1
|
Sivils A, Wang JQ, Chu XP. Striatonigrostriatal Spirals in Addiction. Front Neural Circuits 2021; 15:803501. [PMID: 34955762 PMCID: PMC8703003 DOI: 10.3389/fncir.2021.803501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/24/2021] [Indexed: 11/13/2022] Open
Abstract
A biological reward system is integral to all animal life and humans are no exception. For millennia individuals have investigated this system and its influences on human behavior. In the modern day, with the US facing an ongoing epidemic of substance use without an effective treatment, these investigations are of paramount importance. It is well known that basal ganglia contribute to rewards and are involved in learning, approach behavior, economic choices, and positive emotions. This review aims to elucidate the physiological role of striatonigrostriatal (SNS) spirals, as part of basal ganglia circuits, in this reward system and their pathophysiological role in perpetuating addiction. Additionally, the main functions of neurotransmitters such as dopamine and glutamate and their receptors in SNS circuits will be summarized. With this information, the claim that SNS spirals are crucial intermediaries in the shift from goal-directed behavior to habitual behavior will be supported, making this circuit a viable target for potential therapeutic intervention in those with substance use disorders.
Collapse
Affiliation(s)
| | | | - Xiang-Ping Chu
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, United States
| |
Collapse
|
2
|
Deng Y, Wang H, Joni M, Sekhri R, Reiner A. Progression of basal ganglia pathology in heterozygous Q175 knock-in Huntington's disease mice. J Comp Neurol 2021; 529:1327-1371. [PMID: 32869871 PMCID: PMC8049038 DOI: 10.1002/cne.25023] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/07/2020] [Accepted: 08/26/2020] [Indexed: 12/29/2022]
Abstract
We used behavioral testing and morphological methods to detail the progression of basal ganglia neuron type-specific pathology and the deficits stemming from them in male heterozygous Q175 mice, compared to age-matched WT males. A rotarod deficit was not present in Q175 mice until 18 months, but increased open field turn rate (reflecting hyperkinesia) and open field anxiety were evident at 6 months. No loss of striatal neurons was seen out to 18 months, but ENK+ and DARPP32+ striatal perikarya were fewer by 6 months, due to diminished expression, with further decline by 18 months. No reduction in SP+ striatal perikarya or striatal interneurons was seen in Q175 mice at 18 months, but cholinergic interneurons showed dendrite attenuation by 6 months. Despite reduced ENK expression in indirect pathway striatal perikarya, ENK-immunostained terminals in globus pallidus externus (GPe) were more abundant at 6 months and remained so out to 18 months. Similarly, SP-immunostained terminals from striatal direct pathway neurons were more abundant in globus pallidus internus and substantia nigra at 6 months and remained so at 18 months. FoxP2+ arkypallidal GPe neurons and subthalamic nucleus neurons were lost by 18 months but not prototypical PARV+ GPe neurons or dopaminergic nigral neurons. Our results show that striatal projection neuron abnormalities and behavioral abnormalities reflecting them develop between 2 and 6 months of age in Q175 male heterozygotes, indicating early effects of the HD mutation. The striatal pathologies resemble those in human HD, but are less severe at 18 months than even in premanifest HD.
Collapse
Affiliation(s)
- Yunping Deng
- Department of Anatomy and NeurobiologyThe University of Tennessee Health Science CenterMemphisTennesseeUSA
| | - Hongbing Wang
- Department of Anatomy and NeurobiologyThe University of Tennessee Health Science CenterMemphisTennesseeUSA
| | - Marion Joni
- Department of Anatomy and NeurobiologyThe University of Tennessee Health Science CenterMemphisTennesseeUSA
| | - Radhika Sekhri
- Department of PathologyThe University of Tennessee Health Science CenterMemphisTennesseeUSA
| | - Anton Reiner
- Department of Anatomy and NeurobiologyThe University of Tennessee Health Science CenterMemphisTennesseeUSA
- Department of OphthalmologyThe University of Tennessee Health Science CenterMemphisTennesseeUSA
| |
Collapse
|
3
|
Lv SY, Cui B, Yang Y, Du H, Zhang X, Zhou Y, Ye W, Nie X, Li Y, Wang Q, Chen WD, Wang YD. Spexin/NPQ Induces FBJ Osteosarcoma Oncogene (Fos) and Produces Antinociceptive Effect against Inflammatory Pain in the Mouse Model. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:886-899. [PMID: 30664863 DOI: 10.1016/j.ajpath.2018.12.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 11/05/2018] [Accepted: 12/07/2018] [Indexed: 01/12/2023]
Abstract
Spexin/NPQ is a novel highly conserved neuropeptide. It has a widespread expression in the periphery and central nervous system. However, the effects of central spexin on acute inflammatory pain are still unknown. This study explored the mechanisms and effects of supraspinal spexin on inflammatory pain. The results from the mouse formalin test show that i.c.v. administration of spexin decreased licking/biting time during the late and early phases. The nonamidated spexin had no effect on pain response. The antinociception of spexin was blocked by galanin receptor 3 antagonist SNAP 37889. The Galr3 and Adcy4 mRNA levels in the brain were increased after injection with spexin. The antinociceptive effects of spexin were completely reversed by opioid receptor antagonist naloxone and κ-opioid receptor antagonist nor-binaltorphimine dihydrochloride. Spexin up-regulated the dynorphin and κ-opioid receptor gene and protein expression. PCR array assay and real-time PCR analysis show that spexin up-regulated the mRNA level of the FBJ osteosarcoma oncogene (Fos). T-5224, the inhibitor of c FBJ osteosarcoma oncogene (c-Fos)/activator protein 1 (AP-1), blocked the increased mRNA level of Pdyn and Oprk1 induced by spexin. I.C.V. spexin (2.43 mg/kg) increased the number of c-Fos-positive neurons in most subsections of periaqueductal gray. In addition, in the acetic acid-induced writhing test, i.c.v. spexin produced an antinociceptive effect. Our results indicate that spexin might be a novel neuropeptide with an antinociceptive effect against acute inflammatory pain.
Collapse
Affiliation(s)
- Shuang-Yu Lv
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Medicine, Henan University, Kaifeng, China
| | - Binbin Cui
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Medicine, Henan University, Kaifeng, China
| | - Yanjie Yang
- Laboratory of Cell Signal Transduction, School of Medicine, Henan University, Kaifeng, China
| | - Hua Du
- Department of Pathology, College of Basic Medicine, Inner Mongolia Medical University, Hohhot, China
| | - Xiaomei Zhang
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Medicine, Henan University, Kaifeng, China
| | - Yuchen Zhou
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Medicine, Henan University, Kaifeng, China
| | - Wenling Ye
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Medicine, Henan University, Kaifeng, China
| | - Xiaobo Nie
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Medicine, Henan University, Kaifeng, China
| | - Yang Li
- Department of Orthopaedics, The 969th Hospital of People's Liberation Army of China, Hohhot, China
| | - Qun Wang
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Medicine, Henan University, Kaifeng, China
| | - Wei-Dong Chen
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Medicine, Henan University, Kaifeng, China; Department of Pathology, College of Basic Medicine, Inner Mongolia Medical University, Hohhot, China.
| | - Yan-Dong Wang
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China.
| |
Collapse
|
4
|
Reiner A, Deng Y. Disrupted striatal neuron inputs and outputs in Huntington's disease. CNS Neurosci Ther 2018; 24:250-280. [PMID: 29582587 PMCID: PMC5875736 DOI: 10.1111/cns.12844] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 02/15/2018] [Accepted: 02/16/2018] [Indexed: 12/22/2022] Open
Abstract
Huntington's disease (HD) is a hereditary progressive neurodegenerative disorder caused by a CAG repeat expansion in the gene coding for the protein huntingtin, resulting in a pathogenic expansion of the polyglutamine tract in the N-terminus of this protein. The HD pathology resulting from the mutation is most prominent in the striatal part of the basal ganglia, and progressive differential dysfunction and loss of striatal projection neurons and interneurons account for the progression of motor deficits seen in this disease. The present review summarizes current understanding regarding the progression in striatal neuron dysfunction and loss, based on studies both in human HD victims and in genetic mouse models of HD. We review evidence on early loss of inputs to striatum from cortex and thalamus, which may be the basis of the mild premanifest bradykinesia in HD, as well as on the subsequent loss of indirect pathway striatal projection neurons and their outputs to the external pallidal segment, which appears to be the basis of the chorea seen in early symptomatic HD. Later loss of direct pathway striatal projection neurons and their output to the internal pallidal segment account for the severe akinesia seen late in HD. Loss of parvalbuminergic striatal interneurons may contribute to the late dystonia and rigidity.
Collapse
Affiliation(s)
- Anton Reiner
- Department of Anatomy & NeurobiologyThe University of Tennessee Health Science CenterMemphisTNUSA
- Department of OphthalmologyThe University of Tennessee Health Science CenterMemphisTNUSA
| | - Yun‐Ping Deng
- Department of Anatomy & NeurobiologyThe University of Tennessee Health Science CenterMemphisTNUSA
| |
Collapse
|
5
|
Dragatsis I, Dietrich P, Ren H, Deng YP, Del Mar N, Wang HB, Johnson IM, Jones KR, Reiner A. Effect of early embryonic deletion of huntingtin from pyramidal neurons on the development and long-term survival of neurons in cerebral cortex and striatum. Neurobiol Dis 2017; 111:102-117. [PMID: 29274742 PMCID: PMC5821111 DOI: 10.1016/j.nbd.2017.12.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 11/07/2017] [Accepted: 12/19/2017] [Indexed: 12/12/2022] Open
Abstract
We evaluated the impact of early embryonic deletion of huntingtin (htt) from pyramidal neurons on cortical development, cortical neuron survival and motor behavior, using a cre-loxP strategy to inactivate the mouse htt gene (Hdh) in emx1-expressing cell lineages. Western blot confirmed substantial htt reduction in cerebral cortex of these Emx-httKO mice, with residual cortical htt in all likelihood restricted to cortical interneurons of the subpallial lineage and/or vascular endothelial cells. Despite the loss of htt early in development, cortical lamination was normal, as revealed by layer-specific markers. Cortical volume and neuron abundance were, however, significantly less than normal, and cortical neurons showed reduced brain-derived neurotrophic factor (BDNF) expression and reduced activation of BDNF signaling pathways. Nonetheless, cortical volume and neuron abundance did not show progressive age-related decline in Emx-httKO mice out to 24 months. Although striatal neurochemistry was normal, reductions in striatal volume and neuron abundance were seen in Emx-httKO mice, which were again not progressive. Weight maintenance was normal in Emx-httKO mice, but a slight rotarod deficit and persistent hyperactivity were observed throughout the lifespan. Our results show that embryonic deletion of htt from developing pallium does not substantially alter migration of cortical neurons to their correct laminar destinations, but does yield reduced cortical and striatal size and neuron numbers. The Emx-httKO mice were persistently hyperactive, possibly due to defects in corticostriatal development. Importantly, deletion of htt from cortical pyramidal neurons did not yield age-related progressive cortical or striatal pathology.
Collapse
Affiliation(s)
- I Dragatsis
- Department of Physiology, The University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - P Dietrich
- Department of Physiology, The University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - H Ren
- Department of Anatomy & Neurobiology, The University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Y P Deng
- Department of Anatomy & Neurobiology, The University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - N Del Mar
- Department of Anatomy & Neurobiology, The University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - H B Wang
- Department of Anatomy & Neurobiology, The University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - I M Johnson
- Department of Physiology, The University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - K R Jones
- Department of Molecular, Cellular, & Developmental Biology, 347 UCB, University of Colorado, Boulder, CO 80309, United States
| | - A Reiner
- Department of Anatomy & Neurobiology, The University of Tennessee Health Science Center, Memphis, TN 38163, United States; Department of Ophthalmology, The University of Tennessee Health Science Center, Memphis, TN 38163, United States.
| |
Collapse
|
6
|
Vekshina NL, Anokhin PK, Veretinskaya AG, Shamakina IY. Dopamine D1–D2 receptor heterodimers: A literature review. BIOCHEMISTRY MOSCOW-SUPPLEMENT SERIES B-BIOMEDICAL CHEMISTRY 2017. [DOI: 10.1134/s199075081702010x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
7
|
Vekshina N, Anokhin P, Veretinskaya A, Shamakina I. Heterodimeric D1-D2 dopamine receptors: a review. ACTA ACUST UNITED AC 2017. [DOI: 10.18097/pbmc20176301005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This review summarizes modern data on the structure and functions ofheteromersformed by D1 and D2 dopamine receptors focusing on their role in the mechanisms of drug dependence. This article discusses potential functional significance of heterodimeric D1-D2 dopamine receptorsdue to their localization in the brain as well as unique pharmacological propertiesversus constituent monomers. It is shown that heteromerization results in dramatic changes in activated signaling pathways compare to the corresponding monomers. These studies update our current knowledge of ligand-receptor interactions and provide better understanding of dopamine receptors pharmacology. Furthermore elucidation of significance of heterodimeric D1-D2 dopamine receptors as drug targets is important for the development of new effective drug addiction treatment.
Collapse
Affiliation(s)
- N.L. Vekshina
- V.P. Serbsky Federal Medical Research Center on Psychiatry and Narcology, Moscow, Russia
| | - P.K. Anokhin
- V.P. Serbsky Federal Medical Research Center on Psychiatry and Narcology, Moscow, Russia
| | - A.G. Veretinskaya
- V.P. Serbsky Federal Medical Research Center on Psychiatry and Narcology, Moscow, Russia
| | - I.Yu. Shamakina
- V.P. Serbsky Federal Medical Research Center on Psychiatry and Narcology, Moscow, Russia
| |
Collapse
|
8
|
Abstract
Unidirectional connections from the cortex to the matrix of the corpus striatum initiate the cortico-basal ganglia (BG)-thalamocortical loop, thought to be important in momentary action selection and in longer-term fine tuning of behavioural repertoire; a discrete set of striatal compartments, striosomes, has the complementary role of registering or anticipating reward that shapes corticostriatal plasticity. Re-entrant signals traversing the cortico-BG loop impact predominantly frontal cortices, conveyed through topographically ordered output channels; by contrast, striatal input signals originate from a far broader span of cortex, and are far more divergent in their termination. The term 'disclosed loop' is introduced to describe this organisation: a closed circuit that is open to outside influence at the initial stage of cortical input. The closed circuit component of corticostriatal afferents is newly dubbed 'operative', as it is proposed to establish the bid for action selection on the part of an incipient cortical action plan; the broader set of converging corticostriatal afferents is described as contextual. A corollary of this proposal is that every unit of the striatal volume, including the long, C-shaped tail of the caudate nucleus, should receive a mandatory component of operative input, and hence include at least one area of BG-recipient cortex amongst the sources of its corticostriatal afferents. Individual operative afferents contact twin classes of GABAergic striatal projection neuron (SPN), distinguished by their neurochemical character, and onward circuitry. This is the basis of the classic direct and indirect pathway model of the cortico-BG loop. Each pathway utilises a serial chain of inhibition, with two such links, or three, providing positive and negative feedback, respectively. Operative co-activation of direct and indirect SPNs is, therefore, pictured to simultaneously promote action, and to restrain it. The balance of this rival activity is determined by the contextual inputs, which summarise the external and internal sensory environment, and the state of ongoing behavioural priorities. Notably, the distributed sources of contextual convergence upon a striatal locus mirror the transcortical network harnessed by the origin of the operative input to that locus, thereby capturing a similar set of contingencies relevant to determining action. The disclosed loop formulation of corticostriatal and subsequent BG loop circuitry, as advanced here, refines the operating rationale of the classic model and allows the integration of more recent anatomical and physiological data, some of which can appear at variance with the classic model. Equally, it provides a lucid functional context for continuing cellular studies of SPN biophysics and mechanisms of synaptic plasticity.
Collapse
|
9
|
Reappraising striatal D1- and D2-neurons in reward and aversion. Neurosci Biobehav Rev 2016; 68:370-386. [PMID: 27235078 DOI: 10.1016/j.neubiorev.2016.05.021] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 05/16/2016] [Accepted: 05/22/2016] [Indexed: 12/31/2022]
Abstract
The striatum has been involved in complex behaviors such as motor control, learning, decision-making, reward and aversion. The striatum is mainly composed of medium spiny neurons (MSNs), typically divided into those expressing dopamine receptor D1, forming the so-called direct pathway, and those expressing D2 receptor (indirect pathway). For decades it has been proposed that these two populations exhibit opposing control over motor output, and recently, the same dichotomy has been proposed for valenced behaviors. Whereas D1-MSNs mediate reinforcement and reward, D2-MSNs have been associated with punishment and aversion. In this review we will discuss pharmacological, genetic and optogenetic studies that indicate that there is still controversy to what concerns the role of striatal D1- and D2-MSNs in this type of behaviors, highlighting the need to reconsider the early view that they mediate solely opposing aspects of valenced behaviour.
Collapse
|
10
|
Sane F, Caloone D, Gmyr V, Engelmann I, Belaich S, Kerr-Conte J, Pattou F, Desailloud R, Hober D. Coxsackievirus B4 can infect human pancreas ductal cells and persist in ductal-like cell cultures which results in inhibition of Pdx1 expression and disturbed formation of islet-like cell aggregates. Cell Mol Life Sci 2013; 70:4169-80. [PMID: 23775130 PMCID: PMC11113870 DOI: 10.1007/s00018-013-1383-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 05/14/2013] [Accepted: 05/23/2013] [Indexed: 12/31/2022]
Abstract
The role of enteroviruses, especially Coxsackievirus B (CVB), in type 1 diabetes is suspected, but the mechanisms of the virus-induced or aggravated pathogenesis of the disease are unknown. The hypothesis of an enterovirus-induced disturbance of pancreatic β-cells regeneration has been investigated in the human system. The infection of human pancreas ductal cells and pancreatic duct cell line, PANC-1, with CVB4E2 has been studied. Primary ductal cells and PANC-1 cells were infectable with CVB4E2 and a RT-PCR assay without extraction displayed that a larger proportion of cells harbored viral RNA than predicted by the detection of the viral capsid protein VP1 by indirect immunofluorescence. The detection of intracellular positive- and negative-strands of enterovirus genomes in cellular extracts by RT-PCR and the presence of infectious particles in supernatant fluids during the 37 weeks of monitoring demonstrated that CVB4E2 could persist in the pancreatic duct cell line. A persistent infection of these cells resulted in an impaired expression of Pdx1, a transcription factor required for the formation of endocrine pancreas, and a disturbed formation of islet-like cell aggregates of which the viability was decreased. These data support the hypothesis of an impact of enteroviruses onto pancreatic ductal cells which are involved in the renewal of pancreatic β-cells.
Collapse
Affiliation(s)
- Famara Sane
- Laboratoire de Virologie/ EA3610, Université Lille 2, Faculté de Médecine, CHRU, 59120 Loos-lez-Lille, France
| | - Delphine Caloone
- Laboratoire de Virologie/ EA3610, Université Lille 2, Faculté de Médecine, CHRU, 59120 Loos-lez-Lille, France
| | - Valéry Gmyr
- Laboratoire Biothérapie du diabète, INSERM U859 CHRU de Lille, 59045, Lille, France
| | - Ilka Engelmann
- Laboratoire de Virologie/ EA3610, Université Lille 2, Faculté de Médecine, CHRU, 59120 Loos-lez-Lille, France
| | - Sandrine Belaich
- Laboratoire Biothérapie du diabète, INSERM U859 CHRU de Lille, 59045, Lille, France
| | - Julie Kerr-Conte
- Laboratoire Biothérapie du diabète, INSERM U859 CHRU de Lille, 59045, Lille, France
| | - François Pattou
- Laboratoire Biothérapie du diabète, INSERM U859 CHRU de Lille, 59045, Lille, France
| | - Rachel Desailloud
- Service d’Endocrinologie-Diabétologie-Nutrition, UPJV CHU, 80054 Amiens, France
| | - Didier Hober
- Laboratoire de Virologie/ EA3610, Université Lille 2, Faculté de Médecine, CHRU, 59120 Loos-lez-Lille, France
- Laboratoire de Virologie/EA3610, Institut Hippocrate, CHRU Lille, 152 rue du Dr Yersin, 59120 Loos-Lez-Lille, France
| |
Collapse
|
11
|
Lei W, Deng Y, Liu B, Mu S, Guley NM, Wong T, Reiner A. Confocal laser scanning microscopy and ultrastructural study of VGLUT2 thalamic input to striatal projection neurons in rats. J Comp Neurol 2013; 521:1354-77. [PMID: 23047588 DOI: 10.1002/cne.23235] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 08/31/2012] [Accepted: 10/02/2012] [Indexed: 01/17/2023]
Abstract
We examined thalamic input to striatum in rats using immunolabeling for the vesicular glutamate transporter (VGLUT2). Double immunofluorescence viewed with confocal laser scanning microscopy (CLSM) revealed that VGLUT2+ terminals are distinct from VGLUT1+ terminals. CLSM of Phaseolus vulgaris-leucoagglutinin (PHAL)-labeled cortical or thalamic terminals revealed that VGLUT2 is rare in corticostriatal terminals but nearly always present in thalamostriatal terminals. Electron microscopy revealed that VGLUT2+ terminals made up 39.4% of excitatory terminals in striatum (with VGLUT1+ corticostriatal terminals constituting the rest), and 66.8% of VGLUT2+ terminals synapsed on spines and the remainder on dendrites. VGLUT2+ axospinous terminals had a mean diameter of 0.624 μm, while VGLUT2+ axodendritic terminals a mean diameter of 0.698 μm. In tissue in which we simultaneously immunolabeled thalamostriatal terminals for VGLUT2 and striatal neurons for D1 (with about half of spines immunolabeled for D1), 54.6% of VGLUT2+ terminals targeted D1+ spines (i.e., direct pathway striatal neurons), and 37.3% of D1+ spines received VGLUT2+ synaptic contacts. By contrast, 45.4% of VGLUT2+ terminals targeted D1-negative spines (i.e., indirect pathway striatal neurons), and only 25.8% of D1-negative spines received VGLUT2+ synaptic contacts. Similarly, among VGLUT2+ axodendritic synaptic terminals, 59.1% contacted D1+ dendrites, and 40.9% contacted D1-negative dendrites. VGLUT2+ terminals on D1+ spines and dendrites tended to be slightly smaller than those on D1-negative spines and dendrites. Thus, thalamostriatal terminals contact both direct and indirect pathway striatal neurons, with a slight preference for direct. These results are consistent with physiological studies indicating slightly different effects of thalamic input on the two types of striatal projection neurons.
Collapse
Affiliation(s)
- Wanlong Lei
- Department of Anatomy, Zhongshan Medical School of Sun Yat-Sen University, Guangzhou, 510080, PR China.
| | | | | | | | | | | | | |
Collapse
|
12
|
Xia RL, Fu CY, Zhang SF, Jin YT, Zhao FK. Study on the distribution sites and the molecular mechanism of analgesia after intracerebroventricular injection of rat/mouse hemokinin-1 in mice. Peptides 2013; 43:113-20. [PMID: 23470255 DOI: 10.1016/j.peptides.2013.02.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 02/24/2013] [Accepted: 02/25/2013] [Indexed: 11/22/2022]
Abstract
Hemokinin-1 is a peptide encoded by Pptc, which belongs to the family of mammalian tachykinins. Our previous results showed that rat/mouse hemokinin-1 (r/m HK-1) produced striking analgesia after intracerebroventricular (i.c.v.) injection in mice, and the analgesia could be blocked by the NK1 receptor antagonist and the opioid receptor antagonist, respectively. However, the precise distribution sites and the molecular mechanism involved in the analgesic effect after i.c.v. administration of r/m HK-1 are needed to be further investigated deeply. Using the fluorescence labeling method, our present results directly showed that r/m HK-1 peptides were mainly distributed at the ventricular walls and several juxta-ventricular structures for the first time. Our results showed that the mRNA expressions of NK1 receptor, PPT-A, PPT-C, KOR, PDYN, DOR and PENK were not changed markedly, as well as the protein expression of NK1 receptor was hardly changed. However, both the transcripts and proteins of MOR and POMC were up-regulated significantly, indicating that the analgesic effect induced by i.c.v. administration of r/m HK-1 is related to the activation of NK1 receptor first, then it is related to the release of endogenous proopiomelanocortin, as well as the increased expression level of μ opioid receptor. These results should facilitate further the analysis of the analgesia of r/m HK-1 in the central nerval system in acute pain and may open novel pharmacological interventions.
Collapse
Affiliation(s)
- Rui-Long Xia
- Lab of Proteomics & Molecular Enzymology, School of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | | | | | | | | |
Collapse
|
13
|
Reiner A, Wang HB, Del Mar N, Sakata K, Yoo W, Deng YP. BDNF may play a differential role in the protective effect of the mGluR2/3 agonist LY379268 on striatal projection neurons in R6/2 Huntington's disease mice. Brain Res 2012; 1473:161-72. [PMID: 22820300 DOI: 10.1016/j.brainres.2012.07.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 07/04/2012] [Accepted: 07/12/2012] [Indexed: 10/28/2022]
Abstract
We have found that daily subcutaneous injection with a maximum tolerated dose (MTD) of the mGluR2/3 agonist LY379268 (20mg/kg) beginning at 4 weeks dramatically improves the phenotype in R6/2 mice. For example, we observed normalization of motor function in distance traveled, speed, the infrequency of pauses, and the ability to locomote in a straight line, and a rescue of a 15-20% striatal neuron loss at 10 weeks. As acute LY379268 treatment is known to increase cortical BDNF production, and BDNF is known to be beneficial for striatal neurons, we investigated if the benefit of daily LY379268 in R6/2 mice for striatal projection neurons was associated with increases in corticostriatal BDNF, with assessments done at 10 weeks of age after daily MTD treatment since the fourth week of life. We found that LY379268 increased BDNF expression in layer 5 neurons in motor cortex, which project to striatum, partly rescued a preferential loss of enkephalinergic striatal neurons, and enhanced substance P (SP) expression by SP striatal projection neurons. The enhanced survival of enkephalinergic striatal neurons was correlated with the cortical BDNF increase, but the enhanced SP expression by SP striatal neurons was not. Thus, LY379268 may protect the two main striatal projection neuron types by different mechanisms, enkephalinergic neurons by the trophic benefit of BDNF, and SP neurons by a mechanism not involving BDNF. The SP neuron benefit may perhaps instead involve the anti-excitotoxic action of mGluR2/3 receptor agonists.
Collapse
Affiliation(s)
- A Reiner
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, 855 Monroe Ave, Memphis, TN 38163, USA.
| | | | | | | | | | | |
Collapse
|
14
|
Reiner A, Lafferty DC, Wang HB, Del Mar N, Deng YP. The group 2 metabotropic glutamate receptor agonist LY379268 rescues neuronal, neurochemical and motor abnormalities in R6/2 Huntington's disease mice. Neurobiol Dis 2012; 47:75-91. [PMID: 22472187 DOI: 10.1016/j.nbd.2012.03.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 03/14/2012] [Accepted: 03/17/2012] [Indexed: 12/11/2022] Open
Abstract
Excitotoxic injury to striatum by dysfunctional cortical input or aberrant glutamate uptake may contribute to Huntington's disease (HD) pathogenesis. Since corticostriatal terminals possess mGluR2/3 autoreceptors, whose activation dampens glutamate release, we tested the ability of the mGluR2/3 agonist LY379268 to improve the phenotype in R6/2 HD mice with 120-125 CAG repeats. Daily subcutaneous injection of a maximum tolerated dose (MTD) of LY379268 (20mg/kg) had no evident adverse effects in WT mice, and diverse benefits in R6/2 mice, both in a cohort of mice tested behaviorally until the end of R6/2 lifespan and in a cohort sacrificed at 10weeks of age for blinded histological analysis. MTD LY379268 yielded a significant 11% increase in R6/2 survival, an improvement on rotarod, normalization and/or improvement in locomotor parameters measured in open field (activity, speed, acceleration, endurance, and gait), a rescue of a 15-20% cortical and striatal neuron loss, normalization of SP striatal neuron neurochemistry, and to a lesser extent enkephalinergic striatal neuron neurochemistry. Deficits were greater in male than female R6/2 mice, and drug benefit tended to be greater in males. The improvements in SP striatal neurons, which facilitate movement, are consistent with the improved movement in LY379268-treated R6/2 mice. Our data indicate that mGluR2/3 agonists may be particularly useful for ameliorating the morphological, neurochemical and motor defects observed in HD.
Collapse
Affiliation(s)
- A Reiner
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | | | | | | | | |
Collapse
|
15
|
Dopamine D1-D2 receptor heteromer in dual phenotype GABA/glutamate-coexpressing striatal medium spiny neurons: regulation of BDNF, GAD67 and VGLUT1/2. PLoS One 2012; 7:e33348. [PMID: 22428025 PMCID: PMC3299775 DOI: 10.1371/journal.pone.0033348] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 02/13/2012] [Indexed: 12/15/2022] Open
Abstract
In basal ganglia a significant subset of GABAergic medium spiny neurons (MSNs) coexpress D1 and D2 receptors (D1R and D2R) along with the neuropeptides dynorphin (DYN) and enkephalin (ENK). These coexpressing neurons have been recently shown to have a region-specific distribution throughout the mesolimbic and basal ganglia circuits. While the functional relevance of these MSNs remains relatively unexplored, they have been shown to exhibit the unique property of expressing the dopamine D1–D2 receptor heteromer, a novel receptor complex with distinct pharmacology and cell signaling properties. Here we showed that MSNs coexpressing the D1R and D2R also exhibited a dual GABA/glutamate phenotype. Activation of the D1R–D2R heteromer in these neurons resulted in the simultaneous, but differential regulation of proteins involved in GABA and glutamate production or vesicular uptake in the nucleus accumbens (NAc), ventral tegmental area (VTA), caudate putamen and substantia nigra (SN). Additionally, activation of the D1R–D2R heteromer in NAc shell, but not NAc core, differentially altered protein expression in VTA and SN, regions rich in dopamine cell bodies. The identification of a MSN with dual inhibitory and excitatory intrinsic functions provides new insights into the neuroanatomy of the basal ganglia and demonstrates a novel source of glutamate in this circuit. Furthermore, the demonstration of a dopamine receptor complex with the potential to differentially regulate the expression of proteins directly involved in GABAergic inhibitory or glutamatergic excitatory activation in VTA and SN may potentially provide new insights into the regulation of dopamine neuron activity. This could have broad implications in understanding how dysregulation of neurotransmission within basal ganglia contributes to dopamine neuronal dysfunction.
Collapse
|
16
|
Crittenden JR, Graybiel AM. Basal Ganglia disorders associated with imbalances in the striatal striosome and matrix compartments. Front Neuroanat 2011; 5:59. [PMID: 21941467 PMCID: PMC3171104 DOI: 10.3389/fnana.2011.00059] [Citation(s) in RCA: 321] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 08/18/2011] [Indexed: 11/24/2022] Open
Abstract
The striatum is composed principally of GABAergic, medium spiny striatal projection neurons (MSNs) that can be categorized based on their gene expression, electrophysiological profiles, and input–output circuits. Major subdivisions of MSN populations include (1) those in ventromedial and dorsolateral striatal regions, (2) those giving rise to the direct and indirect pathways, and (3) those that lie in the striosome and matrix compartments. The first two classificatory schemes have enabled advances in understanding of how basal ganglia circuits contribute to disease. However, despite the large number of molecules that are differentially expressed in the striosomes or the extra-striosomal matrix, and the evidence that these compartments have different input–output connections, our understanding of how this compartmentalization contributes to striatal function is still not clear. A broad view is that the matrix contains the direct and indirect pathway MSNs that form parts of sensorimotor and associative circuits, whereas striosomes contain MSNs that receive input from parts of limbic cortex and project directly or indirectly to the dopamine-containing neurons of the substantia nigra, pars compacta. Striosomes are widely distributed within the striatum and are thought to exert global, as well as local, influences on striatal processing by exchanging information with the surrounding matrix, including through interneurons that send processes into both compartments. It has been suggested that striosomes exert and maintain limbic control over behaviors driven by surrounding sensorimotor and associative parts of the striatal matrix. Consistent with this possibility, imbalances between striosome and matrix functions have been reported in relation to neurological disorders, including Huntington’s disease, L-DOPA-induced dyskinesias, dystonia, and drug addiction. Here, we consider how signaling imbalances between the striosomes and matrix might relate to symptomatology in these disorders.
Collapse
Affiliation(s)
- Jill R Crittenden
- Brain and Cognitive Sciences Department and McGovern Institute for Brain Research, Massachusetts Institute of Technology Cambridge, MA, USA
| | | |
Collapse
|
17
|
Perreault ML, Hasbi A, O'Dowd BF, George SR. The dopamine d1-d2 receptor heteromer in striatal medium spiny neurons: evidence for a third distinct neuronal pathway in Basal Ganglia. Front Neuroanat 2011; 5:31. [PMID: 21747759 PMCID: PMC3130461 DOI: 10.3389/fnana.2011.00031] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 05/16/2011] [Indexed: 12/23/2022] Open
Abstract
Dopaminergic signaling within the basal ganglia has classically been thought to occur within two distinct neuronal pathways; the direct striatonigral pathway which contains the dopamine D1 receptor and the neuropeptides dynorphin (DYN) and substance P, and the indirect striatopallidal pathway which expresses the dopamine D2 receptor and enkephalin (ENK). A number of studies have also shown, however, that D1 and D2 receptors can co-exist within the same medium spiny neuron and emerging evidence indicates that these D1/D2-coexpressing neurons, which also express DYN and ENK, may comprise a third neuronal pathway, with representation in both the striatonigral and striatopallidal projections of the basal ganglia. Furthermore, within these coexpressing neurons it has been shown that the dopamine D1 and D2 receptor can form a novel and pharmacologically distinct receptor complex, the dopamine D1–D2 receptor heteromer, with unique signaling properties. This is indicative of a functionally unique role for these neurons in brain. The aim of this review is to discuss the evidence in support of a novel third pathway coexpressing the D1 and D2 receptor, to discuss the potential relevance of this pathway to basal ganglia signaling, and to address its potential value, and that of the dopamine D1–D2 receptor heteromer, in the search for new therapeutic strategies for disorders involving dopamine neurotransmission.
Collapse
Affiliation(s)
- Melissa L Perreault
- Centre for Addiction and Mental Health, University of Toronto Toronto, ON, Canada
| | | | | | | |
Collapse
|
18
|
Reiner A, Hart NM, Lei W, Deng Y. Corticostriatal projection neurons - dichotomous types and dichotomous functions. Front Neuroanat 2010; 4:142. [PMID: 21088706 PMCID: PMC2982718 DOI: 10.3389/fnana.2010.00142] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 09/29/2010] [Indexed: 11/13/2022] Open
Abstract
The mammalian striatum receives its main excitatory input from the two types of cortical pyramidal neurons of layer 5 of the cerebral cortex - those with only intratelencephalic connections (IT-type) and those sending their main axon to the brainstem via the pyramidal tract (PT-type). These two neurons types are present in layer 5 of all cortical regions, and thus they appear to project together to all parts of striatum. These two neuron types, however, differ genetically, morphologically, and functionally, with IT-type neurons conveying sensory and motor planning information to striatum and PT-type neurons conveying an efference copy of motor commands (for motor cortex at least). Anatomical and physiological data for rats, and more recent data for primates, indicate that these two cortical neuron types also differ in their targeting of the two main types of striatal projection neurons, with the IT-type input preferentially innervating direct pathway neurons and the PT-type input preferentially innervating indirect pathway striatal neurons. These findings have implications for understanding how the direct and indirect pathways carry out their respective roles in movement facilitation and movement suppression, and they have implications for understanding the role of corticostriatal synaptic plasticity in adaptive motor control by the basal ganglia.
Collapse
Affiliation(s)
- Anton Reiner
- Department of Anatomy and Neurobiology, College of Medicine, The University of Tennessee Health Science Center Memphis, TN, USA
| | | | | | | |
Collapse
|
19
|
Perreault ML, Hasbi A, Alijaniaram M, Fan T, Varghese G, Fletcher PJ, Seeman P, O'Dowd BF, George SR. The dopamine D1-D2 receptor heteromer localizes in dynorphin/enkephalin neurons: increased high affinity state following amphetamine and in schizophrenia. J Biol Chem 2010; 285:36625-34. [PMID: 20864528 DOI: 10.1074/jbc.m110.159954] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The distribution and function of neurons coexpressing the dopamine D1 and D2 receptors in the basal ganglia and mesolimbic system are unknown. We found a subset of medium spiny neurons coexpressing D1 and D2 receptors in varying densities throughout the basal ganglia, with the highest incidence in nucleus accumbens and globus pallidus and the lowest incidence in caudate putamen. These receptors formed D1-D2 receptor heteromers that were localized to cell bodies and presynaptic terminals. In rats, selective activation of D1-D2 heteromers increased grooming behavior and attenuated AMPA receptor GluR1 phosphorylation by calcium/calmodulin kinase IIα in nucleus accumbens, implying a role in reward pathways. D1-D2 heteromer sensitivity and functional activity was up-regulated in rat striatum by chronic amphetamine treatment and in globus pallidus from schizophrenia patients, indicating that the dopamine D1-D2 heteromer may contribute to psychopathologies of drug abuse, schizophrenia, or other disorders involving elevated dopamine transmission.
Collapse
Affiliation(s)
- Melissa L Perreault
- Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Reiner A. Organization of Corticostriatal Projection Neuron Types. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/b978-0-12-374767-9.00018-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
21
|
Differential dopaminergic modulation of neostriatal synaptic connections of striatopallidal axon collaterals. J Neurosci 2009; 29:8977-90. [PMID: 19605635 DOI: 10.1523/jneurosci.6145-08.2009] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Recent studies have demonstrated that GABAergic synaptic transmission among neostriatal spiny projection neurons (SPNs) is strongly modulated by dopamine with individual connections exhibiting either D(1) receptor (D(1)R)-mediated facilitation or D(2) receptor (D(2)R)-mediated inhibition and, at least in some preparations, a subset of connections exhibiting both of these effects. In light of the cell type-specific expression of D(1a)R in striatonigral and D(2)R in striatopallidal neurons and the differential expression of the other D(1) and D(2) family dopamine receptors, we hypothesize that the nature of the dopaminergic modulation is specific to the types of SPNs that participate in the connection. Here the biophysical properties and dopaminergic modulation of intrastriatal connections formed by striatopallidal neurons were examined. Contrary to previous expectation, synapses formed by striatopallidal neurons were biophysically and pharmacologically heterogeneous. Two distinct types of axon collateral connections could be distinguished among striatopallidal neurons. The more common, small-amplitude connections (80%) exhibited mean IPSC amplitudes several times smaller than their less frequent large-amplitude counterparts, principally because of a smaller number of release sites involved. The two types of connections were also differentially regulated by dopamine. Small-amplitude connections exhibited strong and exclusively D(2)R-mediated presynaptic inhibition, whereas large-amplitude connections were unresponsive to dopamine. Synaptic connections from striatopallidal to striatonigral neurons exhibited exclusively D(2)R-mediated presynaptic inhibition that was similar to the regulation of small-amplitude connections between pairs of striatopallidal cells. Together, these findings demonstrate a previously unrecognized complexity in the organization and dopaminergic control of synaptic communication among SPNs.
Collapse
|
22
|
Koshimizu Y, Wu SX, Unzai T, Hioki H, Sonomura T, Nakamura KC, Fujiyama F, Kaneko T. Paucity of enkephalin production in neostriatal striosomal neurons: analysis with preproenkephalin-green fluorescent protein transgenic mice. Eur J Neurosci 2009; 28:2053-64. [PMID: 19046386 DOI: 10.1111/j.1460-9568.2008.06502.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Whether or not the striosome compartment of the neostriatum contained preproenkephalin (PPE)-expressing neurons remained unresolved. To address this question by developing a sensitive detection method, we generated transgenic mice expressing enhanced green fluorescent protein (GFP) under the specific transcriptional control of the PPE gene. Eight transgenic lines were established, and three of them showed GFP expression which was distributed in agreement with the reported localization of PPE mRNA in the central nervous system. Furthermore, in the matrix compartment of the neostriatum of the three lines, intense GFP immunoreactivity was densely distributed in the neuronal cell bodies and neuropil, and matrix neurons displayed > 94% co-localization for GFP and PPE immunoreactivities. In sharp contrast, GFP immunoreactivity was very weak in the striosome compartment, which was characterized by intense immunoreactivity for mu-opioid receptors (MOR). Although neostriatal neurons were divided into GFP-immunopositive and -negative groups in both the striosome and matrix compartments, GFP immunoreactivity of cell bodies was much weaker (~1/5) in GFP-positive striosomal neurons than in GFP-positive matrix neurons. A similar reciprocal organization of PPE and MOR expression was also suggested in the ventral striatum, because GFP immunoreactivity was weaker in intensely MOR-immunopositive regions than in the surrounding MOR-negative regions. As PPE-derived peptides are endogenous ligands for MOR in the neostriatum and few axon collaterals of matrix neurons enter the striosome compartment, the present results raised the question of the target of those peptides produced abundantly by matrix neurons.
Collapse
Affiliation(s)
- Yoshinori Koshimizu
- Department of Morphological Brain Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Molecular profiling of striatonigral and striatopallidal medium spiny neurons past, present, and future. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2009; 89:1-35. [PMID: 19900613 DOI: 10.1016/s0074-7742(09)89001-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Defining distinct molecular properties of the two striatal medium spiny neurons (MSNs) has been a challenging task for basal ganglia (BG) neuroscientists. Identifying differential molecular components in each MSN subtype is crucial for BG researchers to understand functional properties of these two neurons. The two MSN populations are morphologically identical except in their projections through the direct verses indirect BG pathways and they are heterogeneously dispersed throughout the dorsal striatum (dStr) and nucleus accumbens (NAc). These characteristics have made it difficult for researchers to distinguish and isolate these two neuronal populations thereby hindering progress toward a more comprehensive understanding of their differential molecular properties. Researchers began to investigate molecular differences in the striatonigral and striatopallidal neurons using in situ hybridization (ISH) techniques and single cell reverse transcription-polymerase chain reaction (scRT-PCR). Currently the field is utilizing more advanced techniques for large-scale gene expression studies including fluorescence activated cell sorting (FACS) of MSNs, from which RNA is purified, from fluorescent reporter transgenic mice or use of transgenic mice in which ribosomes from each MSN are tagged and can be immunoprecipitated followed by RNA isolation, a technique termed translating ribosomal affinity purification (TRAP). Additionally, the availability of fluorescent reporter mice for each MSN subtype is allowing, scientists to perform more accurate histology studies evaluating differential protein expression and signaling changes in each cell subtype. Finally, researchers are able to evaluate the role of specific genes in vivo by utilizing cell type-specific mouse models including Cre driver lines that can be crossed with conditional overexpression or knockout systems. This is a very exciting time in the BG field because researchers are well equipped with the most progressive tools to comprehensively evaluate molecular components in the two MSNs and their consequence on BG functional output in the normal, diseased, and developing brain.
Collapse
|
24
|
Sonomura T, Nakamura K, Furuta T, Hioki H, Nishi A, Yamanaka A, Uemura M, Kaneko T. Expression of D1 but not D2 dopamine receptors in striatal neurons producing neurokinin B in rats. Eur J Neurosci 2008; 26:3093-103. [PMID: 18028111 DOI: 10.1111/j.1460-9568.2007.05923.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Neostriatal projection neurons are known to be largely divided into two groups, striatoentopeduncular/striatonigral and striatopallidal neurons, which mainly express D1 and D2 dopamine receptors, respectively. Recently, a small population of neostriatal neurons have been reported to produce neurokinin B (NKB), and send their axons mainly to the basal forebrain regions. To reveal which type of dopamine receptors were expressed by these NKB-producing neurons, we examined rat striatal neurons by combining immunofluorescence labeling for preprotachykinin B (PPTB), the precursor of NKB, and fluorescence in situ hybridization labeling for dopamine receptors. Fluorescent signals for D1 receptor mRNA were detected in 85-89% of PPTB-immunopositive neurons in the neostriatum, accumbens nucleus and lateral stripe of the striatum, whereas almost no signal for D2 receptor was observed in PPTB-positive striatal neurons. To further reveal intracellular signaling downstream of D1 receptor in PPTB-producing neurons, we used a double immunofluorescence labeling method to study the localization of some substrates for protein kinase A (PKA), which was known to be activated by D1 receptor. Although only 3-7% of PPTB-immunopositive striatal neurons displayed immunoreactivity for dopamine- and cAMP-regulated phosphoprotein of 32 kDa, a well-known PKA substrate expressed in the two major groups of neostriatal projection neurons, 60-64% of PPTB-positive striatal neurons exhibited immunoreactivity for striatal-enriched tyrosine phosphatase. These results suggest that NKB-producing neostriatal neurons are similar to striatoentopeduncular/striatonigral neurons in the usage of dopamine receptor subtypes, but different from the two major groups of neostriatal projection neurons in terms of the downstream signaling of dopamine receptors.
Collapse
Affiliation(s)
- Takahiro Sonomura
- Department of Anatomy for Oral Sciences, Graduate School of Medical and Dental Sciences, Advanced Therapeutic Course, Field of Neurology, Kagoshima University, Kagoshima 890-8544, Japan
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
This paper is the 29th consecutive installment of the annual review of research concerning the endogenous opioid system, now spanning 30 years of research. It summarizes papers published during 2006 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurological disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, CUNY, 65-30 Kissena Blvd., Flushing, NY 11367, United States.
| |
Collapse
|
26
|
Wang HB, Deng YP, Reiner A. In situ hybridization histochemical and immunohistochemical evidence that striatal projection neurons co-containing substance P and enkephalin are overrepresented in the striosomal compartment of striatum in rats. Neurosci Lett 2007; 425:195-9. [PMID: 17868995 PMCID: PMC2034403 DOI: 10.1016/j.neulet.2007.08.033] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Revised: 08/08/2007] [Accepted: 08/15/2007] [Indexed: 12/23/2022]
Abstract
In a prior study, we showed that the few striatal projection neurons that contain both substance P (SP) and enkephalin (ENK) in rats may preferentially project to the substantia nigra pars compacta. Since striatal neurons that project to the pars compacta are thought to preferentially reside in the striosomal compartment, we investigated if striatal neurons that contain both SP and ENK are preferentially localized to the patch compartment. We used in situ hybridization histochemistry to double-label sections for SP and ENK to identify SP/ENK co-containing neurons, and immunolabeling of adjacent sections for the mu opiate receptor (MOR) to define the striosomal compartment. We found that 32.3% of neurons containing both SP and ENK were localized to the striosomal compartment, which itself only made up 12.8% of the striatum. Our results further showed that the density of neurons co-containing SP and ENK was three-fold higher in striosomes than in the matrix compartment. These results are consistent with the notion that SP/ENK colocalizing neurons preferentially project to pars compacta, and these and our prior results additionally raise the possibility that neurons of this type in the striatal matrix may also project to the pars compacta.
Collapse
Affiliation(s)
- Hong-Bing Wang
- Department of Anatomy & Neurobiology, College of Medicine, The University of Tennessee Health Science Center, 855 Monroe Ave., Memphis, TN 38163, United States
| | | | | |
Collapse
|
27
|
Deng YP, Xie JP, Wang HB, Lei WL, Chen Q, Reiner A. Differential localization of the GluR1 and GluR2 subunits of the AMPA-type glutamate receptor among striatal neuron types in rats. J Chem Neuroanat 2007; 33:167-92. [PMID: 17446041 PMCID: PMC1993922 DOI: 10.1016/j.jchemneu.2007.02.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2006] [Revised: 02/26/2007] [Accepted: 02/27/2007] [Indexed: 01/05/2023]
Abstract
Differences among the various striatal projection neuron and interneuron types in cortical input, function, and vulnerability to degenerative insults may be related to differences among them in AMPA-type glutamate receptor abundance and subunit configuration. We therefore used immunolabeling to assess the frequency and abundance of GluR1 and GluR2, the most common AMPA subunits in striatum, in the main striatal neuron types. All neurons projecting to the external pallidum (GPe), internal pallidum (GPi) or substantia nigra, as identified by retrograde labeling, possessed perikaryal GluR2, while GluR1 was more common in striato-GPe than striato-GPi perikarya. The frequency and intensity of immunostaining indicated the rank order of their perikaryal GluR1:GluR2 ratio to be striato-GPe>striatonigral>striato-GPi. Ultrastructural studies suggested a differential localization of GluR1 and GluR2 to striatal projection neuron dendritic spines as well, with GluR1 seemingly more common in striato-GPe spines and GluR2 more common in striato-GPi and/or striatonigral spines. Comparisons among projection neurons and interneurons revealed GluR1 to be most common and abundant in parvalbuminergic interneurons, and GluR2 most common and abundant in projection neurons, with the rank order for the GluR1:GluR2 ratio being parvalbuminergic interneurons>calretinergic interneurons>cholinergic interneurons>projection neurons>somatostatinergic interneurons. Striosomal projection neurons had a higher GluR1:GluR2 ratio than did matrix projection neurons. The abundance of both GluR1 and GluR2 in striatal parvalbuminergic interneurons and projection neurons is consistent with their prominent cortical input and susceptibility to excitotoxic insult, while differences in GluR1:GluR2 ratio among projection neurons are likely to yield differences in Ca(2+) permeability, desensitization, and single channel current, which may contribute to differences among them in plasticity, synaptic integration, and excitotoxic vulnerability. The apparent association of the GluR1 subunit with synaptic plasticity, in particular, suggests striato-GPe neuron spines as a particular site of corticostriatal synaptic plasticity, presumably associated with motor learning.
Collapse
Affiliation(s)
- Y P Deng
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | | | | | | | | | |
Collapse
|
28
|
Barroso-Chinea P, Aymerich MS, Castle MM, Pérez-Manso M, Tuñón T, Erro E, Lanciego JL. Detection of two different mRNAs in a single section by dual in situ hybridization: a comparison between colorimetric and fluorescent detection. J Neurosci Methods 2007; 162:119-28. [PMID: 17306886 DOI: 10.1016/j.jneumeth.2006.12.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Revised: 12/21/2006] [Accepted: 12/22/2006] [Indexed: 11/19/2022]
Abstract
We have compared the performance of two methods designed to simultaneously detect two different mRNAs within a single brain section by dual ISH. Specific mRNA riboprobes labeled with biotin and digoxigenin were simultaneously hybridized and visualized using either brightfield or fluorescence microscopy. For brightfield visualization, the biotin-labeled riboprobe was detected with a peroxidase chromogen, whereas, an alkaline phosphatase substrate was used for the detection of the digoxigenin-labeled riboprobe. Dual fluorescent ISH involved the detection of the biotin-labeled riboprobe with an Alexa((R))488-conjugated streptavidin followed by the visualization of the digoxigenin-labeled riboprobe with the red fluorescent substrate HNPP. The dual ISH protocols presented here offer sensitive methods to detect the expression of two mRNAs of interest, with both colorimetric and fluorescent ISH each having its strengths and limitations. For example, dual colorimetric ISH has proven to be particularly useful to study the distribution of two mRNAs in different brain nuclei, whereas, dual fluorescent ISH has provided better results when studying the co-localization of two different mRNAs in single neurons. The comprehensive step-by-step procedure is presented, together with a troubleshooting section in which the advantages and limitations of these procedures are reviewed in depth. Moreover, alternative protocols for dual ISH were also compared to those presented here.
Collapse
Affiliation(s)
- Pedro Barroso-Chinea
- Basal Ganglia Neuromorphology Laboratory, Neuroscience Division, Center for Applied Medical Research, University of Navarra Medical College, Pio XII Avenue 55, 31008 Pamplona, Spain
| | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
In the neostriatum, GABAergic inhibition arises from the action of at least two classes of inhibitory interneurons, and from recurrent collaterals of the principal cells. Interneurons receive excitatory input only from extrinsic sources, and so act in a purely feedforward capacity. Feedback inhibition arises from the recurrent collaterals of the principal cells. These two kinds of inhibition have functionally distinct effects on the principal cells. Inputs from interneurons are not very convergent. There are few inhibitory neurons, and so each principal cell receives inhibitory synaptic input from very few interneurons. But, they are individually powerful, and a single interneuron can substantially delay action potentials in a group of nearby principal cells. Recurrent inhibition is highly convergent, with each principal cell receiving inhibitory input from several hundred other such cells. Feedback inhibitory synaptic inputs individually have very weak effects, as seen from the soma. The differences in synaptic strength are not caused by differences in the release of transmitter or in sensitivity of the postsynaptic membrane. Rather, they arise from differences in the number of synaptic contacts formed on individual principal cells by feedforward or feedback axons, and from differences in synaptic location. Interneurons form their powerful synapses near the somata of principal cells, while most feedback synapses are more distal, where they interact with the two-state nonlinear properties of the principal cells' dendrite. This arrangement suggests that feedforward inhibition may serve in the traditional role for inhibition, adjusting the excitability of the principle neuron near the site of action potential generation. Feedback inhibitory synapses may interact with voltage-sensitive conductances in the dendrite to alter the electrotonic structure of the spiny cell.
Collapse
Affiliation(s)
- Charles J Wilson
- Department of Biology, University of Texas at San Antonio, 6900 N. Loop 1604 W, San Antonio, TX 78249, USA.
| |
Collapse
|
30
|
Deng YP, Lei WL, Reiner A. Differential perikaryal localization in rats of D1 and D2 dopamine receptors on striatal projection neuron types identified by retrograde labeling. J Chem Neuroanat 2006; 32:101-16. [PMID: 16914290 DOI: 10.1016/j.jchemneu.2006.07.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2006] [Revised: 07/06/2006] [Accepted: 07/07/2006] [Indexed: 12/17/2022]
Abstract
The localization of D1 and D2 dopamine receptors to striatal projection neuron types has been controversial, with some data favoring segregation of D1 to direct pathway neurons (substance P-containing) and D2 to indirect pathway neurons (enkephalinergic), and others reporting significant colocalization of D1 and D2 on individual projection neuron types. In the present study, we used subtype-specific antibodies against D1 and D2 and confocal laser scanning microscopy to determine their perikaryal localization in striatum in general, and in direct and indirect pathway neuron perikarya defined by retrograde labeling in particular. We found that D1 in rat was detectable on 49.5% of NeuN-immunolabeled striatal perikarya, and D2 on 61.6% of NeuN-immunolabeled perikarya, implying that at least 15-20% of D1+ neurons must possess D2 and vice versa. Secondly, we retrogradely labeled neuronal perikarya from the external globus pallidus (GPe), internal globus pallidus (GPi) or substantia nigra with rhodamine dextran amine 3 kDa (RDA3k). We found that 92% of perikarya labeled from nigra and 96% of perikarya labeled from GPi immunolabeled for D1, but only 23% of perikarya labeled from GPe immunolabeled for D1. Since direct pathway neurons (striato-nigral and striato-GPi) have a collateral projection to GPe, it is possible that many of the D1+ striatal perikarya retrogradely labeled from GPe were direct pathway neurons. About 96% of perikarya retrogradely labeled from GPe were immunolabeled for D2, while about 40% of those retrogradely labeled from GPi and 44% of those retrogradely labeled from nigra immunolabeled for D2. These findings suggest that: (1) while many striato-GPi/SN neurons possess D1 and D2, the majority mainly or exclusively possess D1 and (2) the vast majority of striato-GPe neurons mainly or exclusively possess D2.
Collapse
Affiliation(s)
- Yun-Ping Deng
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, 855 Monroe Ave., Memphis, TN 38163, USA
| | | | | |
Collapse
|
31
|
Nadjar A, Brotchie JM, Guigoni C, Li Q, Zhou SB, Wang GJ, Ravenscroft P, Georges F, Crossman AR, Bezard E. Phenotype of striatofugal medium spiny neurons in parkinsonian and dyskinetic nonhuman primates: a call for a reappraisal of the functional organization of the basal ganglia. J Neurosci 2006; 26:8653-61. [PMID: 16928853 PMCID: PMC6674386 DOI: 10.1523/jneurosci.2582-06.2006] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The classic view of anatomofunctional organization of the basal ganglia is that striatopallidal neurons of the "indirect" pathway express D2 dopamine receptors and corelease enkephalin with GABA, whereas striatopallidal neurons of the "direct" pathway bear D1 dopamine receptors and corelease dynorphin and substance P with GABA. Although many studies have investigated the pathophysiology of the basal ganglia after dopamine denervation and subsequent chronic levodopa (L-dopa) treatment, none has ever considered the possibility of plastic changes leading to profound reorganization and/or biochemical phenotype modifications of medium spiny neurons. Therefore, we studied the phenotype of striatal neurons in four groups of nonhuman primates, including the following: normal, parkinsonian, parkinsonian chronically treated with L-dopa without exhibiting dyskinesia, and parkinsonian chronically treated with L-dopa exhibiting overt dyskinesia. To identify striatal cells projecting to external (indirect) or internal (direct) segments of the globus pallidus, the retrograde tracer cholera toxin subunit B (CTb) was injected stereotaxically into the terminal areas. Using immunohistochemistry techniques, brain sections were double labeled for CTb and dopamine receptors, opioid peptides, or the substance P receptor (NK1). We also used HPLC-RIA to assess opioid levels throughout structures of the basal ganglia. Our results suggest that medium spiny neurons retain their phenotype because no variations were observed in any experimental condition. Therefore, it appears unlikely that dyskinesia is related to a phenotype modification of the striatal neurons. However, this study supports the concept of axonal collateralization of striatofugal cells that project to both globus pallidus pars externa and globus pallidus pars interna. Striatofugal pathways are not as segregated in the primate as previously considered.
Collapse
Affiliation(s)
- Agnes Nadjar
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 5543 et
| | - Jonathan M. Brotchie
- School of Biological Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
- Toronto Western Research Institute, Toronto Western Hospital, Toronto, Ontario, Canada M5T 2S8, and
| | - Celine Guigoni
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 5543 et
| | - Qin Li
- Laboratory Animal Research Center, China Agricultural University, Beijing 100101, China
| | - Shao-Bo Zhou
- School of Biological Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Gui-Jie Wang
- School of Biological Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Paula Ravenscroft
- School of Biological Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | - François Georges
- Institut National de la Santé et de la Recherche Médicale AVENIR 01, Université Victor Segalen-Bordeaux 2, 33076 Bordeaux, France
| | - Alan R. Crossman
- School of Biological Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Erwan Bezard
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 5543 et
| |
Collapse
|