral Hypothalamus-Ventral Tegmental Area Neurocircuitry Depends on Energy State. J Neurosci 2017; 37:11854-11866. [PMID: 29089444 DOI: 10.1523/jneurosci.1942-17.2017] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/30/2017] [Accepted: 10/16/2017] [Indexed: 12/16/2022] Open
Abstract
Synaptic transmission controls brain activity and behaviors, including food intake. Leptin, an adipocyte-derived hormone, acts on neurons located in the lateral hypothalamic area (LHA) to maintain energy homeostasis and regulate food intake behavior. The specific synaptic mechanisms, cell types, and neural projections mediating this effect remain unclear. In male mice, using pathway-specific retrograde tracing, whole-cell patch-clamp recordings and post hoc cell type identification, we found that leptin reduces excitatory synaptic strength onto both melanin-concentrating hormone- and orexin-expressing neurons projecting from the LHA to the ventral tegmental area (VTA), which may affect dopamine signaling and motivation for feeding. A presynaptic mechanism mediated by distinct intracellular signaling mechanisms may account for this regulation by leptin. The regulatory effects of leptin depend on intact leptin receptor signaling. Interestingly, the synaptic regulatory function of leptin in the LHA-to-VTA neuronal pathway is highly sensitive to energy states: both energy deficiency (acute fasting) and excessive energy storage (high-fat diet-induced obesity) blunt the effect of leptin. These data revealed that leptin may regulate synaptic transmission in the LHA-to-VTA neurocircuitry in an inverted "U-shape" fashion dependent on plasma glucose levels and related to metabolic states.SIGNIFICANCE STATEMENT The lateral hypothalamic area (LHA) to ventral tegmental area (VTA) projection is an important neural pathway involved in balancing whole-body energy states and reward. We found that the excitatory synaptic inputs to both orexin- and melanin-concentrating hormone expressing LHA neurons projecting to the VTA were suppressed by leptin, a peptide hormone derived from adipocytes that signals peripheral energy status to the brain. Interestingly, energy states seem to affect how leptin regulates synaptic transmission since both the depletion of energy induced by acute food deprivation and excessive storage of energy by high-fat diet feeding dampen the suppressive effect of leptin on synaptic transmission. Together, these data show that leptin regulates synaptic transmission and might be important for maintaining energy homeostasis.
Collapse
|
14
|
Ogawa Y, Kanda T, Vogt K, Yanagisawa M. Anatomical and electrophysiological development of the hypothalamic orexin neurons from embryos to neonates. J Comp Neurol 2017; 525:3809-3820. [PMID: 28608460 DOI: 10.1002/cne.24261] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 04/19/2017] [Accepted: 04/19/2017] [Indexed: 02/01/2023]
Abstract
The amount, quality, and diurnal pattern of sleep change greatly during development. Developmental changes of sleep/wake architecture are in a close relationship to brain development. The fragmentation of wake episodes is one of the salient features in the neonatal period, which is also observed in mature animals and human individuals lacking neuropeptide orexin/hypocretin signaling. This raises the possibility that developmental changes of lateral hypothalamic orexin neurons are relevant to the development of sleep/wake architecture. However, little information is available on morphological and physiological features of developing orexin neurons. To address the cellular basis for maturation of the sleep/wake regulatory system, we investigated the functional development of orexin neurons in the lateral hypothalamus. The anatomical development as well as the changes in the electrophysiological characteristics of orexin neurons was examined from embryonic to postnatal stages in orexin-EGFP mice. Prepro-orexin promoter activity was detectable at embryonic day (E) 12.0, followed by expression of orexin A after E14.0. The number of orexin neurons and their membrane capacitance reached similar levels to adults by postnatal day (P) 7, while their membrane potentials, firing rates, and action potential waveforms were developed by P21. The hyperpolarizing effect of serotonin, which is a major inhibitory signal for adult orexin neurons, was detected after E18.0 and matured at P1. These results suggest that the expression of orexin peptides precedes the maturation of electrophysiological activity of orexin neurons. The function of orexin neurons gradually matures by 3 weeks after birth, coinciding with maturation of sleep/wake architecture.
Collapse
Affiliation(s)
- Yukino Ogawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Takeshi Kanda
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kaspar Vogt
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan.,Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
15
|
Grković I, Bjelobaba I, Mitrović N, Lavrnja I, Drakulić D, Martinović J, Stanojlović M, Horvat A, Nedeljković N. Expression of ecto-nucleoside triphosphate diphosphohydrolase3 (NTPDase3) in the female rat brain during postnatal development. J Chem Neuroanat 2016; 77:10-18. [DOI: 10.1016/j.jchemneu.2016.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 03/16/2016] [Accepted: 04/01/2016] [Indexed: 11/15/2022]
|
16
|
López JM, Morales L, González A. Spatiotemporal Development of the Orexinergic (Hypocretinergic) System in the Central Nervous System of Xenopus laevis. BRAIN, BEHAVIOR AND EVOLUTION 2016; 88:127-146. [DOI: 10.1159/000449278] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 08/18/2016] [Indexed: 11/19/2022]
Abstract
The present immunohistochemical study represents a detailed spatiotemporal analysis of the localization of orexin-immunoreactive (OX-ir) cells and fibers throughout development in the brain of the anuran amphibian Xenopus laevis, a model frequently used in developmental studies. Anurans undergo remarkable physiological changes during the early life stages, and very little is known about the ontogeny and the localization of the centers that control functions such as appetite and feed ingestion in the developing brain. We examined the onset of the orexinergic system, demonstrated to be involved in appetite regulation, using antibodies against mammalian orexin-A and orexin-B peptides. Simultaneous detection of orexins with other territorial markers was used to assess the precise location of the orexinergic cells in the hypothalamus, analyzed within a segmental paradigm. Double staining of orexins and tyrosine hydroxylase served to evaluate possible interactions with the catecholaminergic systems. At early embryonic stages, the first OX-ir cells were detected in the hypothalamus and, soon after, long descending projections were observed through the brainstem to the spinal cord. As brain development proceeded, the double-staining techniques demonstrated that this OX-ir cell group was located in the suprachiasmatic nucleus within the alar hypothalamus. Throughout larval development, the number of OX-ir cells increased notably and a widespread fiber network that innervated the main areas of the forebrain and brainstem was progressively formed, including innervation in the posterior tubercle and mesencephalon, the locus coeruleus, and the nucleus of the solitary tract where catecholaminergic cells are present. In addition, orexinergic cells were detected in the preoptic area and the tuberal hypothalamus only at late prometamorphic stages. The final distribution pattern, largely similar to that of the adult, was achieved through metamorphic climax. The early expression of orexins in Xenopus suggests important roles in brain development in the embryonic period before feeding, and the progression of the temporal and spatial complexity of the orexinergic system might be correlated to the maturation of appetite control regulation, among other functions.
Collapse
|
17
|
Blanco-Centurion C, Liu M, Konadhode RP, Zhang X, Pelluru D, van den Pol AN, Shiromani PJ. Optogenetic activation of melanin-concentrating hormone neurons increases non-rapid eye movement and rapid eye movement sleep during the night in rats. Eur J Neurosci 2016; 44:2846-2857. [PMID: 27657541 DOI: 10.1111/ejn.13410] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 09/15/2016] [Accepted: 09/19/2016] [Indexed: 01/06/2023]
Abstract
Neurons containing melanin-concentrating hormone (MCH) are located in the hypothalamus. In mice, optogenetic activation of the MCH neurons induces both non-rapid eye movement (NREM) and rapid eye movement (REM) sleep at night, the normal wake-active period for nocturnal rodents [R. R. Konadhode et al. (2013) J. Neurosci., 33, 10257-10263]. Here we selectively activate these neurons in rats to test the validity of the sleep network hypothesis in another species. Channelrhodopsin-2 (ChR2) driven by the MCH promoter was selectively expressed by MCH neurons after injection of rAAV-MCHp-ChR2-EYFP into the hypothalamus of Long-Evans rats. An in vitro study confirmed that the optogenetic activation of MCH neurons faithfully triggered action potentials. In the second study, in Long-Evans rats, rAAV-MCH-ChR2, or the control vector, rAAV-MCH-EYFP, were delivered into the hypothalamus. Three weeks later, baseline sleep was recorded for 48 h without optogenetic stimulation (0 Hz). Subsequently, at the start of the lights-off cycle, the MCH neurons were stimulated at 5, 10, or 30 Hz (1 mW at tip; 1 min on - 4 min off) for 24 h. Sleep was recorded during the 24-h stimulation period. Optogenetic activation of MCH neurons increased both REM and NREM sleep at night, whereas during the day cycle, only REM sleep was increased. Delta power, an indicator of sleep intensity, was also increased. In control rats without ChR2, optogenetic stimulation did not increase sleep or delta power. These results lend further support to the view that sleep-active MCH neurons contribute to drive sleep in mammals.
Collapse
Affiliation(s)
- Carlos Blanco-Centurion
- Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, 114 Doughty Street, MSC 404/STB 404, Charleston, SC, 29425, USA
| | - Meng Liu
- Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, 114 Doughty Street, MSC 404/STB 404, Charleston, SC, 29425, USA
| | - Roda P Konadhode
- Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, 114 Doughty Street, MSC 404/STB 404, Charleston, SC, 29425, USA
| | - Xiaobing Zhang
- Department of Neurosurgery, Yale University, New Haven, CT, USA
| | - Dheeraj Pelluru
- Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, 114 Doughty Street, MSC 404/STB 404, Charleston, SC, 29425, USA
| | | | - Priyattam J Shiromani
- Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, 114 Doughty Street, MSC 404/STB 404, Charleston, SC, 29425, USA.,Ralph H. Johnson Veterans Administration Medical Center, Charleston, SC, USA
| |
Collapse
|
18
|
Bilella A, Alvarez-Bolado G, Celio MR. Birthdate of parvalbumin-neurons in the Parvafox-nucleus of the lateral hypothalamus. Brain Res 2016; 1633:111-114. [PMID: 26764531 DOI: 10.1016/j.brainres.2015.12.054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 12/14/2015] [Accepted: 12/27/2015] [Indexed: 10/22/2022]
Abstract
The Parvafox-nucleus in the lateral hypothalamus is characterized by the presence of two distinct neural populations, the Parvalbumin (Parv) and the Foxb1-expressing ones. Foxb1-neurons are born at day 10 in the subventricular zone of the mouse mammillary region. It would be interesting to know if the subpopulation of Parv- neurons develop independently at different times and then meet the Foxb1- expressing neurons in the lateral hypothalamus, their final settling place. The aim of this study was to define the period of birth of the Parv-positive neurons using an in-vivo Bromodeoxyuridine-based method in rats. Parv-neurons are generated from embryonic day 10 to day 13, with a peak at day 12. Thus, it appears that the birthdates of the two subpopulations in these two species is similar, perhaps suggesting that they are born from the same neuroepithelial region.
Collapse
Affiliation(s)
- Alessandro Bilella
- Anatomy Unit, Department of Medicine and Program in Neuroscience, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - Gonzalo Alvarez-Bolado
- Institute of Anatomy and Cell Biology, University of Heidelberg, Im Neuenheimer Feld 307, 69120 Heidelberg, Germany
| | - Marco R Celio
- Anatomy Unit, Department of Medicine and Program in Neuroscience, University of Fribourg, CH-1700 Fribourg, Switzerland.
| |
Collapse
|
19
|
Expression of the orexin system in the porcine uterus, conceptus and trophoblast during early pregnancy. Animal 2015; 9:1820-31. [DOI: 10.1017/s1751731115001020] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
20
|
MacKay H, Abizaid A. Embryonic development of the hypothalamic feeding circuitry: Transcriptional, nutritional, and hormonal influences. Mol Metab 2014; 3:813-22. [PMID: 25506547 PMCID: PMC4264037 DOI: 10.1016/j.molmet.2014.09.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 08/28/2014] [Accepted: 09/04/2014] [Indexed: 11/22/2022] Open
Abstract
Background Embryonic neurogenesis and differentiation in the hypothalamic feeding circuitry is under the control of a variety of diffused morphogens and intrinsic transcription factors, leading to the unique structural and functional characteristics of each nucleus. Scope of review The transcriptional regulation of the development of feeding neuroendocrine systems during the period of embryonic neurogenesis and differentiation will be reviewed here, with a special emphasis on genetic and environmental manipulations that yield an adverse metabolic phenotype. Major conclusions Emerging data suggest that developmental mechanisms can be perturbed not only by genetic manipulation, but also by manipulations to maternal nutrition during the gestational period, leading to long-lasting behavioral, neurobiological, and metabolic consequences. Leptin is neurotrophic in the embryonic brain, and given that it varies in proportion to maternal energy balance, may mediate these effects through an interaction with the mechanisms of hypothalamic development.
Collapse
Affiliation(s)
- Harry MacKay
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Alfonso Abizaid
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| |
Collapse
|
21
|
Godden KE, Landry JP, Slepneva N, Migues PV, Pompeiano M. Early expression of hypocretin/orexin in the chick embryo brain. PLoS One 2014; 9:e106977. [PMID: 25188307 PMCID: PMC4154820 DOI: 10.1371/journal.pone.0106977] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 08/11/2014] [Indexed: 01/20/2023] Open
Abstract
Hypocretin/Orexin (H/O) neuropeptides are released by a discrete group of neurons in the vertebrate hypothalamus which play a pivotal role in the maintenance of waking behavior and brain state control. Previous studies have indicated that the H/O neuronal development differs between mammals and fish; H/O peptide-expressing cells are detectable during the earliest stages of brain morphogenesis in fish, but only towards the end of brain morphogenesis (by ∼85% of embryonic development) in rats. The developmental emergence of H/O neurons has never been previously described in birds. With the goal of determining whether the chick developmental pattern was more similar to that of mammals or of fish, we investigated the emergence of H/O-expressing cells in the brain of chick embryos of different ages using immunohistochemistry. Post-natal chick brains were included in order to compare the spatial distribution of H/O cells with that of other vertebrates. We found that H/O-expressing cells appear to originate from two separate places in the region of the diencephalic proliferative zone. These developing cells express the H/O neuropeptide at a comparatively early age relative to rodents (already visible at 14% of the way through fetal development), thus bearing a closer resemblance to fish. The H/O-expressing cell population proliferates to a large number of cells by a relatively early embryonic age. As previously suggested, the distribution of H/O neurons is intermediate between that of mammalian and non-mammalian vertebrates. This work suggests that, in addition to its roles in developed brains, the H/O peptide may play an important role in the early embryonic development of non-mammalian vertebrates.
Collapse
Affiliation(s)
- Kyle E. Godden
- Department of Psychology, McGill University, Montreal, Quebec, Canada
| | - Jeremy P. Landry
- Department of Psychology, McGill University, Montreal, Quebec, Canada
| | - Natalya Slepneva
- Department of Psychology, McGill University, Montreal, Quebec, Canada
| | - Paola V. Migues
- Department of Psychology, McGill University, Montreal, Quebec, Canada
| | - Maria Pompeiano
- Department of Psychology, McGill University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
22
|
Stratton MS, Staros M, Budefeld T, Searcy BT, Nash C, Eitel C, Carbone D, Handa RJ, Majdic G, Tobet SA. Embryonic GABA(B) receptor blockade alters cell migration, adult hypothalamic structure, and anxiety- and depression-like behaviors sex specifically in mice. PLoS One 2014; 9:e106015. [PMID: 25162235 PMCID: PMC4146593 DOI: 10.1371/journal.pone.0106015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 07/27/2014] [Indexed: 11/18/2022] Open
Abstract
Neurons of the paraventricular nucleus of the hypothalamus (PVN) regulate the hypothalamic- pituitary-adrenal (HPA) axis and the autonomic nervous system. Females lacking functional GABAB receptors because of a genetic disruption of the R1 subunit have altered cellular characteristics in and around the PVN at birth. The genetic disruption precluded appropriate assessments of physiology or behavior in adulthood. The current study was conducted to test the long term impact of a temporally restricting pharmacological blockade of the GABAB receptor to a 7-day critical period (E11–E17) during embryonic development. Experiments tested the role of GABAB receptor signaling in fetal development of the PVN and later adult capacities for adult stress related behaviors and physiology. In organotypic slices containing fetal PVN, there was a female specific, 52% increase in cell movement speeds with GABAB receptor antagonist treatment that was consistent with a sex-dependent lateral displacement of cells in vivo following 7 days of fetal exposure to GABAB receptor antagonist. Anxiety-like and depression-like behaviors, open-field activity, and HPA mediated responses to restraint stress were measured in adult offspring of mothers treated with GABAB receptor antagonist. Embryonic exposure to GABAB receptor antagonist resulted in reduced HPA axis activation following restraint stress and reduced depression-like behaviors. There was also increased anxiety-like behavior selectively in females and hyperactivity in males. A sex dependent response to disruptions of GABAB receptor signaling was identified for PVN formation and key aspects of physiology and behavior. These changes correspond to sex specific prevalence in similar human disorders, namely anxiety disorders and hyperactivity.
Collapse
Affiliation(s)
- Matthew S. Stratton
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Michelle Staros
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Tomaz Budefeld
- Center for Animal Genomics, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Brian T. Searcy
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Connor Nash
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Chad Eitel
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - David Carbone
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona, United States of America
| | - Robert J. Handa
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona, United States of America
| | - Gregor Majdic
- Center for Animal Genomics, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Stuart A. Tobet
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado, United States of America
- * E-mail:
| |
Collapse
|
23
|
Heydendael W, Sengupta A, Beck S, Bhatnagar S. Optogenetic examination identifies a context-specific role for orexins/hypocretins in anxiety-related behavior. Physiol Behav 2013; 130:182-90. [PMID: 24140988 DOI: 10.1016/j.physbeh.2013.10.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 08/23/2013] [Accepted: 10/10/2013] [Indexed: 10/26/2022]
Abstract
Maladaptation to stress is associated with psychopathology. However, our understanding of the underlying neural circuitry involved in adaptations to stress is limited. Previous work from our lab indicated the paraventricular hypothalamic neuropeptides orexins/hypocretins regulate behavioral and neuroendocrine responses to stress. To further elucidate the role of orexins in adaptation to stress, we employed optogenetic techniques to specifically examine the effects of orexin cell activation on behavior in the social interaction test and in the home cage as well as orexin receptor 1 internalization and ERK phosphorylation in brain regions receiving orexin inputs. In the social interaction test, optogenetic stimulation of orexin neurons decreased time spent in the interaction zone while increasing the frequency of entries into the interaction zone. In addition, optogenetic stimulation of orexin neurons increased the total distance traveled in the social interaction arena but had no effect on their home cage behavior. Together, these results suggest that orexin release increases anxiety in the social interaction test while increasing the salience of novel but not familiar environmental stimuli. Consistent with activation of orexin neurons, optogenetic stimulation increased orexin receptor1 internalization and ERK phosphorylation in the paraventricular thalamus (PVT) and locus coeruleus (LC), two regions heavily innervated by orexin neurons. Together these results show for the first time that elevation of orexin activity, possibly in the PVT and LC, is associated with increased anxiety, activity, and arousal in a context-specific manner.
Collapse
Affiliation(s)
- W Heydendael
- Children's hospital of Philadelphia, United States; University of Pennsylvania, United States.
| | - A Sengupta
- Children's hospital of Philadelphia, United States
| | - S Beck
- Children's hospital of Philadelphia, United States; University of Pennsylvania, United States
| | - S Bhatnagar
- Children's hospital of Philadelphia, United States; University of Pennsylvania, United States
| |
Collapse
|
24
|
Intravenous prenatal nicotine exposure increases orexin expression in the lateral hypothalamus and orexin innervation of the ventral tegmental area in adult male rats. Drug Alcohol Depend 2013; 132:562-70. [PMID: 23664126 PMCID: PMC3770778 DOI: 10.1016/j.drugalcdep.2013.04.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Revised: 03/19/2013] [Accepted: 04/02/2013] [Indexed: 01/06/2023]
Abstract
BACKGROUND Approximately 18% of pregnant women continue to smoke tobacco cigarettes throughout pregnancy. Offspring exposed to tobacco smoke in utero exhibit a higher incidence of drug use in later stages of development relative to non-exposed children. Animal models indicate that prenatal nicotine (PN) exposure alone alters the development of the mesocorticolimbic dopamine (DA) system, which, in part, organizes motivated behavior and reward. The orexin/hypocretin neuropeptide system, which originates in the lateral hypothalamus (LH), projects to key areas of the mesocorticolimbic DA pathway. Previous research suggests that orexin exerts a major influence on motivation and reward. METHODS The present experiments determined if intravenous (IV) PN exposure alters (1) the expression of orexin neurons and melanin-concentrating hormone (MCH; positive control) in the LH; and (2) orexin projections from the LH onto DA neurons in the ventral tegmental area (VTA). Dams were injected with IV nicotine (0.05 mg/kg/injection) or saline 3×/day during gestational days 8-21. Tissues from adult male offspring (∼130 days) were examined using immunohistochemistry. RESULTS Relative to controls, offspring of IV PN exposure showed (1) increased numbers of orexin neurons in the LH, and no changes in the expression of MCH; and (2) increased orexin appositions on DA cells in the VTA. CONCLUSION The findings indicate that the influence of PN exposure is enduring, and suggests that the PN-induced modification of orexin expression on mesolimbic circuitry may contribute to the reported changes in motivated behaviors related to food and drug reward observed in offspring prenatally exposed to nicotine.
Collapse
|
25
|
Gascuel J, Lemoine A, Rigault C, Datiche F, Benani A, Penicaud L, Lopez-Mascaraque L. Hypothalamus-olfactory system crosstalk: orexin a immunostaining in mice. Front Neuroanat 2012; 6:44. [PMID: 23162437 PMCID: PMC3492705 DOI: 10.3389/fnana.2012.00044] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 10/06/2012] [Indexed: 01/06/2023] Open
Abstract
It is well known that olfaction influences food intake, and conversely, that an individual’s nutritional status modulates olfactory sensitivity. However, what is still poorly understood is the neuronal correlate of this relationship, as well as the connections between the olfactory bulb and the hypothalamus. The goal of this report is to analyze the relationship between the olfactory bulb and hypothalamus, focusing on orexin A immunostaining, a hypothalamic neuropeptide that is thought to play a role in states of sleep/wakefulness. Interestingly, orexin A has also been described as a food intake stimulator. Such an effect may be due in part to the stimulation of the olfactory bulbar pathway. In rats, orexin positive cells are concentrated strictly in the lateral hypothalamus, while their projections invade nearly the entire brain including the olfactory system. Therefore, orexin appears to be a good candidate to play a pivotal role in connecting olfactory and hypothalamic pathways. So far, orexin has been described in rats, however, there is still a lack of information concerning its expression in the brains of adult and developing mice. In this context, we revisited the orexin A pattern in adult and developing mice using immunohistological methods and confocal microscopy. Besides minor differences, orexin A immunostaining in mice shares many features with those observed in rats. In the olfactory bulb, even though there are few orexin projections, they reach all the different layers of the olfactory bulb. In contrast to the presence of orexin projections in the main olfactory bulb, almost none have been found in the accessory olfactory bulb. The developmental expression of orexin A supports the hypothesis that orexin expression only appears post-natally.
Collapse
Affiliation(s)
- Jean Gascuel
- Instituto Cajal, CSIC, Avda del Doctor Arce Madrid, Spain ; CNRS UMR 6265, Centre des Sciences du Goût et de l'Alimentation Dijon, France ; Institut National de la Recherche Agronomique UMR 1324, Centre des Sciences du Goût et de l'Alimentation Dijon, France ; Université de Bourgogne UMR CSGA, Centre des Sciences du Goût et de l'Alimentation Dijon, France
| | | | | | | | | | | | | |
Collapse
|
26
|
Early and persistent up-regulation of hypothalamic orexigenic peptides in rat offspring born to dams fed a high-carbohydrate supplement during gestation. Brain Res 2012; 1477:10-8. [DOI: 10.1016/j.brainres.2012.08.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 08/08/2012] [Accepted: 08/13/2012] [Indexed: 11/22/2022]
|
27
|
Poon K, Barson JR, Fagan SE, Leibowitz SF. Developmental changes in embryonic hypothalamic neurons during prenatal fat exposure. Am J Physiol Endocrinol Metab 2012; 303:E432-41. [PMID: 22693204 PMCID: PMC3774346 DOI: 10.1152/ajpendo.00238.2012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Maternal consumption of a fat-rich diet during pregnancy, which causes later overeating and weight gain in offspring, has been shown to stimulate neurogenesis and increase hypothalamic expression of orexigenic neuropeptides in these postnatal offspring. The studies here, using an in vitro model that mimics in vivo characteristics after prenatal high-fat diet (HFD) exposure, investigate whether these same peptide changes occur in embryos and if they are specific to neurons. Isolated hypothalamic neurons were compared with whole hypothalamus from embryonic day 19 (E19) embryos that were prenatally exposed to HFD and were both found to show similar increases in mRNA expression of enkephalin (ENK) and neuropeptide Y (NPY) compared with that of chow-exposed embryos, with no change in melanin-concentrating hormone, orexin, or galanin. Further examination using immunofluorescence cytochemistry revealed an increase in the number of cells expressing ENK and NPY. By plotting the fluorescence intensity of each cell as a probability density function, three different populations of neurons with low, medium, or high levels of ENK or NPY were found in both HFD and chow groups. The prenatal HFD shifted the density of neurons from the population containing low peptide levels to the population containing high peptide levels. This study indicates that neuronal culture is a useful in vitro system for studying diet effects on neuronal development and shows that prenatal HFD exposure alters the population of hypothalamic neurons containing ENK and NPY in the embryo. These changes may contribute to the increase in HFD intake and body weight observed in offspring.
Collapse
Affiliation(s)
- Kinning Poon
- The Rockefeller University, Laboratory of Behavioral Neurobiology, New York, NY 10065, USA
| | | | | | | |
Collapse
|
28
|
Dergacheva O, Bateman R, Byrne P, Mendelowitz D. Orexinergic modulation of GABAergic neurotransmission to cardiac vagal neurons in the brain stem nucleus ambiguus changes during development. Neuroscience 2012; 209:12-20. [PMID: 22390944 DOI: 10.1016/j.neuroscience.2012.02.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 01/26/2012] [Accepted: 02/13/2012] [Indexed: 11/17/2022]
Abstract
Cardiac vagal neurons (CVNs) in the nucleus ambiguus (NA) are the major determinant of parasympathetic activity to the heart. Spontaneous GABAergic neurotransmission to CVNs is modulated by hypothalamic neuropeptide orexin-A in postnatal days 2-5 (P5) rats; however, during early postnatal development, orexin expression changes, and the role of orexin-A in modulating CVN activity at other stages of development is unknown. In this study, we compared changes in GABAergic inhibitory postsynaptic currents (IPSCs) in CVNs evoked by orexin-A in P5, P16-20 (P20), and P27-30 (P30) rats using an in vitro brain stem slice preparation. Bath-applied orexin-A enhanced GABAergic IPSCs in all CVNs tested in P5 and P30 animals and in the majority of neurons tested in P20 pups. Focal application of orexin-A ejected from a pipette positioned within 30 μm of the patched CVN did not alter GABAergic signaling in P5 pups. In contrast, in both P20 and P30 rats, focal application of orexin-A inhibited GABAergic IPSCs, and this inhibition persisted in the presence of tetrodotoxin. These results indicate orexin-A facilitates GABAergic IPSCs likely by activating preceding GABAergic neurons that project to CVNs. Orexin-A also likely acts at GABAergic presynaptic terminals surrounding CVNs within the NA to inhibit GABA release. The latter mechanism is absent in P5 pups but occurs in P20 and P30 rats. In conclusion, this study elucidates an important maturation of the parasympathetic cardiac control system. Alterations in these developmental mechanisms may play a role in pathogenesis of disorders related to a specific stage of development maturation.
Collapse
Affiliation(s)
- O Dergacheva
- Department of Pharmacology and Physiology, The George Washington University, 2300 Eye Street NW, Washington, D.C. 20037, USA.
| | | | | | | |
Collapse
|
29
|
Orexinergic innervation of the extended amygdala and basal ganglia in the rat. Brain Struct Funct 2011; 217:233-56. [DOI: 10.1007/s00429-011-0343-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Accepted: 08/16/2011] [Indexed: 10/17/2022]
|
30
|
Remmers F, Delemarre-van de Waal HA. Developmental programming of energy balance and its hypothalamic regulation. Endocr Rev 2011; 32:272-311. [PMID: 21051592 DOI: 10.1210/er.2009-0028] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Developmental programming is an important physiological process that allows different phenotypes to originate from a single genotype. Through plasticity in early life, the developing organism can adopt a phenotype (within the limits of its genetic background) that is best suited to its expected environment. In humans, together with the relative irreversibility of the phenomenon, the low predictive value of the fetal environment for later conditions in affluent countries makes it a potential contributor to the obesity epidemic of recent decades. Here, we review the current evidence for developmental programming of energy balance. For a proper understanding of the subject, knowledge about energy balance is indispensable. Therefore, we first present an overview of the major hypothalamic routes through which energy balance is regulated and their ontogeny. With this background, we then turn to the available evidence for programming of energy balance by the early nutritional environment, in both man and rodent models. A wealth of studies suggest that energy balance can indeed be permanently affected by the early-life environment. However, the direction of the effects of programming appears to vary considerably, both between and within different animal models. Because of these inconsistencies, a comprehensive picture is still elusive. More standardization between studies seems essential to reach veritable conclusions about the role of developmental programming in adult energy balance and obesity.
Collapse
Affiliation(s)
- Floor Remmers
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Germany.
| | | |
Collapse
|
31
|
Novikova NS, Perekrest SV, Shainidze KZ, Korneva EA. Hypothalamic Orexin-Containing Neurons in the Hypothalamus on Exposure to Antigenic and Non-Antigenic Stimuli. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/s11055-011-9399-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
32
|
Boychuk CR, Fuller DD, Hayward LF. Sex differences in heart rate variability during sleep following prenatal nicotine exposure in rat pups. Behav Brain Res 2010; 219:82-91. [PMID: 21163307 DOI: 10.1016/j.bbr.2010.12.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 11/19/2010] [Accepted: 12/07/2010] [Indexed: 01/13/2023]
Abstract
The influence of both prenatal nicotine exposure (PNE; 6 mg/kg/day) and sex on heart rate (HR) regulation during sleep versus wakefulness was evaluated in 13, 16 and 26 day old rat pups. Pups were chronically instrumented at least 24 h before testing. On postnatal day 13 (P13), PNE males spent significantly more time in NREM sleep and demonstrated a greater drop in HR when transitioning from quiet wake to sleep compared to age and sex matched controls (-14±5 bpm versus -1±3 bpm, respectively). Heart rate variability (HRV) analysis indicated that this state-dependent drop in HR was primarily associated with a greater reduction in sympathovagal balance (LF/HF ratio) in PNE males compared to controls. No parallel changes in indices of parasympathetic drive (HF power) were identified. In contrast, no significant effect of PNE on HR during sleep versus wakefulness was identified in P13 females. However, independent of state, a significant decrease in HF power was identified in P13 PNE females compared to controls. At P16, state-dependent differences in HR or HRV between PNE and sex-matched control pups were resolved. Additionally, at P26 no significant effect of PNE on state-dependent changes in HR or HRV was identified in either sex. Analysis of the hypothalamic peptide orexin identified that PNE induced approximately a 50% reduction in hypothalamic prepro-orexin mRNA and total mRNA was lowest in PNE males. These findings suggest that PNE induces sex dependent changes in sleep related autonomic regulation of HR during early postnatal development and these changes may be related to epigenetic alterations in the orexin system.
Collapse
Affiliation(s)
- Carie R Boychuk
- University of Florida, College of Veterinary Medicine, Department of Physiological Sciences, Gainesville, FL 32610, United States
| | | | | |
Collapse
|
33
|
Puskás N, Papp RS, Gallatz K, Palkovits M. Interactions between orexin-immunoreactive fibers and adrenaline or noradrenaline-expressing neurons of the lower brainstem in rats and mice. Peptides 2010; 31:1589-97. [PMID: 20434498 DOI: 10.1016/j.peptides.2010.04.020] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 04/20/2010] [Accepted: 04/21/2010] [Indexed: 11/16/2022]
Abstract
Orexins are expressed in neurons of the dorsolateral hypothalamus and their axons widely distribute throughout the central nervous system. The noradrenergic cell groups of the lower brainstem belong to the targets of these orexin projections. Double immunostainings for orexin and phenylethanolamine N-methyltransferase (PNMT), as well as orexin and tyrosine hydroxylase (TH) were applied to demonstrate the orexinergic innervation of catecholamine cell groups in the lower brainstem of the mouse and the rat. In various densities, networks of orexin-positive fibers and terminals were present on neurons of each adrenaline (C1, C2, C3) and noradrenaline (locus coeruleus, A1, A2, A4, A5 and A7) cell groups. The most dense networks of orexin fibers and terminals were detected in the locus coeruleus, the subcoeruleus area, and in the nucleus of the solitary tract. By using confocal microscope to analyze triple immunostainings we could detect that about two-third of the orexin-PNMT or orexin-TH immunopositive close contacts contained synaptophysin (a presynapse-specific protein) in the C1, C2 and C3 adrenaline, or in the A1, A2 noradrenaline cell groups, respectively. Orexin-immunopositive axons in the C1, C2, as well as A1, A2 and A6 cell groups have been examined by an electron microscope. Relatively few asymmetrical (excitatory) synaptic contacts could be demonstrated between PNMT- or TH-positive dendrites and orexin terminals, although the vast majority of orexin-positive axons was located in juxtaposition to PNMT- or TH-positive neurons.
Collapse
Affiliation(s)
- Nela Puskás
- Neuromorphological and Neuroendocrine Research Laboratory, Department of Anatomy, Histology and Embryology, Semmelweis University and Hungarian Academy of Sciences, Tűzoltó utca 58, 1094 Budapest, Hungary
| | | | | | | |
Collapse
|
34
|
McClellan KM, Stratton MS, Tobet SA. Roles for gamma-aminobutyric acid in the development of the paraventricular nucleus of the hypothalamus. J Comp Neurol 2010; 518:2710-28. [PMID: 20506472 PMCID: PMC2879086 DOI: 10.1002/cne.22360] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The development of the hypothalamic paraventricular nucleus (PVN) involves several factors that work together to establish a cell group that regulates neuroendocrine functions and behaviors. Several molecular markers were noted within the developing PVN, including estrogen receptors (ER), neuronal nitric oxide synthase (nNOS), and brain-derived neurotrophic factor (BDNF). By contrast, immunoreactive gamma-aminobutyric acid (GABA) was found in cells and fibers surrounding the PVN. Two animal models were used to test the hypothesis that GABA works through GABA(A) and GABA(B) receptors to influence the development of the PVN. Treatment with bicuculline to decrease GABA(A) receptor signaling from embryonic day (E) 10 to E17 resulted in fewer cells containing immunoreactive (ir) ERalpha in the region of the PVN vs. control. GABA(B)R1 receptor subunit knockout mice were used to examine the PVN at P0 without GABA(B) signaling. In female but not male GABA(B)R1 subunit knockout mice, the positions of cells containing ir ERalpha shifted from medial to lateral compared with wild-type controls, whereas the total number of ir ERalpha-containing cells was unchanged. In E17 knockout mice, ir nNOS cells and fibers were spread over a greater area. There was also a significant decrease in ir BDNF in the knockout mice in a region-dependent manner. Changes in cell position and protein expression subsequent to disruption of GABA signaling may be due, in part, to changes in nNOS and BDNF signaling. Based on the current study, the PVN can be added as another site where GABA exerts morphogenetic actions in development.
Collapse
Affiliation(s)
- Kristy M. McClellan
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523
- School of Science, Buena Vista University, Storm Lake, IA 50588
| | - Matthew S. Stratton
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523
| | - Stuart A. Tobet
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523
| |
Collapse
|
35
|
Enhanced excitatory input to melanin concentrating hormone neurons during developmental period of high food intake is mediated by GABA. J Neurosci 2009; 29:15195-204. [PMID: 19955372 DOI: 10.1523/jneurosci.4203-09.2009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
In contrast to the local axons of GABA neurons of the cortex and hippocampus, lateral hypothalamic neurons containing melanin concentrating hormone (MCH) and GABA send long axons throughout the brain and play key roles in energy homeostasis and mental status. In adults, MCH neurons maintain a hyperpolarized membrane potential and most of the synaptic input is inhibitory. In contrast, we found that developing MCH neurons received substantially more excitatory synaptic input. Based on gramicidin-perforated patch recordings in hypothalamic slices from MCH-green fluorescent protein transgenic mice, we found that GABA was the primary excitatory synaptic transmitter in embryonic and neonatal ages up to postnatal day 10. Surprisingly, glutamate assumed only a minor excitatory role, if any. GABA plays a complex role in developing MCH neurons, with its actions conditionally dependent on a number of factors. GABA depolarization could lead to an increase in spikes either independently or in summation with other depolarizing stimuli, or alternately, depending on the relative timing of other depolarizing events, could lead to shunting inhibition. The developmental shift from depolarizing to hyperpolarizing occurred later in the dendrites than in the cell body. Early GABA depolarization was based on a Cl(-)-dependent inward current. An interesting secondary depolarization in mature neurons that followed an initial hyperpolarization was based on a bicarbonate mechanism. Thus during the early developmental period when food consumption is high, MCH neurons are more depolarized than in the adult, and an increased level of excitatory synaptic input to these orexigenic cells is mediated by GABA.
Collapse
|
36
|
Risold PY, Croizier S, Legagneux K, Brischoux F, Fellmann D, Griffond B. The development of the MCH system. Peptides 2009; 30:1969-72. [PMID: 19647770 DOI: 10.1016/j.peptides.2009.07.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Revised: 07/13/2009] [Accepted: 07/23/2009] [Indexed: 11/26/2022]
Abstract
Although a great deal is published on the MCH neurons, very few works were devoted to the study of their development. However, existing literature points out two important traits: first, these neurons differentiate a MCH phenotype very early in all species studied so far, which might suggest a role for the MCH peptide during development; second, in the rat, birth date greatly influence the phenotype of MCH neurons. At least two sub-populations were described on the basis of their chemical phenotype, projection pattern and birth date. The understanding of processes involved in the differentiation of these sub-populations may help understand the medio-lateral differentiation of the tuberal hypothalamus.
Collapse
Affiliation(s)
- P Y Risold
- Université de Franche-Comté, Besançon, France.
| | | | | | | | | | | |
Collapse
|
37
|
Sawai N, Ueta Y, Nakazato M, Ozawa H. Developmental and aging change of orexin-A and -B immunoreactive neurons in the male rat hypothalamus. Neurosci Lett 2009; 468:51-5. [PMID: 19857552 DOI: 10.1016/j.neulet.2009.10.061] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Revised: 10/18/2009] [Accepted: 10/19/2009] [Indexed: 10/20/2022]
Abstract
Orexin/hypocretin is indicated to affect various physiological functions and behaviors, such as energy balance, feeding, wake-sleep cycle, stress response, and reproduction. This study investigated postnatal development and aging changes of the orexin neuron in the male rat hypothalamus. The brain tissue of rats from 1 week to 24 months old was analyzed by immunohistochemistry for two forms of orexin peptides, orexin-A and -B. The number of immunoreactive cells for each age group was counted and the immunoreactive intensity was also analyzed in order to reveal the changes in the number of expressing cells and the relative amount of the peptides. The number of orexin immunoreactive cells increased from postnatal 2 weeks to maturation, then slightly decreased and stabilized until the age of 8 months old, but it was significantly decreased by 24 months old. The intensity of the immunoreaction followed almost the same pattern. Our findings demonstrate that orexin neurons are increased during maturation and then are significantly decreased during the period from 8 to 24 months old, indicating an involvement of orexin in the physiological changes in rat aging such as energy balance, sleep, stress response, and reproduction.
Collapse
Affiliation(s)
- Nobuhiko Sawai
- Department of Anatomy and Neurobiology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan
| | | | | | | |
Collapse
|
38
|
Diesch TJ, Mellor DJ, Johnson CB, Lentle RG. Electroencephalographic responses to tail clamping in anaesthetized rat pups. Lab Anim 2009; 43:224-31. [DOI: 10.1258/la.2008.0080083] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We investigated electroencephalographic (EEG) responses to tail clamping in lightly anaesthetized rat pups (5–22 days) in order to determine the ontogeny of EEG activity and at what age they may be capable of experiencing pain. Median frequency (F50) and spectral edge frequency (F95) of the power spectrum in the range of 1–30 Hz were determined before and after the application of a noxious stimulus and power spectra were compared by multivariate analysis. There was a postnatal increase in EEG power as, before clamping, pups aged 5–7 days exhibited isoelectric traces, whereas those aged 12–14 days and 21–22 days had intermittent EEG activity where the power in all frequencies was significantly lower at the former than at the latter age. Pups aged 5–7 days exhibited no EEG response to clamping in view of their isoelectric traces. Pups aged 12–14 days showed a significant decrease in F95 ( P = 0.002), whereas those aged 21–22 days showed highly significant reduction in F50 and F95 ( P = 0.028 and P < 0.001, respectively) as well as changes in EEG power of specific frequencies after clamping. The results and related literature suggest that rat pups aged 5–7 days and younger are not likely to perceive pain and that the ability to perceive pain develops gradually between postnatal ages 12–14 days and 21–22 days.
Collapse
Affiliation(s)
- T J Diesch
- Animal Welfare Science and Bioethics Centre
- Riddet Institute
- Institute of Food, Nutrition and Human Health
| | - D J Mellor
- Animal Welfare Science and Bioethics Centre
- Riddet Institute
- Institute of Food, Nutrition and Human Health
| | - C B Johnson
- Animal Welfare Science and Bioethics Centre
- Institute of Veterinary, Animal and Biological Sciences, College of Sciences, Massey University, Palmerston North 4442, New Zealand
| | - R G Lentle
- Riddet Institute
- Institute of Food, Nutrition and Human Health
| |
Collapse
|
39
|
Dickinson H, Walker DW, Castillo-Melendez M. Onset of feeding at birth—Perinatal development of the hypothalamic mechanisms that induce appetite and feeding in the newborn. Neurosci Lett 2008; 436:1-6. [DOI: 10.1016/j.neulet.2007.12.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2007] [Revised: 12/04/2007] [Accepted: 12/05/2007] [Indexed: 10/22/2022]
|
40
|
Ubieta R, Uribe RM, González JA, García-Vázquez A, Pérez-Monter C, Pérez-Martínez L, Joseph-Bravo P, Charli JL. BDNF up-regulates pre-pro-TRH mRNA expression in the fetal/neonatal paraventricular nucleus of the hypothalamus. Properties of the transduction pathway. Brain Res 2007; 1174:28-38. [PMID: 17854778 DOI: 10.1016/j.brainres.2007.08.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Revised: 08/02/2007] [Accepted: 08/12/2007] [Indexed: 01/19/2023]
Abstract
Brain derived neurotrophic factor (BDNF) increases the levels of pre-pro-thyrotropin releasing hormone (TRH) mRNA in fetal rodent hypothalamic neurons that express TrkB receptors. The present studies aimed at better understanding the role of BDNF in establishing and maintaining the TRH phenotype in hypothalamic neurons during early development. To determine where BDNF regulates the expression of pre-pro-TRH mRNA in vivo, we compared the hypothalamic distribution of pre-pro-TRH mRNA to that of TrkB mRNA. Full-length TrkB (FL-TrkB) mRNA was detected earlier in development than pre-pro-TRH mRNA in the region that gives rise to the paraventricular nucleus of the hypothalamus (PVN). We also evaluated the effects of BDNF on the expression of pre-pro-TRH mRNA in vitro. BDNF up-regulated the levels of pre-pro-TRH mRNA in primary cell cultures obtained from the hypothalamus or the PVN of 17 days old fetuses or newborn rats. This effect was abolished by PD98059, an inhibitor of the mitogen-activated protein kinase kinase (MEK) 1/2 or 5. The effect of BDNF on pre-pro-TRH mRNA levels was reversible. The continuous application of BDNF led to a desensitization of the response at day 10 in vitro, an effect that correlated with a drop in the levels of FL-TrkB protein. In conclusion, BDNF enhances the expression of pre-pro-TRH mRNA in PVN neurons. This effect is reversible, decreases with time, and requires an active MEK. BDNF may contribute to the enhancement of pre-pro-TRH mRNA expression in the hypothalamic PVN during development.
Collapse
Affiliation(s)
- Raimundo Ubieta
- Centro de Ingeniería Genética y Biotecnología, La Habana, Cuba
| | | | | | | | | | | | | | | |
Collapse
|
41
|
López M, Tovar S, Vázquez MJ, Williams LM, Diéguez C. Peripheral tissue-brain interactions in the regulation of food intake. Proc Nutr Soc 2007; 66:131-55. [PMID: 17343779 DOI: 10.1017/s0029665107005368] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
More than 70 years ago the glucostatic, lipostatic and aminostatic hypotheses proposed that the central nervous system sensed circulating levels of different metabolites, changing feeding behaviour in response to the levels of those molecules. In the last 20 years the rapid increase in obesity and associated pathologies in developed countries has involved a substantial increase in the knowledge of the physiological and molecular mechanism regulating body mass. This effort has resulted in the recent discovery of new peripheral signals, such as leptin and ghrelin, as well as new neuropeptides, such as orexins, involved in body-weight homeostasis. The present review summarises research into energy balance, starting from the original classical hypotheses proposing metabolite sensing, through peripheral tissue-brain interactions and coming full circle to the recently-discovered role of hypothalamic fatty acid synthase in feeding regulation. Understanding these molecular mechanisms will provide new pharmacological targets for the treatment of obesity and appetite disorders.
Collapse
Affiliation(s)
- Miguel López
- Department of Physiology, School of Medicine, University of Santiago de Compostela, C/San Francisco s/n 15782, Santiago de Compostela, A Coruña, Spain
| | | | | | | | | |
Collapse
|
42
|
Beck B, Kozak R, Moar KM, Mercer JG. Hypothalamic orexigenic peptides are overexpressed in young Long–Evans rats after early life exposure to fat-rich diets. Biochem Biophys Res Commun 2006; 342:452-8. [PMID: 16487482 DOI: 10.1016/j.bbrc.2006.01.158] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2006] [Accepted: 01/28/2006] [Indexed: 12/31/2022]
Abstract
Nutritional factors have a critical influence during prenatal life on the development and regulation of networks involved in body weight and feeding regulation. To establish the influence of the macronutrient type on feeding regulatory mechanisms and more particularly on stimulatory pathways (galanin and orexins), we fed female rats on either a high-carbohydrate (HC), a high-fat (HF), or a well-balanced control diet during gestation and lactation, and measured peptide expression in the hypothalamus and important hormones (leptin, insulin) in their pups at weaning. HF weanlings were 30% lighter than control and HC pups (P<0.001). They were characterized by reduced plasma glucose and insulin levels (P<0.01 or less). Their galanin and orexin systems were upregulated as shown by the significant augmentation of mRNA expression in the paraventricular nucleus and lateral hypothalamus, respectively. Inhibitory peptides like corticotropin-releasing hormone and neurotensin were not affected by this dietary treatment during early life. There was, therefore, a more intense drive to eat in HF pups, perhaps to compensate for the lower body weight at weaning. HF diets during early life had meanwhile some positive consequences: the lower metabolic profile might be beneficial in precluding the development of obesity and metabolic syndrome later in life. This is however valid only if the orexigenic drive is normalized after weaning.
Collapse
Affiliation(s)
- Bernard Beck
- UHP/EA 3453 Systèmes Neuromodulateurs des Comportements Ingestifs, Nancy, France.
| | | | | | | |
Collapse
|
43
|
Hervieu GJ. Further insights into the neurobiology of melanin-concentrating hormone in energy and mood balances. Expert Opin Ther Targets 2006; 10:211-29. [PMID: 16548771 DOI: 10.1517/14728222.10.2.211] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Melanin-concentrating hormone (MCH) is a critical hypothalamic anabolic neuropeptide, with key central and peripheral actions on energy balance regulation. The actions of MCH are, so far, known to be transduced through two seven-transmembrane-like receptor paralogues, named MCH1R and MCH2R. MCH2R is not functional in rodents. MCH1R is an important receptor involved in mediating feeding behaviour modulation by MCH in rodents. Pharmacological antagonism at MCH1R in rodents diminishes food intake and results in significant and sustained weight loss in fat tissues, particularly in obese animals. Additionally, MCH1R antagonists have been shown to have anxiolytic and antidepressant properties. The purpose of this review is to highlight the recent numerous pieces of evidence showing that pharmacological blockade at MCH1R could be a potential treatment for obesity and its related metabolic syndrome, as well as for various psychiatric disorders.
Collapse
Affiliation(s)
- Guillaume J Hervieu
- GlaxoSmithKline R&D, Neurology Centre of Excellence for Drug Discovery, NFSP-North, HW1713 Building H17, L1-130 C06 Third Avenue, Harlow, Essex CM19 5AW, UK.
| |
Collapse
|
44
|
Vidal L, Blanchard J, Morin LP. Hypothalamic and zona incerta neurons expressing hypocretin, but not melanin concentrating hormone, project to the hamster intergeniculate leaflet. Neuroscience 2005; 134:1081-90. [PMID: 15994022 DOI: 10.1016/j.neuroscience.2005.03.062] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Revised: 02/23/2005] [Accepted: 03/11/2005] [Indexed: 10/25/2022]
Abstract
The hypocretins (Hcrt; also known as orexins) and melanin-concentrating hormone comprise distinct families of neuropeptides synthesized in cells located in the lateral hypothalamus and adjacent areas. The Hcrts are thought to modulate food intake and sleep/wake patterns in mammals. Melanin-concentrating hormone has a well-documented role in energy metabolism. A moderate plexus of Hcrt immunoreactive terminals has been described in the hamster intergeniculate leaflet, part of the circadian rhythm system. This study investigated the origin of Hcrt-immunoreactive terminals in the intergeniculate leaflet and determined whether melanin-concentrating hormone neurons also project to the intergeniculate leaflet. The tracer, cholera toxin beta-subunit, was injected into the intergeniculate leaflet of the golden hamster. Double-label fluorescent immunohistochemistry for cholera toxin beta-subunit and Hcrt or melanin-concentrating hormone was then performed to identify retrogradely labeled cells also containing immunoreactive peptide. Most cholera toxin beta-subunit-labeled cells were detected in the medial zona incerta and sub-incertal zone, with few observed in the lateral hypothalamus. Hcrt-immunoreactive cells were abundant and found largely in the lateral hypothalamus and adjacent nuclei. Melanin-concentrating hormone cells were also abundant in the medial zona incerta, in close proximity to cholera toxin beta-subunit-labeled cells, but ventral to them. Cells containing both cholera toxin beta-subunit and Hcrt-immunoreactive, were present in the dorsal aspect of the lateral hypothalamus. The number observed was small, < or = 1% of the total number of Hcrt cells counted in the hamster. No cholera toxin beta-subunit-immunoreactive cells also contained melanin-concentrating hormone and no melanin-concentrating hormone-immunoreactive processes were evident in the intergeniculate leaflet. The results show that a small number of lateral hypothalamus cells containing Hcrt-immunoreactivity project to the intergeniculate leaflet, but they are scattered rather than collected into a discrete group. At the present time there is no information regarding the function of these cells, although they may contribute to the regulation of sleep/arousal, circadian rhythmicity, or vestibulo-oculomotor function.
Collapse
Affiliation(s)
- L Vidal
- Department of Psychiatry and Behavioral Sciences, Health Sciences Center, Stony Brook University, Stony Brook, NY 11794-8101, USA
| | | | | |
Collapse
|
45
|
Abstract
The hypocretins (also called the orexins) are two neuropeptides derived from the same precursor whose expression is restricted to a few thousand neurons of the lateral hypothalamus. Two G-protein coupled receptors for the hypocretins have been identified, and these show different distributions within the central nervous system and differential affinities for the two hypocretins. Hypocretin fibers project throughout the brain, including several areas implicated in regulation of the sleep/wakefulness cycle. Central administration of synthetic hypocretin-1 affects blood pressure, hormone secretion and locomotor activity, and increases wakefulness while suppressing rapid eye movement sleep. Most human patients with narcolepsy have greatly reduced levels of hypocretin peptides in their cerebral spinal fluid and no or barely detectable hypocretin-containing neurons in their hypothalamus. Multiple lines of evidence suggest that the hypocretinergic system integrates homeostatic, metabolic and limbic information and provides a coherent output that results in stability of the states of vigilance.
Collapse
Affiliation(s)
- Luis de Lecea
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | |
Collapse
|
46
|
Duva MA, Tomkins EM, Moranda LM, Kaplan R, Sukhaseum A, Stanley BG. Origins of lateral hypothalamic afferents associated with N-methyl-d-aspartic acid-elicited eating studied using reverse microdialysis of NMDA and Fluorogold. Neurosci Res 2005; 52:95-106. [PMID: 15811557 DOI: 10.1016/j.neures.2005.02.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2004] [Revised: 12/30/2004] [Accepted: 02/02/2005] [Indexed: 11/22/2022]
Abstract
Afferent projections to the tuberal lateral hypothalamus (tLH), where excitatory amino acid application is most effective in eliciting feeding, and to the anterior, posterior and medial regions of the hypothalamus were studied using reverse microdialysis of N-methyl-D-aspartic acid (NMDA) and Fluorogold (FG). NMDA at 660 microM delivered for 10 min was effective in stimulating food intake only when administered into the tLH, causing a mean intake of 9.3 g compared to less than 1 g in any other site. Subsequent administration of FG through the dialysis probe retrogradely in labeled neurons in brain structures associated with the feeding response including the frontal cortex, amygdala, nucleus accumbens (NA), preoptic areas, substantia nigra, ventral tegmental area (VTA), parabrachial nucleus, and the nucleus of the solitary tract (NST). Labeling after anterior and posterior LH infusion of FG was similar to that seen after tLH delivery with some apparent differences, whereas FG administration into the medial hypothalamus produced a distinctly different pattern of labeling compared to the other groups. Some of the observed labeling appeared to be almost exclusively associated with the tLH where NMDA elicits feeding. In particular, amygdala, preoptic area and shell of the accumbens labeling was noticeably denser in tLH eaters than in all other groups. These findings are consistent with the role of LH glutamate and NMDA receptors in the regulation of food intake and identify afferents to the region which possibly mediate endogenous LH glutamate's effects on feeding.
Collapse
Affiliation(s)
- Mark A Duva
- Department of Psychology, University of California, Riverside, Riverside, CA 92521, USA.
| | | | | | | | | | | |
Collapse
|
47
|
Williamson-Hughes PS, Grove KL, Smith MS. Melanin concentrating hormone (MCH): A novel neural pathway for regulation of GnRH neurons. Brain Res 2005; 1041:117-24. [PMID: 15829220 DOI: 10.1016/j.brainres.2004.11.066] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2004] [Revised: 11/01/2004] [Accepted: 11/06/2004] [Indexed: 11/23/2022]
Abstract
The link between the state of energy balance and reproductive function is well known. Thus, signals denoting negative energy balance and the accompanying hyperphagic drive are likely to be factors in the suppression of gonadotropin releasing hormone (GnRH) activity. We have previously found that appetite-regulating systems, such as neuropeptide Y (NPY) in the arcuate nucleus (ARH) and orexin in the lateral hypothalamic area (LHA), send fiber projections that come in close apposition with GnRH neurons. Furthermore, the appropriate receptors, NPY Y5 and OR-1, respectively, are coexpressed on GnRH neurons, providing neuroanatomical evidence for a direct link between the NPY and orexin systems and GnRH neurons. Therefore, these orexigenic neuropeptide systems are potential candidates that convey information about energy balance to GnRH neurons. The current studies focused on melanin concentrating hormone (MCH), another orexigenic neuropeptide system located in the LHA that is sensitive to energy balance. The results showed that MCH fiber projections came in close apposition with approximately 85-90% of GnRH cell bodies throughout the preoptic area and anterior hypothalamic area in the rat. In addition, the MCH receptor (MCHR1) was coexpressed on about 50-55% of GnRH neurons. These findings present evidence for a possible direct neuroanatomical pathway by which MCH may play a role in the regulation of GnRH neuronal function. Thus, MCH is another potential signal that may serve to integrate energy balance and reproductive function.
Collapse
Affiliation(s)
- Patricia S Williamson-Hughes
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | | | | |
Collapse
|