1
|
Shen S, Liu B, Guan W, Liu Z, Han Y, Hu Y, Chen Y, Liu S, He J, Li Z, Tang W, Zhang P, Ren W, Qiu Y, Zheng H, Li J. Advancing precision medicine in esophageal squamous cell carcinoma using patient-derived organoids. J Transl Med 2024; 22:1168. [PMID: 39741269 DOI: 10.1186/s12967-024-05967-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 12/11/2024] [Indexed: 01/02/2025] Open
Abstract
BACKGROUND Patient-derived organoids (PDOs) represent a promising approach for replicating the characteristics of original tumors and facilitating drug testing for personalized treatments across diverse cancer types. However, clinical evidence regarding their application to esophageal cancer remains limited. This study aims to evaluate the efficacy of implementing PDOs in clinical practice to benefit patients with esophageal squamous cell carcinoma (ESCC). METHODS Fresh surgical biopsies were obtained from patients with esophageal cancer for the establishment of PDOs. These PDOs were subsequently characterized through histological analysis. A customized drug panel, based on standard-of-care chemotherapy regimens, was applied to the PDOs. The resulting drug sensitivity profiles were then correlated with the clinical responses observed in individual patients undergoing actual treatment. RESULTS A total of 34 PDOs were successfully established with a 61.8% success rate. The classification method based on chemotherapy sensitivity closely corresponded to clinical responses. The paclitaxel plus cisplatin (TP)-sensitive group demonstrated significantly longer progression-free survival (PFS) compared to the resistant groups, Hazard ratio (HR), 5.12; 95% confidence intervals (CI 0.58-44.71; p < 0.05), thus illustrating the potential of this approach for guiding personalized treatment strategies. CONCLUSION Organoid biobanks were established across multiple institutes to facilitate PDOs-based functional precision medicine. The findings demonstrate that this framework offers robust predictive value in clinical settings, enhances precision therapeutics, and advances drug discovery for esophageal cancer.
Collapse
Affiliation(s)
- Suya Shen
- Department of Pancreatic and Metabolic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Bing Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Wenyan Guan
- Department of Pathology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu, China
| | - Ziyao Liu
- Department of Precision Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu, China
| | - Yuqing Han
- Department of Pancreatic and Metabolic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Yingzhe Hu
- Department of Pancreatic and Metabolic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, Jiangsu, China
| | - Yiqiang Chen
- Department of Precision Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu, China
| | - Siyuan Liu
- Department of Precision Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu, China
| | - Jian He
- Department of Nuclear Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu, China
| | - Zhiwen Li
- Department of Pathology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu, China
| | - Weifeng Tang
- Department of Esophageal Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, NanjingJiangsu, 210008, China
| | - Pengju Zhang
- Zhejiang Honray Medical Technology Co., LTD, Taizhou, 318001, Zhejiang, China
| | - Wei Ren
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, 210008, Jiangsu, China.
| | - Yudong Qiu
- Department of Pancreatic and Metabolic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China.
| | - Hongping Zheng
- Zhejiang Honray Medical Technology Co., LTD, Taizhou, 318001, Zhejiang, China.
- Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200032, China.
| | - Jingjing Li
- Department of Precision Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu, China.
| |
Collapse
|
2
|
Bhat N, Al-Mathkour M, Maacha S, Lu H, El-Rifai W, Ballout F. Esophageal adenocarcinoma models: a closer look. Front Mol Biosci 2024; 11:1440670. [PMID: 39600303 PMCID: PMC11589788 DOI: 10.3389/fmolb.2024.1440670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
Esophageal adenocarcinoma (EAC) is a subtype of esophageal cancer with significant morbidity and mortality rates worldwide. Despite advancements in tumor models, the underlying cellular and molecular mechanisms driving EAC pathogenesis are still poorly understood. Therefore, gaining insights into these mechanisms is crucial for improving patient outcomes. Researchers have developed various models to better understand EAC and evaluate clinical management strategies. However, no single model fully recapitulates the complexity of EAC. Emerging technologies, such as patient-derived organoids and immune-competent mouse models, hold promise for personalized EAC research and drug development. In this review, we shed light on the various models for studying EAC and discuss their advantages and limitations.
Collapse
Affiliation(s)
- Nadeem Bhat
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Marwah Al-Mathkour
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Selma Maacha
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Heng Lu
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Wael El-Rifai
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Veterans Affairs, Miami Healthcare System, Miami, FL, United States
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Farah Ballout
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, United States
| |
Collapse
|
3
|
Rochman M, Klinger AM, Caldwell JM, Sadovsky Y, Rothenberg ME. Amniotic fluid modifies esophageal epithelium differentiation and inflammatory responses. Am J Physiol Gastrointest Liver Physiol 2024; 327:G629-G639. [PMID: 39189791 PMCID: PMC11559652 DOI: 10.1152/ajpgi.00197.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/15/2024] [Accepted: 08/21/2024] [Indexed: 08/28/2024]
Abstract
The interplay between genetic and environmental factors during pregnancy can predispose to inflammatory diseases postnatally, including eosinophilic esophagitis (EoE), a chronic allergic disease triggered by food. Herein, we examined the effects of amniotic fluid (AF) on esophageal epithelial differentiation and responsiveness to proallergic stimuli. Multiplex analysis of AF revealed the expression of 66 cytokines, whereas five cytokines including IL-4 and thymic stromal lymphopoietin (TSLP) were not detected. Several proinflammatory cytokines including TNFα and IL-12 were highly expressed in the AF from women who underwent preterm birth, whereas EGF was the highest in term birth samples. Exposure of esophageal epithelial cells to AF resulted in transient phosphorylation of ERK1/2 and the transcription of early response genes, highlighting the direct impact of AF on esophageal epithelial cells. In a three-dimensional spheroid model, AF modified the esophageal epithelial differentiation program and enhanced the transcription of IL-13-target genes, including CCL26 and CAPN14, which encodes for a major genetic susceptibility locus for eosinophilic esophagitis. Notably, CAPN14 exhibited upregulation in spheroids exposed to preterm but not term AF following differentiation. Collectively, our findings call attention to the role of AF as a potential mediator of the intrauterine environment that influences subsequent esophageal disorders.NEW & NOTEWORTHY The interaction between amniotic fluid and the esophageal epithelium during pregnancy modifies esophageal epithelial differentiation and subsequent responsiveness to inflammatory stimuli, including interleukin 13 (IL-13). This interaction may predispose individuals to inflammatory conditions of the esophagus, such as eosinophilic esophagitis (EoE), in later stages of life.
Collapse
Affiliation(s)
- Mark Rochman
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
| | - Andrea M Klinger
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
| | - Julie M Caldwell
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
| | - Yoel Sadovsky
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Marc E Rothenberg
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
| |
Collapse
|
4
|
Aizawa Y, Haga K, Yoshiba N, Yortchan W, Takada S, Tanaka R, Naito E, Abé T, Maruyama S, Yamazaki M, Tanuma JI, Igawa K, Tomihara K, Togo S, Izumi K. Development and Characterization of a Three-Dimensional Organotypic In Vitro Oral Cancer Model with Four Co-Cultured Cell Types, Including Patient-Derived Cancer-Associated Fibroblasts. Biomedicines 2024; 12:2373. [PMID: 39457685 PMCID: PMC11505046 DOI: 10.3390/biomedicines12102373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Cancer organoids have emerged as a valuable tool of three-dimensional (3D) cell cultures to investigate tumor heterogeneity and predict tumor behavior and treatment response. We developed a 3D organotypic culture model of oral squamous cell carcinoma (OSCC) to recapitulate the tumor-stromal interface by co-culturing four cell types, including patient-derived cancer-associated fibroblasts (PD-CAFs). Methods: A stainless-steel ring was used twice to create the horizontal positioning of the cancer stroma (adjoining normal oral mucosa connective tissue) and the OSCC layer (surrounding normal oral mucosa epithelial layer). Combined with a structured bi-layered model of the epithelial component and the underlying stroma, this protocol enabled us to construct four distinct portions mimicking the oral cancer tissue arising in the oral mucosa. Results: In this model, α-smooth muscle actin-positive PD-CAFs were localized in close proximity to the OSCC layer, suggesting a crosstalk between them. Furthermore, a linear laminin-γ2 expression was lacking at the interface between the OSCC layer and the underlying stromal layer, indicating the loss of the basement membrane-like structure. Conclusions: Since the specific 3D architecture and polarity mimicking oral cancer in vivo provides a more accurate milieu of the tumor microenvironment (TME), it could be crucial in elucidating oral cancer TME.
Collapse
Affiliation(s)
- Yuka Aizawa
- Division of Biomimetics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (Y.A.); (W.Y.); (S.T.)
- Division of Oral and Maxillofacial Surgery, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (E.N.)
| | - Kenta Haga
- Division of Reconstructive Surgery for Oral and Maxillofacial Region, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
| | - Nagako Yoshiba
- Department of Oral Health and Welfare, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
| | - Witsanu Yortchan
- Division of Biomimetics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (Y.A.); (W.Y.); (S.T.)
| | - Sho Takada
- Division of Biomimetics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (Y.A.); (W.Y.); (S.T.)
| | - Rintaro Tanaka
- Division of Biomimetics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (Y.A.); (W.Y.); (S.T.)
| | - Eriko Naito
- Division of Oral and Maxillofacial Surgery, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (E.N.)
| | - Tatsuya Abé
- Division of Oral Pathology, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan (J.-i.T.)
| | - Satoshi Maruyama
- Division of Oral Pathology, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan (J.-i.T.)
| | - Manabu Yamazaki
- Division of Oral Pathology, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan (J.-i.T.)
| | - Jun-ichi Tanuma
- Division of Oral Pathology, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan (J.-i.T.)
| | - Kazuyo Igawa
- Neutron Therapy Research Center, Okayama University, Okayama 700-8558, Japan;
| | - Kei Tomihara
- Division of Oral and Maxillofacial Surgery, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (E.N.)
| | - Shinsaku Togo
- Department of Respiratory Medicine, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan;
| | - Kenji Izumi
- Division of Biomimetics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (Y.A.); (W.Y.); (S.T.)
| |
Collapse
|
5
|
Long-term 3D primary epithelioid cultures reveal genes that regulate esophageal cell fitness. Nat Genet 2024; 56:2010-2011. [PMID: 39333767 DOI: 10.1038/s41588-024-01887-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2024]
|
6
|
Herms A, Fernandez-Antoran D, Alcolea MP, Kalogeropoulou A, Banerjee U, Piedrafita G, Abby E, Valverde-Lopez JA, Ferreira IS, Caseda I, Bejar MT, Dentro SC, Vidal-Notari S, Ong SH, Colom B, Murai K, King C, Mahbubani K, Saeb-Parsy K, Lowe AR, Gerstung M, Jones PH. Self-sustaining long-term 3D epithelioid cultures reveal drivers of clonal expansion in esophageal epithelium. Nat Genet 2024; 56:2158-2173. [PMID: 39313617 PMCID: PMC11525200 DOI: 10.1038/s41588-024-01875-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 07/18/2024] [Indexed: 09/25/2024]
Abstract
Aging epithelia are colonized by somatic mutations, which are subjected to selection influenced by intrinsic and extrinsic factors. The lack of suitable culture systems has slowed the study of this and other long-term biological processes. Here, we describe epithelioids, a facile, cost-effective method of culturing multiple mouse and human epithelia. Esophageal epithelioids self-maintain without passaging for at least 1 year, maintaining a three-dimensional structure with proliferative basal cells that differentiate into suprabasal cells, which eventually shed and retain genomic stability. Live imaging over 5 months showed that epithelioids replicate in vivo cell dynamics. Epithelioids support genetic manipulation and enable the study of mutant cell competition and selection in three-dimensional epithelia, and show how anti-cancer treatments modulate competition between transformed and wild-type cells. Finally, a targeted CRISPR-Cas9 screen shows that epithelioids recapitulate mutant gene selection in aging human esophagus and identifies additional drivers of clonal expansion, resolving the genetic networks underpinning competitive fitness.
Collapse
Affiliation(s)
- Albert Herms
- Wellcome Sanger Institute, Hinxton, UK
- Department of Biomedical Sciences, Universitat de Barcelona, Barcelona, Spain
- Lipid Trafficking and Disease Group, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - David Fernandez-Antoran
- Wellcome Sanger Institute, Hinxton, UK
- Wellcome/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
- ARAID Foundation, Aragón Health Research Institute (IIS Aragón), Zaragoza, Spain
| | - Maria P Alcolea
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | | | | | - Gabriel Piedrafita
- Wellcome Sanger Institute, Hinxton, UK
- Department of Biochemistry and Molecular Biology, Complutense University of Madrid, Madrid, Spain
- Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | | | - Inês S Ferreira
- Wellcome/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
| | - Irene Caseda
- Department of Biomedical Sciences, Universitat de Barcelona, Barcelona, Spain
- Lipid Trafficking and Disease Group, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Maria T Bejar
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Stefan C Dentro
- Wellcome Sanger Institute, Hinxton, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, UK
- Artificial Intelligence in Oncology (B450), Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Sara Vidal-Notari
- Department of Biochemistry and Molecular Biology, Complutense University of Madrid, Madrid, Spain
- Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | - Bartomeu Colom
- Wellcome Sanger Institute, Hinxton, UK
- Cambridge Institute of Science, Altos Labs, Cambridge, UK
| | | | | | - Krishnaa Mahbubani
- Department of Surgery, University of Cambridge, Cambridge, UK
- Collaborative Biorepository for Translational Medicine (CBTM), Cambridge NIHR Biomedical Research Centre, Cambridge, UK
| | - Kourosh Saeb-Parsy
- Department of Surgery, University of Cambridge, Cambridge, UK
- Collaborative Biorepository for Translational Medicine (CBTM), Cambridge NIHR Biomedical Research Centre, Cambridge, UK
| | - Alan R Lowe
- Institute for Structural and Molecular Biology, University College London, London, UK
- Institute for the Physics of Living Systems, University College London, London, UK
- Department of Physics and Astronomy, University College London, London, UK
| | - Moritz Gerstung
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, UK
- Artificial Intelligence in Oncology (B450), Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Philip H Jones
- Wellcome Sanger Institute, Hinxton, UK.
- Department of Oncology, Hutchison Research Centre, University of Cambridge, Cambridge, UK.
| |
Collapse
|
7
|
Zhao YX, Zhao HP, Zhao MY, Yu Y, Qi X, Wang JH, Lv J. Latest insights into the global epidemiological features, screening, early diagnosis and prognosis prediction of esophageal squamous cell carcinoma. World J Gastroenterol 2024; 30:2638-2656. [PMID: 38855150 PMCID: PMC11154680 DOI: 10.3748/wjg.v30.i20.2638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/26/2024] [Accepted: 05/13/2024] [Indexed: 05/27/2024] Open
Abstract
As a highly invasive carcinoma, esophageal cancer (EC) was the eighth most prevalent malignancy and the sixth leading cause of cancer-related death worldwide in 2020. Esophageal squamous cell carcinoma (ESCC) is the major histological subtype of EC, and its incidence and mortality rates are decreasing globally. Due to the lack of specific early symptoms, ESCC patients are usually diagnosed with advanced-stage disease with a poor prognosis, and the incidence and mortality rates are still high in many countries, especially in China. Therefore, enormous challenges still exist in the management of ESCC, and novel strategies are urgently needed to further decrease the incidence and mortality rates of ESCC. Although the key molecular mechanisms underlying ESCC pathogenesis have not been fully elucidated, certain promising biomarkers are being investigated to facilitate clinical decision-making. With the advent and advancement of high-throughput technologies, such as genomics, proteomics and metabolomics, valuable biomarkers with high sensitivity, specificity and stability could be identified for ESCC. Herein, we aimed to determine the epidemiological features of ESCC in different regions of the world, especially in China, and focused on novel molecular biomarkers associated with ESCC screening, early diagnosis and prognosis prediction.
Collapse
Affiliation(s)
- Yi-Xin Zhao
- Department of Clinical Laboratory, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, Shaanxi Province, China
| | - He-Ping Zhao
- Department of Clinical Laboratory, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, Shaanxi Province, China
| | - Meng-Yao Zhao
- Department of Clinical Laboratory, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, Shaanxi Province, China
| | - Yan Yu
- Department of Clinical Laboratory, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, Shaanxi Province, China
| | - Xi Qi
- Department of Clinical Laboratory, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, Shaanxi Province, China
| | - Ji-Han Wang
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, Shaanxi Province, China
| | - Jing Lv
- Department of Clinical Laboratory, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, Shaanxi Province, China
| |
Collapse
|
8
|
Shimonosono M, Morimoto M, Hirose W, Tomita Y, Matsuura N, Flashner S, Ebadi MS, Okayasu EH, Lee CY, Britton WR, Martin C, Wuertz BR, Parikh AS, Sachdeva UM, Ondrey FG, Atigadda VR, Elmets CA, Abrams JA, Muir AB, Klein-Szanto AJ, Weinberg KI, Momen-Heravi F, Nakagawa H. Modeling epithelial homeostasis and perturbation in three-dimensional human esophageal organoids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.20.595023. [PMID: 38826379 PMCID: PMC11142071 DOI: 10.1101/2024.05.20.595023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Background Esophageal organoids from a variety of pathologies including cancer are grown in Advanced Dulbecco's Modified Eagle Medium-Nutrient Mixture F12 (hereafter ADF). However, the currently available ADF-based formulations are suboptimal for normal human esophageal organoids, limiting the ability to compare normal esophageal organoids with those representing a given disease state. Methods We have utilized immortalized normal human esophageal epithelial cell (keratinocyte) lines EPC1 and EPC2 and endoscopic normal esophageal biopsies to generate three-dimensional (3D) organoids. To optimize ADF-based medium, we evaluated the requirement of exogenous epidermal growth factor (EGF) and inhibition of transforming growth factor-(TGF)-β receptor-mediated signaling, both key regulators of proliferation of human esophageal keratinocytes. We have modeled human esophageal epithelial pathology by stimulating esophageal 3D organoids with interleukin (IL)-13, an inflammatory cytokine, or UAB30, a novel pharmacological activator of retinoic acid signaling. Results The formation of normal human esophageal 3D organoids was limited by excessive EGF and intrinsic TGFβ receptor-mediated signaling. In optimized HOME0, normal human esophageal organoid formation was improved, whereas IL-13 and UAB30 induced epithelial changes reminiscent of basal cell hyperplasia, a common histopathologic feature in broad esophageal disease conditions including eosinophilic esophagitis. Conclusions: HOME0 allows modeling of the homeostatic differentiation gradient and perturbation of the human esophageal epithelium while permitting a comparison of organoids from mice and other organs grown in ADF-based media.
Collapse
|
9
|
Sasaki M, Hara T, Wang JX, Zhou Y, Kennedy KV, Umeweni CN, Alston MA, Spergel ZC, Ishikawa S, Teranishi R, Nakagawa R, Mcmillan EA, Whelan KA, Karakasheva TA, Hamilton KE, Ruffner MA, Muir AB. Lysyl Oxidase Regulates Epithelial Differentiation and Barrier Integrity in Eosinophilic Esophagitis. Cell Mol Gastroenterol Hepatol 2024; 17:923-937. [PMID: 38340809 PMCID: PMC11026689 DOI: 10.1016/j.jcmgh.2024.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/31/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND & AIMS Epithelial disruption in eosinophilic esophagitis (EoE) encompasses both impaired differentiation and diminished barrier integrity. We have shown that lysyl oxidase (LOX), a collagen cross-linking enzyme, is up-regulated in the esophageal epithelium in EoE. However, the functional roles of LOX in the esophageal epithelium remains unknown. METHODS We investigated roles for LOX in the human esophageal epithelium using 3-dimensional organoid and air-liquid interface cultures stimulated with interleukin (IL)13 to recapitulate the EoE inflammatory milieu, followed by single-cell RNA sequencing, quantitative reverse-transcription polymerase chain reaction, Western blot, histology, and functional analyses of barrier integrity. RESULTS Single-cell RNA sequencing analysis on patient-derived organoids revealed that LOX was induced by IL13 in differentiated cells. LOX-overexpressing organoids showed suppressed basal and up-regulated differentiation markers. In addition, LOX overexpression enhanced junctional protein genes and transepithelial electrical resistance. LOX overexpression restored the impaired differentiation and barrier function, including in the setting of IL13 stimulation. Transcriptome analyses on LOX-overexpressing organoids identified an enriched bone morphogenetic protein (BMP) signaling pathway compared with wild-type organoids. In particular, LOX overexpression increased BMP2 and decreased the BMP antagonist follistatin. Finally, we found that BMP2 treatment restored the balance of basal and differentiated cells. CONCLUSIONS Our data support a model whereby LOX exhibits noncanonical roles as a signaling molecule important for epithelial homeostasis in the setting of inflammation via activation of the BMP pathway in the esophagus. The LOX/BMP axis may be integral in esophageal epithelial differentiation and a promising target for future therapies.
Collapse
Affiliation(s)
- Masaru Sasaki
- Division of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Takeo Hara
- Division of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Joshua X Wang
- Division of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Yusen Zhou
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Kanak V Kennedy
- Division of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Chizoba N Umeweni
- Division of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Maiya A Alston
- Division of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Zachary C Spergel
- Division of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Satoshi Ishikawa
- Division of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Ryugo Teranishi
- Division of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Ritsu Nakagawa
- Division of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Emily A Mcmillan
- Division of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Kelly A Whelan
- Fels Cancer Institute for Personalized Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania; Department of Cancer and Cellular Biology, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania
| | - Tatiana A Karakasheva
- Division of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Kathryn E Hamilton
- Division of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Melanie A Ruffner
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Division of Allergy and Immunology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Amanda B Muir
- Division of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
10
|
Martinez-Uribe O, Becker TC, Garman KS. Promises and Limitations of Current Models for Understanding Barrett's Esophagus and Esophageal Adenocarcinoma. Cell Mol Gastroenterol Hepatol 2024; 17:1025-1038. [PMID: 38325549 PMCID: PMC11041847 DOI: 10.1016/j.jcmgh.2024.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/09/2024]
Abstract
BACKGROUND & AIMS This review was developed to provide a thorough and effective update on models relevant to esophageal metaplasia, dysplasia, and carcinogenesis, focusing on the advantages and limitations of different models of Barrett's esophagus (BE) and esophageal adenocarcinoma (EAC). METHODS This expert review was written on the basis of a thorough review of the literature combined with expert interpretation of the state of the field. We emphasized advances over the years 2012-2023 and provided detailed information related to the characterization of established human esophageal cell lines. RESULTS New insights have been gained into the pathogenesis of BE and EAC using patient-derived samples and single-cell approaches. Relevant animal models include genetic as well as surgical mouse models and emphasize the development of lesions at the squamocolumnar junction in the mouse stomach. Rat models are generated using surgical approaches that directly connect the small intestine and esophagus. Large animal models have the advantage of including features in human esophagus such as esophageal submucosal glands. Alternatively, cell culture approaches remain important in the field and allow for personalized approaches, and scientific rigor can be ensured by authentication of cell lines. CONCLUSIONS Research in BE and EAC remains highly relevant given the morbidity and mortality associated with cancers of the tubular esophagus and gastroesophageal junction. Careful selection of models and inclusion of human samples whenever possible will ensure relevance to human health and disease.
Collapse
Affiliation(s)
- Omar Martinez-Uribe
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, North Carolina
| | - Thomas C Becker
- Division of Endocrinology, Department of Medicine, Duke University, Durham, North Carolina
| | - Katherine S Garman
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, North Carolina.
| |
Collapse
|
11
|
Xiu Z, Yang Q, Xie F, Han F, He W, Liao W. Revolutionizing digestive system tumor organoids research: Exploring the potential of tumor organoids. J Tissue Eng 2024; 15:20417314241255470. [PMID: 38808253 PMCID: PMC11131411 DOI: 10.1177/20417314241255470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/02/2024] [Indexed: 05/30/2024] Open
Abstract
Digestive system tumors are the leading cause of cancer-related deaths worldwide. Despite ongoing research, our understanding of their mechanisms and treatment remain inadequate. One promising tool for clinical applications is the use of gastrointestinal tract tumor organoids, which serve as an important in vitro model. Tumor organoids exhibit a genotype similar to the patient's tumor and effectively mimic various biological processes, including tissue renewal, stem cell, and ecological niche functions, and tissue response to drugs, mutations, or injury. As such, they are valuable for drug screening, developing novel drugs, assessing patient outcomes, and supporting immunotherapy. In addition, innovative materials and techniques can be used to optimize tumor organoid culture systems. Several applications of digestive system tumor organoids have been described and have shown promising results in related aspects. In this review, we discuss the current progress, limitations, and prospects of this model for digestive system tumors.
Collapse
Affiliation(s)
- Zhian Xiu
- Department of Medical Laboratory, Clinical Medical College, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Qian Yang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fusheng Xie
- Department of Medical Laboratory, Clinical Medical College, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Feng Han
- Department of Medical Laboratory, Clinical Medical College, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Weiwei He
- Department of Medical Laboratory, Clinical Medical College, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Weifang Liao
- Department of Medical Laboratory, Clinical Medical College, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| |
Collapse
|
12
|
Jiang Y, Zhao H, Kong S, Zhou D, Dong J, Cheng Y, Zhang S, Wang F, Kalra A, Yang N, Wei DD, Chen J, Zhang YW, Lin DC, Meltzer SJ, Jiang YY. Establishing mouse and human oral esophageal organoids to investigate the tumor immune response. Dis Model Mech 2024; 17:dmm050319. [PMID: 38258518 PMCID: PMC10846528 DOI: 10.1242/dmm.050319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 11/24/2023] [Indexed: 01/24/2024] Open
Abstract
Organoid culture systems are very powerful models that recapitulate in vivo organ development and disease pathogenesis, offering great promise in basic research, drug screening and precision medicine. However, the application of organoids derived from patients with cancer to immunotherapeutic research is a relatively untapped area. Esophageal cancer is one of the most lethal malignancies worldwide, including two major pathological subtypes: esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma. ESCC shares many biological and genomic features with oral squamous cell cancers. Herein, we provide a versatile protocol for the establishment and maintenance of oral and esophageal organoid cultures derived from both murine and human samples. We describe culture conditions for organoids derived from normal tongue, esophagus and gastroesophageal junction, esophageal cancer and Barrett's esophagus. In addition, we establish an ex vivo model by co-culturing patient tumor-derived organoids and autologous CD8+ T lymphocytes to assess CD8+ T cell-mediated tumor killing. Our protocol can also be modified for organoid establishment from other squamous epithelia and carcinomas. The co-culture model can serve as a template for studies of other tumor-immune cell interactions and the efficacy of immune checkpoint blockade therapy.
Collapse
Affiliation(s)
- Yuan Jiang
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
| | - Hua Zhao
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, and Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
- Division of Gastroenterology and Hepatology, Department of Medicine and Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Shuai Kong
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
| | - Dan Zhou
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Institutes of Physical Science and Technology, Anhui University, Hefei 230601, China
| | - Jinxiu Dong
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Yulan Cheng
- Division of Gastroenterology and Hepatology, Department of Medicine and Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Shuo Zhang
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
| | - Fei Wang
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
| | - Andrew Kalra
- Division of Gastroenterology and Hepatology, Department of Medicine and Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Nina Yang
- Division of Gastroenterology and Hepatology, Department of Medicine and Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Dan-Dan Wei
- University of Science and Technology of China, Hefei 230026, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, China
| | - Jian Chen
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Yuan-Wei Zhang
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - De-Chen Lin
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, and Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Stephen J. Meltzer
- Division of Gastroenterology and Hepatology, Department of Medicine and Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Yan-Yi Jiang
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
13
|
Gao J, Lan J, Liao H, Yang F, Qiu P, Jin F, Wang S, Shen L, Chao T, Zhang C, Zhu Y. Promising preclinical patient-derived organoid (PDO) and xenograft (PDX) models in upper gastrointestinal cancers: progress and challenges. BMC Cancer 2023; 23:1205. [PMID: 38062430 PMCID: PMC10702130 DOI: 10.1186/s12885-023-11434-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/22/2023] [Indexed: 12/18/2023] Open
Abstract
Gastrointestinal (GI) cancers (gastric cancer, oesophageal cancer, liver cancer, colorectal cancer, etc.) are the most common cancers with the highest morbidity and mortality in the world. The therapy for most GI cancers is difficult and is associated with a poor prognosis. In China, upper GI cancers, mainly gastric cancer (GC) and oesophageal cancer (EC), are very common due to Chinese people's characteristics, and more than half of patients are diagnosed with distant metastatic or locally advanced disease. Compared to other solid cancers, such as lung cancer and breast cancer, personalized therapies, especially targeted therapy and immunotherapy, in GC and EC are relatively lacking, leading to poor prognosis. For a long time, most studies were carried out by using in vitro cancer cell lines or in vivo cell line-derived xenograft models, which are unable to reproduce the characteristics of tumours derived from patients, leading to the possible misguidance of subsequent clinical validation. The patient-derived models represented by patient-derived organoid (PDO) and xenograft (PDX) models, known for their high preservation of patient tumour features, have emerged as a very popular platform that has been widely used in numerous studies, especially in the research and development of antitumour drugs and personalized medicine. Herein, based on some of the available published literature, we review the research and application status of PDO and PDX models in GC and EC, as well as detail their future challenges and prospects, to promote their use in basic and translational studies or personalized therapy.
Collapse
Affiliation(s)
- Jing Gao
- Department of Oncology, Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen-Peking University- Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Jianqiang Lan
- Guangdong Research Center of Organoid Engineering and Technology, No. 11 Kaiyuan Avenue, Huangpu District, Guangzhou, China
| | - Haiyan Liao
- Department of Oncology, Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen-Peking University- Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Fang Yang
- Department of Oncology, Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen-Peking University- Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Pei Qiu
- Guangdong Research Center of Organoid Engineering and Technology, No. 11 Kaiyuan Avenue, Huangpu District, Guangzhou, China
| | - Feng Jin
- Department of Oncology, Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen-Peking University- Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Shubin Wang
- Department of Oncology, Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen-Peking University- Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Lin Shen
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, No. 52 Fucheng Road, Haidian District, Beijing, China
| | - Tengfei Chao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Qiaokou District, Wuhan, China.
| | - Cheng Zhang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, No. 52 Fucheng Road, Haidian District, Beijing, China.
| | - Yu Zhu
- Guangdong Research Center of Organoid Engineering and Technology, No. 11 Kaiyuan Avenue, Huangpu District, Guangzhou, China.
| |
Collapse
|
14
|
Chehelgerdi M, Behdarvand Dehkordi F, Chehelgerdi M, Kabiri H, Salehian-Dehkordi H, Abdolvand M, Salmanizadeh S, Rashidi M, Niazmand A, Ahmadi S, Feizbakhshan S, Kabiri S, Vatandoost N, Ranjbarnejad T. Exploring the promising potential of induced pluripotent stem cells in cancer research and therapy. Mol Cancer 2023; 22:189. [PMID: 38017433 PMCID: PMC10683363 DOI: 10.1186/s12943-023-01873-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/27/2023] [Indexed: 11/30/2023] Open
Abstract
The advent of iPSCs has brought about a significant transformation in stem cell research, opening up promising avenues for advancing cancer treatment. The formation of cancer is a multifaceted process influenced by genetic, epigenetic, and environmental factors. iPSCs offer a distinctive platform for investigating the origin of cancer, paving the way for novel approaches to cancer treatment, drug testing, and tailored medical interventions. This review article will provide an overview of the science behind iPSCs, the current limitations and challenges in iPSC-based cancer therapy, the ethical and social implications, and the comparative analysis with other stem cell types for cancer treatment. The article will also discuss the applications of iPSCs in tumorigenesis, the future of iPSCs in tumorigenesis research, and highlight successful case studies utilizing iPSCs in tumorigenesis research. The conclusion will summarize the advancements made in iPSC-based tumorigenesis research and the importance of continued investment in iPSC research to unlock the full potential of these cells.
Collapse
Affiliation(s)
- Matin Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Fereshteh Behdarvand Dehkordi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Mohammad Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran.
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Hamidreza Kabiri
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | | | - Mohammad Abdolvand
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Sharareh Salmanizadeh
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Hezar-Jereeb Street, Isfahan, 81746-73441, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Anoosha Niazmand
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Saba Ahmadi
- Department of Molecular and Medical Genetics, Tbilisi State Medical University, Tbilisi, Georgia
| | - Sara Feizbakhshan
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Saber Kabiri
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Nasimeh Vatandoost
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Tayebeh Ranjbarnejad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| |
Collapse
|
15
|
Du JL, Gao LX, Wang T, Ye Z, Li HY, Li W, Zeng Q, Xi JF, Yue W, Li ZH. Influence of hypoxia on retinal progenitor and ganglion cells in human induced pluripotent stem cell-derived retinal organoids. Int J Ophthalmol 2023; 16:1574-1581. [PMID: 37854379 PMCID: PMC10559029 DOI: 10.18240/ijo.2023.10.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 08/03/2023] [Indexed: 10/20/2023] Open
Abstract
AIM To observe the effect of low oxygen concentration on the neural retina in human induced pluripotent stem cell (hiPSC)-derived retinal organoids (ROs). METHODS The hiPSC and a three-dimensional culture method were used for the experiments. Generated embryoid bodies (EBs) were randomly and equally divided into hypoxic and normoxic groups. Photographs of the EBs were taken on days 38, 45, and 52, and the corresponding volume of EBs was calculated. Simultaneously, samples were collected at these three timepoints, followed by fixation, sectioning, and immunofluorescence. RESULTS The proportion of Ki67-positive proliferating cells increased steadily on day 38; this proliferation-promoting effect tended to increase tissue density rather than tissue volume. On days 45 and 52, the two groups had relatively similar ratios of Ki67-positive cells. Further immunofluorescence analysis showed that the ratio of SOX2-positive cells significantly increased within the neural retina on day 52 (P<0.05). In contrast, the percentage of PAX6- and CHX10-positive cells significantly decreased following hypoxia treatment at all three timepoints (P<0.01), except for CHX10 at day 45 (P>0.05). Moreover, the proportion of PAX6-/TUJ1+ cells within the neural retinas increased considerably (P<0.01, <0.05, <0.05 respectively). CONCLUSION Low oxygen promotes stemness and proliferation of neural retinas, suggesting that hypoxic conditions can enlarge the retinal progenitor cell pool in hiPSC-derived ROs.
Collapse
Affiliation(s)
- Jin-Lin Du
- Medical School of Chinese PLA, Beijing 100853, China
- Senior Department of Ophthalmology, the Third Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Li-Xiong Gao
- Departement of Ophthalmology, the 6 Medical Center of PLA General Hospital, Beijing 100048, China
| | - Tao Wang
- Medical School of Chinese PLA, Beijing 100853, China
| | - Zi Ye
- Senior Department of Ophthalmology, the Third Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Hong-Yu Li
- Medical School of Chinese PLA, Beijing 100853, China
- Senior Department of Ophthalmology, the Third Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Wen Li
- Medical School of Chinese PLA, Beijing 100853, China
- Senior Department of Ophthalmology, the Third Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Quan Zeng
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Jia-Fei Xi
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Wen Yue
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Zhao-Hui Li
- Medical School of Chinese PLA, Beijing 100853, China
- Senior Department of Ophthalmology, the Third Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| |
Collapse
|
16
|
Yu X, Yuan H, Yang Y, Zheng W, Zheng X, Lu SH, Jiang W, Yu X. Mammalian esophageal stratified tissue homeostasis is maintained distinctively by the epithelial pluripotent p63 +Sox2 + and p63 -Sox2 + cell populations. Cell Mol Life Sci 2023; 80:305. [PMID: 37752383 PMCID: PMC11072776 DOI: 10.1007/s00018-023-04952-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 07/30/2023] [Accepted: 09/05/2023] [Indexed: 09/28/2023]
Abstract
Self-renewing, damage-repair and differentiation of mammalian stratified squamous epithelia are subject to tissue homeostasis, but the regulation mechanisms remain elusive. Here, we investigate the esophageal squamous epithelial tissue homeostasis in vitro and in vivo. We establish a rat esophageal organoid (rEO) in vitro system and show that the landscapes of rEO formation, development and maturation trajectories can mimic those of rat esophageal epithelia in vivo. Single-cell RNA sequencing (scRNA-seq), snapshot immunostaining and functional analyses of stratified "matured" rEOs define that the epithelial pluripotent stem cell determinants, p63 and Sox2, play crucial but distinctive roles for regulating mammalian esophageal tissue homeostasis. We identify two cell populations, p63+Sox2+ and p63-Sox2+, of which the p63+Sox2+ population presented at the basal layer is the cells of origin required for esophageal epithelial stemness maintenance and proliferation, whereas the p63-Sox2+ population presented at the suprabasal layers is the cells of origin having a dual role for esophageal epithelial differentiation (differentiation-prone fate) and rapid tissue damage-repair responses (proliferation-prone fate). Given the fact that p63 and Sox2 are developmental lineage oncogenes and commonly overexpressed in ESCC tissues, p63-Sox2+ population could not be detected in organoids formed by esophageal squamous cell carcinoma (ESCC) cell lines. Taken together, these findings reveal that the tissue homeostasis is maintained distinctively by p63 and/or Sox2-dependent cell lineage populations required for the tissue renewing, damage-repair and protection of carcinogenesis in mammalian esophagi.
Collapse
Affiliation(s)
- Xiaohong Yu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Hui Yuan
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yanan Yang
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Wei Zheng
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xuejing Zheng
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Departments of Orthopedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Shih-Hsin Lu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Wei Jiang
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Xiying Yu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
17
|
Liu H, Wang X. Esophageal organoids: applications and future prospects. J Mol Med (Berl) 2023; 101:931-945. [PMID: 37380866 DOI: 10.1007/s00109-023-02340-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/26/2023] [Accepted: 06/14/2023] [Indexed: 06/30/2023]
Abstract
Organoids have been developed in the last decade as a new research tool to simulate organ cell biology and disease. Compared to traditional 2D cell lines and animal models, experimental data based on esophageal organoids are more reliable. In recent years, esophageal organoids derived from multiple cell sources have been established, and relatively mature culture protocols have been developed. Esophageal inflammation and cancer are two directions of esophageal organoid modeling, and organoid models of esophageal adenocarcinoma, esophageal squamous cell carcinoma, and eosinophilic esophagitis have been established. The properties of esophageal organoids, which mimic the real esophagus, contribute to research in drug screening and regenerative medicine. The combination of organoids with other technologies, such as organ chips and xenografts, can complement the deficiencies of organoids and create entirely new research models that are more advantageous for cancer research. In this review, we will summarize the development of tumor and non-tumor esophageal organoids, the current application of esophageal organoids in disease modeling, regenerative medicine, and drug screening. We will also discuss the future prospects of esophageal organoids.
Collapse
Affiliation(s)
- Hongyuan Liu
- Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xianli Wang
- Shanghai Jiao Tong University, School of Public Health, Shanghai, 200025, China.
| |
Collapse
|
18
|
A Kaleidoscope of Keratin Gene Expression and the Mosaic of Its Regulatory Mechanisms. Int J Mol Sci 2023; 24:ijms24065603. [PMID: 36982676 PMCID: PMC10052683 DOI: 10.3390/ijms24065603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Keratins are a family of intermediate filament-forming proteins highly specific to epithelial cells. A combination of expressed keratin genes is a defining property of the epithelium belonging to a certain type, organ/tissue, cell differentiation potential, and at normal or pathological conditions. In a variety of processes such as differentiation and maturation, as well as during acute or chronic injury and malignant transformation, keratin expression undergoes switching: an initial keratin profile changes accordingly to changed cell functions and location within a tissue as well as other parameters of cellular phenotype and physiology. Tight control of keratin expression implies the presence of complex regulatory landscapes within the keratin gene loci. Here, we highlight patterns of keratin expression in different biological conditions and summarize disparate data on mechanisms controlling keratin expression at the level of genomic regulatory elements, transcription factors (TFs), and chromatin spatial structure.
Collapse
|
19
|
Nikonorova VG, Chrishtop VV, Mironov VA, Prilepskii AY. Advantages and Potential Benefits of Using Organoids in Nanotoxicology. Cells 2023; 12:cells12040610. [PMID: 36831277 PMCID: PMC9954166 DOI: 10.3390/cells12040610] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023] Open
Abstract
Organoids are microtissues that recapitulate the complex structural organization and functions of tissues and organs. Nanoparticles have several specific properties that must be considered when replacing animal models with in vitro studies, such as the formation of a protein corona, accumulation, ability to overcome tissue barriers, and different severities of toxic effects in different cell types. An increase in the number of articles on toxicology research using organoid models is related to an increase in publications on organoids in general but is not related to toxicology-based publications. We demonstrate how the quantitative assessment of toxic changes in the structure of organoids and the state of their cell collections provide more valuable results for toxicological research and provide examples of research methods. The impact of the tested materials on organoids and their differences are also discussed. In conclusion, we highlight the main challenges, the solution of which will allow researchers to approach the replacement of in vivo research with in vitro research: biobanking and standardization of the structural characterization of organoids, and the development of effective screening imaging techniques for 3D organoid cell organization.
Collapse
|
20
|
Kumar A, Cai S, Allam M, Henderson S, Ozbeyler M, Saiontz L, Coskun AF. Single-Cell and Spatial Analysis of Emergent Organoid Platforms. Methods Mol Biol 2023; 2660:311-344. [PMID: 37191807 DOI: 10.1007/978-1-0716-3163-8_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Organoids have emerged as a promising advancement of the two-dimensional (2D) culture systems to improve studies in organogenesis, drug discovery, precision medicine, and regenerative medicine applications. Organoids can self-organize as three-dimensional (3D) tissues derived from stem cells and patient tissues to resemble organs. This chapter presents growth strategies, molecular screening methods, and emerging issues of the organoid platforms. Single-cell and spatial analysis resolve organoid heterogeneity to obtain information about the structural and molecular cellular states. Culture media diversity and varying lab-to-lab practices have resulted in organoid-to-organoid variability in morphology and cell compositions. An essential resource is an organoid atlas that can catalog protocols and standardize data analysis for different organoid types. Molecular profiling of individual cells in organoids and data organization of the organoid landscape will impact biomedical applications from basic science to translational use.
Collapse
Affiliation(s)
- Aditi Kumar
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Shuangyi Cai
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Mayar Allam
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Samuel Henderson
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Melissa Ozbeyler
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Lilly Saiontz
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Ahmet F Coskun
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
- Interdisciplinary Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, GA, USA.
- Parker H. Petit Institute for Bioengineering and Bioscience, , Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
21
|
Doyle AD, Masuda MY, Pyon GC, Luo H, Putikova A, LeSuer WE, Flashner S, Rank MA, Nakagawa H, Kita H, Wright BL. Detergent exposure induces epithelial barrier dysfunction and eosinophilic inflammation in the esophagus. Allergy 2023; 78:192-201. [PMID: 35899466 PMCID: PMC9797443 DOI: 10.1111/all.15457] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 01/21/2023]
Abstract
BACKGROUND Eosinophilic esophagitis (EoE) is a chronic allergic disease associated with type 2 inflammation and epithelial barrier dysfunction. The etiology is unknown, however, genetic heritability studies suggest environmental factors play a key role in pathogenesis. Detergents, such as sodium dodecyl sulfate (SDS), are common ingredients in household products such as dish soap and toothpaste. We hypothesized detergent exposure decreases epithelial barrier function and induces esophageal inflammation. METHODS Immortalized esophageal epithelial cells (EPC2) were cultured in air-liquid interface (ALI) and exposed to SDS. Barrier function/activity was assessed by transepithelial electrical resistance (TEER), FITC-dextran flux, and RT-PCR. Additionally, SDS-treated mouse esophageal organoids were evaluated for morphology. To investigate the effects of SDS in vivo, mice were treated with 0.5% SDS in drinking water for 14 days. Esophagi were assessed by gross morphology, histopathology, protein expression, and bulk RNA sequencing. RESULTS When EPC2 cells were exposed to SDS (5 μg/ml) for 96 h, TEER decreased (p = 0.03), and FITC-dextran flux increased (p = 0.0002). mRNA expression of IL-33 increased 4.5-fold (p = 0.02) at 6 h and DSG1 decreased (p < 0.0001) by 72 h. Disrupted epithelial integrity was noted in SDS-treated esophageal organoids. When mice were exposed to SDS, they showed increased esophageal width, chemokine, and metalloprotease levels. Mice treated with SDS also showed increased IL-33 protein expression, basal zone hyperplasia, CD4+ cell infiltration, and esophageal eosinophilia. RNA sequencing revealed upregulation of immune response pathway genes. CONCLUSION Exposure to SDS decreases esophageal barrier integrity, stimulates IL-33 production, and promotes epithelial hyperplasia and tissue eosinophilia. Detergents may be a key environmental trigger in EoE pathogenesis.
Collapse
Affiliation(s)
- Alfred D Doyle
- Division of Allergy, Asthma, and Clinical Immunology, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - Mia Y Masuda
- Division of Allergy, Asthma, and Clinical Immunology, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - Grace C Pyon
- Division of Allergy, Asthma, and Clinical Immunology, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - Huijun Luo
- Division of Allergy, Asthma, and Clinical Immunology, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - Arina Putikova
- Division of Allergy, Asthma, and Clinical Immunology, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - William E LeSuer
- Division of Allergy, Asthma, and Clinical Immunology, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - Samuel Flashner
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York, USA
| | - Matthew A Rank
- Division of Allergy, Asthma, and Clinical Immunology, Mayo Clinic Arizona, Scottsdale, Arizona, USA
- Division of Pulmonology, Section of Allergy and Immunology, Phoenix Children's Hospital, Phoenix, Arizona, USA
| | - Hiroshi Nakagawa
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York, USA
| | - Hirohito Kita
- Division of Allergy, Asthma, and Clinical Immunology, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - Benjamin L Wright
- Division of Allergy, Asthma, and Clinical Immunology, Mayo Clinic Arizona, Scottsdale, Arizona, USA
- Division of Pulmonology, Section of Allergy and Immunology, Phoenix Children's Hospital, Phoenix, Arizona, USA
| |
Collapse
|
22
|
Flashner S, Martin C, Matsuura N, Shimonosono M, Tomita Y, Morimoto M, Okolo O, Yu VX, Parikh AS, Klein-Szanto AJP, Yan K, Gabre JT, Lu C, Momen-Heravi F, Rustgi AK, Nakagawa H. Modeling Oral-Esophageal Squamous Cell Carcinoma in 3D Organoids. J Vis Exp 2022:10.3791/64676. [PMID: 36622034 PMCID: PMC10037110 DOI: 10.3791/64676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is prevalent worldwide, accounting for 90% of all esophageal cancer cases each year, and is the deadliest of all human squamous cell carcinomas. Despite recent progress in defining the molecular changes accompanying ESCC initiation and development, patient prognosis remains poor. The functional annotation of these molecular changes is the necessary next step and requires models that both capture the molecular features of ESCC and can be readily and inexpensively manipulated for functional annotation. Mice treated with the tobacco smoke mimetic 4-nitroquinoline 1-oxide (4NQO) predictably form ESCC and esophageal preneoplasia. Of note, 4NQO lesions also arise in the oral cavity, most commonly in the tongue, as well as the forestomach, which all share the stratified squamous epithelium. However, these mice cannot be simply manipulated for functional hypothesis testing, as generating isogenic mouse models is time- and resource-intensive. Herein, we overcome this limitation by generating single cell-derived three-dimensional (3D) organoids from mice treated with 4NQO to characterize murine ESCC or preneoplastic cells ex vivo. These organoids capture the salient features of ESCC and esophageal preneoplasia, can be cheaply and quickly leveraged to form isogenic models, and can be utilized for syngeneic transplantation experiments. We demonstrate how to generate 3D organoids from normal, preneoplastic, and SCC murine esophageal tissue and maintain and cryopreserve these organoids. The applications of these versatile organoids are broad and include the utilization of genetically engineered mice and further characterization by flow cytometry or immunohistochemistry, the generation of isogeneic organoid lines using CRISPR technologies, and drug screening or syngeneic transplantation. We believe that the widespread adoption of the techniques demonstrated in this protocol will accelerate progress in this field to combat the severe burden of ESCC.
Collapse
Affiliation(s)
- Samuel Flashner
- Herbert Irving Comprehensive Cancer Center, Columbia University
| | - Cecilia Martin
- Herbert Irving Comprehensive Cancer Center, Columbia University; Organoid and Cell Culture Core, Columbia University Digestive and Liver Diseases Research Center, Columbia University
| | | | | | - Yasuto Tomita
- Herbert Irving Comprehensive Cancer Center, Columbia University
| | - Masaki Morimoto
- Herbert Irving Comprehensive Cancer Center, Columbia University
| | | | - Victoria X Yu
- Herbert Irving Comprehensive Cancer Center, Columbia University; Department of Otolaryngology, Head and Neck Surgery, Columbia University
| | - Anuraag S Parikh
- Herbert Irving Comprehensive Cancer Center, Columbia University; Department of Otolaryngology, Head and Neck Surgery, Columbia University
| | | | - Kelley Yan
- Herbert Irving Comprehensive Cancer Center, Columbia University; Organoid and Cell Culture Core, Columbia University Digestive and Liver Diseases Research Center, Columbia University
| | - Joel T Gabre
- Herbert Irving Comprehensive Cancer Center, Columbia University; Division of Digestive and Liver Diseases, Department of Medicine, Columbia University
| | - Chao Lu
- Herbert Irving Comprehensive Cancer Center, Columbia University; Department of Genetics and Development, Columbia University
| | - Fatemeh Momen-Heravi
- Herbert Irving Comprehensive Cancer Center, Columbia University; Section of Oral, Diagnostic and Rehabilitation Sciences, College of Dental Medicine, Columbia University
| | - Anil K Rustgi
- Herbert Irving Comprehensive Cancer Center, Columbia University; Division of Digestive and Liver Diseases, Department of Medicine, Columbia University
| | - Hiroshi Nakagawa
- Herbert Irving Comprehensive Cancer Center, Columbia University; Organoid and Cell Culture Core, Columbia University Digestive and Liver Diseases Research Center, Columbia University; Division of Digestive and Liver Diseases, Department of Medicine, Columbia University;
| |
Collapse
|
23
|
Venkitachalam S, Babu D, Ravillah D, Katabathula RM, Joseph P, Singh S, Udhayakumar B, Miao Y, Martinez-Uribe O, Hogue JA, Kresak AM, Dawson D, LaFramboise T, Willis JE, Chak A, Garman KS, Blum AE, Varadan V, Guda K. The Ephrin B2 Receptor Tyrosine Kinase Is a Regulator of Proto-oncogene MYC and Molecular Programs Central to Barrett's Neoplasia. Gastroenterology 2022; 163:1228-1241. [PMID: 35870513 PMCID: PMC9613614 DOI: 10.1053/j.gastro.2022.07.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 06/20/2022] [Accepted: 07/12/2022] [Indexed: 01/12/2023]
Abstract
BACKGROUND & AIMS Mechanisms contributing to the onset and progression of Barrett's (BE)-associated esophageal adenocarcinoma (EAC) remain elusive. Here, we interrogated the major signaling pathways deregulated early in the development of Barrett's neoplasia. METHODS Whole-transcriptome RNA sequencing analysis was performed in primary BE, EAC, normal esophageal squamous, and gastric biopsy tissues (n = 89). Select pathway components were confirmed by quantitative polymerase chain reaction in an independent cohort of premalignant and malignant biopsy tissues (n = 885). Functional impact of selected pathway was interrogated using transcriptomic, proteomic, and pharmacogenetic analyses in mammalian esophageal organotypic and patient-derived BE/EAC cell line models, in vitro and/or in vivo. RESULTS The vast majority of primary BE/EAC tissues and cell line models showed hyperactivation of EphB2 signaling. Transcriptomic/proteomic analyses identified EphB2 as an endogenous binding partner of MYC binding protein 2, and an upstream regulator of c-MYC. Knockdown of EphB2 significantly impeded the viability/proliferation of EAC and BE cells in vitro/in vivo. Activation of EphB2 in normal esophageal squamous 3-dimensional organotypes disrupted epithelial maturation and promoted columnar differentiation programs, notably including MYC. EphB2 and MYC showed selective induction in esophageal submucosal glands with acinar ductal metaplasia, and in a porcine model of BE-like esophageal submucosal gland spheroids. Clinically approved inhibitors of MEK, a protein kinase that regulates MYC, effectively suppressed EAC tumor growth in vivo. CONCLUSIONS The EphB2 signaling is frequently hyperactivated across the BE-EAC continuum. EphB2 is an upstream regulator of MYC, and activation of EphB2-MYC axis likely precedes BE development. Targeting EphB2/MYC could be a promising therapeutic strategy for this often refractory and aggressive cancer.
Collapse
Affiliation(s)
- Srividya Venkitachalam
- Division of General Medical Sciences-Oncology, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Deepak Babu
- Division of General Medical Sciences-Oncology, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Durgadevi Ravillah
- Division of General Medical Sciences-Oncology, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Ramachandra M Katabathula
- Division of General Medical Sciences-Oncology, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Peronne Joseph
- Division of General Medical Sciences-Oncology, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Salendra Singh
- Division of General Medical Sciences-Oncology, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Bhavatharini Udhayakumar
- Division of General Medical Sciences-Oncology, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Yanling Miao
- Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Omar Martinez-Uribe
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, North Carolina
| | - Joyce A Hogue
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, North Carolina
| | - Adam M Kresak
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Dawn Dawson
- Division of General Medical Sciences-Oncology, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio; Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Thomas LaFramboise
- Division of General Medical Sciences-Oncology, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio; Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Joseph E Willis
- Division of General Medical Sciences-Oncology, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio; Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Amitabh Chak
- Division of General Medical Sciences-Oncology, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio; Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Katherine S Garman
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, North Carolina
| | - Andrew E Blum
- Division of General Medical Sciences-Oncology, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio; Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio; Division of Gastroenterology, Northeast Ohio Veteran Affairs Healthcare System, Cleveland, Ohio
| | - Vinay Varadan
- Division of General Medical Sciences-Oncology, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio.
| | - Kishore Guda
- Division of General Medical Sciences-Oncology, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio; Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio; Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio.
| |
Collapse
|
24
|
Garcia E, Ladak Z, Landry T, Wollin M, Persad ARL, Sergi CM, Huynh HQ, Persad R, Persad S. Epithelial-mesenchymal transition, regulated by β-catenin and Twist, leads to esophageal wall remodeling in pediatric eosinophilic esophagitis. PLoS One 2022; 17:e0264622. [PMID: 35239721 PMCID: PMC8893662 DOI: 10.1371/journal.pone.0264622] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 02/14/2022] [Indexed: 01/07/2023] Open
Abstract
Eosinophilic Esophagitis (EoE) is an antigen-triggered inflammatory condition of the esophageal lining characterized by eosinophilic infiltration. EoE is associated with significant remodeling, and although this remodeling is reversed by current treatment regimens, symptoms of EoE and associated remodeling reappear upon cessation of therapies. We hypothesized that structural remodeling of cell-cell adhesion is a key factor in the pathogenesis of EoE and that epithelial to mesenchymal transition (EMT) was a viable molecular process to lead to this remodeling. Endoscopically obtained biopsy samples from 18 EoE and 18 control pediatric patients were evaluated by transmission electron microscopy to measure intercellular spaces (IS) between cells. Biopsy samples from all groups were analyzed for cellular levels of cell-cell adhesion proteins: E-cadherin, zonula occludens associated protein-1 (ZO-1), and N-cadherin. We also analyzed for cellular levels and localization two of transcription factors, Twist1 and β-catenin, that are associated with promoting EMT. The IS was significantly increased in the EoE group compared to the control. We observed a significant decrease in E-cadherin and ZO-1 levels and a concomitant increase in N-cadherin levels in EoE samples compared to control. Further, while there was no significant change in cellular levels of β-catenin, we observed an altered localization of the protein from the cell membrane in control tissue to a nuclear/perinuclear localization in EoE. We observed higher levels of the transcription factor Twist1 in the EoE group compared to normal which was localized mainly at the nucleus. Our results suggest that the integrity of normally sealed esophageal epithelia is compromised in the EoE patients compared to control subjects, and this is due to alterations in the expression of cell adhesion molecules at the esophageal epithelium. Our data also suggest that EMT, potentially regulated by transcription factors β-catenin and Twist1, may be responsible for the molecular alteration which leads to the remodeling of esophageal epithelia in EoE.
Collapse
Affiliation(s)
- Elizabeth Garcia
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Zeenat Ladak
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Takaaki Landry
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Michael Wollin
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Amit R. L. Persad
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Consolato M. Sergi
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Hien Q. Huynh
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | | | - Sujata Persad
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
25
|
Barrett's Metaplasia Progression towards Esophageal Adenocarcinoma: An Attempt to Select a Panel of Molecular Sensors and to Reflect Clinical Alterations by Experimental Models. Int J Mol Sci 2022; 23:ijms23063312. [PMID: 35328735 PMCID: PMC8955539 DOI: 10.3390/ijms23063312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 02/06/2023] Open
Abstract
The molecular processes that predispose the development of Barrett’s esophagus (BE) towards esophageal adenocarcinoma (EAC) induced by gastrointestinal reflux disease (GERD) are still under investigation. In this study, based on a scientific literature screening and an analysis of clinical datasets, we selected a panel of 20 genes covering BE- and EAC-specific molecular markers (FZD5, IFNGR1, IL1A, IL1B, IL1R1, IL1RN, KRT4, KRT8, KRT15, KRT18, NFKBIL1, PTGS1, PTGS2, SOCS3, SOX4, SOX9, SOX15, TIMP1, TMEM2, TNFRSF10B). Furthermore, we aimed to reflect these alterations within an experimental and translational in vitro model of BE to EAC progression. We performed a comparison between expression profiles in GSE clinical databases with an in vitro model of GERD involving a BE cell line (BAR-T) and EAC cell lines (OE33 and OE19). Molecular responses of cells treated with acidified bile mixture (BM) at concentration of 100 and 250 μM for 30 min per day were evaluated. We also determined a basal mRNA expression within untreated, wild type cell lines on subsequent stages of BE and EAC development. We observed that an appropriately optimized in vitro model based on the combination of BAR-T, OE33 and OE19 cell lines reflects in 65% and more the clinical molecular alterations observed during BE and EAC development. We also confirmed previous observations that exposure to BM (GERD in vitro) activated carcinogenesis in non-dysplastic cells, inducing molecular alternations in the advanced stages of BE. We conclude that it is possible to induce, to a high extent, the molecular profile observed clinically within appropriately and carefully optimized experimental models, triggering EAC development. This experimental scheme and molecular marker panel might be implemented in further research, e.g., aiming to develop and evaluate novel compounds and prodrugs targeting GERD as well as BE and EAC prevention and treatment.
Collapse
|
26
|
A new murine esophageal organoid culture method and organoid-based model of esophageal squamous cell neoplasia. iScience 2021; 24:103440. [PMID: 34877497 PMCID: PMC8633967 DOI: 10.1016/j.isci.2021.103440] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/07/2021] [Accepted: 11/10/2021] [Indexed: 02/07/2023] Open
Abstract
Organoids mimic the physiologic and pathologic events of organs. However, no consensus on esophageal organoid (EO) culture methods has been reached. Moreover, organoid models reproducing esophageal squamous cell carcinoma (ESCC) initiation have been unavailable. Herein, we sought to develop an esophageal minimum essential organoid culture medium (E-MEOM) for culturing murine EOs and establishing an early ESCC model. We formulated E-MEOM to grow EOs from a single cell with clonal expansion, maintenance, and passage. We found that EOs cultured in E-MEOM were equivalent to the esophageal epithelium by histological analysis and transcriptomic study. Trp53 knockout and KrasG12D expression in EOs induced the development of esophageal squamous neoplasia, an early lesion of ESCC. Here we propose the new formula for EO culture with minimum components and the organoid model recapitulating ESCC initiation, laying the foundation for ESCC research and drug discovery. Identification of minimal components for murine EO growth and maintenance Mouse EOs morphologically and transcriptionally recapitulate the human esophagus Trp53 KO and KrasG12D induced esophageal neoplasia mimicking early ESCC
Collapse
|
27
|
Wang H, DeFina SM, Bajpai M, Yan Q, Yang L, Zhou Z. DNA methylation markers in esophageal cancer: an emerging tool for cancer surveillance and treatment. Am J Cancer Res 2021; 11:5644-5658. [PMID: 34873485 PMCID: PMC8640794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023] Open
Abstract
Esophageal carcinoma (EC) is one of the most pervasive cancers in the world, with upwards of 500,000 new diagnoses, annually. Despite its prominence, advancements in the detection and treatment of EC have been marginal over the past 30 years and the survival rate continues to stay below 20%. This is due to the uncommonly heterogeneous presentation of EC which presents unprecedented challenges in improving patient survival and quality of care. However, distinct epigenetic alterations to the DNA methylome may provide an avenue to drastically improve the detection and treatment of EC. Specifically, the creation of novel biomarker panels that consist of EC-specific methylation markers have shown promise as a potential alternative to the more invasive, contemporary diagnostic methods. Additionally, growing insight into the biological and clinical properties of EC-specific methylation patterns have opened a window of opportunity for enhanced treatment; of growing interest is the application of "DNMT inhibitors" - a class of drugs which inhibit excessive methylation and have been shown to re-sensitize chemoresistant tumors. Here we provide a comprehensive review of the current advancements in EC DNA methylation to underscore a potential approach to its detection and treatment.
Collapse
Affiliation(s)
- He Wang
- Department of Pathology, Yale School of Medicine, Yale UniversityNew Haven, Connecticut, United States
| | - Samuel M DeFina
- Department of Pathology, Yale School of Medicine, Yale UniversityNew Haven, Connecticut, United States
| | - Manisha Bajpai
- Department of Medicine-Gastroenterology and Hepatology, Rutgers-Robert Wood Johnson Medical School, Rutgers The State University of New JerseyNew Brunswick, NJ, United States
| | - Qin Yan
- Department of Pathology, Yale School of Medicine, Yale UniversityNew Haven, Connecticut, United States
| | - Lei Yang
- Department of Pathology, Yale School of Medicine, Yale UniversityNew Haven, Connecticut, United States
| | - Zhongren Zhou
- Department of Pathology & Laboratory Medicine, Rutgers-Robert Wood Johnson Medical School, Rutgers The State University of New JerseyNew Brunswick, NJ, United States
| |
Collapse
|
28
|
Peake JD, Noguchi C, Lin B, Theriault A, O'Connor M, Sheth S, Tanaka K, Nakagawa H, Noguchi E. FANCD2 limits acetaldehyde-induced genomic instability during DNA replication in esophageal keratinocytes. Mol Oncol 2021; 15:3109-3124. [PMID: 34328261 PMCID: PMC8564632 DOI: 10.1002/1878-0261.13072] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 05/22/2021] [Accepted: 07/29/2021] [Indexed: 12/04/2022] Open
Abstract
Individuals with Fanconi anemia (FA), a rare genetic bone marrow failure syndrome, have an increased risk of young-onset head and neck squamous cell carcinomas (SCCs) and esophageal SCC. The FA DNA repair pathway is activated upon DNA damage induced by acetaldehyde, a chief alcohol metabolite and one of the major carcinogens in humans. However, the molecular basis of acetaldehyde-induced genomic instability in SCCs of the head and neck and of the esophagus in FA remains elusive. Here, we report the effects of acetaldehyde on replication stress response in esophageal epithelial cells (keratinocytes). Acetaldehyde-exposed esophageal keratinocytes displayed accumulation of DNA damage foci consisting of 53BP1 and BRCA1. At physiologically relevant concentrations, acetaldehyde activated the ATR-Chk1 pathway, leading to S- and G2/M-phase delay with accumulation of the FA complementation group D2 protein (FANCD2) at the sites of DNA synthesis, suggesting that acetaldehyde impedes replication fork progression. Consistently, depletion of the replication fork protection protein Timeless led to elevated DNA damage upon acetaldehyde exposure. Furthermore, FANCD2 depletion exacerbated replication abnormalities, elevated DNA damage, and led to apoptotic cell death, indicating that FANCD2 prevents acetaldehyde-induced genomic instability in esophageal keratinocytes. These observations contribute to our understanding of the mechanisms that drive genomic instability in FA patients and alcohol-related carcinogenesis, thereby providing a translational implication in the development of more effective therapies for SCCs.
Collapse
Affiliation(s)
- Jasmine D. Peake
- Program in Molecular and Cellular Biology and GeneticsGraduate School of Biomedical Sciences and Professional StudiesDrexel University College of MedicinePhiladelphiaPAUSA
| | - Chiaki Noguchi
- Department of Biochemistry and Molecular BiologyDrexel University College of MedicinePhiladelphiaPAUSA
| | - Baicheng Lin
- Program in Molecular and Cellular Biology and GeneticsGraduate School of Biomedical Sciences and Professional StudiesDrexel University College of MedicinePhiladelphiaPAUSA
| | - Amber Theriault
- Program in Cancer BiologyGraduate School of Biomedical Sciences and Professional StudiesDrexel University College of MedicinePhiladelphiaPAUSA
| | - Margaret O'Connor
- Program in Molecular and Cellular Biology and GeneticsGraduate School of Biomedical Sciences and Professional StudiesDrexel University College of MedicinePhiladelphiaPAUSA
| | - Shivani Sheth
- Program in Cancer BiologyGraduate School of Biomedical Sciences and Professional StudiesDrexel University College of MedicinePhiladelphiaPAUSA
| | - Koji Tanaka
- Gastroenterology DivisionDepartment of MedicineUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
- Present address:
Department of Gastroenterological SurgeryGraduate School of MedicineOsaka UniversitySuitaJapan
| | - Hiroshi Nakagawa
- Gastroenterology DivisionDepartment of MedicineUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
- Division of Digestive and Liver DiseasesDepartment of MedicineColumbia University Herbert Irving Comprehensive Cancer CenterNew YorkNYUSA
| | - Eishi Noguchi
- Department of Biochemistry and Molecular BiologyDrexel University College of MedicinePhiladelphiaPAUSA
| |
Collapse
|
29
|
Shimonosono M, Tanaka K, Flashner S, Takada S, Matsuura N, Tomita Y, Sachdeva UM, Noguchi E, Sangwan V, Ferri L, Momen-Heravi F, Yoon AJ, Klein-Szanto AJ, Diehl JA, Nakagawa H. Alcohol Metabolism Enriches Squamous Cell Carcinoma Cancer Stem Cells That Survive Oxidative Stress via Autophagy. Biomolecules 2021; 11:1479. [PMID: 34680112 PMCID: PMC8533166 DOI: 10.3390/biom11101479] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Alcohol (ethanol) consumption is a major risk factor for head and neck and esophageal squamous cell carcinomas (SCCs). However, how ethanol (EtOH) affects SCC homeostasis is incompletely understood. METHODS We utilized three-dimensional (3D) organoids and xenograft tumor transplantation models to investigate how EtOH exposure influences intratumoral SCC cell populations including putative cancer stem cells defined by high CD44 expression (CD44H cells). RESULTS Using 3D organoids generated from SCC cell lines, patient-derived xenograft tumors, and patient biopsies, we found that EtOH is metabolized via alcohol dehydrogenases to induce oxidative stress associated with mitochondrial superoxide generation and mitochondrial depolarization, resulting in apoptosis of the majority of SCC cells within organoids. However, CD44H cells underwent autophagy to negate EtOH-induced mitochondrial dysfunction and apoptosis and were subsequently enriched in organoids and xenograft tumors when exposed to EtOH. Importantly, inhibition of autophagy increased EtOH-mediated apoptosis and reduced CD44H cell enrichment, xenograft tumor growth, and organoid formation rate. CONCLUSIONS This study provides mechanistic insights into how EtOH may influence SCC cells and establishes autophagy as a potential therapeutic target for the treatment of EtOH-associated SCC.
Collapse
Affiliation(s)
- Masataka Shimonosono
- Herbert Irving Comprehensive Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA; (M.S.); (S.F.); (S.T.); (N.M.); (Y.T.); (U.M.S.); (F.M.-H.); (A.J.Y.)
| | - Koji Tanaka
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan;
| | - Samuel Flashner
- Herbert Irving Comprehensive Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA; (M.S.); (S.F.); (S.T.); (N.M.); (Y.T.); (U.M.S.); (F.M.-H.); (A.J.Y.)
| | - Satoshi Takada
- Herbert Irving Comprehensive Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA; (M.S.); (S.F.); (S.T.); (N.M.); (Y.T.); (U.M.S.); (F.M.-H.); (A.J.Y.)
| | - Norihiro Matsuura
- Herbert Irving Comprehensive Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA; (M.S.); (S.F.); (S.T.); (N.M.); (Y.T.); (U.M.S.); (F.M.-H.); (A.J.Y.)
| | - Yasuto Tomita
- Herbert Irving Comprehensive Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA; (M.S.); (S.F.); (S.T.); (N.M.); (Y.T.); (U.M.S.); (F.M.-H.); (A.J.Y.)
| | - Uma M. Sachdeva
- Herbert Irving Comprehensive Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA; (M.S.); (S.F.); (S.T.); (N.M.); (Y.T.); (U.M.S.); (F.M.-H.); (A.J.Y.)
- Department of Surgery, Division of Thoracic Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Eishi Noguchi
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA;
| | - Veena Sangwan
- Department of Surgery, Montreal General Hospital, McGill University, Montreal, QC H3G 1A4, Canada; (V.S.); (L.F.)
| | - Lorenzo Ferri
- Department of Surgery, Montreal General Hospital, McGill University, Montreal, QC H3G 1A4, Canada; (V.S.); (L.F.)
| | - Fatemeh Momen-Heravi
- Herbert Irving Comprehensive Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA; (M.S.); (S.F.); (S.T.); (N.M.); (Y.T.); (U.M.S.); (F.M.-H.); (A.J.Y.)
- Cancer Biology and Immunology Laboratory, College of Dental Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Angela J. Yoon
- Herbert Irving Comprehensive Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA; (M.S.); (S.F.); (S.T.); (N.M.); (Y.T.); (U.M.S.); (F.M.-H.); (A.J.Y.)
- Department of Pathology & Cell Biology, Division of Oral & Maxillofacial Pathology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | | | - J. Alan Diehl
- Case Comprehensive Cancer Center, Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - Hiroshi Nakagawa
- Herbert Irving Comprehensive Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA; (M.S.); (S.F.); (S.T.); (N.M.); (Y.T.); (U.M.S.); (F.M.-H.); (A.J.Y.)
- Department of Medicine, Division of Digestive and Liver Diseases, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
30
|
Maehara O, Suda G, Natsuizaka M, Shigesawa T, Kanbe G, Kimura M, Sugiyama M, Mizokami M, Nakai M, Sho T, Morikawa K, Ogawa K, Ohashi S, Kagawa S, Kinugasa H, Naganuma S, Okubo N, Ohnishi S, Takeda H, Sakamoto N. FGFR2 maintains cancer cell differentiation via AKT signaling in esophageal squamous cell carcinoma. Cancer Biol Ther 2021; 22:372-380. [PMID: 34224333 DOI: 10.1080/15384047.2021.1939638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Fibroblast growth factors (FGFs) and their receptors (FGFRs) are important for signaling to maintain cancer stem-like cells (CSCs) in esophageal squamous cell carcinoma (ESCC). However, which FGF receptor, 1, 2, 3, 4, and L1, is essential or whether FGFRs have distinct different roles in ESCC-CSCs is still in question. This study shows that FGFR2, particularly the IIIb isoform, is highly expressed in non-CSCs. Non-CSCs have an epithelial phenotype, and such cells are more differentiated in ESCC. Further, FGFR2 induces keratinocyte differentiation through AKT but not MAPK signaling and diminishes CSC populations. Conversely, knockdown of FGFR2 induces epithelial-mesenchymal transition (EMT) and enriches CSC populations in ESCC. Finally, data analysis using The Cancer Genome Atlas (TCGA) dataset shows that expression of FGFR2 significantly correlated with cancer cell differentiation in clinical ESCC samples. The present study shows that each FGFR has a distinct role and FGFR2-AKT signaling is a key driver of keratinocyte differentiation in ESCC. Activation of FGFR2-AKT signaling could be a future therapeutic option targeting CSC in ESCC.
Collapse
Affiliation(s)
- Osamu Maehara
- Department of Pathophysiology and Therapeutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Goki Suda
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Mitsuteru Natsuizaka
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan.,Department of Internal Medicine, Natsuizaka Clinic, Sapporo, Japan
| | - Taku Shigesawa
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Gouki Kanbe
- Department of Pathophysiology and Therapeutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Megumi Kimura
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Masaya Sugiyama
- Genome Medical Sciences Project, National Center for Global Health Medicine, Tokyo, Japan
| | - Masashi Mizokami
- Genome Medical Sciences Project, National Center for Global Health Medicine, Tokyo, Japan
| | - Masato Nakai
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Takuya Sho
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Kenichi Morikawa
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Koji Ogawa
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Shinya Ohashi
- Department of Therapeutic Oncology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shingo Kagawa
- Department of General Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Hideaki Kinugasa
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Seiji Naganuma
- Department of Pathology, Kochi Medical School, Kochi, Japan
| | - Naoto Okubo
- Department of Pathophysiology and Therapeutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Shunsuke Ohnishi
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Hiroshi Takeda
- Department of Pathophysiology and Therapeutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Naoya Sakamoto
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
31
|
Nakagawa H, Kasagi Y, Karakasheva TA, Hara T, Aaron B, Shimonosono M, Kijima T, Giroux V, Bailey D, Wilkins B, Abrams JA, Falk GW, Aceves SS, Spergel JM, Hamilton KE, Whelan KA, Muir AB. Modeling Epithelial Homeostasis and Reactive Epithelial Changes in Human and Murine Three-Dimensional Esophageal Organoids. ACTA ACUST UNITED AC 2021; 52:e106. [PMID: 32105412 DOI: 10.1002/cpsc.106] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The homeostatic proliferation-differentiation gradient in the esophageal epithelium is perturbed under inflammatory disease conditions such as gastroesophageal reflux disease and eosinophilic esophagitis. Herein we describe the protocols for rapid generation (<14 days) and characterization of single-cell-derived, three-dimensional (3D) esophageal organoids from human subjects and mice with normal esophageal mucosa or inflammatory disease conditions. While 3D organoids recapitulate normal epithelial renewal, proliferation, and differentiation, non-cell autonomous reactive epithelial changes under inflammatory conditions are evaluated in the absence of the inflammatory milieu. Reactive epithelial changes are reconstituted upon exposure to exogenous recombinant cytokines. These changes are modulated pharmacologically or genetically ex vivo. Molecular, structural, and functional changes are characterized by morphology, flow cytometry, biochemistry, and gene expression analyses. Esophageal 3D organoids can be translated for the development of personalized medicine in assessment of individual cytokine sensitivity and molecularly targeted therapeutics in esophagitis patients © 2020 by John Wiley & Sons, Inc. Basic Protocol 1: Generation of esophageal organoids from biopsy or murine esophageal epithelial sheets Basic Protocol 2: Propagation and cryopreservation of esophageal organoids Basic Protocol 3: Harvesting of esophageal organoids for RNA isolation, immunohistochemistry, and evaluation of 3D architecture Basic Protocol 4: Modeling of reactive epithelium in esophageal organoids.
Collapse
Affiliation(s)
- Hiroshi Nakagawa
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York.,Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
| | - Yuta Kasagi
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Epithelial Biology Center, Department of Pediatrics, Perlman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Tatiana A Karakasheva
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Epithelial Biology Center, Department of Pediatrics, Perlman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Takeo Hara
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Epithelial Biology Center, Department of Pediatrics, Perlman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Bailey Aaron
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Epithelial Biology Center, Department of Pediatrics, Perlman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Masataka Shimonosono
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York.,Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
| | - Takashi Kijima
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York.,Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
| | - Veronique Giroux
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Canada
| | - Dominique Bailey
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York.,Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Columbia University Irving Medical Center, New York, New York
| | - Benjamin Wilkins
- Department of Pathology and Laboratory Medicine, Perlman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Julian A Abrams
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Gary W Falk
- Division of Gastroenterology, Department of Medicine, Perlman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Seema S Aceves
- Division of Allergy & Immunology, Rady Children's Hospital-San Diego, San Diego, California
| | - Jonathan M Spergel
- Epithelial Biology Center, Department of Pediatrics, Perlman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Division of Allergy and Immunology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Kathryn E Hamilton
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Epithelial Biology Center, Department of Pediatrics, Perlman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kelly A Whelan
- Department of Pathology & Laboratory Medicine, Fels Institute for Cancer Research & Molecular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Amanda B Muir
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Epithelial Biology Center, Department of Pediatrics, Perlman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
32
|
Karakasheva TA, Kijima T, Shimonosono M, Maekawa H, Sahu V, Gabre JT, Cruz-Acuña R, Giroux V, Sangwan V, Whelan KA, Natsugoe S, Yoon AJ, Philipone E, Klein-Szanto AJ, Ginsberg GG, Falk GW, Abrams JA, Que J, Basu D, Ferri L, Diehl JA, Bass AJ, Wang TC, Rustgi AK, Nakagawa H. Generation and Characterization of Patient-Derived Head and Neck, Oral, and Esophageal Cancer Organoids. ACTA ACUST UNITED AC 2021; 53:e109. [PMID: 32294323 DOI: 10.1002/cpsc.109] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Esophageal cancers comprise adenocarcinoma and squamous cell carcinoma, two distinct histologic subtypes. Both are difficult to treat and among the deadliest human malignancies. We describe protocols to initiate, grow, passage, and characterize patient-derived organoids (PDO) of esophageal cancers, as well as squamous cell carcinomas of oral/head-and-neck and anal origin. Formed rapidly (<14 days) from a single-cell suspension embedded in basement membrane matrix, esophageal cancer PDO recapitulate the histology of the original tumors. Additionally, we provide guidelines for morphological analyses and drug testing coupled with functional assessment of cell response to conventional chemotherapeutics and other pharmacological agents in concert with emerging automated imaging platforms. Predicting drug sensitivity and potential therapy resistance mechanisms in a moderate-to-high throughput manner, esophageal cancer PDO are highly translatable in personalized medicine for customized esophageal cancer treatments. © 2020 by John Wiley & Sons, Inc. Basic Protocol 1: Generation of esophageal cancer PDO Basic Protocol 2: Propagation and cryopreservation of esophageal cancer PDO Basic Protocol 3: Imaged-based monitoring of organoid size and growth kinetics Basic Protocol 4: Harvesting esophageal cancer PDO for histological analyses Basic Protocol 5: PDO content analysis by flow cytometry Basic Protocol 6: Evaluation of drug response with determination of the half-inhibitory concentration (IC50 ) Support Protocol: Production of RN in HEK293T cell conditioned medium.
Collapse
Affiliation(s)
- Tatiana A Karakasheva
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Epithelial Biology Center, Division of Pediatric Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Takashi Kijima
- Division of Digestive and Liver Diseases, Department of Medicine and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
| | - Masataka Shimonosono
- Division of Digestive and Liver Diseases, Department of Medicine and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
| | - Hisatsugu Maekawa
- Division of Digestive and Liver Diseases, Department of Medicine and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
| | - Varun Sahu
- Division of Digestive and Liver Diseases, Department of Medicine and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
| | - Joel T Gabre
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ricardo Cruz-Acuña
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Veronique Giroux
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Veena Sangwan
- Department of Surgery, Montreal General Hospital, McGill University, Montreal, Quebec, Canada
| | - Kelly A Whelan
- Fels Institute for Cancer Research and Molecular Biology, Department of Pathology and Molecular Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Shoji Natsugoe
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Angela J Yoon
- Division of Oral & Maxillofacial Pathology and Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, New York
| | - Elizabeth Philipone
- Division of Oral & Maxillofacial Pathology and Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, New York
| | | | - Gregory G Ginsberg
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Gary W Falk
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Julian A Abrams
- Division of Digestive and Liver Diseases, Department of Medicine and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
| | - Jianwen Que
- Division of Digestive and Liver Diseases, Department of Medicine and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
| | - Devraj Basu
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Lorenzo Ferri
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - J Alan Diehl
- Department of Biochemistry, School of Medicine and Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
| | - Adam J Bass
- Dana-Farber Cancer Institute, Harvard Medical School, Broad Institute, Boston, Massachusetts
| | - Timothy C Wang
- Division of Digestive and Liver Diseases, Department of Medicine and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
| | - Anil K Rustgi
- Division of Digestive and Liver Diseases, Department of Medicine and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
| | - Hiroshi Nakagawa
- Division of Digestive and Liver Diseases, Department of Medicine and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
| |
Collapse
|
33
|
Ana Choi SS, Ko JMY, Yu VZ, Ning L, Lung ML. Differentiation-related zinc finger protein 750 suppresses cell growth in esophageal squamous cell carcinoma. Oncol Lett 2021; 22:513. [PMID: 33986873 DOI: 10.3892/ol.2021.12774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 03/12/2021] [Indexed: 11/06/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a deadly squamous cell carcinoma (SCC) of the esophagus. Development of SCCs is associated with the deregulation of the squamous cell lineage program and/or keratinocyte terminal differentiation by genomic and genetic aberrations; thus, these processes must be tightly controlled to maintain normal squamous cell development. Zinc finger protein 750 (ZNF750) is a gene involved in keratinocyte terminal differentiation and is frequently mutated and putatively silenced in ESCC, which implicates its function as a potential differentiation-related suppressor of ESCC. The present study aimed to elucidate the relationship between ZNF750 function to induce keratinocyte differentiation and tumor suppression in ESCC. The results demonstrated that chemical manipulation of esophageal keratinocyte differentiation in mouse normal esophageal epithelial organoids (mNEEO) implicated the involvement of the mouse homologue of ZNF750, Zfp750, in keratinocyte differentiation in premalignant cells. Bioinformatics analyses of data from high ZNF750-expressing ESCC tumors obtained from public databases and ZNF750-overexpressing ESCC cells compared with low ZNF750-expressing ESCC tumors and GFP-expressing ESCC cells, respectively, revealed enrichment of keratinocyte differentiation-related gene sets in these samples. Finally, the induction through to terminal differentiation of the keratinocyte by all-trans retinoic acid on parental ESCC cell lines led to the upregulation of the terminal differentiation marker Involucrin and a decrease in cell viability similar to that observed in ZNF750-overexpressing ESCC cells. The results of the present study demonstrated a functional link between the ability of ZNF750 to induce cell differentiation through to terminal differentiation and its function as a growth suppressor in ESCC. This study provides improved understanding of the role of ZNF750, a frequently mutated differentiation-related gene in ESCC, and its effects in ESCC pathogenesis.
Collapse
Affiliation(s)
- Sheyne Sta Ana Choi
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, SAR, P.R. China
| | - Josephine Mun-Yee Ko
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, SAR, P.R. China
| | - Valen Zhuoyou Yu
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, SAR, P.R. China
| | - Lvwen Ning
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, SAR, P.R. China
| | - Maria Li Lung
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, SAR, P.R. China
| |
Collapse
|
34
|
Sachdeva UM, Shimonosono M, Flashner S, Cruz-Acuña R, Gabre JT, Nakagawa H. Understanding the cellular origin and progression of esophageal cancer using esophageal organoids. Cancer Lett 2021; 509:39-52. [PMID: 33838281 DOI: 10.1016/j.canlet.2021.03.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023]
Abstract
Three-dimensional (3D) organoids are a novel tool to model epithelial cell biology and human diseases of the esophagus. 3D organoid culture systems have been utilized to investigate the pathobiology of esophageal cancer, including both squamous cell carcinoma and adenocarcinoma. Additional organoid-based approaches for study of esophageal development and benign esophageal diseases have provided key insights into esophageal keratinocyte differentiation and mucosal regeneration. These investigations have implications for the identification of esophageal cancer stem cells, as well as the potential to halt malignant progression through induction of differentiation pathways. Patient-derived organoids (PDOs) from human tissue samples allow for unique and faithful in vitro modeling of esophageal cancers, and provide an exciting platform for investigation into personalized medicine and targeted treatment approaches, as well as new models for understanding therapy resistance and recurrent disease. Future directions include high-throughput genomic screening using PDOs, and study of tumor-microenvironmental interactions through co-culture with immune and stromal cells and novel extracellular matrix complexes.
Collapse
Affiliation(s)
- Uma M Sachdeva
- Divison of Thoracic Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Masataka Shimonosono
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Samuel Flashner
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Ricardo Cruz-Acuña
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Joel T Gabre
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Hiroshi Nakagawa
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA.
| |
Collapse
|
35
|
Xie L, Li R, Zheng B, Xie Z, Fang X, Dai T, Wang X, Li L, Wang L, Cuny GD, Eriksen J, Tu D, Chen Z, Wang X, Chen X, Hu M. One-Step Transformation from Rofecoxib to a COX-2 NIR Probe for Human Cancer Tissue/Organoid Targeted Bioimaging. ACS APPLIED BIO MATERIALS 2021; 4:2723-2731. [PMID: 35014311 DOI: 10.1021/acsabm.0c01634] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
COX-2 fluorescent probes are promising tools for cancer diagnosis. Such probes have been conventionally designed by conjugating a fluorophore to COX-2 inhibitors through lengthy synthetic processes. Herein, a type of fluorescent probe for COX-2 imaging has been developed using a single-step process from rofecoxib. In total, six rofecoxib analogues were designed using this unique strategy. Several analogues retained comparative COX-2 targeting activity of rofecoxib and also exhibited attractive fluorescent properties, which were investigated using a combination of experimental and theoretical approaches. The most potent analogue, 2a1, displayed strong fluorescent imaging of COX-2 in HeLa cells overexpressing COX-2 compared to Raw 264.7 cells and celecoxib-treated HeLa cells that expressed low levels of COX-2. Notably, our studies indicate that 2a1 can differentiate human cancer tissue from adjacent tissue with much brighter fluorescence either in histological section or cultured 3D organoids. These results illustrate the potential of 2a1 as a COX-2 near infrared fluorescent probe for human cancer imaging in clinical settings.
Collapse
Affiliation(s)
- Lijun Xie
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas 77204, United States.,Fujian Provincial Key Laboratory of Screening for Novel Microbial Products, Fujian Institute of Microbiology, Fuzhou, Fujian 350007, PR China
| | - Renfu Li
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China
| | - Biyun Zheng
- Department of Gastroenterology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, PR China
| | - Zuoxu Xie
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas 77204, United States
| | - Xuefen Fang
- Department of Gastroenterology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, PR China
| | - Tao Dai
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China
| | - Xinli Wang
- Department of Medical Oncology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, PR China
| | - Li Li
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas 77204, United States
| | - Liye Wang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas 77204, United States
| | - Gregory D Cuny
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas 77204, United States
| | - Jason Eriksen
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas 77204, United States
| | - Datao Tu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China
| | - Zhuo Chen
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China
| | - Xiaozhong Wang
- Department of Gastroenterology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, PR China
| | - Xueyuan Chen
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China
| | - Ming Hu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
36
|
Chandramouleeswaran PM, Guha M, Shimonosono M, Whelan KA, Maekawa H, Sachdeva UM, Ruthel G, Mukherjee S, Engel N, Gonzalez MV, Garifallou J, Ohashi S, Klein-Szanto AJ, Mesaros CA, Blair IA, Pellegrino da Silva R, Hakonarson H, Noguchi E, Baur JA, Nakagawa H. Autophagy mitigates ethanol-induced mitochondrial dysfunction and oxidative stress in esophageal keratinocytes. PLoS One 2020; 15:e0239625. [PMID: 32966340 PMCID: PMC7510980 DOI: 10.1371/journal.pone.0239625] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 09/09/2020] [Indexed: 02/08/2023] Open
Abstract
During alcohol consumption, the esophageal mucosa is directly exposed to high concentrations of ethanol (EtOH). We therefore investigated the response of normal human esophageal epithelial cell lines EPC1, EPC2 and EPC3 to acute EtOH exposure. While these cells were able to tolerate 2% EtOH for 8 h in both three-dimensional organoids and monolayer culture conditions, RNA sequencing suggested that EtOH induced mitochondrial dysfunction. With EtOH treatment, EPC1 and EPC2 cells also demonstrated decreased mitochondrial ATPB protein expression by immunofluorescence and swollen mitochondria lacking intact cristae by transmission electron microscopy. Mitochondrial membrane potential (ΔΨm) was decreased in a subset of EPC1 and EPC2 cells stained with ΔΨm–sensitive dye MitoTracker Deep Red. In EPC2, EtOH decreased ATP level while impairing mitochondrial respiration and electron transportation chain functions, as determined by ATP fluorometric assay, respirometry, and liquid chromatography-mass spectrometry. Additionally, EPC2 cells demonstrated enhanced oxidative stress by flow cytometry for mitochondrial superoxide (MitoSOX), which was antagonized by the mitochondria-specific antioxidant MitoCP. Concurrently, EPC1 and EPC2 cells underwent autophagy following EtOH exposure, as evidenced by flow cytometry for Cyto-ID, which detects autophagic vesicles, and immunoblots demonstrating induction of the lipidated and cleaved form of LC3B and downregulation of SQSTM1/p62. In EPC1 and EPC2, pharmacological inhibition of autophagy flux by chloroquine increased mitochondrial oxidative stress while decreasing cell viability. In EPC2, autophagy induction was coupled with phosphorylation of AMP activated protein kinase (AMPK), a cellular energy sensor responding to low ATP levels, and dephosphorylation of downstream substrates of mechanistic Target of Rapamycin Complex (mTORC)-1 signaling. Pharmacological AMPK activation by AICAR decreased EtOH-induced reduction of ΔΨm and ATP in EPC2. Taken together, acute EtOH exposure leads to mitochondrial dysfunction and oxidative stress in esophageal keratinocytes, where the AMPK-mTORC1 axis may serve as a regulatory mechanism to activate autophagy to provide cytoprotection against EtOH-induced cell injury.
Collapse
Affiliation(s)
- Prasanna M. Chandramouleeswaran
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Manti Guha
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York, United States of America
| | - Masataka Shimonosono
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York, United States of America
| | - Kelly A. Whelan
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Hisatsugu Maekawa
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York, United States of America
| | - Uma M. Sachdeva
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York, United States of America
- Division of Thoracic Surgery, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Gordon Ruthel
- Department of Biomedical Sciences, Mari Lowe Center for Comparative Oncology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Sarmistha Mukherjee
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Noah Engel
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Michael V. Gonzalez
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - James Garifallou
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Shinya Ohashi
- Department of Therapeutic Oncology, Graduate School of Medicine, Kyoto University, Shogoin, Sakyo-ku, Kyoto, Japan
| | - Andres J. Klein-Szanto
- Histopathology Facility, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Clementina A. Mesaros
- Translational Biomarkers Core, Center of Excellence in Environmental Toxicology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Ian A. Blair
- Translational Biomarkers Core, Center of Excellence in Environmental Toxicology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Renata Pellegrino da Silva
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Hakon Hakonarson
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Eishi Noguchi
- Department of Biochemistry and Molecular Biology, College of Medicine, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Joseph A. Baur
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Hiroshi Nakagawa
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
37
|
Molecular Profile of Barrett's Esophagus and Gastroesophageal Reflux Disease in the Development of Translational Physiological and Pharmacological Studies. Int J Mol Sci 2020; 21:ijms21176436. [PMID: 32899384 PMCID: PMC7504401 DOI: 10.3390/ijms21176436] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 02/08/2023] Open
Abstract
Barrett's esophagus (BE) is a premalignant condition caused by gastroesophageal reflux disease (GERD), where physiological squamous epithelium is replaced by columnar epithelium. Several in vivo and in vitro BE models were developed with questionable translational relevance when implemented separately. Therefore, we aimed to screen Gene Expression Omnibus 2R (GEO2R) databases to establish whether clinical BE molecular profile was comparable with animal and optimized human esophageal squamous cell lines-based in vitro models. The GEO2R tool and selected databases were used to establish human BE molecular profile. BE-specific mRNAs in human esophageal cell lines (Het-1A and EPC2) were determined after one, three and/or six-day treatment with acidified medium (pH 5.0) and/or 50 and 100 µM bile mixture (BM). Wistar rats underwent microsurgical procedures to generate esophagogastroduodenal anastomosis (EGDA) leading to BE. BE-specific genes (keratin (KRT)1, KRT4, KRT5, KRT6A, KRT13, KRT14, KRT15, KRT16, KRT23, KRT24, KRT7, KRT8, KRT18, KRT20, trefoil factor (TFF)1, TFF2, TFF3, villin (VIL)1, mucin (MUC)2, MUC3A/B, MUC5B, MUC6 and MUC13) mRNA expression was assessed by real-time PCR. Pro/anti-inflammatory factors (interleukin (IL)-1β, IL-2, IL-4, IL-5, IL-6, IL-10, IL-12, IL-13, tumor necrosis factor α, interferon γ, granulocyte-macrophage colony-stimulating factor) serum concentration was assessed by a Luminex assay. Expression profile in vivo reflected about 45% of clinical BE with accompanied inflammatory response. Six-day treatment with 100 µM BM (pH 5.0) altered gene expression in vitro reflecting in 73% human BE profile and making this the most reliable in vitro tool taking into account two tested cell lines. Our optimized and established combined in vitro and in vivo BE models can improve further physiological and pharmacological studies testing pathomechanisms and novel therapeutic targets of this disorder.
Collapse
|
38
|
A framework for integrating directed and undirected annotations to build explanatory models of cis-eQTL data. PLoS Comput Biol 2020; 16:e1007770. [PMID: 32516306 PMCID: PMC7332077 DOI: 10.1371/journal.pcbi.1007770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/02/2020] [Accepted: 03/03/2020] [Indexed: 11/19/2022] Open
Abstract
A longstanding goal of regulatory genetics is to understand how variants in genome sequences lead to changes in gene expression. Here we present a method named Bayesian Annotation Guided eQTL Analysis (BAGEA), a variational Bayes framework to model cis-eQTLs using directed and undirected genomic annotations. We used BAGEA to integrate directed genomic annotations with eQTL summary statistics from tissues of various origins. This analysis revealed epigenetic marks that are relevant for gene expression in different tissues and cell types. We estimated the predictive power of the models that were fitted based on directed genomic annotations. This analysis showed that, depending on the underlying eQTL data used, the directed genomic annotations could predict up to 1.5% of the variance observed in the expression of genes with top nominal eQTL association p-values < 10−7. For genes with estimated effect sizes in the top 25% quantile, up to 5% of the expression variance could be predicted. Based on our results, we recommend the use of BAGEA for the analysis of cis-eQTL data to reveal annotations relevant to expression biology. Many geneticists wish to map changes in DNA sequences to changes in human traits and to understand these processes mechanistically. Here we present BAGEA, a framework to study this question for gene expression. Specifically, BAGEA models a genome variant’s impact on gene expression based on established genome annotations. BAGEA predicts not only whether a variant has an impact on gene expression, but also the sign of the effect. We applied BAGEA to datasets from different tissues and cell types and found that annotations most predictive of gene expression in a given tissue were typically derived from similar tissues. Based on our results, we recommend the use of BAGEA to reveal annotations relevant to expression biology and to build predictive models of gene expression.
Collapse
|
39
|
Establishment and Molecular Phenotyping of Organoids from the Squamocolumnar Junction Region of the Uterine Cervix. Cancers (Basel) 2020; 12:cancers12030694. [PMID: 32183493 PMCID: PMC7140077 DOI: 10.3390/cancers12030694] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/09/2020] [Accepted: 03/13/2020] [Indexed: 12/13/2022] Open
Abstract
The metaplastic epithelium of the transformation zone (TZ) including the squamocolumnar junction (SCJ) of the uterine cervix is a prime target of human papilloma virus (HPV) infection and subsequent cancer development. Due to the lack of adequate in vitro models for SCJ, however, investigations into its physiological roles and vulnerability to carcinogenesis have been limited. By using Matrigel-based three-dimensional culture techniques, we propagated organoids derived from the normal SCJ region, along with metaplastic squamous cells in the TZ. Consisting predominantly of squamous cells, organoids basically exhibited a dense structure. However, at least in some organoids, a small but discrete population of mucin-producing endocervix cells co-existed adjacent to the squamous cell population, virtually recapitulating the configuration of SCJ in a TZ background. In addition, transcriptome analysis confirmed a higher expression level of many SCJ marker genes in organoids, compared to that in the immortalized cervical cell lines of non-SCJ origin. Thus, the obtained organoids appear to mimic cervical SCJ cells and, in particular, metaplastic squamous cells from the TZ, likely providing a novel platform in which HPV-driven cervical cancer development could be investigated.
Collapse
|
40
|
Muir AB, Whelan KA, Dougherty MK, Aaron B, Navarre B, Aceves SS, Dellon ES, Jensen ET. The potential for malignancy from atopic disorders and allergic inflammation: A systematic review and meta-analysis. Clin Exp Allergy 2020; 50:147-159. [PMID: 31743536 PMCID: PMC6994341 DOI: 10.1111/cea.13537] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 10/23/2019] [Accepted: 11/07/2019] [Indexed: 12/21/2022]
Abstract
OBJECTIVE While chronic inflammation is a well-established risk factor for malignancy, studies evaluating the relationship between allergic inflammation and cancer have revealed conflicting results. Here, we aimed to assess the association between allergic inflammation in the lung (asthma), skin (eczema) or oesophagus (eosinophilic oesophagitis; EoE) and cancer at the organ site. DESIGN We conducted a systematic review of the literature to identify observational studies (case-control, cohort and cross-sectional) evaluating the association between asthma and lung cancer, eczema and skin cancer, or EoE and oesophageal cancer. Random-effects meta-analysis was performed to define pooled estimates of effects. DATA SOURCES PubMed, EMBASE and Web of Science. ELIGIBILITY CRITERIA FOR SELECTION Included studies evaluated the incidence of cancer. RESULTS Thirty-two studies met the inclusion criteria, 27 in the lung, four in the skin and one in the oesophagus. Meta-analysis of the three studies with prospective data collection of asthma diagnosis revealed a positive association with incident lung cancer (OR 1.27, 95% CI 1.09-1.44); however, this result was not consistently supported by the larger dataset of retrospective studies (OR 1.37, 95% CI 0.90-1.83). Overall, studies in the lung displayed significant heterogeneity (I2 98%, P < .0001), but no significant effect modification on the association between asthma and lung cancer was identified for the variables of sex, smoking or study design. Meta-analysis could not be applied to the four papers reviewed in the skin, but three suggested an association between eczema and non-melanoma skin cancer, while the remaining study failed to identify an association between melanoma and eczema. A single study meeting inclusion criteria showed no association between EoE and oesophageal malignancy. CONCLUSIONS The current data cannot exclude the possibility of an association between atopy and malignancy the lung, skin and oesophagus. The relationship between allergy and cancer should be explored further in prospective studies that any association identified between these conditions has the potential for significant public health implications.
Collapse
Affiliation(s)
- Amanda B Muir
- Division of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perlman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Kelly A Whelan
- Fels Institute for Cancer Research & Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA
| | - Michael K Dougherty
- Center for Esophageal Diseases and Swallowing, Division of Gastroenterology and Hepatology, University of North Carolina School of Medicine, Chapel Hill, NC
| | - Bailey Aaron
- Division of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Brianna Navarre
- Division of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Seema S Aceves
- Division of Allergy, Immunology, Department of Pediatrics, University of California San Diego and Rady Children's Hospital, San Diego, CA, USA
| | - Evan S Dellon
- Center for Esophageal Diseases and Swallowing, Division of Gastroenterology and Hepatology, University of North Carolina School of Medicine, Chapel Hill, NC
| | - Elizabeth T Jensen
- Wake Forest University School of Medicine, Department of Epidemiology and, Prevention, Winston-Salem, NC
| |
Collapse
|
41
|
Duong LD, Rawson R, Bezryadina A, Manresa MC, Newbury RO, Dohil R, Liu Z, Barrett K, Kurten R, Aceves SS. TGFβ1 single-nucleotide polymorphism C-509T alters mucosal cell function in pediatric eosinophilic esophagitis. Mucosal Immunol 2020; 13:110-117. [PMID: 31636346 PMCID: PMC6917872 DOI: 10.1038/s41385-019-0214-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 09/18/2019] [Accepted: 09/24/2019] [Indexed: 02/04/2023]
Abstract
Eosinophilic esophagitis (EoE) is a chronic Th2 antigen-driven disorder associated with tissue remodeling. Inflammation and remodeling lead to esophageal rigidity, strictures, and dysphagia. TGFβ1 drives esophageal remodeling including epithelial barrier dysfunction and subepithelial fibrosis. A functional SNP in the TGFβ1 gene that increases its transcription (C-509T) is associated with elevated numbers of esophageal TGFβ1-expressing cells. We utilized esophageal biopsies and fibroblasts from TT-genotype EoE children to understand if TGFβ1 influenced fibroblast and epithelial cell function in vivo. Genotype TT EoE esophageal fibroblasts had higher baseline TGFβ1, collagen1α1, periostin, and MMP2 (p < 0.05) gene expression and distinct contractile properties compared with CC genotype (n = 6 subjects per genotype). In vitro TGFβ1 exposure caused greater induction of target gene expression in genotype CC fibroblasts (p < 0.05). Esophageal biopsies from TT-genotype subjects had significantly less epithelial membrane-bound E-cadherin (p < 0.01) and wider cluster distribution at nanometer resolution. TGFβ1 treatment of stratified primary human esophageal epithelial cells and spheroids disrupted transepithelial resistance (p < 0.001) and E-cadherin localization (p < 0.0001). A TGFβ1-receptor-I inhibitor improved TGFβ1-mediated E-cadherin mislocalization. These data suggest that EoE severity can depend on genotypic differences that increase in vivo exposure to TGFβ1. TGFβ1 inhibition may be a useful therapy in subsets of EoE patients.
Collapse
Affiliation(s)
- L D Duong
- Division of Allergy & Immunology, University of California, San Diego, San Diego, CA, USA
- Department of Pediatrics, University of California, San Diego and Rady Children's Hospital San Diego, San Diego, CA, USA
| | - R Rawson
- Division of Allergy & Immunology, University of California, San Diego, San Diego, CA, USA
- Department of Pediatrics, University of California, San Diego and Rady Children's Hospital San Diego, San Diego, CA, USA
| | - A Bezryadina
- Department of Bioengineering, University of California, San Diego, San Diego, CA, USA
| | - M C Manresa
- Division of Allergy & Immunology, University of California, San Diego, San Diego, CA, USA
- Department of Pediatrics, University of California, San Diego and Rady Children's Hospital San Diego, San Diego, CA, USA
| | - R O Newbury
- Department of Pathology, University of California, San Diego, Rady Children's Hospital, San Diego, CA, USA
| | - R Dohil
- Department of Pediatrics, University of California, San Diego and Rady Children's Hospital San Diego, San Diego, CA, USA
- Division of Gastroenterology, San Diego, CA, USA
| | - Z Liu
- Department of Bioengineering, University of California, San Diego, San Diego, CA, USA
| | - K Barrett
- Division of Gastroenterology, San Diego, CA, USA
- Department of Medicine, University of California, San Diego, San Diego, CA, USA
| | - R Kurten
- Arkansas Children's Research Institute and University of Arkansas for Medical Sciences, Little Rock, AK, USA
| | - S S Aceves
- Division of Allergy & Immunology, University of California, San Diego, San Diego, CA, USA.
- Department of Pediatrics, University of California, San Diego and Rady Children's Hospital San Diego, San Diego, CA, USA.
- Department of Medicine, University of California, San Diego, San Diego, CA, USA.
| |
Collapse
|
42
|
Ren G, Sharma V, Letson J, Walia Y, Fernando V, Furuta S. Reconstituting Breast Tissue with Organotypic Three-dimensional Co-culture of Epithelial and Stromal Cells in Discontinuous Extracellular Matrices. Bio Protoc 2019; 9:e3392. [PMID: 33654884 DOI: 10.21769/bioprotoc.3392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/29/2019] [Accepted: 09/11/2019] [Indexed: 11/02/2022] Open
Abstract
Co-culture systems utilizing reconstituted or synthetic extracellular matrix (ECM) and micropatterning techniques have enabled the reconstruction of surface epithelial tissues. This technique has been utilized in the regeneration, disease modeling and drug screening of the surface epithelia, such as the skin and esophagus. On the other hand, the reconstruction of glandular epithelia would require more intricate ECM organizations. Here we describe a protocol for a novel three-dimensional organotypic co-culture system for the reconstruction of mammary glands that utilizes the discontinuous ECM. In this technique, primary mammary fibroblasts first establish a layer of the connective tissue rich in collagen I. Then, mammary epithelial cells form acinar structures, the functional glandular units, within the laminin-rich basement membrane embedded in the connective tissue. This method allows for the regeneration of the in vivo-like architecture of mammary glands and could be utilized for monitoring the real-time response of mammary glands to drug treatment.
Collapse
Affiliation(s)
- Gang Ren
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Arlington Ave. Toledo, OH 43614, USA
| | - Vandana Sharma
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Arlington Ave. Toledo, OH 43614, USA
| | - Joshua Letson
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Arlington Ave. Toledo, OH 43614, USA
| | - Yashna Walia
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Arlington Ave. Toledo, OH 43614, USA
| | - Veani Fernando
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Arlington Ave. Toledo, OH 43614, USA
| | - Saori Furuta
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Arlington Ave. Toledo, OH 43614, USA
| |
Collapse
|
43
|
Lin L, Lin DC. Biological Significance of Tumor Heterogeneity in Esophageal Squamous Cell Carcinoma. Cancers (Basel) 2019; 11:cancers11081156. [PMID: 31409002 PMCID: PMC6721624 DOI: 10.3390/cancers11081156] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/06/2019] [Accepted: 08/07/2019] [Indexed: 02/07/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a common and aggressive malignancy, with hitherto dismal clinical outcome. Genomic analyses of patient samples reveal a complex heterogeneous landscape for ESCC, which presents in both intertumor and intratumor forms, manifests at both genomic and epigenomic levels, and contributes significantly to tumor evolution, drug resistance, and metastasis. Here, we review the important molecular characteristics underlying ESCC heterogeneity, with an emphasis on genomic aberrations and their functional contribution to cancer evolutionary trajectories. We further discuss how novel experimental tools, including single-cell sequencing and three-dimensional organoids, may advance our understanding of tumor heterogeneity. Lastly, we suggest that deciphering the mechanisms governing tumor heterogeneity holds the potential to developing precision therapeutics for ESCC patients.
Collapse
Affiliation(s)
- Lehang Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen University, Guangzhou 510120, China
| | - De-Chen Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen University, Guangzhou 510120, China.
| |
Collapse
|
44
|
Kijima T, Nakagawa H, Shimonosono M, Chandramouleeswaran PM, Hara T, Sahu V, Kasagi Y, Kikuchi O, Tanaka K, Giroux V, Muir AB, Whelan KA, Ohashi S, Naganuma S, Klein-Szanto AJ, Shinden Y, Sasaki K, Omoto I, Kita Y, Muto M, Bass AJ, Diehl JA, Ginsberg GG, Doki Y, Mori M, Uchikado Y, Arigami T, Avadhani NG, Basu D, Rustgi AK, Natsugoe S. Three-Dimensional Organoids Reveal Therapy Resistance of Esophageal and Oropharyngeal Squamous Cell Carcinoma Cells. Cell Mol Gastroenterol Hepatol 2018; 7:73-91. [PMID: 30510992 PMCID: PMC6260338 DOI: 10.1016/j.jcmgh.2018.09.003] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 09/06/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Oropharyngeal and esophageal squamous cell carcinomas, especially the latter, are a lethal disease, featuring intratumoral cancer cell heterogeneity and therapy resistance. To facilitate cancer therapy in personalized medicine, three-dimensional (3D) organoids may be useful for functional characterization of cancer cells ex vivo. We investigated the feasibility and the utility of patient-derived 3D organoids of esophageal and oropharyngeal squamous cell carcinomas. METHODS We generated 3D organoids from paired biopsies representing tumors and adjacent normal mucosa from therapy-naïve patients and cell lines. We evaluated growth and structures of 3D organoids treated with 5-fluorouracil ex vivo. RESULTS Tumor-derived 3D organoids were grown successfully from 15 out of 21 patients (71.4%) and passaged with recapitulation of the histopathology of the original tumors. Successful formation of tumor-derived 3D organoids was associated significantly with poor response to presurgical neoadjuvant chemotherapy or chemoradiation therapy in informative patients (P = 0.0357, progressive and stable diseases, n = 10 vs. partial response, n = 6). The 3D organoid formation capability and 5-fluorouracil resistance were accounted for by cancer cells with high CD44 expression and autophagy, respectively. Such cancer cells were found to be enriched in patient-derived 3D organoids surviving 5-fluorouracil treatment. CONCLUSIONS The single cell-based 3D organoid system may serve as a highly efficient platform to explore cancer therapeutics and therapy resistance mechanisms in conjunction with morphological and functional assays with implications for translation in personalized medicine.
Collapse
Key Words
- 3D Organoids
- 3D, 3-dimensional
- 5-Fluorouracil
- 5FU, 5-fluorouracil
- AV, autophagy vesicle
- Autophagy
- CD44
- CD44H, high expression of CD44
- CQ, chloroquine
- DMEM, Dulbecco’s modified Eagle medium
- EMT, epithelial-mesenchymal transition
- ESCC, esophageal squamous cell carcinoma
- FBS, fetal bovine serum
- H&E, hematoxylin and eosin
- IC50, half maximal inhibitory concentration
- IHC, immunohistochemistry
- LC3, light chain 3
- OPSCC, oropharyngeal squamous cell carcinoma
- PI, propidium iodide
- SCCs, squamous cell carcinomas
- TE11R, 5-fluorouracil–resistant derivative of TE11
Collapse
Affiliation(s)
- Takashi Kijima
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan; Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hiroshi Nakagawa
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania; University of Pennsylvania Abramson Cancer Center, Philadelphia, Pennsylvania.
| | - Masataka Shimonosono
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan; Division of Gastroenterology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania; University of Pennsylvania Abramson Cancer Center, Philadelphia, Pennsylvania
| | - Prasanna M Chandramouleeswaran
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania; University of Pennsylvania Abramson Cancer Center, Philadelphia, Pennsylvania
| | - Takeo Hara
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Varun Sahu
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Yuta Kasagi
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Osamu Kikuchi
- Department of Therapeutic Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Dana-Farber Cancer Institute, Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Koji Tanaka
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania; University of Pennsylvania Abramson Cancer Center, Philadelphia, Pennsylvania; Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Veronique Giroux
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania; University of Pennsylvania Abramson Cancer Center, Philadelphia, Pennsylvania
| | - Amanda B Muir
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Kelly A Whelan
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania; University of Pennsylvania Abramson Cancer Center, Philadelphia, Pennsylvania; Fels Institute for Cancer Research & Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Shinya Ohashi
- Department of Therapeutic Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Seiji Naganuma
- Department of Pathology, Kochi University School of Medicine, Nankoku, Japan
| | - Andres J Klein-Szanto
- Histopathology Facility and Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Yoshiaki Shinden
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Ken Sasaki
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Itaru Omoto
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yoshiaki Kita
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Manabu Muto
- Department of Therapeutic Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Adam J Bass
- Dana-Farber Cancer Institute, Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - J Alan Diehl
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina
| | - Gregory G Ginsberg
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania; University of Pennsylvania Abramson Cancer Center, Philadelphia, Pennsylvania
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Masaki Mori
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yasuto Uchikado
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Takaaki Arigami
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Narayan G Avadhani
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Devraj Basu
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Anil K Rustgi
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania; University of Pennsylvania Abramson Cancer Center, Philadelphia, Pennsylvania.
| | - Shoji Natsugoe
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan.
| |
Collapse
|