1
|
Dos Reis GS, Petnikota S, de Oliveira HP, de Brum IAS, Thyrel M, Dotto GL, Lima EC, Naushad M, Hu T, Lassi U, Grimm A. Statistics design for the synthesis optimization of lignin-sulfonate sulfur-doped mesoporous carbon materials: promising candidates as adsorbents and supercapacitors materials. Sci Rep 2024; 14:23354. [PMID: 39375539 PMCID: PMC11458902 DOI: 10.1038/s41598-024-75003-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/01/2024] [Indexed: 10/09/2024] Open
Abstract
This study employed lignin-sulfonated (LS) to develop biobased carbon materials (LS-Cs) through a sulfur-doping approach to enhance their physicochemical properties, adsorption capabilities, and energy storage potentials. Various characterization techniques, including BET surface area analysis, SEM imaging, XPS, Raman spectroscopy, and elemental composition (CHNS), were employed to assess the quality of the LS-Cs adsorbent and electrode samples. Response Surface Methodology (RSM) was utilized for optimizing the two main properties (specific surface area, ABET, and mesopore area, AMESO) by evaluating three independent factors (i.e., activation temperature, ZnCl2:LS ratio, and sulfur content). According to the statistical analysis, ABET and AMESO were affected by ZnCl2 and sulfur content, while the pyrolysis temperature did not affect the responses in the studied conditions. It was found that increasing the ZnCl2 and sulfur contents led to an increment of the ABET and AMESO values. The LS-C materials exhibited very high ABETvalues up to 1993 m2 g-1 and with predominantly mesoporous features. The S-doping resulted in LS-Cs with high sulfur contents in their microstructures up to 15% (wt%). The LS-C materials were tested as adsorbents for sodium diclofenac (DCF) adsorption and reactive orange 16 dye (RO-16) and as electrodes for supercapacitors. The LS-Cs exhibited excellent adsorption capacity values for both molecules (197-372 mg g-1) for DCF, and (223-466 mg g-1) for RO-16. When tested as electrodes for supercapacitors, notably, LS-C3, which is a doped sample with sulfur, exhibited the best electrochemical performance, e.g. high specific capacitance (156 F/g at 50 mV/s), and delivered an excellent capacitance after 1000 cycles (63 F/g at 1 A/g), which denotes the noteworthy capacitive behavior of the S-doped electrode. Thus, the present work suggests an eco-friendly resource for developing effective, productive carbon materials for adsorbent and electrodes for SC application. However, further studies on the complete application of these materials as adsorbents and electrodes are needed for a deeper understanding of their behavior in environmental and energy storage applications.
Collapse
Affiliation(s)
- Glaydson Simoes Dos Reis
- Department of Forest Biomaterials and Technology, Biomass Technology Centre, Swedish University of Agricultural Sciences, Umeå, SE-901 83, Sweden.
- Laboratory of Industrial Chemistry and Reaction Engineering, Faculty of Science and Engineering, Åbo Akademi University, 20500 Åbo/Turku, Finland, Finland.
| | - Shaikshavali Petnikota
- Department of Forest Biomaterials and Technology, Biomass Technology Centre, Swedish University of Agricultural Sciences, Umeå, SE-901 83, Sweden
| | | | - Irineu A S de Brum
- Mineral Processing Laboratory, Federal University of Rio Grande do Sul, 9500 Bento Gonçalves Avenue, Porto Alegre, 91501-970, Brazil
| | - Mikael Thyrel
- Department of Forest Biomaterials and Technology, Biomass Technology Centre, Swedish University of Agricultural Sciences, Umeå, SE-901 83, Sweden
| | - Guiherme Luiz Dotto
- Research Group on Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, Santa Maria, 97105-900, RS, Brazil
| | - Eder Claudio Lima
- Institute of Chemistry, Federal University of Rio Grand do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Mu Naushad
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Tao Hu
- Research Unit of Sustainable Chemistry, University of Oulu, P.O. Box 3000, Oulu, FI-90014, Finland
| | - Ulla Lassi
- Research Unit of Sustainable Chemistry, University of Oulu, P.O. Box 3000, Oulu, FI-90014, Finland
| | - Alejandro Grimm
- Department of Forest Biomaterials and Technology, Biomass Technology Centre, Swedish University of Agricultural Sciences, Umeå, SE-901 83, Sweden
| |
Collapse
|
2
|
Xu Z, Duan X, Chen Y, Chen D, Lu H, Zhan J, Ren X, Pan X. Great truths are always simple: A millimeter-sized macroscopic lanthanum-calcium dual crosslinked carboxymethyl chitosan aerogel bead as a promising adsorbent for scavenging oxytetracycline from wastewater. Int J Biol Macromol 2024; 278:134499. [PMID: 39217038 DOI: 10.1016/j.ijbiomac.2024.134499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/29/2024] [Accepted: 08/03/2024] [Indexed: 09/04/2024]
Abstract
Given their increasing environmental and health harms, it is crucial to develop green and sustainable techniques for scavenging antibiotics represented by oxytetracycline (OTC) from wastewater. In the present work, a structurally simple lanthanum-calcium dual crosslinked carboxymethyl chitosan (CMCS-La3+-Ca2+) aerogel was innovatively synthesized for adsorptive removal of OTC. It was found that CMCS and La3+ sites collaboratively participated in OTC elimination, and OTC removal peaked over the wide pH range of 4-7. The process of OTC sorption was better described by the pseudo-second-order kinetic model and Redlich-Peterson model, and the saturated uptake amount toward OTC was up to 580.91 mg/g at 303 K, which was comparable to the bulk of previous records. The as-fabricated composite also exerted exceptional capture capacity toward OTC in consecutive adsorption-desorption runs and high-salinity wastewater. Amazingly, its packed column continuously ran for over 60 h with a dynamic uptake amount of 215.21 mg/g until the adsorption was saturated, illustrating its great potential in scale-up applications. Mechanism studies demonstrated that multifarious spatially-isolated reactive sites of CMCS-La3+-Ca2+ cooperatively involved in OTC capture via multi-mechanisms, such as n-π EDA interaction, H-bonding, La3+-complexation, and cation-π bonding. All the above superiorities endow it as a promising adsorbent for OTC-containing wastewater decontamination.
Collapse
Affiliation(s)
- Zhixiang Xu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China..
| | - Xingyu Duan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Yuning Chen
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Dongshan Chen
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Hao Lu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Juhong Zhan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Xiaomin Ren
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Xuejun Pan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China..
| |
Collapse
|
3
|
Khoo PS, Ilyas RA, Aiman A, Wei JS, Yousef A, Anis N, Zuhri MYM, Abral H, Sari NH, Syafri E, Mahardika M. Revolutionizing wastewater treatment: A review on the role of advanced functional bio-based hydrogels. Int J Biol Macromol 2024; 278:135088. [PMID: 39197608 DOI: 10.1016/j.ijbiomac.2024.135088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/26/2024] [Accepted: 08/24/2024] [Indexed: 09/01/2024]
Abstract
Water contamination poses a significant challenge to environmental and public health, necessitating sustainable wastewater treatment solutions. Adsorption is one of the most widely used techniques for purifying water, as it effectively removes contaminants by transferring them from the liquid phase to a solid surface. Bio-based hydrogel adsorbents are gaining popularity in wastewater treatment due to their versatility in fabrication and modification methods, which include blending, grafting, and crosslinking. Owning to their unique structure and large surface area, modified hydrogels containing reactive groups like amino, hydroxyl, and carboxyl, or functionalized hydrogels with inorganic nanoparticles particularly graphene nanomaterials, have demonstrated promising adsorption capabilities for both inorganic and organic contaminants. Bio-based hydrogels have excellent physicochemical properties and are non-toxic, environmentally friendly, and biodegradable, making them extremely effective at removing contaminants like heavy metal ions, dyes, pharmaceutical pollutants, and organic micropollutants. The versatility of hydrogels allows for various forms to be used, such as films, beads, and nanocomposites, providing flexibility in handling different contaminants like dyes, radionuclides, and heavy metals. Additionally, researchers also have shown the potential for recycling and regenerating post-treatment hydrogels. This approach not only addresses the challenges of wastewater treatment but also offers sustainable and effective solutions for mitigating water pollution.
Collapse
Affiliation(s)
- Pui San Khoo
- Centre for Advanced Composite Materials (CACM), Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia.
| | - R A Ilyas
- Centre for Advanced Composite Materials (CACM), Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia; Department of Chemical Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia; Institute of Tropical Forest and Forest Products, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Centre of Excellence for Biomass Utilization, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia.
| | - Alif Aiman
- Department of Chemical Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia.
| | - Jau Sh Wei
- Department of Chemical Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia.
| | - Ahmad Yousef
- Department of Chemical Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia.
| | - Nurul Anis
- Department of Chemical Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia.
| | - M Y M Zuhri
- Institute of Tropical Forest and Forest Products, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Research Centre for Advanced Engineering Materials and Composites (AEMC), Department of Mechanical and Manufacturing Engineering, University Putra Malaysia (UPM), 43400 UPM Serdang, Selangor, Malaysia.
| | - Hairul Abral
- Laboratory of Nanoscience and Technology, Department of Mechanical Engineering, Andalas University, Padang 25163, Indonesia; Research Collaboration Center for Nanocellulose, BRIN-Andalas University, Padang 25163, Indonesia.
| | - Nasmi Herlina Sari
- Department of Mechanical Engineering, Faculty of Engineering, University of Mataram, West Nusa Tenggara 83125, Indonesia.
| | - Edi Syafri
- Department of Agricultural and Computer Engineering, Politeknik Pertanian Negeri Payakumbuh, Limapuluh Kota, West Sumatra 26271, Indonesia.
| | - Melbi Mahardika
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency (BRIN), Cibinong, Bogor 16911, Indonesia.
| |
Collapse
|
4
|
Nordin AH, Yusoff AH, Husna SMN, Noor SFM, Norfarhana AS, Paiman SH, Ilyas RA, Nordin ML, Osman MS, Abdullah N. Recent advances in nanocellulose-based adsorbent for sustainable removal of pharmaceutical contaminants from water bodies: A review. Int J Biol Macromol 2024; 280:135799. [PMID: 39307484 DOI: 10.1016/j.ijbiomac.2024.135799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 08/25/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
The long-term presence of pharmaceutical pollution in water bodies has raised public awareness. Nanocellulose is often used in adsorption to remove pollutants from wastewater since it is an abundant, green and sustainable material. This paper offers an extensive overview of the recent works reporting the potential of nanocellulose-based adsorbents to treat pharmaceutical wastewater. This study distinguishes itself by not only summarizing recent research findings but also critically integrating discussions on the improvements in nanocellulose production and sorts of alterations based on the type of pharmaceutical contaminants. Commonly, charged, or hydrophobic characteristics are introduced onto nanocellulose surfaces to accelerate and enhance the removal of pharmaceutical compounds. Although adsorbents based on nanocellulose have considerable potential, several significant challenges impede their practical application, particularly concerning cost and scalability. Large-scale synthesis of nanocellulose is technically challenging and expensive, which prevents its widespread use in wastewater treatment plants. Continued innovation in this area could lead to breakthroughs in the practical application of nanocellulose as a superior adsorbent. The prospects of utilization of nanocellulose are explained, providing a sustainable way to address the existing restriction and maximize the application of the modified nanocellulose in the field of pharmaceutical pollutants removal.
Collapse
Affiliation(s)
- Abu Hassan Nordin
- Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), Arau 02600, Perlis, Malaysia; Gold, Rare Earth and Material Technopreneurship Centre (GREAT), Faculty of Bioengineering and Technology, Universiti Malaysia Kelantan, Jeli, Kelantan 17600, Malaysia; EMZI-UiTM Nanoparticles Colloids & Interface Industrial Research Laboratory (NANO-CORE), Chemical Engineering Studies, College of Engineering, Universiti Teknologi MARA, Cawangan Pulau Pinang, 13500 Permatang Pauh Campus, Pulau Pinang, Malaysia
| | - Abdul Hafidz Yusoff
- Gold, Rare Earth and Material Technopreneurship Centre (GREAT), Faculty of Bioengineering and Technology, Universiti Malaysia Kelantan, Jeli, Kelantan 17600, Malaysia.
| | - Siti Muhamad Nur Husna
- Department of Primary Care Medicine, Faculty of Medicine, Universiti Malaya, 50603 Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Siti Fadilla Md Noor
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), Skudai 81310, Johor, Malaysia
| | - Abdul Samad Norfarhana
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), Skudai 81310, Johor, Malaysia
| | - Syafikah Huda Paiman
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), Skudai 81310, Johor, Malaysia
| | - Rushdan Ahmad Ilyas
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), Skudai 81310, Johor, Malaysia
| | - Muhammad Luqman Nordin
- Department of Clinical Studies, Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Pengkalan Chepa, Kota Bharu 16100, Kelantan, Malaysia
| | - Mohamed Syazwan Osman
- EMZI-UiTM Nanoparticles Colloids & Interface Industrial Research Laboratory (NANO-CORE), Chemical Engineering Studies, College of Engineering, Universiti Teknologi MARA, Cawangan Pulau Pinang, 13500 Permatang Pauh Campus, Pulau Pinang, Malaysia
| | - Norfazliana Abdullah
- Oil and Gas Engineering Programme, Faculty of Engineering, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia
| |
Collapse
|
5
|
Zhang Y, Qi X, Zhang X, Huang Y, Ma Q, Guo X, Wu Y. β-Cyclodextrin/carbon dots-grafted cellulose nanofibrils hydrogel for enhanced adsorption and fluorescence detection of levofloxacin. Carbohydr Polym 2024; 340:122306. [PMID: 38858025 DOI: 10.1016/j.carbpol.2024.122306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/02/2024] [Accepted: 05/20/2024] [Indexed: 06/12/2024]
Abstract
In this study, a novel hydrogel, β-cyclodextrin/carbon dots-grafted cellulose nanofibrils hydrogel (βCCH), was fabricated for removal and fluorescence determination of levofloxacin (LEV). A comprehensive analysis was performed to characterize its physicochemical properties. Batch adsorption experiments were conducted, revealing that βCCH reached a maximum adsorption capacity of 1376.9 mg/g, consistent with both Langmuir and pseudo-second-order models, suggesting that the adsorption process of LEV on βCCH was primarily driven by chemical adsorption. The removal efficiency of βCCH was 99.2 % under the fixed conditions (pH: 6, initial concentration: 20 mg/L, contact time: 300 min, temperature: 25 °C). The removal efficiency of βCCH for LEV still achieved 97.3 % after five adsorption-desorption cycles. By using βCCH as a fluorescent probe for LEV, a fast and sensitive method was established with linear ranges of 1-120 mg/L and 0.2-1.0 μg/L and a limit of detection (LOD) as low as 0.09 μg/L. The viability of βCCH was estimated based on the economic analysis of the synthesis process and the removal of LEV, demonstrating that βCCH was more cost-effective than commercial activated carbon. This study provides a novel approach for preparing a promising antibiotic detection and adsorption material with the advantages of stability, and cost-effectiveness.
Collapse
Affiliation(s)
- Yuting Zhang
- College of Chemistry and Chemical Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xinmiao Qi
- College of Chemistry and Chemical Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xuefeng Zhang
- College of Chemistry and Chemical Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yong Huang
- Joint International Research Laboratory of Biomass Energy and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Qiang Ma
- College of Chemistry and Chemical Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xin Guo
- College of Chemistry and Chemical Engineering, Central South University of Forestry and Technology, Changsha 410004, China.
| | - Yiqiang Wu
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China.
| |
Collapse
|
6
|
Arafa EG, Mahmoud R, Gadelhak Y, Gawad OFA. Design, preparation, and performance of different adsorbents based on carboxymethyl chitosan/sodium alginate hydrogel beads for selective adsorption of Cadmium (II) and Chromium (III) metal ions. Int J Biol Macromol 2024; 273:132809. [PMID: 38825296 DOI: 10.1016/j.ijbiomac.2024.132809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/14/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
Developing cost-effective and efficient adsorbents for heavy metals in multicomponent systems is a challenge that needs to be resolved to meet the challenges of wastewater treatment technology. Two adsorbents were synthesized, characterized, and investigated for the removal of Cd2+ and Cr3+ as model heavy metals in their single and binary solutions. The first adsorbent (ACZ) was a nanocomposite formed of O-Carboxymethyl chitosan, sodium alginate, and zeolite. While, the other (ACL) contained ZnFe layered double hydroxides instead of the zeolite phase. Adsorbents were characterized using XRD, FTIR, SEM, and swelling degree analysis. For single heavy metal adsorption isotherms, data for both adsorbents was best fitted and indicated a multilayer adsorption nature. For binary adsorption, Langmuir model with interacting parameters showed the best results compared to other models for both pollutants. For single system, Avrami model was found to be the best model representing the adsorption kinetics data, which indicates that the mechanism of adsorption follows multiple kinetic orders that may change during duration of adsorption process. Numerous interaction mechanisms can occur between the heavy metals and functional groups in the synthesized hydrogels such as NH2, COOH, and OH groups leading to efficient adsorption of metal ions.
Collapse
Affiliation(s)
- Esraa Gaber Arafa
- Department of Chemistry, Faculty of Science, Beni-Suef University, 62511 Beni-Suef, Egypt
| | - Rehab Mahmoud
- Department of Chemistry, Faculty of Science, Beni-Suef University, 62511 Beni-Suef, Egypt
| | - Yasser Gadelhak
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Science (PSAS), Beni-Suef University, 62511 Beni-Suef, Egypt
| | - Omayma Fawzy Abdel Gawad
- Department of Chemistry, Faculty of Science, Beni-Suef University, 62511 Beni-Suef, Egypt; Petroleum Chemistry, Faculty of Basic Sciences, King Salman International University, South Saini, Egypt.
| |
Collapse
|
7
|
Ulatowska J, Szewczuk-Karpisz K, Polowczyk I. Evaluation of the Effect of Polyethylenimine on Boron Adsorption by Soil Minerals. Chemphyschem 2024; 25:e202400055. [PMID: 38415970 DOI: 10.1002/cphc.202400055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/15/2024] [Accepted: 02/26/2024] [Indexed: 02/29/2024]
Abstract
The removal of hazardous ions from water is crucial for safeguarding both the environment and human health. Soil minerals, integral components of soil, play a vital role as adsorbents for various contaminants, including heavy metal ions, organic dyes, and detergents. This study investigates the interaction between boron ions and soil minerals (gibbsite, kaolinite, and montmorillonite) in the presence of polyethylenimine (PEI). The minerals underwent characterization based on specific surface area, particle size distribution, zeta potential, and the presence of functional groups. The influence of PEI addition on the stability of the soil mineral suspension was evaluated by turbidimetry. Mineral-boron and mineral-boron-PEI interactions were explored under varying conditions, including pH, initial boron concentration, and mineral quantity, with all adsorption experiments conducted over 24 hours. Using the Langmuir isotherm, the maximum adsorption capacity of the studied minerals was determined for boron both without and in the presence of PEI. For gibbsite, kaolinite and montmorillonite, it was 30.63, 24.55 and 26.62 mg g-1, respectively, while in the presence of PEI, it increased to 33.11, 26.61 and 45.47 mg g-1, respectively. The addition of PEI enhanced boron adsorption from aqueous solutions, increasing the removal efficiency from 65 % to about 80 %.
Collapse
Affiliation(s)
- Justyna Ulatowska
- Department of Process Engineering and Technology of Polymers and Carbon Materials, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego Street 27, 50-370, Wrocław, Poland
| | - Katarzyna Szewczuk-Karpisz
- Department of Process Engineering and Technology of Polymers and Carbon Materials, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego Street 27, 50-370, Wrocław, Poland
| | - Izabela Polowczyk
- Department of Process Engineering and Technology of Polymers and Carbon Materials, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego Street 27, 50-370, Wrocław, Poland
| |
Collapse
|
8
|
Liang L, Han M, Liu YQ, Huang C, Leng YL, Zhang YP, Cai XH. Schiff base functionalized dialdehyde starch for enhanced removal of Cu (II): Preparation, performances, DFT calculations. Int J Biol Macromol 2024; 268:131424. [PMID: 38615852 DOI: 10.1016/j.ijbiomac.2024.131424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/11/2024] [Accepted: 04/04/2024] [Indexed: 04/16/2024]
Abstract
Dialdehyde starch modified by 2-hydrazinopyridine (HYD-DAS) based on the reaction of dialdehyde starch (DAS) and 2-hydrazinopyridine was synthesized and characterized by FT-IR spectra, element analysis and SEM. HYD-DAS can efficiently adsorb Cu (II) ion to demonstrate visual color changes from yellow to dark brown in aqueous solutions. The influence on HYD-DAS to Cu (II) adsorption including pH value of solution, isotherm, kinetics, thermodynamics and possible mechanism had also been examined. Batch experiments indicate that HYD-DAS's to Cu (II) adsorption reaches equilibrium within 250 min, and its adsorption capacity and rate are 195.75 mg/g and 98.63 %, respectively. Moreover, HYD-DAS to Cu (II) adsorption remains robust and underscoring after five cycles to exhibit good selectivity and reusability. Kinetics studies suggest the absorption process follows a quasi-second-order with isotherms aligning to the Langmuir monolayer model, and thermodynamics reveals that it is a spontaneous endothermic nature of adsorption. Based on the analyses of XPS and DFT calculations, a possible mechanism for HYD-DAS to Cu (II) adsorption is that Cu (II) combined with nitrogen atoms from Schiff base and hydrazine pyridine ring in HYD-DAS.
Collapse
Affiliation(s)
- Le Liang
- School of Chemical Engineering, GuizhouMinzuUniversity, Guiyang 550025, PR China
| | - Mei Han
- School of Chemical Engineering, GuizhouMinzuUniversity, Guiyang 550025, PR China
| | - Yong-Qing Liu
- School of Chemical Engineering, GuizhouMinzuUniversity, Guiyang 550025, PR China
| | - Chan Huang
- School of Chemical Engineering, GuizhouMinzuUniversity, Guiyang 550025, PR China
| | - Yan-Li Leng
- School of Chemical Engineering, GuizhouMinzuUniversity, Guiyang 550025, PR China
| | - Yu-Peng Zhang
- School of Chemical Engineering, GuizhouMinzuUniversity, Guiyang 550025, PR China
| | - Xiao-Hua Cai
- School of Chemical Engineering, GuizhouMinzuUniversity, Guiyang 550025, PR China.
| |
Collapse
|
9
|
Miao Z, Mu M, Yu HY, Dong Y. "Green" electrostatic droplet-assisted forming cellulose microspheres with excellent structural controllability and stability for efficient Cr(VI) removal. Carbohydr Polym 2024; 328:121749. [PMID: 38220317 DOI: 10.1016/j.carbpol.2023.121749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/25/2023] [Accepted: 12/26/2023] [Indexed: 01/16/2024]
Abstract
This study presents a novel and environmentally friendly method for producing cellulose microspheres (CM) with controllable morphology and size using electrostatic droplets. The traditional droplet method for CM production requires complex equipment and harmful reagents. In contrast, the proposed method offers a simple electrostatic droplet approach to fabricate CM10 at 10 kV, which exhibited a smaller volume, linear microscopic morphology, and a larger specific surface area, with a 36.60 % improvement compared to CM0 (prepared at 0 kV). CM10 also demonstrated excellent underwater structural stability, recovering in just 0.5 s, and exhibited the highest adsorption capacity for Cr(VI) at 190.16 mg/g, a 72.15 % improvement over CM0. This enhanced adsorption capacity can be attributed to the unique structure of CM10 and the introduction of more amino groups. Moreover, CM10 displayed good cyclic adsorption capacity and high dynamic adsorption efficiency, making it highly suitable for practical applications. CM10 exhibited remarkable adsorption capacity, stability, and practical value in treating Cr(VI) wastewater. This work proposes a simple and eco-friendly method for producing CM with excellent structural controllability and stability, providing an effective route for wastewater treatment.
Collapse
Affiliation(s)
- Zhouyu Miao
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Mengya Mu
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Hou-Yong Yu
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China; State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China.
| | - Yanjuan Dong
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
10
|
Rana AK, Gupta VK, Hart P, Thakur VK. Cellulose-alginate hydrogels and their nanocomposites for water remediation and biomedical applications. ENVIRONMENTAL RESEARCH 2024; 243:117889. [PMID: 38086501 DOI: 10.1016/j.envres.2023.117889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/18/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
In the last decade, both cellulose and alginate polysaccharides have been extensively utilized for the synthesis of biocompatible hydrogels because of their alluring characteristics like low cost, biodegradability, hydrophilicity, biodegradability, ease of availability and non-toxicity. The presence of abundant hydrophilic functional groups (like carboxyl and hydroxyl) on the surface of cellulose and alginate or their derivatives makes these materials promising candidates for the preparation of hydrogels with appealing structures and characteristics, leading to growing research in water treatment and biomedical fields. These two polysaccharides are typically blended together to improve hydrogels' desired qualities (mechanical strength, adsorption properties, cellulose/alginate yield). So, keeping in view their extensive applicability, in the present review article, recent advances in the development of cellulose/nanocellulose-alginate-based hydrogels and their relevance in water treatment (adsorption of dyes, heavy metals, etc.) and biomedical field (wound healing, tissue engineering, drug delivery) has been reviewed. Further, impact of other inorganic/organic additives in cellulose/nanocellulose-alginate-based hydrogels properties like contaminants adsorption, drug delivery, tissue engineering, etc., has also been studied. Moreover, the current difficulties and future prospects of nanocellulose-alginate-based hydrogels regarding their water purification and biomedical applications are also discussed at the end.
Collapse
Affiliation(s)
- Ashvinder K Rana
- Biorefining and Advanced Materials Research Center, SRUC, Kings Buildings, West Mains Road, Edinburgh, UK.
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, SRUC, Kings Buildings, West Mains Road, Edinburgh, UK
| | - Phil Hart
- Renewable and Sustainable Energy Research Centre, Technology Innovation Institute, P.O. Box 9639, Abu Dhabi, United Arab Emirates
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, SRUC, Kings Buildings, West Mains Road, Edinburgh, UK; School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun, 248007, Uttarakhand, India; Centre for Research & Development, Chandigarh University, Mohali, 140413, Punjab, India.
| |
Collapse
|
11
|
Xiao W, Sun R, Hu S, Meng C, Xie B, Yi M, Wu Y. Recent advances and future perspective on lignocellulose-based materials as adsorbents in diverse water treatment applications. Int J Biol Macromol 2023; 253:126984. [PMID: 37734528 DOI: 10.1016/j.ijbiomac.2023.126984] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/10/2023] [Accepted: 09/16/2023] [Indexed: 09/23/2023]
Abstract
The growing shortage of non-renewable resources and the burden of toxic pollutants in water have gradually become stumbling blocks in the path of sustainable human development. To this end, there has been great interest in finding renewable and environmentally friendly materials to promote environmental sustainability and combat harmful pollutants in wastewater. Of the many options, lignocellulose, as an abundant, biocompatible and renewable material, is the most attractive candidate for water remediation due to the unique physical and chemical properties of its constituents. Herein, we review the latest research advances in lignocellulose-based adsorbents, focusing on lignocellulosic composition, material modification, application of adsorbents. The modification and preparation methods of lignin, cellulose and hemicellulose and their applications in the treatment of diverse contaminated water are systematically and comprehensively presented. Also, the detailed description of the adsorption model, the adsorption mechanism and the adsorbent regeneration technique provides an excellent reference for understanding the underlying adsorption mechanism and the adsorbent recycling. Finally, the challenges and limitations of lignocellulosic adsorbents are evaluated from a practical application perspective, and future developments in the related field are discussed. In summary, this review offers rational insights to develop lignocellulose-based environmentally-friendly reactive materials for the removal of hazardous aquatic contaminants.
Collapse
Affiliation(s)
- Weidong Xiao
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Ran Sun
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Sihai Hu
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Chengzhen Meng
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Bin Xie
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Mengying Yi
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Yaoguo Wu
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, China.
| |
Collapse
|
12
|
Zhu L, Zhang X, Ran L, Zhang H, Zheng Y, Liu C, Zhou L. Tri-modified ferric alginate gel with high regenerative properties catalysts for efficient degradation of rhodamine B. Carbohydr Polym 2023; 322:121309. [PMID: 37839850 DOI: 10.1016/j.carbpol.2023.121309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/29/2023] [Accepted: 08/15/2023] [Indexed: 10/17/2023]
Abstract
Water pollution caused by dyes has become a focal point of attention. Among them, the heterogeneous Fenton reaction has emerged as an effective solution to this problem. In this study, we designed a ferric alginate gel (PAGM) tri-modified with poly(vinyl alcohol), graphene oxide, and MoS2 as a heterogeneous Fenton catalyst for organic dye degradation. PAGM addresses the drawbacks of alginate gel, such as poor mechanical properties and gel chain dissolution, thereby significantly extending the catalyst's lifespan. The removal rate of rhodamine B by PAGM reached 95.5 % within 15 min, which was 5.9 times higher than that of unmodified ferric alginate gel. Furthermore, due to the π-π interactions, PAGM exhibits unique adsorption properties for pollutants containing benzene rings. Additionally, PAGM can be regenerated multiple times through a simple soaking procedure without any performance degradation. Finally, the reaction column constructed with PAGM maintained an 83.5 % removal rate even after 319 h of continuous wastewater treatment. This work introduces a novel concept for the study of alginate-based gel catalysts in heterogeneous Fenton reactions.
Collapse
Affiliation(s)
- Lingxiao Zhu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Institute of Biochemical Engineering & Environmental Technology, Lanzhou University, Lanzhou 730000, PR China
| | - Xu Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Institute of Biochemical Engineering & Environmental Technology, Lanzhou University, Lanzhou 730000, PR China
| | - Lang Ran
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Institute of Biochemical Engineering & Environmental Technology, Lanzhou University, Lanzhou 730000, PR China
| | - Heng Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Institute of Biochemical Engineering & Environmental Technology, Lanzhou University, Lanzhou 730000, PR China
| | - Yajuan Zheng
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Institute of Biochemical Engineering & Environmental Technology, Lanzhou University, Lanzhou 730000, PR China
| | - Chen Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Institute of Biochemical Engineering & Environmental Technology, Lanzhou University, Lanzhou 730000, PR China
| | - Lincheng Zhou
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Institute of Biochemical Engineering & Environmental Technology, Lanzhou University, Lanzhou 730000, PR China; Zhongwei High-tech Institute of Lanzhou University, 755000, PR China.
| |
Collapse
|
13
|
Kamaliya BP, Dave PN, Chopda LV. Synthesis of GG- g-P(NIPAM- co-AA)/GO and evaluation of adsorption activity for the diclofenac and metformin. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2023; 21:403-416. [PMID: 37869591 PMCID: PMC10584777 DOI: 10.1007/s40201-023-00867-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 05/22/2023] [Indexed: 10/24/2023]
Abstract
The grafting of biopolymer gum ghatti (GG) over the PNIPAM and PAA was done and loaded with graphene oxide (GO). Aim of this work is carried out combine adsorption of sodium diclofenac (SD) and metformin (MF) by the prepared hydrogels under influence of various parameters. The adsorbent GG-g-P(NIPAM-co-PAA)/GO(3 mg) chosen for adsorption activity as it displayed highest swelling capacity. The effect of amount of both adsorbents GG-g-P(NIPAM-co-PAA and GG-g-P(NIPAM-co-PAA)/GO(3 mg) showed that highest adsorption capacity found at 40 mg of adsorbents for both drugs at conditions: 100 mg/L concentration, 30 °C, 24 h and pH 6 and subsequently became stable. Both the drugs were removed in greater amount at 25 mg/L concentration, 24 h of contact time, 30 °C, 40 mg amount of both adsorbents and pH 6. Effect of time revealed that as time elevated from 2 h to 12 (100 mg/L concentration,, 30 °C, 40 mg amount of both adsorbents and pH 6) led to increase adsorption efficiency and after that increase time did not much impact on adsorption activity. Adsorption activity of hydrogels declined with increase of temperature (100 mg/L concentration, 12 h, 40 mg amount of both adsorbents and pH 6). The acidic conditions favored adsorption of SD while MF adsorbed under the weak acidic(100 mg/L concentration, 30 °C, 12 h, 40 mg amount of both adsorbents). However, basic conditions did not much influence on adsorption of MF but effected on adsorption activity of SD. Adsorption isotherm and kinetic model suggested that adsorption is homogenous and chemical in nature. The maximum adsorption capacity (qm) found to be 289.01 and 154.55 mg/g for SD and MF respectively. Graphical abstract Supplementary information The online version contains supplementary material available at 10.1007/s40201-023-00867-w.
Collapse
Affiliation(s)
- Bhagvan P. Kamaliya
- Department of Chemistry, Sardar Patel University, Vallabh Vidynagar, Gujarat 388 120 India
| | - Pragnesh N. Dave
- Department of Chemistry, Sardar Patel University, Vallabh Vidynagar, Gujarat 388 120 India
| | - Lakha V. Chopda
- B. N. Patel Institute of Paramedical & Science (Science Division), Sardar Patel Education Trust, Bhalej Road, Anand, Gujarat 370 001 India
| |
Collapse
|
14
|
Dong K, Jiang Y, Zhang Y, Qin Z, Mo L. Tannic acid-assisted fabrication of antibacterial sodium alginate-based gel beads for the multifunctional adsorption of heavy metal ions and dyes. Int J Biol Macromol 2023; 252:126249. [PMID: 37562481 DOI: 10.1016/j.ijbiomac.2023.126249] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/17/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023]
Abstract
The existence of heavy metals and dyes seriously affects the ecological environment and human safety. Antibacterial adsorption materials with the broad-spectrum removal of multiple pollutants are urgently required for water remediation. Herein, a sustainable and antibacterial sodium alginate (SA) gel bead adsorbent with honeycomb cellular architecture is developed by the biomimetic deposition polyphenolic tannic acid (TA) induced grafting diethylenetriamine (DETA) under mild conditions for efficient removal of Cr(VI) and dyes. Taking advantage of the catechol surface chemistry, TA occurring rapid polymerization with DETA monomers not only enhances the water resistance and thermal stability of the gel bead, but also introduces abundant polyphenolic functional groups and active adsorption sites. The multifunctional gel bead showed outstanding antibacterial activity against S. aureus (sterilization rates: 83.8 %) and E. coli (sterilization rates: 99.5 %). The maximum adsorption capacity of gel bead for Cr(VI) was 163.9 mg/g. Moreover, the removal efficiency of the gel bead for dyes of Safranine T and Rhodamine B was 89.5 % (maximum adsorption capacity: 537 mg/g) and 76.7 % (maximum adsorption capacity: 460.2 mg/g), respectively, indicating its excellent broad-spectrum adsorption performance for multiple pollutants. Therefore, TA-assisted fabrication of SA-based gel bead with excellent antibacterial property is a promising multifunctional adsorption material for practical water remediation.
Collapse
Affiliation(s)
- Kaiqiang Dong
- School of Resources Environment and Materials, Guangxi University, Nanning 530004, China; Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Nanning 530004, China
| | - Yanling Jiang
- School of Resources Environment and Materials, Guangxi University, Nanning 530004, China; Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Nanning 530004, China
| | - Yidan Zhang
- School of Resources Environment and Materials, Guangxi University, Nanning 530004, China; Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Nanning 530004, China
| | - Zhiyong Qin
- School of Resources Environment and Materials, Guangxi University, Nanning 530004, China; Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Nanning 530004, China.
| | - Liuting Mo
- School of Resources Environment and Materials, Guangxi University, Nanning 530004, China; Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Nanning 530004, China.
| |
Collapse
|
15
|
Guo H, Qin Q, Chang JS, Lee DJ. Modified alginate materials for wastewater treatment: Application prospects. BIORESOURCE TECHNOLOGY 2023; 387:129639. [PMID: 37549712 DOI: 10.1016/j.biortech.2023.129639] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
Sodium alginate is a natural macromolecule widely used because of its abundance, low cost of acquisition, and rich hydroxyl and carboxyl groups in the matrix. The physical modification of sodium alginate can be made by blending it with polymer materials. The so-yielded alginate complex is commonly unstable in an aqueous environment due to alginate backbones' high hydrophilicity. The chemical modification can remove its hydrophilic groups and introduce special functional groups or polymers onto the alginate backbones to provide excess reaction sites for specific reactions and effective complexation sites for accommodating antibiotics, dyes, heavy metal ions, and radioactive elements. Sodium alginate has been used in water treatment engineering under revised modification protocols. This article also reviews the latest modification protocols for sodium alginate and outlines the novel application of the modified materials. The limitations of modified sodium alginate materials are described, and research prospects are put forward.
Collapse
Affiliation(s)
- Hongliang Guo
- College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Qing Qin
- College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Jo-Shu Chang
- Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan; Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan
| | - Duu-Jong Lee
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong; Department of Chemical Engineering & Materials Sci., Yuan Ze University, Chung-li 32003, Taiwan.
| |
Collapse
|
16
|
Olorunnisola D, Olorunnisola CG, Otitoju OB, Okoli CP, Rawel HM, Taubert A, Easun TL, Unuabonah EI. Cellulose-based adsorbents for solid phase extraction and recovery of pharmaceutical residues from water. Carbohydr Polym 2023; 318:121097. [PMID: 37479430 DOI: 10.1016/j.carbpol.2023.121097] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/23/2023] [Accepted: 06/05/2023] [Indexed: 07/23/2023]
Abstract
Cellulose has attracted interest from researchers both in academic and industrial sectors due to its unique structural and physicochemical properties. The ease of surface modification of cellulose by the integration of nanomaterials, magnetic components, metal organic frameworks and polymers has made them a promising adsorbent for solid phase extraction of emerging contaminants, including pharmaceutical residues. This review summarizes, compares, and contrasts different types of cellulose-based adsorbents along with their applications in adsorption, extraction and pre-concentration of pharmaceutical residues in water for subsequent analysis. In addition, a comparison in efficiency of cellulose-based adsorbents and other types of adsorbents that have been used for the extraction of pharmaceuticals in water is presented. From our observation, cellulose-based materials have principally been investigated for the adsorption of pharmaceuticals in water. However, this review aims to shift the focus of researchers to the application of these adsorbents in the effective pre-concentration of pharmaceutical pollutants from water at trace concentrations, for quantification. At the end of the review, the challenges and future perspectives regarding cellulose-based adsorbents are discussed, thus providing an in-depth overview of the current state of the art in cellulose hybrid adsorbents for extraction of pharmaceuticals from water. This is expected to inspire the development of solid phase exraction materials that are efficient, relatively cheap, and prepared in a sustainable way.
Collapse
Affiliation(s)
- Damilare Olorunnisola
- African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, PMB 230, Ede, Osun State, Nigeria; Department of Chemical Sciences, Redeemer's University, PMB 230, Ede, Osun State, Nigeria; University of Potsdam, Institute of Nutritional Science, 14558 Nuthetal (Ortsteil Bergholz-Rehbrücke), Arthur-Scheunert-Allee 114-116, Germany; Institute of Chemistry, University of Potsdam, D-14476 Potsdam, Germany
| | - Chidinma G Olorunnisola
- African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, PMB 230, Ede, Osun State, Nigeria; Institute of Chemistry, University of Potsdam, D-14476 Potsdam, Germany
| | - Oluwaferanmi B Otitoju
- African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, PMB 230, Ede, Osun State, Nigeria; Department of Chemical Sciences, Redeemer's University, PMB 230, Ede, Osun State, Nigeria
| | - Chukwunonso P Okoli
- African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, PMB 230, Ede, Osun State, Nigeria; Department of Chemistry, Alex Ekwueme Federal University Ndufu-Alike, Ikwo, Ebonyi State, Nigeria
| | - Harshadrai M Rawel
- University of Potsdam, Institute of Nutritional Science, 14558 Nuthetal (Ortsteil Bergholz-Rehbrücke), Arthur-Scheunert-Allee 114-116, Germany
| | - Andreas Taubert
- Institute of Chemistry, University of Potsdam, D-14476 Potsdam, Germany
| | - Timothy L Easun
- School of Chemistry, Haworth Building, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Emmanuel I Unuabonah
- African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, PMB 230, Ede, Osun State, Nigeria; Department of Chemical Sciences, Redeemer's University, PMB 230, Ede, Osun State, Nigeria.
| |
Collapse
|
17
|
Wu W, Gao X, Chen B, Meng G, Lian J, Xue F, Kong Q, Yang J. Selective adsorption of tetracycline and copper(II) on ion-imprinted porous alginate microspheres: performance and potential mechanisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:105538-105555. [PMID: 37715034 DOI: 10.1007/s11356-023-29810-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 09/06/2023] [Indexed: 09/17/2023]
Abstract
A novel epichlorohydrin and thiourea grafted porous alginate adsorbent (UA-Ca/IIP) was synthesized using ion-imprinting and direct templating to remove copper ions (Cu(II)) and tetracycline (TC) in aqueous solution. UA-Ca/IIP demonstrated great selectivity for Cu(II) and TC among different coexisting anions (CO32-, PO43- and SO42-), cations (Ca2+, Mg2+ and NH4+), and antibiotics (oxytetracycline and sulfamethoxazole). The adsorption of TC and Cu(II) by UA-Ca/IIP was significantly affected by the pH of the solution, and the quantity of TC and Cu(II) adsorbed reached a maximum at pH 5. A pseudo-second-order model better fitted the kinetic data; the Langmuir model predicted the maximum adsorption quantities 3.527 mmol TC g-1 and 4.478 mmol Cu(II) g-1 at 298 K. Thermodynamic studies indicated that the TC and Cu(II) adsorption was more rapid at a higher temperature. Antagonistic and synergistic adsorption experiments showed that the adsorption capacity of TC would increase significantly with the increase of Cu(II) concentration. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy indicated that along with the influence of pH, electrostatic interaction and complexation were the main mechanisms of TC and Cu(II) adsorption. Regeneration experiments revealed that TC and Cu(II) were removed efficiently and that UA-Ca/IIP was recyclable over the long term. These results show that the modified porous alginate microsphere is a green and recyclable adsorbent, which has good selectivity and high adsorption performance for the removal of TC and Cu(II).
Collapse
Affiliation(s)
- Wenkai Wu
- Engineering Research Center of Biofilm Water Purification and Utilization Technology of Ministry of Education, Anhui University of Technology, Ma'anshan, 243032, China
- School of Energy and Environment, Anhui University of Technology, Anhui, Maanshan, 243032, China
| | - Xiangpeng Gao
- School of Metallurgical Engineering, Anhui University of Technology, Anhui, Maanshan, 243032, China
| | - Bo Chen
- Engineering Research Center of Biofilm Water Purification and Utilization Technology of Ministry of Education, Anhui University of Technology, Ma'anshan, 243032, China
- School of Energy and Environment, Anhui University of Technology, Anhui, Maanshan, 243032, China
| | - Guanhua Meng
- Engineering Research Center of Biofilm Water Purification and Utilization Technology of Ministry of Education, Anhui University of Technology, Ma'anshan, 243032, China
- School of Energy and Environment, Anhui University of Technology, Anhui, Maanshan, 243032, China
| | - Jianjun Lian
- Engineering Research Center of Biofilm Water Purification and Utilization Technology of Ministry of Education, Anhui University of Technology, Ma'anshan, 243032, China.
- School of Energy and Environment, Anhui University of Technology, Anhui, Maanshan, 243032, China.
| | - Feng Xue
- Ministry of Ecology and Environment, Nanjing Institute of Environmental Sciences, Jiangsu, Nanjing, 210042, China
| | - Qiaoping Kong
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Shandong, Qingdao, 266033, China
| | - Jianhua Yang
- Engineering Research Center of Biofilm Water Purification and Utilization Technology of Ministry of Education, Anhui University of Technology, Ma'anshan, 243032, China
- School of Energy and Environment, Anhui University of Technology, Anhui, Maanshan, 243032, China
| |
Collapse
|
18
|
Vidal E, Alexis F, Camiña JM, Garcia CD, Whitehead DC. Removal of metals and inorganics from rendered fat using polyamine-modified cellulose nanocrystals. RSC SUSTAINABILITY 2023; 1:1184-1191. [PMID: 38013677 PMCID: PMC10399612 DOI: 10.1039/d3su00116d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/09/2023] [Indexed: 11/29/2023]
Abstract
Meatpacking and poultry operations produce an enormous amount of co-products including offal, fat, blood, feathers etc. that are collected and processed by the rendering industry into value-added materials such as various protein meals and rendered fat products. Rendered fats (mainly composed of triglycerides from the adipose tissue of animals or used cooking oil from the restaurant industry) are sold for a variety of applications including animal feed formulations. Nonetheless, in the current context of energy scarcity, their use as feedstocks for the generation of renewable fuels including biodiesel and renewable diesel represents a growing market. The diverse composition of the source material can impose significant challenges in terms of compliance, requiring the control (and reduction) of the concentration of elements such as phosphorus, sulfur, calcium, magnesium, sodium, potassium, and other undesirable metals that can otherwise interfere with critical aspects of the refining process or contaminate the renewable fuel products. To address this critical need, we describe the application of poly(ethylenimine)-modified cellulose nanocrystals as a low-cost material for the removal of unwanted metal/inorganic cations from rendered fat. A total of 28 real samples including poultry, white pork grease, and beef tallow were analyzed. Test results showed that the approach can effectively decrease the concentration of the target elements by 95 ± 2%, suggesting that this treatment protocol could dramatically improve the application of rendered fat products for renewable fuel refining.
Collapse
Affiliation(s)
- Ezequiel Vidal
- Department of Chemistry, Clemson University 211 S. Palmetto Blvd, Hunter Hall Clemson SC 29634 USA +1 864 656 3128
| | - Frank Alexis
- School of Biological Sciences and Engineering, Yachay Tech San Miguel de Urcuquí Ecuador
| | - José M Camiña
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de La Pampa La Pampa Argentina
| | - Carlos D Garcia
- Department of Chemistry, Clemson University 211 S. Palmetto Blvd, Hunter Hall Clemson SC 29634 USA +1 864 656 3128
| | - Daniel C Whitehead
- Department of Chemistry, Clemson University 211 S. Palmetto Blvd, Hunter Hall Clemson SC 29634 USA +1 864 656 3128
| |
Collapse
|
19
|
Ahmaruzzaman M, Roy P, Bonilla-Petriciolet A, Badawi M, Ganachari SV, Shetti NP, Aminabhavi TM. Polymeric hydrogels-based materials for wastewater treatment. CHEMOSPHERE 2023; 331:138743. [PMID: 37105310 DOI: 10.1016/j.chemosphere.2023.138743] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/19/2023]
Abstract
Low-cost and reliable wastewater treatment is a relevant issue worldwide to reduce the concentration of environmental pollutants. Industrial effluents containing dyes, heavy metals, and other inorganic and organic compounds can pollute water resources; therefore, novel technologies are required to mitigate and control their release into the environment. Adsorption is one of the simplest methods for treating contaminated water in which a wide spectrum of adsorbents can be used to remove emerging compounds. Hydrogels are interesting materials with high adsorption capacities that can be synthesized via green routes. These adsorbents are promising for large-scale industrial wastewater treatment applications; however, gaps still exist in achieving sustainable commercial implementation. This review focuses on the discussion and analysis of preparation, characterization, and adsorption properties of hydrogels for water purification. The advantages of these polymeric materials for water treatment were analyzed, including their performance in the removal of different organic and inorganic contaminants. Recent advances in the functionalization of hydrogels and the synthesis of novel composites have also been described. The adsorption capacities of hydrogel-based adsorbents are higher than 500 mg/g for different organic and inorganic pollutants, and can reach values of up to >2000 mg/g for organic compounds, significantly outperforming other materials reported for water cleaning. The main interactions involved in the adsorption of water pollutants using hydrogel-based adsorbents were described and explained to allow the interpretation of their removal mechanisms. The current challenges in the implementation of hydrogels for water purification in real-life operations are also highlighted. This review provides an updated picture of hydrogels as interesting materials to address water depollution worldwide.
Collapse
Affiliation(s)
- Md Ahmaruzzaman
- Department of Chemistry, National Institute of Technology Silchar, 788010, Assam, India.
| | - Prerona Roy
- Department of Chemistry, National Institute of Technology Silchar, 788010, Assam, India
| | | | - Michael Badawi
- Laboratoire de Physique et Chimie Théoriques UMR CNRS 7019, Université de Lorraine, Nancy, France
| | - Sharanabasava V Ganachari
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi, 580 031, India
| | - Nagaraj P Shetti
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi, 580 031, India
| | - Tejraj M Aminabhavi
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi, 580 031, India.
| |
Collapse
|
20
|
Wang M, Chen Y, Zhang Y, Zhao K, Feng X. Selective removal of Cr(VI) by tannic acid and polyethyleneimine modified zero-valent iron particles with air stability. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:132018. [PMID: 37441863 DOI: 10.1016/j.jhazmat.2023.132018] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/23/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023]
Abstract
In this study, a new composite adsorbent for Cr(VI) removal was developed by immobilizing polyethyleneimine (PEI) on the surface of zero-valent iron (ZVI) particles with tannic acid (TA) as a stabilizer. The adsorbent (denoted as Fe-TA-PEI-10) was easy to prepare and regenerate, requiring no conditions for storage. It was found to be particularly effective for Cr(VI) removal from wastewater via reduction and adsorption. Electrochemical analysis revealed that TA significantly reduced the electron transfer resistance of Fe-TA-PEI-10 and reduced the highly toxic Cr(VI)to the less toxic Cr(III). In addition, PEI endowed amino groups to Fe-TA-PEI-10, raising the zero charge point (pHpzc) of Fe-TA-PEI-10 (pHpzc= 7.80), allowing it to adsorb Cr(VI) from the solution rapidly under electrostatic forces and chelating effects. The adsorption process was consistent with the pseudo-first-order model (R2 >0.99) and the Langmuir isotherm model (R2 >0.99), and the maximum adsorption capacity could reach 161.6 mg/g. In particular, this study presented for the first time that TA-modified Fe(0) had excellent stability in the air, and the adsorbent showed no decrease in performance for Cr(VI) removal even after exposure to the air for 30 days. When tested with a simulated electroplating rinsing wastewater, the Fe-TA-PEI-10 showed very high selectivity for Cr(VI) removal. The mechanism of Cr(VI) removal with Fe-TA-PEI-10 was found to be based on adsorption and reduction. This work provided a new scheme for developing efficient and long-lasting reactive adsorbent for Cr(VI) removal.
Collapse
Affiliation(s)
- Meng Wang
- School of Materials Science and Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, PR China
| | - Yingbo Chen
- School of Materials Science and Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, PR China.
| | - Yuanyuan Zhang
- School of Materials Science and Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, PR China
| | - Ke Zhao
- School of Materials Science and Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, PR China
| | - Xianshe Feng
- Department of Chemical Engineering, University of Waterloo, Waterloo N2L 3G1, Ontario, Canada
| |
Collapse
|
21
|
Chen B, Yu F, Wang S, Liu Y, Li D, Chen Y, Dao G, Xu Z, Pan X. Structuring alginate/dopamine powder into macroscopic aerogel microsphere for exceptional removal of tetracycline from water: Performance and mechanisms. Int J Biol Macromol 2023:124994. [PMID: 37236556 DOI: 10.1016/j.ijbiomac.2023.124994] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/26/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023]
Abstract
Aerogel was selected as one of IUPAC Top Ten Emerging Technologies in Chemistry in 2022, and has attracted tremendous concerns of scientists in removal of emerging contaminants. In this work a novel Fe3+ cross-linked alginate aerogel (SA/DA-Fe3+) with multiple sorption sites were facilely fabricated and applied for highly efficient removal of tetracycline (TC) from water. Results showed that Fe3+ and DA cooperatively improve adsorption of TC and TC was efficiently removed over a broad pH range of 4-8. The kinetics process can be better described by a chemisorption controlled pseudo-second-order kinetics model and Langmuir isotherm equation with characteristics of monolayer coverage. The fitted qmax value of TC at ambient temperature was 804.6 mg g-1 higher than those of other reported adsorbents. Multiple interactions including π-π EDA, complexation, hydrogen bonding, electrostatic attraction, etc. were involved in adsorption process. Moreover, SA/DA-Fe3+ aerogel exhibited satisfactory stability, reusability, and recyclability for consecutive applications. Most importantly, after consecutively running for >1000 h with dynamic sorption capacity over 500 mg g-1, the packed-column was still not saturated, manifesting its great potentials for treating actual wastewaters. Thus, above superiorities make SA/DA-Fe3+ a promising candidate adsorbent for treating TC-containing wastewater.
Collapse
Affiliation(s)
- Bo Chen
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Fengling Yu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Sha Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Yang Liu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Dehong Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Yuning Chen
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Guohua Dao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Zhixiang Xu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Xuejun Pan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, PR China.
| |
Collapse
|
22
|
Ma S, Shi W, Li H, Zhang Y. Biomimetic mineralization of nacre-inspired multiple crosslinked PVA/CaAlg/SiO 2 membrane with simultaneously enhanced mechanical and separation properties. Int J Biol Macromol 2023; 234:123650. [PMID: 36791940 DOI: 10.1016/j.ijbiomac.2023.123650] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/01/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023]
Abstract
Inspired by the natural nacre structure, we propose a new strategy to fabricate mineralized, multiple crosslinked hydrogel membranes with the "rigid silica in soft polymer" nacre-like structure. In-situ SiO2 nanoparticles (NPs) and polyvinyl alcohol/sodium alginate (PVA/NaAlg) are used to simulate the rigid "bricks" and soft "mortar" compositions of nacre, respectively. The nacre-like mineralized (PVA/CaAlg/SiO2) membrane showed a higher tensile strength of 4.1 ± 0.08 MPa, excellent pure water flux of 170 ± 3 L/m2h, and an oil/water rejection rate of 99 %. The interwoven hierarchal structure, similar to nacre, was determined by SEM analysis. In addition, incorporating SiO2 NPs increases the anti-swelling, roughness, and hydrophilicity of the membranes. PVA/CaAlg/SiO2 membrane exhibited excellent superhydrophilicity (WCA value was 0°) and superoleophobicity underwater (OCA value was 162°). PVA/CaAlg/SiO2 membrane also showed excellent separation performance for water-soluble organic pollutants and can be used for dye separation with rejection efficiencies of 99.5 %, 99.1 %, and 98.3 % for Congo red (CR), Alizarin red (AR), and Sunset yellow (SY), respectively. Moreover, PVA/CaAlg/SiO2 membrane had outstanding long-term filtration and antifouling performance. The biomineralization-inspired structure provides a promising technique that can be used to prepare high-performance organic-inorganic membranes with great promise for wastewater separation application.
Collapse
Affiliation(s)
- Sisi Ma
- School of Textiles Engineering, Henan University of Engineering, Zhengzhou 450007, PR China.
| | - Wenying Shi
- School of Textiles Engineering, Henan University of Engineering, Zhengzhou 450007, PR China
| | - Hongbin Li
- School of Textiles Engineering, Henan University of Engineering, Zhengzhou 450007, PR China
| | - Yifeng Zhang
- Collaborative Innovation Center of Advanced Textile Equipment and Technology by MOE and Henan Provincial Government, Zhengzhou 450007, PR China
| |
Collapse
|
23
|
Zeng X, Zhang G, Wen J, Li X, Zhu J, Wu Z. Simultaneous removal of aqueous same ionic type heavy metals and dyes by a magnetic chitosan/polyethyleneimine embedded hydrophobic sodium alginate composite: Performance, interaction and mechanism. CHEMOSPHERE 2023; 318:137869. [PMID: 36720414 DOI: 10.1016/j.chemosphere.2023.137869] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/08/2023] [Accepted: 01/12/2023] [Indexed: 06/18/2023]
Abstract
Heavy metals and azo dyes caused huge harm to the aqueous system and human health. A magnetic chitosan/polyethyleneimine embedded hydrophobic sodium alginate composite (MCPS) was designed and prepared to simultaneously remove aqueous same ionic type heavy metals and azo dyes. In mono-polluted system, the optimal pH for Cr(VI), MO (methyl orange), Cu(Ⅱ) and MB (methylene blue) were 3, 2, 6 and 12 with a saturated adsorption capacity of 87.53, 66.41, 351.03 and 286.54 mg/g, respectively. Pseudo-second-order was suitable to describe the adsorption kinetics of them and the adsorption isotherms were more consistent with the Langmuir isotherm model being a spontaneous, endothermic, and entropy-increasing process. In binary-polluted system, MCPS possessed simultaneous adsorption for Cr (Ⅵ)-MO and Cu(Ⅱ)-MB pollutants at their optimal pH, in addition, whether in anionic or cationic solution, the removal of heavy metals were promoted with the add of azo dyes but the removal of azo dyes were suppressed with the add of heavy metals. Both Cr (Ⅵ)-MO and Cu(Ⅱ)-MB pollutants could be effectively adsorbed and desorbed from MCPS by changing the pH of the aqueous solution to realize recyclability. Lastly, removal mechanism was revealed in detail by FT-IR, EDS and XPS.
Collapse
Affiliation(s)
- Xiangchu Zeng
- School of Chemistry and Bioengineering, Hechi University, Yizhou, Guangxi, 546300, PR China; Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, PR China
| | - Guanghua Zhang
- Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, PR China.
| | - Jia Wen
- College of Environmental Science & Engineering, Hunan University, Changsha, Hunan, 410000, PR China.
| | - Xiuling Li
- School of Chemistry and Bioengineering, Hechi University, Yizhou, Guangxi, 546300, PR China
| | - Junfeng Zhu
- Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, PR China
| | - Zhe Wu
- School of Chemistry and Bioengineering, Hechi University, Yizhou, Guangxi, 546300, PR China
| |
Collapse
|
24
|
Zhang Y, Wang T, Guo H, Gao X, Yan Y, Zhou X, Zhao M, Qin H, Liu Y. An ion-coordination hydrogel based sensor array for point-of-care identification and removal of multiple tetracyclines. Biosens Bioelectron 2023; 231:115266. [PMID: 37058957 DOI: 10.1016/j.bios.2023.115266] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/22/2023] [Accepted: 03/25/2023] [Indexed: 04/03/2023]
Abstract
Misuse and overuse of tetracycline antibiotics (TCs) brings serious issues to ecological environment, food safety and human health. It is urgent to develop unique platform for high efficient identification and removal of TCs. In the present investigation, an effective and simple fluorescence sensor array was constructed based on the interaction between metal ions (Eu3+ and Al3+) and antibiotics. Benefiting from the different affinities between the ions and TCs, the sensor array can identify TCs from other antibiotics, which also can further differentiating four kinds of TCs (OTC, CTC, TC and DOX) from each other via linear discriminant analysis (LDA) technique. Meanwhile, the sensor array performed well in quantitative analysis of single TC antibiotic and differentiation of TCs mixtures. More interestingly, Eu3+ and Al3+-doped sodium alginate/polyvinyl alcohol hydrogel beads (SA/Eu/PVA and SA/Al/PVA) were further constructed, which can not only identify the TCs but simultaneously remove the antibiotics with high efficiency. The investigation provided an instructive way for rapid detection and environment protection.
Collapse
Affiliation(s)
- Yujie Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Tianlin Wang
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Hanqiong Guo
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Xia Gao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Yong Yan
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Xiao Zhou
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Minyang Zhao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Haijuan Qin
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Yaqing Liu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China.
| |
Collapse
|
25
|
Xu C, Shu H, Chen C, Qi X, Zhou P, Ma Y, Zhao C, Yang W. Super-adsorbent microspheres based on a triallyl isocyanurate-maleic anhydride copolymer for the removal of organic pollutants from water. NANOSCALE 2023; 15:4053-4062. [PMID: 36729408 DOI: 10.1039/d2nr07124j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Owing to the frequent occurrence of diclofenac sodium (DS) in fresh aquatic environments and its potential toxicity towards living organisms, the effective removal of DS has attracted worldwide attention. Herein, a green and efficient strategy to fabricate crosslinked microspheres with interconnected mesoporous structures and abundant adsorption active sites was developed. With this strategy, triallyl isocyanurate (TAIC)-maleic anhydride (MAH) copolymer microspheres (TMs) with a diameter of 1.19-1.35 μm were first prepared by self-stabilized precipitation (2SP) polymerization, and the TMs possess a large amount reactive anhydride groups (62.5-71.8 mol%), a specific surface area of 51.6-182.4 m2 g-1 and a mesoporous structure (average pore size: 3.4-3.8 nm). Then the TMs were further functionalized with polyethylenimine (PEI) to give rise to cationic microspheres (Cat-TMs), which showed excellent adsorption performance to DS with a rapid adsorption rate (reached equilibrium within 30 min), a very high equilibrium adsorption capacity (1421 mg g-1) and excellent recyclability. The pseudo-second-order model and Langmuir model were a good fit for the adsorption kinetic and isotherm process, respectively. Furthermore, due to the high cation density (4.291 mmol g-1) and excellent pH buffer capacity of Cat-TMs, the adsorption capacity can be maintained at a high level within the pH range of 6-10. The regenerated Cat-TMs showed only a slight loss (<5%) in the adsorption capacity even after 5 adsorption-desorption cycles. In short, Cat-TMs can be considered as a highly promising adsorbent for the rapid and ultra-efficient removal of anionic organic contaminants and have significant potential to be applied in wastewater treatment.
Collapse
Affiliation(s)
- Can Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Hongyi Shu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Chuxuan Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Xi Qi
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Pengfei Zhou
- Shandong Dongyue Polymer Material Co., Ltd, China
| | - Yuhong Ma
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
- Beijing Engineering Research Center for the Synthesis and Applications of Waterborne Polymers, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Changwen Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Wantai Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
- Beijing Engineering Research Center for the Synthesis and Applications of Waterborne Polymers, Beijing University of Chemical Technology, Beijing, 100029, China
- Key Laboratory of Carbon Fiber and Functional Polymers Ministry of Education, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
26
|
Karadağ Memiş S, Ermiş E, Özcan AS. Drug removal and release studies of mesoporous and modified silica. SEP SCI TECHNOL 2023. [DOI: 10.1080/01496395.2023.2172585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- Selin Karadağ Memiş
- Department of Chemistry, Faculty of Science, Eskişehir Technical University, Eskişehir, Turkey
| | - Emel Ermiş
- Department of Chemistry, Faculty of Science, Eskişehir Technical University, Eskişehir, Turkey
| | - Asiye Safa Özcan
- Department of Chemistry, Faculty of Science, Eskişehir Technical University, Eskişehir, Turkey
| |
Collapse
|
27
|
Pauna AMR, Mititelu Tartau L, Bogdan M, Meca AD, Popa GE, Pelin AM, Drochioi CI, Pricop DA, Pavel LL. Synthesis, Characterization and Biocompatibility Evaluation of Novel Chitosan Lipid Micro-Systems for Modified Release of Diclofenac Sodium. Biomedicines 2023; 11:biomedicines11020453. [PMID: 36830989 PMCID: PMC9953466 DOI: 10.3390/biomedicines11020453] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 01/24/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
The purpose of our study was the obtaining, characterization and biocompatibility estimation of novel carrier systems for diclofenac. Diclofenac is a potent nonsteroidal anti-inflammatory drug with frequent gastrointestinal side effects, impairing the quality of the patient's life. Original diclofenac-loaded micro-vesicles coated with chitosan were prepared and physico-chemical analyzed. We investigated their in vitro hemocompatibility and in vivo biocompatibility in rats. The animals were treated orally as follows: group 1 (Control): distilled water 0.3 mL/100 g body weight; Group 2 (CHIT): 0.3 mL/100 g body weight 0.5% chitosan solution; Group 3 (DCF): 15 mg/kg body weight diclofenac; Group 4 (DCF-ves): lipid vesicles loaded with diclofenac 15 mg/kg body weight. Blood samples were collected for assessing: red blood cells, hemoglobin, hematocrit and leukocyte formula. A series of specific parameters of the liver and kidney function, some markers of immune defense, as well as the activity of some enzymes involved in oxidative processes, were also investigated. At the end of the experiment, the animals were sacrificed and fragments of liver, kidney and stomach were collected for histopathological examination. No blood hemolysis was evidenced by the in vitro test with the administration of diclofenac vesicles. The animals treated with diclofenac lipid vesicles stabilized with chitosan did not display any notable differences in their hematological and biochemical profile compared to control animals. These data correlated with the histological results, which showed the absence of architectural changes in the examined tissues. Biological in vitro and in vivo evaluation revealed that the microvesicles containing diclofenac are biocompatible, with potential to be used as delivery systems to modify the drug release, thus making them an attractive candidate for biomedical applications.
Collapse
Affiliation(s)
- Ana-Maria Raluca Pauna
- Department of Pharmacology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Liliana Mititelu Tartau
- Department of Pharmacology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Correspondence: Correspondence: (L.M.T.); (M.B.)
| | - Maria Bogdan
- Department of Pharmacology, Faculty of Pharmacy, University of Medicine and Pharmacy, 200349 Craiova, Romania
- Correspondence: Correspondence: (L.M.T.); (M.B.)
| | - Andreea-Daniela Meca
- Department of Pharmacology, Faculty of Pharmacy, University of Medicine and Pharmacy, 200349 Craiova, Romania
| | - Gratiela Eliza Popa
- Department of Pharmaceutical Technology, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ana Maria Pelin
- Department of Pharmaceutical Sciences, Faculty of Medicine and Pharmacy, “Dunărea de Jos” University, 800010 Galați, Romania
| | - Cristian Ilie Drochioi
- Surgical Department, Faculty of Dental Medicine, University of Medicine and Pharmacy, 700115 Iasi, Romania
| | | | - Liliana Lacramioara Pavel
- Department of Morphological and Functional Sciences, Faculty of Medicine and Pharmacy, “Dunărea de Jos” University, 800010 Galați, Romania
| |
Collapse
|
28
|
Qin Z, Dong K, Zhang Y, Jiang Y, Mo L, Xiao S. Noval green sodium alginate/gellan gum aerogel with 3D hierarchical porous structure for highly efficient and selective removal of Congo red from water. BIORESOURCE TECHNOLOGY 2023; 370:128576. [PMID: 36603751 DOI: 10.1016/j.biortech.2023.128576] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/30/2022] [Accepted: 01/01/2023] [Indexed: 06/17/2023]
Abstract
Rational design of adsorbed materials with three-dimensional (3D) hierarchical porous structure, sustainable, high adsorption capacity, and excellent selective is of great significance in practical applications. Herein, a novel aerogel adsorbed material with 3D hierarchical porous architecture was fabricated by employing naturally abundant sodium alginate (SA)/gellan gum (GG) as basic construction blocks to achieve sustainability as well as applying polyethyleneimine (PEI) as functional material for highly efficient and selective capture of Congo red (CR). The aerogel sorbent exhibited strong microstructure, numerous active adsorption sites and being ultralight. The resulting aerogel adsorbent showed high adsorption capacity (3017.23 mg/g) toward CR, exceedingly most previously reported sorbents. Furthermore, the aerogel adsorbent was accompanied by outstanding selectivity for CR in four binary dye systems. Meanwhile, after 3 cycles, the adsorption capacity decreased by 14.8 %, but still maintained the adsorption capacity of 559.79 mg/g. Therefore, excellent adsorption performance, and superb selectivity prefigures its great prospects for wastewater purification.
Collapse
Affiliation(s)
- Zhiyong Qin
- School of Resources Environment and Materials, Guangxi University, Nanning 53004, China; Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Nanning 530004, China.
| | - Kaiqiang Dong
- School of Resources Environment and Materials, Guangxi University, Nanning 53004, China; Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Nanning 530004, China.
| | - Yidan Zhang
- School of Resources Environment and Materials, Guangxi University, Nanning 53004, China; Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Nanning 530004, China.
| | - Yanling Jiang
- School of Resources Environment and Materials, Guangxi University, Nanning 53004, China; Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Nanning 530004, China.
| | - Liuting Mo
- School of Resources Environment and Materials, Guangxi University, Nanning 53004, China; Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Nanning 530004, China.
| | - Siyu Xiao
- School of Resources Environment and Materials, Guangxi University, Nanning 53004, China; Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Nanning 530004, China.
| |
Collapse
|
29
|
Kim H, Han S, Choi K, Lee J, Lee SH, Won YW, Lim KS. Self-assembled Nanocomplex Using Cellulose Nanocrystal Based on Zinc/DNA Nanocluster for Gene Delivery. BIOTECHNOL BIOPROC E 2023. [DOI: 10.1007/s12257-022-0196-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
30
|
Wu J, Wu X, Yang F, Liu X, Meng F, Ma Q, Che Y. Multiply cross-linked poly(vinyl alcohol)/cellulose nanofiber composite ionic conductive hydrogels for strain sensors. Int J Biol Macromol 2023; 225:1119-1128. [PMID: 36414077 DOI: 10.1016/j.ijbiomac.2022.11.173] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/08/2022] [Accepted: 11/17/2022] [Indexed: 11/21/2022]
Abstract
Building multiple chemical crosslinks is an effective strategy to improve mechanical properties and to diversify final application of polysaccharide nanoparticles reinforced poly(vinyl alcohol) (PVA) physical hydrogels. In this work, PVA/cellulose nanofibers (CNFs) were used as composite substrate to fabricate ionic conductive hydrogels for strain sensor. Three types of characteristic crosslinks, including chemical crosslinking via boronic ester covalent bonds only, and with additional metal coordination bonding, as well as coexistence of physical crosslinks via PVA crystallites and aforementioned two kinds of chemical crosslinks, were constructed. The sample with triple crosslinks has superior mechanical strength and resistance to fatigue, and the polydopamine/Fe3+ ratio act as key to tune final performance because double-network structure prefers to form as Fe3+ is superfluous, while dual-crosslink one forms in the case of insufficient Fe3+. As-optimized ionic conductive hydrogel is suitable as strain sensor for probing human motions. This work provides an interesting insight into the network structure and property regulation for PVA/CNF composite hydrogels with multiple crosslinks.
Collapse
Affiliation(s)
- Jianzhen Wu
- Marine College, Shandong University (Weihai), Wenhua West Rd., Weihai, Shandong Province, 264209, PR China
| | - Xiuzhicheng Wu
- Marine College, Shandong University (Weihai), Wenhua West Rd., Weihai, Shandong Province, 264209, PR China
| | - Fujian Yang
- Marine College, Shandong University (Weihai), Wenhua West Rd., Weihai, Shandong Province, 264209, PR China
| | - Xiaonan Liu
- Marine College, Shandong University (Weihai), Wenhua West Rd., Weihai, Shandong Province, 264209, PR China
| | - Fanjun Meng
- Marine College, Shandong University (Weihai), Wenhua West Rd., Weihai, Shandong Province, 264209, PR China
| | - Qinglin Ma
- Marine College, Shandong University (Weihai), Wenhua West Rd., Weihai, Shandong Province, 264209, PR China
| | - Yuju Che
- Marine College, Shandong University (Weihai), Wenhua West Rd., Weihai, Shandong Province, 264209, PR China.
| |
Collapse
|
31
|
Zhou LS, Lu HQ, Jia R, Xiong YS, Fan BH, Tang JY, Li W, Li MX, Li H, Li K. Insights into mass transfer mechanism and micro-interaction of melanoidin adsorption on polyethyleneimine-functionalised pomelo-peel-derived aerogel. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.123079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
32
|
Liu D, Yang X, Zhang L, Tang Y, He H, Liang M, Tu Z, Zhu H. Immobilization of Biomass Materials for Removal of Refractory Organic Pollutants from Wastewater. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13830. [PMID: 36360710 PMCID: PMC9657116 DOI: 10.3390/ijerph192113830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
In the field of environmental science and engineering, microorganisms, enzymes and algae are promising biomass materials that can effectively degrade pollutants. However, problems such as poor environmental adaptability, recycling difficulties, and secondary pollution exist in the practical application of non-immobilized biomass materials. Biomass immobilization is a novel environmental remediation technology that can effectively solve these problems. Compared with non-immobilized biomass, immobilized biomass materials have the advantages of reusability and stability in terms of pH, temperature, handling, and storage. Many researchers have studied immobilization technology (i.e., methods, carriers, and biomass types) and its applications for removing refractory organic pollutants. Based on this, this paper reviews biomass immobilization technology, outlines the mechanisms and factors affecting the removal of refractory organic pollutants, and introduces the application of immobilized biomass materials as fillers for reactors in water purification. This review provides some practical references for the preparation and application of immobilized biomass materials and promotes further research and development to expand the application range of this material for water purification.
Collapse
Affiliation(s)
- Danxia Liu
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Xiaolong Yang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Lin Zhang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Yiyan Tang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Huijun He
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004, China
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology for Science and Education Combined with Science and Technology Innovation Base, Guilin University of Technology, Guilin 541004, China
| | - Meina Liang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004, China
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology for Science and Education Combined with Science and Technology Innovation Base, Guilin University of Technology, Guilin 541004, China
| | - Zhihong Tu
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004, China
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology for Science and Education Combined with Science and Technology Innovation Base, Guilin University of Technology, Guilin 541004, China
- CAS Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Hongxiang Zhu
- Guangxi Modern Industry College of Ecology and Environmental Protection, Guilin 541006, China
| |
Collapse
|
33
|
Aoudi B, Boluk Y, Gamal El-Din M. Recent advances and future perspective on nanocellulose-based materials in diverse water treatment applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:156903. [PMID: 35753453 DOI: 10.1016/j.scitotenv.2022.156903] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/10/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
Over the past few years, nanocellulose and its derivatives have drawn attention as promising bio-based materials for water treatment applications due to their high surface area, high strength, and renewable, biocompatible nature. The abundance of hydroxyl functional groups on the surfaces of cellulose nanocrystals (CNCs) and cellulose nanofibrils (CNFs) enables a broad range of surface modifications which results in propitious nanocomposites with tunable characteristics. In this context, this review describes the continuously developing applications of nanocellulose-based materials in the areas of adsorption, catalysis, filtration, and flocculation, with a special emphasis on the removal of contaminants such as heavy metals, dyes, and pharmaceutical compounds from diverse water systems. Recent progresses in the diverse forms of application of nanocellulose adsorbents (suspension, hydrogel, aerogel, and membrane) are also highlighted. Finally, challenges and future perspectives on emerging nanocellulose-based materials and their possible industrial applications are presented and discussed.
Collapse
Affiliation(s)
- Bouthaina Aoudi
- Department of Civil and Environmental Engineering, University of Alberta, 9211-116 Street NW, Edmonton, Alberta T6G 1H9, Canada
| | - Yaman Boluk
- Department of Civil and Environmental Engineering, University of Alberta, 9211-116 Street NW, Edmonton, Alberta T6G 1H9, Canada.
| | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering, University of Alberta, 9211-116 Street NW, Edmonton, Alberta T6G 1H9, Canada.
| |
Collapse
|
34
|
Wang N, Zhao S, Tian X, Guang S, Xu H. Fabrication of microspheres containing coagulation factors by reverse microemulsion method for rapid hemostasis and wound healing. Colloids Surf B Biointerfaces 2022; 218:112742. [DOI: 10.1016/j.colsurfb.2022.112742] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/17/2022] [Accepted: 07/30/2022] [Indexed: 02/07/2023]
|
35
|
Ouyang XK, Zhao L, Jiang F, Ling J, Yang LY, Wang N. Cellulose nanocrystal/calcium alginate-based porous microspheres for rapid hemostasis and wound healing. Carbohydr Polym 2022; 293:119688. [DOI: 10.1016/j.carbpol.2022.119688] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/27/2022] [Accepted: 05/31/2022] [Indexed: 11/02/2022]
|
36
|
Wang N, Tian X, Cheng B, Guang S, Xu H. Calcium alginate/silk fibroin peptide/Bletilla striata polysaccharide blended microspheres loaded with tannic acid for rapid wound healing. Int J Biol Macromol 2022; 220:1329-1344. [PMID: 36116592 DOI: 10.1016/j.ijbiomac.2022.09.123] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/10/2022] [Accepted: 09/14/2022] [Indexed: 01/01/2023]
Abstract
Biodegradable natural polymers are receiving increasing attention as potential candidates for wound dressing. In the present study, composite microspheres (mCSB) based on calcium alginate (CA), silk fibroin peptide (SP), and Bletilla striata polysaccharide (BSP) were prepared by the reverse emulsion method. The excellent swelling properties of microspheres enable them to rapidly promote thrombosis. Microspheres can increase the platelet aggregation index to 1.5 and the aggregation rate of red blood cells to as high as 80 %. Furthermore, tannic acid (TA)-loaded microspheres demonstrate a slow-release effect on TA; this allows the microspheres to exhibit good long-lasting antibacterial properties. Due to the synergistic effects of SP and TA, the cell senescence was delayed, with a 126.69 % survival rate of fibroblasts after 3 days of incubation. In addition, TA led to a rapid reduction in inflammation levels, with a wound closure rate of >92.80 % within 7 days. The multifunctional TA-loaded mCSB has great application potential for rapid wound healing and the treatment of wound hemostasis.
Collapse
Affiliation(s)
- Nan Wang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China
| | - Xiaoyong Tian
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Research Center for Analysis and Measurement & College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Baijie Cheng
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China
| | - Shanyi Guang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China.
| | - Hongyao Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Research Center for Analysis and Measurement & College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China.
| |
Collapse
|
37
|
Simões dos Reis G, Bergna D, Tuomikoski S, Grimm A, Lima EC, Thyrel M, Skoglund N, Lassi U, Larsson SH. Preparation and Characterization of Pulp and Paper Mill Sludge-Activated Biochars Using Alkaline Activation: A Box-Behnken Design Approach. ACS OMEGA 2022; 7:32620-32630. [PMID: 36119983 PMCID: PMC9476204 DOI: 10.1021/acsomega.2c04290] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
This study utilized pulp and paper mill sludge as a carbon source to produce activated biochar adsorbents. The response surface methodology (RSM) application for predicting and optimizing the activated biochar preparation conditions was investigated. Biochars were prepared based on a Box-Behnken design (BBD) approach with three independent factors (i.e., pyrolysis temperature, holding time, and KOH:biomass ratio), and the responses evaluated were specific surface area (SSA), micropore area (S micro), and mesopore area (S meso). According to the RSM and BBD analysis, a pyrolysis temperature of 800 °C for 3 h of holding and an impregnation ratio of 1:1 (biomass:KOH) are the optimum conditions for obtaining the highest SSA (885 m2 g-1). Maximized S micro was reached at 800 °C, 1 h and the ratio of 1:1, and for maximizing S meso (569.16 m2 g-1), 800 °C, 2 h and ratio 1:1.5 (445-473 m2 g-1) were employed. The biochars presented different micro- and mesoporosity characteristics depending on pyrolysis conditions. Elemental analysis showed that biochars exhibited high carbon and oxygen content. Raman analysis indicated that all biochars had disordered carbon structures with structural defects, which can boost their properties, e.g., by improving their adsorption performances. The hydrophobicity-hydrophilicity experiments showed very hydrophobic biochar surfaces. The biochars were used as adsorbents for diclofenac and amoxicillin. They presented very high adsorption performances, which could be explained by the pore filling, hydrophobic surface, and π-π electron-donor-acceptor interactions between aromatic rings of both adsorbent and adsorbate. The biochar with the highest surface area (and highest uptake performance) was subjected to regeneration tests, showing that it can be reused multiple times.
Collapse
Affiliation(s)
- Glaydson Simões dos Reis
- Department
of Forest Biomaterials and Technology, Swedish
University of Agricultural Sciences, Biomass Technology Centre, SE-901 83 Umeå, Sweden
| | - Davide Bergna
- Research
Unit of Sustainable Chemistry, University
of Oulu, PO Box 4300, FI-90014 Oulu, Finland
- Unit
of Applied Chemistry, University of Jyvaskyla,
Kokkola University Consortium Chydenius, Talonpojankatu 2B, FI-67100 Kokkola, Finland
| | - Sari Tuomikoski
- Research
Unit of Sustainable Chemistry, University
of Oulu, PO Box 4300, FI-90014 Oulu, Finland
| | - Alejandro Grimm
- Department
of Forest Biomaterials and Technology, Swedish
University of Agricultural Sciences, Biomass Technology Centre, SE-901 83 Umeå, Sweden
| | - Eder Claudio Lima
- Institute
of Chemistry, Federal University of Rio
Grande do Sul (UFRGS), Av. Bento Gonçalves 9500, Porto Alegre 91501-970, RS, Brazil
| | - Mikael Thyrel
- Department
of Forest Biomaterials and Technology, Swedish
University of Agricultural Sciences, Biomass Technology Centre, SE-901 83 Umeå, Sweden
| | - Nils Skoglund
- Thermochemical
Energy Conversion Laboratory, Department of Applied Physics and Electronics, Umeå University, SE-901 87 Umeå, Sweden
| | - Ulla Lassi
- Research
Unit of Sustainable Chemistry, University
of Oulu, PO Box 4300, FI-90014 Oulu, Finland
- Unit
of Applied Chemistry, University of Jyvaskyla,
Kokkola University Consortium Chydenius, Talonpojankatu 2B, FI-67100 Kokkola, Finland
| | - Sylvia H. Larsson
- Department
of Forest Biomaterials and Technology, Swedish
University of Agricultural Sciences, Biomass Technology Centre, SE-901 83 Umeå, Sweden
| |
Collapse
|
38
|
Wu Y, Li H, An Y, Sun Q, Liu B, Zheng H, Ding W. Construction of magnetic alginate-based biosorbent and its adsorption performances for anionic organic contaminants. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
39
|
Cheng S, Xie P, Yu Z, Gu R, Su Y. Enhanced adsorption performance of UiO-66 via modification with functional groups and integration into hydrogels. ENVIRONMENTAL RESEARCH 2022; 212:113354. [PMID: 35490826 DOI: 10.1016/j.envres.2022.113354] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
University of Oslo-66 (UiO-66) was a potential adsorbent for removing various pollutants from wastewater. Modifying the UiO-66 surface with different functional groups could enhance the adsorption performance. In this study, the UiO-66 modified with a functional group of -NH2 or -NO2 was prepared and tested to adsorb different pollutants. The results showed that -NO2 modified UiO-66 increased the adsorption capacity of tetracycline by 17 times to 94.08 mg g-1 compared with unmodified UiO-66. The adsorption process of UiO-66-NO2 followed the pseudo-second-order adsorption kinetic model and Langmuir isotherm model with a maximum isotherm adsorption capacity of 127.32 mg g-1. The adsorption interaction was hydrogen bonding and electrostatic attraction. The UiO-66-NO2 also showed good adsorption performance to Co2+, Methylene blue, Congo red. Fixing UiO-66-NO2 into hydrogel performed a stable absorption performance with a high absorption capacity (71.56 mg g-1) to TC and a good regeneration rate (85%) after five cycles, providing a novel applicable way to remove pollutants from wastewater.
Collapse
Affiliation(s)
- Shaoan Cheng
- State Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Pengfei Xie
- State Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhen Yu
- State Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Ruonan Gu
- State Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yuqing Su
- State Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
40
|
Tie L, Ke Y, Gong Y, Zhang WX, Deng Z. Nanocellulose fine-tuned poly(acrylic acid) hydrogel for enhanced diclofenac removal. Int J Biol Macromol 2022; 213:1029-1036. [PMID: 35700844 DOI: 10.1016/j.ijbiomac.2022.06.051] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/08/2022] [Accepted: 06/08/2022] [Indexed: 12/22/2022]
Abstract
Hydrogel was recognized as one of the most promising materials for adsorption of pharmaceuticals and personal care products (PPCPs). The highly efficient bio-based nanocelluloses fine-tuned poly(acrylic acid) hydrogel (PAA/NC) adsorbent was constructed by adjusting aspect ratio, surface charge and crystallinity of NC. The cross-linked networks were fabricated through a single-step free-radical polymerization via steric effect and hydrogen bonds. The uniform three-dimensional structures with abundant macropores and mesopores were in-situ visualized by the cryogenic-scanning electron microscopy (Cryo-SEM). The diclofenac adsorption capacity of TEMPO oxidized cellulose nanofibers (TCNF) incorporated PAA hydrogel (PAA/TCNF, 559.8 mg·g-1) was circa 2.1 times higher than pristine PAA (293.5 mg·g-1) due to the elevated specific surface area, favorable spatial structure with unimpeded channels and abundant surface-charged carboxylic groups. Moreover, PAA/NC hydrogel exhibited a wide-pH applicability and high salinity tolerance. The adsorption was predominantly determined by hydrogen bonds, validated by XPS and FT-IR analysis. It was demonstrated developed PAA/NC hydrogel with unique porous structure significantly enhanced adsorption capacity for potential application in the purification of refractory organic pollutants-containing wastewater.
Collapse
Affiliation(s)
- Luna Tie
- State Key Laboratory for Pollution Control, School of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yinuo Ke
- State Key Laboratory for Pollution Control, School of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yuxiu Gong
- State Key Laboratory for Pollution Control, School of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Wei-Xian Zhang
- State Key Laboratory for Pollution Control, School of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Zilong Deng
- State Key Laboratory for Pollution Control, School of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| |
Collapse
|
41
|
Removal of Methyl Red from Aqueous Solution Using Polyethyleneimine Crosslinked Alginate Beads with Waste Foundry Dust as a Magnetic Material. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19159030. [PMID: 35897402 PMCID: PMC9330805 DOI: 10.3390/ijerph19159030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 12/02/2022]
Abstract
In this study, a cost-effective adsorbent based on sodium alginate (SA) with waste foundry dust (WFD) was fabricated for the removal of methyl red (MR) from aqueous media. However, the utilization of WFD/SA beads to remove anionic dyes (such as MR) from effluents has limitations associated with their functional groups. To improve the adsorption performance, WFD/SA-polyethyleneimine (PEI) beads were formed via PEI crosslinking onto WFD/SA beads, which could be attributed to the formation of amide bonds from the carboxyl and amino groups due to the change of N-H bonds in the reaction. The Fourier transform infrared (FTIR) and X-ray photoelectron spectroscopy (XPS) results indicated that PEI was crosslinked on the WFD/SA via a chemical reaction. In the FTIR spectra of WFD/SA-PEI, peaks of the –COO (asymmetric) stretching vibration shifted to 1598 and 1395 cm−1, which could be attributed to the hydrogen-bonding effect of the N–H groups in PEI. In the N1s spectrum, three deconvoluted peaks were assigned to N in –N= (398.2 eV), –NH/–NH2 (399.6 eV), and NO2 (405.2 eV). WFD/SA-PEI beads were assessed and optimized for aqueous MR adsorption. The WFD/SA-PEI beads showed a high removal efficiency for MR (89.1%) at an initial concentration of 1000 mg/L, and presented a maximum MR adsorption capacity of 672.7 mg/g MR. The adsorption process showed a good fit with the pseudo-second-order kinetic model and the Langmuir adsorption isotherm model. The amino and hydroxyl groups in the WFD/SA-PEI beads facilitate strong hydrogen bonding and electrostatic interactions. Moreover, these WFD/SA-PEI beads were easily recovered after the adsorption process.
Collapse
|
42
|
Xie Q, Zou Y, Wang Y, Wang H, Du Z, Cheng X. Mechanically robust sodium alginate/cellulose nanofibers/polyethyleneimine composite aerogel for effective removal of hexavalent chromium and anionic dyes. POLYM ENG SCI 2022. [DOI: 10.1002/pen.25976] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Qian Xie
- College of Biomass Science and Engineering Sichuan University Chengdu PR China
| | - Yuke Zou
- College of Biomass Science and Engineering Sichuan University Chengdu PR China
| | - Yazhou Wang
- Sinopec, Shengli Oilfield Chunliang Oil Prod Plant Dongying Shangdong China
| | - Haibo Wang
- College of Biomass Science and Engineering Sichuan University Chengdu PR China
- The Key Laboratory of Leather Chemistry and Engineering Sichuan University, Ministry of Education Chengdu PR China
| | - Zongliang Du
- College of Biomass Science and Engineering Sichuan University Chengdu PR China
- The Key Laboratory of Leather Chemistry and Engineering Sichuan University, Ministry of Education Chengdu PR China
| | - Xu Cheng
- College of Biomass Science and Engineering Sichuan University Chengdu PR China
- The Key Laboratory of Leather Chemistry and Engineering Sichuan University, Ministry of Education Chengdu PR China
| |
Collapse
|
43
|
Amin KNM, Hosseinmardi A, Martin DJ, Annamalai PK. A mixed acid methodology to produce thermally stable cellulose nanocrystal at high yield using phosphoric acid. JOURNAL OF BIORESOURCES AND BIOPRODUCTS 2022. [DOI: 10.1016/j.jobab.2021.12.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
44
|
Zhang S, Fan H, Yi C, Li Y, Yang K, Liu S, Cheng Z, Sun J. Assembly encapsulation of BSA and CCCH-ZAP in the sodium alginate/atractylodis macrocephalae system. RSC Adv 2022; 12:12600-12606. [PMID: 35480363 PMCID: PMC9040642 DOI: 10.1039/d2ra01767a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 03/29/2022] [Indexed: 02/06/2023] Open
Abstract
Zinc finger antiviral proteins (ZAP) can significantly inhibit the replication of avian leukosis virus subgroup J (ALV-J), but the traditional method of ZAP administration is by injection, which can easily cause stress effects in chickens. In this work, we established a sodium alginate/atractylodis macrocephalae system for the encapsulation of CCCH-type zinc finger antiviral protein (CCCH-ZAP). Because of the high cost of ZAP, we first chose bovine serum albumin (BSA) as a model protein to investigate the encapsulation performance. The SEM images clearly confirmed that BSA and the sodium alginate/atractylodis macrocephalae system can assemble easily to form relatively stable nanostructures, and the encapsulation amount of BSA can reach 68%. Subsequently, the encapsulation of ZAP was studied. The SEM and the encapsulation experiments confirmed that ZAP can also be assembly encapsulated in the sodium alginate/atractylodis macrocephalae system with the encapsulation amount of 80%. Release studies showed that the SA/AM-ZAP nanocomposite was able to achieve a release rate of 32% of ZAP. This work successfully confirms the assembly encapsulation of ZAP, which will be beneficial for the usage of ZAP-based animal drugs. ZAP and BSA can be encapsulated in the sodium alginate/atractylodis macrocephalae system using an assembly method.![]()
Collapse
Affiliation(s)
- Shuxin Zhang
- College of Chemistry and Material Science, Shandong Agricultural University Tai'an 271018 Shandong PR China
| | - Hai Fan
- College of Chemistry and Material Science, Shandong Agricultural University Tai'an 271018 Shandong PR China
| | - Chunrong Yi
- College of Chemistry and Material Science, Shandong Agricultural University Tai'an 271018 Shandong PR China
| | - Ying Li
- College of Chemistry and Material Science, Shandong Agricultural University Tai'an 271018 Shandong PR China
| | - Kunmei Yang
- College of Veterinary Medicine, Shandong Agricultural University Tai'an 271018 Shandong PR China
| | - Shenglong Liu
- College of Veterinary Medicine, Shandong Agricultural University Tai'an 271018 Shandong PR China
| | - Ziqiang Cheng
- College of Veterinary Medicine, Shandong Agricultural University Tai'an 271018 Shandong PR China
| | - Jianchao Sun
- School of Environment and Materials Engineering, Yantai University Yantai 264005 Shandong PR China
| |
Collapse
|
45
|
Chen M, Yang G, Liu Y, Lv Y, Sun S, Liu M. Preparation of amino-modified cellulose aerogels and adsorption on typical diclofenac sodium contaminant. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:19790-19802. [PMID: 34718983 DOI: 10.1007/s11356-021-17214-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
A new functional cellulose aerogel (Cell@PEI) with high adsorption efficiency was prepared for the removal of diclofenac sodium (DCF) by ammonification cross-linked polyethyleneimine (PEI) with the surface of cellulose. The fabricated Cell@PEI adsorbent was characterized using field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), etc. The results demonstrated that the Cell@PEI exhibited a distinct three-dimensional cell structure and was rich in functional groups, i.e., -OH, C = O, -NH2, and C = C. The Cell@PEI presented a stable crystal structure and large specific surface area (241.41 m2·g-1), which was approximately 42 times as much as bare cellulose aerogel (5.82 m2·g-1). In addition, a series of adsorption experiments showed that the adsorbent had good adsorption performance for DCF with a maximum adsorption capacity of 294.12 mg·g-1. Furthermore, the adsorption of DCF on Cell@PEI was well corresponded with the Langmuir isotherm and pseudo-second-order adsorption model. Thermodynamic study proved that adsorption was a spontaneous exothermic reaction. Moreover, the introduction of PEI into Cell@PEI aerogel enhanced the electrostatic interaction and hydrogen bonding, promoting DCF adsorption. Importantly, the Cell@PEI aerogel could be reused up to five times desorbed by NaOH (0.5 mol/L). Considering the above results, the fabricated aerogel material can be applied to remove organic pollutants.
Collapse
Affiliation(s)
- Mingxiang Chen
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment and Safety Engineering, Fuzhou University, Fuzhou, 350116, Fujian, China
| | - Guifang Yang
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment and Safety Engineering, Fuzhou University, Fuzhou, 350116, Fujian, China
| | - Yifan Liu
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment and Safety Engineering, Fuzhou University, Fuzhou, 350116, Fujian, China
| | - Yuancai Lv
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment and Safety Engineering, Fuzhou University, Fuzhou, 350116, Fujian, China
| | - Shengxun Sun
- School of Toronto Montessori, Elgin Mills Campus, Richmond Hill, L4C 5G1, Canada
| | - Minghua Liu
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment and Safety Engineering, Fuzhou University, Fuzhou, 350116, Fujian, China.
| |
Collapse
|
46
|
Fabrication of Polyethyleneimine-Functionalized Magnetic Cellulose Nanocrystals for the Adsorption of Diclofenac Sodium from Aqueous Solutions. Polymers (Basel) 2022; 14:polym14040720. [PMID: 35215633 PMCID: PMC8880636 DOI: 10.3390/polym14040720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/04/2022] [Accepted: 02/09/2022] [Indexed: 12/12/2022] Open
Abstract
Diclofenac sodium (DS), one of the most used non-steroidal anti-inflammatory drugs worldwide, is often detected in wastewater and natural water. This drug is ecotoxic, even at low concentrations. Therefore, it is essential to fabricate low-cost adsorbents that can easily and effectively remove DS from contaminated water bodies. In this study, a polyethyleneimine (PEI)-modified magnetic cellulose nanocrystal (MCNC) was prepared with a silane coupling agent as a bridge. TEM, FTIR, XRD, and VSM were used to demonstrate the successful preparation of MCNC-PEI. This composite adsorbent exhibited efficient DS removal. Furthermore, the adsorption performance of MCNC-PEI on DS was optimal under mildly acidic conditions (pH = 4.5). Adsorption kinetics showed that the adsorption process involves mainly electrostatic interactions. Moreover, the maximum adsorption capacity reached 299.93 mg/g at 25 °C, and the adsorption capacity only decreased by 9.9% after being reused five times. Considering its low cost, low toxicity, and high DS removal capacity, MCNC-PEI could be a promising adsorbent for treating DS-contaminated water.
Collapse
|
47
|
Khan SA, Hussain D, Abbasi N, Khan TA. Deciphering the adsorption potential of a functionalized green hydrogel nanocomposite for aspartame from aqueous phase. CHEMOSPHERE 2022; 289:133232. [PMID: 34896178 DOI: 10.1016/j.chemosphere.2021.133232] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/26/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
Herein, a functionalized green hydrogel nanocomposite based on carboxymethylated gum tragacanth and nanobentonite (GTBCH) was designed via free-radical polymerization approach for the elimination of Aspartame (AS) from wastewater. The GTBCH fabrication was validated by Fourier Transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Transmission electron microscopy (TEM), scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDX) techniques. Central composite design (CCD) was efficaciously applied to determine the quadratic polynomial approach for predicting the adsorption capacity (qe) of AS. The optimum sequestration conditions were dosage (0.8 g L‒1), agitation time (35 min) initial AS concentration (60 mg L-1), pH (6) and temperature (308 K). The CCD results revealed that dosage of GTBCH and initial concentration have greater impact on qe followed by pH, time, and temperature. The significant adsorption capacity (392.04 mg g-1), calculated from Langmuir model, could be attributed to the stronger interactions prevalent between AS and GTBCH. Diffusion investigations depicted the uptake of AS via surface adsorption, liquid film and intraparticle diffusion, respectively. Ionic strength and real water have minor effect on the adsorption capacity demonstrating electrostatic interaction has least impact in adsorption process. The pHzpc, FTIR and XPS investigations revealed hydrogen bonding, n-π and van der Waals interactions as the principal removal mechanisms. Robust design, high adsorption capacity, eco-friendly facets along with excellent reusability indicated the GTBCH as a competent adsorbent for AS decontamination from wastewater.
Collapse
Affiliation(s)
- Suhail Ayoub Khan
- Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110 025, India
| | - Daud Hussain
- Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110 025, India
| | - Neha Abbasi
- Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110 025, India
| | - Tabrez Alam Khan
- Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110 025, India.
| |
Collapse
|
48
|
Wang Z, Su J, Ali A, Zhang R, Yang W, Xu L, Shi J, Gao Z. Synergistic removal of fluoride from groundwater by seed crystals and bacteria based on microbially induced calcium precipitation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150341. [PMID: 34563912 DOI: 10.1016/j.scitotenv.2021.150341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 06/13/2023]
Abstract
A new hypothesis that seed crystals (SC) and bacteria based on microbially induced calcium precipitation (MICP) synergistically remove fluoride (F-) from groundwater was proposed, with a focus on evaluating the defluoridation potential of this method and revealing its F- removal mechanism. The crucial conditions were optimized to reduce preparation and operation costs. SC furnished more available binding sites due to the existence of bacteria, and the reuse experiments showed that the defluoridation efficiency of SC still remained a high level after 14 cycles (70.10%), with a residual F- concentration of 0.96 mg L-1. The SEM-EDS, FTIR and XRD analyses indicated the predominant F- removal mechanism of SC could be ascribed to the chemisorption, ion exchange, and co-precipitation. Moreover, ion exchange and co-precipitation (PO43- involvement) were validated more contributive than chemisorption (CaCO3 and CaSO4 involvement). As a feasible, reusable, and eco-friendly technique, SC suggests promising applications in the treatment of fluoride-contaminated groundwater.
Collapse
Affiliation(s)
- Zhao Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ruijie Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Wenshuo Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Liang Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jun Shi
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhihong Gao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
49
|
Liao Q, Rong H, Zhao M, Luo H, Chu Z, Wang R. Strong adsorption properties and mechanism of action with regard to tetracycline adsorption of double-network polyvinyl alcohol-copper alginate gel beads. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126863. [PMID: 34416684 DOI: 10.1016/j.jhazmat.2021.126863] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/31/2021] [Accepted: 08/06/2021] [Indexed: 06/13/2023]
Abstract
In the present study, glutaraldehyde was used as a hydrophobic modifier to crosslink polyvinyl alcohol (PVA), and copper ion was immobilized by sodium alginate (SA). Polyvinyl alcohol-copper alginate (PVA-CA) gel beads were prepared by a one-step process, and were used to adsorb and remove tetracycline (TC) from an aqueous solution. The beads were characterized by scanning electron microscopy (SEM), thermogravimetric analysis (TGA), Brunauer-Emmett-Teller (BET) measurement, X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), and Fourier transform infrared spectroscopy (FTIR). The adsorption experiment showed that the optimal pH value of the beads was 5, and that their adsorption met pseudo-second-order kinetic and Langmuir isothermal models. The adsorption thermodynamics experiment showed that the adsorption process was spontaneous and endothermic. Under optimal adsorption conditions, the maximum adsorption capacity for TC of the beads was 231.431 mg/g, which was much higher than that of a single copper alginate matrix. After 5 adsorption-desorption cycles, the adsorption capacity remained high. FTIR and X-ray photoelectron spectroscopy (XPS) revealed that the cation bonding bridge reaction was the main driving force behind the adsorption mechanism. Compared with other reported adsorption materials, the PVA-CA gel beads have high adsorption capacity, a simple preparation process, and excellent recovery performance.
Collapse
Affiliation(s)
- Quan Liao
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
| | - Hongwei Rong
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou 510006, China.
| | - Meihua Zhao
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
| | - Huayong Luo
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
| | - Zhaorui Chu
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
| | - Randeng Wang
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
50
|
Çetin K, Denizli A. Polyethylenimine-functionalized microcryogels for controlled release of diclofenac sodium. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2021.105125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|