1
|
Liu C, Chang Q, Fan X, Meng N, Lu J, Shu Q, Xie Y, Celia C, Wei G, Deng X. Rational construction of CQDs-based targeted multifunctional nanoplatform for synergistic chemo-photothermal tumor therapy. J Colloid Interface Sci 2025; 677:79-90. [PMID: 39137565 DOI: 10.1016/j.jcis.2024.08.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/26/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024]
Abstract
Photothermal therapy combined with chemotherapy has shown great promise in the treatment of cancer. In this synergistic system, a safe, stable, and efficient photothermal agent is desired. Herein, an effective photothermal agent, carbon quantum dots (CQDs), was initially synthesized and then rationally constructed a folic acid (FA)-targeted photothermal multifunctional nanoplatform by encapsulating CQDs and the anticancer drug doxorubicin (DOX) in the liposomes. Indocyanine green (ICG), a near infrared (NIR) photothermal agent, approved by the U.S. Food and Drug Administration, was embedded in the bilayer membrane to further enhance the photothermal effects and facilitate the rapid cleavage of liposomes for drug release. Triggered by the NIR laser, this engineered photothermal multifunctional nanoplatform, not only exhibited an excellent performance with the photothermal conversion efficiency of up to 47.14%, but also achieved controlled release of the payloads. In vitro, and in vivo experiments demonstrated that the photothermal multifunctional nanoplatform had excellent biocompatibility, enhanced tumor-specific targeting, stimuli-responsive drug release, effective cancer cell killing and tumor suppression through multi-modal synergistic therapy. The successful construction of this NIR light-triggered targeted photothermal multifunctional nanoplatform will provide a promising strategy for the design and development of synergistic chemo-photothermal combination therapy and improve the therapeutic efficacy of cancer treatment.
Collapse
Affiliation(s)
- Chenghao Liu
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Qing Chang
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Xingyan Fan
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Nana Meng
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jiasheng Lu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Qinfeng Shu
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yijun Xie
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Christian Celia
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; Department of Pharmacy, University of Chieti - Pescara "G. d'Annunzio", Via dei Vestini 31, 66100, Chieti, Italy; Lithuanian University of Health Sciences, Laboratory of Drug Targets Histopathology, Institute of Cardiology, A. Mickeviciaus g. 9, LT-44307 Kaunas, Lithuania.
| | - Gang Wei
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China; The Institutes of Integrative Medicine of Fudan University, Shanghai, 200040, China; Shanghai Engineering Research Center of ImmunoTherapeutics, Shanghai, 201203, China.
| | - Xiaoyong Deng
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
2
|
He L, Cheng W, Ren W, Chen J, Wu Z, Wei Y, Piao JG. In-situ activated arsenic-molybdenum dual-prodrug nanocomplexes for glutathione-depletion enhanced photothermal/chemotherapy against triple-negative breast cancer. CHEMICAL ENGINEERING JOURNAL 2024; 497:155075. [DOI: 10.1016/j.cej.2024.155075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
|
3
|
Fatima M, Almalki WH, Khan T, Sahebkar A, Kesharwani P. Harnessing the Power of Stimuli-Responsive Nanoparticles as an Effective Therapeutic Drug Delivery System. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312939. [PMID: 38447161 DOI: 10.1002/adma.202312939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/26/2024] [Indexed: 03/08/2024]
Abstract
The quest for effective and reliable methods of delivering medications, with the aim of improving delivery of therapeutic agent to the intended location, has presented a demanding yet captivating field in biomedical research. The concept of smart drug delivery systems is an evolving therapeutic approach, serving as a model for directing drugs to specific targets or sites. These systems have been developed to specifically target and regulate the administration of therapeutic substances in a diverse array of chronic conditions, including periodontitis, diabetes, cardiac diseases, inflammatory bowel diseases, rheumatoid arthritis, and different cancers. Nevertheless, numerous comprehensive clinical trials are still required to ascertain both the immediate and enduring impacts of such nanosystems on human subjects. This review delves into the benefits of different drug delivery vehicles, aiming to enhance comprehension of their applicability in addressing present medical requirements. Additionally, it touches upon the current applications of these stimuli-reactive nanosystems in biomedicine and outlines future development prospects.
Collapse
Affiliation(s)
- Mahak Fatima
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Waleed H Almalki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Umm Al-Qura University, Makkah, 715, Saudi Arabia
| | - Tasneem Khan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, 9177948954, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, 9177948564, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| |
Collapse
|
4
|
Dong Z, Xue K, Verma A, Shi J, Wei Z, Xia X, Wang K, Zhang X. Photothermal therapy: a novel potential treatment for prostate cancer. Biomater Sci 2024; 12:2480-2503. [PMID: 38592730 DOI: 10.1039/d4bm00057a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Prostate cancer (PCa) is a leading cause of cancer-related death in men, and most PCa patients treated with androgen deprivation therapy will progress to metastatic castration-resistant prostate cancer (mCRPC) due to the lack of efficient treatment. Recently, lots of research indicated that photothermal therapy (PTT) was a promising alternative that provided an accurate and efficient prostate cancer therapy. A photothermic agent (PTA) is a basic component of PPT and is divided into organic and inorganic PTAs. Besides, the combination of PTT and other therapies, such as photodynamic therapy (PDT), immunotherapy (IT), chemotherapy (CT), etc., provides an more efficient strategy for PCa therapy. Here, we introduce basic information about PTT and summarize the PTT treatment strategies for prostate cancer. Based on recent works, we think the combination of PPT and other therapies provides a novel possibility for PCa, especially CRPC clinical treatment.
Collapse
Affiliation(s)
- Zirui Dong
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Kaming Xue
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Anushikha Verma
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jian Shi
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Zhihao Wei
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Xiaotian Xia
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan 430022, Hubei, China.
| | - Keshan Wang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Xiaoping Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
5
|
Su T, Zhao F, Ying Y, Li W, Li J, Zheng J, Qiao L, Che S, Yu J. Self-Monitoring Theranostic Nanomaterials: Emerging Visual Agents for Real-Time Monitoring of Tumor Treatment Processes. SMALL METHODS 2024; 8:e2301470. [PMID: 38044269 DOI: 10.1002/smtd.202301470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/14/2023] [Indexed: 12/05/2023]
Abstract
Self-monitoring in tumor therapy is a concept that allows for real-time monitoring of the location and state of applied nanomaterials. This monitoring relies on dynamic signals, such as wave or magnetic signals, which vary in response to changes in the location and state of nanomaterials. Dynamic changes in nanomaterials can be monitored using dynamic signals, making it possible to determine and control the treatment process. Theranostic nanomaterials, which possess unique physical and chemical properties, have recently been explored as a viable option for self-monitoring. With the help of self-monitoring, theranostic nanomaterials can guide themselves to achieve region-selective treatment with higher controllability and safety. In this review, self-monitoring theranostic nanomaterials will be introduced in three parts according to their roles during therapy: tumor accumulation, tumor therapy, and metabolism. The limitations and future challenges of current self-monitoring theranostic nanomaterials will also be discussed.
Collapse
Affiliation(s)
- Tuo Su
- College of Materials Science and Engineering, Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Fan Zhao
- College of Materials Science and Engineering, Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yao Ying
- College of Materials Science and Engineering, Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Wangchang Li
- College of Materials Science and Engineering, Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Juan Li
- College of Materials Science and Engineering, Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jingwu Zheng
- College of Materials Science and Engineering, Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Liang Qiao
- College of Materials Science and Engineering, Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Shenglei Che
- College of Materials Science and Engineering, Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jing Yu
- College of Materials Science and Engineering, Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
6
|
Cerutti L, Brofiga M. Unraveling brain diseases: The promise of brain-on-a-chip models. J Neurosci Methods 2024; 405:110105. [PMID: 38460796 DOI: 10.1016/j.jneumeth.2024.110105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 02/23/2024] [Accepted: 03/03/2024] [Indexed: 03/11/2024]
Abstract
Brain disorders, encompassing a wide spectrum of neurological and psychiatric conditions, present a formidable challenge in modern medicine. Despite decades of research, the intricate complexity of the human brain still eludes comprehensive understanding, impeding the development of effective treatments. Recent advancements in microfluidics and tissue engineering have led to the development of innovative platforms known as "Brain-on-a-Chip" (BoC) i.e., advanced in vitro systems that aim to replicate the microenvironment of the brain with the highest possible fidelity. This technology offers a promising test-bed for studying brain disorders at the cellular and network levels, providing insights into disease mechanisms, drug screening, and, in perspective, the development of personalized therapeutic strategies. In this review, we provide an overview of the BoC models developed over the years to model and understand the onset and progression of some of the most severe neurological disorders in terms of incidence and debilitation (stroke, Parkinson's, Alzheimer's, and epilepsy). We also report some of the cutting-edge therapeutic approaches whose effects were evaluated by means of these technologies. Finally, we discuss potential challenges, and future perspectives of the BoC models.
Collapse
Affiliation(s)
- Letizia Cerutti
- Department of Informatics, Bioengineering, Robotics, and Systems Engineering (DIBIRS), University of Genova, Genova, Italy
| | - Martina Brofiga
- Department of Informatics, Bioengineering, Robotics, and Systems Engineering (DIBIRS), University of Genova, Genova, Italy; ScreenNeuroPharm s.r.l, Sanremo, Italy; Neurofacility, Istituto Italiano di Tecnologia, Genova, Italy.
| |
Collapse
|
7
|
Erdoğan H, Karayavuz B, Bacanlı MG, Eşim Ö, Sarper M, Altuntaş S, Erdem O, Özkan Y. ON/OFF based synergetic plasmonic photothermal drug release approach through core-satellite like mussel-inspired polydopamine nanoparticles. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 253:112889. [PMID: 38492477 DOI: 10.1016/j.jphotobiol.2024.112889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
One of the studies on new drug delivery and release systems that has increased in recent years is the study using plasmonic nanoparticles. In this study, polydopamine nanoparticles (PDOP NPs), which contribute to photothermal drug release by near infrared radiation (NIR), were decorated with gold nanoparticles (AuNPs) to utilize their plasmonic properties, and a core-satellite-like system was formed. With this approach, epirubicin (EPI)-loaded PDOP NPs were prepared by utilizing the plasmonic properties of AuNPs. Scanning Electron Microscope (SEM), Fourier Transform Infrared Spectroscopy (FTIR), and X-ray Diffraction (XRD) methods were used to evaluate the structural properties of these particles. The release behavior of the prepared structures in acidic (pH 5.0) and neutral (pH 7.4) environments based on the ON/OFF approach was also examined. The biocompatibility properties of the particles were evaluated on mouse fibroblast (L929) and anticancer activities on neuroblastoma (SH-SY5Y) cells. The effects of prepared EPI-loaded particles and laser-controlled drug release on ROS production, genotoxicity, and apoptosis were also investigated in SH-SY5Y cells. With the calculated combination index (CI) value, it was shown that the activity of EPI-loaded AuNP@PDOP NPs increased synergistically with the ON/OFF-based approach. The developed combination approach is considered to be remarkable and promising for further evaluation before clinical use.
Collapse
Affiliation(s)
- Hakan Erdoğan
- University of Health Sciences Turkey, Gülhane Faculty of Pharmacy, Department of Analytical Chemistry, Ankara 06018, Türkiye.
| | - Burcu Karayavuz
- University of Health Sciences Turkey, Gülhane Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Ankara 06018, Türkiye
| | - Merve Güdül Bacanlı
- University of Health Sciences Turkey, Gülhane Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Ankara 06018, Türkiye
| | - Özgür Eşim
- University of Health Sciences Turkey, Gülhane Faculty of Pharmacy, Department of Pharmaceutical Technology, Ankara 06018, Türkiye
| | - Meral Sarper
- University of Health Sciences Turkey, Gülhane Institute of Health Sciences, Stem Cell Research Center, Ankara, 06018, Türkiye
| | - Sevde Altuntaş
- University of Health Sciences Turkey, Department of Tissue Engineering, Istanbul 34668, Türkiye; University of Health Sciences Turkey, Experimental Medicine Research and Application Center, Validebag Research Park, Istanbul 34668, Türkiye
| | - Onur Erdem
- University of Health Sciences Turkey, Gülhane Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Ankara 06018, Türkiye
| | - Yalçın Özkan
- University of Health Sciences Turkey, Gülhane Faculty of Pharmacy, Department of Pharmaceutical Technology, Ankara 06018, Türkiye
| |
Collapse
|
8
|
Wang L, Wang W, Wang Y, Tao W, Hou T, Cai D, Liu L, Liu C, Jiang K, Lin J, Zhang Y, Zhu W, Han C. The Graphene Quantum Dots Gated Nanoplatform for Photothermal-Enhanced Synergetic Tumor Therapy. Molecules 2024; 29:615. [PMID: 38338360 PMCID: PMC10856627 DOI: 10.3390/molecules29030615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Currently, the obvious side effects of anti-tumor drugs, premature drug release, and low tumor penetration of nanoparticles have largely reduced the therapeutic effects of chemotherapy. A drug delivery vehicle (MCN-SS-GQDs) was designed innovatively. For this, the mesoporous carbon nanoparticles (MCN) with the capabilities of superior photothermal conversion efficiency and high loading efficiency were used as the skeleton structure, and graphene quantum dots (GQDs) were gated on the mesopores via disulfide bonds. The doxorubicin (DOX) was used to evaluate the pH-, GSH-, and NIR-responsive release performances of DOX/MCN-SS-GQDs. The disulfide bonds of MCN-SS-GQDs can be ruptured under high glutathione concentration in the tumor microenvironment, inducing the responsive release of DOX and the detachment of GQDs. The local temperature of a tumor increases significantly through the photothermal conversion of double carbon materials (MCN and GQDs) under near-infrared light irradiation. Local hyperthermia can promote tumor cell apoptosis, accelerate the release of drugs, and increase the sensitivity of tumor cells to chemotherapy, thus increasing treatment effect. At the same time, the detached GQDs can take advantage of their extremely small size (5-10 nm) to penetrate deeply into tumor tissues, solving the problem of low permeability of traditional nanoparticles. By utilizing the photothermal properties of GQDs, synergistic photothermal conversion between GQDs and MCN was realized for the purpose of synergistic photothermal treatment of superficial and deep tumor tissues.
Collapse
Affiliation(s)
- Lipin Wang
- School of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China; (L.W.); (W.W.); (Y.W.); (W.T.); (T.H.); (C.L.); (Y.Z.)
| | - Wenbao Wang
- School of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China; (L.W.); (W.W.); (Y.W.); (W.T.); (T.H.); (C.L.); (Y.Z.)
| | - Yufang Wang
- School of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China; (L.W.); (W.W.); (Y.W.); (W.T.); (T.H.); (C.L.); (Y.Z.)
| | - Wenli Tao
- School of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China; (L.W.); (W.W.); (Y.W.); (W.T.); (T.H.); (C.L.); (Y.Z.)
| | - Tingxing Hou
- School of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China; (L.W.); (W.W.); (Y.W.); (W.T.); (T.H.); (C.L.); (Y.Z.)
| | - Defu Cai
- Institute of Medicine and Drug Research, Qiqihar Medical University, Qiqihar 161006, China; (D.C.); (L.L.)
| | - Likun Liu
- Institute of Medicine and Drug Research, Qiqihar Medical University, Qiqihar 161006, China; (D.C.); (L.L.)
| | - Chang Liu
- School of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China; (L.W.); (W.W.); (Y.W.); (W.T.); (T.H.); (C.L.); (Y.Z.)
| | - Ke Jiang
- Qiqihar Center for Disease Control and Prevention, Qiqihar 161006, China;
| | - Jiayin Lin
- College of Discipline Inspection and Supervision, Qiqihar Medical University, Qiqihar 161006, China;
| | - Yujing Zhang
- School of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China; (L.W.); (W.W.); (Y.W.); (W.T.); (T.H.); (C.L.); (Y.Z.)
| | - Wenquan Zhu
- School of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China; (L.W.); (W.W.); (Y.W.); (W.T.); (T.H.); (C.L.); (Y.Z.)
| | - Cuiyan Han
- School of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China; (L.W.); (W.W.); (Y.W.); (W.T.); (T.H.); (C.L.); (Y.Z.)
| |
Collapse
|
9
|
Sheng P, Bu C, Hui T, Zhou L, Chen H, Zhou G. Polydopamine-activated celastrol carbon dots for synergistic chemotherapy-photothermal therapy of tumors. Int J Pharm X 2023; 6:100218. [PMID: 38033396 PMCID: PMC10681950 DOI: 10.1016/j.ijpx.2023.100218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/08/2023] [Accepted: 11/07/2023] [Indexed: 12/02/2023] Open
Abstract
Synergistic chemotherapy and photothermal therapy (PTT) holds the promise of addressing the weakness of individualized chemotherapy and PTT. In this study, we synthesized a chemotherapeutic agent, PDA-Ce-CDs, which combines the photothermal conversion ability and the generation of hydroxyl radicals (•OH), enabling synergistic enhancement of antitumor effects. Furthermore, the localized heating effect of NIR radiation promoted the uptake of the PDA-Ce-CDs and enhances the sensitivity of intracellular reactive oxygen species (ROS). Finally, the antitumor activity of the PDA-Ce-CDs was evaluated through cell experiments and tumor-bearing mice experiments, confirming its excellent antitumor efficacy in vivo and in vitro. Our work presents a new strategy in cancer treatment by utilizing carbon dots in combination with photothermal agents for synergistic chemotherapy-photothermal therapy. This innovative approach offers a new therapeutic avenue for synergistic tumor treatment by harnessing the combined effects of photothermal therapy and chemotherapy.
Collapse
Affiliation(s)
- Ping Sheng
- College of life and Health Sciences, Anhui Science and Technology University, Fengyang, 233100, China
| | - Chao Bu
- College of life and Health Sciences, Anhui Science and Technology University, Fengyang, 233100, China
| | - Tanyue Hui
- College of life and Health Sciences, Anhui Science and Technology University, Fengyang, 233100, China
| | - Lili Zhou
- College of life and Health Sciences, Anhui Science and Technology University, Fengyang, 233100, China
| | - Hao Chen
- College of life and Health Sciences, Anhui Science and Technology University, Fengyang, 233100, China
| | - Guoliang Zhou
- College of life and Health Sciences, Anhui Science and Technology University, Fengyang, 233100, China
| |
Collapse
|
10
|
Xu Y, Chen B, Su D, Li J, Qi Q, Hu Y, Wang Q, Xia F, Lou X, Zhao Z, Dai J, Dong X, Zhou J. Near-Infrared Conjugated Polymers Containing Thermally Activated Delayed Fluorescence Units Enable Enhanced Photothermal Therapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:56314-56327. [PMID: 37983087 DOI: 10.1021/acsami.3c13821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Photothermal therapy (PTT) using near-infrared (NIR) conjugated polymers as photosensitizers has exhibited enormous potential for tumor treatment. However, most NIR conjugated polymers have poor therapeutic efficacy due to their faint absorbance in the NIR region and low photothermal conversion efficiency (PCE). Herein, a valuable strategy for designing NIR polymeric photosensitizer PEKBs with an enhanced PCE accompanied by strong NIR absorbance is proposed by means of inserting TPA-AQ as a thermally activated delayed fluorescence unit into a polymeric backbone. In these PEKBs, PEKB-244 with the appropriate molar content of the TPA-AQ unit displays the strongest NIR absorbance and the highest PCE of 64.5%. Theoretical calculation results demonstrate that the TPA-AQ unit in the polymeric backbone can modulate the intramolecular charge transfer effects and the excited energy decay routes for generating higher heat. The prepared nanoparticles (PEKB-244 NPs) exhibit remarkable photothermal conversion capacities and great biocompatibility in aqueous solutions. Moreover, PEKB-244 NPs also show outstanding photothermal stability, displaying negligible changes in the absorbance within 808 nm irradiation of 1 h (800 mW cm-2). Both in vitro and in vivo experimental results further indicate that PEKB-244 NPs can substantially kill cancer cells under NIR laser irradiation. We anticipate that this novel molecular design strategy can be employed to develop excellent NIR photosensitizers for cancer photothermal therapy.
Collapse
Affiliation(s)
- Yating Xu
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China
| | - Biao Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430034, China
| | - Deliang Su
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China
| | - Jianqing Li
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Qiang Qi
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China
| | - Yuxin Hu
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Quan Wang
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Xiaoding Lou
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430034, China
| | - Xiyuan Dong
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430034, China
| | - Jian Zhou
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China
| |
Collapse
|
11
|
Naderi N, Lalebeigi F, Sadat Z, Eivazzadeh-Keihan R, Maleki A, Mahdavi M. Recent advances on hyperthermia therapy applications of carbon-based nanocomposites. Colloids Surf B Biointerfaces 2023; 228:113430. [PMID: 37418814 DOI: 10.1016/j.colsurfb.2023.113430] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/10/2023] [Accepted: 06/25/2023] [Indexed: 07/09/2023]
Abstract
Generally, hyperthermia is referred to the composites capability to increase local temperature in such a way that the generated heat would lead to cancerous or bacteria cells destruction, with minimum damage to normal tissue cells. Many different materials have been utilized for hyperthermia application via different heat generating methods. Carbon-based nanomaterials consisting of graphene oxide (GO), carbon nanotube (CNT), carbon dot (CD) and carbon quantum dot (CQD), nanodiamond (ND), fullerene and carbon fiber (CF), have been studied significantly for different applications including hyperthermia due to their biocompatibility, biodegradability, chemical and physical stability, thermal and electrical conductivity and in some cases photothermal conversion. Therefore, in this comprehensive review, a structure-based view on carbon nanomaterials application in hyperthermia therapy of cancer and bacteria via various methods such as optical, magnetic, ultrasonic and radiofrequency-induced hyperthermia is presented.
Collapse
Affiliation(s)
- Nooshin Naderi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Farnaz Lalebeigi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Zahra Sadat
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Reza Eivazzadeh-Keihan
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Lin YS, Lin KS, Mdlovu NV, Kung PY, Jeng US. Thermal-/pH-triggered hollow mesoporous carbon nanocarrier for NIR-responsive drug release. BIOMATERIALS ADVANCES 2023; 151:213477. [PMID: 37244029 DOI: 10.1016/j.bioadv.2023.213477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/01/2023] [Accepted: 05/13/2023] [Indexed: 05/29/2023]
Abstract
Intelligent drug-delivery systems are considered one of the most important techniques for improving cancer treatment using existing over-the-counter medicines. However, metallic materials are always accompanied by metabolism problems, whereas chemotherapy produces several side effects in humans. Carbon-based materials exhibit exceptional features such as bio-affinity and bio-degradability. Herein, hollow mesoporous carbon nanoparticles (HMCs) are reported as effective nanocarriers of anti-cancer small drug molecules. Near IR (NIR) sources, which can penetrate most organs, induce thermal effects via non-invasive pathways. NIR radiation not only provides thermal therapy but also is compatible with temperature-sensitive coated responsive polymer shells. The template method was used to synthesize HMCs with size 200 ± 50 nm, under various conditions, to obtain suitably sized and hollow structures for liver-cancer treatment. Additional pH/thermal-bi-responsive poly(N-isopropylacrylamide) (PNIPAM) shells were further coated onto the HMCs to produce multiple shells that could trigger swelling motions in PNIPAM@HMCs, as confirmed via small-angle X-ray scattering (SAXS). NIR results demonstrated an extreme increase to the ∆T of 8.7 and 14.2 °C for HMC and PNIPAM@HMCs, respectively. The SAXS spectra analyzed using SasView simulations demonstrated the multi-shell structures of synthesized HMCs and the release mechanism of PNIPAM@HMCs. Based on the model simulation of SAXS, the different rates of polymer swelling indicated the core shrinkage (229.7 to 134.2 Å) and shell expansion (324.3 to 514.3 Å) at 37 °C and 42 °C, respectively. In addition, the first-order, Higuchi, Korsmeyer-Peppas, and Weibull mathematical models were used to verify the drug-release kinetics, and the model with the highest R2 value was considered most suitable for further application. This paper presents the first SAXS study on PNIPAM@HMCs release kinetics and related mechanisms. This phenomenon indicates NIR-induced PNIPAM@HMCs as an effective strategy for cancer treatment via doxorubicin release.
Collapse
Affiliation(s)
- You-Sheng Lin
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li District, Taoyuan City 32003, Taiwan
| | - Kuen-Song Lin
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li District, Taoyuan City 32003, Taiwan.
| | - Ndumiso Vukile Mdlovu
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li District, Taoyuan City 32003, Taiwan
| | - Ping-Yu Kung
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li District, Taoyuan City 32003, Taiwan
| | - U-Ser Jeng
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Science-based Industrial Park, Hsinchu 30077, Taiwan
| |
Collapse
|
13
|
Wu S, Shi J, Chen X, Bai L, Wu Q, Zhang G. Endogenous NO-release multi-responsive hollow mesoporous silica nanoparticles for drug encapsulation and delivery. Colloids Surf B Biointerfaces 2023; 227:113346. [PMID: 37230051 DOI: 10.1016/j.colsurfb.2023.113346] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 05/01/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023]
Abstract
Novel multi-responsive drug delivery vehicles (CDs/PNVCL@HMSNs) were prepared by grafting amino-terminated poly (N-vinyl caprolactam) (PNVCL-NH2) and amino-rich carbon dots (CDs) on the surface of aldehyde-functionalized HMSNs (HMSNs-CHO) via Schiff base reaction. The CDs were prepared from L-arginine and their surfaces were rich in guanidine. Doxorubicin (DOX) was loaded into the nanoparticles to form drug loaded vehicles (CDs/PNVCL@HMSNs-DOX) and the drug loading efficiency was 58.38%. The drug release behaviors of CDs/PNVCL@HMSNs-DOX showed temperature and pH responsiveness due to the poly (N-vinyl caprolactam) (PNVCL) and Schiff base bond. The high concentration of NO released in high concentration H2O2 of tumor site could induce tumor cells apoptosis. The multi-responsive CDs/PNVCL@HMSNs are intriguing drug carriers, which combine drug delivery and NO release in one.
Collapse
Affiliation(s)
- Shu Wu
- Liaoning Provincial Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials (Liaoning University), College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Jinjing Shi
- Liaoning Provincial Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials (Liaoning University), College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Xia Chen
- Liaoning Provincial Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials (Liaoning University), College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Lu Bai
- Liaoning Provincial Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials (Liaoning University), College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Qiuhua Wu
- Liaoning Provincial Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials (Liaoning University), College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Guolin Zhang
- Liaoning Provincial Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials (Liaoning University), College of Chemistry, Liaoning University, Shenyang 110036, China.
| |
Collapse
|
14
|
Meng Y, Huang J, Ding J, Yan B, Li Y, Gao X, Zhou W. Poly-thymine DNA templated MnO 2 biomineralization as a high-affinity anchoring enabling tumor targeting delivery. J Colloid Interface Sci 2023; 637:441-452. [PMID: 36716668 DOI: 10.1016/j.jcis.2023.01.089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/12/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023]
Abstract
Manganese oxide nanomaterials (MONs) are emerging as a type of highly promising nanomaterials for diseases diagnosis, and surface modification is the basis for colloidal stability and targeting delivery of the nanomaterials. Here, we report the in-situ functionalization of MnO2 with DNA through a biomineralization process. Using adsorption-oxidation method, DNA templated Mn2+ precursor to biomineralize into nano-cubic seed, followed by the growth of MnO2 to form cube/nanosheet hybrid nanostructure. Among four types of DNA homopolymers, poly-thymine (poly-T) was found to stably attach on MnO2 surface to resist various biological displacements (phosphate, serum, and complementary DNA). Capitalized on this finding, a di-block DNA was rationally designed, in which the poly-T block stably anchored on MnO2 surface, while the AS1411 aptamer block was not only an active ligand for tumor targeting delivery, but also a carrier for photosensitizer (Ce6) loading. Upon targeting delivery into tumor cells, the MnO2 acted as catalase-mimic nanozyme for oxygenation to sensitize photodynamic therapy, and the released Mn2+ triggered chemodynamic therapy via Fenton-like reaction, achieving synergistic anti-tumor effect with full biocompatibility. This work provides a simple yet robust strategy to functionalize metal oxides nanomaterials for biological applications via DNA-templated biomineralization.
Collapse
Affiliation(s)
- Yingcai Meng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China; Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Jiaxin Huang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China
| | - Jinsong Ding
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China
| | - Bohua Yan
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Yong Li
- Department of Pediatric Surgery, Hunan Children's Hospital, Changsha 410004, Hunan, China.
| | - Xiang Gao
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China.
| | - Wenhu Zhou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China.
| |
Collapse
|
15
|
Bovine serum albumin-based and dual-responsive targeted hollow mesoporous silica nanoparticles for breast cancer therapy. Colloids Surf B Biointerfaces 2023; 224:113201. [PMID: 36822117 DOI: 10.1016/j.colsurfb.2023.113201] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/29/2023] [Accepted: 02/08/2023] [Indexed: 02/13/2023]
Abstract
Combination therapy is an effective way to alleviate the shortcoming of monotherapy and enhances therapeutic efficacy. Herein, a distinctive hollow mesoporous silica nanoparticle (HMSNs) encapsulated with folic acid-modified bovine serum albumin (BSA-FA), denoted as HBF, was engineered for tumor targeting and dual-responsive release of loaded-therapeutic agents MD (methylene blue (MB) and doxorubicin (DOX)). The BSA molecule as a ''gatekeeper'' prevents premature drug leakage and actively unloads the cargos through BSA detachment in response to intracellular glutathione (GSH). Folic acid (FA) promotes the specific intracellular delivery of the drug to folate receptor (FR)-expressing cancer cells to improve the efficacy of chemo-photodynamic therapy (PDT). In vitro drug release profiles showed that the drug carrier could achieve pH/redox-responsive drug release from MD@HBF owing to the cleavage of the imine bonds between HMSNs-CHO and BSA-FA and BSA intramolecular disulfide bond. Additionally, a series of biological evaluations, such as cell uptake experiments, toxicity experiments, and in vivo therapeutic assays indicated that MD@HBF possesses the features of accurately targeting FR-expressing 4T1 cells to induce cells apoptosis in vitro, exhibits outstanding tumor cell synergistic killing efficiency of chemo-photodynamic therapy (combination index CI = 0.325), and inhibits tumors growth. These results demonstrated that the strategy of combining HMSNs with stimuli-responsive biodegradable protein molecules could provide a new potential direction toward the ''on-demand'' drug release for precision chemo-photodynamic therapy in cancer treatment.
Collapse
|
16
|
Varzandeh M, Varshosaz J, Labbaf S, Esmaeil N. Sodium-borohydride exfoliated bismuthene loaded with Mitomycin C for chemo-photo-radiotherapy of triple negative breast cancer. Int J Pharm 2023; 636:122825. [PMID: 36921740 DOI: 10.1016/j.ijpharm.2023.122825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023]
Abstract
In current study, a new remotely controlled drug delivery, radio-sensitizing, and photothermal therapy agent based on thioglycolic acid modified bismuth nanosheets is thoroughly evaluated. Bismuth nanosheets were synthesized using sodium borohydride (NaBH4) and Tween 20 through low energy (400 W) sonication within 2 h. The resultant nanosheets were 40-60 nm in size and 1-3 atomic layers in thickness. The morphological and structural characteristics of the nanosheets were studied using transmission electron microscopy, high-resolution transmission electron microscopy, X-ray diffraction, Raman spectroscopy and ultraviolet spectroscopy. The surface of the nanosheets was modified using thioglycolic acid, which resulted in enhanced Mitomycin C loading capacity to 274.35% and circumvented the burst drug release due to the improved electrostatic interactions. At pH 7.4 and 5.0, the drug release was significantly boosted from 45.1 to 69.8%, respectively. Thioglycolic acid modified bismuth nanosheets under 1064 nm laser irradiation possessed photothermal conversion efficiency of η=51.4% enabling a temperature rise of 24.9 °C at 100 μg/ml in 5 min. The combination of drug delivery, photothermal therapy, and radio-sensitization greatly damaged the MDA-MB-231 cells through apoptosis and diminished their colony forming.
Collapse
Affiliation(s)
- Mohammad Varzandeh
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Jaleh Varshosaz
- Department of Pharmaceutics, School of Pharmacy and Novel Drug Delivery Systems Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sheyda Labbaf
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Nafiseh Esmaeil
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
17
|
Xiao R, Ye J, Li X, Wang X. Dual size/charge-switchable and multi-responsive gelatin-based nanocluster for targeted anti-tumor therapy. Int J Biol Macromol 2023; 238:124032. [PMID: 36921812 DOI: 10.1016/j.ijbiomac.2023.124032] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/01/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023]
Abstract
Biopolymers with excellent biocompatibility and biodegradability show great potential for designing drug nanocarriers, while it's difficult to fabricate smart vehicles with multiple switching (size, surface, shape) based on biopolymers alone. Here, we report a dual size/charge-switchable and multi-responsive doxorubicin-loaded gelatin-based nanocluster (DOX-icluster) for improved tumor penetration and targeted anti-tumor therapy. The DOX-icluster was electrostatically assembled from folic acid and dimethylmaleic anhydride modified gelatin (FA-GelDMA) and small-sized DOX-loaded NH2 modified hollow mesoporous organosilicon nanoparticles (DOX-HMON-NH2). DOX-icluster had an initial size of about 199 nm at neutral pH. After accumulation in tumor tissue, the DMA bond of FA-GelDMA was cleaved and gelatin was degraded by matrix metalloproteinase (MMP-2), thus 48 nm and positively charged DOX-HMON-NH2 was released to facilitate penetration and cell internalization. DOX-HMON-NH2 was further degraded by intracellular glutathione (GSH) with releasing 48.1 % of DOX. The cellular uptake results indicated that the fabricated icluster promoted the uptake of DOX by 4T1 cells. With enhanced penetration efficacy, the tumor spheroids volume treated with DOX-icluster was reduced to 15.1 % on day 7. This cytocompatible multi-responsive gelatin-based icluster with size-shrinking and charge-reversible characteristics may be used as a significant drug carrier for tumor therapy.
Collapse
Affiliation(s)
- Renhua Xiao
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Junhu Ye
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Xiaoyun Li
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China.
| | - Xiaoying Wang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China.
| |
Collapse
|
18
|
Customized multi-stimuli nanovehicles with dissociable 'bomblets' for photothermal-enhanced synergetic tumor therapy. Colloids Surf B Biointerfaces 2023; 222:113083. [PMID: 36542948 DOI: 10.1016/j.colsurfb.2022.113083] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/04/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
Recently, the therapeutic effect of chemotherapy has been obviously impaired due to premature drug release, low tumor penetration, and multidrug resistance of nanoplatforms. In this paper, a novel multiple-sensitive drug delivery system (MC-ss-CDs) was developed by gating long-wavelength emitting carbon dots (CDs) on the openings of mesoporous carbon nanoparticles (MC) through disulfide bonds. The MC with excellent photothermal transition efficiency and high drug storage capacity for doxorubicin (DOX) was used as the delivery carrier. The CDs had multiple functions, including intelligent switching to hinder unwanted release, photothermal therapy (PTT) agents to improve the heat generation effect of MCs and bioimaging trackers to monitor drug delivery. The disulfide bonds, as the linkers between MC carriers and CDs, are stable under normal physical conditions and relatively labile under high GSH concentrations in the cytoplasm of tumor cells. After arriving at the tumor microenvironment, DOX/MC-ss-CDs can rapidly break into DOX/MC and CDs under high GSH concentrations. DOX/MC could realize efficient integration of PTT and chemotherapy on the surface of the tumor by stimuli-responsive DOX release and synergetic heating of MC and CDs. The small-sized CDs with excellent penetrating ability could effectively enter the deep tumor and realize NIR-triggered photothermal ablation. The DOX/MC-ss-CDs showed a chemophotothermal effect with a combination index of 0.38 in vitro and in vivo. Therefore, the DOX/MC-ss-CDs could be employed as a trackable nanovehicle for synergistic chemotherapy and PTT at different depths.
Collapse
|
19
|
Feng S, Wang J, Mu X, Gu G, Wang Y, Lu J, Wang S, Zhao Q. Mesoporous carbon nanoenzyme as nano-booster for photothermal-enhanced photodynamic therapy compared with graphene oxide. Colloids Surf B Biointerfaces 2023; 222:113095. [PMID: 36577340 DOI: 10.1016/j.colsurfb.2022.113095] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/23/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
The over-expressed GSH in tumor microenvironment significantly weakens the lethal reactive oxygen species (ROS) generated by photodynamic therapy (PDT) and catalysis of nanoenzyme. Hence, it is necessary to excavate a versatile and effective vehicle with oxidative stress-enhancement and GSH-depletion capacity to break the redox homeostasis in tumor microenvironment. GO has been reported to possess GSH-depletion and peroxidase (POD)-like capacity. Based on this, PEGylated mesoporous carbon (MC-PEG) was prepared as ICG vehicle to compare with PEGylated graphene oxide (GO-PEG). Excitingly, MC-PEG was found to exhibit three times higher oxidative capacity by POD-like process than GO-PEG, and owned more effective and continuous GSH-depletion capacity to further amplify the oxidative stress. Meanwhile, MC-PEG exhibited better protective effect on the loaded ICG against unwanted light excitation than GO-PEG. Together with the higher photothermal conversion effect, under the NIR light irradiation, MC-PEG could markedly improve the temperature of tumor cells and produce more hydroxyl radical, continuously consume GSH and provide more better protection for ICG compared with GO-PEG, thus further boosting the combination of photothermal and photodynamic effects. The anti-tumor experiment in cell and in-vivo level both validated that ICG/MC-PEG showed better synergistic effect with lower IC50 value and higher tumor suppression rate than ICG/GO-PEG.
Collapse
Affiliation(s)
- Shuaipeng Feng
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Jiahong Wang
- Department of Physiology, College of Life Science and Biopharmacy, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Xiaoyang Mu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Guanliang Gu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Yufei Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Junya Lu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Siling Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Qinfu Zhao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China.
| |
Collapse
|
20
|
Luo J, Wan L, Zhang Q, Cui B, Li C, Jiang Y, Jiang M, Wang K. Constructing a drug release model by central composite design to investigate the interaction between drugs and temperature-sensitive controlled release nanoparticles. Eur J Pharm Biopharm 2023; 183:24-32. [PMID: 36549399 DOI: 10.1016/j.ejpb.2022.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/22/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
To study the release behavior of a thermosensitive controlled release drug delivery system and construct a predictable mathematical model of drug release, poly(N-isopropylacrylamide-co-Allylamine) (P(NIPA-AL17)) and ploy(styrene sulfonate) (PSS) were functionalized on the surface of hollow mesoporous carbon nanoparticles (HMCNs) through layer-by-layer (LBL) assembly to construct a photothermal responsive controlled release system. A five-level four-factorial central composite design (CCD) was performed to investigate the relationship between four independent variables including drug loading (A), number of polymer layers (B), temperature (C) and vibration rate of the shaker (D), and three dependent response variables, including cumulative release over 1 h (Y1), cumulative release over 24 h (Y2) and the release rate constant k (Y3). The CCD results indicate that A and C significantly affect Y1 (P < 0.05). C significantly affects Y2 (P < 0.05). A and B is found to affect Y3 (P < 0.05) significantly. When C is below 39 °C, Y1 and Y2 decrease with the increase of A and B, and when C is above 39 °C, they increase with the increase of A and B; Y3 decreases as A and B increase; and D shows the least or even no influence on Y1, Y2 and Y3. The constructed predictable mathematical model will provide a scientific reference for the further development and application of photothermal responsive controlled-release preparations.
Collapse
Affiliation(s)
- Jie Luo
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang 110001, Liaoning, China; Department of Pharmacy, Army Medical Center of PLA, Chongqing 400042, Chongqing, China
| | - Long Wan
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang 110001, Liaoning, China; School of Pharmacy, China Medical University, Shenyang 110122, Liaoning, China
| | - Qiyan Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, Jiangsu, China
| | - Bufeng Cui
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang 110001, Liaoning, China; School of Pharmacy, China Medical University, Shenyang 110122, Liaoning, China
| | - Chen Li
- School of Pharmacy, China Medical University, Shenyang 110122, Liaoning, China; The Fourth Hospital of China Medical University, Shenyang 110000, Liaoning, China
| | - Yi Jiang
- College of Chemistry, Liaoning University, Shenyang 110036, Liaoning, China
| | - Mingyan Jiang
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang 110001, Liaoning, China; School of Pharmacy, China Medical University, Shenyang 110122, Liaoning, China
| | - KeKe Wang
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang 110001, Liaoning, China; School of Pharmacy, China Medical University, Shenyang 110122, Liaoning, China.
| |
Collapse
|
21
|
Endogenous stimuli-responsive nanoparticles for cancer therapy: From bench to bedside. Pharmacol Res 2022; 186:106522. [DOI: 10.1016/j.phrs.2022.106522] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
|
22
|
Quantum Dots Mediated Imaging and Phototherapy in Cancer Spheroid Models: State of the Art and Perspectives. Pharmaceutics 2022; 14:pharmaceutics14102136. [PMID: 36297571 PMCID: PMC9611360 DOI: 10.3390/pharmaceutics14102136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 11/16/2022] Open
Abstract
Quantum Dots (QDs) are fluorescent nanoparticles known for their exceptional optical properties, i.e., high fluorescence emission, photostability, narrow emission spectrum, and broad excitation wavelength. These properties make QDs an exciting choice for bioimaging applications, notably in cancer imaging. Challenges lie in their ability to specifically label targeted cells. Numerous studies have been carried out with QDs coupled to various ligands like peptides, antibodies, aptamers, etc., to achieve efficient targeting. Most studies were conducted in vitro with two-dimensional cell monolayers (n = 8902) before evolving towards more sophisticated models. Three-dimensional multicellular tumor models better recapitulate in vivo conditions by mimicking cell-to-cell and cell-matrix interactions. To date, only few studies (n = 34) were conducted in 3D in vitro models such as spheroids, whereas these models could better represent QDs behavior in tumors compared to monolayers. Thus, the purpose of this review is to present a state of the art on the studies conducted with Quantum Dots on spheroid models for imaging and phototherapy purposes.
Collapse
|
23
|
|
24
|
Zhao Q, Xie P, Li X, Wang Y, Zhang Y, Wang S. Magnetic mesoporous silica nanoparticles mediated redox and pH dual-responsive target drug delivery for combined magnetothermal therapy and chemotherapy. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
25
|
Zhu L, Yang Y, Li X, Zheng Y, Li Z, Chen H, Gao Y. Facile preparation of indocyanine green and tiny gold nanoclusters co-loaded nanocapsules for targeted synergistic sono-/photo-therapy. J Colloid Interface Sci 2022; 627:596-609. [PMID: 35872417 DOI: 10.1016/j.jcis.2022.07.084] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 10/17/2022]
Abstract
Photothermal therapy (PTT) and sono-photodynamic therapy (SPDT) are fast growing local treatment modalities with minimal invasiveness and high safety. Gold nanoparticles and indocyanine green (ICG) have been used as sensitizers for PTT and SPDT. However, long resident time of gold nanoparticles in tissues and fast elimination of ICG hampered their further clinical applications. Herein, we developed nanocapsules formed by hyaluronic acid and chitosan loading with ICG and tiny gold nanoclusters (TAuNCs) to overcome the shortcomings of gold nanoparticles and ICG for combined PTT and SPDT. The nanocapsules exhibited good biological stability, favorable photothermal effects, and ultrasound/near-infrared light (NIR)-responsive release behaviors. The hyaluronic acid could mediate the specific delivery of cargos to CD44 protein over-expressing cancer cells. The in vitro and in vivo results showed that TAuNCs and ICG could act synergistically to obtain satisfactory anticancer effects under NIR laser and/or ultrasound exposure induced by thermal ablation and reactive oxygen species (ROS) generation. Biodistribution and excretion studies showed that the nanocapsules had longer ICG retention time in tumor and most of the TAuNCs could be effectively excreted from the body within one month. This study thus provides a facile strategy for the development of a safe and high-performance nanoplatform for synergistic PTT/SPDT.
Collapse
Affiliation(s)
- Lisheng Zhu
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Ya Yang
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Xudong Li
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Yilin Zheng
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Ziying Li
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Haijun Chen
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Yu Gao
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, Fujian 350116, China.
| |
Collapse
|
26
|
Cao T, Tong W, Feng F, Zhang S, Li Y, Liang S, Wang X, Chen Z, Zhang Y. H 2O 2 generation enhancement by ultrasonic nebulisation with a zinc layer for spray disinfection. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2022. [PMID: 34899039 DOI: 10.1016/j.cej.2022.134886] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
With the outbreak of COVID-19, microbial pollution has gained increasing attention as a threat to human health. Consequently, many research efforts are being devoted to the development of efficient disinfection methods. In this context, hydrogen peroxide (H2O2) stands out as a green and broad-spectrum disinfectant, which can be produced and sprayed in the air directly by cavitation in ultrasonic nebulisation. However, the yield of H2O2 obtained by ultrasonic nebulisation is too low to satisfy the requirements for disinfection by spraying and needs to be improved to achieve efficient disinfection of the air and objects. Herein, we report the introduction of a zinc layer into an ultrasonic nebuliser to improve the production of H2O2 and generate additional Zn2+ by self-corrosion, achieving good disinfecting performance. Specifically, a zinc layer was assembled on the oscillator plate of a commercial ultrasonic nebuliser, resulting in a 21-fold increase in the yield of H2O2 and the production of 4.75 μg/mL Zn2+ in the spraying droplets. When the generated water mist was used to treat a bottle polluted with Escherichia coli for 30 min, the sterilisation rate reached 93.53%. This ultrasonic nebulisation using a functional zinc layer successfully enhanced the production of H2O2 while generating Zn2+, providing a platform for the development of new methodologies of spray disinfection.
Collapse
Affiliation(s)
- Tingting Cao
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Wangshu Tong
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Feng Feng
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Shuting Zhang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Yanan Li
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Shaojie Liang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Xin Wang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Zhensheng Chen
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Yihe Zhang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| |
Collapse
|
27
|
Wang F, Li J, Chen C, Qi H, Huang K, Hu S. Preparation and synergistic chemo-photothermal therapy of redox-responsive carboxymethyl cellulose/chitosan complex nanoparticles. Carbohydr Polym 2022; 275:118714. [PMID: 34742439 DOI: 10.1016/j.carbpol.2021.118714] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 09/07/2021] [Accepted: 09/27/2021] [Indexed: 11/17/2022]
Abstract
Chemo-photothermal combination therapy has great promise for enhanced tumor treatment. Hereby, we developed a complex nanoparticle using electrostatic absorption method, in which the inner chitosan (CS) NPs loaded polypyrrole (PPy) nanoparticles and 5-fluorouracil (5Fu), the outer shell was carboxymethyl cellulose (CMC) crosslinked with disulfide. The drug loaded polysaccharide complex nanoparticles displayed good photothermal effects, and the drug release would be triggered by multi-model response of NIR irradiation, high glutathione (GSH) and weak acidity in tumor environment. In vitro biological studies indicated the nanopartiles could be effectively internalized by HepG2 cancer cells. Moreover, the remarkable inhibition of the CMC complex PPy and 5Fu loaded CS nanoparticles (CMC/CS@PPy + 5Fu NPs) against tumor growth was achieved in HepG2-bearing mice model, suggesting its great potential for synergetic chemo-photothermal therapy.
Collapse
Affiliation(s)
- Fang Wang
- Nanjing Forestry Univ, Coll Chem Engn, Nanjing 210037, Jiangsu, PR China; Nanjing Forestry Univ, Coinnovat Ctr Efficient Proc & Utilizat Forest Re, Nanjing 210037, Jiangsu, PR China.
| | - Jiarui Li
- Nanjing Forestry Univ, Coll Chem Engn, Nanjing 210037, Jiangsu, PR China
| | - Cheng Chen
- Nanjing Forestry Univ, Coll Chem Engn, Nanjing 210037, Jiangsu, PR China
| | - Hong Qi
- Nanjing Medical Univ, School of Public Health, Nanjing 211166, Jiangsu, PR China
| | - Kexin Huang
- Nanjing Forestry Univ, Coll Chem Engn, Nanjing 210037, Jiangsu, PR China
| | - Sheng Hu
- Nanjing Forestry Univ, Coll Chem Engn, Nanjing 210037, Jiangsu, PR China
| |
Collapse
|
28
|
Light-guided tumor diagnosis and therapeutics: from nanoclusters to polyoxometalates. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.12.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
29
|
Rahman MM, Ara MG, Alim MA, Uddin MS, Najda A, Albadrani GM, Sayed AA, Mousa SA, Abdel-Daim MM. Mesoporous Carbon: A Versatile Material for Scientific Applications. Int J Mol Sci 2021; 22:ijms22094498. [PMID: 33925852 PMCID: PMC8123390 DOI: 10.3390/ijms22094498] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 01/16/2023] Open
Abstract
Mesoporous carbon is a promising material having multiple applications. It can act as a catalytic support and can be used in energy storage devices. Moreover, mesoporous carbon controls body’s oral drug delivery system and adsorb poisonous metal from water and various other molecules from an aqueous solution. The accuracy and improved activity of the carbon materials depend on some parameters. The recent breakthrough in the synthesis of mesoporous carbon, with high surface area, large pore-volume, and good thermostability, improves its activity manifold in performing functions. Considering the promising application of mesoporous carbon, it should be broadly illustrated in the literature. This review summarizes the potential application of mesoporous carbon in many scientific disciplines. Moreover, the outlook for further improvement of mesoporous carbon has been demonstrated in detail. Hopefully, it would act as a reference guidebook for researchers about the putative application of mesoporous carbon in multidimensional fields.
Collapse
Affiliation(s)
- Md. Motiar Rahman
- Shenzhen Institute of Advanced Technology (SIAT) of the Chinese Academy of Sciences (CAS), Shenzhen 518055, China
- Nanotechnology and Catalysis Research Center (NanoCat), University of Malaya, Kuala Lumpur 50603, Malaysia;
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh
- Correspondence:
| | - Mst Gulshan Ara
- Nanotechnology and Catalysis Research Center (NanoCat), University of Malaya, Kuala Lumpur 50603, Malaysia;
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Mohammad Abdul Alim
- Department of Chemistry, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh;
- Graduate School of Innovative Life Science, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan
| | - Md. Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka 1213, Bangladesh;
- Pharmakon Neuroscience Research Network, Dhaka 1207, Bangladesh
| | - Agnieszka Najda
- Laboratory of Quality of Vegetables and Medicinal Plants, Department of Vegetable Crops and Medicinal Plants, University of Life Sciences in Lublin, 15 Akademicka Street, 20-950 Lublin, Poland;
| | - Ghadeer M. Albadrani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11474, Saudi Arabia;
| | - Amany A. Sayed
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt;
| | - Shaker A. Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, USA;
| | - Mohamed M. Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt;
| |
Collapse
|
30
|
Polydopamine-carbon dots functionalized hollow carbon nanoplatform for fluorescence-imaging and photothermal-enhanced thermochemotherapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 122:111908. [PMID: 33641904 DOI: 10.1016/j.msec.2021.111908] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 01/01/2023]
Abstract
The low power photothermal therapy can reduce the tissue damage caused by laser irradiation, thus the near-infrared (NIR) absorbing vehicles with high photothermal conversion efficiency are demanded in the low power treatment. Herein, the NIR-absorbing agent polydopamine (PDA) and carbon dots (CDs) were gated on the openings of hollow mesoporous carbon (HMC) to construct a photothermal enhanced multi-functional system (HMC-SS-PDA@CDs). Interestingly, the fluorescence emission wavelength of HMC-SS-PDA@CDs was red-shifted by FRET effect between PDA and CDs, which solved the dilemma of fluorescence quenching of carbon-based materials and was more conducive to cell imaging. The modification of PDA@CDs not only acts as the gatekeepers to realize multi-responsive release of pH, GSH and NIR, but also endows the HMC vehicle with excellent photothermal generation capacity, the possibility for bio-imaging as well as the enhanced stability. Naturally, both the cytological level and the multicellular tumor sphere level demonstrate that the delivery system has good low-power synergistic therapeutic with combination index (CI) of 0.348 and imaging effects. Meanwhile, the combined treatment group showed the highest tumor inhibition rate of 92.6% at 0.75 W/cm2. Therefore, DOX/HMC-SS-PDA@CDs nano-platform had broad application prospects in low power therapy and convenient imaging of carbon-based materials.
Collapse
|
31
|
Wang HY, Zhang Y, Ren XH, He XW, Li WY, Zhang YK. HA targeted-biodegradable nanocomposites responsive to endogenous and exogenous stimulation for multimodal imaging and chemo-/photothermal therapy. NANOSCALE 2021; 13:886-900. [PMID: 33367454 DOI: 10.1039/d0nr07121h] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Multimodal imaging-guided accurate tumor-targeting and efficient synergistic therapy are of great importance for cancer therapy in vitro and in vivo. In this study, a biocompatible, tumor-targeted, on-demand chemo-/photothermal therapeutic nanoplatform (HIDSiGdNPs@PDA-HA) based on hollow mesoporous organic silica nanoparticles (HMONs) was used for bimodal imaging and multi-factor stepwise response for drug release and treatment. Targeted molecule hyaluronic acid (HA) promoted the endocytosis of HIDSiGdNPs@PDA-HA in HeLa cancer cells. The gatekeeper pH-/light-sensitive PDA coating was stimulated by the endogenous tumor acidic microenvironment and exogenous NIR laser to release doxorubicin (DOX). Thereafter, HMONs containing S-S bonds were reduced and degraded by endogenous glutathione (GSH), and the drug was further released rapidly to kill cancer cells. Importantly, the photothermal reagent indocyanine green (ICG) was always retained in the carrier, improving the effectiveness of photothermal therapy. The loaded Gd-doped silicon nanoparticles (SiGdNPs) combined with DOX and ICG led to multi-color fluorescence imaging in vitro and magnetic resonance imaging in vivo to realize targeted diagnosis and track drug distribution. The treatment results of tumor-bearing mice also proved the excellent synergistic therapy. It is believed that the multifunctional nanomaterials with dual mode imaging capability and targeted and controlled collaborative therapy would provide an alternative for accurate diagnosis and efficient treatment.
Collapse
Affiliation(s)
- Hai-Yan Wang
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China.
| | - Yan Zhang
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China.
| | - Xing-Hui Ren
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China.
| | - Xi-Wen He
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China.
| | - Wen-You Li
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China.
| | - Yu-Kui Zhang
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China. and National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
32
|
Zhang L, Gui S, Xu Y, Zeng J, Wang J, Chen Q, Su L, Wang Z, Deng R, Chu F, Liu W, Jin X, Lu X. Colon tissue-accumulating mesoporous carbon nanoparticles loaded with Musca domestica cecropin for ulcerative colitis therapy. Theranostics 2021; 11:3417-3438. [PMID: 33537095 PMCID: PMC7847694 DOI: 10.7150/thno.53105] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/26/2020] [Indexed: 12/15/2022] Open
Abstract
Ulcerative colitis (UC) is a modern refractory disease with steadily increasing incidence worldwide that urgently requires effective and safe therapies. Therapeutic peptides delivered using nanocarriers have shown promising developments for the treatment of UC. We developed a novel colon-accumulating oral drug delivery nanoplatform consisting of Musca domestica cecropin (MDC) and mesoporous carbon nanoparticles (MCNs) and investigated its effects and mechanism of action for the treatment of UC. Methods: An optimized one-step soft templating method was developed to synthesize MCNs, into which MDC was loaded to fabricate MDC@MCNs. MCNs and MDC@MCNs were characterized by BET, XRD, and TEM. MDC and MDC@MCNs resistance to trypsin degradation was measured through Oxford cup antibacterial experiments using Salmonella typhimurium as the indicator. Uptake of MDC and MDC@MCNs by NCM460 cells was observed by fluorescence microscopy. The biocompatibility of MDC, MCNs, and MDC@MCNs was evaluated in three cell lines (NCM460, L02, and NIH3T3) and C57BL/6 mice. Dextran sulphate sodium was used to establish models of NCM460 cell injury and UC in mice. MTT assay, flow cytometry, and mitochondrial membrane potential assay were applied to determine the effects of MDC@MCNs on NCM460 cells injury. Additionally, a variety of biological methods such as H&E staining, TEM, ELISA, qPCR, Western blotting, and 16s rDNA sequencing were performed to explore the effects and underlying mechanism of MDC@MCN on UC in vivo. Colonic adhesion of MCNs was compared in normal and UC mice. The oral biodistributions of MDC and MDC@MCNs in the gastrointestinal tract of mice were also determined. Results: MDC@MCNs were successfully developed and exhibited excellent ability to resist destruction by trypsin and were taken up by NCM460 cells more readily than MDC. In vitro studies showed that MDC@MCNs better inhibited DSS-induced NCM460 cells damage with lower toxicity to L02 and NIH3T3 cells compared with MDC. In vivo results indicated that MDC@MCNs have good biocompatibility and significantly improved colonic injury in UC mice by effectively inhibiting inflammation and oxidative stress, maintaining colonic tight junctions, and regulating intestinal flora. Moreover, MDC@MCNs were strongly retained in the intestines, which was attributed to intestinal adhesion and aggregation of MCNs, serving as one of the important reasons for its enhanced efficacy after oral administration compared with MDC. Conclusion: MDC@MCNs alleviated DSS-induced UC by ameliorating colonic epithelial cells damage, inhibiting inflammation and oxidative stress, enhancing colonic tight junctions, and regulating intestinal flora. This colon-accumulating oral drug delivery nanoplatform may provide a novel and precise therapeutic strategy for UC.
Collapse
Affiliation(s)
- Lun Zhang
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University, 280 Wai Huan Dong Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, People's Republic of China
| | - Shuiqing Gui
- Intensive Care Unit, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen 518031, People's Republic of China
| | - Yinghua Xu
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, Beijing 102629, People's Republic of China
| | - Jiali Zeng
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University, 280 Wai Huan Dong Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, People's Republic of China
| | - Jian Wang
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University, 280 Wai Huan Dong Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, People's Republic of China
- School of Pharmacy, Guangdong Pharmaceutical University, 280 Wai Huan Dong Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, People's Republic of China
| | - Qingru Chen
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University, 280 Wai Huan Dong Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, People's Republic of China
| | - Liqian Su
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University, 280 Wai Huan Dong Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, People's Republic of China
- School of Pharmacy, Guangdong Pharmaceutical University, 280 Wai Huan Dong Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, People's Republic of China
| | - Ziyan Wang
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University, 280 Wai Huan Dong Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, People's Republic of China
| | - Rui Deng
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University, 280 Wai Huan Dong Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, People's Republic of China
- School of Pharmacy, Guangdong Pharmaceutical University, 280 Wai Huan Dong Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, People's Republic of China
| | - Fujiang Chu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University, 280 Wai Huan Dong Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, People's Republic of China
| | - Wenbin Liu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University, 280 Wai Huan Dong Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, People's Republic of China
| | - Xiaobao Jin
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University, 280 Wai Huan Dong Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, People's Republic of China
| | - Xuemei Lu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University, 280 Wai Huan Dong Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, People's Republic of China
| |
Collapse
|
33
|
Zou Y, Huang B, Cao L, Deng Y, Su J. Tailored Mesoporous Inorganic Biomaterials: Assembly, Functionalization, and Drug Delivery Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005215. [PMID: 33251635 DOI: 10.1002/adma.202005215] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/18/2020] [Indexed: 05/06/2023]
Abstract
Infectious or immune diseases have caused serious threat to human health due to their complexity and specificity, and emerging drug delivery systems (DDSs) have evolved into the most promising therapeutic strategy for drug-targeted therapy. Various mesoporous biomaterials are exploited and applied as efficient nanocarriers to loading drugs by virtue of their large surface area, high porosity, and prominent biocompatibility. Nanosized mesoporous nanocarriers show great potential in biomedical research, and it has become the research hotspot in the interdisciplinary field. Herein, recent progress and assembly mechanisms on mesoporous inorganic biomaterials (e.g., silica, carbon, metal oxide) are summarized systematically, and typical functionalization methods (i.e., hybridization, polymerization, and doping) for nanocarriers are also discussed in depth. Particularly, structure-activity relationship and the effect of physicochemical parameters of mesoporous biomaterials, including morphologies (e.g., hollow, core-shell), pore textures (e.g., pore size, pore volume), and surface features (e.g., roughness and hydrophilic/hydrophobic) in DDS application are overviewed and elucidated in detail. As one of the important development directions, advanced stimuli-responsive DDSs (e.g., pH, temperature, redox, ultrasound, light, magnetic field) are highlighted. Finally, the prospect of mesoporous biomaterials in disease therapeutics is stated, and it will open a new spring for the development of mesoporous nanocarriers.
Collapse
Affiliation(s)
- Yidong Zou
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Biaotong Huang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Liehu Cao
- Department of Orthopedics, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
- Department of Orthopedics Trauma, Shanghai Luodian Hospital, Baoshan District, Shanghai, 201908, China
| | - Yonghui Deng
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Department of Orthopedics, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| |
Collapse
|
34
|
Gold nanoparticles gated mesoporous carbon with optimal particle size for photothermal-enhanced thermochemotherapy. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125212] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
35
|
Keerthiga R, Zhao Z, Pei D, Fu A. Photodynamic Nanophotosensitizers: Promising Materials for Tumor Theranostics. ACS Biomater Sci Eng 2020; 6:5474-5485. [PMID: 33320544 DOI: 10.1021/acsbiomaterials.0c01058] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Photodynamic theranostics/therapy (PDT) is a potential strategy for selectively imaging malignant sites and treating cancer via a non-invasive therapeutic method. Photosensitizers, the crucial components of PDT, enable colocalization of photons and light, and photon/light therapy in the therapeutic window of 400-900 nm exhibits photocytotoxicity to tumor cells. Due to their high biostability and photocytotoxicity, nanophotosensitizers (NPSs) are of much interest for malignant tumor theranostics at present. NPS-activated photons transfer energy through the absorption of a photon and convert molecular oxygen to the singlet reactive oxygen species, which leads to apoptosis and necrosis. Moreover, NPSs modified by polymers, including PLGA, PEG-PLA, PDLLA, PVCL-g-PLA, and P(VCL-co-VIM)-g-PLA, exhibit excellent biocompatibility, and a tumor-targeting molecule linked on the nanoparticle surface can precisely deliver NPSs into the tumor region. The development of NPSs will accelerate the progress in tumor theranostics through the photon/light pathway.
Collapse
Affiliation(s)
- Rajendiran Keerthiga
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Zizhen Zhao
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Desheng Pei
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Ailing Fu
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
36
|
Gisbert-Garzarán M, Berkmann JC, Giasafaki D, Lozano D, Spyrou K, Manzano M, Steriotis T, Duda GN, Schmidt-Bleek K, Charalambopoulou G, María Vallet-Regí G. Engineered pH-Responsive Mesoporous Carbon Nanoparticles for Drug Delivery. ACS APPLIED MATERIALS & INTERFACES 2020; 12:14946-14957. [PMID: 32141284 PMCID: PMC7116326 DOI: 10.1021/acsami.0c01786] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
In this work, two types of mesoporous carbon particles with different morphology, size, and pore structure have been functionalized with a self-immolative polymer sensitive to changes in pH and tested as drug nanocarriers. It is shown that their textural properties allow significantly higher loading capacity compared to typical mesoporous silica nanoparticles. In vial release experiments of a model Ru dye at pH 7.4 and 5 confirm the pH-responsiveness of the hybrid systems, showing that only small amounts of the cargo are released at physiological pH, whereas at slightly acidic pH (e.g., that of lysosomes), self-immolation takes place and a significant amount of the cargo is released. Cytotoxicity studies using human osteosarcoma cells show that the hybrid nanocarriers are not cytotoxic by themselves but induce significant cell growth inhibition when loaded with a chemotherapeutic drug such as doxorubicin. In preparation of an in vivo application, in vial responsiveness of the hybrid system to short-term pH-triggering is confirmed. The consecutive in vivo study shows no substantial cargo release over a period of 96 h under physiological pH conditions. Short-term exposure to acidic pH releases an experimental fluorescent cargo during and continuously after the triggering period over 72 h.
Collapse
Affiliation(s)
- Miguel Gisbert-Garzarán
- Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid, Institute de Investigation Sanitaria Hospital 12 de Octubre (imasl2), 28040 Madrid, Spain; Networking Research Center on Bio engineering Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Julia C. Berkmann
- Julius Wolff Institute and Center for Musculoskektal Surgery and Berlin-Brandenburg School for Regenerative Therapies, Charit’e–Universitatsmedizin Berlin, 10117 Berlin, Germany
| | - Dimitra Giasafaki
- National Center for Scientific Research “Demokritos”, 15341 Athens, Greece
| | - Daniel Lozano
- Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid, Institute de Investigation Sanitaria Hospital 12 de Octubre (imasl2), 28040 Madrid, Spain; Networking Research Center on Bio engineering Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Konstantinos Spyrou
- Department of Materials Science and Engineering University of loannina, GR-45110 loannina, Greece
| | - Miguel Manzano
- Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid, Instituto de Investigation Sanitaria Hospital 12 de Octubre (imas12), 28040 Madrid, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | | | | | - Katharina Schmidt-Bleek
- Julius Wolff Institute and Center for Musculoskektal Surgery and Berlin-Brandenburg School for Regenerative Therapies, Charit’e–Universitatsmedizin Berlin, 10117 Berlin, Germany
| | | | - Georgia María Vallet-Regí
- Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid, Institute de Investigation Sanitaria Hospital 12 de Octubre (imasl2), 28040 Madrid, Spain; Networking Research Center on Bio engineering Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| |
Collapse
|
37
|
Zhao Q, Li X, Lu J, Liu Y, Sha L, Di D, Wang S. TPGS and cypate gated mesoporous carbon for enhanced thermochemotherapy of tumor. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124544] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|