1
|
D'Atri V, Galy G, Buff M, Imiołek M, Hübner M, Undurraga M, Labidi-Galy SI, Guillarme D, Carrez L. Assessment of chemical stability of monoclonal antibody and antibody drug conjugate administered by pressurized intraperitoneal aerosol chemotherapy. J Pharm Biomed Anal 2024; 251:116410. [PMID: 39173499 DOI: 10.1016/j.jpba.2024.116410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/09/2024] [Accepted: 08/10/2024] [Indexed: 08/24/2024]
Abstract
Pressurized intraperitoneal aerosol chemotherapy (PIPAC) is a new therapeutic approach for patients with peritoneal cancer. So far, most published studies investigated the administration of established cytostatic agents through PIPAC. This study aimed to evaluate the effect of PIPAC on two breakthrough anti-cancer agents, specifically anti-PD1 pembrolizumab, and anti-HER2 antibody-drug conjugate (ADC) - trastuzumab-deruxtecan. We conducted systematic analyses on samples of pembrolizumab and trastuzumab-deruxtecan at clinically relevant concentrations before and after PIPAC administration using an experimental setup of a hermetic container system, mimicking the abdominal cavity and using identical features as in clinical use. We utilized a range of chromatographic and spectroscopic techniques to explore potential alterations in the primary, secondary, and tertiary structures of the drugs, focusing on post-translational modifications resulting from the aerosolization. Our findings indicate that PIPAC did not compromise the integrity of tested biopharmaceuticals. The size variants of both drugs, assessed by size exclusion chromatography (SEC), remained unchanged. Reversed-phase liquid chromatography (RPLC) and hydrophobic interaction chromatography (HIC) revealed no significant differences in hydrophobicity variants, the average drug-to-antibody ratio (DAR), or DAR distribution before and after PIPAC treatment. Circular dichroism (CD) spectroscopy confirmed that the secondary and tertiary structures were preserved. While pembrolizumab showed no change in charge variants post-PIPAC, trastuzumab-deruxtecan exhibited a non-negligible change in the quantity of charge variants on the monoclonal antibody itself, while the payload remained unchanged. This shift could possibly be related to the metallic composition of the CapnoPen® device (made of nickel and chromium) used in PIPAC and for these experiments. Together, our results suggest that PIPAC does not alter the structure of pembrolizumab and trastuzumab-deruxtecan, paving the way for future clinical trials.
Collapse
Affiliation(s)
- Valentina D'Atri
- School of Pharmaceutical Sciences, University of Geneva, CMU, Rue Michel Servet 1, Geneva 1211, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU, Rue Michel Servet 1, Geneva 1211, Switzerland
| | - Guillaume Galy
- Pharmacy, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Mathias Buff
- School of Pharmaceutical Sciences, University of Geneva, CMU, Rue Michel Servet 1, Geneva 1211, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU, Rue Michel Servet 1, Geneva 1211, Switzerland
| | | | - Martin Hübner
- Visceral Surgery, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), Switzerland
| | - Manuela Undurraga
- Division of Gynecology, Department of Pediatrics and Gynecology, Hôpitaux Universitaires de Genève, Genève, Switzerland
| | - Sana Intidhar Labidi-Galy
- Department of Oncology, Hôpitaux Universitaires de Genève, Genève, Switzerland; Faculty of Medicine, Department of Medicine and Center of Translational Research in Onco-Hematology, University of Geneva, Swiss Cancer Center Leman, Genève, Switzerland
| | - Davy Guillarme
- School of Pharmaceutical Sciences, University of Geneva, CMU, Rue Michel Servet 1, Geneva 1211, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU, Rue Michel Servet 1, Geneva 1211, Switzerland.
| | - Laurent Carrez
- Pharmacy, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| |
Collapse
|
2
|
Leng C, Sun S, Lin W, Pavon JA, Gennaro L, Gunawan RC, Bu X, Yang T, Li S. Imaged capillary isoelectric focusing method development for charge variants of high DAR ADCs. Anal Chim Acta 2024; 1328:343176. [PMID: 39266202 DOI: 10.1016/j.aca.2024.343176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/12/2024] [Accepted: 08/27/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND Charge heterogeneity is a critical quality attribute for therapeutic biologics including antibody-drug conjugates (ADCs). Developing an ion exchange chromatography (IEX) or an imaged capillary isoelectric focusing (icIEF) method for ADCs with high drug-to-antibody ratio (DAR) is challenging because of the increased hydrophobicity from the payload-linker, DAR heterogeneity, and payload-linker instability. A sub-optimal method can be poorly stability-indicating due to the inability to discern contributions from charge and size variants conjugated with different number of drugs/payloads. Systematic strategy and guidance on charge variant method development is highly desired for high DAR ADCs with various complex structures. RESULTS This work encompasses the development and optimization of icIEF methods for high DAR ADCs of various DAR values (4-8) and payload linker chemistry. Method optimization focuses on improving resolution and stability indicating capabilities and differentiating contributions from the protein and payload-linker. Types, proportion, and combination of solubilizers and carrier ampholytes, as well as focusing parameters were interrogated. Our findings show that the structural units of the linker, the DAR, and the payload chemistry prescribe the selection of buffer, solubilizer, and ampholyte. We demonstrate that a stronger denaturant or solubilizer is needed for high DAR ADCs with polyethylene glycol (PEG)-containing linker structure compared to peptide linker. For unstable payload-linker, buffer system enhances sample stability which is vital to method robustness. In addition, a longer isoelectric focusing time is necessary for an ADC than its corresponding antibody to reach optimal focusing. SIGNIFICANCE To the best of our knowledge, this is the first comprehensive study on icIEF method development for charge variant determination of high DAR ADCs with unique physicochemical properties.
Collapse
Affiliation(s)
- Chuan Leng
- Merck & Co., Inc., 126 East Lincoln Avenue, Rahway, NJ, 07065, United States.
| | - Shuwen Sun
- Merck & Co., Inc., 126 East Lincoln Avenue, Rahway, NJ, 07065, United States
| | - Wei Lin
- Merck & Co., Inc., 126 East Lincoln Avenue, Rahway, NJ, 07065, United States
| | | | - Lynn Gennaro
- Merck & Co., Inc., 126 East Lincoln Avenue, Rahway, NJ, 07065, United States
| | - Rico C Gunawan
- Merck & Co., Inc., 126 East Lincoln Avenue, Rahway, NJ, 07065, United States
| | - Xiaodong Bu
- Merck & Co., Inc., 126 East Lincoln Avenue, Rahway, NJ, 07065, United States
| | - Tong Yang
- Sichuan Kelun-Biotech Biopharmaceutical Co., Ltd, No. 666 Xinhua Avenue, Chengdu Cross-Strait Science and Technology Industry Development Park, Wenjiang District, Chengdu, Sichuan Province, PR China
| | - Senwu Li
- Sichuan Kelun-Biotech Biopharmaceutical Co., Ltd, No. 666 Xinhua Avenue, Chengdu Cross-Strait Science and Technology Industry Development Park, Wenjiang District, Chengdu, Sichuan Province, PR China
| |
Collapse
|
3
|
Döring L, Winderl J, Kron M, Hubbuch J. Mechanistic modeling of minute virus of mice surrogate removal by anion exchange chromatography in micro scale. J Chromatogr A 2024; 1734:465261. [PMID: 39216284 DOI: 10.1016/j.chroma.2024.465261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/02/2024] [Accepted: 08/11/2024] [Indexed: 09/04/2024]
Abstract
Biopharmaceutical products are often produced in Chinese hamster ovary (CHO) cell cultures that are vulnerable to virus infections. Therefore, it is a regulatory requirement that downstream purification steps for biopharmaceuticals can remove viruses from feedstocks. Anion exchange chromatography (AEX) is one of the downstream unit operations that is most frequently used for this purpose and claimed for its capability to remove viruses. However, the impact of various process parameters on virus removal by AEX is still not fully understood. Mechanistic modeling could be a promising way to approach this gap, as these models require comparatively few experiments for calibration. This makes them a valuable tool to improve understanding of viral clearance, especially since virus spiking studies are costly and time consuming. In this study, we present how the virus clearance of a MVM mock virus particle by Q Sepharose FF resin can be described by mechanistic modeling. A lumped kinetic model was combined with a steric mass action model and calibrated at micro scale using three linear gradient experiments and an incremental step elution gradient. The model was subsequently verified for its capability to predict the effect of different sodium chloride concentrations, as well as residence times, on virus clearance and was in good agreement with the LRVs of the verification runs. Overall, models like this could enhance the mechanistic understanding of viral clearance mechanisms and thereby contribute to the development of more efficient and safer biopharmaceutical downstream processes.
Collapse
Affiliation(s)
- Lukas Döring
- Process Science, Rentschler Biopharma SE, Erwin-Rentschler-Str. 21 88471 Laupheim, Germany; Karlsruhe Institute of Technology (KIT), Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Fritz-Haber-Weg 2 76131 Karlsruhe, Germany
| | - Johannes Winderl
- Process Science, Rentschler Biopharma SE, Erwin-Rentschler-Str. 21 88471 Laupheim, Germany
| | - Matthias Kron
- Process Science, Rentschler Biopharma SE, Erwin-Rentschler-Str. 21 88471 Laupheim, Germany
| | - Jürgen Hubbuch
- Karlsruhe Institute of Technology (KIT), Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Fritz-Haber-Weg 2 76131 Karlsruhe, Germany.
| |
Collapse
|
4
|
Jacquot G, Lopez Navarro P, Grange C, Boudali L, Harlepp S, Pivot X, Detappe A. Landscape of Subcutaneous Administration Strategies for Monoclonal Antibodies in Oncology. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406604. [PMID: 39165046 DOI: 10.1002/adma.202406604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/15/2024] [Indexed: 08/22/2024]
Abstract
In recent decades, subcutaneous (SC) administration of monoclonal antibodies (mAbs) has emerged as a promising alternative to intravenous delivery in oncology, offering comparable therapeutic efficacy while addressing patient preferences. This perspective article provides an in-depth analysis of the technological landscape surrounding SC mAb administration in oncology. It outlines various technologies under evaluation across developmental stages, spanning from preclinical investigations to the integration of established methodologies in clinical practice. Additionally, this perspective article explores emerging trends and prospective trajectories, shedding light on the evolving landscape of SC mAb administration. Furthermore, it emphasizes key checkpoints related to quality attributes essential for optimizing mAb delivery via the SC route. This review serves as a valuable resource for researchers, clinicians, and healthcare policymakers, offering insights into the advancement of SC mAb administration in oncology and its implications for patient care.
Collapse
Affiliation(s)
- Guillaume Jacquot
- Institut de Cancérologie Strasbourg Europe, Strasbourg, 67000, France
- Equipe labellisée Ligue contre le Cancer, France
- Strasbourg Drug Discovery and Development Institute (IMS), Strasbourg, 67000, France
| | - Pedro Lopez Navarro
- Institut de Cancérologie Strasbourg Europe, Strasbourg, 67000, France
- Equipe labellisée Ligue contre le Cancer, France
- Strasbourg Drug Discovery and Development Institute (IMS), Strasbourg, 67000, France
| | - Coralie Grange
- Institut de Cancérologie Strasbourg Europe, Strasbourg, 67000, France
- Equipe labellisée Ligue contre le Cancer, France
- Strasbourg Drug Discovery and Development Institute (IMS), Strasbourg, 67000, France
| | - Lotfi Boudali
- Institut de Cancérologie Strasbourg Europe, Strasbourg, 67000, France
- Equipe labellisée Ligue contre le Cancer, France
- Strasbourg Drug Discovery and Development Institute (IMS), Strasbourg, 67000, France
| | - Sébastien Harlepp
- Institut de Cancérologie Strasbourg Europe, Strasbourg, 67000, France
- Equipe labellisée Ligue contre le Cancer, France
- Strasbourg Drug Discovery and Development Institute (IMS), Strasbourg, 67000, France
| | - Xavier Pivot
- Institut de Cancérologie Strasbourg Europe, Strasbourg, 67000, France
- Equipe labellisée Ligue contre le Cancer, France
- Strasbourg Drug Discovery and Development Institute (IMS), Strasbourg, 67000, France
| | - Alexandre Detappe
- Institut de Cancérologie Strasbourg Europe, Strasbourg, 67000, France
- Equipe labellisée Ligue contre le Cancer, France
- Strasbourg Drug Discovery and Development Institute (IMS), Strasbourg, 67000, France
- Equipe de Synthèse Pour l'Analyse, Institut Pluridisciplinaire Hubert Curien (IPHC), UMR 7178 CNRS/University of Strasbourg, Strasbourg, Cedex 2, 67087, France
| |
Collapse
|
5
|
Wu G, Du J, Xu G, Li M, Yu C. Possibility of using the imaged capillary isoelectric method as a multi-attribute method for bispecific antibodies. Electrophoresis 2024; 45:1665-1672. [PMID: 38973474 DOI: 10.1002/elps.202400066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/09/2024] [Accepted: 05/23/2024] [Indexed: 07/09/2024]
Abstract
An imaged capillary isoelectric focusing (icIEF)-based method was developed and validated as a multi-attribute method for a bispecific antibody (BsAb). First, as the traditional application of the icIEF method, it serves as an identity assay and purity assay for the BsAb. Second, the method can also be used as an impurity assay for the homodimer monoclonal antibodies generated during BsAb assembly. The homodimer impurity analysis for BsAb is usually done by hydrophobic interaction chromatography methods in the industry. The icIEF method has good sensitivity (down to 4 µg/mL in a limit of quantitation) when UV fluorescence detection is used, which detects the native fluorescence of proteins. This is the first report that an icIEF method has been applied as impurity assay.
Collapse
Affiliation(s)
- Gang Wu
- National Institutes for Food and Drug Control, State Key Laboratory of Drug Regulatory Science, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing, P. R. China
| | - Jialiang Du
- National Institutes for Food and Drug Control, State Key Laboratory of Drug Regulatory Science, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing, P. R. China
| | - Gangling Xu
- National Institutes for Food and Drug Control, State Key Laboratory of Drug Regulatory Science, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing, P. R. China
| | - Meng Li
- National Institutes for Food and Drug Control, State Key Laboratory of Drug Regulatory Science, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing, P. R. China
| | - Chuanfei Yu
- National Institutes for Food and Drug Control, State Key Laboratory of Drug Regulatory Science, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing, P. R. China
| |
Collapse
|
6
|
Cageling R, Carillo S, Boumeester AJ, Lubbers-Geuijen K, Bones J, Jooß K, Somsen GW. Microfluidic capillary electrophoresis - mass spectrometry for rapid charge-variant and glycoform assessment of monoclonal antibody biosimilar candidates. J Pharm Biomed Anal 2024; 248:116301. [PMID: 38901155 DOI: 10.1016/j.jpba.2024.116301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/04/2024] [Accepted: 06/08/2024] [Indexed: 06/22/2024]
Abstract
Early-stage cell line screening is a vital step in developing biosimilars of therapeutic monoclonal antibodies (mAbs). While the quality of the manufactured antibodies is commonly assessed by charge-based separation methods employing UV absorbance detection, these methods lack the ability to identify resolved mAb variants. We evaluated the performance of microfluidic capillary electrophoresis coupled to mass spectrometry (MCE-MS) as a rapid tool for profiling mAb biosimilar candidates from clonal cell lines. A representative originator sample was used to develop the MCE-MS method. The addition of dimethylsulfoxide (DMSO) to the background electrolyte yielded up to 60-fold enhancement of the protein MS signal. The resulting electropherograms consistently provided resolution of mAb charge variants within 10 min. Deconvoluted mass spectra facilitated the identification of basic variants such as C-terminal lysine and proline amidation, while the acidic variants could be assigned to deamidated forms. The MCE-MS method also allowed the identification of 18 different glycoforms in biosimilar samples. To mimic early-stage cell line selection, samples from five clonal cell lines that all expressed the same biosimilar candidate mAb were compared to their originator mAb. Based on the similarity observed in charge variants and glycoform profiles acquired by MCE-MS, the most promising candidate could be selected. The MCE-MS method demonstrated good overall reproducibility, as confirmed by a transferability study involving two separate laboratories. This study highlights the efficacy of the MCE-MS method for rapid proteoform screening of clonal cell line samples, underscoring its potential significance as an analytical tool in biosimilar process development.
Collapse
Affiliation(s)
- Ruben Cageling
- Analytical Development, Polpharma Biologics, Yalelaan 46, Utrecht, 3584 CM, the Netherlands; Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, de Boelelaan 1085, Amsterdam, 1081 HV, the Netherlands; Centre for Analytical Sciences Amsterdam (CASA), Amsterdam, the Netherlands
| | - Sara Carillo
- National Institute for Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, Blackrock, Co. Dublin, A94 X099, Ireland
| | - Anja J Boumeester
- Analytical Development, Polpharma Biologics, Yalelaan 46, Utrecht, 3584 CM, the Netherlands
| | - Karin Lubbers-Geuijen
- Analytical Development, Polpharma Biologics, Yalelaan 46, Utrecht, 3584 CM, the Netherlands
| | - Jonathan Bones
- National Institute for Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, Blackrock, Co. Dublin, A94 X099, Ireland; School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, D04 V1W8, Ireland
| | - Kevin Jooß
- Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, de Boelelaan 1085, Amsterdam, 1081 HV, the Netherlands; Centre for Analytical Sciences Amsterdam (CASA), Amsterdam, the Netherlands.
| | - Govert W Somsen
- Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, de Boelelaan 1085, Amsterdam, 1081 HV, the Netherlands; Centre for Analytical Sciences Amsterdam (CASA), Amsterdam, the Netherlands
| |
Collapse
|
7
|
Eisinger M, Rahn H, Chen Y, Fernandes M, Lin Z, Hentze N, Tavella D, Moussa EM. Elucidation of the Reversible Self-Association Interface of a Diabody-Interleukin Fusion Protein Using Hydrogen-Exchange Mass Spectrometry and In Silico Modeling. Mol Pharm 2024; 21:4285-4296. [PMID: 38922328 DOI: 10.1021/acs.molpharmaceut.4c00169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Reversible self-association (RSA) of therapeutic proteins presents major challenges in the development of high-concentration formulations, especially those intended for subcutaneous administration. Understanding self-association mechanisms is therefore critical to the design and selection of candidates with acceptable developability to advance to clinical trials. The combination of experiments and in silico modeling presents a powerful tool to elucidate the interface of self-association. RSA of monoclonal antibodies has been studied extensively under different solution conditions and have been shown to involve interactions for both the antigen-binding fragment and the crystallizable fragment. Novel modalities such as bispecific antibodies, antigen-binding fragments, single-chain-variable fragments, and diabodies constitute a fast-growing class of antibody-based therapeutics that have unique physiochemical properties compared to monoclonal antibodies. In this study, the RSA interface of a diabody-interleukin 22 fusion protein (FP-1) was studied using hydrogen-deuterium exchange coupled with mass spectrometry (HDX-MS) in combination with in silico modeling. Taken together, the results show that a complex solution behavior underlies the self-association of FP-1 and that the interface thereof can be attributed to a specific segment in the variable light chain of the diabody. These findings also demonstrate that the combination of HDX-MS with in silico modeling is a powerful tool to guide the design and candidate selection of novel biotherapeutic modalities.
Collapse
Affiliation(s)
- Martin Eisinger
- Biologics Analytical Research and Development, AbbVie Deutschland GmbH & Co. KG, Ludwigshafen 67061, Germany
| | - Harri Rahn
- Biologics Analytical Research and Development, AbbVie Deutschland GmbH & Co. KG, Ludwigshafen 67061, Germany
| | - Yong Chen
- Biologics Analytical Research and Development, AbbVie Inc., North Chicago, Illinois 60061, United States
| | - Melissa Fernandes
- Biologics Drug Product Development, AbbVie Inc., North Chicago, Illinois 60061, United States
| | - Zhiyi Lin
- Biologics Drug Product Development, AbbVie Inc., North Chicago, Illinois 60061, United States
| | - Nikolai Hentze
- Biologics Analytical Research and Development, AbbVie Deutschland GmbH & Co. KG, Ludwigshafen 67061, Germany
| | - Davide Tavella
- Biotherapeutics and Genetic Medicine, AbbVie Inc., Worcester, Massachusetts 01604, United States
| | - Ehab M Moussa
- Biologics Drug Product Development, AbbVie Inc., North Chicago, Illinois 60061, United States
| |
Collapse
|
8
|
Bryniarski MA, Tuhin MTH, Acker TM, Wakefield DL, Sethaputra PG, Cook KD, Soto M, Ponce M, Primack R, Jagarapu A, LaGory EL, Conner KP. Cellular Neonatal Fc Receptor Recycling Efficiencies can Differentiate Target-Independent Clearance Mechanisms of Monoclonal Antibodies. J Pharm Sci 2024; 113:2879-2894. [PMID: 38906252 DOI: 10.1016/j.xphs.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024]
Abstract
In vivo clearance mechanisms of therapeutic monoclonal antibodies (mAbs) encompass both target-mediated and target-independent processes. Two distinct determinants of overall mAb clearance largely separate of target-mediated influences are non-specific cellular endocytosis and subsequent pH-dependent mAb recycling mediated by the neonatal Fc receptor (FcRn), where inter-mAb variability in the efficiency of both processes is observed. Here, we implemented a functional cell-based FcRn recycling assay via Madin-Darby canine kidney type II cells stably co-transfected with human FcRn and its light chain β2-microglobulin. Next, a series of pH-dependent internalization studies using a model antibody demonstrated proper function of the human FcRn complex. We then applied our cellular assays to assess the contribution of both FcRn and non-specific interactions in the cellular turnover for a panel of 8 clinically relevant mAbs exhibiting variable human pharmacokinetic behavior. Our results demonstrate that the interplay of non-specific endocytosis rates, pH-dependent non-specific interactions, and engagement with FcRn all contribute to the overall recycling efficiency of therapeutic monoclonal antibodies. The predictive capacity of our assay approach was highlighted by successful identification of all mAbs within our panel possessing clearance in humans greater than 5 mL/day/kg. These results demonstrate that a combination of cell-based in vitro assays can properly resolve individual mechanisms underlying the overall in vivo recycling efficiency and non-target mediated clearance of therapeutic mAbs.
Collapse
Affiliation(s)
- Mark A Bryniarski
- Pharmacokinetics and Drug Metabolism, Amgen Research, 750 Gateway Blvd, Suite 100, South San Francisco, CA 94080, USA.
| | - Md Tariqul Haque Tuhin
- Pharmacokinetics and Drug Metabolism, Amgen Research, 750 Gateway Blvd, Suite 100, South San Francisco, CA 94080, USA
| | - Timothy M Acker
- Pharmacokinetics and Drug Metabolism, Amgen Research, 750 Gateway Blvd, Suite 100, South San Francisco, CA 94080, USA
| | - Devin L Wakefield
- Research Biomics, Amgen Research, 750 Gateway Blvd, Suite 100, South San Francisco, CA 94080, USA
| | - Panijaya Gemy Sethaputra
- Pharmacokinetics and Drug Metabolism, Amgen Research, 750 Gateway Blvd, Suite 100, South San Francisco, CA 94080, USA
| | - Kevin D Cook
- Pharmacokinetics and Drug Metabolism, Amgen Research, 750 Gateway Blvd, Suite 100, South San Francisco, CA 94080, USA
| | - Marcus Soto
- Pharmacokinetics & Drug Metabolism, Amgen Research, One Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | - Manuel Ponce
- Pharmacokinetics & Drug Metabolism, Amgen Research, One Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | - Ronya Primack
- Pharmacokinetics & Drug Metabolism, Amgen Research, One Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | - Aditya Jagarapu
- Pharmacokinetics and Drug Metabolism, Amgen Research, 750 Gateway Blvd, Suite 100, South San Francisco, CA 94080, USA
| | - Edward L LaGory
- Pharmacokinetics and Drug Metabolism, Amgen Research, 750 Gateway Blvd, Suite 100, South San Francisco, CA 94080, USA
| | - Kip P Conner
- Pharmacokinetics and Drug Metabolism, Amgen Research, 750 Gateway Blvd, Suite 100, South San Francisco, CA 94080, USA.
| |
Collapse
|
9
|
Chen D, Xu T, Dou Y, Li T. A Calibration Strategy for Silicon Nanowire Field-Effect Transistor Biosensors and Its Application in Ultra-Sensitive, Label-Free Biosensing. ACS NANO 2024; 18:21873-21885. [PMID: 39115266 DOI: 10.1021/acsnano.4c01937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
The silicon nanowire field-effect transistor (SiNW FET) has been developed for over two decades as an ultrasensitive, label-free biosensor for biodetection. However, inconsistencies in manufacturing and surface functionalization at the nanoscale have led to poor sensor-to-sensor consistency in performance. Despite extensive efforts to address this issue through process improvements and calibration methods, the outcomes have not been satisfactory. Herein, based on the strong correlation between the saturation response of SiNW FET biosensors and both their feature size and surface functionalization, we propose a calibration strategy that combines the sensing principles of SiNW FET with the Langmuir-Freundlich model. By normalizing the response of the SiNW FET biosensors (ΔI/I0) with their saturation response (ΔI/I0)max, this strategy fundamentally overcomes the issues mentioned above. It has enabled label-free detection of nucleic acids, proteins, and exosomes within 5 min, achieving detection limits as low as attomoles and demonstrating a significant reduction in the coefficient of variation. Notably, the nucleic acid test results exhibit a strong correlation with the ultraviolet-visible (UV-vis) spectrophotometer measurements, with a correlation coefficient reaching 0.933. The proposed saturation response calibration strategy exhibits good universality and practicability in biological detection applications, providing theoretical and experimental support for the transition of mass-manufactured nanosensors from theoretical research to practical application.
Collapse
Affiliation(s)
- Dongqin Chen
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- University of Chinese Academy of Sciences (UCAS), Beijing 100190, China
| | - Tao Xu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- University of Chinese Academy of Sciences (UCAS), Beijing 100190, China
| | - Yanzhi Dou
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Tie Li
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| |
Collapse
|
10
|
Jin X, Chen L, Chu J, He B. Charge Variants Characterization of Co-Formulated Antibodies by Three-Dimensional Liquid Chromatography-Mass Spectrometry. Biomolecules 2024; 14:999. [PMID: 39199387 PMCID: PMC11352451 DOI: 10.3390/biom14080999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 09/01/2024] Open
Abstract
Co-formulated antibodies can bring clinical benefits to patients by combining two or more antibodies in a single dosage form. However, the quality analysis of co-formulated antibodies raises additional challenges, compared to individual antibodies, due to the need for accurate analysis of multiple antibodies in one solution. It is extremely difficult to effectively separate the charge variants of the two co-formulated antibodies using one ion exchange chromatography (IEC) method because of their similar characteristics. In this study, a novel method was developed for the charge variants characterization of co-formulated antibodies using three-dimensional liquid chromatography-mass spectrometry (3D-LC-MS). Hydrophobic interaction chromatography (HIC) was used as the first dimension to separate and collect the two co-formulated antibodies. The two collections were then injected into the second-dimension IEC separately for charge variants separation and analysis. Subsequently, the separated charge variants underwent on-line desalting in the third-dimension reverse-phase chromatography (RPC) and subsequent mass spectroscopy analysis. The novel method could simultaneously provide a charge variants ratio and post-translational modification (PTM) data for the two co-formulated antibodies. Therefore, it could be used for release testing and stability studies of co-formulated antibodies, making up for the shortcomings of the existing approaches. It was the first time that charge variants of co-formulated antibodies were characterized by the 3D-LC-MS method, to the best of our knowledge.
Collapse
Affiliation(s)
- Xiaoqing Jin
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China; (X.J.); (L.C.)
| | - Luna Chen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China; (X.J.); (L.C.)
| | - Jianlin Chu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Bingfang He
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China; (X.J.); (L.C.)
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
11
|
Sutton H, Hong F, Han X, Rauniyar N. Analysis of therapeutic monoclonal antibodies by imaged capillary isoelectric focusing (icIEF). ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:5450-5458. [PMID: 39042476 DOI: 10.1039/d4ay00836g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Imaged capillary isoelectric focusing (icIEF) is a preferred analytical method for determining isoelectric points (pIs) and charge heterogeneity profiles in biotherapeutic proteins. In this study, we optimized the icIEF method for an in-house IgG1κ monoclonal antibody (mAb-1) and assessed its reproducibility, robustness, and autosampler stability. The optimized method was used to evaluate batch-to-batch consistency in pIs for multiple lots of mAb-1 and determine the relative percentages of charge variants. We also tested the method's performance using multiple lots of another IgG1 mAb, commercially available as Herceptin (trastuzumab). Additionally, we designed and assessed native and denaturing platform icIEF methods for 11 other marketed mAbs, with pIs ranging from 6.0 (eculizumab) to 9.22 (tocilizumab).
Collapse
Affiliation(s)
- Haley Sutton
- Tanvex Biopharma USA, Inc., 10394 Pacific Center Ct, San Diego, CA 92121, USA.
| | - Feng Hong
- Tanvex Biopharma USA, Inc., 10394 Pacific Center Ct, San Diego, CA 92121, USA.
| | - Xuemei Han
- Tanvex Biopharma USA, Inc., 10394 Pacific Center Ct, San Diego, CA 92121, USA.
| | - Navin Rauniyar
- Tanvex Biopharma USA, Inc., 10394 Pacific Center Ct, San Diego, CA 92121, USA.
| |
Collapse
|
12
|
Johann F, Wöll S, Gieseler H. "Negative" Impact: The Role of Payload Charge in the Physicochemical Stability of Auristatin Antibody-Drug Conjugates. J Pharm Sci 2024; 113:2433-2442. [PMID: 38679233 DOI: 10.1016/j.xphs.2024.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
Antibody-drug conjugates (ADCs) tend to be less stable than their parent antibodies, which is often attributed to the hydrophobic nature of their drug payloads. This study investigated how the payload charge affects ADC stability by comparing two interchain cysteine ADCs that had matched drug-to-antibody ratios and identical linkers but differently charged auristatin payloads, vcMMAE (neutral) and vcMMAF (negative). Both ADCs exhibited higher aggregation than their parent antibody under shaking stress and thermal stress conditions. However, conjugation with vcMMAF increased the aggregation rates to a greater extent than conjugation with uncharged but more hydrophobic vcMMAE. Consistent with the payload logD values, ADC-vcMMAE showed the greatest increase in hydrophobicity but minor changes in charge compared with the parent antibody, as indicated by hydrophobic interaction chromatography and capillary electrophoresis data. In contrast, ADC-vcMMAF showed a decrease in net charge and isoelectric point along with an increase in charge heterogeneity. This charge alteration likely contributed to a reduced electrostatic repulsion and increased surface activity in ADC-vcMMAF, thus affecting its aggregation propensity. These findings suggest that not only the hydrophobicity of the payload, but also its charge should be considered as a critical factor affecting the stability of ADCs.
Collapse
Affiliation(s)
- Florian Johann
- Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Department of Pharmaceutical Technology and Biopharmacy, Freeze Drying Focus Group (FDFG), Cauerstraße 4, 91058 Erlangen, Germany; Merck KGaA, Global CMC Development, Frankfurter Straße 250, 64293 Darmstadt, Germany
| | - Steffen Wöll
- Merck KGaA, Global CMC Development, Frankfurter Straße 250, 64293 Darmstadt, Germany
| | - Henning Gieseler
- Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Department of Pharmaceutical Technology and Biopharmacy, Freeze Drying Focus Group (FDFG), Cauerstraße 4, 91058 Erlangen, Germany; GILYOS GmbH, Friedrich-Bergius-Ring 15, 97076 Würzburg, Germany.
| |
Collapse
|
13
|
Rizzotto E, Inciardi I, Fongaro B, Trolese P, Miolo G, Polverino de Laureto P. Light exacerbates local and global effects induced by pH unfolding of Ipilimumab. Eur J Pharm Biopharm 2024; 201:114387. [PMID: 38944210 DOI: 10.1016/j.ejpb.2024.114387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/30/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Monoclonal antibodies (mAbs) are an essential class of therapeutic proteins for the treatment of cancer, autoimmune and rare diseases. During their production, storage, and administration processes, these proteins encounter various stressors such as temperature fluctuations, vibrations, and light exposure, able to induce chemico-physical modifications to their structure. Viral inactivation is a key step in downstream processes, and it is achieved by titration of the mAb at low pH, followed by neutralization. The changes of the pH pose a significant risk of unfolding and subsequent aggregation to proteins, thereby affecting their manufacturing. This study aims to investigate whether a combined exposure to light during the viral inactivation process can further affect the structural integrity of Ipilimumab, a mAb primarily used in the treatment of metastatic melanoma. The biophysical and biochemical characterization of Ipilimumab revealed that pH variation is a considerable risk for its stability with irreversible unfolding at pH 2. The threshold for Ipilimumab denaturation lies between pH 2 and 3 and is correlated with the loss of the protein structural cooperativity, which is the most critical factor determining the protein refolding. Light has demonstrated to exacerbate some local and global effects making pH-induced exposed regions more vulnerable to structural and chemical changes. Therefore, specific precautions to real-life exposure to ambient light during the sterilization process of mAbs should be considered to avoid loss of the therapeutic activity and to increase the yield of production. Our findings underscore the critical role of pH optimization in preserving the structural integrity and therapeutic efficacy of mAbs. Moreover, a detailed conformational study on the structural modifications of Ipilimumab may improve the chemico-physical knowledge of this effective drug and suggest new production strategies for more stable products under some kind of stress conditions.
Collapse
Affiliation(s)
- Elena Rizzotto
- Department of Pharmaceutical and Pharmacological Sciences, Via Marzolo 5, 30131 Padova, Italy
| | - Ilenia Inciardi
- Department of Pharmaceutical and Pharmacological Sciences, Via Marzolo 5, 30131 Padova, Italy
| | - Benedetta Fongaro
- Department of Pharmaceutical and Pharmacological Sciences, Via Marzolo 5, 30131 Padova, Italy
| | - Philipp Trolese
- Department of Pharmaceutical and Pharmacological Sciences, Via Marzolo 5, 30131 Padova, Italy
| | - Giorgia Miolo
- Department of Pharmaceutical and Pharmacological Sciences, Via Marzolo 5, 30131 Padova, Italy
| | | |
Collapse
|
14
|
McCartan AJS, Mrsny RJ. In vitro modelling of intramuscular injection site events. Expert Opin Drug Deliv 2024; 21:1155-1173. [PMID: 39126130 DOI: 10.1080/17425247.2024.2388841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 07/08/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024]
Abstract
INTRODUCTION Intramuscular (IM) injections deliver a plethora of drugs. The majority of IM-related literature details dissolution and/or pharmacokinetic (PK) studies, using methods with limited assessments of post-injection events that can impact drug fate, and absorption parameters. Food and Drug Association guidelines no longer require preclinical in vivo modeling in the U.S.A. Preclinical animal models fail to correlate with clinical outcomes, highlighting the need to study, and understand, IM drug fate in vitro using bespoke models emulating human IM sites. Post-IM injection events, i.e. underlying processes that influence PK outcomes, remain unacknowledged, complicating the application of in vitro methods in preclinical drug development. Understanding such events could guide approaches to predict and modulate IM drug fate in humans. AREAS COVERED This article reviews challenges in biorelevant IM site modeling (i.e. modeling drug fate outcomes), the value of technologies available for developing IM injectables, methods for studying drug fate, and technologies for training in performing IM administrations. PubMed, Web-of-Science, and Lens databases provided papers published between 2014 and 2024. EXPERT OPINION IM drug research is expanding what injectable therapeutics can achieve. However, post-injection events that influence PK outcomes remain poorly understood. Until addressed, advances in IM drug development will not realize their full potential.
Collapse
Affiliation(s)
- Adam J S McCartan
- Department of Life Sciences, Centre for Therapeutic Innovation, University of Bath, Bath, UK
| | - Randall J Mrsny
- Department of Life Sciences, Centre for Therapeutic Innovation, University of Bath, Bath, UK
| |
Collapse
|
15
|
Meudt M, Pannek M, Glogowski N, Higel F, Thanisch K, Knape MJ. CE methods for charge variant analysis of mAbs and complex format biotherapeutics. Electrophoresis 2024; 45:1295-1306. [PMID: 38233206 DOI: 10.1002/elps.202300170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/21/2023] [Accepted: 01/05/2024] [Indexed: 01/19/2024]
Abstract
Charge heterogeneity analysis of monoclonal antibodies (mAbs) and complex formats, such as bispecifics, is crucial for therapeutic applications. In this study, we developed two capillary electrophoresis (CE)-based methods, capillary zone electrophoresis (CZE) and imaged capillary isoelectric focusing (iCIEF), for analyzing a broad spectrum of mAbs and complex mAb formats. For CZE, we introduced a new buffer system and optimized the background electrolyte (BGE) with an alternative dynamic coating agent and a superior polymeric additive. The pH of the BGE was increased, leading to enhanced resolution of high pI and complex format mAbs. In iCIEF, we identified an ampholyte combination offering a highly linear pH gradient and covering a suitable pH range. We also investigated alternatives to denaturing stabilizers and found that non-detergent sulfobetaine 195 exhibited excellent properties for iCIEF applications. These optimized methods provide a framework for the charge heterogeneity analysis of therapeutic mAbs and complex formats.
Collapse
Affiliation(s)
- Maximilian Meudt
- Analytical Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
- Institute of Pharmaceutical Biotechnology, Ulm University, Ulm, Germany
| | - Martin Pannek
- Analytical Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
- Rentschler Biopharma SE, Laupheim, Germany
| | - Nina Glogowski
- Analytical Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Fabian Higel
- Global CMC Experts NBE, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Katharina Thanisch
- Analytical Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Matthias J Knape
- Analytical Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| |
Collapse
|
16
|
Divase A, Pisal S, Dake MS, Dakshinamurthy PK, Reddy PS, Dhere R, Kamat C, Chahar DS, Pal J, Nawani N. Isolation and characterization of rabies monoclonal antibody charge variants. Electrophoresis 2024; 45:1339-1355. [PMID: 38700202 DOI: 10.1002/elps.202300221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/20/2024] [Accepted: 03/02/2024] [Indexed: 05/05/2024]
Abstract
Current postexposure prophylaxis of rabies includes vaccines, human rabies immunoglobulin (RIG), equine RIG, and recombinant monoclonal antibodies (mAb). In the manufacturing of rabies recombinant mAb, charge variants are the most common source of heterogeneity. Charge variants of rabies mAb were isolated by salt gradient cation exchange chromatography (CEX) to separate acidic and basic and main charge variants. Separated variants were further extensively characterized using orthogonal analytical techniques, which include secondary and tertiary structure determination by far and near ultraviolet circular dichroism spectroscopy. Charge and size heterogeneity were evaluated using CEX, isoelectric focusing (IEF), capillary-IEF, size exclusion chromatography, sodium dodecyl sulfate polyacrylamide gel electrophoresis, and western blotting. Antigen binding affinity was assessed by enzyme linked immuno-sorbent assay and rapid florescence foci inhibition test. Results from structural and physicochemical characterizations concluded that charge variants are formed due to posttranslational modification demonstrating that the charge heterogeneity, these charge variants did neither show any considerable physicochemical change nor affect its biological function. This study shows that charge variants are effective components of mAb and there is no need of deliberate removal, until biological functions of rabies mAb will get affected.
Collapse
Affiliation(s)
- Ambika Divase
- Serum Institute of India Pvt. Ltd. Hadapsar, Pune, Maharashtra, India
- Biotechnology Department, Dr. D.Y. Patil Biotechnology and Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune, Maharashtra, India
| | - Sambhaji Pisal
- Serum Institute of India Pvt. Ltd. Hadapsar, Pune, Maharashtra, India
| | - Manjusha Sudhakar Dake
- Biotechnology Department, Dr. D.Y. Patil Biotechnology and Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune, Maharashtra, India
| | | | | | - Rajeev Dhere
- Serum Institute of India Pvt. Ltd. Hadapsar, Pune, Maharashtra, India
| | | | | | - Jayanta Pal
- Biotechnology Department, Dr. D.Y. Patil Biotechnology and Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune, Maharashtra, India
| | - Neelu Nawani
- Biotechnology Department, Dr. D.Y. Patil Biotechnology and Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune, Maharashtra, India
| |
Collapse
|
17
|
Zimmermann I, Kaveh-Baghbaderani Y, Eilts F, Kohn N, Fraga-García P, Berensmeier S. Direct Affinity Ligand Immobilization onto Bare Iron Oxide Nanoparticles Enables Efficient Magnetic Separation of Antibodies. ACS APPLIED BIO MATERIALS 2024; 7:3942-3952. [PMID: 38740514 PMCID: PMC11190986 DOI: 10.1021/acsabm.4c00280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/16/2024]
Abstract
Magnetic separation is a promising alternative to chromatography for enhancing the downstream processing (DSP) of monoclonal antibodies (mAbs). However, there is a lack of efficient magnetic particles for successful application. Aiming to fill this gap, we demonstrate the suitability of bare iron oxide nanoparticles (BION) with physical site-directed immobilization of an engineered Protein A affinity ligand (rSpA) as an innovative magnetic material. The rSpA ligand contains a short peptide tag that enables the direct and stable immobilization onto the uncoated BION surface without commonly required laborious particle activation. The resulting BION@rSpA have beneficial characteristics outperforming conventional Protein A-functionalized magnetic particles: a simple, fast, low-cost synthesis, a particle size in the nanometer range with a large effective specific surface area enabling large immunoglobulin G (IgG) binding capacity, and a high magnetophoretic velocity advantageous for fast processing. We further show rapid interactions of IgG with the easily accessible rSpA ligands. The binding of IgG to BION@rSpA is thereby highly selective and not impeded by impurity molecules in perfusion cell culture supernatant. Regarding the subsequent acidic IgG elution from BION@rSpA@IgG, we observed a hampering pH increase caused by the protonation of large iron oxide surfaces after concentrating the particles in 100 mM sodium acetate buffer. However, the pH can be stabilized by adding 50 mM glycine to the elution buffer, resulting in recoveries above 85% even at high particle concentrations. Our work shows that BION@rSpA enable efficient magnetic mAb separation and could help to overcome emerging bottlenecks in DSP.
Collapse
Affiliation(s)
- Ines Zimmermann
- Chair
of Bioseparation Engineering, TUM School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, 85748 Garching, Germany
| | - Yasmin Kaveh-Baghbaderani
- Chair
of Bioseparation Engineering, TUM School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, 85748 Garching, Germany
| | - Friederike Eilts
- Chair
of Bioseparation Engineering, TUM School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, 85748 Garching, Germany
| | - Nadja Kohn
- Chair
of Bioseparation Engineering, TUM School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, 85748 Garching, Germany
| | - Paula Fraga-García
- Chair
of Bioseparation Engineering, TUM School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, 85748 Garching, Germany
| | - Sonja Berensmeier
- Chair
of Bioseparation Engineering, TUM School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, 85748 Garching, Germany
- Munich
Institute of Integrated Materials, Energy and Process Engineering, Technical University of Munich, Lichtenbergstraße 4a, 85748 Garching, Germany
| |
Collapse
|
18
|
Guo X, Wang P, Yuwen W, Zhu C, Fu R, Ma P, Duan Z, Fan D. Production and Functional Analysis of Collagen Hexapeptide Repeat Sequences in Pichia pastoris. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38801678 DOI: 10.1021/acs.jafc.4c00582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
In the development of biomaterials with specific structural domains associated with various cellular activities, the limited integrin specificity of commonly used adhesion sequences, such as the RGD tripeptide, has resulted in an inability to precisely control cellular responses. To overcome this limitation, we conducted multiple replications of the integrin α2β1-specific ligand, the collagen hexapeptide Gly-Phe-Pro-Gly-Glu-Arg (GFPGER) in Pichia pastoris. This enabled the development of recombinant collagen with high biological activity, which was subsequently expressed, isolated, and purified for structural and functional analysis. The proteins carrying the multiple replications GFPGER sequence demonstrated significant bioactivity in cells, leading to enhanced cell adhesion, osteoblast differentiation, and mineralization when compared to control groups. Importantly, these effects were mediated by integrin α2β1. The new collagen constructed in this study is expected to be a biomaterial for regulating specific cell functions and fates.
Collapse
Affiliation(s)
- Xiaoyan Guo
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China
| | - Pan Wang
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China
| | - Weigang Yuwen
- Shaanxi Gaint Biotechnology Co., Ltd, Xi'an 710065, Shaanxi, China
| | - Chenhui Zhu
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China
| | - Rongzhan Fu
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China
| | - Pei Ma
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China
| | - Zhiguang Duan
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China
| | - Daidi Fan
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China
| |
Collapse
|
19
|
D'Atri V, Imiołek M, Quinn C, Finny A, Lauber M, Fekete S, Guillarme D. Size exclusion chromatography of biopharmaceutical products: From current practices for proteins to emerging trends for viral vectors, nucleic acids and lipid nanoparticles. J Chromatogr A 2024; 1722:464862. [PMID: 38581978 DOI: 10.1016/j.chroma.2024.464862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/29/2024] [Accepted: 03/31/2024] [Indexed: 04/08/2024]
Abstract
The 21st century has been particularly productive for the biopharmaceutical industry, with the introduction of several classes of innovative therapeutics, such as monoclonal antibodies and related compounds, gene therapy products, and RNA-based modalities. All these new molecules are susceptible to aggregation and fragmentation, which necessitates a size variant analysis for their comprehensive characterization. Size exclusion chromatography (SEC) is one of the reference techniques that can be applied. The analytical techniques for mAbs are now well established and some of them are now emerging for the newer modalities. In this context, the objective of this review article is: i) to provide a short historical background on SEC, ii) to suggest some clear guidelines on the selection of packing material and mobile phase for successful method development in modern SEC; and iii) to highlight recent advances in SEC, such as the use of narrow-bore and micro-bore columns, ultra-wide pore columns, and low-adsorption column hardware. Some important innovations, such as recycling SEC, the coupling of SEC with mass spectrometry, and the use of alternative detectors such as charge detection mass spectrometry and mass photometry are also described. In addition, this review discusses the use of SEC in multidimensional setups and shows some of the most recent advances at the preparative scale. In the third part of the article, the possibility of SEC for the characterization of new modalities is also reviewed. The final objective of this review is to provide a clear summary of opportunities and limitations of SEC for the analysis of different biopharmaceutical products.
Collapse
Affiliation(s)
- Valentina D'Atri
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU - Rue Michel Servet 1,4, 1211 Geneva, Switzerland; School of Pharmaceutical Sciences, University of Geneva, CMU - Rue Michel Servet 1,4, 1211 Geneva, Switzerland
| | | | | | - Abraham Finny
- Waters Corporation, Wyatt Technology, Santa Barbara, CA, USA
| | - Matthew Lauber
- Waters Corporation, Wyatt Technology, Santa Barbara, CA, USA
| | | | - Davy Guillarme
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU - Rue Michel Servet 1,4, 1211 Geneva, Switzerland; School of Pharmaceutical Sciences, University of Geneva, CMU - Rue Michel Servet 1,4, 1211 Geneva, Switzerland.
| |
Collapse
|
20
|
Sharma R, Gupta S, Rathore AS. Novel purification platform based on multimodal preparative scale separation of mAb fragments and aggregates. J Chromatogr A 2024; 1721:464806. [PMID: 38518514 DOI: 10.1016/j.chroma.2024.464806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/21/2024] [Accepted: 03/06/2024] [Indexed: 03/24/2024]
Abstract
Monoclonal antibodies (mAbs) continue to dominate the biopharmaceutical industry. Certain mAbs are prone to fragmentation and clipping and in these cases, adequate removal of these species is critical during manufacturing. Fragments can be generated during fermentation, purification, storage, formulation, and administration. Their addition to the acidic charge-variant of the purified mAb has been reported to decrease stability and potency of the final product. However, contrary to mAb aggregation, manufacturers have not given much attention to removal of fragments and clipped species and as a result most conventional mAb platforms offer at best limited capabilities for their removal. In this study, we propose a novel purification platform that uses multimodal chromatography and achieves complete removal of a range of mAb fragments and clipped products (25-120 kDa). The utility of the platform has been successfully demonstrated for 2 IgG1s and 2 IgG4s. Further, adequate removal of the various host cell impurities such as host cell proteins (<10 ppm) and host cell DNA (<5 ppb) has been achieved. Finally, the platform was able to deliver adequate removal of high molecular weight impurities (<1 %) and a 30 % clearance of the acidic charge variant. The proposed single step has been shown to deliver what the polishing chromatography and intermediate purification chromatography steps deliver in a traditional mAb platform.
Collapse
Affiliation(s)
- Rashmi Sharma
- School of Interdisciplinary Research, Indian Institute of Technology Delhi, India
| | - Surbhi Gupta
- Department of Chemical Engineering, Indian Institute of Technology Delhi, India
| | - Anurag S Rathore
- School of Interdisciplinary Research, Indian Institute of Technology Delhi, India; Department of Chemical Engineering, Indian Institute of Technology Delhi, India.
| |
Collapse
|
21
|
Prašnikar M, Proj M, Bjelošević Žiberna M, Lebar B, Knez B, Kržišnik N, Roškar R, Gobec S, Grabnar I, Žula A, Ahlin Grabnar P. The search for novel proline analogs for viscosity reduction and stabilization of highly concentrated monoclonal antibody solutions. Int J Pharm 2024; 655:124055. [PMID: 38554741 DOI: 10.1016/j.ijpharm.2024.124055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/16/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024]
Abstract
Administration of monoclonal antibodies (mAbs) is currently focused on subcutaneous injection associated with increased patient adherence and reduced treatment cost, leading to sustainable healthcare. The main bottleneck is low volume that can be injected, requiring highly concentrated mAb solutions. The latter results in increased solution viscosity with pronounced mAb aggregation propensity because of intensive protein-protein interactions. Small molecule excipients have been proposed to restrict the protein-protein interactions, contributing to reduced viscosity. The aim of the study was to discover novel compounds that reduce the viscosity of highly concentrated mAb solution. First, the chemical space of proline analogs was explored and 35 compounds were determined. Viscosity measurements revealed that 18 proline analogs reduced the mAb solution viscosity similar to or more than proline. The compounds forming both electrostatic and hydrophobic interactions with mAb reduced the viscosity of the formulation more efficiently without detrimentally effecting mAb physical stability. A correlation between the level of interaction and viscosity-reducing effect was confirmed with molecular dynamic simulations. Structure rigidity of the compounds and aromaticity contributed to their viscosity-reducing effect, dependent on molecule size. The study results highlight the novel proline analogs as an effective approach in viscosity reduction in development of biopharmaceuticals for subcutaneous administration.
Collapse
Affiliation(s)
- Monika Prašnikar
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Matic Proj
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | | | - Blaž Lebar
- Biologics Drug Product, Technical Research and Development, Global Drug Development, Novartis, Slovenia
| | - Benjamin Knez
- Biologics Drug Product, Technical Research and Development, Global Drug Development, Novartis, Slovenia
| | - Nika Kržišnik
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Robert Roškar
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Stanislav Gobec
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Iztok Grabnar
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Aleš Žula
- Biologics Drug Product, Technical Research and Development, Global Drug Development, Novartis, Slovenia
| | - Pegi Ahlin Grabnar
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia.
| |
Collapse
|
22
|
Pérez-Robles R, Fekete S, Kormány R, Navas N, Guillarme D. Improved sample introduction approach in hydrophilic interaction liquid chromatography to avoid breakthrough of proteins. J Chromatogr A 2024; 1713:464498. [PMID: 37980809 DOI: 10.1016/j.chroma.2023.464498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/21/2023]
Abstract
When therapeutic proteins are analysed under hydrophilic interaction liquid chromatography (HILIC) conditions, there is an inherent mismatch between the sample diluent (proteins must be solubilised in aqueous media) and the mobile phase, which is mostly composed of aprotic solvent (acetonitrile). This difference in eluent strength between sample diluent and mobile phase is responsible for severe analyte breakthrough and peak distortion. As demonstrated with therapeutic proteins of different sizes (insulin of 6 kDa, anakinra of 17 kDa and rituximab subunits of 25 and 50 kDa), only very small volumes of 0.1-0.2 µL can be injected without breakthrough effects, when performing rapid analysis on short HILIC columns of 20-50 mm, leading to poor sensitivity. In order to avoid the undesired effect of the strong sample diluent, a special injection program should be preferred. This consists in the addition and automatic injection of a defined volume of weak solvent (acetonitrile) along with the sample to increase retention factors during sample loading. Various injection programs were tested, including the addition of a pre-injection or post-injection or both (bracketed injection) of acetonitrile plugs. Several weak to strong injection solvent ratios of 1:1, 1:2, 1:4 and 1:10 were tested. Our work proves that the addition of a pre-plug solvent with a weak vs. strong injection solvent ratio of 1:10 is a valuable strategy to inject relatively large volumes of proteins in HILIC, regardless of column dimensions, thus maximising sensitivity. No peak deformation or breakthrough was observed under these conditions. However, it is important to note that peak broadening (40 % larger peaks) was observed when the injection program increased the injection solvent ratio from 1:1 to 1:10. Finally, this strategy was applied to a wide range of therapeutic mAb products with different physico-chemical properties. In all cases, relatively large volumes can be successfully injected onto small volume HILIC columns using a purely aqueous sample diluent, as long as an appropriate (weak) solvent pre-injection is applied.
Collapse
Affiliation(s)
- Raquel Pérez-Robles
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain; Department of Analytical Chemistry, Science Faculty, University of Granada, Granada, Spain; Fundación para la Investigación Biosanitaria de Andalucía Oriental-Alejandro Otero, Granada, Spain
| | | | - Róbert Kormány
- Egis Pharmaceuticals Plc., Keresztúri út 30-38, 1106, Budapest, Hungary
| | - Natalia Navas
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain; Department of Analytical Chemistry, Science Faculty, University of Granada, Granada, Spain
| | - Davy Guillarme
- School of Pharmaceutical Sciences, University of Geneva, CMU - Rue Michel Servet 1, 1211 Geneva 4, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU - Rue Michel Servet 1, 1211 Geneva 4, Switzerland.
| |
Collapse
|
23
|
Anupa A, Bansode V, Kateja N, Rathore AS. A novel method for continuous chromatographic separation of monoclonal antibody charge variants by combining displacement mode chromatography and step elution. Biotechnol Prog 2024; 40:e3395. [PMID: 37828820 DOI: 10.1002/btpr.3395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/28/2023] [Accepted: 09/22/2023] [Indexed: 10/14/2023]
Abstract
Charge heterogeneity of monoclonal antibodies is considered a critical quality attribute and hence needs to be monitored and controlled by the manufacturer. Typically, this is accomplished via separation of charge variants on cation exchange chromatography (CEX) using a pH or conductivity based linear gradient elution. Although an effective approach, this is challenging particularly during continuous processing as creation of linear gradient during continuous processing adds to process complexity and can lead to deviations in product quality upon slightest changes in gradient formation. Moreover, the long length of elution gradient along with the required peak fractionation makes process integration difficult. In this study, we propose a novel approach for separation of charge variants during continuous CEX chromatography by utilizing a combination of displacement mode chromatography and salt-based step elution. It has been demonstrated that while the displacement mode of chromatography enables control of acidic variants ≤26% in the CEX eluate, salt-based step gradient elution manages basic charge variant ≤25% in the CEX eluate. The proposed approach has been successfully demonstrated using feed materials with varying compositions. On comparing the designed strategy with 2-column concurrent (CC) chromatography, the resin specific productivity increased by 95% and resin utilization increased by 183% with recovery of main species >99%. Further, in order to showcase the amenability of the designed CEX method in continuous operation, the method was examined in our in-house continuous mAb platform.
Collapse
Affiliation(s)
- Anupa Anupa
- School of Interdisciplinary Research, Indian Institute of Technology Delhi, New Delhi, India
| | - Vikrant Bansode
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Nikhil Kateja
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Anurag S Rathore
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
24
|
Lin J, Li S, Ye B, Zheng W, Wang H, Liu Y, Wang D, Wu Z, Dong WF, Zan M. A time-resolved fluorescence microsphere-lateral flow immunochromatographic strip for quantitative detection of Pregnanediol-3-glucuronide in urine samples. Front Bioeng Biotechnol 2023; 11:1308725. [PMID: 38169725 PMCID: PMC10758493 DOI: 10.3389/fbioe.2023.1308725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024] Open
Abstract
Introduction: Pregnanediol-3-glucuronide (PdG), as the main metabolite of progesterone in urine, plays a significant role in the prediction of ovulation, threatened abortion, and menstrual cycle maintenance. Methods: To achieve a rapid and sensitive assay, we have designed a competitive model-based time-resolved fluorescence microsphere-lateral flow immunochromatography (TRFM-LFIA) strip. Results: The optimized TRFM-LFIA strip exhibited a wonderful response to PdG over the range of 30-2,000 ng/mL, the corresponding limit of detection (LOD) was calculated as low as 8.39 ng/mL. More importantly, the TRFM-LFIA strip was innovatively used for the quantitative detection of PdG in urine sample, and excellent recovery results were also obtained, ranging from 97.39% to 112.64%. Discussion: The TRFMLFIA strip possessed robust sensitivity and selectivity in the determination of PdG, indicating the great potential of being powerful tools in the biomedical and diagnosis region.
Collapse
Affiliation(s)
- Jiasheng Lin
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou, China
- Zhengzhou Institute of Biomedical Engineering and Technology, Zhengzhou, China
| | - Sanhua Li
- Henan Province Joint International Laboratory for Bioconjugation and Antibody Coupling, Zhengzhou, China
| | - Benchen Ye
- Zhengzhou Institute of Biomedical Engineering and Technology, Zhengzhou, China
- Zhongke Technology Achievement Transfer and Transformation Center of Henan Province, Zhengzhou, China
| | - Weigang Zheng
- Zhengzhou Institute of Biomedical Engineering and Technology, Zhengzhou, China
- Zhongke Technology Achievement Transfer and Transformation Center of Henan Province, Zhengzhou, China
| | - Huihui Wang
- Zhengzhou Institute of Biomedical Engineering and Technology, Zhengzhou, China
- Zhongke Technology Achievement Transfer and Transformation Center of Henan Province, Zhengzhou, China
| | - Ying Liu
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou, China
- Zhengzhou Institute of Biomedical Engineering and Technology, Zhengzhou, China
| | - Dong Wang
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou, China
- Zhengzhou Institute of Biomedical Engineering and Technology, Zhengzhou, China
| | - Zaihui Wu
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou, China
- Zhengzhou Institute of Biomedical Engineering and Technology, Zhengzhou, China
| | - Wen-Fei Dong
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou, China
- Zhengzhou Institute of Biomedical Engineering and Technology, Zhengzhou, China
| | - Minghui Zan
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou, China
- Zhengzhou Institute of Biomedical Engineering and Technology, Zhengzhou, China
- Zhongke Technology Achievement Transfer and Transformation Center of Henan Province, Zhengzhou, China
| |
Collapse
|
25
|
Kumar S, Peruri V, Rathore AS. An Online Two-Dimensional Approach to Characterizing the Charge-Based Heterogeneity of Recombinant Monoclonal Antibodies Using a 2D-CEX-AEX-MS Workflow. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:2801-2810. [PMID: 37994779 DOI: 10.1021/jasms.3c00308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Assessment of product quality attributes such as charge heterogeneity is an upmost requisite for the release of a monoclonal antibody (mAb). Analytical techniques, such as cation-exchange chromatography (CEX), accomplish this, causing the mAb to separate into acidic, main species, and basic variants. Here, an online volatile-salt-containing two-dimensional liquid chromatography (2D-LC) method coupled with mass spectrometry (MS) was performed to characterize the charge heterogeneity of mAbs using CEX chromatography in the first dimension (D1) and anion-exchange chromatography (AEX) in the second dimension (D2). The main peak of the CEX profile of D1 was transferred through a 2D heart-cut method to D2 for further analysis by the AEX-MS method. In the CEX method, mAb A showed 10 distinct variants, while the AEX method resulted in eight variants. However, a total of 13 variants were successfully resolved for mAb A in the 2D method. Similarly, mAb B exhibited seven variants in the CEX method and four variants in the AEX method, but the 2D-LC method revealed a total of nine variants for mAb B. Likewise, mAb C displayed seven variants in CEX and seven variants in AEX, whereas the 2D-LC method unveiled a total of 11 variants for mAb C. Additionally, native MS analysis revealed that the resolved charge variants were identified as amidation, oxidation, and isomerization of Asp variants in the main peak, which were not resolved in stand-alone methods. The present study demonstrates how 2D-LC can assist in identifying minor variations in charge distribution or conformation of mAb variants that would otherwise not be picked up by a single analytical method alone.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Vineela Peruri
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Anurag S Rathore
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
26
|
Castel J, Delaux S, Hernandez-Alba O, Cianférani S. Recent advances in structural mass spectrometry methods in the context of biosimilarity assessment: from sequence heterogeneities to higher order structures. J Pharm Biomed Anal 2023; 236:115696. [PMID: 37713983 DOI: 10.1016/j.jpba.2023.115696] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/17/2023]
Abstract
Biotherapeutics and their biosimilar versions have been flourishing in the biopharmaceutical market for several years. Structural and functional characterization is needed to achieve analytical biosimilarity through the assessment of critical quality attributes as required by regulatory authorities. The role of analytical strategies, particularly mass spectrometry-based methods, is pivotal to gathering valuable information for the in-depth characterization of biotherapeutics and biosimilarity assessment. Structural mass spectrometry methods (native MS, HDX-MS, top-down MS, etc.) provide information ranging from primary sequence assessment to higher order structure evaluation. This review focuses on recent developments and applications in structural mass spectrometry for biotherapeutic and biosimilar characterization.
Collapse
Affiliation(s)
- Jérôme Castel
- Laboratoire de Spectrométrie de Masse Bio-Organique, IPHC UMR 7178, Université de Strasbourg, CNRS, Strasbourg 67087, France; Infrastructure Nationale de Protéomique ProFI, FR2048 CNRS CEA, Strasbourg 67087, France
| | - Sarah Delaux
- Laboratoire de Spectrométrie de Masse Bio-Organique, IPHC UMR 7178, Université de Strasbourg, CNRS, Strasbourg 67087, France; Infrastructure Nationale de Protéomique ProFI, FR2048 CNRS CEA, Strasbourg 67087, France
| | - Oscar Hernandez-Alba
- Laboratoire de Spectrométrie de Masse Bio-Organique, IPHC UMR 7178, Université de Strasbourg, CNRS, Strasbourg 67087, France; Infrastructure Nationale de Protéomique ProFI, FR2048 CNRS CEA, Strasbourg 67087, France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse Bio-Organique, IPHC UMR 7178, Université de Strasbourg, CNRS, Strasbourg 67087, France; Infrastructure Nationale de Protéomique ProFI, FR2048 CNRS CEA, Strasbourg 67087, France.
| |
Collapse
|
27
|
Duivelshof BL, Bouvarel T, Pirner S, Larraillet V, Knaupp A, Koll H, D’Atri V, Guillarme D. Enhancing Selectivity of Protein Biopharmaceuticals in Ion Exchange Chromatography through Addition of Organic Modifiers. Int J Mol Sci 2023; 24:16623. [PMID: 38068945 PMCID: PMC10706461 DOI: 10.3390/ijms242316623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Charge heterogeneity among therapeutic monoclonal antibodies (mAbs) is considered an important critical quality attribute and requires careful characterization to ensure safe and efficacious drug products. The charge heterogeneity among mAbs is the result of chemical and enzymatic post-translational modifications and leads to the formation of acidic and basic variants that can be characterized using cation exchange chromatography (CEX). Recently, the use of mass spectrometry-compatible salt-mediated pH gradients has gained increased attention to elute the proteins from the charged stationary phase material. However, with the increasing antibody product complexity, more and more selectivity is required. Therefore, in this study, we set out to improve the selectivity by using a solvent-enriched mobile phase composition for the analysis of a variety of mAbs and bispecific antibody products. It was found that the addition of the solvents to the mobile phase appeared to modify the hydrate shell surrounding the protein and alter the retention behavior of the studied proteins. Therefore, this work demonstrates that the use of solvent-enriched mobile phase composition could be an attractive additional method parameter during method development in CEX.
Collapse
Affiliation(s)
- Bastiaan Laurens Duivelshof
- School of Pharmaceutical Sciences, University of Geneva, CMU—Rue Michel Servet 1, 1211 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU—Rue Michel Servet 1, 1211 Geneva, Switzerland
| | - Thomas Bouvarel
- School of Pharmaceutical Sciences, University of Geneva, CMU—Rue Michel Servet 1, 1211 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU—Rue Michel Servet 1, 1211 Geneva, Switzerland
| | | | | | | | - Hans Koll
- Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany
| | - Valentina D’Atri
- School of Pharmaceutical Sciences, University of Geneva, CMU—Rue Michel Servet 1, 1211 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU—Rue Michel Servet 1, 1211 Geneva, Switzerland
| | - Davy Guillarme
- School of Pharmaceutical Sciences, University of Geneva, CMU—Rue Michel Servet 1, 1211 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU—Rue Michel Servet 1, 1211 Geneva, Switzerland
| |
Collapse
|
28
|
Bock F, Hu A, Cicale V, Larsen SW, Lu X, Østergaard J. Development of UV-Vis Imaging Compatible Chromatographic Matrix with Application for Injectable Formulation Characterization. Anal Chem 2023; 95:15861-15866. [PMID: 37857348 DOI: 10.1021/acs.analchem.3c03648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Transport within human tissue matrices, e.g., the subcutaneous tissue, exhibits some resemblance to chromatographic processes. Here, a porous matrix comprising agarose beads compatible with UV-vis imaging was developed for a parallel piped rectangular flow cell (4 mm light path). Introduction of high-molecular weight dextrans (Mr ∼ 200000 and ∼500000) at 10% (w/v) rendered imaging possible by providing optical clearing of the turbid porous matrix, resulting in improved transmittance as well as resolution (from 400 to 180 μm) at 280 nm, as well as 520 nm. The interplay between diffusive and convective transport at 0 < Pe ≤ 28 was visualized at 280 nm upon injection of dexamethasone suspensions. Real-time UV-vis imaging showed in-flow cell the effect of incorporating ion-exchange resins on the retention of infliximab, lysozyme, and α-lactalbumin. The ion-exchange matrix may serve as a surrogate for polyelectrolytes in the subcutaneous tissue, assessing the potential role of electrostatic interactions of biotherapeutics upon injection. UV-vis imaging of size-exclusion chromatographic matrixes may be of interest in its own right and potentially develop into a characterization tool for injectables.
Collapse
Affiliation(s)
- Frederik Bock
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Angela Hu
- Bristol Myers Squibb Company, Drug Product Development, 1 Squibb Drive, New Brunswick, New Jersey 08901, United States
| | - Vincent Cicale
- Bristol Myers Squibb Company, Drug Product Development, 1 Squibb Drive, New Brunswick, New Jersey 08901, United States
| | - Susan Weng Larsen
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Xujin Lu
- Bristol Myers Squibb Company, Drug Product Development, 1 Squibb Drive, New Brunswick, New Jersey 08901, United States
| | - Jesper Østergaard
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| |
Collapse
|
29
|
Beloborodov SS, Schneider BB, Oleschuk RD, Yves Le Blanc JC. Open Port Interface for Coupling Capillary Electrophoresis and Mass Spectrometry: Performance Evaluation for Capillary Isoelectric Focusing. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:2107-2116. [PMID: 37650584 DOI: 10.1021/jasms.3c00060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Capillary electrophoresis (CE) combined with mass spectrometry (MS) is a powerful analytical technique that utilizes the resolving power of CE and the mass-detection capabilities of MS. In many cases, CE is coupled to MS via a sheath-flow interface (SFI). This interface has a simple design and can be easily constructed; however, it often suffers from issues such as MS signal suppression, interference of MS and CE electrical circuits, and the inability to set an optical point of detection close to the capillary end due to the specific design of the coupling union. In this paper, we describe a novel coupling of CE and MS based upon the open port interface (OPI). The OPI differs from classical sheath flow interfaces by operating at flow rates at least 1 order of magnitude higher. In addition to the flow rate difference, the OPI provides more efficient mixing of the capillary eluates with the transport fluid and thus minimizes MS signal suppression. In this work, we compared the performance of OPI and SFI in a series of capillary isoelectric focusing (cIEF) experiments with 5 pI markers, carbonic anhydrase II and NIST antibody. The evaluation criteria for the comparison of the OPI and SFI were analytical sensitivity, reproducibility, and pI marker linearity. Given the extent of sample dilution in the OPI, we also compared the peak resolution determined using an upstream UV detector to those determined by the downstream mass spectrometer. The results suggested that the OPI configuration reduced signal suppression, with no adverse effect on peak resolution. In addition, the OPI provided better decoupling of the CE and MS potentials as well as reduced signal dependence upon the sheath liquid composition. While these results are preliminary, they suggest that the OPI is a viable approach for CE-MS coupling.
Collapse
Affiliation(s)
| | | | - Richard D Oleschuk
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario K7L 3N6, Canada
| | | |
Collapse
|
30
|
Sensi M, de Oliveira RF, Berto M, Palmieri M, Ruini E, Livio PA, Conti A, Pinti M, Salvarani C, Cossarizza A, Cabot JM, Ricart J, Casalini S, González-García MB, Fanjul-Bolado P, Bortolotti CA, Samorì P, Biscarini F. Reduced Graphene Oxide Electrolyte-Gated Transistor Immunosensor with Highly Selective Multiparametric Detection of Anti-Drug Antibodies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211352. [PMID: 37435994 DOI: 10.1002/adma.202211352] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 06/29/2023] [Accepted: 07/10/2023] [Indexed: 07/13/2023]
Abstract
The advent of immunotherapies with biological drugs has revolutionized the treatment of cancers and auto-immune diseases. However, in some patients, the production of anti-drug antibodies (ADAs) hampers the drug efficacy. The concentration of ADAs is typically in the range of 1-10 pm; hence their immunodetection is challenging. ADAs toward Infliximab (IFX), a drug used to treat rheumatoid arthritis and other auto-immune diseases, are focussed. An ambipolar electrolyte-gated transistor (EGT) immunosensor is reported based on a reduced graphene oxide (rGO) channel and IFX bound to the gate electrode as the specific probe. The rGO-EGTs are easy to fabricate and exhibit low voltage operations (≤ 0.3 V), a robust response within 15 min, and ultra-high sensitivity (10 am limit of detection). A multiparametric analysis of the whole rGO-EGT transfer curves based on the type-I generalized extreme value distribution is proposed. It is demonstrated that it allows to selectively quantify ADAs also in the co-presence of its antagonist tumor necrosis factor alpha (TNF-α), the natural circulating target of IFX.
Collapse
Affiliation(s)
- Matteo Sensi
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 103, Modena, 41125, Italy
| | - Rafael Furlan de Oliveira
- Université de Strasbourg, CNRS, ISIS, 8 allée Gaspard Monge, Strasbourg, 67000, France
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, 13083-970, Brazil
| | - Marcello Berto
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 103, Modena, 41125, Italy
| | - Marina Palmieri
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 103, Modena, 41125, Italy
| | - Emilio Ruini
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 103, Modena, 41125, Italy
| | - Pietro Antonio Livio
- Université de Strasbourg, CNRS, ISIS, 8 allée Gaspard Monge, Strasbourg, 67000, France
| | - Andrea Conti
- Dermatology Unit, Surgical, Medical, and Dental Department of Morphological Sciences Related to Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, via del Pozzo 71, Modena, 41125, Italy
| | - Marcello Pinti
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 103, Modena, 41125, Italy
| | - Carlo Salvarani
- Rheumatology Unit, University of Modena and Reggio Emilia, Medical School Azienda Ospedaliero-Universitaria Policlinico di Modena, via del Pozzo 71, Modena, 41125, Italy
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Via Campi 287, Modena, 41125, Italy
| | - Joan M Cabot
- Leitat Technology Center, Innovació 2, Barcelona, 08225, Spain
| | - Jordi Ricart
- Leitat Technology Center, Innovació 2, Barcelona, 08225, Spain
| | - Stefano Casalini
- Université de Strasbourg, CNRS, ISIS, 8 allée Gaspard Monge, Strasbourg, 67000, France
- Dipartimento di Scienze Chimiche University of Padova, via Marzolo 1, Padova, 35131, Italy
| | | | - Pablo Fanjul-Bolado
- Metrohm DropSens, S.L. Vivero Ciencias de la Salud, C/Colegio Santo Domingo de Guzmán s/n, Oviedo, 33010, Spain
| | - Carlo Augusto Bortolotti
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 103, Modena, 41125, Italy
| | - Paolo Samorì
- Université de Strasbourg, CNRS, ISIS, 8 allée Gaspard Monge, Strasbourg, 67000, France
| | - Fabio Biscarini
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 103, Modena, 41125, Italy
- Center for Translational Neurophysiology, Istituto Italiano di Tecnologia, Via Fossato di Mortara 17-19, Ferrara, 44121, Italy
| |
Collapse
|
31
|
Bhattacharya S, Rathore AS. Assessment of structural and functional similarity of biosimilar products: Bevacizumab as a case study. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1229:123896. [PMID: 37776677 DOI: 10.1016/j.jchromb.2023.123896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/21/2023] [Accepted: 09/23/2023] [Indexed: 10/02/2023]
Abstract
The antiangiogenic drug bevacizumab is a blockbuster therapeutic pharmaceutical product that is used to treat many different types of cancer including kidney, colon, rectum, lung, and breast cancer. As a result, multiple biosimilars have been approved across the various regulatory jurisdictions in India (>20 in number till date). The rapidly growing market and acceptance of biosimilars was the motivation to perform comparability study of bevacizumab biosimilars that are presently available in the Indian market. A comprehensive analytical and functional biosimilarity assessment has been performed to examine and compare innovator product of bevacizumab (Avastin-innovator product, Roche Products (India) Pvt Ltd) and six biosimilars that are being marketed in India (Abevmy from Mylan Pharmaceuticals Pvt Ltd, Bevazza from Lupin Ltd, Bryxta from Zydus Cadila, Krabeva from Biocon, Ivzumab from RPG Life Sciences Ltd, and Advamab from Alkem Laboratories Ltd). Physiochemical characterization of drug products was performed with respect to their primary structure (intact mass, reduced mass, peptide mapping by LC-MS), higher order structure (secondary structure by FTIR, Far-UV-CD, and tertiary structure by Near-UV-CD, intrinsic fluorescence spectroscopy), impurity profile (SE-HPLC, SEC-MALS, extrinsic fluorescence: size heterogenicity, degradation, stability; DLS: hydrodynamic radius; WCX-HPLC: charge variants analysis) and post-translational modifications by measuring reduced glycans through fluorescence dye analysis. Functional characterization was performed by SPR and cell proliferation assay. Further, chemometrics based quantitative evaluation of biosimilarity has been performed by combining the data obtained from analytical characterization platform. The analysis of the analytical, functional and chemometric results revealed significant levels of similarity, with biosimilar4 being the sole exception. Despite being within product specifications, Biosimilar4 displayed significant deviations with respect to critical quality attributes, including a lower proportion of monomer content, a larger percentage of basic charge variant species, and a lower proportion of aglycosylated glycoform.
Collapse
Affiliation(s)
| | - Anurag S Rathore
- Chemical Engineering Department, Indian Institute of Technology, Delhi, India.
| |
Collapse
|
32
|
De Fauw K, Umelo IA, Teng X, Vlyminck S, Rivera G, Brigé A, Delangle A. Theoretical charge plots as a tool for targeted and accelerated ion exchange chromatography method development of NANOBODY Ⓡ molecules. J Chromatogr A 2023; 1705:464137. [PMID: 37356365 DOI: 10.1016/j.chroma.2023.464137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/04/2023] [Accepted: 06/06/2023] [Indexed: 06/27/2023]
Abstract
NANOBODYⓇ molecules are an innovative class of biotherapeutics based on heavy chain only VHH immunoglobulins. Much like canonical antibodies, they are prone to the formation of charge variants and other post-translational modifications, which can potentially impact their critical quality attributes. Therefore, establishing high-resolution product-specific methods, such as IEX chromatography, is essential for evaluating the purity of these molecules. However, due to the lower surface charge of NANOBODYⓇ molecules, their charge-based elution behavior can differ considerably from that of classical antibodies, resulting in a more extensive method development set-up for these smaller molecules. Using an initial pH screening gradient based on theoretical protein charge plots, we investigated the IEX retention behavior of eight NANOBODYⓇ molecules with a wide range of pI values (pI 5.0 to 10.0). Our findings reveal that the charge-based chromatographic behavior of NANOBODYⓇ molecules cannot be solely attributed to the isoelectric point (pI) of the protein. Rather, a molecule-specific charge threshold was identified as a critical parameter for NANOBODYⓇ molecule retention. Furthermore, the protein charge plot also showed that NANOBODYⓇ molecule elution can be characterized by a charge plateau where the net charge of the protein remains constant over a certain pH range (∼ pH 5.5 to pH 8.0), further challenging the paradigm that elution pH and pI are fixed values. The application of this theoretical approach using protein charge plots to define NANOBODYⓇ molecule charge threshold and charge plateau parameters, can reduce overall IEX method development turnaround time by at least 2-fold.
Collapse
Affiliation(s)
- Ken De Fauw
- Sanofi Large Molecules Research, NANOBODY(Ⓡ) Research Platform, Analytics, Technologiepark 21, 9052 Zwijnaarde (Ghent), Belgium
| | - Ijeoma A Umelo
- Sanofi Large Molecules Research, NANOBODY(Ⓡ) Research Platform, Analytics, Technologiepark 21, 9052 Zwijnaarde (Ghent), Belgium
| | - Xia Teng
- Sanofi Large Molecules Research, NANOBODY(Ⓡ) Research Platform, Analytics, Technologiepark 21, 9052 Zwijnaarde (Ghent), Belgium
| | - Silke Vlyminck
- Sanofi Large Molecules Research, NANOBODY(Ⓡ) Research Platform, Analytics, Technologiepark 21, 9052 Zwijnaarde (Ghent), Belgium
| | - Gustavo Rivera
- Sanofi Large Molecules Research, NANOBODY(Ⓡ) Research Platform, Analytics, Technologiepark 21, 9052 Zwijnaarde (Ghent), Belgium
| | - Ann Brigé
- Sanofi Large Molecules Research, NANOBODY(Ⓡ) Research Platform, Analytics, Technologiepark 21, 9052 Zwijnaarde (Ghent), Belgium
| | - Aurélie Delangle
- Sanofi Large Molecules Research, NANOBODY(Ⓡ) Research Platform, Analytics, Technologiepark 21, 9052 Zwijnaarde (Ghent), Belgium.
| |
Collapse
|
33
|
Bauer J, Rajagopal N, Gupta P, Gupta P, Nixon AE, Kumar S. How can we discover developable antibody-based biotherapeutics? Front Mol Biosci 2023; 10:1221626. [PMID: 37609373 PMCID: PMC10441133 DOI: 10.3389/fmolb.2023.1221626] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/10/2023] [Indexed: 08/24/2023] Open
Abstract
Antibody-based biotherapeutics have emerged as a successful class of pharmaceuticals despite significant challenges and risks to their discovery and development. This review discusses the most frequently encountered hurdles in the research and development (R&D) of antibody-based biotherapeutics and proposes a conceptual framework called biopharmaceutical informatics. Our vision advocates for the syncretic use of computation and experimentation at every stage of biologic drug discovery, considering developability (manufacturability, safety, efficacy, and pharmacology) of potential drug candidates from the earliest stages of the drug discovery phase. The computational advances in recent years allow for more precise formulation of disease concepts, rapid identification, and validation of targets suitable for therapeutic intervention and discovery of potential biotherapeutics that can agonize or antagonize them. Furthermore, computational methods for de novo and epitope-specific antibody design are increasingly being developed, opening novel computationally driven opportunities for biologic drug discovery. Here, we review the opportunities and limitations of emerging computational approaches for optimizing antigens to generate robust immune responses, in silico generation of antibody sequences, discovery of potential antibody binders through virtual screening, assessment of hits, identification of lead drug candidates and their affinity maturation, and optimization for developability. The adoption of biopharmaceutical informatics across all aspects of drug discovery and development cycles should help bring affordable and effective biotherapeutics to patients more quickly.
Collapse
Affiliation(s)
- Joschka Bauer
- Early Stage Pharmaceutical Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach/Riss, Germany
- In Silico Team, Boehringer Ingelheim, Hannover, Germany
| | - Nandhini Rajagopal
- In Silico Team, Boehringer Ingelheim, Hannover, Germany
- Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, United States
| | - Priyanka Gupta
- In Silico Team, Boehringer Ingelheim, Hannover, Germany
- Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, United States
| | - Pankaj Gupta
- In Silico Team, Boehringer Ingelheim, Hannover, Germany
- Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, United States
| | - Andrew E. Nixon
- Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, United States
| | - Sandeep Kumar
- In Silico Team, Boehringer Ingelheim, Hannover, Germany
- Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, United States
| |
Collapse
|
34
|
Wiesner R, Zagst H, Lan W, Bigelow S, Holper P, Hübner G, Josefsson L, Lancaster C, Lo L, Lößner C, Lu H, Neusüß C, Rüttiger C, Schlecht J, Schürrle P, Selsam A, van der Burg D, Wang SC, Zhu Y, Wätzig H, Sänger-van de Griend C. An interlaboratory capillary zone electrophoresis-UV study of various monoclonal antibodies, instruments, and ε-aminocaproic acid lots. Electrophoresis 2023; 44:1247-1257. [PMID: 37079448 DOI: 10.1002/elps.202200284] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/29/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023]
Abstract
Capillary zone electrophoresis ultraviolet (CZE-UV) has become increasingly popular for the charge heterogeneity determination of mAbs and vaccines. The ε-aminocaproic acid (eACA) CZE-UV method has been used as a rapid platform method. However, in the last years, several issues have been observed, for example, loss in electrophoretic resolution or baseline drifts. Evaluating the role of eACA on the reported issues, various laboratories were requested to provide their routinely used eACA CZE-UV methods, and background electrolyte compositions. Although every laboratory claimed to use the He et al. eACA CZE-UV method, most methods actually deviate from He's. Subsequently, a detailed interlaboratory study was designed wherein two commercially available mAbs (Waters' Mass Check Standard mAb [pI 7] and NISTmAb [pI 9]) were provided to each laboratory, along with two detailed eACA CZE-UV protocols for a short-end, high-speed, and a long-end, high-resolution method. Ten laboratories participated each using their own instruments, and commodities, showing excellence method performance (relative standard deviations [RSDs] of percent time-corrected main peak areas from 0.2% to 1.9%, and RSDs of migration times from 0.7% to 1.8% [n = 50 per laboratory], analysis times in some cases as short as 2.5 min). This study clarified that eACA is not the main reason for the abovementioned variations.
Collapse
Affiliation(s)
- Rebecca Wiesner
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Germany
| | - Holger Zagst
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Germany
| | - Wenkui Lan
- Bristol Myers Squibb, New Brunswick, New Jersey, USA
| | | | | | - Göran Hübner
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | | | | | - Lili Lo
- Bristol Myers Squibb, New Brunswick, New Jersey, USA
| | | | - Huixin Lu
- Health Canada, Ottawa, Ontario, Canada
| | | | - Carolin Rüttiger
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | | | - Philipp Schürrle
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Alexander Selsam
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Debbie van der Burg
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Germany
- Kantisto BV, Baarn, The Netherlands
- Department of Chemistry, School of Engineering Sciences in Chemistry, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Shao-Chun Wang
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York, USA
| | - Yunxiao Zhu
- Bristol Myers Squibb, New Brunswick, New Jersey, USA
| | - Hermann Wätzig
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Germany
| | - Cari Sänger-van de Griend
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Germany
- Kantisto BV, Baarn, The Netherlands
- Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden
| |
Collapse
|
35
|
Mieczkowski CA. The Evolution of Commercial Antibody Formulations. J Pharm Sci 2023; 112:1801-1810. [PMID: 37037341 DOI: 10.1016/j.xphs.2023.03.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/29/2023] [Accepted: 03/29/2023] [Indexed: 04/12/2023]
Abstract
It has been nearly four decades since the first therapeutic monoclonal antibodies were approved and made available for widespread human use. Herein, US and EU approved antibody formulations are reviewed, and their nature and compositions are evaluated over time. From 1986 through Jan 2023, significant formulation trends have occurred and to represent this, 165 commercial antibody therapeutic formulations were binned into 5 different periods of time. Overall, we have observed the following: 1) The average formulation pH has decreased in recent years by over 0.5 units along with a decrease in variability that is largely driven by non-high concentration liquid in vial presentations for IV administration, 2) The use of certain excipients and buffers such as histidine, sucrose, metal chelators, arginine and methionine has become significantly more common, whereas formulations that contain phosphate, salt, no sugar or no surfactant have fallen out of favor, 3) Overall formulation space has increasingly become more homogenous and has converged in terms of formulation pH and excipient preferences regardless of formulation concentration, drug product presentation, and route of administration, 4) The average calculated isoelectric point (pI) has decreased 0.26 units, and 5) Overall, the average formulation pH and calculated pI for all commercial antibodies surveyed was 6.0 and 8.4, respectively. These trends and formulation convergence may be driven by multiple factors such as advancements in high-throughput computational and analytical technologies, the increased emphasis and understanding of certain developability attributes and formulation principles during lead selection and formulation development, and the adoption of low-risk development platform approaches.
Collapse
|
36
|
Tallvod S, Espinoza D, Gomis-Fons J, Andersson N, Nilsson B. Automated quality analysis in continuous downstream processes for small-scale applications. J Chromatogr A 2023; 1702:464085. [PMID: 37245353 DOI: 10.1016/j.chroma.2023.464085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 05/30/2023]
Abstract
Development of integrated, continuous biomanufacturing (ICB) processes brings along the challenge of streamlining the acquisition of data that can be used for process monitoring, product quality testing and process control. Manually performing sample acquisition, preparation, and analysis during process and product development on ICB platforms requires time and labor that diverts attention from the development itself. It also introduces variability in terms of human error in the handling of samples. To address this, a platform for automatic sampling, sample preparation and analysis for use in small-scale biopharmaceutical downstream processes was developed. The automatic quality analysis system (QAS) consisted of an ÄKTA Explorer chromatography system for sample retrieval, storage, and preparation, as well as an Agilent 1260 Infinity II analytical HPLC system for analysis. The ÄKTA Explorer system was fitted with a superloop in which samples could be stored, conditioned, and diluted before being sent to the injection loop of the Agilent system. The Python-based software Orbit, developed at the department of chemical engineering at Lund university, was used to control and create a communication framework for the systems. To demonstrate the QAS in action, a continuous capture chromatography process utilizing periodic counter-current chromatography was set up on an ÄKTA Pure chromatography system to purify the clarified harvest from a bioreactor for monoclonal antibody production. The QAS was connected to the process to collect two types of samples: 1) the bioreactor supernatant and 2) the product pool from the capture chromatography. Once collected, the samples were conditioned and diluted in the superloop before being sent to the Agilent system, where both aggregate content and charge variant composition were determined using size-exclusion and ion-exchange chromatography, respectively. The QAS was successfully implemented during a continuous run of the capture process, enabling the acquisition of process data with consistent quality and without human intervention, clearing the path for automated process monitoring and data-based control.
Collapse
Affiliation(s)
- Simon Tallvod
- Department of Chemical Engineering, Lund University, Lund, Sweden
| | - Daniel Espinoza
- Department of Chemical Engineering, Lund University, Lund, Sweden
| | | | - Niklas Andersson
- Department of Chemical Engineering, Lund University, Lund, Sweden
| | - Bernt Nilsson
- Department of Chemical Engineering, Lund University, Lund, Sweden.
| |
Collapse
|
37
|
Tardif C, Jaccoulet E, Bellec JF, Surroca Y, Talbot L, Taverna M, Smadja C. Imaged capillary isoelectric focusing associated with multivariate analysis: A powerful tool for quality control of therapeutic monoclonal antibodies. Talanta 2023; 260:124633. [PMID: 37172435 DOI: 10.1016/j.talanta.2023.124633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023]
Abstract
Monoclonal antibodies are increasingly used in cancer therapy. To guarantee the quality of these mAbs from compounding to patient administration, characterization methods are required (e.g. identity). In a clinical setting, these methods must be fast and straightforward. For this reason, we investigated the potential of image capillary isoelectric focusing (icIEF) combined with Principal Component Analysis (PCA) and Partial least squares-discriminant analysis (PLS-DA). icIEF profiles obtained from monoclonals antibodies (mAbs) analysis have been pre-processed and the data submitted to principal component analysis (PCA). This pre-processing method has been designed to avoid the impact of concentration and formulation. Analysis of four commercialized mAbs (Infliximab, Nivolumab, Pertuzumab, and Adalimumab) by icIEF-PCA led to the formation of four clusters corresponding to each mAb. Partial least squares-discriminant analysis (PLS-DA) applied to these data allowed us to build models to predict which monoclonal antibody is analyzed. The validation of this model was obtained from k-fold cross-validation and prediction tests. The selectivity and the specificity of the model performance parameters were assessed by the excellent classification obtained. In conclusion, we established that the combination of icIEF and chemometric approaches is a reliable approach for unambiguously identifying compounded therapeutic monoclonal antibodies (mAbs) before patient administration.
Collapse
Affiliation(s)
- Cécile Tardif
- Institut Galien Paris Saclay, Université Paris-Saclay, CNRS UMR 8612, Protein and Nanotechnology in Analytical Science (PNAS), 17 Avenue des Sciences, 91300, Orsay, France
| | | | - Jean-François Bellec
- Biotechne France, 19 Rue Louis Delourmel, 35230, Noyal-Châtillon-sur-Seiche, France
| | - Yannick Surroca
- Biotechne France, 19 Rue Louis Delourmel, 35230, Noyal-Châtillon-sur-Seiche, France
| | - Laurence Talbot
- Biotechne France, 19 Rue Louis Delourmel, 35230, Noyal-Châtillon-sur-Seiche, France
| | - Myriam Taverna
- Institut Galien Paris Saclay, Université Paris-Saclay, CNRS UMR 8612, Protein and Nanotechnology in Analytical Science (PNAS), 17 Avenue des Sciences, 91300, Orsay, France; Institut Universitaire de France, 103 Boulevard Saint Michel, 75005, Paris, France
| | - Claire Smadja
- Institut Galien Paris Saclay, Université Paris-Saclay, CNRS UMR 8612, Protein and Nanotechnology in Analytical Science (PNAS), 17 Avenue des Sciences, 91300, Orsay, France.
| |
Collapse
|
38
|
Liu S, Shah DK. Physiologically Based Pharmacokinetic Modeling to Characterize the Effect of Molecular Charge on Whole-Body Disposition of Monoclonal Antibodies. AAPS J 2023; 25:48. [PMID: 37118220 DOI: 10.1208/s12248-023-00812-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 04/11/2023] [Indexed: 04/30/2023] Open
Abstract
Motivated by a series of work demonstrating the effect of molecular charge on antibody pharmacokinetics (PK), physiological-based pharmacokinetic (PBPK) models are emerging that relate in silico calculated charge or in vitro measures of polyspecificity to antibody PK parameters. However, only plasma data has been used for model development in these studies, leading to unvalidated assumptions. Here, we present an extended platform PBPK model for antibodies that incorporate charge-dependent endothelial cell pinocytosis rate and nonspecific off-target binding in the interstitial space and on circulating blood cells, to simultaneously characterize whole-body disposition of three antibody charge variants. Predictive potential of various charge metrics was also explored, and the difference between positive charge patches and negative charge patches (i.e., PPC-PNC) was used as the charge parameter to establish quantitative relationships with nonspecific binding affinities and endothelial cell uptake rate. Whole-body disposition of these charge variants was captured well by the model, with less than 2-fold predictive error in area under the curve of most plasma and tissue PK data. The model also predicted that with greater positive charge, nonspecific binding was more substantial, and pinocytosis rate increased especially in brain, heart, kidney, liver, lung, and spleen, but remained unchanged in adipose, bone, muscle, and skin. The presented PBPK model contributes to our understanding of the mechanisms governing the disposition of charged antibodies and can be used as a platform to guide charge engineering based on desired plasma and tissue exposures.
Collapse
Affiliation(s)
- Shufang Liu
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, 455 Pharmacy Building, Buffalo, Ney York, 14214-8033, USA
| | - Dhaval K Shah
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, 455 Pharmacy Building, Buffalo, Ney York, 14214-8033, USA.
| |
Collapse
|
39
|
Bhattacharya S, Joshi S, Rathore AS. A native multi-dimensional monitoring workflow for at-line characterization of mAb titer, size, charge, and glycoform heterogeneities in cell culture supernatant. J Chromatogr A 2023; 1696:463983. [PMID: 37054641 DOI: 10.1016/j.chroma.2023.463983] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/26/2023] [Accepted: 04/07/2023] [Indexed: 04/15/2023]
Abstract
With growing maturity of the biopharmaceutical industry, new modalities entering the therapeutic design space and increasing complexity of formulations such as combination therapy, the demands and requirements on analytical workflows have also increased. A recent evolution in newer analytical workflows is that of multi-attribute monitoring workflows designed on chromatography-mass spectrometry (LC-MS) platform. In comparison to traditional one attribute per workflow paradigm, multi-attribute workflows are designed to monitor multiple critical quality attributes through a single workflow, thus reducing the overall time to information and increasing efficiency and throughput. While the 1st generation multi-attribute workflows focused on bottom-up characterization following peptide digestion, the more recent workflows have been focussing on characterization of intact biologics, preferably in native state. So far intact multi-attribute monitoring workflows suitable for comparability, utilizing single dimension chromatography coupled with MS have been published. In this study, we describe a native multi-dimensional multi-attribute monitoring workflow for at-line characterization of monoclonal antibody (mAb) titer, size, charge, and glycoform heterogeneities directly in cell culture supernatant. This has been achieved through coupling ProA in series with size exclusion chromatography in 1st dimension followed by cation exchange chromatography in the 2nd dimension. Intact paired glycoform characterization has been achieved through coupling 2D-LC with q-ToF-MS. The workflow with a single heart cut can be completed in 25 mins and utilizes 2D-liquid chromatography (2D-LC) to maximize separation and monitoring of titer, size as well as charge variants.
Collapse
Affiliation(s)
- Sanghati Bhattacharya
- Department of Chemical Engineering, Indian Institute of Technology, Hauz Khas, New Delhi, 110016, India
| | - Srishti Joshi
- Department of Chemical Engineering, Indian Institute of Technology, Hauz Khas, New Delhi, 110016, India
| | - Anurag S Rathore
- Department of Chemical Engineering, Indian Institute of Technology, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
40
|
Spanov B, Baartmans B, Olaleye O, Nicolardi S, Govorukhina N, Wuhrer M, van de Merbel NC, Bischoff R. Revealing charge heterogeneity of stressed trastuzumab at the subunit level. Anal Bioanal Chem 2023; 415:1505-1513. [PMID: 36693954 PMCID: PMC9974696 DOI: 10.1007/s00216-023-04547-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/24/2022] [Accepted: 01/16/2023] [Indexed: 01/26/2023]
Abstract
Trastuzumab is known to be heterogeneous in terms of charge. Stressing trastuzumab under physiological conditions (pH 7.4 and 37 °C) increases charge heterogeneity further. Separation of charge variants of stressed trastuzumab at the intact protein level is challenging due to increasing complexity making it difficult to obtain pure charge variants for further characterization. Here we report an approach for revealing charge heterogeneity of stressed trastuzumab at the subunit level by pH gradient cation-exchange chromatography. Trastuzumab subunits were generated after limited proteolytic cleavage with papain, IdeS, and GingisKHAN®. The basic pI of Fab and F(ab)2 fragments allowed to use the same pH gradient for intact protein and subunit level analysis. Baseline separation of Fab subunits was obtained after GingisKHAN® and papain digestion and the corresponding modifications were determined by LC-MS/MS peptide mapping and middle-down MALDI-ISD FT-ICR MS. The described approach allows a comprehensive charge variant analysis of therapeutic antibodies that have two or more modification sites in the Fab region.
Collapse
Affiliation(s)
- Baubek Spanov
- Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, A Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Bas Baartmans
- Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, A Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Oladapo Olaleye
- Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, A Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Simone Nicolardi
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - Natalia Govorukhina
- Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, A Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - Nico C van de Merbel
- Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, A Deusinglaan 1, 9713 AV, Groningen, The Netherlands.,Bioanalytical Laboratory, ICON, Amerikaweg 18, 9407 TK, Assen, The Netherlands
| | - Rainer Bischoff
- Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, A Deusinglaan 1, 9713 AV, Groningen, The Netherlands.
| |
Collapse
|
41
|
van Schaick G, Domínguez-Vega E, Castel J, Wuhrer M, Hernandez-Alba O, Cianférani S. Online Collision-Induced Unfolding of Therapeutic Monoclonal Antibody Glyco-Variants through Direct Hyphenation of Cation Exchange Chromatography with Native Ion Mobility-Mass Spectrometry. Anal Chem 2023; 95:3932-3939. [PMID: 36791123 PMCID: PMC9979139 DOI: 10.1021/acs.analchem.2c03163] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 12/16/2022] [Indexed: 02/16/2023]
Abstract
Post-translational modifications (PTMs) not only substantially increase structural heterogeneity of proteins but can also alter the conformation or even biological functions. Monitoring of these PTMs is particularly important for therapeutic products, including monoclonal antibodies (mAbs), since their efficacy and safety may depend on the PTM profile. Innovative analytical strategies should be developed to map these PTMs as well as explore possible induced conformational changes. Cation-exchange chromatography (CEX) coupled with native mass spectrometry has already emerged as a valuable asset for the characterization of mAb charge variants. Nevertheless, questions regarding protein conformation cannot be explored using this approach. Thus, we have combined CEX separation with collision-induced unfolding (CIU) experiments to monitor the unfolding pattern of separated mAbs and thereby pick up subtle conformational differences without impairing the CEX resolution. Using this novel strategy, only four CEX-CIU runs had to be recorded for a complete CIU fingerprint either at the intact mAb level or after enzymatic digestion at the mAb subunit level. As a proof of concept, CEX-CIU was first used for an isobaric mAb mixture to highlight the possibility to acquire individual CIU fingerprints of CEX-separated species without compromising CEX separation performances. CEX-CIU was next successfully applied to conformational characterization of mAb glyco-variants, in order to derive glycoform-specific information on the gas-phase unfolding, and CIU patterns of Fc fragments, revealing increased resistance of sialylated glycoforms against gas-phase unfolding. Altogether, we demonstrated the possibilities and benefits of combining CEX with CIU for in-depth characterization of mAb glycoforms, paving the way for linking conformational changes and resistance to gas-phase unfolding charge variants.
Collapse
Affiliation(s)
- Guusje van Schaick
- Center
for Proteomics and Metabolomics, Leiden
University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Elena Domínguez-Vega
- Center
for Proteomics and Metabolomics, Leiden
University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Jérôme Castel
- Laboratoire
de Spectrométrie de Masse BioOrganique, IPHC UMR 7178, Université de Strasbourg, CNRS, Strasbourg 67087, France
- Infrastructure
Nationale de Protéomique ProFI, FR2048
CNRS CEA, Strasbourg 67087, France
| | - Manfred Wuhrer
- Center
for Proteomics and Metabolomics, Leiden
University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Oscar Hernandez-Alba
- Laboratoire
de Spectrométrie de Masse BioOrganique, IPHC UMR 7178, Université de Strasbourg, CNRS, Strasbourg 67087, France
- Infrastructure
Nationale de Protéomique ProFI, FR2048
CNRS CEA, Strasbourg 67087, France
| | - Sarah Cianférani
- Laboratoire
de Spectrométrie de Masse BioOrganique, IPHC UMR 7178, Université de Strasbourg, CNRS, Strasbourg 67087, France
- Infrastructure
Nationale de Protéomique ProFI, FR2048
CNRS CEA, Strasbourg 67087, France
| |
Collapse
|
42
|
Huynh U, Wu P, Qiu J, Prachyathipsakul T, Singh K, Jerry DJ, Gao J, Thayumanavan S. Targeted Drug Delivery Using a Plug-to-Direct Antibody-Nanogel Conjugate. Biomacromolecules 2023; 24:849-857. [PMID: 36639133 PMCID: PMC9928872 DOI: 10.1021/acs.biomac.2c01269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Targeted drug delivery using antibody-drug conjugates has attracted great attention due to its enhanced therapeutic efficacy compared to traditional chemotherapy. However, the development has been limited due to a low drug-to-antibody ratio and laborious linker-payload optimization. Herein, we present a simple and efficient strategy to combine the favorable features of polymeric nanocarriers with antibodies to generate an antibody-nanogel conjugate (ANC) platform for targeted delivery of cytotoxic agents. Our nanogels stably encapsulate several chemotherapeutic agents with a wide range of mechanisms of action and solubility. We showcase the targetability of ANCs and their selective killing of cancer cells over-expressing disease-relevant antigens such as human epidermal growth factor receptor 2, epidermal growth factor receptor, and tumor-specific mucin 1, which cover a broad range of breast cancer cell types while maintaining low to no toxicity to non-targeted cells. Overall, our system represents a versatile approach that could impact next-generation nanomedicine in antibody-targeted therapeutics.
Collapse
Affiliation(s)
- Uyen Huynh
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Peidong Wu
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Jingyi Qiu
- Department of Biomedical Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | | | - Khushboo Singh
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - D. Joseph Jerry
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Jingjing Gao
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - S. Thayumanavan
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Department of Biomedical Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
43
|
Dumoncel RFP, Xavier B, Cardoso Júnior CDA, da Silva FS, Motta LGJ, Cavalheiro TN, Dalmora SL. Analysis of Denosumab by a Validated CZE Method and Determination of Sialic Acids by the RP-HPLC Method. J Chromatogr Sci 2023; 61:177-185. [PMID: 35279712 DOI: 10.1093/chromsci/bmac019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Indexed: 11/14/2022]
Abstract
A capillary zone electrophoresis (CZE) method was developed and validated to quantitate the monoclonal antibody denosumab (DmAb) and its charge variants in pharmaceutical products, demonstrating excellent precision, linearity and accuracy. Separations were obtained with migration times of 11.3 min for DmAb and the calibration curve was linear in the range of 0.95-20 mg/mL. The analytical comparability of seven batches of Prolia® showed mean differences of the estimated content/potencies of 1.87% lower, and 0.84 and 1.21% higher compared with the size-exclusion and reversed-phase liquid chromatography (SE-HPLC and RP-HPLC) methods and the osteoclast antiproliferative bioassay, respectively, with non-significant differences (P > 0.05). An RP-HPLC method with fluorescence detection (RP-HPLC-F), performed on a Kinetex® EVO C18 column (5 μm, 100 Å, 250 mm × 4.6 mm), was optimized to determine the levels of sialic acids of DmAb biomolecules, giving mean concentrations of 0.16 and 0.17 μg N-acetylneuraminic acid/mg DmAb for Prolia® and Xgeva® pharmaceutical products, respectively. The results demonstrated the capability of each one of the methods, and their use in combination constitutes a strategy to monitor instability, thereby assuring the quality and the batch-to-batch consistency of the biotechnology-derived medicine.
Collapse
Affiliation(s)
- Rafaela Ferreira Perobelli Dumoncel
- Postgraduate Program in Pharmaceutical Sciences, Industrial Pharmacy Department, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil
| | - Bruna Xavier
- Postgraduate Program in Pharmaceutical Sciences, Industrial Pharmacy Department, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil
| | - Clóvis Dervil Appratto Cardoso Júnior
- Postgraduate Program in Pharmaceutical Sciences, Industrial Pharmacy Department, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil
| | - Francielle Santos da Silva
- Postgraduate Program in Pharmaceutical Sciences, Industrial Pharmacy Department, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil
| | - Luís Gustavo Jung Motta
- Industrial Pharmacy Department, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil
| | - Thaís Neuhaus Cavalheiro
- Industrial Pharmacy Department, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil
| | - Sérgio Luiz Dalmora
- Industrial Pharmacy Department, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil
| |
Collapse
|
44
|
Schuster J, Kamuju V, Mathaes R. Protein Stability After Administration: A Physiologic Consideration. J Pharm Sci 2023; 112:370-376. [PMID: 36202247 DOI: 10.1016/j.xphs.2022.09.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/30/2022] [Accepted: 09/30/2022] [Indexed: 11/05/2022]
Abstract
Regulatory authorities and the scientific community have identified the need to monitor the in vivo stability of therapeutic proteins (TPs). Due to the unique physiologic conditions in patients, the stability of TPs after administration can deviate largely from their stability under drug product (DP) conditions. TPs can degrade at substantial rates once immersed in the in vivo milieu. Changes in protein stability upon administration to patients are critical as they can have implications on patient safety and clinical effectiveness of DPs. Physiologic conditions are challenging to simulate and require dedicated in vitro models for specific routes of administration. Advancements of in vitro models enable to simulate the exposure to physiologic conditions prior to resource demanding pre-clinical and clinical studies. This enables to evaluate the in vivo stability and thus may allow to improve the safety/efficacy profile of DPs. While in vitro-in vivo correlations are challenging, benchmarking DP candidates enables to identify liabilities and optimize molecules. The in vivo stability should be an integral part of holistic stability assessments during early development. Such assessments can accelerate development timelines and lead to more stable DPs for patients.
Collapse
Affiliation(s)
- Joachim Schuster
- Lonza Pharma and Biotech, Drug Product Services, Basel, Switzerland.
| | - Vinay Kamuju
- Lonza Pharma and Biotech, Drug Product Services, Basel, Switzerland
| | - Roman Mathaes
- Lonza Pharma and Biotech, Drug Product Services, Basel, Switzerland
| |
Collapse
|
45
|
Cheung TH, Xue C, Kurtz DA, Shoichet MS. Protein Release by Controlled Desorption from Transiently Cationic Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2023; 15:50560-50573. [PMID: 36703567 DOI: 10.1021/acsami.2c19877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Therapeutic release from hydrogels is traditionally controlled by encapsulation within nanoparticles; however, this strategy is limited for the release of proteins due to poor efficiency and denaturation. To overcome this problem, we designed an encapsulation-free release platform where negatively charged proteins are adsorbed to the exterior of transiently cationic nanoparticles, thus allowing the nanoparticles to be formulated separately from the proteins. Release is then governed by the change in nanoparticle surface charge from positive to neutral. To achieve this, we synthesized eight zwitterionic poly(lactide-block-carboxybetaine) copolymer derivatives and formulated them into nanoparticles with differing surface chemistry. The nanoparticles were colloidally stable and lost positive charge at rates dependent on the hydrolytic stability of their surface ester groups. The nanoparticles (NPs) were dispersed in a physically cross-linked hyaluronan-based hydrogel with one of three negatively charged proteins (transferrin, panitumumab, or granulocyte-macrophage colony-stimulating factor) to assess their ability to control release. For all three proteins, dispersing NPs within the gels resulted in significant attenuation of release, with the extent modulated by the hydrolytic stability of the surface groups. Release was rapid from fast-hydrolyzing ester groups, reduced with slow-hydrolyzing bulky ester groups, and very slow with nonhydrolyzing amide groups. When positively charged lysozyme was loaded into the nanocomposite gel, there was no significant attenuation of release compared to gel alone. These data demonstrate that electrostatic interactions between the protein and NP are the primary driver of protein release from the hydrogel. All released proteins retained bioactivity as determined with in vitro cell assays. This release strategy shows tremendous versatility and provides a promising new platform for controlled release of anionic protein therapeutics.
Collapse
Affiliation(s)
- Timothy H Cheung
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, OntarioM5S 3H6, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, OntarioM5S 3E1, Canada
| | - Chang Xue
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, OntarioM5S 3E1, Canada
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, OntarioM5S 3G9, Canada
| | - Daniel A Kurtz
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, OntarioM5S 3E1, Canada
| | - Molly S Shoichet
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, OntarioM5S 3H6, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, OntarioM5S 3E1, Canada
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, OntarioM5S 3G9, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, OntarioM5S 3E5, Canada
| |
Collapse
|
46
|
Taylor SK, Kostic N, Stojanovic MN. Oligonucleotide-Blocked Streptavidin for Biotinylation Analysis. Bioconjug Chem 2023; 34:92-96. [PMID: 36006852 DOI: 10.1021/acs.bioconjchem.2c00255] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Binding between streptavidin, or its homologues, to biotin is one of the most widely exploited biological interactions in the biomedical sciences. Controlling the extent of biotinylation is important for meeting the requirements of the intended design and to preserve the native function of the biotin recipient. Within the protein world, a"trial-and-error" optimization approach toward biotinylation reaction conditions is often necessary due to widely varying properties of proteins. Therefore, product analysis is important. We show here that a oligonucleotide-blocked streptavidin, effectively "monovalent streptavidin", can tag biotin moieties individually and the tagged products visualized via a polyacrylamide gel shift assay to reveal the product distribution, i.e., [protein-(biotin)n] products where n = 1, 2, 3, etc. This is in contrast, and complementary, to current commercially available analytical reagents for biotinylation characterization, which use an absorbance or fluorescence signal to yield the mean number of biotin moieties.
Collapse
|
47
|
van der Burg D, Wätzig H, Sänger-van de Griend CE. Method development for quantitative monitoring of monoclonal antibodies in upstream cell-culture process samples with limited sample preparation - An evaluation of various capillary coatings. Electrophoresis 2023; 44:96-106. [PMID: 36239141 PMCID: PMC10099398 DOI: 10.1002/elps.202200144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/11/2022]
Abstract
Monoclonal antibodies (mAbs) have become an important class of biopharmaceuticals used for the treatment of various diseases. Their quantification during the manufacturing process is important. In this work, a capillary zone electrophoresis (CZE) method was developed for the monitoring of the mAb concentration during cell-culture processes. CZE method development rules are outlined, particularly discussing various capillary coatings, such as a neutral covalent polyvinyl alcohol coating, a dynamic successive multiple ionic-polymer coating, and dynamic coatings using background electrolyte additives such as triethanolamine (T-EthA) and triethylamine. The dynamic T-EthA coating resulted in most stable electro-osmotic flows and most efficient peak shapes. The method is validated over the range 0.1-10 mg/ml, with a linear range of 0.08-1.3 mg/ml and an extended range of 1-10 mg/ml by diluting samples in the latter concentration range 10-fold in water. The intraday precision and accuracy were 2%-12% and 88%-107%, respectively, and inter-day precision and accuracy were 4%-9% and 93%-104%, respectively. The precision and accuracy of the lowest concentration level (0.08 mg/ml) were slightly worse and still well in scope for monitoring purposes. The presented method proved applicable for analysing in-process cell-culture samples from different cell-culture processes and is possibly well suited as platform method.
Collapse
Affiliation(s)
- Debbie van der Burg
- Kantisto BV, Baarn, The Netherlands.,Department of Chemistry, KTH Royal Institute of Technology, Division of Applied Physical Chemistry, Stockholm, Sweden.,Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Germany
| | - Hermann Wätzig
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Germany
| | | |
Collapse
|
48
|
Beck A, Nowak C, Meshulam D, Reynolds K, Chen D, Pacardo DB, Nicholls SB, Carven GJ, Gu Z, Fang J, Wang D, Katiyar A, Xiang T, Liu H. Risk-Based Control Strategies of Recombinant Monoclonal Antibody Charge Variants. Antibodies (Basel) 2022; 11:73. [PMID: 36412839 PMCID: PMC9703962 DOI: 10.3390/antib11040073] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/27/2022] [Accepted: 11/11/2022] [Indexed: 09/28/2023] Open
Abstract
Since the first approval of the anti-CD3 recombinant monoclonal antibody (mAb), muromonab-CD3, a mouse antibody for the prevention of transplant rejection, by the US Food and Drug Administration (FDA) in 1986, mAb therapeutics have become increasingly important to medical care. A wealth of information about mAbs regarding their structure, stability, post-translation modifications, and the relationship between modification and function has been reported. Yet, substantial resources are still required throughout development and commercialization to have appropriate control strategies to maintain consistent product quality, safety, and efficacy. A typical feature of mAbs is charge heterogeneity, which stems from a variety of modifications, including modifications that are common to many mAbs or unique to a specific molecule or process. Charge heterogeneity is highly sensitive to process changes and thus a good indicator of a robust process. It is a high-risk quality attribute that could potentially fail the specification and comparability required for batch disposition. Failure to meet product specifications or comparability can substantially affect clinical development timelines. To mitigate these risks, the general rule is to maintain a comparable charge profile when process changes are inevitably introduced during development and even after commercialization. Otherwise, new peaks or varied levels of acidic and basic species must be justified based on scientific knowledge and clinical experience for a specific molecule. Here, we summarize the current understanding of mAb charge variants and outline risk-based control strategies to support process development and ultimately commercialization.
Collapse
Affiliation(s)
- Alain Beck
- Centre d’Immunologie Pierre-Fabre (CIPF), 5 Avenue Napoléon III, 74160 Saint-Julien-en-Genevois, France
| | - Christine Nowak
- Protein Characterization, Alexion AstraZeneca Rare Disease, 100 College St., New Haven, CT 06510, USA
| | - Deborah Meshulam
- Technical Operations/CMC, Scholar Rock, 301 Binney Street, 3rd Floor, Cambridge, MA 02142, USA
| | - Kristina Reynolds
- Technical Operations/CMC, Scholar Rock, 301 Binney Street, 3rd Floor, Cambridge, MA 02142, USA
| | - David Chen
- Technical Operations/CMC, Scholar Rock, 301 Binney Street, 3rd Floor, Cambridge, MA 02142, USA
| | - Dennis B. Pacardo
- Technical Operations/CMC, Scholar Rock, 301 Binney Street, 3rd Floor, Cambridge, MA 02142, USA
| | - Samantha B. Nicholls
- Protein Sciences, Scholar Rock, 301 Binney Street, 3rd Floor, Cambridge, MA 02142, USA
| | - Gregory J. Carven
- Research, Scholar Rock, 301 Binney Street, 3rd Floor, Cambridge, MA 02142, USA
| | - Zhenyu Gu
- Jasper Therapeutics, Inc., 2200 Bridge Pkwy Suite 102, Redwood City, CA 94065, USA
| | - Jing Fang
- Biological Drug Discovery, Biogen, 225 Binney St., Cambridge, MA 02142, USA
| | - Dongdong Wang
- Global Biologics, Takeda Pharmaceuticals, 300 Shire Way, Lexington, MA 02421, USA
| | - Amit Katiyar
- CMC Technical Operations, Magenta Therapeutics, 100 Technology Square, Cambridge, MA 02139, USA
| | - Tao Xiang
- Downstream Process and Analytical Development, Boston Institute of Biotechnology, 225 Turnpike Rd., Southborough, MA 01772, USA
| | - Hongcheng Liu
- Technical Operations/CMC, Scholar Rock, 301 Binney Street, 3rd Floor, Cambridge, MA 02142, USA
| |
Collapse
|
49
|
Ngernpimai S, Srijampa S, Thongmee P, Teerasong S, Puangmali T, Maleewong W, Chompoosor A, Tippayawat P. Insight into the Covalently Oriented Immobilization of Antibodies on Gold Nanoparticle Probes to Improve Sensitivity in the Colorimetric Detection of Listeria monocytogenes. Bioconjug Chem 2022; 33:2103-2112. [DOI: 10.1021/acs.bioconjchem.2c00261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sawinee Ngernpimai
- Center for Innovation and Standard for Medical Technology and Physical Therapy, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sukanya Srijampa
- Biosensor Research Group for Non-Communicable Disease and Infectious Disease, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Patsara Thongmee
- Center for Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Saowapak Teerasong
- Department of Chemistry and Applied Analytical Chemistry Research Unit, School of Science, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Theerapong Puangmali
- Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Wanchai Maleewong
- Department of Parasitology, Faculty of Medicine and Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Apiwat Chompoosor
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok 10240, Thailand
| | - Patcharaporn Tippayawat
- Department of Medical Technology, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
50
|
Banik N, Braun S, Gerit Brandenburg J, Fricker G, Kalonia DS, Rosenkranz T. Technology development to evaluate the effectiveness of viscosity reducing excipients. Int J Pharm 2022; 626:122204. [PMID: 36116691 DOI: 10.1016/j.ijpharm.2022.122204] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/05/2022] [Accepted: 09/11/2022] [Indexed: 10/14/2022]
Abstract
Addition of pharmaceutical excipients is a commonly used approach to decrease the viscosity of highly concentrated protein formulations, which otherwise could not be subcutaneously injected or processed. The variety of protein-protein interactions, which are responsible for increased viscosities, makes a portfolio approach necessary. Screening of several excipients to develop such a portfolio is time and money consuming in industrial settings. Responsible protein-protein interactions were investigated using the interaction parameter kD obtained from dynamic light scattering measurements in the studies presented herein. Together with in-silico calculated excipient parameter, kD could be used as a screening tool accelerating screening and formulation development as kD is suitable to high-throughput formats using small quantities of protein and low concentrations. A qualitative correlation between kD and high-concentration viscosity behavior could be shown in our case.
Collapse
Affiliation(s)
- Niels Banik
- Biomolecule Formulation, Merck KGaA, Frankfurter Straße 250, 64293 Darmstadt, Germany; Institute for Pharmacy and Molecular Biotechnology, Ruprecht-Karls-University, Im Neuenheimer Feld 329, 69120 Heidelberg, Germany
| | - Stefan Braun
- Biomolecule Formulation, Merck KGaA, Frankfurter Straße 250, 64293 Darmstadt, Germany
| | - Jan Gerit Brandenburg
- Chief Science and Technology Office, Merck KGaA, Frankfurter Straße 250, 64293 Darmstadt, Germany
| | - Gert Fricker
- Institute for Pharmacy and Molecular Biotechnology, Ruprecht-Karls-University, Im Neuenheimer Feld 329, 69120 Heidelberg, Germany
| | - Devendra S Kalonia
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, United States
| | - Tobias Rosenkranz
- Biomolecule Formulation, Merck KGaA, Frankfurter Straße 250, 64293 Darmstadt, Germany.
| |
Collapse
|