1
|
Brauer J, Fischer M. Computational Screening of Hydrophobic Zeolites for the Removal of Emerging Organic Contaminants from Water. Chemphyschem 2024; 25:e202400347. [PMID: 38861113 DOI: 10.1002/cphc.202400347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/04/2024] [Accepted: 06/11/2024] [Indexed: 06/12/2024]
Abstract
The pollution of water resources by pharmaceuticals and agents of personal care products (PPCPs) poses an increasingly pressing issue that has received considerable attention from scientists and government agencies alike. Hydrophobic zeolites can serve as selective adsorbents to remove these contaminants from aqueous solution. So far, the adsorption of PPCPs in zeolites has often been investigated in case studies focusing on a small number of contaminants and one or a few zeolites. We present a computational screening approach to investigate the interaction of 53 PPCPs with 14 all-silica zeolites, aiming at a more comprehensive understanding of factors that are beneficial for a strong host-guest interaction and thus an efficient adsorption. The systems are modelled on the classical force field level of theory, allowing for the efficient computational treatment of a large number of PPCP-zeolite combinations and evaluated in terms of the interaction energy between PPCP and zeolite framework. For selected PPCP-zeolite combinations additional Free Energy Perturbation simulations are employed to compute Free Energies of Transfer between the aqueous phase and the adsorbed state. These results can serve as a starting point for experimental studies of relevant PPCP-zeolite combination or more in-depth theoretical investigations.
Collapse
Affiliation(s)
- Jakob Brauer
- Crystallography and Geomaterials Research, Faculty of Geosciences, University of Bremen, Klagenfurter Straße 2-4, 28359, Bremen, Germany
- Bremen Center for Computational Materials Science and MAPEX Center for Materials and Processes, University of Bremen, 28359, Bremen, Germany
| | - Michael Fischer
- Crystallography and Geomaterials Research, Faculty of Geosciences, University of Bremen, Klagenfurter Straße 2-4, 28359, Bremen, Germany
- Bremen Center for Computational Materials Science and MAPEX Center for Materials and Processes, University of Bremen, 28359, Bremen, Germany
| |
Collapse
|
2
|
Munir N, Javaid A, Abideen Z, Duarte B, Jarar H, El-Keblawy A, Sheteiwy MS. The potential of zeolite nanocomposites in removing microplastics, ammonia, and trace metals from wastewater and their role in phytoremediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:1695-1718. [PMID: 38051490 DOI: 10.1007/s11356-023-31185-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/18/2023] [Indexed: 12/07/2023]
Abstract
Nanocomposites are emerging as a new generation of materials that can be used to combat water pollution. Zeolite-based nanocomposites consisting of combinations of metals, metal oxides, carbon materials, and polymers are particularly effective for separating and adsorbing multiple contaminants from water. This review presents the potential of zeolite-based nanocomposites for eliminating a range of toxic organic and inorganic substances, dyes, heavy metals, microplastics, and ammonia from water. The review emphasizes that nanocomposites offer enhanced mechanical, catalytic, adsorptive, and porosity properties necessary for sustainable water purification techniques compared to individual composite materials. The adsorption potential of several zeolite-metal/metal oxide/polymer-based composites for heavy metals, anionic/cationic dyes, microplastics, ammonia, and other organic contaminants ranges between approximately 81 and over 99%. However, zeolite substrates or zeolite-amended soil have limited benefits for hyperaccumulators, which have been utilized for phytoremediation. Further research is needed to evaluate the potential of zeolite-based composites for phytoremediation. Additionally, the development of nanocomposites with enhanced adsorption capacity would be necessary for more effective removal of pollutants.
Collapse
Affiliation(s)
- Neelma Munir
- Department of Biotechnology, Lahore College for Women University, Lahore, Pakistan
| | - Ayesha Javaid
- Department of Biotechnology, Lahore College for Women University, Lahore, Pakistan
| | - Zainul Abideen
- Dr. Muhammad Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi, 75270, Pakistan.
- Department of Applied Biology, University of Sharjah, P.O. Box 2727, Sharjah, UAE.
| | - Bernardo Duarte
- MARE-Marine and Environmental Sciences Centre & ARNET-Aquatic Research Network Associated Laboratory, Faculdade de Ciências da Universidade de Lisboa, 1749-016, Lisbon, Portugal
- Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Heba Jarar
- Renewable Energy and Energy Efficiency Research Group, Research Institute for Sciences and Engineering, University of Sharjah, 27272, Sharjah, United Arab Emirates
| | - Ali El-Keblawy
- Department of Applied Biology, University of Sharjah, P.O. Box 2727, Sharjah, UAE
| | - Mohamed S Sheteiwy
- Department of Agronomy, Faculty of Agriculture, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
3
|
Kanwal A, Rehman R, Imran M, Samin G, Jahangir MM, Ali S. Phytoremediative adsorption methodologies to decontaminate water from dyes and organic pollutants. RSC Adv 2023; 13:26455-26474. [PMID: 37674490 PMCID: PMC10478504 DOI: 10.1039/d3ra02104a] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/09/2023] [Indexed: 09/08/2023] Open
Abstract
Persistent organic pollutants and dyes cause major problems during ecofriendly wastewater treatment. To overcome this huge problem, several techniques have been considered and in practice for the safe disposal of organic pollutants in recent years; some of them are discussed and compared herein. This review focuses on new trends for wastewater treatment and compares them with certain other techniques alongside their pros and cons; adsorption is considered the safest among them. Adsorbents derived from agri-wastes have good capacity for the removal of these contaminants owing to their great sorption capacity, high reusability, easy operation, etc. Sometimes they need some modifications for the removal of dyes, which are also discussed in this review. This capacity of adsorbents to chelate dye molecules can be affected by factors, such as pH, the concentration of dyes and adsorbents, and temperature of the system. pH has direct influence on the ionization potential and charge on the outer surface of adsorbents. The findings on isotherms, kinetics, and desorption of plant waste-based biomaterials that are safe for the ecosystem and user friendly and are used for hazardous contaminant removal from water are summarized in this review. Finally, conclusions and future perspectives are presented, and some other materials, such as CNTs and MOFs, are also discussed as efficient adsorbents for eliminating dyes from wastewater. Finally, it is predicted that the adsorption of dyes is a more feasible solution for this dye pollution problem.
Collapse
Affiliation(s)
- Ayesha Kanwal
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab Quaid-e-Azam Campus Lahore-54590 Pakistan
| | - Rabia Rehman
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab Quaid-e-Azam Campus Lahore-54590 Pakistan
| | - Muhammad Imran
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab Quaid-e-Azam Campus Lahore-54590 Pakistan
| | - Ghufrana Samin
- Department of Basic Sciences and Humanities, University of Engineering and Technology (Lahore) Faisalabad Campus Pakistan
| | | | - Saadat Ali
- University of Engineering and Technology Taxila Pakistan
| |
Collapse
|
4
|
Song J, Lu L, Wang J, Li X, Li J, Wang Q, Du H, Xin S, Xu L, Yan Q, Zhou C, Liu G, Xin Y. Highly efficient nanocomposite of Y 2O 3@biochar for oxytetracycline removal from solution: Adsorption characteristics and mechanisms. BIORESOURCE TECHNOLOGY 2023:129380. [PMID: 37356503 DOI: 10.1016/j.biortech.2023.129380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 06/27/2023]
Abstract
Nano Y2O3-modified biochar composites (Y2O3@BC600) were fabricated successfully and exhibited great adsorption toward oxytetracycline (OTC). The Langmuir adsorption capacity of Y2O3@BC600-1:4 for OTC reached 223.46 mg/g, 10.52 times greater than that of BC600. The higher dispersion of Y2O3 nanoparticles, increased surface area of 175.65 m2/g and expanded porosity of 0.27 cm3/g accounted for higher OTC adsorption by Y2O3@BC600-1:4. Y2O3@BC600-1:4 could resist the interference of co-existing cations (Na+, K+, Mg2+, Ca2+) and anions (Cl-, NO3-, SO42-) on OTC removal. Y2O3 coating changed surface charge property of BC600, favoring the contribution of electrostatic interaction. Synchrotron radiation-based Fourier transform infrared spectroscopy detected obvious peak shift and intensity change of surface -OH when OTC adsorption occurred. Accordingly, stronger H-bonding (charge-assisted hydrogen bond, OTC-H2N+···HO-Y2O3@BC600-1:4) was proposed for OTC adsorption. Y2O3@BC600 exhibited renewability and stability in the adsorptive removal of OTC. Therefore, Y2O3@BC600 may be a novel and suitable adsorbent for antibiotic removal.
Collapse
Affiliation(s)
- Jiaying Song
- Qingdao Engineering Research Center for Rural Environment, College of Resource and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Lun Lu
- State Environmental Protection Key Laboratory of Environ Pollut Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Jian Wang
- Qingdao Engineering Research Center for Rural Environment, College of Resource and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Xue Li
- Qingdao Engineering Research Center for Rural Environment, College of Resource and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Jinying Li
- Qingdao Engineering Research Center for Rural Environment, College of Resource and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Qianwen Wang
- Instrumental Analysis Center of Qingdao Agricultural University, Qingdao 266109, China
| | - Haiyan Du
- Qingdao Engineering Research Center for Rural Environment, College of Resource and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Shuaishuai Xin
- Qingdao Engineering Research Center for Rural Environment, College of Resource and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Lina Xu
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao 266109, China
| | - Qinghua Yan
- Qingdao Engineering Research Center for Rural Environment, College of Resource and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Chengzhi Zhou
- Qingdao Engineering Research Center for Rural Environment, College of Resource and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Guocheng Liu
- Qingdao Engineering Research Center for Rural Environment, College of Resource and Environment, Qingdao Agricultural University, Qingdao 266109, China.
| | - Yanjun Xin
- Qingdao Engineering Research Center for Rural Environment, College of Resource and Environment, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
5
|
Cui S, Qi Y, Zhu Q, Wang C, Sun H. A review of the influence of soil minerals and organic matter on the migration and transformation of sulfonamides. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160584. [PMID: 36455724 DOI: 10.1016/j.scitotenv.2022.160584] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
Sulfonamides (SAs) are common antibiotics that are widely present in the environment and can easily migrate in the environment, so they pose an environmental risk. Minerals and organic matter influence the antibiotic migration and transformation in sewage treatment plants, activated sludge, surface water, and soil environment. In the present paper, the influence of the process and mechanism of minerals and organic matter on the adsorption, degradation, and plant uptake of SAs in soil were summarized. In the impact process of mineral and organic matter on the SAs migration and transformation, the pH value is undoubtedly the most important factor because it determines the ionic state of SAs. In terms of influence mechanisms, the minerals absorb SAs well via cation exchange, complexation, H-bonding, and cation bridging. Mineral photodegradation is also one of the primary removal methods for SAs. Soil organic matter (SOM) can significantly increase the SAs adsorption. The adsorption forces of SAs and SOM or dissolved organic matter (DOM) were very similar, but SOM decreased SAs mobility in the environment, while DOM increased SAs availability. DOM generated active substances and aided in the photodegradation of SAs. This review describes the effects of minerals and organic matter on the fate of SAs in soil, which is useful in controlling the migration and transformation of SAs in the soil environment.
Collapse
Affiliation(s)
- Shengyan Cui
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Yuwen Qi
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Qing Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Cuiping Wang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Hongwen Sun
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| |
Collapse
|
6
|
Pellenz L, de Oliveira CRS, da Silva Júnior AH, da Silva LJS, da Silva L, Ulson de Souza AA, de Souza SMDAGU, Borba FH, da Silva A. A comprehensive guide for characterization of adsorbent materials. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
7
|
Environmental and Pharmacokinetic Aspects of Zeolite/Pharmaceuticals Systems—Two Facets of Adsorption Ability. Catalysts 2022. [DOI: 10.3390/catal12080837] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Zeolites belong to aluminosilicate microporous solids, with strong and diverse catalytic activity, which makes them applicable in almost every kind of industrial process, particularly thanks to their eco-friendly profile. Another crucial characteristic of zeolites is their tremendous adsorption capability. Therefore, it is self-evident that the widespread use of zeolites is in environmental protection, based primarily on the adsorption capacity of substances potentially harmful to the environment, such as pharmaceuticals, pesticides, or other industry pollutants. On the other hand, zeolites are also recognized as drug delivery systems (DDS) carriers for numerous pharmacologically active agents. The enhanced bioactive ability of DDS zeolite as a drug carrying nanoplatform is confirmed, making this system more specific and efficient, compared to the drug itself. These two applications of zeolite, in fact, illustrate the importance of (ir)reversibility of the adsorption process. This review gives deep insight into the balance and dynamics that are established during that process, i.e., the interaction between zeolites and pharmaceuticals, helping scientists to expand their knowledge necessarily for a more effective application of the adsorption phenomenon of zeolites.
Collapse
|
8
|
Sannino F, Pansini M, Marocco A, Cinquegrana A, Esposito S, Tammaro O, Barrera G, Tiberto P, Allia P, Pirozzi D. Removal of sulfanilamide by tailor-made magnetic metal-ceramic nanocomposite adsorbents. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 310:114701. [PMID: 35217443 DOI: 10.1016/j.jenvman.2022.114701] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 02/01/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Three tailor-made magnetic metal-ceramic nanocomposites, obtained from zeolite A (ZA1 and ZA2) and a natural clinoptilolite (LB1), have been used as adsorbents to remove sulfanilamide (SA), a sulfonamide antibiotic of common use, from water. A patented process for the synthesis of nanocomposites has been suitably modified to maximize the efficiency of the SA removal, as well as to extend the applicability of the materials. The role played by the main process parameters (kinetic, pH, initial concentration of SA) has been characterized. The significant effect of the pH on the SA removal has been explained identifying two possibly coexisting mechanisms of SA adsorption, based on polar and hydrophobic interactions, respectively. The adsorption kinetics have been in all cases described by the pseudo second-order model. The adsorption isotherms obtained with ZA1 have been satisfactorily described by the Langmuir model, suggesting a monolayer adsorption of SA on the magnetic nanocomposites resulting from a uniform surface energy. The isotherms obtained with LB1 could be described by a more complex approach, deriving by the additive superposition of Langmuir and Sips models. In order to ensure an effective removal of the antibiotic and a proper recycle of the magnetic adsorbents, a sustainable regeneration procedure of the exhausted adsorbent has been developed, based on the treatment with a dilute solution of NaOH.
Collapse
Affiliation(s)
- Filomena Sannino
- University of Naples "Federico II", Department of Agricultural Sciences, Via Università 100, 80055, Portici, Naples, Italy
| | - Michele Pansini
- Department of Civil and Mechanical Engineering and INSTM Research Unit, Università degli Studi di Cassino e del Lazio Meridionale, Via G. Di Biasio 43, 03043, Cassino, FR, Italy
| | - Antonello Marocco
- Department of Civil and Mechanical Engineering and INSTM Research Unit, Università degli Studi di Cassino e del Lazio Meridionale, Via G. Di Biasio 43, 03043, Cassino, FR, Italy
| | - Alessia Cinquegrana
- University of Naples "Federico II", Department of Chemical Engineering, Materials and Industrial Production (DICMaPI), Laboratory of Biochemical Engineering. Piazzale Tecchio, 80, 80125, Naples, Italy
| | - Serena Esposito
- Department of Applied Science and Technology and INSTM Unit of Torino - Politecnico, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino, Italy
| | - Olimpia Tammaro
- Department of Applied Science and Technology and INSTM Unit of Torino - Politecnico, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino, Italy
| | - Gabriele Barrera
- INRiM Torino, Advanced Materials for Metrology and Life Sciences, Strada delle Cacce 91, 10143, Torino, Italy
| | - Paola Tiberto
- INRiM Torino, Advanced Materials for Metrology and Life Sciences, Strada delle Cacce 91, 10143, Torino, Italy
| | - Paolo Allia
- Department of Applied Science and Technology and INSTM Unit of Torino - Politecnico, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino, Italy; INRiM Torino, Advanced Materials for Metrology and Life Sciences, Strada delle Cacce 91, 10143, Torino, Italy
| | - Domenico Pirozzi
- University of Naples "Federico II", Department of Chemical Engineering, Materials and Industrial Production (DICMaPI), Laboratory of Biochemical Engineering. Piazzale Tecchio, 80, 80125, Naples, Italy.
| |
Collapse
|
9
|
Hooriabad Saboor F, Nasirpour N, Shahsavari S, Kazemian H. The Effectiveness of MOFs for the Removal of Pharmaceuticals from Aquatic Environments: A Review Focused on Antibiotics Removal. Chem Asian J 2021; 17:e202101105. [PMID: 34941022 DOI: 10.1002/asia.202101105] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/09/2021] [Indexed: 11/06/2022]
Abstract
There is an increasing level of various pollutants and their persistence in aquatic environments. The improper use of antibiotics and their inefficient metabolism in organisms result in their release into aquatic environments. Antibiotic abuse has led to hazardous effects on human health. Thereby, efficient removal of pharmaceuticals, particularly antibiotics, from wastewater and contaminated water bodies is greatly interested in international research communities. Metal-organic framework (MOF) materials, as a hybrid group of material containing metallic center and organic linkers, offer a porous structure that is highly efficient for removing different pollutants from contaminated water and wastewater streams. This article aims to review the recent advancement in using MOF-based adsorbents and catalysts for the removal of pharmaceuticals, especially antibiotics, from polluted water. Applying MOFs-based structures for removing antibiotics using photocatalytic removal and adsorptive removal techniques will be discussed and evaluated in this review paper. Various MOF-based materials such as functionalized MOFs, MOF-based composites, magnetic MOF-based composites, MOFs templated-metal oxide catalysts for removing pharmaceuticals, personal care products, and antibiotics from contaminated aqueous media are discussed. Furthermore, effective operational parameters on the adsorption, adsorption mechanisms, adsorption isotherms, and thermodynamic parameters are explained and discussed. Finally, in the concluding remarks, the challenges and future outlooks of using MOFs-based adsorbents and catalysts for removing antibiotics are summarized.
Collapse
Affiliation(s)
- Fahimeh Hooriabad Saboor
- University of Mohaghegh Ardabili, Department of Chemical Engineering, Universtiy Street, 1313156199, Ardabil, IRAN (ISLAMIC REPUBLIC OF)
| | - Niloofar Nasirpour
- University of Mohaghegh Ardabili Faculty of Engineering, Chemical Engineering, IRAN (ISLAMIC REPUBLIC OF)
| | - Shadab Shahsavari
- Islamic Azad University Varamin-Pishva Branch, chemical Engineering, IRAN (ISLAMIC REPUBLIC OF)
| | - Hossein Kazemian
- UNBC: University of Northern British Columbia, Northern Analytical Lab Service, CANADA
| |
Collapse
|
10
|
Adsorption Features of Various Inorganic Materials for the Drug Removal from Water and Synthetic Urine Medium: A Multi-Technique Time-Resolved In Situ Investigation. MATERIALS 2021; 14:ma14206196. [PMID: 34683794 PMCID: PMC8540798 DOI: 10.3390/ma14206196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 01/17/2023]
Abstract
Pharmaceutical active compounds, including hundreds of different substances, are counted among the emerging contaminants in waterbodies, whose presence raises a growing concern for the ecosystem. Drugs are metabolized and excreted mainly through urine as an unchanged active ingredient or in the form of metabolites. These emerging contaminants are not effectively removed with the technologies currently in use, making them a relevant environmental problem. This study proposes the treatment of urine and water at the source that can allow an easier removal of dissolved drugs and metabolites. The treatment of synthetic urine, with dissolved ibuprofen as a model compound, by adsorption, using various classes of inorganic materials, such as clays, hierarchical zeolites and ordered mesoporous silica (MCM-41), is presented. A multi-technique approach involving X-ray powder diffraction, solid-state NMR, UV-Vis and Raman spectroscopies was employed to investigate the adsorption process in inorganic adsorbents. Moreover, the uptake, the ensuing competition, the efficiency and selectivity as well as the packing of the model compound in ordered mesoporous silica during the incipient wetness impregnation process were all thoroughly monitored by a novel approach, involving combined complementary time-resolved in situ 1H and 13C MAS NMR spectroscopy as well as X-ray powder diffraction.
Collapse
|
11
|
Atugoda T, Gunawardane C, Ahmad M, Vithanage M. Mechanistic interaction of ciprofloxacin on zeolite modified seaweed (Sargassum crassifolium) derived biochar: Kinetics, isotherm and thermodynamics. CHEMOSPHERE 2021; 281:130676. [PMID: 34020185 DOI: 10.1016/j.chemosphere.2021.130676] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 04/14/2021] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
Modification of biochar for efficient removal of antibiotics from water could be a valuable approach in the environmental applications. In this study, a brown seaweed (Sargassum crassifolium) was pyrolyzed at 500 °C and the obtained biochar (SWBC) was modified with zeolite through the slurry method maintaining the ratio at 1:5 (zeolite: biochar) (SWBC-Z). Batch adsorption experiments were conducted to evaluate the adsorption tendency of SWBC and SWBC-Z for the removal of ciprofloxacin (CPX) from water via pH edge, kinetics, isotherm and thermodynamic experiments. The highest adsorption was in the pH range of 6.5-8, supported by the electrostatic attractions and hydrogen bonding with zwitterionic CPX. Experimental kinetics data was well-fitted to the pseudo-second-order and Elovich models (R2 of 0.992 and 0.976, respectively), while the Langmuir and Freundlich isotherm models best described the isotherm data (R2 of 0.954 and 0.976, respectively). The maximum adsorption capacity of 93.65 mg g-1 was recorded for the SWBC-Z. The models predicted chemisorption and physisorption interactions on the heterogenous biochar surface. Well-defined peaks of silanol groups in the FTIR spectrum of SWBC-Z and its electron microscopy confirmed the incorporation of zeolite minerals. Post adsorption FTIR analysis elucidated the changes in the surface functional groups of the SWBC-Z. Thermodynamic data revealed spontaneous and exothermic reaction between CPX and both the biochars. It was concluded that modification of pristine biochar with zeolite imparted greater surface area and additional active sites, which subsequently enhanced the overall CPX adsorption by the SWBC-Z.
Collapse
Affiliation(s)
- Thilakshani Atugoda
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Chaminda Gunawardane
- National Institute of Post Harvest Management, Jayanthi Mawatha, Anuradhapura, Sri Lanka
| | - Mahtab Ahmad
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Meththika Vithanage
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka.
| |
Collapse
|
12
|
Grela A, Kuc J, Bajda T. A Review on the Application of Zeolites and Mesoporous Silica Materials in the Removal of Non-Steroidal Anti-Inflammatory Drugs and Antibiotics from Water. MATERIALS (BASEL, SWITZERLAND) 2021; 14:4994. [PMID: 34501084 PMCID: PMC8433637 DOI: 10.3390/ma14174994] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 12/19/2022]
Abstract
Zeolites and mesoporous silica materials are effective adsorbents that can be useful for the removal of various pharmaceuticals including non-steroidal anti-inflammatory drugs and antibiotics from low-quality water. This paper summarizes the properties and basic characteristics of zeolites and mesoporous silica materials and reviews the recent studies on the efficacy of the adsorption of selected non-steroidal medicinal products and antibiotics by these adsorbents to assess the potential opportunities and challenges of using them in water treatment. It was found that the adsorption capacity of sorbents with high silica content is related to their surface hydrophobicity (hydrophilicity) and structural features, such as micropore volume and pore size, as well as the properties of the studied medicinal products. This review can be of help to scientists to develop an effective strategy for reducing the amount of these two groups of pharmaceuticals in wastewater.
Collapse
Affiliation(s)
- Agnieszka Grela
- Faculty of Environmental and Power Engineering, The Cracow University of Technology, 30-155 Cracow, Poland
- Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, 30-059 Cracow, Poland; (J.K.); (T.B.)
| | - Joanna Kuc
- Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, 30-059 Cracow, Poland; (J.K.); (T.B.)
- Faculty of Chemical Engineering and Technology, The Cracow University of Technology, 30-155 Cracow, Poland
| | - Tomasz Bajda
- Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, 30-059 Cracow, Poland; (J.K.); (T.B.)
| |
Collapse
|
13
|
Zhang J, Zhai J, Zheng H, Li X, Wang Y, Li X, Xing B. Adsorption, desorption and coadsorption behaviors of sulfamerazine, Pb(II) and benzoic acid on carbon nanotubes and nano-silica. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 738:139685. [PMID: 32526408 DOI: 10.1016/j.scitotenv.2020.139685] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/18/2020] [Accepted: 05/23/2020] [Indexed: 06/11/2023]
Abstract
In this study, nano-silica (Nano-SiO2), oxidized (O-CNTs) and graphitized multi-walled carbon nanotubes (G-CNTs) were applied as model adsorbents to study the adsorption, desorption and coadsorption behaviors of sulfamerazine (SMR), Pb(II) and benzoic acid (BA). The results showed that charge assisted H-bond (CAHB) formation played an important role in adsorption of SMR and BA on O-riched nanomaterials. The adsorption capacities of Pb(II) on CNTs were 21.46- 26.77 times higher than that on Nano-SiO2, which was mainly attributed to surface complexation and cation-π interaction. The fraction of Pb2+ adsorbed in the inside channel of CNTs should not be ignored. In coexisting systems, the absolute sorption inhibition of the SMR (ΔQeSMR) was compared with the amount of competitor adsorbed. Competitive sorption was observed as indicated by adding Pb(II) decreased adsorption of SMR on Nano-SiO2 (ΔQeSMR > 0), but hardly affected SMR adsorption on CNTs (ΔQeSMR ≈ 0) which was attributed to cation-π interaction. In addition, CAHB formed between SMR and Nano-SiO2 (ΔpKa ≈ 4.34) was weaker than that formed between SMR and O-CNTs (ΔpKa ≈ 3.15), which also consequently resulted in stronger competition of Pb(II) to SMR on Nano-SiO2 than that on O-CNTs. Moreover, coexisting BA increased adsorption of SMR on Nano-SiO2 and G-CNTs (ΔQeSMR < 0), but did not result in an apparent competition on SMR adsorption by O-CNTs (ΔQeSMR ≈ 0). These results emphasize that the environmental behaviors of a certain pollutant should be assessed carefully by considering the presence of other pollutants.
Collapse
Affiliation(s)
- Jinlong Zhang
- School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China; International Joint Research Centre of Shaanxi Province for Pollutants Exposure and Eco-environmental Health, Xi'an 710119, China
| | - Jieru Zhai
- School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China; International Joint Research Centre of Shaanxi Province for Pollutants Exposure and Eco-environmental Health, Xi'an 710119, China
| | - Hao Zheng
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Institute for Advanced Ocean Study, Ocean University of China, Qingdao 266100, China
| | - Xiaoyun Li
- School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China; International Joint Research Centre of Shaanxi Province for Pollutants Exposure and Eco-environmental Health, Xi'an 710119, China.
| | - Yuru Wang
- School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Xiaoping Li
- School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China; International Joint Research Centre of Shaanxi Province for Pollutants Exposure and Eco-environmental Health, Xi'an 710119, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States.
| |
Collapse
|
14
|
Zuo X, Qian C, Ma S, Xiong J. Sulfonamide antibiotics sorption by high silica ZSM-5: Effect of pH and humic monomers (vanillin and caffeic acid). CHEMOSPHERE 2020; 248:126061. [PMID: 32028164 DOI: 10.1016/j.chemosphere.2020.126061] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/20/2020] [Accepted: 01/28/2020] [Indexed: 05/27/2023]
Abstract
Sulfonamides (SAs) in the aquatic environment are a serious threat to human health, environmental ecology and water reuse. Natural organic matter and SAs are known to compete for adsorption sites on adsorbent. SAs adsorption by high silica ZSM-5 (HSZSM-5) affected by humic monomers remains unclear. The impact of representative humic monomers (HMs) (caffeic acid (CA) and vanillin (VNL)) on the sorption of SAs by HSZSM-5 at different pH was evaluated for the first time. Fourier transform infrared and X-ray photoelectron spectroscopy were used to obtain the group transformations. The presence of HM did not change the main adsorption mechanism of SAs on pristine and loaded HSZSM-5 (pH-dependent and hydrophobic interaction). Lewis acid-base electron interaction, π-π electron donor-acceptor (EDA), and H-bonding had a positive contribution to the adsorption of SAs by HSZSM-5 after HM coating. However, HM coating and competition reduced the adsorption capacity of HSZSM-5 towards SAs. In co-introduction system of HM and SAs, the reaction between CO in HM and N-H in SAs resulted in SAs and HM co-adsorbed on HSZSM-5. Meanwhile, CA concentration <20 mg/L was in favor of SMX adsorption. The findings give an insight into the interactions among HM and SAs in high silica zeolites adsorption system, thereby improving SAs removal in actual water.
Collapse
Affiliation(s)
- Xingtao Zuo
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Cheng Qian
- Gezhouba Water Operation Company Limited, China Gezhouba Group, Rizhao, 276800, China
| | - Senlin Ma
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Juan Xiong
- College of Science, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
15
|
Zuo X, Qian C, Ma S, Xiong J, He J, Chen Z. Removal of sulfonamide antibiotics from water by high-silica ZSM-5. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2019; 80:507-516. [PMID: 31596262 DOI: 10.2166/wst.2019.294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Adsorption characteristics of high-silica zeolites (HSZSM-5) for two selected sulfonamide antibiotics (SAs) (sulfamethoxazole and sulfadiazine) were investigated. The SAs were almost completely (>90%) removed from the water by HSZSM-5. Adsorption followed second-order kinetics with liquid-film diffusion as the dominant mechanism. SA adsorption capacity on high-silica zeolites was examined in terms of pH, temperature, and the presence of natural organic matter (NOM). HSZSM-5 had better adsorption performance in acidic conditions, and the apparent distribution coefficient indicated that SA0 species were the major contribution to the overall adsorption at pH of 2-10. Adsorption of SAs on HSZSM-5 was a spontaneous and exothermic physisorption process. SA removal by HSZSM-5 was a mixed mechanism through ion-exchange and hydrophobic interaction. HSZSM-5 has potential application prospects in removing SAs from wastewater.
Collapse
Affiliation(s)
- Xingtao Zuo
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China E-mail:
| | - Cheng Qian
- Sainuo Environment Technology Company Limited, China Gezhouba Group, Rizhao 276800, China
| | - Senlin Ma
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China E-mail:
| | - Juan Xiong
- College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiajie He
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China E-mail:
| | - Zhongbing Chen
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Prague 16500, Czech Republic
| |
Collapse
|
16
|
Jiang N, Shang R, Heijman SGJ, Rietveld LC. High-silica zeolites for adsorption of organic micro-pollutants in water treatment: A review. WATER RESEARCH 2018; 144:145-161. [PMID: 30025266 DOI: 10.1016/j.watres.2018.07.017] [Citation(s) in RCA: 175] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 07/05/2018] [Accepted: 07/06/2018] [Indexed: 06/08/2023]
Abstract
High-silica zeolites have been found to be effective adsorbents for the removal of organic micro-pollutants (OMPs) from impaired water, including various pharmaceuticals, personal care products, industrial chemicals, etc. In this review, the properties and fundamentals of high-silica zeolites are summarised. Recent research on mechanisms and efficiencies of OMP adsorption by high-silica zeolites are reviewed to assess the potential opportunities and challenges for the application of high-silica zeolites for OMP adsorption in water treatment. It is concluded that the adsorption capacities are well-related to surface hydrophobicity/hydrophilicity and structural features, e.g. micropore volume and pore size of high-silica zeolites, as well as the properties of OMPs. By using high-silica zeolites, the undesired competitive adsorption of background organic matter (BOM) in natural water could potentially be prevented. In addition, oxidative regeneration could be applied on-site to restore the adsorption capacity of zeolites for OMPs and prevent the toxic residues from re-entering the environment.
Collapse
Affiliation(s)
- Nan Jiang
- Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, P.O. Box 5048, 2600, GA Delft, The Netherlands.
| | - Ran Shang
- Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, P.O. Box 5048, 2600, GA Delft, The Netherlands.
| | - Sebastiaan G J Heijman
- Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, P.O. Box 5048, 2600, GA Delft, The Netherlands
| | - Luuk C Rietveld
- Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, P.O. Box 5048, 2600, GA Delft, The Netherlands
| |
Collapse
|
17
|
Paul G, Bisio C, Braschi I, Cossi M, Gatti G, Gianotti E, Marchese L. Combined solid-state NMR, FT-IR and computational studies on layered and porous materials. Chem Soc Rev 2018; 47:5684-5739. [PMID: 30014075 DOI: 10.1039/c7cs00358g] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Understanding the structure-property relationship of solids is of utmost relevance for efficient chemical processes and technological applications in industries. This contribution reviews the concept of coupling three well-known characterization techniques (solid-state NMR, FT-IR and computational methods) for the study of solid state materials which possess 2D and 3D architectures and discusses the way it will benefit the scientific communities. It highlights the most fundamental and applied aspects of the proactive combined approach strategies to gather information at a molecular level. The integrated approach involving multiple spectroscopic and computational methods allows achieving an in-depth understanding of the surface, interfacial and confined space processes that are beneficial for the establishment of structure-property relationships. The role of ssNMR/FT-IR spectroscopic properties of probe molecules in monitoring the strength and distribution of catalytic active sites and their accessibility at the porous/layered surface is discussed. Both experimental and theoretical aspects will be considered by reporting relevant examples. This review also identifies and discusses the progress, challenges and future prospects in the field of synthesis and applications of layered and porous solids.
Collapse
Affiliation(s)
- Geo Paul
- Department of Science and Technological Innovation, Università del Piemonte Orientale, Viale T. Michel 11, 15121 Alessandria, Italy.
| | | | | | | | | | | | | |
Collapse
|
18
|
de Sousa DNR, Insa S, Mozeto AA, Petrovic M, Chaves TF, Fadini PS. Equilibrium and kinetic studies of the adsorption of antibiotics from aqueous solutions onto powdered zeolites. CHEMOSPHERE 2018; 205:137-146. [PMID: 29689527 DOI: 10.1016/j.chemosphere.2018.04.085] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 04/09/2018] [Accepted: 04/15/2018] [Indexed: 05/07/2023]
Abstract
The performances of two FAU-type zeolites with different SiO2/Al2O3 ratios were evaluated for the removal of antibiotics of three different classes, namely azithromycin, ofloxacin, and sulfamethoxazole, from aqueous solutions. Commercial zeolites were used, without any previous treatment. Use of a small adsorbent dosage resulted in fast antibiotic adsorption that followed pseudo-second order kinetics. The removals of azithromycin and sulfamethoxazole were highly pH-dependent, with low removal percentages observed under acid (pH 2.5-4.5) and basic (pH 8.5-10.5) conditions, respectively. The Freundlich isotherm model provided the best fits to the adsorption data. The adsorption mechanisms appeared to involve both electrostatic and H-bonding interactions. Using an antibiotics mixture, percentage removals of azithromycin and ofloxacin onto the zeolites of up to 79% were obtained. Both materials presented good adsorption (>50%) of azithromycin and ofloxacin from a real sample of effluent wastewater. The results showed that zeolites with FAU structure can be used as effective adsorbents for the removal of antibiotics with different physicochemical properties, including molecules with large volumes, such as azithromycin.
Collapse
Affiliation(s)
- Diana Nara Ribeiro de Sousa
- Laboratório de Biogeoquímica Ambiental (LBGqA), Departamento de Química, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luís, km 235, 13565-905, São Carlos, SP, Brazil; Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, H(2)O Building, Emili Grahit 101, 17003, Girona, Spain.
| | - Sara Insa
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, H(2)O Building, Emili Grahit 101, 17003, Girona, Spain.
| | - Antonio Aparecido Mozeto
- Laboratório de Biogeoquímica Ambiental (LBGqA), Departamento de Química, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luís, km 235, 13565-905, São Carlos, SP, Brazil.
| | - Mira Petrovic
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, H(2)O Building, Emili Grahit 101, 17003, Girona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Passeig de Lluís Companys 23, 08010, Barcelona, Spain.
| | - Thiago Faheina Chaves
- Instituto de Química, UNESP-Univ. Estadual Paulista, Rua Prof. Francisco Degni 55, 14800-060, Araraquara, SP, Brazil.
| | - Pedro Sergio Fadini
- Laboratório de Biogeoquímica Ambiental (LBGqA), Departamento de Química, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luís, km 235, 13565-905, São Carlos, SP, Brazil.
| |
Collapse
|
19
|
|
20
|
Guo Y, Chen B, Liu D, Huang W, Sun Y, Zhao Y. Removal of antibiotics from aqueous solution using silicon-based materials. An overview. ACTA ACUST UNITED AC 2018. [DOI: 10.1080/21622515.2018.1482374] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yige Guo
- College of Environmental Science and Engineering, Nankai University, Tianjin, People’s Republic of China
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, Nankai University, Tianjin, People’s Republic of China
| | - Bin Chen
- Xianyang City Center for Disease Control and Prevention, Xianyang, People’s Republic of China
| | - Dongfang Liu
- College of Environmental Science and Engineering, Nankai University, Tianjin, People’s Republic of China
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, Nankai University, Tianjin, People’s Republic of China
| | - Wenli Huang
- College of Environmental Science and Engineering, Nankai University, Tianjin, People’s Republic of China
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, Nankai University, Tianjin, People’s Republic of China
| | - Yu Sun
- College of Environmental Science and Engineering, Nankai University, Tianjin, People’s Republic of China
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, Nankai University, Tianjin, People’s Republic of China
| | - Ying Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, People’s Republic of China
| |
Collapse
|
21
|
Insights into Adsorption of Chlorobenzene in High Silica MFI and FAU Zeolites Gained from Chromatographic and Diffractometric Techniques. MINERALS 2018. [DOI: 10.3390/min8030080] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
22
|
Azhar MR, Abid HR, Periasamy V, Sun H, Tade MO, Wang S. Adsorptive removal of antibiotic sulfonamide by UiO-66 and ZIF-67 for wastewater treatment. J Colloid Interface Sci 2017; 500:88-95. [DOI: 10.1016/j.jcis.2017.04.001] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 03/25/2017] [Accepted: 04/02/2017] [Indexed: 11/16/2022]
|
23
|
Dong Y, Lin H, He Y. Correlation between physicochemical properties of modified clinoptilolite and its performance in the removal of ammonia-nitrogen. ENVIRONMENTAL MONITORING AND ASSESSMENT 2017; 189:107. [PMID: 28210889 DOI: 10.1007/s10661-017-5806-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 01/25/2017] [Indexed: 06/06/2023]
Abstract
The physicochemical properties of the 24 modified clinoptilolite samples and their ammonia-nitrogen removal rates were measured to investigate the correlation between them. The modified clinoptilolites obtained by acid modification, alkali modification, salt modification, and thermal modification were used to adsorb ammonia-nitrogen. The surface area, average pore width, macropore volume, mecropore volume, micropore volume, cation exchange capacity (CEC), zeta potential, silicon-aluminum ratios, and ammonia-nitrogen removal rate of the 24 modified clinoptilolite samples were measured. Subsequently, the linear regression analysis method was used to research the correlation between the physicochemical property of the different modified clinoptilolite samples and the ammonia-nitrogen removal rate. Results showed that the CEC was the major physicochemical property affecting the ammonia-nitrogen removal performance. According to the impacts from strong to weak, the order was CEC > silicon-aluminum ratios > mesopore volume > micropore volume > surface area. On the contrary, the macropore volume, average pore width, and zeta potential had a negligible effect on the ammonia-nitrogen removal rate. The relational model of physicochemical property and ammonia-nitrogen removal rate of the modified clinoptilolite was established, which was ammonia-nitrogen removal rate = 1.415[CEC] + 173.533 [macropore volume] + 0.683 [surface area] + 4.789[Si/Al] - 201.248. The correlation coefficient of this model was 0.982, which passed the validation of regression equation and regression coefficients. The results of the significance test showed a good fit to the correlation model.
Collapse
Affiliation(s)
- Yingbo Dong
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Hai Lin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Yinhai He
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
24
|
Braschi I, Martucci A, Blasioli S, Mzini LL, Ciavatta C, Cossi M. Effect of humic monomers on the adsorption of sulfamethoxazole sulfonamide antibiotic into a high silica zeolite Y: An interdisciplinary study. CHEMOSPHERE 2016; 155:444-452. [PMID: 27139123 DOI: 10.1016/j.chemosphere.2016.04.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 03/23/2016] [Accepted: 04/04/2016] [Indexed: 06/05/2023]
Abstract
The adsorption efficiency of a high silica zeolite Y towards sulfamethoxazole, a sulfonamide antibiotic, was evaluated in the presence of two humic monomers, vanillin and caffeic acid, representative of phenolic compounds usually occurring in water bodies, owing their dimension comparable to those of the zeolite microporosity. In the entire range of investigated pH (5-8), adsorption of vanillin, as a single component, was reversible whereas it was irreversible for sulfamethoxazole. In equimolar ternary mixtures, vanillin coadsorbed with sulfamethoxazole, conversely to what observed for caffeic acid, accordingly to their adsorption kinetics and pKa values. Lower and higher adsorptions were observed for sulfamethoxazole and vanillin, respectively, than what it was observed as single components, clearly revealing guest-guest interactions. An adduct formed through H-bonding between the carbonyl oxygen of vanillin and the heterocycle NH of sulfamethoxazole in amide form was observed in the zeolite pore by combined FTIR and Rietveld analysis, in agreement with Density Functional Theory calculations of the adduct stabilization energies. The formation of similar adducts, able to stabilize other naturally occurring phenolic compounds in the microporosities of hydrophobic sorbents, was proposed.
Collapse
Affiliation(s)
- Ilaria Braschi
- Department of Agricultural Sciences, University of Bologna, 40127 Bologna, Italy.
| | - Annalisa Martucci
- Department of Physics and Earth Sciences, University of Ferrara, 44100 Ferrara, Italy
| | - Sonia Blasioli
- Department of Agricultural Sciences, University of Bologna, 40127 Bologna, Italy
| | - Loyiso L Mzini
- Department of Agricultural Sciences, University of Bologna, 40127 Bologna, Italy
| | - Claudio Ciavatta
- Department of Agricultural Sciences, University of Bologna, 40127 Bologna, Italy
| | - Maurizio Cossi
- Department of Sciences and Technological Innovation, University of Eastern Piedmont A. Avogadro, 51121 Alessandria, Italy
| |
Collapse
|
25
|
Braschi I, Blasioli S, Buscaroli E, Montecchio D, Martucci A. Physicochemical regeneration of high silica zeolite Y used to clean-up water polluted with sulfonamide antibiotics. J Environ Sci (China) 2016; 43:302-312. [PMID: 27155437 DOI: 10.1016/j.jes.2015.07.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 07/03/2015] [Accepted: 07/16/2015] [Indexed: 06/05/2023]
Abstract
High silica zeolite Y has been positively evaluated to clean-up water polluted with sulfonamides, an antibiotic family which is known to be involved in the antibiotic resistance evolution. To define possible strategies for the exhausted zeolite regeneration, the efficacy of some chemico-physical treatments on the zeolite loaded with four different sulfonamides was evaluated. The evolution of photolysis, Fenton-like reaction, thermal treatments, and solvent extractions and the occurrence in the zeolite pores of organic residues eventually entrapped was elucidated by a combined thermogravimetric (TGA-DTA), diffractometric (XRPD), and spectroscopic (FT-IR) approach. The chemical processes were not able to remove the organic guest from zeolite pores and a limited transformation on embedded molecules was observed. On the contrary, both thermal treatment and solvent extraction succeeded in the regeneration of the zeolite loaded from deionized and natural fresh water. The recyclability of regenerated zeolite was evaluated over several adsorption/regeneration cycles, due to the treatment efficacy and its stability as well as the ability to regain the structural features of the unloaded material.
Collapse
Affiliation(s)
- I Braschi
- Department of Agricultural Sciences, University of Bologna, Bologna 40127, Italy; NanoSiSTeMI Interdisciplinary Centre, Università del Piemonte Orientale A. Avogadro, Alessandria 15121, Italy.
| | - S Blasioli
- Department of Agricultural Sciences, University of Bologna, Bologna 40127, Italy
| | - E Buscaroli
- Department of Agricultural Sciences, University of Bologna, Bologna 40127, Italy
| | - D Montecchio
- Department of Agricultural Sciences, University of Bologna, Bologna 40127, Italy
| | - A Martucci
- Department of Physics and Earth Sciences, University of Ferrara, Ferrara 44122, Italy
| |
Collapse
|
26
|
Rashidi Nodeh H, Sereshti H. Synthesis of magnetic graphene oxide doped with strontium titanium trioxide nanoparticles as a nanocomposite for the removal of antibiotics from aqueous media. RSC Adv 2016. [DOI: 10.1039/c6ra18341g] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this study, strontium titanium trioxide (SrTiO3) nanoparticles were synthesized and doped onto graphene oxide (GO) based magnetic nanoparticles (MNPs) simply via ultrasound.
Collapse
Affiliation(s)
| | - Hassan Sereshti
- Department of Chemistry
- Faculty of Science
- University of Tehran
- Tehran
- Iran
| |
Collapse
|
27
|
Rakić V, Rac V, Krmar M, Otman O, Auroux A. The adsorption of pharmaceutically active compounds from aqueous solutions onto activated carbons. JOURNAL OF HAZARDOUS MATERIALS 2015; 282:141-149. [PMID: 24857621 DOI: 10.1016/j.jhazmat.2014.04.062] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 04/25/2014] [Accepted: 04/26/2014] [Indexed: 06/03/2023]
Abstract
In this study, the adsorption of pharmaceutically active compounds - salicylic acid, acetylsalicylic acid, atenolol and diclofenac-Na onto activated carbons has been studied. Three different commercial activated carbons, possessing ∼650, 900 or 1500m(2)g(-1) surface areas were used as solid adsorbents. These materials were fully characterized - their textural, surface features and points of zero charge have been determined. The adsorption was studied from aqueous solutions at 303K using batch adsorption experiments and titration microcalorimetry, which was employed in order to obtain the heats evolved as a result of adsorption. The maximal adsorption capacities of investigated solids for all target pharmaceuticals are in the range of 10(-4)molg(-1). The obtained maximal retention capacities are correlated with the textural properties of applied activated carbon. The roles of acid/base features of activated carbons and of molecular structures of adsorbate molecules have been discussed. The obtained results enabled to estimate the possibility to use the activated carbons in the removal of pharmaceuticals by adsorption.
Collapse
Affiliation(s)
- Vesna Rakić
- Faculty of Agriculture, Department of Chemistry, University of Belgrade, Nemanjina 6, 11080 Zemun, Serbia.
| | - Vladislav Rac
- Faculty of Agriculture, Department of Chemistry, University of Belgrade, Nemanjina 6, 11080 Zemun, Serbia
| | - Marija Krmar
- Institut "Goša" Milana Rakića 35, 11000 Beograd, Serbia
| | - Otman Otman
- Institut de Recherches sur la Catalyse et l'Environnement de Lyon (IRCELYON) , UMR 5256 CNRS/Université Lyon1, 2 av. Albert Einstein, 69626 Villeurbanne Cedex, France
| | - Aline Auroux
- Institut de Recherches sur la Catalyse et l'Environnement de Lyon (IRCELYON) , UMR 5256 CNRS/Université Lyon1, 2 av. Albert Einstein, 69626 Villeurbanne Cedex, France
| |
Collapse
|
28
|
Arletti R, Leardini L, Vezzalini G, Quartieri S, Gigli L, Santoro M, Haines J, Rouquette J, Konczewicz L. Pressure-induced penetration of guest molecules in high-silica zeolites: the case of mordenite. Phys Chem Chem Phys 2015; 17:24262-74. [DOI: 10.1039/c5cp03561a] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A synthetic high-silica mordenite (HS-MOR) has been compressed in both non-penetrating (silicone oil, s.o.) and penetrating [methanol : ethanol : water (16 : 3 : 1) (m.e.w.), water : ethanol (3 : 1) (w.e.), and ethylene glycol (e.gl.)] pressure transmitting media (PTM).
Collapse
Affiliation(s)
- R. Arletti
- Dipartimento di Scienze della Terra
- Università di Torino
- I-10125 Torino
- Italy
- Interdepartmental Centre “Nanostructured Interfaces and Surfaces-NIS”
| | - L. Leardini
- Dipartimento di Fisica e Scienze della Terra
- Università di Messina
- I-98166 Messina S. Agata
- Italy
| | - G. Vezzalini
- Dipartimento di Scienze Chimiche e Geologiche
- Università di Modena e Reggio Emilia
- I-41125 Modena
- Italy
| | - S. Quartieri
- Dipartimento di Fisica e Scienze della Terra
- Università di Messina
- I-98166 Messina S. Agata
- Italy
| | - L. Gigli
- Dipartimento di Scienze della Terra
- Università di Torino
- I-10125 Torino
- Italy
- Interdepartmental Centre “Nanostructured Interfaces and Surfaces-NIS”
| | - M. Santoro
- Istituto Nazionale di Ottica
- INO-CNR
- I-50019 Sesto Fiorentino
- Italy
- European Laboratory for Non Linear Spectroscopy (LENS)
| | - J. Haines
- Institut Charles Gerhardt Montpellier
- UMR 5253 CNRS
- Equipe C2M
- Université de Montpellier
- 34095 Montpellier
| | - J. Rouquette
- Institut Charles Gerhardt Montpellier
- UMR 5253 CNRS
- Equipe C2M
- Université de Montpellier
- 34095 Montpellier
| | - L. Konczewicz
- Laboratoire Charles Coulomb
- UMR 5221 CNRS
- Université de Montpellier
- 34095 Montpellier
- France
| |
Collapse
|