1
|
Ning L, Zanella S, Tomov ML, Amoli MS, Jin L, Hwang B, Saadeh M, Chen H, Neelakantan S, Dasi LP, Avazmohammadi R, Mahmoudi M, Bauser‐Heaton HD, Serpooshan V. Targeted Rapamycin Delivery via Magnetic Nanoparticles to Address Stenosis in a 3D Bioprinted in Vitro Model of Pulmonary Veins. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400476. [PMID: 38696618 PMCID: PMC11234432 DOI: 10.1002/advs.202400476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/09/2024] [Indexed: 05/04/2024]
Abstract
Vascular cell overgrowth and lumen size reduction in pulmonary vein stenosis (PVS) can result in elevated PV pressure, pulmonary hypertension, cardiac failure, and death. Administration of chemotherapies such as rapamycin have shown promise by inhibiting the vascular cell proliferation; yet clinical success is limited due to complications such as restenosis and off-target effects. The lack of in vitro models to recapitulate the complex pathophysiology of PVS has hindered the identification of disease mechanisms and therapies. This study integrated 3D bioprinting, functional nanoparticles, and perfusion bioreactors to develop a novel in vitro model of PVS. Bioprinted bifurcated PV constructs are seeded with endothelial cells (ECs) and perfused, demonstrating the formation of a uniform and viable endothelium. Computational modeling identified the bifurcation point at high risk of EC overgrowth. Application of an external magnetic field enabled targeting of the rapamycin-loaded superparamagnetic iron oxide nanoparticles at the bifurcation site, leading to a significant reduction in EC proliferation with no adverse side effects. These results establish a 3D bioprinted in vitro model to study PV homeostasis and diseases, offering the potential for increased throughput, tunability, and patient specificity, to test new or more effective therapies for PVS and other vascular diseases.
Collapse
Affiliation(s)
- Liqun Ning
- Wallace H. Coulter Department of Biomedical EngineeringEmory University School of Medicine and Georgia Institute of TechnologyAtlantaGA30322USA
- Department of Mechanical EngineeringCleveland State UniversityClevelandOH44115USA
| | - Stefano Zanella
- Wallace H. Coulter Department of Biomedical EngineeringEmory University School of Medicine and Georgia Institute of TechnologyAtlantaGA30322USA
| | - Martin L. Tomov
- Wallace H. Coulter Department of Biomedical EngineeringEmory University School of Medicine and Georgia Institute of TechnologyAtlantaGA30322USA
| | - Mehdi Salar Amoli
- Wallace H. Coulter Department of Biomedical EngineeringEmory University School of Medicine and Georgia Institute of TechnologyAtlantaGA30322USA
| | - Linqi Jin
- Wallace H. Coulter Department of Biomedical EngineeringEmory University School of Medicine and Georgia Institute of TechnologyAtlantaGA30322USA
| | - Boeun Hwang
- Wallace H. Coulter Department of Biomedical EngineeringEmory University School of Medicine and Georgia Institute of TechnologyAtlantaGA30322USA
| | - Maher Saadeh
- Wallace H. Coulter Department of Biomedical EngineeringEmory University School of Medicine and Georgia Institute of TechnologyAtlantaGA30322USA
| | - Huang Chen
- Wallace H. Coulter Department of Biomedical EngineeringEmory University School of Medicine and Georgia Institute of TechnologyAtlantaGA30322USA
| | - Sunder Neelakantan
- Department of Biomedical EngineeringTexas A&M UniversityCollege StationTX77843USA
| | - Lakshmi Prasad Dasi
- Wallace H. Coulter Department of Biomedical EngineeringEmory University School of Medicine and Georgia Institute of TechnologyAtlantaGA30322USA
| | - Reza Avazmohammadi
- Department of Biomedical EngineeringTexas A&M UniversityCollege StationTX77843USA
- J. Mike Walker ’66 Department of Mechanical EngineeringTexas A&M UniversityCollege StationTX77840USA
| | - Morteza Mahmoudi
- Department of Radiology and Precision Health ProgramMichigan State UniversityEast LandingMI48824USA
| | - Holly D. Bauser‐Heaton
- Wallace H. Coulter Department of Biomedical EngineeringEmory University School of Medicine and Georgia Institute of TechnologyAtlantaGA30322USA
- Department of PediatricsEmory University School of MedicineAtlantaGA30322USA
- Children's Healthcare of AtlantaAtlantaGA30322USA
- Sibley Heart Center at Children's Healthcare of AtlantaAtlantaGA30322USA
| | - Vahid Serpooshan
- Wallace H. Coulter Department of Biomedical EngineeringEmory University School of Medicine and Georgia Institute of TechnologyAtlantaGA30322USA
- Department of PediatricsEmory University School of MedicineAtlantaGA30322USA
- Children's Healthcare of AtlantaAtlantaGA30322USA
| |
Collapse
|
2
|
West-Livingston L, Lim JW, Lee SJ. Translational tissue-engineered vascular grafts: From bench to bedside. Biomaterials 2023; 302:122322. [PMID: 37713761 DOI: 10.1016/j.biomaterials.2023.122322] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 09/01/2023] [Accepted: 09/09/2023] [Indexed: 09/17/2023]
Abstract
Cardiovascular disease is a primary cause of mortality worldwide, and patients often require bypass surgery that utilizes autologous vessels as conduits. However, the limited availability of suitable vessels and the risk of failure and complications have driven the need for alternative solutions. Tissue-engineered vascular grafts (TEVGs) offer a promising solution to these challenges. TEVGs are artificial vascular grafts made of biomaterials and/or vascular cells that can mimic the structure and function of natural blood vessels. The ideal TEVG should possess biocompatibility, biomechanical mechanical properties, and durability for long-term success in vivo. Achieving these characteristics requires a multi-disciplinary approach involving material science, engineering, biology, and clinical translation. Recent advancements in scaffold fabrication have led to the development of TEVGs with improved functional and biomechanical properties. Innovative techniques such as electrospinning, 3D bioprinting, and multi-part microfluidic channel systems have allowed the creation of intricate and customized tubular scaffolds. Nevertheless, multiple obstacles must be overcome to apply these innovations effectively in clinical practice, including the need for standardized preclinical models and cost-effective and scalable manufacturing methods. This review highlights the fundamental approaches required to successfully fabricate functional vascular grafts and the necessary translational methodologies to advance their use in clinical practice.
Collapse
Affiliation(s)
- Lauren West-Livingston
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA; Department of Vascular and Endovascular Surgery, Duke University, Durham, NC, 27712, USA
| | - Jae Woong Lim
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA; Department of Thoracic and Cardiovascular Surgery, Soonchunhyang University Hospital, Bucheon-Si, Gyeonggi-do, 420-767, Republic of Korea
| | - Sang Jin Lee
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA.
| |
Collapse
|
3
|
Zhang L, Hajebrahimi S, Tong S, Gao X, Cheng H, Zhang Q, Hinojosa DT, Jiang K, Hong L, Huard J, Bao G. Force-Mediated Endocytosis of Iron Oxide Nanoparticles for Magnetic Targeting of Stem Cells. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37145890 DOI: 10.1021/acsami.2c20265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Stem cell therapy represents one of the most promising approaches for tissue repair and regeneration. However, the full potential of stem cell therapy remains to be realized. One major challenge is the insufficient homing and retention of stem cells at the desired sites after in vivo delivery. Here, we provide a proof-of-principle demonstration of magnetic targeting and retention of human muscle-derived stem cells (hMDSCs) in vitro through magnetic force-mediated internalization of magnetic iron oxide nanoparticles (MIONs) and the use of a micropatterned magnet. We found that the magnetic force-mediated cellular uptake of MIONs occurs through an endocytic pathway, and the MIONs were exclusively localized in the lysosomes. The intracellular MIONs had no detrimental effect on the proliferation of hMDSCs or their multilineage differentiation, and no MIONs were translocated to other cells in a coculture system. Using hMDSCs and three other cell types including human umbilical vein endothelial cells (HUVECs), human dermal fibroblasts (HDFs), and HeLa cells, we further discovered that the magnetic force-mediated MION uptake increased with MION size and decreased with cell membrane tension. We found that the cellular uptake rate was initially increased with MION concentration in solution and approached saturation. These findings provide important insight and guidance for magnetic targeting of stem cells in therapeutic applications.
Collapse
Affiliation(s)
- Linlin Zhang
- Department of Bioengineering, Rice University, Houston, Texas 77030, United States
| | - Samira Hajebrahimi
- Department of Bioengineering, Rice University, Houston, Texas 77030, United States
| | - Sheng Tong
- Department of Bioengineering, Rice University, Houston, Texas 77030, United States
| | - Xueqin Gao
- Department of Orthopedic Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas 77030, United States
- Linda and Mitch Hart Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, Colorado 81657, United States
| | - Haizi Cheng
- Department of Orthopedic Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas 77030, United States
| | - Qingbo Zhang
- Department of Bioengineering, Rice University, Houston, Texas 77030, United States
| | - Daniel T Hinojosa
- Department of Bioengineering, Rice University, Houston, Texas 77030, United States
| | - Kaiyi Jiang
- Department of Bioengineering, Rice University, Houston, Texas 77030, United States
| | - Lin Hong
- Department of Bioengineering, Rice University, Houston, Texas 77030, United States
| | - Johnny Huard
- Department of Orthopedic Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas 77030, United States
- Linda and Mitch Hart Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, Colorado 81657, United States
| | - Gang Bao
- Department of Bioengineering, Rice University, Houston, Texas 77030, United States
| |
Collapse
|
4
|
Bharti S, Anant PS, Kumar A. Nanotechnology in stem cell research and therapy. JOURNAL OF NANOPARTICLE RESEARCH 2023; 25:6. [DOI: 10.1007/s11051-022-05654-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 12/14/2022] [Indexed: 01/04/2025]
|
5
|
Liu H, Sun R, Wang L, Chen X, Li G, Cheng Y, Zhai G, Bay BH, Yang F, Gu N, Guo Y, Fan H. Biocompatible Iron Oxide Nanoring-Labeled Mesenchymal Stem Cells: An Innovative Magnetothermal Approach for Cell Tracking and Targeted Stroke Therapy. ACS NANO 2022; 16:18806-18821. [PMID: 36278899 DOI: 10.1021/acsnano.2c07581] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Labeling stem cells with magnetic nanoparticles is a promising technique for in vivo tracking and magnetic targeting of transplanted stem cells, which is critical for improving the therapeutic efficacy of cell therapy. However, conventional endocytic labeling with relatively poor labeling efficiency and a short labeling lifetime has hindered the implementation of these innovative enhancements in stem-cell-mediated regenerative medicine. Herein, we describe an advanced magnetothermal approach to label mesenchymal stem cells (MSCs) efficiently by local induction of heat-enhanced membrane permeability for magnetic resonance imaging (MRI) tracking and targeted therapy of stroke, where biocompatible γ-phase, ferrimagnetic vortex-domain iron oxide nanorings (γ-FVIOs) with superior magnetoresponsive properties were used as a tracer. This approach facilitates a safe and efficient labeling of γ-FVIOs as high as 150 pg of Fe per cell without affecting the MSCs proliferation and differentiation, which is 3.44-fold higher than that by endocytosis labeling. Such a high labeling efficiency not only enables the ultrasensitive magnetic resonance imaging (MRI) detection of sub-10 cells and long-term tracking of transplanted MSCs over 10 weeks but also endows transplanted MSCs with a magnetic manipulation ability in vivo. A proof-of-concept study using a rat stroke model showed that the labeled MSCs facilitated MRI tracking and magnetic targeting for efficient replacement therapy with a significantly reduced dosage of 5 × 104 transplanted cells. The findings in this study have demonstrated the great potential of the magnetothermal approach as an efficient labeling technique for future clinical usage.
Collapse
Affiliation(s)
- Hanrui Liu
- Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu610041, China
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an710127, China
| | - Ran Sun
- Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu610041, China
| | - Lei Wang
- Molecular Imaging Center, West China Hospital, Sichuan University, Chengdu610041, China
| | - Xiaoyong Chen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an710127, China
| | - Galong Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an710127, China
- School of Medicine, Northwest University, Xi'an710069, China
| | - Yu Cheng
- Institute for Regenerative Medicine, The Institute for Biomedical Engineering & Nano Science, Shanghai East Hospital, Tongji University School of Medicine, 1800 Yuntai Road, Shanghai200092, China
| | - Gaohong Zhai
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an710127, China
| | - Boon-Huat Bay
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, 4 Medical Drive, MD10, 117594, Singapore
| | - Fang Yang
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing210009, China
| | - Ning Gu
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing210009, China
| | - Yingkun Guo
- Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu610041, China
| | - Haiming Fan
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an710127, China
- School of Medicine, Northwest University, Xi'an710069, China
| |
Collapse
|
6
|
Rotherham M, Nahar T, Broomhall TJ, Telling ND, El Haj AJ. Remote magnetic actuation of cell signalling for tissue engineering. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2022. [DOI: 10.1016/j.cobme.2022.100410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
7
|
Garello F, Svenskaya Y, Parakhonskiy B, Filippi M. Micro/Nanosystems for Magnetic Targeted Delivery of Bioagents. Pharmaceutics 2022; 14:pharmaceutics14061132. [PMID: 35745705 PMCID: PMC9230665 DOI: 10.3390/pharmaceutics14061132] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/09/2022] [Accepted: 05/19/2022] [Indexed: 01/09/2023] Open
Abstract
Targeted delivery of pharmaceuticals is promising for efficient disease treatment and reduction in adverse effects. Nano or microstructured magnetic materials with strong magnetic momentum can be noninvasively controlled via magnetic forces within living beings. These magnetic carriers open perspectives in controlling the delivery of different types of bioagents in humans, including small molecules, nucleic acids, and cells. In the present review, we describe different types of magnetic carriers that can serve as drug delivery platforms, and we show different ways to apply them to magnetic targeted delivery of bioagents. We discuss the magnetic guidance of nano/microsystems or labeled cells upon injection into the systemic circulation or in the tissue; we then highlight emergent applications in tissue engineering, and finally, we show how magnetic targeting can integrate with imaging technologies that serve to assist drug delivery.
Collapse
Affiliation(s)
- Francesca Garello
- Molecular and Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy;
| | - Yulia Svenskaya
- Science Medical Center, Saratov State University, 410012 Saratov, Russia;
| | - Bogdan Parakhonskiy
- Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium;
| | - Miriam Filippi
- Soft Robotics Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
- Correspondence:
| |
Collapse
|
8
|
Chen Y, Hou S. Application of magnetic nanoparticles in cell therapy. Stem Cell Res Ther 2022; 13:135. [PMID: 35365206 PMCID: PMC8972776 DOI: 10.1186/s13287-022-02808-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/09/2022] [Indexed: 02/08/2023] Open
Abstract
Fe3O4 magnetic nanoparticles (MNPs) are biomedical materials that have been approved by the FDA. To date, MNPs have been developed rapidly in nanomedicine and are of great significance. Stem cells and secretory vesicles can be used for tissue regeneration and repair. In cell therapy, MNPs which interact with external magnetic field are introduced to achieve the purpose of cell directional enrichment, while MRI to monitor cell distribution and drug delivery. This paper reviews the size optimization, response in external magnetic field and biomedical application of MNPs in cell therapy and provides a comprehensive view.
Collapse
Affiliation(s)
- Yuling Chen
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China. .,Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China.
| | - Shike Hou
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China.,Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| |
Collapse
|
9
|
Filippi M, Garello F, Yasa O, Kasamkattil J, Scherberich A, Katzschmann RK. Engineered Magnetic Nanocomposites to Modulate Cellular Function. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104079. [PMID: 34741417 DOI: 10.1002/smll.202104079] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/13/2021] [Indexed: 06/13/2023]
Abstract
Magnetic nanoparticles (MNPs) have various applications in biomedicine, including imaging, drug delivery and release, genetic modification, cell guidance, and patterning. By combining MNPs with polymers, magnetic nanocomposites (MNCs) with diverse morphologies (core-shell particles, matrix-dispersed particles, microspheres, etc.) can be generated. These MNCs retain the ability of MNPs to be controlled remotely using external magnetic fields. While the effects of these biomaterials on the cell biology are still poorly understood, such information can help the biophysical modulation of various cellular functions, including proliferation, adhesion, and differentiation. After recalling the basic properties of MNPs and polymers, and describing their coassembly into nanocomposites, this review focuses on how polymeric MNCs can be used in several ways to affect cell behavior. A special emphasis is given to 3D cell culture models and transplantable grafts, which are used for regenerative medicine, underlining the impact of MNCs in regulating stem cell differentiation and engineering living tissues. Recent advances in the use of MNCs for tissue regeneration are critically discussed, particularly with regard to their prospective involvement in human therapy and in the construction of advanced functional materials such as magnetically operated biomedical robots.
Collapse
Affiliation(s)
- Miriam Filippi
- Soft Robotics Laboratory, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| | - Francesca Garello
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, Torino, 10126, Italy
| | - Oncay Yasa
- Soft Robotics Laboratory, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| | - Jesil Kasamkattil
- Department of Biomedicine, University Hospital Basel, Hebelstrasse 20, Basel, 4031, Switzerland
| | - Arnaud Scherberich
- Department of Biomedicine, University Hospital Basel, Hebelstrasse 20, Basel, 4031, Switzerland
- Department of Biomedical Engineering, University of Basel, Gewerbestrasse 14, Allschwil, 4123, Switzerland
| | - Robert K Katzschmann
- Soft Robotics Laboratory, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| |
Collapse
|
10
|
Estévez M, Montalbano G, Gallo-Cordova A, Ovejero JG, Izquierdo-Barba I, González B, Tomasina C, Moroni L, Vallet-Regí M, Vitale-Brovarone C, Fiorilli S. Incorporation of Superparamagnetic Iron Oxide Nanoparticles into Collagen Formulation for 3D Electrospun Scaffolds. NANOMATERIALS 2022; 12:nano12020181. [PMID: 35055200 PMCID: PMC8778221 DOI: 10.3390/nano12020181] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 02/01/2023]
Abstract
Nowadays, there is an ever-increasing interest in the development of systems able to guide and influence cell activities for bone regeneration. In this context, we have explored for the first time the combination of type-I collagen and superparamagnetic iron oxide nanoparticles (SPIONs) to design magnetic and biocompatible electrospun scaffolds. For this purpose, SPIONs with a size of 12 nm were obtained by thermal decomposition and transferred to an aqueous medium via ligand exchange with dimercaptosuccinic acid (DMSA). The SPIONs were subsequently incorporated into type-I collagen solutions to prove the processability of the resulting hybrid formulation by means of electrospinning. The optimized method led to the fabrication of nanostructured scaffolds composed of randomly oriented collagen fibers ranging between 100 and 200 nm, where SPIONs resulted distributed and embedded into the collagen fibers. The SPIONs-containing electrospun structures proved to preserve the magnetic properties of the nanoparticles alone, making these matrices excellent candidates to explore the magnetic stimuli for biomedical applications. Furthermore, the biological assessment of these collagen scaffolds confirmed high viability, adhesion, and proliferation of both pre-osteoblastic MC3T3-E1 cells and human bone marrow-derived mesenchymal stem cells (hBM-MSCs).
Collapse
Affiliation(s)
- Manuel Estévez
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, 28040 Madrid, Spain; (M.E.); (B.G.); (M.V.-R.)
| | - Giorgia Montalbano
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Torino, Italy; (G.M.); (C.V.-B.)
| | - Alvaro Gallo-Cordova
- Department of Energy Environment and Health, Instituto de Ciencia de Materiales de Madrid C.S.I.C., Sor Juana Inés de la Cruz 3, Cantoblanco, 28049 Madrid, Spain; (A.G.-C.); (J.G.O.)
| | - Jesús G. Ovejero
- Department of Energy Environment and Health, Instituto de Ciencia de Materiales de Madrid C.S.I.C., Sor Juana Inés de la Cruz 3, Cantoblanco, 28049 Madrid, Spain; (A.G.-C.); (J.G.O.)
| | - Isabel Izquierdo-Barba
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, 28040 Madrid, Spain; (M.E.); (B.G.); (M.V.-R.)
- CIBER de Bioingeniería Biomateriales y Nanomedicina CIBER-BBN, 28040 Madrid, Spain
- Correspondence: (I.I.-B.); (S.F.)
| | - Blanca González
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, 28040 Madrid, Spain; (M.E.); (B.G.); (M.V.-R.)
- CIBER de Bioingeniería Biomateriales y Nanomedicina CIBER-BBN, 28040 Madrid, Spain
| | - Clarissa Tomasina
- Complex Tissue Regeneration Department, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ET Maastricht, The Netherlands; (C.T.); (L.M.)
| | - Lorenzo Moroni
- Complex Tissue Regeneration Department, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ET Maastricht, The Netherlands; (C.T.); (L.M.)
| | - María Vallet-Regí
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, 28040 Madrid, Spain; (M.E.); (B.G.); (M.V.-R.)
- CIBER de Bioingeniería Biomateriales y Nanomedicina CIBER-BBN, 28040 Madrid, Spain
| | - Chiara Vitale-Brovarone
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Torino, Italy; (G.M.); (C.V.-B.)
| | - Sonia Fiorilli
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Torino, Italy; (G.M.); (C.V.-B.)
- Correspondence: (I.I.-B.); (S.F.)
| |
Collapse
|
11
|
Friedrich RP, Cicha I, Alexiou C. Iron Oxide Nanoparticles in Regenerative Medicine and Tissue Engineering. NANOMATERIALS 2021; 11:nano11092337. [PMID: 34578651 PMCID: PMC8466586 DOI: 10.3390/nano11092337] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 12/13/2022]
Abstract
In recent years, many promising nanotechnological approaches to biomedical research have been developed in order to increase implementation of regenerative medicine and tissue engineering in clinical practice. In the meantime, the use of nanomaterials for the regeneration of diseased or injured tissues is considered advantageous in most areas of medicine. In particular, for the treatment of cardiovascular, osteochondral and neurological defects, but also for the recovery of functions of other organs such as kidney, liver, pancreas, bladder, urethra and for wound healing, nanomaterials are increasingly being developed that serve as scaffolds, mimic the extracellular matrix and promote adhesion or differentiation of cells. This review focuses on the latest developments in regenerative medicine, in which iron oxide nanoparticles (IONPs) play a crucial role for tissue engineering and cell therapy. IONPs are not only enabling the use of non-invasive observation methods to monitor the therapy, but can also accelerate and enhance regeneration, either thanks to their inherent magnetic properties or by functionalization with bioactive or therapeutic compounds, such as drugs, enzymes and growth factors. In addition, the presence of magnetic fields can direct IONP-labeled cells specifically to the site of action or induce cell differentiation into a specific cell type through mechanotransduction.
Collapse
|
12
|
Tsukada J, Mela P, Jinzaki M, Tsukada H, Schmitz-Rode T, Vogt F. Development of In Vitro Endothelialised Stents - Review. Stem Cell Rev Rep 2021; 18:179-197. [PMID: 34403073 DOI: 10.1007/s12015-021-10238-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2021] [Indexed: 01/12/2023]
Abstract
Endovascular treatment is prevalent as a primary treatment for coronary and peripheral arterial diseases. Although the introduction of drug-eluting stents (DES) dramatically reduced the risk of in-stent restenosis, stent thrombosis persists as an issue. Notwithstanding improvements in newer generation DES, they are yet to address the urgent clinical need to abolish the late stent complications that result from in-stent restenosis and are associated with late thrombus formation. These often lead to acute coronary syndromes with high mortality in coronary artery disease and acute limb ischemia with a high risk of limb amputation in peripheral arterial disease. Recently, a significant amount of research has focused on alternative solutions to improve stent biocompatibility by using tissue engineering. There are two types of tissue engineering endothelialisation methods: in vitro and in vivo. To date, commercially available in vivo endothelialised stents have failed to demonstrate antithrombotic or anti-stenosis efficacy in clinical trials. In contrast, the in vitro endothelialisation methods exhibit the advantage of monitoring cell type and growth prior to implantation, enabling better quality control. The present review discusses tissue-engineered candidate stents constructed by distinct in vitro endothelialisation approaches, with a particular focus on fabrication processes, including cell source selection, stent material composition, stent surface modifications, efficacy and safety evidence from in vitro and in vivo studies, and future directions.
Collapse
Affiliation(s)
- Jitsuro Tsukada
- Department of Diagnostic Radiology, Nihon University School of Medicine, 30-1, Oyaguchikamicho, Itabashi-ku, Tokyo, 173-8610, Japan. .,Department of Diagnostic Radiology, Keio University School of Medicine, 35, Shinanomachi, Shinjyuku-ku, Tokyo, 160-8582, Japan.
| | - P Mela
- Department of Mechanical Engineering and Munich School of BioEngineering, Technical University of Munich, Boltzmannstr. 15, Garching, Munich, 85748, Germany
| | - M Jinzaki
- Department of Diagnostic Radiology, Keio University School of Medicine, 35, Shinanomachi, Shinjyuku-ku, Tokyo, 160-8582, Japan
| | - H Tsukada
- Department of Surgery II, Tokyo Women's Medical University, 8-1, Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - T Schmitz-Rode
- AME - Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Pauwelsstrasse 30, Aachen, 52074, Germany
| | - F Vogt
- Department of Cardiology, University Hospital RWTH Aachen, Pauwelsstrasse 30, Aachen, 52074, Germany
| |
Collapse
|
13
|
Abstract
With the increasing insight into molecular mechanisms of cardiovascular disease, a promising solution involves directly delivering genes, cells, and chemicals to the infarcted myocardium or impaired endothelium. However, the limited delivery efficiency after administration fails to reach the therapeutic dose and the adverse off-target effect even causes serious safety concerns. Controlled drug release via external stimuli seems to be a promising method to overcome the drawbacks of conventional drug delivery systems (DDSs). Microbubbles and magnetic nanoparticles responding to ultrasound and magnetic fields respectively have been developed as an important component of novel DDSs. In particular, several attempts have also been made for the design and fabrication of dual-responsive DDS. This review presents the recent advances in the ultrasound and magnetic fields responsive DDSs in cardiovascular application, followed by their current problems and future reformation.
Collapse
|
14
|
Ahn YJ, Yun WS, Choi JS, Kim WC, Lee SH, Park DJ, Park JE, Key J, Seo YJ. Biodistribution of poly clustered superparamagnetic iron oxide nanoparticle labeled mesenchymal stem cells in aminoglycoside induced ototoxic mouse model. Biomed Eng Lett 2021; 11:39-53. [PMID: 33747602 DOI: 10.1007/s13534-020-00181-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/02/2020] [Accepted: 12/28/2020] [Indexed: 12/12/2022] Open
Abstract
Recently, application of stem cell therapy in regenerative medicine has become an active field of study. Mesenchymal stem cells (MSCs) are known to have a strong ability for homing. MSCs labeled with superparamagnetic iron oxide nanoparticles (SPIONs) exhibit enhanced homing due to magnetic attraction. We have designed a SPION that has a cluster core of iron oxide-based nanoparticles coated with PLGA-Cy5.5. We optimized the nanoparticles for internalization to enable the transport of PCS nanoparticles through endocytosis into MSCs. The migration of magnetized MSCs with SPION by static magnets was seen in vitro. The auditory hair cells do not regenerate once damaged, ototoxic mouse model was generated by administration of kanamycin and furosemide. SPION labeled MSC's were administered through different injection routes in the ototoxic animal model. As result, the intratympanic administration group with magnet had the highest number of cells in the brain followed by the liver, cochlea, and kidney as compared to those in the control groups. The synthesized PCS (poly clustered superparamagnetic iron oxide) nanoparticles, together with MSCs, by magnetic attraction, could synergistically enhance stem cell delivery. The poly clustered superparamagnetic iron oxide nanoparticle labeled in the mesenchymal stem cells have increased the efficacy of homing of the MSC's to the target area by synergetic effect of magnetic attraction and chemotaxis (SDF-1/CXCR4 axis). This technique allows delivery of the stem cells to the areas with limited vasculatures. The nanoparticle in the biomedicine allows drug delivery, thus, the combination of nanomedicince together with the regenerative medicine will provide highly effective therapy.
Collapse
Affiliation(s)
- Ye Ji Ahn
- Research Institute of Hearing Enhancement, Yonsei University Wonju College of Medicine, Wonju, 26426 South Korea.,Department of Otorhinolaryngology, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju, Gangwon-do 26426 South Korea
| | - Wan Su Yun
- Department of Biomedical Engineering, Yonsei University, 1 Yonseidae-gil, Wonju, Gangwon- do 26493 South Korea
| | - Jin Sil Choi
- Research Institute of Hearing Enhancement, Yonsei University Wonju College of Medicine, Wonju, 26426 South Korea.,Department of Otorhinolaryngology, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju, Gangwon-do 26426 South Korea
| | - Woo Cheol Kim
- Department of Biomedical Engineering, Yonsei University, 1 Yonseidae-gil, Wonju, Gangwon- do 26493 South Korea
| | - Su Hoon Lee
- Research Institute of Hearing Enhancement, Yonsei University Wonju College of Medicine, Wonju, 26426 South Korea.,Department of Otorhinolaryngology, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju, Gangwon-do 26426 South Korea
| | - Dong Jun Park
- Research Institute of Hearing Enhancement, Yonsei University Wonju College of Medicine, Wonju, 26426 South Korea.,Department of Otorhinolaryngology, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju, Gangwon-do 26426 South Korea
| | - Jeong Eun Park
- Research Institute of Hearing Enhancement, Yonsei University Wonju College of Medicine, Wonju, 26426 South Korea.,Department of Otorhinolaryngology, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju, Gangwon-do 26426 South Korea
| | - Jaehong Key
- Department of Biomedical Engineering, Yonsei University, 1 Yonseidae-gil, Wonju, Gangwon- do 26493 South Korea
| | - Young Joon Seo
- Research Institute of Hearing Enhancement, Yonsei University Wonju College of Medicine, Wonju, 26426 South Korea.,Department of Otorhinolaryngology, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju, Gangwon-do 26426 South Korea
| |
Collapse
|
15
|
Abstract
Therapeutic viral gene delivery is an emerging technology which aims to correct genetic mutations by introducing new genetic information to cells either to correct a faulty gene or to initiate cell death in oncolytic treatments. In recent years, significant scientific progress has led to several clinical trials resulting in the approval of gene therapies for human treatment. However, successful therapies remain limited due to a number of challenges such as inefficient cell uptake, low transduction efficiency (TE), limited tropism, liver toxicity and immune response. To adress these issues and increase the number of available therapies, additives from a broad range of materials like polymers, peptides, lipids, nanoparticles, and small molecules have been applied so far. The scope of this review is to highlight these selected delivery systems from a materials perspective.
Collapse
Affiliation(s)
- Kübra Kaygisiz
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | | |
Collapse
|
16
|
Wang S, Guo X, Ren L, Wang B, Hou L, Zhou H, Gao Q, Gao Y, Wang L. Targeting and deep-penetrating delivery strategy for stented coronary artery by magnetic guidance and ultrasound stimulation. ULTRASONICS SONOCHEMISTRY 2020; 67:105188. [PMID: 32473543 DOI: 10.1016/j.ultsonch.2020.105188] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/30/2020] [Accepted: 05/24/2020] [Indexed: 05/13/2023]
Abstract
Stent placement is an effective treatment for atherosclerosis, but is suffered from in-stent restenosis (ISR) caused by stent mechanical damage. Conventional ISR treatment such as drug-eluting stents (DES) is challenged by the low therapeutic efficacy and severe complications, unchangeable drug dosage for individuals, and limited drug penetration in the vascular tissue. We hypothesize that magnetic targeting and deep-penetrating delivery strategy by magnetic guidance and ultrasound stimulation might be an effective approach for ISR treatment. In the present study, antiproliferative drug (paclitaxel, PTX) loaded poly (lactide-co-glycolide) (PLGA) nanoparticles (PLGA-PTX) were embedded within the shells of the magnetic nanoparticle coated microbubbles (MMB-PLGA-PTX). Once being targeted to the stent under a magnetic field, a low intensity focused ultrasound (LIFU) is applied to activate stable microbubble oscillations, thereby triggering the release of PLGA-PTX. The generated mechanical force and microstreaming facilitate the penetration of released PLGA-PTX into the thickened vascular tissue and enhance their internalization by smooth muscle cells (SMCs), thereby reducing the clearance by blood flow. In an ex vivo experiment, magnetic targeting improved the accumulation amount of MMB-PLGA-PTX by 10 folds, while the LIFU facilitated the penetration of released PLGA-PTX into the tunica media region of the porcine coronary artery, resulting in prolonged retention time at the stented vascular tissue. With the combination effects, this strategy holds great promise in the precision delivery of antiproliferative drugs to the stented vascular tissue for ISR treatment.
Collapse
Affiliation(s)
- Siyu Wang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Xixi Guo
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Lili Ren
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Bo Wang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Lixin Hou
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Hao Zhou
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Qinchang Gao
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Yu Gao
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China.
| | - Lianhui Wang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China.
| |
Collapse
|
17
|
Battig MR, Alferiev IS, Guerrero DT, Fishbein I, Pressly BB, Levy RJ, Chorny M. Experimental Single-Platform Approach to Enhance the Functionalization of Magnetically Targetable Cells. ACS APPLIED BIO MATERIALS 2020; 3:3914-3922. [PMID: 33251488 DOI: 10.1021/acsabm.0c00466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Magnetic guidance shows promise as a strategy for improving the delivery and performance of cell therapeutics. However, clinical translation of magnetically guided cell therapy requires cell functionalization protocols that provide adequate magnetic properties in balance with unaltered cell viability and biological function. Existing methodologies for characterizing cells functionalized with magnetic nanoparticles (MNP) produce aggregate results, both distorted and unable to reflect variability in either magnetic or biological properties within a preparation. In the present study, we developed an inverted-plate assay allowing determination of these characteristics using a single-platform approach, and applied this method for a comparative analysis of two loading protocols providing highly uniform vs. uneven MNP distribution across cells. MNP uptake patterns remarkably different between the two protocols were first shown by fluorimetry carried out in a well-scan mode on endothelial cells (EC) loaded with BODIPY558/568-labeled MNP. Using the inverted-plate assay we next demonstrated that, in stark contrast to unevenly loaded cells, more than 50% of uniformly functionalized EC were captured within 5 min over a broad range of MNP doses. Furthermore, magnetically captured cells exhibited unaltered viability, substrate attachment, and proliferation rates. Conducted in parallel, magnetophoretic mobility studies corroborated the markedly superior guidance capacity of uniformly functionalized cells, confirming substantially faster cell capture kinetics on a clinically relevant time scale. Taken together, these results emphasize the importance of optimizing cell preparation protocols with regard to loading uniformity as key to efficient site-specific delivery, engraftment, and expansion of the functionalized cells, essential for both improving performance and facilitating translation of targeted cell therapeutics.
Collapse
Affiliation(s)
- Mark R Battig
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Ivan S Alferiev
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - David T Guerrero
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Ilia Fishbein
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Benjamin B Pressly
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Robert J Levy
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Michael Chorny
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| |
Collapse
|
18
|
Unak P, Tekin V, Guldu OK, Aras O. 89Zr Labeled Fe 3O 4@TiO 2 Nanoparticles: In Vitro Afffinities with Breast and Prostate Cancer Cells. Appl Organomet Chem 2020; 34:e5616. [PMID: 34732968 PMCID: PMC8562718 DOI: 10.1002/aoc.5616] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 02/16/2020] [Indexed: 11/09/2023]
Abstract
In this study, Fe3O4@TiO2 nanoparticles were synthesized as a new Positron Emission Tomography/Magnetic Resonance Imaging (PET/MRI) hybrid imaging agent and radiolabeled with 89Zr. In addition, Fe3O4 nanoparticles were synthesized and radiolabeled with 89Zr. Df-Bz-NCS was used as bifunctional ligand. The nanoconjugates were characterized with transmission electron microscopy, scanning electron microscopy, and dynamic light scattering. Radiolabeling yields were 100%. Breast and prostate cancer cell affinities and cytotoxicity were determined using in vitro cell culture assays. The results demonstrated that Fe3O4@TiO2 nanoparticles are promising for PET/MR imaging. Finally, unlike Fe3O4 nanoparticles, Fe3O4@TiO2 nanoparticles showed a fluorescence spectrum at an excitation wavelength of 250 nm and an emission wavelength of 314 nm. Therefore, in addition to bearing the magnetic properties of Fe3O4 nanoparticles, Fe3O4@TiO2 nanoparticles display fluorescence emission. This provides them with photodynamic therapy potential. Therefore multimodal treatment was performed with the combination of PDT and RT by using human prostate cancer cell line (PC3). The development of 89Zr-Df-Bz-NCS-Fe3O4@TiO2 nanoparticles as a new multifunctional PET/MRI agent with photodynamic therapy and hyperthermia therapeutic ability would be very useful.
Collapse
Affiliation(s)
- Perihan Unak
- Ege University, Institute of Nuclear Sciences, Department of Nuclear Applications, 35100 Bornova Izmir, Turkey
| | - Volkan Tekin
- Ege University, Institute of Nuclear Sciences, Department of Nuclear Applications, 35100 Bornova Izmir, Turkey
| | - Ozge Kozgus Guldu
- Ege University, Institute of Nuclear Sciences, Department of Nuclear Applications, 35100 Bornova Izmir, Turkey
| | - Omer Aras
- Memorial Sloan Kettering Cancer Center, Department of Radiology, 1275 York Avenue, New York, NY, 10065, USA
| |
Collapse
|
19
|
Chen J, Wang S, Wu Z, Wei Z, Zhang W, Li W. Anti-CD34-Grafted Magnetic Nanoparticles Promote Endothelial Progenitor Cell Adhesion on an Iron Stent for Rapid Endothelialization. ACS OMEGA 2019; 4:19469-19477. [PMID: 31763571 PMCID: PMC6868894 DOI: 10.1021/acsomega.9b03016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 10/30/2019] [Indexed: 05/05/2023]
Abstract
Iron stents, with superior mechanical properties and controllable degradation behavior, have potential for use as feasible substitutes for nondegradable stents in the treatment of coronary artery occlusion. However, corrosion renders the iron surface hard to modify with biological molecules to accelerate endothelialization and solve restenosis. The objective of this study is to demonstrate the feasibility of using endothelial progenitor cells (EPCs) to rapidly adhere onto iron surfaces with the assistance of anti-CD34-modified magnetic nanoparticles. Transmission electron microscopy, Fourier transform infrared spectroscopy, Thermogravimetric analysis, XRD, and anti-CD34 immunofluorescence suggested that anti-CD34 and citric acid were successfully modified onto Fe3O4, and Prussian blue staining demonstrated the selectivity of the as-prepared nanoparticles for EPCs. Under an external magnetic field (EMF), numerous nanoparticles or EPCs attached onto the surface of iron pieces, particularly the side of the iron pieces exposed to flow conditions, because iron could be magnetized under the EMF, and the magnetized iron has an edge effect. However, the uniform adhesion of EPCs on the iron stent was completed because of the weakening edge effect, and the sum of adherent EPCs was closely linked with the magnetic field (MF) intensity, which was validated by the complete covering of EPCs on the iron stent upon exposure to a 300 mT EMF within 3 h, whereas almost no cells were observed on the iron stent without an EMF. These results verify that this method can efficiently promote EPC capture and endothelialization of iron stents.
Collapse
Affiliation(s)
- Jialong Chen
- Stomatologic Hospital and College,
Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, Anhui 230032, China
| | - Shuang Wang
- Stomatologic Hospital and College,
Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, Anhui 230032, China
| | - ZiChen Wu
- Stomatologic Hospital and College,
Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, Anhui 230032, China
| | - Zhangao Wei
- Stomatologic Hospital and College,
Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, Anhui 230032, China
| | - Weibo Zhang
- Stomatologic Hospital and College,
Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, Anhui 230032, China
| | - Wei Li
- Stomatologic Hospital and College,
Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, Anhui 230032, China
| |
Collapse
|
20
|
Sanz-Ortega L, Rojas JM, Portilla Y, Pérez-Yagüe S, Barber DF. Magnetic Nanoparticles Attached to the NK Cell Surface for Tumor Targeting in Adoptive Transfer Therapies Does Not Affect Cellular Effector Functions. Front Immunol 2019; 10:2073. [PMID: 31543880 PMCID: PMC6728794 DOI: 10.3389/fimmu.2019.02073] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 08/16/2019] [Indexed: 02/05/2023] Open
Abstract
Adoptive cell transfer therapy is currently one of the most promising approaches for cancer treatment. This therapy has some limitations, however, such as the dispersion of in vivo-administered cells, causing only a small proportion to reach the tumor. Nanotechnological approaches could offer a solution for this drawback, as they can increase cell retention and accumulation in a region of interest. In particular, strategies employing magnetic nanoparticles (MNPs) to improve targeting of adoptively transferred T or NK cells have been explored in mice. In vivo magnetic retention is reported using the human NK cell line NK-92MI transfected with MNPs. Primary NK cells are nonetheless highly resistant to transfection, and thus we explore in here the possibility of attaching the MNPs to the NK cell surface to overcome this issue, and examine whether this association would affect NK effector functions. We assessed the attachment of MNPs coated with different polymers to the NK cell surface, and found that APS-MNP attached more efficiently to the NK-92MI cell surface. In association with MNPs, these cells preserved their main functions, exhibiting a continued capacity to degranulate, conjugate with and lyse target cells, produce IFN-γ, and respond to chemotactic signals. MNP-loaded NK-92MI cells were also retained in an in vitro capillary flow system by applying an EMF. A similar analysis was carried out in primary NK cells, isolated from mice, and expanded in vitro. These primary murine NK cells also maintained their functionality intact after MNP treatment and were successfully retained in vitro. This work therefore provides further support for using MNPs in combination with EMFs to favor specific retention of functional NK cells in a region of interest, which may prove beneficial to adoptive cell-therapy protocols.
Collapse
Affiliation(s)
- Laura Sanz-Ortega
- Department of Immunology and Oncology, and NanoBiomedicine Initiative, Centro Nacional de Biotecnología (CNB)-CSIC, Madrid, Spain
| | - José M Rojas
- Department of Immunology and Oncology, and NanoBiomedicine Initiative, Centro Nacional de Biotecnología (CNB)-CSIC, Madrid, Spain
| | - Yadileiny Portilla
- Department of Immunology and Oncology, and NanoBiomedicine Initiative, Centro Nacional de Biotecnología (CNB)-CSIC, Madrid, Spain
| | - Sonia Pérez-Yagüe
- Department of Immunology and Oncology, and NanoBiomedicine Initiative, Centro Nacional de Biotecnología (CNB)-CSIC, Madrid, Spain
| | - Domingo F Barber
- Department of Immunology and Oncology, and NanoBiomedicine Initiative, Centro Nacional de Biotecnología (CNB)-CSIC, Madrid, Spain
| |
Collapse
|
21
|
Guryanov I, Naumenko E, Konnova S, Lagarkova M, Kiselev S, Fakhrullin R. Spatial manipulation of magnetically-responsive nanoparticle engineered human neuronal progenitor cells. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2019; 20:102038. [PMID: 31220595 DOI: 10.1016/j.nano.2019.102038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 04/18/2019] [Accepted: 06/05/2019] [Indexed: 02/07/2023]
Abstract
Here we report a detailed investigation of the interaction of neuronal progenitor cells and neurons with polyelectrolyte-stabilized magnetic iron oxide nanoparticles. Human neuronal progenitor and neurons were differentiated in vitro from fibroblast-derived induced pluripotent stem cells. The cytotoxic effects of poly(allylamine hydrochloride) were determined on human skin fibroblasts and neuronal progenitor cells. Immunocytochemical staining of lamins A/C and B in cells treated separately with poly(allylamine hydrochloride) and magnetic nanoparticles allowed to exclude these nuclear components as targets of toxic effects. We demonstrate that magnetic nanoparticles accumulated in cytoplasm and on the surface of neuronal progenitor cells neither interacted with the nuclear envelope nor penetrated into the nuclei of neuronal cells. The possibility of guidance of magnetically functionalized neuronal progenitor cells under magnetic field was demonstrated. Magnetization of progenitor cells using poly(allylaminehydrochloride)-stabilized magnetic nanoparticles allows for successful managing their in vitro localization in a monolayer.
Collapse
Affiliation(s)
- Ivan Guryanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Republic of Tatarstan, Russian Federation
| | - Ekaterina Naumenko
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Republic of Tatarstan, Russian Federation
| | - Svetlana Konnova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Republic of Tatarstan, Russian Federation
| | - Maria Lagarkova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russian Federation; Scientific-Research Institute of Physical-Chemical Medicine, Moscow, Russian Federation
| | - Sergey Kiselev
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russian Federation
| | - Rawil Fakhrullin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Republic of Tatarstan, Russian Federation.
| |
Collapse
|
22
|
Farzamfar S, Nazeri N, Salehi M, Valizadeh A, Marashi SM, Savari Kouzehkonan G, Ghanbari H. Will Nanotechnology Bring New Hope for Stem Cell Therapy? Cells Tissues Organs 2019; 206:229-241. [PMID: 31288229 DOI: 10.1159/000500517] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 04/21/2019] [Indexed: 01/05/2025] Open
Abstract
The potential of stem cell therapy has been shown in preclinical trials for the treatment of damage and replacement of organs and degenerative diseases. After many years of research, its clinical application is limited. Currently there is not a single stem cell therapy product or procedure. Nanotechnology is an emerging field in medicine and has huge potential due to its unique characteristics such as its size, surface effects, tunnel effects, and quantum size effect. The importance of application of nanotechnology in stem cell technology and cell-based therapies has been recognized. In particular, the effects of nanotopography on stem cell differentiation, proliferation, and adhesion have become an area of intense research in tissue engineering and regenerative medicine. Despite the many opportunities that nanotechnology can create to change the fate of stem cell technology and cell therapies, it poses several risks since some nanomaterials are cytotoxic and can affect the differentiation program of stem cells and their viability. Here we review some of the advances and the prospects of nanotechnology in stem cell research and cell-based therapies and discuss the issues, obstacles, applications, and approaches with the aim of opening new avenues for further research.
Collapse
Affiliation(s)
- Saeed Farzamfar
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Niloofar Nazeri
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran,
| | - Majid Salehi
- Tissue Engineering and Stem Cell Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Alireza Valizadeh
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sayed Mahdi Marashi
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Savari Kouzehkonan
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Ghanbari
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Hemodynamic Effects on Particle Targeting in the Arterial Bifurcation for Different Magnet Positions. Molecules 2019; 24:molecules24132509. [PMID: 31324029 PMCID: PMC6650837 DOI: 10.3390/molecules24132509] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/05/2019] [Accepted: 07/08/2019] [Indexed: 12/22/2022] Open
Abstract
The present study investigated the possibilities and feasibility of drug targeting for an arterial bifurcation lesion to influence the host healing response. A micrometer sized iron particle was used only to model the magnetic carrier in the experimental investigation (not intended for clinical use), to demonstrate the feasibility of the particle targeting at the lesion site and facilitate the new experimental investigations using coated superparamagnetic iron oxide nanoparticles. Magnetic fields were generated by a single permanent external magnet (ferrite magnet). Artery bifurcation exerts severe impacts on drug distribution, both in the main vessel and the branches, practically inducing an uneven drug concentration distribution in the bifurcation lesion area. There are permanently positioned magnets in the vicinity of the bifurcation near the diseased area. The generated magnetic field induced deviation of the injected ferromagnetic particles and were captured onto the vessel wall of the test section. To increase the particle accumulation in the targeted region and consequently avoid the polypharmacology (interaction of the injected drug particles with multiple target sites), it is critical to understand flow hemodynamics and the correlation between flow structure, magnetic field gradient, and spatial position.
Collapse
|
24
|
Ahn YJ, Kong TH, Choi JS, Yun WS, Key J, Seo YJ. Strategies to enhance efficacy of SPION-labeled stem cell homing by magnetic attraction: a systemic review with meta-analysis. Int J Nanomedicine 2019; 14:4849-4866. [PMID: 31308662 PMCID: PMC6613362 DOI: 10.2147/ijn.s204910] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 05/14/2019] [Indexed: 12/13/2022] Open
Abstract
Stem cells possess a promising potential in the clinical field. The application and effective delivery of stem cells to the desired target organ or site of injury plays an important role. This review describes strategies on understanding the effective delivery of stem cells labeled with superparamagnetic iron oxide nanoparticles (SPION) using an external magnet to enhance stem cell migration in vivo and in vitro. Fourteen total publications among 174 articles were selected. Stem cell type, SPION characteristics, labeling time, and magnetic force in vivo are considered important factors affecting the effective delivery of stem cells to the homing site. Most papers reported that the efficiency was increased when magnet is applied compared to those without. Ten studies analyzed the homing competency of SPION-labeled MSCs in vitro by observing the migration of the cell toward the external magnet. In cell-based experiments, the mechanism of magnetic attraction, the kind of nanoparticles, and various stem cells were studied well. Meta-analysis has shown the mean size of nanoparticles and degree of recovery or regeneration of damaged target organs upon in vivo studies. This strategy may provide a guideline for designing studies involving stem cell homing and further expand stem cell.
Collapse
Affiliation(s)
- Ye Ji Ahn
- Research Institute of Hearing Enhancement, Yonsei University Wonju College of Medicine, Wonju, South Korea.,Department of Otorhinolaryngology, Yonsei University Wonju College of Medicine, Wonju, South Korea
| | - Tae Hoon Kong
- Research Institute of Hearing Enhancement, Yonsei University Wonju College of Medicine, Wonju, South Korea.,Department of Otorhinolaryngology, Yonsei University Wonju College of Medicine, Wonju, South Korea
| | - Jin Sil Choi
- Research Institute of Hearing Enhancement, Yonsei University Wonju College of Medicine, Wonju, South Korea.,Department of Otorhinolaryngology, Yonsei University Wonju College of Medicine, Wonju, South Korea
| | - Wan Su Yun
- Department of Biomedical Engineering, Yonsei University, Wonju, South Korea
| | - Jaehong Key
- Department of Biomedical Engineering, Yonsei University, Wonju, South Korea
| | - Young Joon Seo
- Research Institute of Hearing Enhancement, Yonsei University Wonju College of Medicine, Wonju, South Korea.,Department of Otorhinolaryngology, Yonsei University Wonju College of Medicine, Wonju, South Korea
| |
Collapse
|
25
|
Zhang BF, Jiang H, Chen J, Hu Q, Yang S, Liu XP. Silica-coated magnetic nanoparticles labeled endothelial progenitor cells alleviate ischemic myocardial injury and improve long-term cardiac function with magnetic field guidance in rats with myocardial infarction. J Cell Physiol 2019; 234:18544-18559. [PMID: 30982985 PMCID: PMC6617719 DOI: 10.1002/jcp.28492] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/12/2019] [Accepted: 02/14/2019] [Indexed: 01/03/2023]
Abstract
Low retention of endothelial progenitor cells (EPCs) in the infarct area has been suggested to be responsible for the poor clinical efficacy of EPC therapy for myocardial infarction (MI). This study aimed to evaluate whether magnetized EPCs guided through an external magnetic field could augment the aggregation of EPCs in an ischemia area, thereby enhancing therapeutic efficacy. EPCs from male rats were isolated and labeled with silica‐coated magnetic iron oxide nanoparticles to form magnetized EPCs. Then, the proliferation, migration, vascularization, and cytophenotypic markers of magnetized EPCs were analyzed. Afterward, the magnetized EPCs (1 × 106) were transplanted into a female rat model of MI via the tail vein at 7 days after MI with or without the guidance of an external magnet above the infarct area. Cardiac function, myocardial fibrosis, and the apoptosis of cardiomyocytes were observed at 4 weeks after treatment. In addition, EPC retention and the angiogenesis of ischemic myocardium were evaluated. Labeling with magnetic nanoparticles exhibited minimal influence to the biological functions of EPCs. The transplantation of magnetized EPCs guided by an external magnet significantly improved the cardiac function, decreased infarction size, and reduced myocardial apoptosis in MI rats. Moreover, enhanced aggregations of magnetized EPCs in the infarcted border zone were observed in rats with external magnet‐guided transplantation, accompanied by the significantly increased density of microvessels and upregulated the expression of proangiogenic factors, when compared with non‐external‐magnet‐guided rats. The magnetic field‐guided transplantation of magnetized EPCs was associated with the enhanced aggregation of EPCs in the infarcted border zone, thereby improving the therapeutic efficacy of MI.
Collapse
Affiliation(s)
- Bo-Fang Zhang
- Department of Cardiology, Hubei Key Laboratory of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Hong Jiang
- Department of Cardiology, Hubei Key Laboratory of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Jing Chen
- Department of Cardiology, Hubei Key Laboratory of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Qi Hu
- Department of Cardiology, Hubei Key Laboratory of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Shuo Yang
- Department of Cardiology, Hubei Key Laboratory of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Xiao-Pei Liu
- Department of Cardiology, Hubei Key Laboratory of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Wuhan, China
| |
Collapse
|
26
|
Baiazitova L, Skopalik J, Chmelik J, Zumberg I, Cmiel V, Polakova K, Provaznik I. The Effect of Rhodamine-Derived Superparamagnetic Maghemite Nanoparticles on the Motility of Human Mesenchymal Stem Cells and Mouse Embryonic Fibroblast Cells. Molecules 2019; 24:molecules24071192. [PMID: 30934664 PMCID: PMC6479307 DOI: 10.3390/molecules24071192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/21/2019] [Accepted: 03/23/2019] [Indexed: 01/09/2023] Open
Abstract
Nanoparticles have become popular in life sciences in the last few years. They have been produced in many variants and have recently been used in both biological experiments and in clinical applications. Due to concerns over nanomaterial risks, there has been a dramatic increase in investigations focused on safety research. The aim of this paper is to present the advanced testing of rhodamine-derived superparamagnetic maghemite nanoparticles (SAMN-R), which are used for their nontoxicity, biocompatibility, biodegradability, and magnetic properties. Recent results were expanded upon from the basic cytotoxic tests to evaluate cell proliferation and migration potential. Two cell types were used for the cell proliferation and tracking study: mouse embryonic fibroblast cells (3T3) and human mesenchymal stem cells (hMSCs). Advanced microscopic methods allowed for the precise quantification of the function of both cell types. This study has demonstrated that a dose of nanoparticles lower than 20 µg·cm−2 per area of the dish does not negatively affect the cells’ morphology, migration, cytoskeletal function, proliferation, potential for wound healing, and single-cell migration in comparison to standard CellTracker™ Green CMFDA (5-chloromethylfluorescein diacetate). A higher dose of nanoparticles could be a potential risk for cytoskeletal folding and detachment of the cells from the solid extracellular matrix.
Collapse
Affiliation(s)
- Larisa Baiazitova
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 3082/12, 61600 Brno, Czech Republic.
| | - Josef Skopalik
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 3082/12, 61600 Brno, Czech Republic.
| | - Jiri Chmelik
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 3082/12, 61600 Brno, Czech Republic.
| | - Inna Zumberg
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 3082/12, 61600 Brno, Czech Republic.
| | - Vratislav Cmiel
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 3082/12, 61600 Brno, Czech Republic.
| | - Katerina Polakova
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University, 17 listopadu 12, 771 46 Olomouc, Czech Republic.
| | - Ivo Provaznik
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 3082/12, 61600 Brno, Czech Republic.
| |
Collapse
|
27
|
Patrick PS, Bogart LK, Macdonald TJ, Southern P, Powell MJ, Zaw-Thin M, Voelcker NH, Parkin IP, Pankhurst QA, Lythgoe MF, Kalber TL, Bear JC. Surface radio-mineralisation mediates chelate-free radiolabelling of iron oxide nanoparticles. Chem Sci 2019; 10:2592-2597. [PMID: 30996974 PMCID: PMC6419938 DOI: 10.1039/c8sc04895a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 01/09/2019] [Indexed: 01/06/2023] Open
Abstract
We introduce the concept of surface radio-mineralisation (SRM) to describe the chelate-free radiolabelling of iron-oxide and ferrite nanoparticles. We demonstrate the effectiveness of SRM with both 111In and 89Zr for bare, polymer-matrix multicore, and surface-functionalised magnetite/maghemite nanoparticles; and for bare Y3Fe5O12 nanoparticles. By analogy with geological mineralisation (the hydrothermal deposition of metals as minerals in ore bodies or lodes) we demonstrate that the heat-induced and aqueous SRM process deposits radiometal-oxides onto the nanoparticle or core surfaces, passing through the matrix or coating if present, without changing the size, structure, or magnetic properties of the nanoparticle or core. We show in a mouse model followed over 7 days that the SRM is sufficient to allow quantitative, non-invasive, prolonged, whole-body localisation of injected nanoparticles with nuclear imaging.
Collapse
Affiliation(s)
- P Stephen Patrick
- Centre for Advanced Biomedical Imaging (CABI) , Department of Medicine , University College London , London WC1E 6DD , UK .
| | - Lara K Bogart
- UCL Healthcare Biomagnetics Laboratory , 21 Albemarle Street , London , W1S 4BS , UK
| | - Thomas J Macdonald
- Materials Chemistry Centre , Department of Chemistry , University College London , 20 Gordon Street , London , WC1H 0AJ , UK
| | - Paul Southern
- UCL Healthcare Biomagnetics Laboratory , 21 Albemarle Street , London , W1S 4BS , UK
| | - Michael J Powell
- Materials Chemistry Centre , Department of Chemistry , University College London , 20 Gordon Street , London , WC1H 0AJ , UK
| | - May Zaw-Thin
- Centre for Advanced Biomedical Imaging (CABI) , Department of Medicine , University College London , London WC1E 6DD , UK .
| | - Nicolas H Voelcker
- Monash Institute of Pharmaceutical Sciences , Monash University , Parkville , Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) , Clayton , Australia
| | - Ivan P Parkin
- Materials Chemistry Centre , Department of Chemistry , University College London , 20 Gordon Street , London , WC1H 0AJ , UK
| | - Quentin A Pankhurst
- UCL Healthcare Biomagnetics Laboratory , 21 Albemarle Street , London , W1S 4BS , UK
| | - Mark F Lythgoe
- Centre for Advanced Biomedical Imaging (CABI) , Department of Medicine , University College London , London WC1E 6DD , UK .
| | - Tammy L Kalber
- Centre for Advanced Biomedical Imaging (CABI) , Department of Medicine , University College London , London WC1E 6DD , UK .
| | - Joseph C Bear
- School of Life Science, Pharmacy & Chemistry , Kingston University , Penrhyn Road , Kingston upon Thames , KT1 2EE , UK .
| |
Collapse
|
28
|
Sanz-Ortega L, Rojas JM, Marcos A, Portilla Y, Stein JV, Barber DF. T cells loaded with magnetic nanoparticles are retained in peripheral lymph nodes by the application of a magnetic field. J Nanobiotechnology 2019; 17:14. [PMID: 30670029 PMCID: PMC6341614 DOI: 10.1186/s12951-019-0440-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/03/2019] [Indexed: 01/07/2023] Open
Abstract
Background T lymphocytes are highly dynamic elements of the immune system with a tightly regulated migration. T cell-based transfer therapies are promising therapeutic approaches which in vivo efficacy is often limited by the small proportion of administered cells that reaches the region of interest. Manipulating T cell localisation to improve specific targeting will increase the effectiveness of these therapies. Nanotechnology has been successfully used for localized release of drugs and biomolecules. In particular, magnetic nanoparticles (MNPs) loaded with biomolecules can be specifically targeted to a location by an external magnetic field (EMF). The present work studies whether MNP-loaded T cells could be targeted and retained in vitro and in vivo at a site of interest with an EMF. Results T cells were unable to internalize the different MNPs used in this study, which remained in close association with the cell membrane. T cells loaded with an appropriate MNP concentration were attracted to an EMF and retained in an in vitro capillary flow-system. MNP-loaded T cells were also magnetically retained in the lymph nodes after adoptive transfer in in vivo models. This enhanced in vivo retention was in part due to the EMF application and to a reduced circulating cell speed within the organ. This combined use of MNPs and EMFs did not alter T cell viability or function. Conclusions These studies reveal a promising approach to favour cell retention that could be implemented to improve cell-based therapy.![]() Electronic supplementary material The online version of this article (10.1186/s12951-019-0440-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Laura Sanz-Ortega
- Department of Immunology and Oncology, and NanoBiomedicine Initiative, Centro Nacional de Biotecnología (CNB)-CSIC, Darwin 3, Cantoblanco, 28049, Madrid, Spain
| | - José M Rojas
- Department of Immunology and Oncology, and NanoBiomedicine Initiative, Centro Nacional de Biotecnología (CNB)-CSIC, Darwin 3, Cantoblanco, 28049, Madrid, Spain.,Animal Health Research Centre (CISA)-INIA, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Valdeolmos, 28130, Madrid, Spain
| | - Ana Marcos
- Theodor Kocher Institute, University of Bern, 3012, Bern, Switzerland.,Section of Medicine, Department of Oncology, Microbiology and Immunology, University of Fribourg, 1700, Fribourg, Switzerland
| | - Yadileiny Portilla
- Department of Immunology and Oncology, and NanoBiomedicine Initiative, Centro Nacional de Biotecnología (CNB)-CSIC, Darwin 3, Cantoblanco, 28049, Madrid, Spain
| | - Jens V Stein
- Theodor Kocher Institute, University of Bern, 3012, Bern, Switzerland.,Section of Medicine, Department of Oncology, Microbiology and Immunology, University of Fribourg, 1700, Fribourg, Switzerland
| | - Domingo F Barber
- Department of Immunology and Oncology, and NanoBiomedicine Initiative, Centro Nacional de Biotecnología (CNB)-CSIC, Darwin 3, Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|
29
|
Kerans FFA, Lungaro L, Azfer A, Salter DM. The Potential of Intrinsically Magnetic Mesenchymal Stem Cells for Tissue Engineering. Int J Mol Sci 2018; 19:E3159. [PMID: 30322202 PMCID: PMC6214112 DOI: 10.3390/ijms19103159] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/04/2018] [Accepted: 10/09/2018] [Indexed: 12/16/2022] Open
Abstract
The magnetization of mesenchymal stem cells (MSC) has the potential to aid tissue engineering approaches by allowing tracking, targeting, and local retention of cells at the site of tissue damage. Commonly used methods for magnetizing cells include optimizing uptake and retention of superparamagnetic iron oxide nanoparticles (SPIONs). These appear to have minimal detrimental effects on the use of MSC function as assessed by in vitro assays. The cellular content of magnetic nanoparticles (MNPs) will, however, decrease with cell proliferation and the longer-term effects on MSC function are not entirely clear. An alternative approach to magnetizing MSCs involves genetic modification by transfection with one or more genes derived from Magnetospirillum magneticum AMB-1, a magnetotactic bacterium that synthesizes single-magnetic domain crystals which are incorporated into magnetosomes. MSCs with either or mms6 and mmsF genes are followed by bio-assimilated synthesis of intracytoplasmic magnetic nanoparticles which can be imaged by magnetic resonance (MR) and which have no deleterious effects on MSC proliferation, migration, or differentiation. The stable transfection of magnetosome-associated genes in MSCs promotes assimilation of magnetic nanoparticle synthesis into mammalian cells with the potential to allow MR-based cell tracking and, through external or internal magnetic targeting approaches, enhanced site-specific retention of cells for tissue engineering.
Collapse
Affiliation(s)
- Fransiscus F A Kerans
- Centre for Genomics and Experimental Medicine, MRC IGMM, University of Edinburgh, Edinburgh EH4 2XU, UK.
| | - Lisa Lungaro
- Centre for Genomics and Experimental Medicine, MRC IGMM, University of Edinburgh, Edinburgh EH4 2XU, UK.
| | - Asim Azfer
- Centre for Genomics and Experimental Medicine, MRC IGMM, University of Edinburgh, Edinburgh EH4 2XU, UK.
| | - Donald M Salter
- Centre for Genomics and Experimental Medicine, MRC IGMM, University of Edinburgh, Edinburgh EH4 2XU, UK.
| |
Collapse
|
30
|
Harrison R, Lugo Leija HA, Strohbuecker S, Crutchley J, Marsh S, Denning C, El Haj A, Sottile V. Development and validation of broad-spectrum magnetic particle labelling processes for cell therapy manufacturing. Stem Cell Res Ther 2018; 9:248. [PMID: 30257709 PMCID: PMC6158868 DOI: 10.1186/s13287-018-0968-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/26/2018] [Accepted: 08/02/2018] [Indexed: 12/20/2022] Open
Abstract
Background Stem cells are increasingly seen as a solution for many health challenges for an ageing population. However, their potential benefits in the clinic are currently curtailed by technical challenges such as high cell dose requirements and point of care delivery, which pose sourcing and logistics challenges. Cell manufacturing solutions are currently in development to address the supply issue, and ancillary technologies such as nanoparticle-based labelling are being developed to improve stem cell delivery and enable post-treatment follow-up. Methods The application of magnetic particle (MP) labelling to potentially scalable cell manufacturing processes was investigated in a range of therapeutically relevant cells, including mesenchymal stromal cells (MSC), cardiomyocytes (CMC) and neural progenitor cells (ReN). The efficiency and the biological effect of particle labelling were analysed using fluorescent imaging and cellular assays. Results Flow cytometry and fluorescent microscopy confirmed efficient labelling of monolayer cultures. Viability was shown to be retained post labelling for all three cell types. MSC and CMC demonstrated higher tolerance to MP doses up to 100× the standard concentration. This approach was also successful for MP labelling of suspension cultures, demonstrating efficient MP uptake within 3 h, while cell viability was unaffected by this suspension labelling process. Furthermore, a procedure to enable the storing of MP-labelled cell populations to facilitate cold chain transport to the site of clinical use was investigated. When MP-labelled cells were stored in hypothermic conditions using HypoThermosol solution for 24 h, cell viability and differentiation potential were retained post storage for ReN, MSC and beating CMC. Conclusions Our results show that a generic MP labelling strategy was successfully developed for a range of clinically relevant cell populations, in both monolayer and suspension cultures. MP-labelled cell populations were able to undergo transient low-temperature storage whilst maintaining functional capacity in vitro. These results suggest that this MP labelling approach can be integrated into cell manufacturing and cold chain transport processes required for future cell therapy approaches. Electronic supplementary material The online version of this article (10.1186/s13287-018-0968-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Richard Harrison
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling (STEM), School of Medicine, The University of Nottingham, Nottingham, NG7 2RD, UK
| | - Hilda Anaid Lugo Leija
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling (STEM), School of Medicine, The University of Nottingham, Nottingham, NG7 2RD, UK
| | - Stephanie Strohbuecker
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling (STEM), School of Medicine, The University of Nottingham, Nottingham, NG7 2RD, UK
| | - James Crutchley
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling (STEM), School of Medicine, The University of Nottingham, Nottingham, NG7 2RD, UK
| | - Sarah Marsh
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling (STEM), School of Medicine, The University of Nottingham, Nottingham, NG7 2RD, UK
| | - Chris Denning
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling (STEM), School of Medicine, The University of Nottingham, Nottingham, NG7 2RD, UK
| | - Alicia El Haj
- Institute for Science and Technology in Medicine-Keele University, Stoke-on-Trent, ST4 7QB, UK
| | - Virginie Sottile
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling (STEM), School of Medicine, The University of Nottingham, Nottingham, NG7 2RD, UK.
| |
Collapse
|
31
|
Arias SL, Shetty A, Devorkin J, Allain JP. Magnetic targeting of smooth muscle cells in vitro using a magnetic bacterial cellulose to improve cell retention in tissue-engineering vascular grafts. Acta Biomater 2018; 77:172-181. [PMID: 30004023 DOI: 10.1016/j.actbio.2018.07.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 06/21/2018] [Accepted: 07/06/2018] [Indexed: 10/28/2022]
Abstract
Tissue-engineered vascular grafts (TEVG) use biologically-active cells with or without supporting scaffolds to achieve tissue remodeling and regrowth of injured blood vessels. However, this process may take several weeks because the high hemodynamic shear stress at the damaged site causes cellular denudation and impairs tissue regrowth. We hypothesize that a material with magnetic properties can provide the force required to speed up re-endothelization at the vascular defect by facilitating high cell density coverage, especially during the first 24 h after implantation. To test our hypothesis, we designed a magnetic bacterial cellulose (MBC) to locally target cells in vitro under a pulsatile fluid flow (0.514 dynes cm-2). This strategy can potentially increase cell homing at TEVG, without the need of blood cessation. The MBC was synthesized by an in situ precipitation method of Fe3+ and Fe2+ iron salts into bacterial cellulose (BC) pellicles to form Fe3O4 nanoparticles along the BC's fibrils, followed by the application of dextran coating to protect the embedded nanoparticles from oxidation. The iron salt concentration used in the synthesis of the MBC was tuned to balance the magnetic properties and cytocompatibility of the magnetic hydrogel. Our results showed a satisfactory MBC magnetization of up to 10 emu/g, which is above the value considered relevant for tissue engineering applications (0.05 emu/g). The MBC captured magnetically-functionalized cells under dynamic flow conditions in vitro. MBC magnetic properties and cytocompatibility indicated a dependence on the initial iron oxide nanoparticle concentration. STATEMENT OF SIGNIFICANCE Magnetic hydrogels represent a new class of functional materials with great potential in TVEG because they offer a platform to (1) release drugs on demand, (2) speed up tissue regrowth, and (3) provide mechanical cues to cells by its deformability capabilities. Here, we showed that a magnetic hydrogel, the MBC, was able to capture and retain magnetically-functionalized smooth muscle cells under pulsatile flow conditions in vitro. A magnetic hydrogel with this feature can be used to obtain high-density cell coverage on sites that are aggressive for cell survival such as the luminal face of vascular grafts, whereas simultaneously can support the formation of a biologically-active cell layer that protects the material from restenosis and inflammation.
Collapse
|
32
|
Hausburg F, Müller P, Voronina N, Steinhoff G, David R. Protocol for MicroRNA Transfer into Adult Bone Marrow-derived Hematopoietic Stem Cells to Enable Cell Engineering Combined with Magnetic Targeting. J Vis Exp 2018. [PMID: 29985305 DOI: 10.3791/57474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
While CD133+ hematopoietic stem cells (SCs) have been proven to provide high potential in the field of regenerative medicine, their low retention rates after injection into injured tissues as well as the observed massive cell death rates lead to very restricted therapeutic effects. To overcome these limitations, we sought to establish a non-viral based protocol for suitable cell engineering prior to their administration. The modification of human CD133+ expressing SCs using microRNA (miR) loaded magnetic polyplexes was addressed with respect to uptake efficiency and safety as well as the targeting potential of the cells. Relying on our protocol, we can achieve high miR uptake rates of 80-90% while the CD133+ stem cell properties remain unaffected. Moreover, these modified cells offer the option of magnetic targeting. We describe here a safe and highly efficient procedure for the modification of CD133+ SCs. We expect this approach to provide a standard technology for optimization of therapeutic stem cell effects and for monitoring of the administered cell product via magnetic resonance imaging (MRI).
Collapse
Affiliation(s)
- Frauke Hausburg
- Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), Department of Cardiac Surgery, Rostock University Medical Center; Department Life, Light and Matter of the Interdisciplinary Faculty, Rostock University
| | - Paula Müller
- Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), Department of Cardiac Surgery, Rostock University Medical Center; Department Life, Light and Matter of the Interdisciplinary Faculty, Rostock University
| | - Natalia Voronina
- Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), Department of Cardiac Surgery, Rostock University Medical Center
| | - Gustav Steinhoff
- Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), Department of Cardiac Surgery, Rostock University Medical Center; Department Life, Light and Matter of the Interdisciplinary Faculty, Rostock University
| | - Robert David
- Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), Department of Cardiac Surgery, Rostock University Medical Center; Department Life, Light and Matter of the Interdisciplinary Faculty, Rostock University;
| |
Collapse
|
33
|
Shen WB, Anastasiadis P, Nguyen B, Yarnell D, Yarowsky PJ, Frenkel V, Fishman PS. Magnetic Enhancement of Stem Cell-Targeted Delivery into the Brain Following MR-Guided Focused Ultrasound for Opening the Blood-Brain Barrier. Cell Transplant 2018; 26:1235-1246. [PMID: 28933214 PMCID: PMC5657739 DOI: 10.1177/0963689717715824] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Focused ultrasound (FUS)-mediated blood–brain barrier disruption (BBBD) can enable even large therapeutics such as stem cells to enter the brain from the bloodstream. However, the efficiency is relatively low. Our previous study showed that human neural progenitor cells (hNPCs) loaded with superparamagnetic iron oxide nanoparticles (SPIONs) in culture were attracted by an external magnetic field. In vivo, enhanced brain retention was observed near a magnet mounted on the skull in a rat model of traumatic brain injury, where BBBD also occurs. The goal of the current study was to determine whether magnetic attraction of SPION-loaded hNPCs would also enhance their retention in the brain after FUS-mediated BBBD. A small animal magnetic resonance imaging (MRI)-guided FUS system operating at 1.5 MHz was used to treat rats (∼120 g) without tissue damage or hemorrhage. Evidence of successful BBBD was validated with both radiologic enhancement of gadolinium on postsonication TI MRI and whole brain section visualization of Evans blue dye. The procedure was then combined with the application of a powerful magnet to the head directly after intravenous injection of the hNPCs. Validation of cells within the brain was performed by staining with Perls’ Prussian blue for iron and by immunohistochemistry with a human-specific antigen. By injecting equal numbers of iron oxide (SPIONs) and noniron oxide nanoparticles–loaded hNPCs, each labeled with a different fluorophore, we found significantly greater numbers of SPIONs-loaded cells retained in the brain at the site of BBBD as compared to noniron loaded cells. This result was most pronounced in regions of the brain closest to the skull (dorsal cortex) in proximity to the magnet surface. A more powerful magnet and a Halbach magnetic array resulted in more effective retention of SPION-labeled cells in even deeper brain regions such as the striatum and ventral cortex. There, up to 90% of hNPCs observed contained SPIONs compared to 60% to 70% with the less powerful magnet. Fewer cells were observed at 24 h posttreatment compared to 2 h (primarily in the dorsal cortex). These results demonstrate that magnetic attraction can substantially enhance the retention of stem cells after FUS-mediated BBBD. This procedure could provide a safer and less invasive approach for delivering stem cells to the brain, compared to direct intracranial injections, substantially reducing the risk of bleeding and infection.
Collapse
Affiliation(s)
- Wei-Bin Shen
- 1 Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Pavlos Anastasiadis
- 2 Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ben Nguyen
- 2 Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Deborah Yarnell
- 3 Neurology Service, VA Maryland Healthcare System, Baltimore, MD, USA
| | - Paul J Yarowsky
- 1 Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA.,4 Research Service, VA Maryland Healthcare System, Baltimore, MD, USA
| | - Victor Frenkel
- 2 Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.,5 Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Paul S Fishman
- 3 Neurology Service, VA Maryland Healthcare System, Baltimore, MD, USA.,6 Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
34
|
|
35
|
Vidiasheva IV, Abalymov AA, Kurochkin MA, Mayorova OA, Lomova MV, German SV, Khalenkow DN, Zharkov MN, Gorin DA, Skirtach AG, Tuchin VV, Sukhorukov GB. Transfer of cells with uptaken nanocomposite, magnetite-nanoparticle functionalized capsules with electromagnetic tweezers. Biomater Sci 2018; 6:2219-2229. [DOI: 10.1039/c8bm00479j] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Targeted cell delivery via electromagnetic tweezers.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Dmitry A. Gorin
- Saratov State University
- Saratov
- Russia
- Skolkovo Institute of Science and Technology
- Moscow
| | | | - Valery V. Tuchin
- Saratov State University
- Saratov
- Russia
- Tomsk State University
- Tomsk
| | - Gleb B. Sukhorukov
- Saratov State University
- Saratov
- Russia
- Queen Mary University of London
- England
| |
Collapse
|
36
|
Majka M, Sułkowski M, Badyra B, Musiałek P. Concise Review: Mesenchymal Stem Cells in Cardiovascular Regeneration: Emerging Research Directions and Clinical Applications. Stem Cells Transl Med 2017; 6:1859-1867. [PMID: 28836732 PMCID: PMC6430161 DOI: 10.1002/sctm.16-0484] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 07/18/2017] [Indexed: 12/26/2022] Open
Abstract
Experimental and early clinical data suggest that, due to several unique properties, mesenchymal stem cells (MSCs) may be more effective than other cell types for diseases that are difficult to treat or untreatable. Owing to their ease of isolation and culture as well as their secretory and immunomodulatory abilities, MSCs are the most promising option in the field of cell-based therapies. Although MSCs from various sources share several common characteristics, they also exhibit several important differences. These variations may reflect, in part, specific regional properties of the niches from which the cells originate. Moreover, morphological and functional features of MSCs are susceptible to variations across isolation protocols and cell culture conditions. These observations suggest that careful preparation of manufacturing protocols will be necessary for the most efficient use of MSCs in future clinical trials. A typical human myocardial infarct involves the loss of approximately 1 billion cardiomyocytes and 2-3 billion other (mostly endothelial) myocardial cells, leading (despite maximized medical therapy) to a significant negative impact on the length and quality of life. Despite more than a decade of intensive research, search for the "best" (safe and maximally effective) cell type to drive myocardial regeneration continues. In this review, we summarize information about the most important features of MSCs and recent discoveries in the field of MSCs research, and describe current data from preclinical and early clinical studies on the use of MSCs in cardiovascular regeneration. Stem Cells Translational Medicine 2017;6:1859-1867.
Collapse
Affiliation(s)
- Marcin Majka
- Department of TransplantationJagiellonian University Medical CollegeKrakowPoland
| | - Maciej Sułkowski
- Department of TransplantationJagiellonian University Medical CollegeKrakowPoland
| | - Bogna Badyra
- Department of TransplantationJagiellonian University Medical CollegeKrakowPoland
| | - Piotr Musiałek
- Department of Cardiac & Vascular Diseases, John Paul II HospitalJagiellonian UniversityKrakowPoland
| |
Collapse
|
37
|
Meng Y, Shi C, Hu B, Gong J, Zhong X, Lin X, Zhang X, Liu J, Liu C, Xu H. External magnetic field promotes homing of magnetized stem cells following subcutaneous injection. BMC Cell Biol 2017; 18:24. [PMID: 28549413 PMCID: PMC5446710 DOI: 10.1186/s12860-017-0140-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 05/15/2017] [Indexed: 01/03/2023] Open
Abstract
Background Mesenchymal stem cells (MSCs) are multipotent stromal cells that have the ability to self-renew and migrate to sites of pathology. In vivo tracking of MSCs provides insights into both, the underlying mechanisms of MSC transformation and their potential as gene delivery vehicles. The aim of our study was to assess the ability of superparamagnetic iron oxide nanoparticles (SPIONs)-labeled Wharton’s Jelly of the human umbilical cord-derived MSCs (WJ-MSCs) to carry the green fluorescent protein (GFP) gene to cutaneous injury sites in a murine model. Methods WJ-MSCs were isolated from a fresh umbilical cord and were genetically transformed to carry the GFP gene using lentiviral vectors with magnetically labeled SPIONs. The SPIONs/GFP-positive WJ-MSCs expressed multipotent cell markers and demonstrated the potential for osteogenic and adipogenic differentiation. Fifteen skin-injured mice were divided into three groups. Group I was treated with WJ-MSCs, group II with SPIONs/GFP-positive WJ-MSCs, and group III with SPIONs/GFP-positive WJ-MSCs exposed to an external magnetic field (EMF). Magnetic resonance imaging and optical molecular imaging were performed, and images were acquired 1, 2, and 7 days after cell injection. Results The results showed that GFP could be intensively detected around the wound in vivo 24 h after the cells were injected. Furthermore, we observed an accumulation of WJ-MSCs at the wound site, and EMF exposure increased the speed of cell transport. In conclusion, our study demonstrated that SPIONs/GFP function as cellular probes for monitoring in vivo migration and homing of WJ-MSCs. Moreover, exposure to an EMF can increase the transportation efficiency of SPIONs-labeled WJ-MSCs in vivo. Conclusions Our findings could lead to the development of a gene carrier system for the treatment of diseases. Electronic supplementary material The online version of this article (doi:10.1186/s12860-017-0140-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yu Meng
- Department of Nephrology, the First Hospital Affiliated to Jinan University, No. 613 Huangpu West Road, Guangzhou, 510630, China
| | - Changzhen Shi
- Department of Radiology, the First Hospital Affiliated to Jinan University, No. 613 Huangpu West Road, Guangzhou, 510630, China
| | - Bo Hu
- Department of Nephrology, the First Hospital Affiliated to Jinan University, No. 613 Huangpu West Road, Guangzhou, 510630, China
| | - Jian Gong
- Department of Nuclear Medicine, the First Hospital Affiliated to Jinan University, No. 613 Huangpu West Road, Guangzhou, 510630, China
| | - Xing Zhong
- Department of Nuclear Medicine, the First Hospital Affiliated to Jinan University, No. 613 Huangpu West Road, Guangzhou, 510630, China
| | - Xueyin Lin
- Department of Nuclear Medicine, the First Hospital Affiliated to Jinan University, No. 613 Huangpu West Road, Guangzhou, 510630, China
| | - Xinju Zhang
- Shenzhen Engineering Laboratory for Genomics-Assisted Animal Breeding, BGI-Shenzhen, Shenzhen, 518083, China
| | - Jun Liu
- Shenzhen Engineering Laboratory for Genomics-Assisted Animal Breeding, BGI-Shenzhen, Shenzhen, 518083, China
| | - Cong Liu
- Shenzhen Engineering Laboratory for Genomics-Assisted Animal Breeding, BGI-Shenzhen, Shenzhen, 518083, China
| | - Hao Xu
- Department of Nuclear Medicine, the First Hospital Affiliated to Jinan University, No. 613 Huangpu West Road, Guangzhou, 510630, China.
| |
Collapse
|
38
|
Müller P, Gaebel R, Lemcke H, Wiekhorst F, Hausburg F, Lang C, Zarniko N, Westphal B, Steinhoff G, David R. Intramyocardial fate and effect of iron nanoparticles co-injected with MACS ® purified stem cell products. Biomaterials 2017; 135:74-84. [PMID: 28494265 DOI: 10.1016/j.biomaterials.2017.05.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/10/2017] [Accepted: 05/01/2017] [Indexed: 01/02/2023]
Abstract
BACKGROUND Magnetic activated cell sorting (MACS®) is routinely used to isolate stem cell subpopulations intended for the treatment of cardiovascular diseases. In strong contrast, studies examining the amount, effect and intramyocardial distribution of iron nanoparticles used for magnetic cell labelling are missing, although iron excess can cause functional disorders in the heart. METHODS AND RESULTS CD133+ haematopoietic and CD271+ mesenchymal stem cells were purified from bone marrow using automatically and manually MACS® based systems. Flow cytometric measurements demonstrated a rapid loss of MACS® MicroBeads from cells under culture conditions, while storage under hypothermic conditions decelerated their detachment. Moreover, an average loading of ∼11 fg iron/cell caused by magnetic labelling was determined in magnetic particle spectroscopy. Importantly, hemodynamic measurements as well as histological examinations using a myocardial ischemia/reperfusion mouse model showed no influence of MACS® MicroBeads on cardiac regeneration, while the transplantation of stem cells caused a significant improvement. Furthermore, immunostainings demonstrated the clearance of co-injected iron nanoparticles from stem cells and the surrounding heart tissue within 48 h post transplantation. CONCLUSIONS Our results indicate that iron amounts typically co-injected with MACS® purified stem cells do not harm cardiac functions and are cleared from heart tissue within a few hours. Therefore, we conclude that MACS® MicroBeads exhibit a good compatibility in the cardiac environment.
Collapse
Affiliation(s)
- Paula Müller
- Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), Department of Cardiac Surgery, Rostock University Medical Center, Schillingallee 69, 18057 Rostock, Germany; Department Life, Light and Matter of the Interdisciplinary Faculty at Rostock University, Albert-Einstein Straße 25, 18059 Rostock, Germany.
| | - Ralf Gaebel
- Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), Department of Cardiac Surgery, Rostock University Medical Center, Schillingallee 69, 18057 Rostock, Germany; Department Life, Light and Matter of the Interdisciplinary Faculty at Rostock University, Albert-Einstein Straße 25, 18059 Rostock, Germany.
| | - Heiko Lemcke
- Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), Department of Cardiac Surgery, Rostock University Medical Center, Schillingallee 69, 18057 Rostock, Germany; Department Life, Light and Matter of the Interdisciplinary Faculty at Rostock University, Albert-Einstein Straße 25, 18059 Rostock, Germany.
| | - Frank Wiekhorst
- Physikalisch-Technische Bundesanstalt (PTB), Abbestraße 2-12, 10587 Berlin, Germany.
| | - Frauke Hausburg
- Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), Department of Cardiac Surgery, Rostock University Medical Center, Schillingallee 69, 18057 Rostock, Germany; Department Life, Light and Matter of the Interdisciplinary Faculty at Rostock University, Albert-Einstein Straße 25, 18059 Rostock, Germany.
| | - Cajetan Lang
- Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), Department of Cardiac Surgery, Rostock University Medical Center, Schillingallee 69, 18057 Rostock, Germany; Department of Cardiology, Rostock University Medical Center, Ernst-Heydemann-Straße 6, 18057 Rostock, Germany.
| | - Nicole Zarniko
- Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), Department of Cardiac Surgery, Rostock University Medical Center, Schillingallee 69, 18057 Rostock, Germany.
| | - Bernd Westphal
- Department of Cardiac Surgery, Rostock University Medical Center, Schillingallee 35, 18057 Rostock, Germany.
| | - Gustav Steinhoff
- Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), Department of Cardiac Surgery, Rostock University Medical Center, Schillingallee 69, 18057 Rostock, Germany; Department Life, Light and Matter of the Interdisciplinary Faculty at Rostock University, Albert-Einstein Straße 25, 18059 Rostock, Germany.
| | - Robert David
- Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), Department of Cardiac Surgery, Rostock University Medical Center, Schillingallee 69, 18057 Rostock, Germany; Department Life, Light and Matter of the Interdisciplinary Faculty at Rostock University, Albert-Einstein Straße 25, 18059 Rostock, Germany.
| |
Collapse
|
39
|
Voronina N, Lemcke H, Wiekhorst F, Kühn JP, Frank M, Steinhoff G, David R. Preparation and In Vitro Characterization of Magnetized miR-modified Endothelial Cells. J Vis Exp 2017:55567. [PMID: 28518114 PMCID: PMC5565141 DOI: 10.3791/55567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
To date, the available surgical and pharmacological treatments for cardiovascular diseases (CVD) are limited and often palliative. At the same time, gene and cell therapies are highly promising alternative approaches for CVD treatment. However, the broad clinical application of gene therapy is greatly limited by the lack of suitable gene delivery systems. The development of appropriate gene delivery vectors can provide a solution to current challenges in cell therapy. In particular, existing drawbacks, such as limited efficiency and low cell retention in the injured organ, could be overcome by appropriate cell engineering (i.e., genetic) prior to transplantation. The presented protocol describes the efficient and safe transient modification of endothelial cells using a polyethyleneimine superparamagnetic magnetic nanoparticle (PEI/MNP)-based delivery vector. Also, the algorithm and methods for cell characterization are defined. The successful intracellular delivery of microRNA (miR) into human umbilical vein endothelial cells (HUVECs) has been achieved without affecting cell viability, functionality, or intercellular communication. Moreover, this approach was proven to cause a strong functional effect in introduced exogenous miR. Importantly, the application of this MNP-based vector ensures cell magnetization, with accompanying possibilities of magnetic targeting and non-invasive MRI tracing. This may provide a basis for magnetically guided, genetically engineered cell therapeutics that can be monitored non-invasively with MRI.
Collapse
Affiliation(s)
- Natalia Voronina
- Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), Department of Cardiac Surgery, University of Rostock
| | - Heiko Lemcke
- Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), Department of Cardiac Surgery, University of Rostock
| | | | - Jens-Peter Kühn
- Department of Radiology and Neuroradiology, Ernst-Moritz-Arndt-University Greifswald
| | - Markus Frank
- Electron Microscopy Center, University of Rostock
| | - Gustav Steinhoff
- Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), Department of Cardiac Surgery, University of Rostock
| | - Robert David
- Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), Department of Cardiac Surgery, University of Rostock;
| |
Collapse
|
40
|
Silva LHA, Cruz FF, Morales MM, Weiss DJ, Rocco PRM. Magnetic targeting as a strategy to enhance therapeutic effects of mesenchymal stromal cells. Stem Cell Res Ther 2017; 8:58. [PMID: 28279201 PMCID: PMC5345163 DOI: 10.1186/s13287-017-0523-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) have been extensively investigated in the field of regenerative medicine. It is known that the success of MSC-based therapies depends primarily on effective cell delivery to the target site where they will secrete vesicles and soluble factors with immunomodulatory and potentially reparative properties. However, some lesions are located in sites that are difficult to access, such as the heart, spinal cord, and joints. Additionally, low MSC retention at target sites makes cell therapy short-lasting and, therefore, less effective. In this context, the magnetic targeting technique has emerged as a new strategy to aid delivery, increase retention, and enhance the effects of MSCs. This approach uses magnetic nanoparticles to magnetize MSCs and static magnetic fields to guide them in vivo, thus promoting more focused, effective, and lasting retention of MSCs at the target site. In the present review, we discuss the magnetic targeting technique, its principles, and the materials most commonly used; we also discuss its potential for MSC enhancement, and safety concerns that should be addressed before it can be applied in clinical practice.
Collapse
Affiliation(s)
- Luisa H A Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, 373, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Fernanda F Cruz
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, 373, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Marcelo M Morales
- Laboratory of Cellular and Molecular Physiology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, 373, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Daniel J Weiss
- Department of Medicine, Vermont Lung Center, College of Medicine, University of Vermont, 89 Beaumont Ave. Given, Burlington, VT, 05405, USA
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, 373, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil.
| |
Collapse
|
41
|
Magnet-Bead Based MicroRNA Delivery System to Modify CD133 + Stem Cells. Stem Cells Int 2016; 2016:7152761. [PMID: 27795713 PMCID: PMC5067480 DOI: 10.1155/2016/7152761] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 08/24/2016] [Accepted: 08/30/2016] [Indexed: 12/13/2022] Open
Abstract
Aim. CD133+ stem cells bear huge potential for regenerative medicine. However, low retention in the injured tissue and massive cell death reduce beneficial effects. In order to address these issues, we intended to develop a nonviral system for appropriate cell engineering. Materials and Methods. Modification of human CD133+ stem cells with magnetic polyplexes carrying microRNA was studied in terms of efficiency, safety, and targeting potential. Results. High microRNA uptake rates (~80-90%) were achieved without affecting CD133+ stem cell properties. Modified cells can be magnetically guided. Conclusion. We developed a safe and efficient protocol for CD133+ stem cell modification. Our work may become a basis to improve stem cell therapeutical effects as well as their monitoring with magnetic resonance imaging.
Collapse
|
42
|
Parrini S, Cutolo F, Freschi C, Ferrari M, Ferrari V. Augmented reality system for freehand guide of magnetic endovascular devices. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2016; 2014:490-3. [PMID: 25570003 DOI: 10.1109/embc.2014.6943635] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Magnetic guide of endovascular devices or magnetized therapeutic microparticles to the specific target in the arterial tree is increasingly studied, since it could improve treatment efficacy and reduce side effects. Most proposed systems use external permanent magnets attached to robotic manipulators or magnetic resonance imaging (MRI) systems to guide internal carriers to the region of treatment. We aim to simplify this type of procedures, avoiding or reducing the need of robotic arms and MRI systems in the surgical scenario. On account of this we investigated the use of a wearable stereoscopic video see-through augmented reality system to show the hidden vessel to the surgeon; in this way, the surgeon is able to freely move the external magnet, following the showed path, to lead the endovascular magnetic device towards the desired position. In this preliminary study, we investigated the feasibility of such an approach trying to guide a magnetic capsule inside a vascular mannequin. The high rate of success and the positive evaluation provided by the operators represent a good starting point for further developments of the system.
Collapse
|
43
|
Kalber TL, Ordidge KL, Southern P, Loebinger MR, Kyrtatos PG, Pankhurst QA, Lythgoe MF, Janes SM. Hyperthermia treatment of tumors by mesenchymal stem cell-delivered superparamagnetic iron oxide nanoparticles. Int J Nanomedicine 2016; 11:1973-83. [PMID: 27274229 PMCID: PMC4869665 DOI: 10.2147/ijn.s94255] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Magnetic hyperthermia – a potential cancer treatment in which superparamagnetic iron oxide nanoparticles (SPIONs) are made to resonantly respond to an alternating magnetic field (AMF) and thereby produce heat – is of significant current interest. We have previously shown that mesenchymal stem cells (MSCs) can be labeled with SPIONs with no effect on cell proliferation or survival and that within an hour of systemic administration, they migrate to and integrate into tumors in vivo. Here, we report on some longer term (up to 3 weeks) post-integration characteristics of magnetically labeled human MSCs in an immunocompromized mouse model. We initially assessed how the size and coating of SPIONs dictated the loading capacity and cellular heating of MSCs. Ferucarbotran® was the best of those tested, having the best like-for-like heating capability and being the only one to retain that capability after cell internalization. A mouse model was created by subcutaneous flank injection of a combination of 0.5 million Ferucarbotran-loaded MSCs and 1.0 million OVCAR-3 ovarian tumor cells. After 2 weeks, the tumors reached ~100 µL in volume and then entered a rapid growth phase over the third week to reach ~300 µL. In the control mice that received no AMF treatment, magnetic resonance imaging (MRI) data showed that the labeled MSCs were both incorporated into and retained within the tumors over the entire 3-week period. In the AMF-treated mice, heat increases of ~4°C were observed during the first application, after which MRI indicated a loss of negative contrast, suggesting that the MSCs had died and been cleared from the tumor. This post-AMF removal of cells was confirmed by histological examination and also by a reduced level of subsequent magnetic heating effect. Despite this evidence for an AMF-elicited response in the SPION-loaded MSCs, and in contrast to previous reports on tumor remission in immunocompetent mouse models, in this case, no significant differences were measured regarding the overall tumor size or growth characteristics. We discuss the implications of these results on the clinical delivery of hyperthermia therapy to tumors and on the possibility that a preferred therapeutic route may involve AMF as an adjuvant to an autologous immune response.
Collapse
Affiliation(s)
- Tammy L Kalber
- Lungs for Living Research Centre, UCL Respiratory, University College London, UK; UCL Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, UK
| | - Katherine L Ordidge
- Lungs for Living Research Centre, UCL Respiratory, University College London, UK; UCL Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, UK
| | - Paul Southern
- Healthcare Biomagnetics Laboratory, University College London, London, UK
| | - Michael R Loebinger
- Lungs for Living Research Centre, UCL Respiratory, University College London, UK
| | - Panagiotis G Kyrtatos
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, UK; Healthcare Biomagnetics Laboratory, University College London, London, UK
| | | | - Mark F Lythgoe
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, UK
| | - Sam M Janes
- Lungs for Living Research Centre, UCL Respiratory, University College London, UK
| |
Collapse
|
44
|
Pang JH, Farhatnia Y, Godarzi F, Tan A, Rajadas J, Cousins BG, Seifalian AM. In situ Endothelialization: Bioengineering Considerations to Translation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:6248-64. [PMID: 26460851 DOI: 10.1002/smll.201402579] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 06/14/2015] [Indexed: 05/10/2023]
Abstract
Improving patency rates of current cardiovascular implants remains a major challenge. It is widely accepted that regeneration of a healthy endothelium layer on biomaterials could yield the perfect blood-contacting surface. Earlier efforts in pre-seeding endothelial cells in vitro demonstrated success in enhancing patency, but translation to the clinic is largely hampered due to its impracticality. In situ endothelialization, which aims to create biomaterial surfaces capable of self-endothelializing upon implantation, appears to be an extremely promising solution, particularly with the utilization of endothelial progenitor cells (EPCs). Nevertheless, controlling cell behavior in situ using immobilized biomolecules or physical patterning can be complex, thus warranting careful consideration. This review aims to provide valuable insight into the rationale and recent developments in biomaterial strategies to enhance in situ endothelialization. In particular, a discussion on the important bio-/nanoengineering considerations and lessons learnt from clinical trials are presented to aid the future translation of this exciting paradigm.
Collapse
Affiliation(s)
- Jun Hon Pang
- Centre for Nanotechnology & Regenerative Medicine, Division of Surgery & Interventional Science, University College London (UCL), London, UK
| | - Yasmin Farhatnia
- Centre for Nanotechnology & Regenerative Medicine, Division of Surgery & Interventional Science, University College London (UCL), London, UK
| | - Fatemeh Godarzi
- Centre for Nanotechnology & Regenerative Medicine, Division of Surgery & Interventional Science, University College London (UCL), London, UK
| | - Aaron Tan
- Centre for Nanotechnology & Regenerative Medicine, Division of Surgery & Interventional Science, University College London (UCL), London, UK
- UCL Medical School, University College London (UCL), London, UK
- Biomaterials & Advanced Drug Delivery Laboratory, Stanford School of Medicine, Stanford University, Stanford, California, USA
| | - Jayakumar Rajadas
- Biomaterials & Advanced Drug Delivery Laboratory, Stanford School of Medicine, Stanford University, Stanford, California, USA
| | - Brian G Cousins
- Centre for Nanotechnology & Regenerative Medicine, Division of Surgery & Interventional Science, University College London (UCL), London, UK
| | - Alexander M Seifalian
- Centre for Nanotechnology & Regenerative Medicine, Division of Surgery & Interventional Science, University College London (UCL), London, UK
- Royal Free Hospital, London, UK
- NanoRegMed Ltd, London, UK
| |
Collapse
|
45
|
Ravindranath RR, Romaschin A, Thompson M. In vitro and in vivo cell-capture strategies using cardiac stent technology - A review. Clin Biochem 2015; 49:186-91. [PMID: 26474510 DOI: 10.1016/j.clinbiochem.2015.09.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 09/25/2015] [Accepted: 09/26/2015] [Indexed: 01/23/2023]
Abstract
Stenosis is a symptom of coronary artery disease (CAD), and is caused by narrowing of arteries in the heart. Over the last several decades, medical implants such as cardiac stents have been developed to counter stenosis. Upon implantation of a stent to open up a restricted artery, narrowing of the artery can reoccur (restenosis), due to an immune response launched by the body towards the stent. Currently, restenosis is a major health concern for patients who have undergone heart surgery for coronary artery disease. Recently, there have been new methods developed to combat restenosis, which have shown potential signs of success. One proposed method is the use of stents to capture cells, thereby reducing immune response. This review will explore the different methods for cell capture both in vitro and in vivo. Biological modifications of the stent will be surveyed, as well as the use of surface science to immobilize biological probes. Immobilization of proteins and nucleotides, as well as use of magnetic field are all methods that will be further discussed. Finally, concluding remarks and future prospects will be presented.
Collapse
Affiliation(s)
- Rohan R Ravindranath
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada; Keenan Research Centre and Clinical Biochemistry, St. Michael's Hospital, 30 Bond Street, Toronto, Ontario M5B 1W8, Canada
| | - Alexander Romaschin
- Keenan Research Centre and Clinical Biochemistry, St. Michael's Hospital, 30 Bond Street, Toronto, Ontario M5B 1W8, Canada
| | - Michael Thompson
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada.
| |
Collapse
|
46
|
Barnsley LC, Carugo D, Owen J, Stride E. Halbach arrays consisting of cubic elements optimised for high field gradients in magnetic drug targeting applications. Phys Med Biol 2015; 60:8303-27. [PMID: 26458056 DOI: 10.1088/0031-9155/60/21/8303] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A key challenge in the development of magnetic drug targeting (MDT) as a clinically relevant technique is designing systems that can apply sufficient magnetic force to actuate magnetic drug carriers at useful tissue depths. In this study an optimisation routine was developed to generate designs of Halbach arrays consisting of multiple layers of high grade, cubic, permanent magnet elements, configured to deliver the maximum pull or push force at a position of interest between 5 and 50 mm from the array, resulting in arrays capable of delivering useful magnetic forces to depths past 20 mm. The optimisation routine utilises a numerical model of the magnetic field and force generated by an arbitrary configuration of magnetic elements. Simulated field and force profiles of optimised arrays were evaluated, also taking into account the forces required for assembling the array in practice. The resultant selection for the array, consisting of two layers, was then constructed and characterised to verify the simulations. Finally the array was utilised in a set of in vitro experiments to demonstrate its capacity to separate and retain microbubbles loaded with magnetic nanoparticles against a constant flow. The optimised designs are presented as light-weight, inexpensive options for applying high-gradient, external magnetic fields in MDT applications.
Collapse
Affiliation(s)
- Lester C Barnsley
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
| | | | | | | |
Collapse
|
47
|
Shen WB, Plachez C, Tsymbalyuk O, Tsymbalyuk N, Xu S, Smith AM, Michel SLJ, Yarnell D, Mullins R, Gullapalli RP, Puche A, Simard JM, Fishman PS, Yarowsky P. Cell-Based Therapy in TBI: Magnetic Retention of Neural Stem Cells In Vivo. Cell Transplant 2015; 25:1085-99. [PMID: 26395573 DOI: 10.3727/096368915x689550] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Stem cell therapy is under active investigation for traumatic brain injury (TBI). Noninvasive stem cell delivery is the preferred method, but retention of stem cells at the site of injury in TBI has proven challenging and impacts effectiveness. To investigate the effects of applying a magnetic field on cell homing and retention, we delivered human neuroprogenitor cells (hNPCs) labeled with a superparamagnetic nanoparticle into post-TBI animals in the presence of a static magnetic field. We have previously devised a method of loading hNPCs with ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles Molday ION Rhodamine B (MIRB™). Labeling of hNPCs (MIRB-hNPCs) does not affect hNPC viability, proliferation, or differentiation. The 0.6 tesla (T) permanent magnet was placed ∼4 mm above the injured parietal cortex prior to intracarotid injection of 4 × 10(4) MIRB-hNPCs. Fluorescence imaging, Perls' Prussian blue histochemistry, immunocytochemistry with SC121, a human-specific antibody, and T2-weighted magnetic resonance imaging ex vivo revealed there was increased homing and retention of MIRB-hNPCs in the injured cortex as compared to the control group in which MIRB-hNPCs were injected in the absence of a static magnetic field. Fluoro-Jade C staining and immunolabeling with specific markers confirmed the viability status of MIRB-hNPCs posttransplantation. These results show that increased homing and retention of MIRB-hNPCs post-TBI by applying a static magnetic field is a promising technique to deliver cells into the CNS for treatment of neurological injuries and neurodegenerative diseases.
Collapse
Affiliation(s)
- Wei-Bin Shen
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Connell JJ, Patrick PS, Yu Y, Lythgoe MF, Kalber TL. Advanced cell therapies: targeting, tracking and actuation of cells with magnetic particles. Regen Med 2015; 10:757-72. [PMID: 26390317 DOI: 10.2217/rme.15.36] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Regenerative medicine would greatly benefit from a new platform technology that enabled measurable, controllable and targeting of stem cells to a site of disease or injury in the body. Superparamagnetic iron-oxide nanoparticles offer attractive possibilities in biomedicine and can be incorporated into cells, affording a safe and reliable means of tagging. This review describes three current and emerging methods to enhance regenerative medicine using magnetic particles to guide therapeutic cells to a target organ; track the cells using MRI and assess their spatial localization with high precision and influence the behavior of the cell using magnetic actuation. This approach is complementary to the systemic injection of cell therapies, thus expanding the horizon of stem cell therapeutics.
Collapse
Affiliation(s)
- John J Connell
- UCL Centre of Advanced Biomedical Imaging, Division of Medicine, University College London, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6DD, UK
| | - P Stephen Patrick
- UCL Centre of Advanced Biomedical Imaging, Division of Medicine, University College London, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6DD, UK
| | - Yichao Yu
- UCL Centre of Advanced Biomedical Imaging, Division of Medicine, University College London, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6DD, UK
| | - Mark F Lythgoe
- UCL Centre of Advanced Biomedical Imaging, Division of Medicine, University College London, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6DD, UK
| | - Tammy L Kalber
- UCL Centre of Advanced Biomedical Imaging, Division of Medicine, University College London, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6DD, UK
| |
Collapse
|
49
|
Directing cell therapy to anatomic target sites in vivo with magnetic resonance targeting. Nat Commun 2015; 6:8009. [PMID: 26284300 PMCID: PMC4568295 DOI: 10.1038/ncomms9009] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 07/08/2015] [Indexed: 01/17/2023] Open
Abstract
Cell-based therapy exploits modified human cells to treat diseases but its targeted application in specific tissues, particularly those lying deep in the body where direct injection is not possible, has been problematic. Here we use a magnetic resonance imaging (MRI) system to direct macrophages carrying an oncolytic virus, Seprehvir, into primary and metastatic tumour sites in mice. To achieve this, we magnetically label macrophages with super-paramagnetic iron oxide nanoparticles and apply pulsed magnetic field gradients in the direction of the tumour sites. Magnetic resonance targeting guides macrophages from the bloodstream into tumours, resulting in increased tumour macrophage infiltration and reduction in tumour burden and metastasis. Our study indicates that clinical MRI scanners can not only track the location of magnetically labelled cells but also have the potential to steer them into one or more target tissues. Cell therapy requires the targeting of cells to specific sites in the body. Here Muthana et al. use a standard MRI scanner to direct oncolytic macrophages, labelled with magnetic nanoparticles, to primary and metastatic tumour sites in mice, and demonstrate that this leads to reduced tumour growth.
Collapse
|
50
|
Cores J, Caranasos TG, Cheng K. Magnetically Targeted Stem Cell Delivery for Regenerative Medicine. J Funct Biomater 2015; 6:526-46. [PMID: 26133387 PMCID: PMC4598669 DOI: 10.3390/jfb6030526] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 06/11/2015] [Accepted: 06/23/2015] [Indexed: 12/16/2022] Open
Abstract
Stem cells play a special role in the body as agents of self-renewal and auto-reparation for tissues and organs. Stem cell therapies represent a promising alternative strategy to regenerate damaged tissue when natural repairing and conventional pharmacological intervention fail to do so. A fundamental impediment for the evolution of stem cell therapies has been the difficulty of effectively targeting administered stem cells to the disease foci. Biocompatible magnetically responsive nanoparticles are being utilized for the targeted delivery of stem cells in order to enhance their retention in the desired treatment site. This noninvasive treatment-localization strategy has shown promising results and has the potential to mitigate the problem of poor long-term stem cell engraftment in a number of organ systems post-delivery. In addition, these same nanoparticles can be used to track and monitor the cells in vivo, using magnetic resonance imaging. In the present review we underline the principles of magnetic targeting for stem cell delivery, with a look at the logic behind magnetic nanoparticle systems, their manufacturing and design variants, and their applications in various pathological models.
Collapse
Affiliation(s)
- Jhon Cores
- Joint Department of Biomedical Engineering, UNC-Chapel Hill & NC State University, NC 27606, USA.
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA.
| | - Thomas G Caranasos
- Division of Cardiothoracic Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Ke Cheng
- Joint Department of Biomedical Engineering, UNC-Chapel Hill & NC State University, NC 27606, USA.
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA.
| |
Collapse
|