• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4607200)   Today's Articles (314)   Subscriber (49374)
For: Kim T, Dykstra J, Porada S, van der Wal A, Yoon J, Biesheuvel P. Enhanced charge efficiency and reduced energy use in capacitive deionization by increasing the discharge voltage. J Colloid Interface Sci 2015;446:317-26. [DOI: 10.1016/j.jcis.2014.08.041] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 08/21/2014] [Accepted: 08/23/2014] [Indexed: 11/17/2022]
Number Cited by Other Article(s)
1
Dong Y, Jiang M, Zhao J, Zhang F, Ma S, Zhang Y. Adsorption and desorption behavior of Zn2+ in a flow-through electrosorption reactor. iScience 2024;27:109514. [PMID: 38595794 PMCID: PMC11001621 DOI: 10.1016/j.isci.2024.109514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/26/2024] [Accepted: 03/14/2024] [Indexed: 04/11/2024]  Open
2
Yoon H, Min T, Kim SH, Lee G, Oh D, Choi DC, Kim S. Effect of activated carbon electrode material characteristics on hardness control performance of membrane capacitive deionization. RSC Adv 2023;13:31480-31486. [PMID: 37901265 PMCID: PMC10603821 DOI: 10.1039/d3ra05615e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/09/2023] [Indexed: 10/31/2023]  Open
3
Mao Y, Qin H, Zhang H, Wu W, Wu D. Unraveling the effect of CDI electrode characteristics on Cs removal from the perspective of ion transfer and energy composition. JOURNAL OF HAZARDOUS MATERIALS 2023;452:131263. [PMID: 36989788 DOI: 10.1016/j.jhazmat.2023.131263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
4
Orozco-Barrera S, Iglesias GR, Delgado ÁV, García-Larios S, Ahualli S. Effects of layer-by-layer coating on activated carbon electrodes for capacitive deionization. Phys Chem Chem Phys 2023;25:9482-9491. [PMID: 36938665 DOI: 10.1039/d2cp05682h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
5
Martinez J, Colán M, Castillón R, Ramos PG, Paria R, Sánchez L, Rodríguez JM. Fabrication of Activated Carbon Decorated with ZnO Nanorod-Based Electrodes for Desalination of Brackish Water Using Capacitive Deionization Technology. Int J Mol Sci 2023;24:ijms24021409. [PMID: 36674925 PMCID: PMC9866127 DOI: 10.3390/ijms24021409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/30/2022] [Accepted: 01/01/2023] [Indexed: 01/12/2023]  Open
6
Liu R, Wang Y, Wu Y, Ye X, Cai W. Controllable synthesis of nickel–cobalt-doped Prussian blue analogs for capacitive desalination. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.141815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
7
Vos JE, Rodenburg HP, Inder Maur D, Bakker TJW, Siekman H, Erné BH. Three-electrode cell calorimeter for electrical double layer capacitors. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2022;93:124102. [PMID: 36586924 DOI: 10.1063/5.0129102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
8
Vos JE, Inder Maur D, Rodenburg HP, van den Hoven L, Schoemaker SE, de Jongh PE, Erné BH. Electric Potential of Ions in Electrode Micropores Deduced from Calorimetry. PHYSICAL REVIEW LETTERS 2022;129:186001. [PMID: 36374685 DOI: 10.1103/physrevlett.129.186001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 07/15/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
9
Theory of bipolar connections in capacitive deionization and principles of structural design. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
10
Jiang Y, Jin L, Wei D, Alhassan SI, Wang H, Chai L. Energy Consumption in Capacitive Deionization for Desalination: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022;19:10599. [PMID: 36078322 PMCID: PMC9517846 DOI: 10.3390/ijerph191710599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
11
Alkhadra M, Su X, Suss ME, Tian H, Guyes EN, Shocron AN, Conforti KM, de Souza JP, Kim N, Tedesco M, Khoiruddin K, Wenten IG, Santiago JG, Hatton TA, Bazant MZ. Electrochemical Methods for Water Purification, Ion Separations, and Energy Conversion. Chem Rev 2022;122:13547-13635. [PMID: 35904408 PMCID: PMC9413246 DOI: 10.1021/acs.chemrev.1c00396] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
12
Exploring the polarization window during fluoride electrosorption in two activated carbons with significant differences in their pore-size distribution. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
13
Selective Ion Removal by Capacitive Deionization (CDI)-Based Technologies. Processes (Basel) 2022. [DOI: 10.3390/pr10061075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]  Open
14
Knowledge and Technology Used in Capacitive Deionization of Water. MEMBRANES 2022;12:membranes12050459. [PMID: 35629785 PMCID: PMC9143758 DOI: 10.3390/membranes12050459] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 02/01/2023]
15
Jeanmairet G, Rotenberg B, Salanne M. Microscopic Simulations of Electrochemical Double-Layer Capacitors. Chem Rev 2022;122:10860-10898. [PMID: 35389636 PMCID: PMC9227719 DOI: 10.1021/acs.chemrev.1c00925] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
16
Uwayid R, Guyes EN, Shocron AN, Gilron J, Elimelech M, Suss ME. Perfect divalent cation selectivity with capacitive deionization. WATER RESEARCH 2022;210:117959. [PMID: 34942526 DOI: 10.1016/j.watres.2021.117959] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
17
Pelagejcev P, Glatzel F, Härtel A. Extension of the primitive model by hydration shells and its impact on the reversible heat production during the buildup of the electric double layer. J Chem Phys 2022;156:034901. [DOI: 10.1063/5.0077526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
18
The optimized flow-electrode capacitive deionization (FCDI) performance by ZIF-8 derived nanoporous carbon polyhedron. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119345] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
19
Capacitive deionization characteristics of compressed granular activated carbon. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119454] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
20
Design of zinc oxide nanoparticles and graphene hydrogel co-incorporated activated carbon for efficient capacitive deionization. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
21
Wu Q, Liang D, Lu S, Zhang J, Wang H, Xiang Y, Aurbach D. Novel Inorganic Integrated Membrane Electrodes for Membrane Capacitive Deionization. ACS APPLIED MATERIALS & INTERFACES 2021;13:46537-46548. [PMID: 34554723 DOI: 10.1021/acsami.1c10119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
22
He Z, Liu S, Lian B, Fletcher J, Bales C, Wang Y, Waite TD. Optimization of constant-current operation in membrane capacitive deionization (MCDI) using variable discharging operations. WATER RESEARCH 2021;204:117646. [PMID: 34543974 DOI: 10.1016/j.watres.2021.117646] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/16/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
23
Saleem MW, Imran S, Zafar MN, Usman M, Habib MS, Badshah MA. Steady and controlled desalination via capacitive deionization: performance assessment and optimization of hybrid CV-CC process. SEP SCI TECHNOL 2021. [DOI: 10.1080/01496395.2020.1757715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
24
Zhang C, Ma J, Wu L, Sun J, Wang L, Li T, Waite TD. Flow Electrode Capacitive Deionization (FCDI): Recent Developments, Environmental Applications, and Future Perspectives. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021;55:4243-4267. [PMID: 33724803 DOI: 10.1021/acs.est.0c06552] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
25
Honarparvar S, Zhang X, Chen T, Alborzi A, Afroz K, Reible D. Frontiers of Membrane Desalination Processes for Brackish Water Treatment: A Review. MEMBRANES 2021;11:246. [PMID: 33805438 PMCID: PMC8066301 DOI: 10.3390/membranes11040246] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 12/31/2022]
26
Wood AR, Garg R, Cohen-Karni T, Russell AJ, LeDuc P. Toward sustainable desalination using food waste: capacitive desalination with bread-derived electrodes. RSC Adv 2021;11:9628-9637. [PMID: 35423429 PMCID: PMC8695462 DOI: 10.1039/d0ra10763h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/20/2021] [Indexed: 12/22/2022]  Open
27
Toledo-Carrillo E, Zhang X, Laxman K, Dutta J. Asymmetric electrode capacitive deionization for energy efficient desalination. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136939] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
28
Basis and Prospects of Combining Electroadsorption Modeling Approaches for Capacitive Deionization. PHYSICS 2020. [DOI: 10.3390/physics2020016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
29
Torkamanzadeh M, Wang L, Zhang Y, Budak Ö, Srimuk P, Presser V. MXene/Activated-Carbon Hybrid Capacitive Deionization for Permselective Ion Removal at Low and High Salinity. ACS APPLIED MATERIALS & INTERFACES 2020;12:26013-26025. [PMID: 32402190 DOI: 10.1021/acsami.0c05975] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
30
Lenz M, Wagner R, Hack E, Franzreb M. Object-Oriented Modeling of a Capacitive Deionization Process. FRONTIERS IN CHEMICAL ENGINEERING 2020. [DOI: 10.3389/fceng.2020.00003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]  Open
31
Characteristic and model of phosphate adsorption by activated carbon electrodes in capacitive deionization. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116285] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
32
Liu T, Serrano J, Elliott J, Yang X, Cathcart W, Wang Z, He Z, Liu G. Exceptional capacitive deionization rate and capacity by block copolymer-based porous carbon fibers. SCIENCE ADVANCES 2020;6:eaaz0906. [PMID: 32426453 PMCID: PMC7164930 DOI: 10.1126/sciadv.aaz0906] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 01/22/2020] [Indexed: 05/26/2023]
33
Volfkovich YM. Capacitive Deionization of Water (A Review). RUSS J ELECTROCHEM+ 2020. [DOI: 10.1134/s1023193520010097] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
34
Shih YJ, Dong CD, Huang YH, Huang CP. Loofah-derived activated carbon supported on nickel foam (AC/Ni) electrodes for the electro-sorption of ammonium ion from aqueous solutions. CHEMOSPHERE 2020;242:125259. [PMID: 31896176 DOI: 10.1016/j.chemosphere.2019.125259] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/17/2019] [Accepted: 10/28/2019] [Indexed: 06/10/2023]
35
Salamat Y, Hidrovo CH. Significance of the micropores electro-sorption resistance in capacitive deionization systems. WATER RESEARCH 2020;169:115286. [PMID: 31734390 DOI: 10.1016/j.watres.2019.115286] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/12/2019] [Accepted: 11/05/2019] [Indexed: 06/10/2023]
36
Chen L, Mao S, Li Z, Yang Y, Zhao R. Synthesis of cation exchange membranes for capacitive deionization based on crosslinked polyvinyl alcohol with citric acid. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020;81:491-498. [PMID: 32385202 DOI: 10.2166/wst.2020.124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
37
Tan C, He C, Fletcher J, Waite TD. Energy recovery in pilot scale membrane CDI treatment of brackish waters. WATER RESEARCH 2020;168:115146. [PMID: 31627136 DOI: 10.1016/j.watres.2019.115146] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/15/2019] [Accepted: 09/30/2019] [Indexed: 06/10/2023]
38
Santos C, García-Quismondo E, Palma J, Anderson MA, Lado JJ. Understanding capacitive deionization performance by comparing its electrical response with an electrochemical supercapacitor: Strategies to boost round-trip efficiency. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2019.135216] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
39
Hong SP, Yoon H, Lee J, Kim C, Kim S, Lee J, Lee C, Yoon J. Selective phosphate removal using layered double hydroxide/reduced graphene oxide (LDH/rGO) composite electrode in capacitive deionization. J Colloid Interface Sci 2019;564:1-7. [PMID: 31896423 DOI: 10.1016/j.jcis.2019.12.068] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/07/2019] [Accepted: 12/16/2019] [Indexed: 11/27/2022]
40
Belhboub A, Lahrar EH, Simon P, Merlet C. On the development of an original mesoscopic model to predict the capacitive properties of carbon-carbon supercapacitors. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.135022] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
41
Lee M, Fan CS, Chen YW, Chang KC, Chiueh PT, Hou CH. Membrane capacitive deionization for low-salinity desalination in the reclamation of domestic wastewater effluents. CHEMOSPHERE 2019;235:413-422. [PMID: 31272001 DOI: 10.1016/j.chemosphere.2019.06.190] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/22/2019] [Accepted: 06/25/2019] [Indexed: 06/09/2023]
42
Kim J, Jain A, Zuo K, Verduzco R, Walker S, Elimelech M, Zhang Z, Zhang X, Li Q. Removal of calcium ions from water by selective electrosorption using target-ion specific nanocomposite electrode. WATER RESEARCH 2019;160:445-453. [PMID: 31174072 DOI: 10.1016/j.watres.2019.05.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/03/2019] [Accepted: 05/05/2019] [Indexed: 05/05/2023]
43
Nordstrand J, Laxman K, Myint MTZ, Dutta J. An Easy-to-Use Tool for Modeling the Dynamics of Capacitive Deionization. J Phys Chem A 2019;123:6628-6634. [DOI: 10.1021/acs.jpca.9b05503] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
44
Ramachandran A, Oyarzun DI, Hawks SA, Stadermann M, Santiago JG. High water recovery and improved thermodynamic efficiency for capacitive deionization using variable flowrate operation. WATER RESEARCH 2019;155:76-85. [PMID: 30831426 DOI: 10.1016/j.watres.2019.02.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/08/2019] [Accepted: 02/11/2019] [Indexed: 06/09/2023]
45
Yoon H, Lee J, Kim S, Yoon J. Review of concepts and applications of electrochemical ion separation (EIONS) process. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.12.071] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
46
Influence of various experimental parameters on the capacitive removal of phosphate from aqueous solutions using LDHs/AC composite electrodes. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.01.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
47
Wang L, Dykstra JE, Lin S. Energy Efficiency of Capacitive Deionization. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019;53:3366-3378. [PMID: 30802038 DOI: 10.1021/acs.est.8b04858] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
48
Hawks SA, Ramachandran A, Porada S, Campbell PG, Suss ME, Biesheuvel PM, Santiago JG, Stadermann M. Performance metrics for the objective assessment of capacitive deionization systems. WATER RESEARCH 2019;152:126-137. [PMID: 30665159 DOI: 10.1016/j.watres.2018.10.074] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/25/2018] [Accepted: 10/28/2018] [Indexed: 06/09/2023]
49
Cho Y, Yoo CY, Lee SW, Yoon H, Lee KS, Yang S, Kim DK. Flow-electrode capacitive deionization with highly enhanced salt removal performance utilizing high-aspect ratio functionalized carbon nanotubes. WATER RESEARCH 2019;151:252-259. [PMID: 30605773 DOI: 10.1016/j.watres.2018.11.080] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 10/18/2018] [Accepted: 11/29/2018] [Indexed: 06/09/2023]
50
Tang W, Liang J, He D, Gong J, Tang L, Liu Z, Wang D, Zeng G. Various cell architectures of capacitive deionization: Recent advances and future trends. WATER RESEARCH 2019;150:225-251. [PMID: 30528919 DOI: 10.1016/j.watres.2018.11.064] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/12/2018] [Accepted: 11/18/2018] [Indexed: 06/09/2023]
PrevPage 1 of 2 12Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA