1
|
Mitani S, Hosoda C, Onodera Y, Takabayashi Y, Sakata A, Shima M, Tatsumi K. Efficient generation of liver sinusoidal endothelial-like cells secreting coagulation factor VIII from human induced pluripotent stem cells. Mol Ther Methods Clin Dev 2024; 32:101355. [PMID: 39559558 PMCID: PMC11570519 DOI: 10.1016/j.omtm.2024.101355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 10/15/2024] [Indexed: 11/20/2024]
Abstract
Liver sinusoidal endothelial cells (LSECs) and LSEC progenitor cells (LPCs) derived from human pluripotent stem cells (PSCs) are expected as valuable cell sources for the development of cell therapy for hemophilia A, a congenital deficiency of coagulation factor VIII (FVIII), as LSECs are responsible for FVIII production. However, there is room for improvement in the efficiency of LSEC and LPC differentiation from human PSCs. In this study, we sought to optimize the method of mesoderm differentiation induction, the initial step of LSEC differentiation from human PSCs, to efficiently induce LSEC-like cells capable of secreting FVIII from human induced pluripotent stem cells (iPSCs). Following optimization of the concentration and stimulation period of CHIR99021 (glycogen synthase kinase 3β inhibitor), bone morphogenetic protein 4, fibroblast growth factor 2, and Activin A in the mesoderm induction step, approximately 65% and 54% of cells differentiated into LPCs and LSEC-like cells, respectively. Furthermore, we observed substantial FVIII protein secretion from LSEC-like cells in vitro. In conclusion, we established an efficient method for obtaining LPCs and functional LSEC-like cells from human iPSCs in vitro.
Collapse
Affiliation(s)
- Seiji Mitani
- Advanced Medical Science of Thrombosis and Hemostasis, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Chihiro Hosoda
- Advanced Medical Science of Thrombosis and Hemostasis, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Yu Onodera
- Advanced Medical Science of Thrombosis and Hemostasis, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Yoko Takabayashi
- Advanced Medical Science of Thrombosis and Hemostasis, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Asuka Sakata
- Medicinal Biology of Thrombosis and Hemostasis, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Midori Shima
- Medicinal Biology of Thrombosis and Hemostasis, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Kohei Tatsumi
- Advanced Medical Science of Thrombosis and Hemostasis, Nara Medical University, Kashihara, Nara 634-8521, Japan
- Medicinal Biology of Thrombosis and Hemostasis, Nara Medical University, Kashihara, Nara 634-8521, Japan
| |
Collapse
|
2
|
Raya Tonetti F, Eguileor A, Mrdjen M, Pathak V, Travers J, Nagy LE, Llorente C. Gut-liver axis: Recent concepts in pathophysiology in alcohol-associated liver disease. Hepatology 2024; 80:1342-1371. [PMID: 38691396 DOI: 10.1097/hep.0000000000000924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/20/2024] [Indexed: 05/03/2024]
Abstract
The growing recognition of the role of the gut microbiome's impact on alcohol-associated diseases, especially in alcohol-associated liver disease, emphasizes the need to understand molecular mechanisms involved in governing organ-organ communication to identify novel avenues to combat alcohol-associated diseases. The gut-liver axis refers to the bidirectional communication and interaction between the gut and the liver. Intestinal microbiota plays a pivotal role in maintaining homeostasis within the gut-liver axis, and this axis plays a significant role in alcohol-associated liver disease. The intricate communication between intestine and liver involves communication between multiple cellular components in each organ that enable them to carry out their physiological functions. In this review, we focus on novel approaches to understanding how chronic alcohol exposure impacts the microbiome and individual cells within the liver and intestine, as well as the impact of ethanol on the molecular machinery required for intraorgan and interorgan communication.
Collapse
Affiliation(s)
- Fernanda Raya Tonetti
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Alvaro Eguileor
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Marko Mrdjen
- Department of Molecular Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - Vai Pathak
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jared Travers
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Gastroenterology and Hepatology, University Hospital, Cleveland, Ohio, USA
| | - Laura E Nagy
- Department of Molecular Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, Ohio, USA
| | - Cristina Llorente
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
3
|
Czyzynska-Cichon I, Kotlinowski J, Blacharczyk O, Giergiel M, Szymanowski K, Metwally S, Wojnar-Lason K, Dobosz E, Koziel J, Lekka M, Chlopicki S, Zapotoczny B. Early and late phases of liver sinusoidal endothelial cell (LSEC) defenestration in mouse model of systemic inflammation. Cell Mol Biol Lett 2024; 29:139. [PMID: 39528938 PMCID: PMC11556108 DOI: 10.1186/s11658-024-00655-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Liver sinusoidal endothelial cells (LSECs) have transcellular pores, called fenestrations, participating in the bidirectional transport between the vascular system and liver parenchyma. Fenestrated LSECs indicate a healthy phenotype of liver while loss of fenestrations (defenestration) in LSECs is associated with liver pathologies. METHODS We introduce a unique model of systemic inflammation triggered by the deletion of Mcpip1 in myeloid leukocytes (Mcpip1fl/flLysMCre) characterised by progressive alterations in LSEC phenotype. We implement multiparametric characterisation of LSECs by using novel real-time atomic force microscopy supported with scanning electron microscopy and quantitative fluorescence microscopy. In addition, we provide genetic profiling, searching for characteristic genes encoding proteins that might be connected with the structure of fenestrations. RESULTS We demonstrate that LSECs in Mcpip1fl/flLysMCre display two phases of defenestration: the early phase, with modest defenestration that was fully reversible using cytochalasin B and the late phase, with severe defenestration that is mostly irreversible. By thorough analysis of LSEC porosity, elastic modulus and actin abundance in Mcpip1fl/flLysMCre and in response to cytochalasin B, we demonstrate that proteins other than actin must be additionally responsible for inducing open fenestrations. We highlight several genes that were severely affected in the late but not in the early phase of LSEC defenestration shedding a light on complex structure of individual fenestrations. CONCLUSIONS The presented model of LSEC derived from Mcpip1fl/flLysMCre provides a valuable reference for developing novel strategies for LSEC refenestration in the early and late phases of liver pathology.
Collapse
Affiliation(s)
- Izabela Czyzynska-Cichon
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348, Krakow, Poland
| | - Jerzy Kotlinowski
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Oliwia Blacharczyk
- Institute of Nuclear Physics Polish Academy of Sciences, 31342, Krakow, Poland
| | - Magdalena Giergiel
- Centre for Nanometer-Scale Science and Advanced Materials (NANOSAM), Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Krakow, Poland
| | - Konrad Szymanowski
- Institute of Nuclear Physics Polish Academy of Sciences, 31342, Krakow, Poland
| | - Sara Metwally
- Institute of Nuclear Physics Polish Academy of Sciences, 31342, Krakow, Poland
| | - Kamila Wojnar-Lason
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348, Krakow, Poland
- Department of Pharmacology, Jagiellonian University Medical College, Grzegorzecka 16, 31-531, Krakow, Poland
| | - Ewelina Dobosz
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Joanna Koziel
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Malgorzata Lekka
- Institute of Nuclear Physics Polish Academy of Sciences, 31342, Krakow, Poland
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348, Krakow, Poland
- Department of Pharmacology, Jagiellonian University Medical College, Grzegorzecka 16, 31-531, Krakow, Poland
| | | |
Collapse
|
4
|
van de Graaf SFJ, Paulusma CC, In Het Panhuis W. Getting in the zone: Metabolite transport across liver zones. Acta Physiol (Oxf) 2024; 240:e14239. [PMID: 39364668 DOI: 10.1111/apha.14239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/16/2024] [Accepted: 09/24/2024] [Indexed: 10/05/2024]
Abstract
The liver has many functions including the regulation of nutrient and metabolite levels in the systemic circulation through efficient transport into and out of hepatocytes. To sustain these functions, hepatocytes display large functional heterogeneity. This heterogeneity is reflected by zonation of metabolic processes that take place in different zones of the liver lobule, where nutrient-rich blood enters the liver in the periportal zone and flows through the mid-zone prior to drainage by a central vein in the pericentral zone. Metabolite transport plays a pivotal role in the division of labor across liver zones, being either transport into the hepatocyte or transport between hepatocytes through the blood. Signaling pathways that regulate zonation, such as Wnt/β-catenin, have been shown to play a causal role in the development of metabolic dysfunction-associated steatohepatitis (MASH) progression, but the (patho)physiological regulation of metabolite transport remains enigmatic. Despite the practical challenges to separately study individual liver zones, technological advancements in the recent years have greatly improved insight in spatially divided metabolite transport. This review summarizes the theories behind the regulation of zonation, diurnal rhythms and their effect on metabolic zonation, contemporary techniques used to study zonation and current technological challenges, and discusses the current view on spatial and temporal metabolite transport.
Collapse
Affiliation(s)
- Stan F J van de Graaf
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism (AGEM), Amsterdam University Medical Center, Amsterdam, The Netherlands
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Coen C Paulusma
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism (AGEM), Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Wietse In Het Panhuis
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism (AGEM), Amsterdam University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Wada T, Takeda Y, Okekawa A, Komatsu G, Iwasa Y, Onogi Y, Takasaki I, Hamashima T, Sasahara M, Tsuneki H, Sasaoka T. Deletion of platelet-derived growth factor receptor β suppresses tumorigenesis in metabolic dysfunction-associated steatohepatitis (MASH) mice with diabetes. Sci Rep 2024; 14:23829. [PMID: 39394459 PMCID: PMC11470010 DOI: 10.1038/s41598-024-75713-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024] Open
Abstract
The platelet-derived growth factor (PDGF) family contributes to the progression of steatohepatitis; however, changes in and the characteristics of isoform-specific expression remain unclear. Since diabetes is a major driver of metabolic dysfunction-associated steatohepatitis (MASH), we characterized the mouse model of diabetic MASH (dMASH) by focusing on PDGF signaling. Pdgfa-d expression was markedly higher in hepatic stellate cells among flow-sorted cells in control mice and also increased in dMASH. In contrast, a reanalysis of human single-cell RNA-Seq data showed the distinct distribution of each PDGF isoform with disease progression. Furthermore, inflammation and fibrosis in the liver were less severe in diabetic MASH using tamoxifen-induced PDGF receptor β (PDGFRβ)-deficient mice (KO) than in control dMASH using floxed mice (FL) at 12 weeks old. Despite the absence of tumors, the expression of tumor-related genes was lower in KO than in FL. Tumorigenesis was significantly lower in 20-week-old KO. An Ingenuity Pathway Analysis of differentially expressed miRNA between FL and KO identified functional networks associated with hepatotoxicity and cancer. Therefore, PDGFRβ signals play important roles in the progression of steatohepatitis and tumorigenesis in MASH, with the modulation of miRNA expression posited as a potential underlying mechanism.
Collapse
Affiliation(s)
- Tsutomu Wada
- Department of Clinical Pharmacology, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan.
| | - Yuki Takeda
- Department of Clinical Pharmacology, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Akira Okekawa
- Department of Clinical Pharmacology, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Go Komatsu
- Department of Clinical Pharmacology, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Yuichi Iwasa
- Department of Clinical Pharmacology, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Yasuhiro Onogi
- Department of Clinical Pharmacology, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
- Research Center for Pre-Disease Science, University of Toyama, 2630 Sugitani, Toyama, Japan
| | - Ichiro Takasaki
- Department of Pharmacology, Graduate School of Science and Engineering, University of Toyama, 3190, Gofuku, Toyama, Japan
| | - Takeru Hamashima
- Department of Pathology, University of Toyama, 2630 Sugitani, Toyama, Japan
| | - Masakiyo Sasahara
- Department of Pathology, University of Toyama, 2630 Sugitani, Toyama, Japan
| | - Hiroshi Tsuneki
- Department of Clinical Pharmacology, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
- Department of Integrative Pharmacology, University of Toyama, 2630 Sugitani, Toyama, Japan
| | - Toshiyasu Sasaoka
- Department of Clinical Pharmacology, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan.
| |
Collapse
|
6
|
Qu J, Wang L, Li X. Correspondence to editorial on "Liver sinusoidal endothelial cell: An important yet often overlooked player in the liver fibrosis". Clin Mol Hepatol 2024; 30:1002-1004. [PMID: 38755017 PMCID: PMC11540339 DOI: 10.3350/cmh.2024.0357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/18/2024] Open
Affiliation(s)
- Jiaorong Qu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Le Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaojiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
7
|
Iwakiri Y. Unlocking the role of liver sinusoidal endothelial cells: Key players in liver fibrosis: Editorial on "Liver sinusoidal endothelial cell: An important yet often overlooked player in the liver fibrosis". Clin Mol Hepatol 2024; 30:673-676. [PMID: 38726502 PMCID: PMC11540341 DOI: 10.3350/cmh.2024.0343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 11/05/2024] Open
Affiliation(s)
- Yasuko Iwakiri
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
8
|
Lin Y, Chen J, Xin S, Lin Y, Chen Y, Zhou X, Chen H, Li X. CYP24A1 affected macrophage polarization through degradation of vitamin D as a candidate biomarker for ovarian cancer prognosis. Int Immunopharmacol 2024; 138:112575. [PMID: 38963981 DOI: 10.1016/j.intimp.2024.112575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/06/2024]
Abstract
Ovarian cancer (OC) is a fatal gynecological malignancy with a poor prognosis in which mitochondria-related genes are involved deeply. In this study, we aim to screen mitochondria-related genes that play a role in OC prognosis and investigate its effects. Through single-cell sequencing technology and bioinformatics analysis, including TCGA ovarian cancer data analysis, gene expression signature analysis (GES), immune infiltration analysis, Gene Ontology (GO) enrichment analysis, Gene Set Enrichment Analysis (GSEA), and Principal Component Analysis (PCA), our findings revealed that CYP24A1 regulated macrophage polarization through vitamin D (VD) degradation and served as a target gene for the second malignant subtype of OC through bioinformatics analyses. For further validation, the expression and function of CYP24A1 in OC cells was investigated. And the expression of CYP24A1 was much higher in carcinoma than in paracancerous tissue, whereas the VD content decreased in the OC cell lines with CYP24A1 overexpression. Moreover, macrophages were polarized towards M1 after the intervention of VD-treated OC cell lines and inhibited the malignant phenotypes of OC. However, the effect could be reversed by overexpressing CYP24A1, resulting in the polarization of M2 macrophages, thereby promoting tumor progression, as verified by constructing xenograft models in vitro. In conclusion, our findings suggested that CYP24A1 induced M2 macrophage polarization through interaction with VD, thus promoting the malignant progression of OC.
Collapse
Affiliation(s)
- YaoXiang Lin
- Hangzhou Normal University, Hangzhou, Zhejiang 311121, People's Republic of China
| | - JiongFei Chen
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, People's Republic of China
| | - SiJia Xin
- Hangzhou Normal University, Hangzhou, Zhejiang 311121, People's Republic of China
| | - Ya Lin
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, People's Republic of China
| | - YongChao Chen
- Hangzhou Normal University, Hangzhou, Zhejiang 311121, People's Republic of China
| | - Xiaojing Zhou
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, People's Republic of China
| | - Hao Chen
- Department of Pathology, Hangzhou Women's Hospital, Hangzhou, Zhejiang 310008, People's Republic of China.
| | - XiangJuan Li
- Hangzhou Women's Hospital, Hangzhou, Zhejiang 310008, People's Republic of China.
| |
Collapse
|
9
|
Elkrief L, Hernandez-Gea V, Senzolo M, Albillos A, Baiges A, Berzigotti A, Bureau C, Murad SD, De Gottardi A, Durand F, Garcia-Pagan JC, Lisman T, Mandorfer M, McLin V, Moga L, Nery F, Northup P, Nuzzo A, Paradis V, Patch D, Payancé A, Plaforet V, Plessier A, Poisson J, Roberts L, Salem R, Sarin S, Shukla A, Toso C, Tripathi D, Valla D, Ronot M, Rautou PE. Portal vein thrombosis: diagnosis, management, and endpoints for future clinical studies. Lancet Gastroenterol Hepatol 2024; 9:859-883. [PMID: 38996577 DOI: 10.1016/s2468-1253(24)00155-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/27/2024] [Accepted: 05/08/2024] [Indexed: 07/14/2024]
Abstract
Portal vein thrombosis (PVT) refers to the development of a non-malignant obstruction of the portal vein, its branches, its radicles, or a combination. This Review first provides a comprehensive overview of all aspects of PVT, namely the specifics of the portal venous system, the risk factors for PVT, the pathophysiology of portal hypertension in PVT, the interest in non-invasive tests, as well as therapeutic approaches including the effect of treating risk factors for PVT or cause of cirrhosis, anticoagulation, portal vein recanalisation by interventional radiology, and prevention and management of variceal bleeding in patients with PVT. Specific issues are also addressed including portal cholangiopathy, mesenteric ischaemia and intestinal necrosis, quality of life, fertility, contraception and pregnancy, and PVT in children. This Review will then present endpoints for future clinical studies in PVT, both in patients with and without cirrhosis, agreed by a large panel of experts through a Delphi consensus process. These endpoints include classification of portal vein thrombus extension, classification of PVT evolution, timing of assessment of PVT, and global endpoints for studies on PVT including clinical outcomes. These endpoints will help homogenise studies on PVT and thus facilitate reporting, comparison between studies, and validation of future studies and trials on PVT.
Collapse
Affiliation(s)
- Laure Elkrief
- Faculté de médecine de Tours, et service d'hépato-gastroentérologie, Le Centre Hospitalier Régional Universitaire de Tours, Tours, France; Centre de recherche sur l'inflammation, Université Paris-Cité, Paris, France
| | - Virginia Hernandez-Gea
- Barcelona Hepatic Hemodynamic Laboratory, Liver Unit, Hospital Clínic de Barcelona, Institut de Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain; Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas, Madrid, Spain; Departament de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Marco Senzolo
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Agustin Albillos
- Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas, Madrid, Spain; Departamento de Gastroenterología y Hepatología, Instituto Ramón y Cajal de Investigación Sanitaria, Hospital Universitario Ramon y Cajal, Madrid, Spain
| | - Anna Baiges
- Barcelona Hepatic Hemodynamic Laboratory, Liver Unit, Hospital Clínic de Barcelona, Institut de Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain; Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas, Madrid, Spain; Departament de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Annalisa Berzigotti
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Christophe Bureau
- Service d'Hépatologie Hôpital Rangueil, Université Paul Sabatier, Toulouse, France
| | - Sarwa Darwish Murad
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Andrea De Gottardi
- Gastroenterology and Hepatology Department, Ente Ospedaliero Cantonale Faculty of Biomedical Sciences of Università della Svizzera Italiana, Lugano, Switzerland
| | - François Durand
- Centre de recherche sur l'inflammation, Université Paris-Cité, Paris, France; Service d'Hépatologie, AP-HP Hôpital Beaujon, Clichy, France
| | - Juan-Carlos Garcia-Pagan
- Barcelona Hepatic Hemodynamic Laboratory, Liver Unit, Hospital Clínic de Barcelona, Institut de Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain; Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas, Madrid, Spain; Departament de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Ton Lisman
- Department of Surgery, University Medical Center Groningen, Groningen, Netherlands
| | - Mattias Mandorfer
- Vienna Hepatic Hemodynamic Lab, Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Valérie McLin
- Swiss Pediatric Liver Center, Department of Pediatrics, Gynecology and Obstetrics, University of Geneva, Geneva, Switzerland
| | - Lucile Moga
- Centre de recherche sur l'inflammation, Université Paris-Cité, Paris, France; Service d'Hépatologie, AP-HP Hôpital Beaujon, Clichy, France
| | - Filipe Nery
- Immuno-Physiology and Pharmacology Department, School of Medicine and Biomedical Sciences, University of Porto, Portugal
| | - Patrick Northup
- Transplant Institute and Division of Gastroenterology, NYU Langone, New York, NY, USA
| | - Alexandre Nuzzo
- Intestinal Stroke Center, Department of Gastroenterology, IBD and Intestinal Failure, AP-HP Hôpital Beaujon, Clichy, France; Laboratory for Vascular and Translational Science, INSERM UMR 1148, Paris, France
| | - Valérie Paradis
- Department of Pathology, AP-HP Hôpital Beaujon, Clichy, France
| | - David Patch
- Department of Hepatology and Liver Transplantation, Royal Free Hospital, London, UK
| | - Audrey Payancé
- Centre de recherche sur l'inflammation, Université Paris-Cité, Paris, France; Service d'Hépatologie, AP-HP Hôpital Beaujon, Clichy, France
| | | | - Aurélie Plessier
- Centre de recherche sur l'inflammation, Université Paris-Cité, Paris, France; Service d'Hépatologie, AP-HP Hôpital Beaujon, Clichy, France
| | - Johanne Poisson
- Centre de recherche sur l'inflammation, Université Paris-Cité, Paris, France; Service de Gériatrie, Hôpital Corentin Celton (AP-HP), Paris, France
| | - Lara Roberts
- Department of Haematological Medicine, King's College Hospital NHS Foundation Trust, London, UK
| | - Riad Salem
- Northwestern Memorial Hospital, Northwestern University, Chicago, IL, USA
| | - Shiv Sarin
- Institute of Liver and Biliary Sciences, New Delhi, India
| | - Akash Shukla
- Department of Gastroenterology, Seth GS Medical College and KEM Hospital, Mumbai, India
| | - Christian Toso
- Service de Chirurgie Viscérale, Hôpitaux Universitaires de Genève, Geneva, Switzerland
| | - Dhiraj Tripathi
- Department of Liver and Hepato-Pancreato-Biliary Unit, Queen Elizabeth Hospital, University Hospitals Birmingham, Birmingham, UK; Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Dominique Valla
- Centre de recherche sur l'inflammation, Université Paris-Cité, Paris, France; Service d'Hépatologie, AP-HP Hôpital Beaujon, Clichy, France
| | - Maxime Ronot
- Centre de recherche sur l'inflammation, Université Paris-Cité, Paris, France; Service de Radiologie, AP-HP Hôpital Beaujon, Clichy, France
| | - Pierre-Emmanuel Rautou
- Centre de recherche sur l'inflammation, Université Paris-Cité, Paris, France; Service d'Hépatologie, AP-HP Hôpital Beaujon, Clichy, France.
| |
Collapse
|
10
|
Gao J, Lan T, Kostallari E, Guo Y, Lai E, Guillot A, Ding B, Tacke F, Tang C, Shah VH. Angiocrine signaling in sinusoidal homeostasis and liver diseases. J Hepatol 2024; 81:543-561. [PMID: 38763358 DOI: 10.1016/j.jhep.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/29/2024] [Accepted: 05/10/2024] [Indexed: 05/21/2024]
Abstract
The hepatic sinusoids are composed of liver sinusoidal endothelial cells (LSECs), which are surrounded by hepatic stellate cells (HSCs) and contain liver-resident macrophages called Kupffer cells, and other patrolling immune cells. All these cells communicate with each other and with hepatocytes to maintain sinusoidal homeostasis and a spectrum of hepatic functions under healthy conditions. Sinusoidal homeostasis is disrupted by metabolites, toxins, viruses, and other pathological factors, leading to liver injury, chronic liver diseases, and cirrhosis. Alterations in hepatic sinusoids are linked to fibrosis progression and portal hypertension. LSECs are crucial regulators of cellular crosstalk within their microenvironment via angiocrine signaling. This review discusses the mechanisms by which angiocrine signaling orchestrates sinusoidal homeostasis, as well as the development of liver diseases. Here, we summarise the crosstalk between LSECs, HSCs, hepatocytes, cholangiocytes, and immune cells in health and disease and comment on potential novel therapeutic methods for treating liver diseases.
Collapse
Affiliation(s)
- Jinhang Gao
- Laboratory of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China; Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Tian Lan
- Laboratory of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China; Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China; Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Enis Kostallari
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Yangkun Guo
- Laboratory of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China; Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Enjiang Lai
- Laboratory of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China; Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Adrien Guillot
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Bisen Ding
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany.
| | - Chengwei Tang
- Laboratory of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China; Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China.
| | - Vijay H Shah
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
11
|
Wang H, Liu J, Zhu P, Shi L, Liu Y, Yang X, Yang X. Single-nucleus transcriptome reveals cell dynamic response of liver during the late chick embryonic development. Poult Sci 2024; 103:103979. [PMID: 38941785 PMCID: PMC11261130 DOI: 10.1016/j.psj.2024.103979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/29/2024] [Accepted: 06/10/2024] [Indexed: 06/30/2024] Open
Abstract
The late embryonic development of the liver, a major metabolic organ, remains poorly characterized at single cell resolution. Here, we used single-nucleus RNA-sequencing (snRNA-seq) to characterize the chicken liver cells at 2 embryonic development time points (E14 and D1). We uncovered 8 cell types including hepatocytes, endothelial cells, hepatic stellate cells, erythrocytes, cholangiocytes, kupffer cells, mesothelial cells, and lymphocytes. And we discovered significant differences in the abundance of different cell types between E14 and D1. Moreover, we characterized the heterogeneity of hepatocytes, endothelial cells, and mesenchymal cells based on the gene regulatory networks of each clusters. Trajectory analyses revealed 128 genes associated with hepatocyte development and function, including apolipoprotein genes involved hepatic lipid metabolism and NADH dehydrogenase subunits involved hepatic oxidative phosphorylation. Furthermore, we identified the differentially expressed genes (DEGs) between E14 and D1 at the cellular levels, which contribute to changes in liver development and function. These DEGs were significantly enriched in PPAR signaling pathways and lipid metabolism related pathways. Our results presented the single-cell mapping of chick embryonic liver at late stages of development and demonstrated the metabolic changes across the 2 age stages at the cellular level, which can help to further study the molecular development mechanism of embryonic liver.
Collapse
Affiliation(s)
- Huimei Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Jiongyan Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Pinhui Zhu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Lin Shi
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Yanli Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Xin Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, PR China.
| |
Collapse
|
12
|
Cholico GN, Nault R, Zacharewski T. Cell-specific AHR-driven differential gene expression in the mouse liver cell following acute TCDD exposure. BMC Genomics 2024; 25:809. [PMID: 39198768 PMCID: PMC11351262 DOI: 10.1186/s12864-024-10730-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/21/2024] [Indexed: 09/01/2024] Open
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a persistent environmental contaminant that disrupts hepatic function leading to steatotic liver disease (SLD)-like pathologies, such as steatosis, steatohepatitis, and fibrosis. These effects are mediated by the aryl hydrocarbon receptor following changes in gene expression. Although diverse cell types are involved, initial cell-specific changes in gene expression have not been reported. In this study, differential gene expression in hepatic cell types was examined in male C57BL/6 mice gavaged with 30 µg/kg of TCDD using single-nuclei RNA-sequencing. Ten liver cell types were identified with the proportions of most cell types remaining unchanged, except for neutrophils which increased at 72 h. Gene expression suggests TCDD induced genes related to oxidative stress in hepatocytes as early as 2 h. Lipid homeostasis was disrupted in hepatocytes, macrophages, B cells, and T cells, characterized by the induction of genes associated with lipid transport, steroid hormone biosynthesis, and the suppression of β-oxidation, while linoleic acid metabolism was altered in hepatic stellate cells (HSCs), B cells, portal fibroblasts, and plasmacytoid dendritic cells. Pro-fibrogenic processes were also enriched, including the induction retinol metabolism genes in HSCs and the early induction of anti-fibrolysis genes in hepatocytes, endothelial cells, HSCs, and macrophages. Hepatocytes also had gene expression changes consistent with hepatocellular carcinoma. Collectively, these findings underscore the effects of TCDD in initiating SLD-like phenotypes and identified cell-specific gene expression changes related to oxidative stress, steatosis, fibrosis, cell proliferation and the development of HCC.
Collapse
Affiliation(s)
- Giovan N Cholico
- Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan, USA
| | - Rance Nault
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan, USA
- Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA
| | - Tim Zacharewski
- Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA.
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan, USA.
| |
Collapse
|
13
|
Liu J, Liu J, Mu W, Ma Q, Zhai X, Jin B, Liu Y, Zhang N. Delivery Strategy to Enhance the Therapeutic Efficacy of Liver Fibrosis via Nanoparticle Drug Delivery Systems. ACS NANO 2024; 18:20861-20885. [DOI: 10.1021/acsnano.4c02380] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Jie Liu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Jinhu Liu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Weiwei Mu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Qingping Ma
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xiangyu Zhai
- Department of Hepatobiliary Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, China
| | - Bin Jin
- Department of Hepatobiliary Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, China
- Organ Transplant Department, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Yongjun Liu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Na Zhang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
14
|
Ramkissoon R, Cao S, Shah VH. The Pathophysiology of Portal Hypertension. Clin Liver Dis 2024; 28:369-381. [PMID: 38945632 DOI: 10.1016/j.cld.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
This article reviews the pathophysiology of portal hypertension that includes multiple mechanisms internal and external to the liver. This article starts with a review of literature describing the cellular and molecular mechanisms of portal hypertension, microvascular thrombosis, sinusoidal venous congestion, portal angiogenesis, vascular hypocontractility, and hyperdynamic circulation. Mechanotransduction and the gut-liver axis, which are newer areas of research, are reviewed. Dysfunction of this axis contributes to chronic liver injury, inflammation, fibrosis, and portal hypertension. Sequelae of portal hypertension are discussed in subsequent studies.
Collapse
Affiliation(s)
- Resham Ramkissoon
- Department of Gastroenterology & Hepatology, Mayo Clinic, 200 1st Street, SW, Rochester, MN 55902, USA
| | - Sheng Cao
- Mayo College of Medicine, Mayo Clinic, 200 1st Street, SW, Rochester, MN 55902, USA
| | - Vijay H Shah
- Department of Gastroenterology & Hepatology, Mayo Clinic, 200 1st Street, SW, Rochester, MN 55902, USA; Department of Internal Medicine, Mayo Clinic, 200 1st Street, SW, Rochester, MN 55902, USA.
| |
Collapse
|
15
|
Li P, Xie W, Wei H, Yang F, Chen Y, Li Y. Transcriptome Analyses of Liver Sinusoidal Endothelial Cells Reveal a Consistent List of Candidate Genes Associated with Endothelial Dysfunction and the Fibrosis Progression. Curr Issues Mol Biol 2024; 46:7997-8014. [PMID: 39194690 DOI: 10.3390/cimb46080473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 08/29/2024] Open
Abstract
Liver fibrosis is an important step in the transformation of chronic liver disease into cirrhosis and liver cancer, and structural changes and functional disorders of liver sinusoidal endothelial cells (LSECs) are early events in the occurrence of liver fibrosis. Therefore, it is necessary to identify the key regulatory genes of endothelial dysfunction in the process of liver fibrosis to provide a reference for the diagnosis and treatment of liver fibrosis. In this study, we identified 230 common differentially expressed genes (Co-DEGs) by analyzing transcriptomic data of primary LSECs from three different liver fibrosis mouse models (carbon tetrachloride; choline-deficient, l-amino acid-defined diet; and nonalcoholic steatohepatitis). Enrichment analysis revealed that the Co-DEGs were mainly involved in regulating the inflammatory response, immune response, angiogenesis, formation and degradation of the extracellular matrix, and mediating chemokine-related pathways. A Venn diagram analysis was used to identify 17 key genes related to the progression of liver cirrhosis. Regression analysis using the Lasso-Cox method identified genes related to prognosis among these key genes: SOX4, LGALS3, SERPINE2, CD52, and LPXN. In mouse models of liver fibrosis (bile duct ligation and carbon tetrachloride), all five key genes were upregulated in fibrotic livers. This study identified key regulatory genes for endothelial dysfunction in liver fibrosis, namely SOX4, LGALS3, SERPINE2, CD52, and LPXN, which will provide new targets for the development of therapeutic strategies targeting endothelial dysfunction in LSECs and liver fibrosis.
Collapse
Affiliation(s)
- Penghui Li
- Center for Health Research, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Wenjie Xie
- Center for Health Research, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Hongjin Wei
- Center for Health Research, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Fan Yang
- Center for Health Research, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yan Chen
- Center for Health Research, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yinxiong Li
- Center for Health Research, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangzhou 510530, China
| |
Collapse
|
16
|
Yang Y, Jeong J, Su T, Lai S, Zhang P, Garcia-Milian R, Graham M, Liu X, McConnell MJ, Utsumi T, Pereira J, Iwakiri Y. Interleukin-7-based identification of liver lymphatic endothelial cells reveals their unique structural features. JHEP Rep 2024; 6:101069. [PMID: 38966234 PMCID: PMC11222939 DOI: 10.1016/j.jhepr.2024.101069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 03/01/2024] [Accepted: 03/11/2024] [Indexed: 07/06/2024] Open
Abstract
Background & Aims The lymphatic system plays crucial roles in maintaining fluid balance and immune regulation. Studying the liver lymphatics has been considered challenging, as common lymphatic endothelial cell (LyEC) markers are expressed by other liver cells. Additionally, isolation of sufficient numbers of LyECs has been challenging because of their extremely low abundance (<0.01% of entire liver cell population) in a normal liver. Methods Potential LyEC markers was identified using our published single-cell RNA sequencing (scRNA-seq) dataset (GSE147581) in mouse livers. Interleukin-7 (IL7) promoter-driven green fluorescent protein knock-in heterozygous mice were used for the validation of IL7 expression in LyECs in the liver, for the development of liver LyEC isolation protocol, and generating liver ischemia/reperfusion (I/R) injury. Scanning electron microscopy was used for the structural analysis of LyECs. Changes in LyEC phenotypes in livers of mice with I/R were determined by RNA-seq analysis. Results Through scRNA-seq analysis, we have identified IL7 as an exclusive marker for liver LyECs, with no overlap with other liver cell types. Based on IL7 expression in liver LyECs, we have established an LyEC isolation method and observed distinct cell surface structures of LyECs with fenestrae and cellular pores (ranging from 100 to 400 nm in diameter). Furthermore, we identified LyEC genes that undergo alterations during I/R liver injuries. Conclusions This study not only identified IL7 as an exclusively expressed gene in liver LyECs, but also enhanced our understanding of LyEC structures and demonstrated transcriptomic changes in injured livers. Impact and implications Understanding the lymphatic system in the liver is challenging because of the absence of specific markers for liver LyEC. This study has identified IL7 as a reliable marker for LyECs, enabling the development of an effective method for their isolation, elucidating their unique cell surface structure, and identifying LyEC genes that undergo changes during liver damage. The development of IL7 antibodies for detecting it in human liver specimens will further advance our understanding of the liver lymphatic system in the future.
Collapse
Affiliation(s)
- Yilin Yang
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT, USA
| | - Jain Jeong
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT, USA
| | - Tingting Su
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT, USA
- Department of Gastroenterology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Sanchuan Lai
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT, USA
- Department of Gastroenterology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Pengpeng Zhang
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT, USA
- The Transplantation Center of the Third Xiangya Hospital, Central South University, Changsha, China
| | - Rolando Garcia-Milian
- Bioinformatics Support Hub, Cushing/Whitney Medical Library, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Morven Graham
- Center for Cellular and Molecular Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Xinran Liu
- Center for Cellular and Molecular Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Matthew J. McConnell
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT, USA
| | - Teruo Utsumi
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT, USA
| | - Joao Pereira
- Department of Immunobiology and Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA
| | - Yasuko Iwakiri
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
17
|
He S, Luo Y, Ma W, Wang X, Yan C, Hao W, Fang Y, Su H, Lai B, Liu J, Xiong Y, Bai T, Ren X, Liu E, Han H, Wu Y, Yuan Z, Wang Y. Endothelial POFUT1 controls injury-induced liver fibrosis by repressing fibrinogen synthesis. J Hepatol 2024; 81:135-148. [PMID: 38460791 DOI: 10.1016/j.jhep.2024.02.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 02/19/2024] [Accepted: 02/27/2024] [Indexed: 03/11/2024]
Abstract
BACKGROUND & AIMS NOTCH signaling in liver sinusoidal endothelial cells (LSECs) regulates liver fibrosis, a pathological feature of chronic liver diseases. POFUT1 is an essential regulator of NOTCH signaling. Here, we investigated the role of LSEC-expressed POFUT1 in liver fibrosis. METHODS Endothelial-specific Pofut1 knockout mice were generated and experimental liver fibrosis was induced by chronic carbon tetrachloride exposure or common bile duct ligation. Liver samples were assessed by ELISA, histology, electron microscopy, immunostaining and RNA in situ hybridization. LSECs and hepatic stellate cells (HSCs) were isolated for gene expression analysis by RNA sequencing, qPCR, and western blotting. Signaling crosstalk between LSECs and HSCs was investigated by treating HSCs with supernatant from LSEC cultures. Liver single-cell RNA sequencing datasets from patients with cirrhosis and healthy individuals were analyzed to evaluate the clinical relevance of gene expression changes observed in mouse studies. RESULTS POFUT1 loss promoted injury-induced LSEC capillarization and HSC activation, leading to aggravated liver fibrosis. RNA sequencing analysis revealed that POFUT1 deficiency upregulated fibrinogen expression in LSECs. Consistently, fibrinogen was elevated in LSECs of patients with cirrhosis. HSCs treated with supernatant from LSECs of Pofut1 null mice showed exacerbated activation compared to those treated with supernatant from control LSECs, and this effect was attenuated by knockdown of fibrinogen or by pharmacological inhibition of fibrinogen receptor signaling, altogether suggesting that LSEC-derived fibrinogen induced the activation of HSCs. Mechanistically, POFUT1 loss augmented fibrinogen expression by enhancing NOTCH/HES1/STAT3 signaling. CONCLUSIONS Endothelial POFUT1 prevents injury-induced liver fibrosis by repressing the expression of fibrinogen, which functions as a profibrotic paracrine signal to activate HSCs. Therapies targeting the POFUT1/fibrinogen axis offer a promising strategy for the prevention and treatment of fibrotic liver diseases. IMPACT AND IMPLICATIONS Paracrine signals produced by liver vasculature play a major role in the development of liver fibrosis, which is a pathological hallmark of most liver diseases. Identifying those paracrine signals is clinically relevant in that they may serve as therapeutic targets. In this study, we discovered that genetic deletion of Pofut1 aggravated experimental liver fibrosis in mouse models. Moreover, fibrinogen was identified as a downstream target repressed by Pofut1 in liver endothelial cells and functioned as a novel paracrine signal that drove liver fibrosis. In addition, fibrinogen was found to be relevant to cirrhosis and may serve as a potential therapeutic target for this devastating human disease.
Collapse
Affiliation(s)
- Shan He
- The Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China; Department of Stomatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yuru Luo
- The Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Wangge Ma
- Cardiovascular Department, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xiaoke Wang
- Cardiovascular Department, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Chengrong Yan
- The Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Wenyang Hao
- The Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yuan Fang
- The Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Hongyu Su
- The Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Baochang Lai
- The Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Junhui Liu
- Clinical Laboratory, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Ying Xiong
- Cardiovascular Department, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Ting Bai
- Cardiovascular Department, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xiaoyong Ren
- Department of Stomatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Enqi Liu
- Department of Laboratory Animal Science, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Hua Han
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancer and Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yue Wu
- Cardiovascular Department, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University, Xi'an, Shaanxi, China; Cardiometabolic Innovation Center, Ministry of Education, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| | - Zuyi Yuan
- Cardiovascular Department, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University, Xi'an, Shaanxi, China; Cardiometabolic Innovation Center, Ministry of Education, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| | - Yidong Wang
- The Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China; Cardiovascular Department, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University, Xi'an, Shaanxi, China; Cardiometabolic Innovation Center, Ministry of Education, Xi'an Jiaotong University, Xi'an, Shaanxi, China; Department of Cardiology, Wenling First People's Hospital, The Affiliated Hospital of Wenzhou Medical University, Wenling, Zhejiang, China.
| |
Collapse
|
18
|
Shi J, Li Q, Li J, Zhou J, Zhang X, Wang S, Guo L. Single-Cell RNA Sequencing Reveals the Spatial Heterogeneity and Functional Alteration of Endothelial Cells in Chronic Hepatitis B Infection. Int J Mol Sci 2024; 25:7016. [PMID: 39000126 PMCID: PMC11241719 DOI: 10.3390/ijms25137016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/24/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
Chronic Hepatitis B virus (CHB) infection is a global health challenge, causing damage ranging from hepatitis to cirrhosis and hepatocellular carcinoma. In our study, single-cell RNA sequencing (scRNA-seq) analysis was performed in livers from mice models with chronic inflammation induced by CHB infection and we found that endothelial cells (ECs) exhibited the largest number of differentially expressed genes (DEGs) among all ten cell types. NF-κB signaling was activated in ECs to induce cell dysfunction and subsequent hepatic inflammation, which might be mediated by the interaction of macrophage-derived and cholangiocyte-derived VISFATIN/Nampt signaling. Moreover, we divided ECs into three subclusters, including periportal ECs (EC_Z1), midzonal ECs (EC_Z2), and pericentral ECs (EC_Z3) according to hepatic zonation. Functional analysis suggested that pericentral ECs and midzonal ECs, instead of periportal ECs, were more vulnerable to HBV infection, as the VISFATIN/Nampt- NF-κB axis was mainly altered in these two subpopulations. Interestingly, pericentral ECs showed increasing communication with macrophages and cholangiocytes via the Nampt-Insr and Nampt-Itga5/Itgb1 axis upon CHB infection, which contribute to angiogenesis and vascular capillarization. Additionally, ECs, especially pericentral ECs, showed a close connection with nature killer (NK) cells and T cells via the Cxcl6-Cxcr6 axis, which is involved in shaping the microenvironment in CHB mice livers. Thus, our study described the heterogeneity and functional alterations of three subclusters in ECs. We revealed the potential role of VISFATIN/Nampt signaling in modulating ECs characteristics and related hepatic inflammation, and EC-derived chemokine Cxcl16 in shaping NK and T cell recruitment, providing key insights into the multifunctionality of ECs in CHB-associated pathologies.
Collapse
Affiliation(s)
- Jingqi Shi
- Bioinformatics Center of AMMS, Beijing 100039, China
| | - Qingyu Li
- Bioinformatics Center of AMMS, Beijing 100039, China
| | - Jian Li
- Bioinformatics Center of AMMS, Beijing 100039, China
| | - Jianglin Zhou
- Bioinformatics Center of AMMS, Beijing 100039, China
| | | | - Shengqi Wang
- Bioinformatics Center of AMMS, Beijing 100039, China
| | - Liang Guo
- Bioinformatics Center of AMMS, Beijing 100039, China
| |
Collapse
|
19
|
Tian SP, Ge JY, Song YM, Yu XQ, Chen WH, Chen YY, Ye D, Zheng YW. A novel efficient strategy to generate liver sinusoidal endothelial cells from human pluripotent stem cells. Sci Rep 2024; 14:13831. [PMID: 38879647 PMCID: PMC11180100 DOI: 10.1038/s41598-024-64195-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/06/2024] [Indexed: 06/19/2024] Open
Abstract
Liver sinusoidal endothelial cells (LSECs) are highly specialized endothelial cells (ECs) that play an important role in liver development and regeneration. Additionally, it is involved in various pathological processes, including steatosis, inflammation, fibrosis and hepatocellular carcinoma. However, the rapid dedifferentiation of LSECs after culture greatly limits their use in vitro modeling for biomedical applications. In this study, we developed a highly efficient protocol to induce LSEC-like cells from human induced pluripotent stem cells (hiPSCs) in only 8 days. Using single-cell transcriptomic analysis, we identified several novel LSEC-specific markers, such as EPAS1, LIFR, and NID1, as well as several previously revealed markers, such as CLEC4M, CLEC1B, CRHBP and FCN3. These LSEC markers are specifically expressed in our LSEC-like cells. Furthermore, hiPSC-derived cells expressed LSEC-specific proteins and exhibited LSEC-related functions, such as the uptake of acetylated low density lipoprotein (ac-LDL) and immune complex endocytosis. Overall, this study confirmed that our novel protocol allowed hiPSCs to rapidly acquire an LSEC-like phenotype and function in vitro. The ability to generate LSECs efficiently and rapidly may help to more precisely mimic liver development and disease progression in a liver-specific multicellular microenvironment, offering new insights into the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Shang-Ping Tian
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, and South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong, China
| | - Jian-Yun Ge
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, and South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong, China
| | - Yu-Mu Song
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, and South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong, China
| | - Xiao-Qing Yu
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, and South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong, China
| | - Wen-Hao Chen
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, and South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong, China
| | - Yu-Ying Chen
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, and South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong, China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Di Ye
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, and South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong, China
| | - Yun-Wen Zheng
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, and South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong, China.
- Institute of Regenerative Medicine, and Department of Dermatology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu, China.
- Department of Medical and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan.
- Institute of Medical Science, Center for Stem Cell Biology and Regenerative Medicine, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
20
|
Gan C, Yaqoob U, Lu J, Xie M, Anwar A, Jalan-Sakrikar N, Jerez S, Sehrawat TS, Navarro-Corcuera A, Kostallari E, Habash NW, Cao S, Shah VH. Liver sinusoidal endothelial cells contribute to portal hypertension through collagen type IV-driven sinusoidal remodeling. JCI Insight 2024; 9:e174775. [PMID: 38713515 PMCID: PMC11382879 DOI: 10.1172/jci.insight.174775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 04/25/2024] [Indexed: 05/09/2024] Open
Abstract
Portal hypertension (PHTN) is a severe complication of liver cirrhosis and is associated with intrahepatic sinusoidal remodeling induced by sinusoidal resistance and angiogenesis. Collagen type IV (COL4), a major component of basement membrane, forms in liver sinusoids upon chronic liver injury. However, the role, cellular source, and expression regulation of COL4 in liver diseases are unknown. Here, we examined how COL4 is produced and how it regulates sinusoidal remodeling in fibrosis and PHTN. Human cirrhotic liver sample RNA sequencing showed increased COL4 expression, which was further verified via immunofluorescence staining. Single-cell RNA sequencing identified liver sinusoidal endothelial cells (LSECs) as the predominant source of COL4 upregulation in mouse fibrotic liver. In addition, COL4 was upregulated in a TNF-α/NF-κB-dependent manner through an epigenetic mechanism in LSECs in vitro. Indeed, by utilizing a CRISPRi-dCas9-KRAB epigenome-editing approach, epigenetic repression of the enhancer-promoter interaction showed silencing of COL4 gene expression. LSEC-specific COL4 gene mutation or repression in vivo abrogated sinusoidal resistance and angiogenesis, which thereby alleviated sinusoidal remodeling and PHTN. Our findings reveal that LSECs promote sinusoidal remodeling and PHTN during liver fibrosis through COL4 deposition.
Collapse
Affiliation(s)
- Can Gan
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Usman Yaqoob
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Jianwen Lu
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Man Xie
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
- Affiliated Hospital of Qingdao University, Qingdao, China
| | - Abid Anwar
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Nidhi Jalan-Sakrikar
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Sofia Jerez
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Tejasav S Sehrawat
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Enis Kostallari
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Nawras W Habash
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Sheng Cao
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Vijay H Shah
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
21
|
Miyamoto Y, Kikuta J, Matsui T, Hasegawa T, Fujii K, Okuzaki D, Liu YC, Yoshioka T, Seno S, Motooka D, Uchida Y, Yamashita E, Kobayashi S, Eguchi H, Morii E, Tryggvason K, Shichita T, Kayama H, Atarashi K, Kunisawa J, Honda K, Takeda K, Ishii M. Periportal macrophages protect against commensal-driven liver inflammation. Nature 2024; 629:901-909. [PMID: 38658756 DOI: 10.1038/s41586-024-07372-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 04/02/2024] [Indexed: 04/26/2024]
Abstract
The liver is the main gateway from the gut, and the unidirectional sinusoidal flow from portal to central veins constitutes heterogenous zones, including the periportal vein (PV) and the pericentral vein zones1-5. However, functional differences in the immune system in each zone remain poorly understood. Here intravital imaging revealed that inflammatory responses are suppressed in PV zones. Zone-specific single-cell transcriptomics detected a subset of immunosuppressive macrophages enriched in PV zones that express high levels of interleukin-10 and Marco, a scavenger receptor that sequesters pro-inflammatory pathogen-associated molecular patterns and damage-associated molecular patterns, and consequently suppress immune responses. Induction of Marco+ immunosuppressive macrophages depended on gut microbiota. In particular, a specific bacterial family, Odoribacteraceae, was identified to induce this macrophage subset through its postbiotic isoallolithocholic acid. Intestinal barrier leakage resulted in inflammation in PV zones, which was markedly augmented in Marco-deficient conditions. Chronic liver inflammatory diseases such as primary sclerosing cholangitis (PSC) and non-alcoholic steatohepatitis (NASH) showed decreased numbers of Marco+ macrophages. Functional ablation of Marco+ macrophages led to PSC-like inflammatory phenotypes related to colitis and exacerbated steatosis in NASH in animal experimental models. Collectively, commensal bacteria induce Marco+ immunosuppressive macrophages, which consequently limit excessive inflammation at the gateway of the liver. Failure of this self-limiting system promotes hepatic inflammatory disorders such as PSC and NASH.
Collapse
Affiliation(s)
- Yu Miyamoto
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Osaka, Japan
- WPI-Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Life-omics Research Division, Institute for Open and Transdisciplinary Research Initiative, Osaka University, Osaka, Japan
| | - Junichi Kikuta
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Osaka, Japan
- WPI-Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Life-omics Research Division, Institute for Open and Transdisciplinary Research Initiative, Osaka University, Osaka, Japan
- Laboratory of Bioimaging and Drug Discovery, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Takahiro Matsui
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Osaka, Japan
- Department of Pathology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Tetsuo Hasegawa
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Osaka, Japan
| | - Kentaro Fujii
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Osaka, Japan
- WPI-Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Life-omics Research Division, Institute for Open and Transdisciplinary Research Initiative, Osaka University, Osaka, Japan
| | - Daisuke Okuzaki
- WPI-Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Yu-Chen Liu
- WPI-Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Takuya Yoshioka
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Shigeto Seno
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Osaka, Japan
| | - Daisuke Motooka
- WPI-Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Yutaka Uchida
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Osaka, Japan
- WPI-Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Life-omics Research Division, Institute for Open and Transdisciplinary Research Initiative, Osaka University, Osaka, Japan
- Laboratory of Bioimaging and Drug Discovery, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Erika Yamashita
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Osaka, Japan
- WPI-Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Life-omics Research Division, Institute for Open and Transdisciplinary Research Initiative, Osaka University, Osaka, Japan
| | - Shogo Kobayashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Eiichi Morii
- Department of Pathology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Karl Tryggvason
- Cardiovascular and Metabolic Disorders Program, Duke-NUS, Duke-NUS Medical School, Singapore, Singapore
| | - Takashi Shichita
- Laboratory for Neuroinflammation and Repair, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hisako Kayama
- WPI-Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Koji Atarashi
- Department of Microbiology and Immunology, School of Medicine, Keio University, Tokyo, Japan
| | - Jun Kunisawa
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Kenya Honda
- Department of Microbiology and Immunology, School of Medicine, Keio University, Tokyo, Japan
| | - Kiyoshi Takeda
- WPI-Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Masaru Ishii
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Osaka, Japan.
- WPI-Immunology Frontier Research Center, Osaka University, Osaka, Japan.
- Life-omics Research Division, Institute for Open and Transdisciplinary Research Initiative, Osaka University, Osaka, Japan.
- Laboratory of Bioimaging and Drug Discovery, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan.
| |
Collapse
|
22
|
Fujiwara N, Kimura G, Nakagawa H. Emerging Roles of Spatial Transcriptomics in Liver Research. Semin Liver Dis 2024; 44:115-132. [PMID: 38574750 DOI: 10.1055/a-2299-7880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Spatial transcriptomics, leveraging sequencing- and imaging-based techniques, has emerged as a groundbreaking technology for mapping gene expression within the complex architectures of tissues. This approach provides an in-depth understanding of cellular and molecular dynamics across various states of healthy and diseased livers. Through the integration of sophisticated bioinformatics strategies, it enables detailed exploration of cellular heterogeneity, transitions in cell states, and intricate cell-cell interactions with remarkable precision. In liver research, spatial transcriptomics has been particularly revelatory, identifying distinct zonated functions of hepatocytes that are crucial for understanding the metabolic and detoxification processes of the liver. Moreover, this technology has unveiled new insights into the pathogenesis of liver diseases, such as the role of lipid-associated macrophages in steatosis and endothelial cell signals in liver regeneration and repair. In the domain of liver cancer, spatial transcriptomics has proven instrumental in delineating intratumor heterogeneity, identifying supportive microenvironmental niches and revealing the complex interplay between tumor cells and the immune system as well as susceptibility to immune checkpoint inhibitors. In conclusion, spatial transcriptomics represents a significant advance in hepatology, promising to enhance our understanding and treatment of liver diseases.
Collapse
Affiliation(s)
- Naoto Fujiwara
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Mie University, Mie, Japan
| | - Genki Kimura
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Mie University, Mie, Japan
| | - Hayato Nakagawa
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Mie University, Mie, Japan
| |
Collapse
|
23
|
Wang C, Felli E, Selicean S, Nulan Y, Lozano JJ, Guixé-Muntet S, Bosch J, Berzigotti A, Gracia-Sancho J. Role of calcium integrin-binding protein 1 in the mechanobiology of the liver endothelium. J Cell Physiol 2024; 239:e31198. [PMID: 38451745 DOI: 10.1002/jcp.31198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 03/09/2024]
Abstract
Liver sinusoidal endothelial cells (LSECs) dysfunction is a key process in the development of chronic liver disease (CLD). Progressive scarring increases liver stiffness in a winch-like loop stimulating a dysfunctional liver cell phenotype. Cellular stretching is supported by biomechanically modulated molecular factors (BMMFs) that can translocate into the cytoplasm to support mechanotransduction through cytoskeleton remodeling and gene transcription. Currently, the molecular mechanisms of stiffness-induced LSECs dysfunction remain largely unclear. Here we propose calcium- and integrin-binding protein 1 (CIB1) as BMMF with crucial role in LSECs mechanobiology in CLD. CIB1 expression and translocation was characterized in healthy and cirrhotic human livers and in LSECs cultured on polyacrylamide gels with healthy and cirrhotic-like stiffnesses. Following the modulation of CIB1 with siRNA, the transcriptome was scrutinized to understand downstream effects of CIB1 downregulation. CIB1 expression is increased in LSECs in human cirrhosis. In vitro, CIB1 emerges as an endothelial BMMF. In human umbilical vein endothelial cells and LSECs, CIB1 expression and localization are modulated by stiffness-induced trafficking across the nuclear membrane. LSECs from cirrhotic liver tissue both in animal model and human disease exhibit an increased amount of CIB1 in cytoplasm. Knockdown of CIB1 in LSECs exposed to high stiffness improves LSECs phenotype by regulating the intracellular tension as well as the inflammatory response. Our results demonstrate that CIB1 is a key factor in sustaining cellular tension and stretching in response to high stiffness. CIB1 downregulation ameliorates LSECs dysfunction, enhancing their redifferentiation, and reducing the inflammatory response.
Collapse
Affiliation(s)
- Cong Wang
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Eric Felli
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, Visceral Surgery and Medicine, University of Bern, Bern, Switzerland
| | - Sonia Selicean
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Yeliduosi Nulan
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Juan José Lozano
- Liver Vascular Biology Research Group, IDIBAPS Biomedical Research Institute, CIBEREHD, Barcelona, Spain
| | - Sergi Guixé-Muntet
- Liver Vascular Biology Research Group, IDIBAPS Biomedical Research Institute, CIBEREHD, Barcelona, Spain
| | - Jaume Bosch
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, Visceral Surgery and Medicine, University of Bern, Bern, Switzerland
- Liver Vascular Biology Research Group, IDIBAPS Biomedical Research Institute, CIBEREHD, Barcelona, Spain
| | - Annalisa Berzigotti
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, Visceral Surgery and Medicine, University of Bern, Bern, Switzerland
| | - Jordi Gracia-Sancho
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, Visceral Surgery and Medicine, University of Bern, Bern, Switzerland
- Liver Vascular Biology Research Group, IDIBAPS Biomedical Research Institute, CIBEREHD, Barcelona, Spain
| |
Collapse
|
24
|
Yang C, Xie W, Fu H, Zhi M, Zhang H, Guo Y, Wang J. Single-cell RNA sequencing reveals the heterogeneity of hepatic non-parenchymal cell responses to chronic PFO5DoDA exposure in male mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123721. [PMID: 38462192 DOI: 10.1016/j.envpol.2024.123721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024]
Abstract
Perfluoroalkyl ether carboxylic acids (PFECA) have emerged as novel alternatives to legacy per- and polyfluoroalkyl substances (PFAS). Existing research has revealed hepatoxicity induced by various PFAS, including PFECA. However, these studies have primarily focused on overall changes in whole liver tissue, particularly in hepatocytes, with the impact of PFAS on diverse liver non-parenchymal cells (NPCs) still inadequately understood. In the present study, we examined the heterogeneous responses of hepatic NPCs following exposure to perfluoro-3,5,7,9,11-pentaoxadodecanoic acid (PFO5DoDA), a type of PFECA, by administering PFO5DoDA (5 μg/L)-contaminated water to male mice for one year. Single-cell RNA sequencing (scRNA-seq) of 15 008 cells from the liver identified 10 distinct NPC populations. Notably, although relative liver weight remained largely unchanged following exposure to 5 μg/L PFO5DoDA, there was an observed increase in proliferating cells, indicating that proliferating NPCs may contribute to the hepatomegaly frequently noted in PFAS-exposed livers. There was also a considerable alteration in the composition of hepatic NPCs. Specifically, the total number of B cells decreased substantially, while many other cells, such as monocytes and macrophages, increased after PFO5DoDA exposure. In addition, interactions among the hepatic NPC populations changed variously after PFO5DoDA exposure. The findings emphasize the heterogeneity in the responses of hepatic NPCs to PFO5DoDA exposure. Taken together, the changes in immune cell populations and their intercellular interactions suggest that PFO5DoDA disrupts immune homeostasis in the liver. These findings offer new insights into the cellular mechanisms of PFAS-induced liver damage.
Collapse
Affiliation(s)
- Chunyu Yang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Yantai University, Yantai, 264005, China
| | - Wei Xie
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Yantai University, Yantai, 264005, China
| | - Huayu Fu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Yantai University, Yantai, 264005, China
| | - Mengxue Zhi
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Yantai University, Yantai, 264005, China
| | - Hongxia Zhang
- Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yong Guo
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jianshe Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Yantai University, Yantai, 264005, China.
| |
Collapse
|
25
|
Meroueh C, Warasnhe K, Tizhoosh HR, Shah VH, Ibrahim SH. Digital pathology and spatial omics in steatohepatitis: Clinical applications and discovery potentials. Hepatology 2024:01515467-990000000-00815. [PMID: 38517078 PMCID: PMC11669472 DOI: 10.1097/hep.0000000000000866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 02/26/2024] [Indexed: 03/23/2024]
Abstract
Steatohepatitis with diverse etiologies is the most common histological manifestation in patients with liver disease. However, there are currently no specific histopathological features pathognomonic for metabolic dysfunction-associated steatotic liver disease, alcohol-associated liver disease, or metabolic dysfunction-associated steatotic liver disease with increased alcohol intake. Digitizing traditional pathology slides has created an emerging field of digital pathology, allowing for easier access, storage, sharing, and analysis of whole-slide images. Artificial intelligence (AI) algorithms have been developed for whole-slide images to enhance the accuracy and speed of the histological interpretation of steatohepatitis and are currently employed in biomarker development. Spatial biology is a novel field that enables investigators to map gene and protein expression within a specific region of interest on liver histological sections, examine disease heterogeneity within tissues, and understand the relationship between molecular changes and distinct tissue morphology. Here, we review the utility of digital pathology (using linear and nonlinear microscopy) augmented with AI analysis to improve the accuracy of histological interpretation. We will also discuss the spatial omics landscape with special emphasis on the strengths and limitations of established spatial transcriptomics and proteomics technologies and their application in steatohepatitis. We then highlight the power of multimodal integration of digital pathology augmented by machine learning (ML)algorithms with spatial biology. The review concludes with a discussion of the current gaps in knowledge, the limitations and premises of these tools and technologies, and the areas of future research.
Collapse
Affiliation(s)
- Chady Meroueh
- Department of Laboratory Medicine & Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Khaled Warasnhe
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - H. R. Tizhoosh
- Department of Artificial Intelligence & Informatics, Mayo Clinic, Rochester, Minnesota, USA
| | - Vijay H. Shah
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Samar H. Ibrahim
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, Minnesota, USA
- Division of Pediatric Gastroenterology & Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
26
|
Zuo B, Yang F, Huang L, Han J, Li T, Ma Z, Cao L, Li Y, Bai X, Jiang M, He Y, Xia L. Endothelial Slc35a1 Deficiency Causes Loss of LSEC Identity and Exacerbates Neonatal Lipid Deposition in the Liver in Mice. Cell Mol Gastroenterol Hepatol 2024; 17:1039-1061. [PMID: 38467191 PMCID: PMC11061248 DOI: 10.1016/j.jcmgh.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 03/13/2024]
Abstract
BACKGROUND & AIMS The functional maturation of the liver largely occurs after birth. In the early stages of life, the liver of a newborn encounters enormous high-fat metabolic stress caused by the consumption of breast milk. It is unclear how the maturing liver adapts to high lipid metabolism. Liver sinusoidal endothelial cells (LSECs) play a fundamental role in establishing liver vasculature and are decorated with many glycoproteins on their surface. The Slc35a1 gene encodes a cytidine-5'-monophosphate (CMP)-sialic acid transporter responsible for transporting CMP-sialic acids between the cytoplasm and the Golgi apparatus for protein sialylation. This study aimed to determine whether endothelial sialylation plays a role in hepatic vasculogenesis and functional maturation. METHODS Endothelial-specific Slc35a1 knockout mice were generated. Liver tissues were collected for histologic analysis, lipidomic profiling, RNA sequencing, confocal immunofluorescence, and immunoblot analyses. RESULTS Endothelial Slc35a1-deficient mice exhibited excessive neonatal hepatic lipid deposition, severe liver damage, and high mortality. Endothelial deletion of Slc35a1 led to sinusoidal capillarization and disrupted hepatic zonation. Mechanistically, vascular endothelial growth factor receptor 2 (VEGFR2) in LSECs was desialylated and VEGFR2 signaling was enhanced in Slc35a1-deficient mice. Inhibition of VEGFR2 signaling by SU5416 alleviated lipid deposition and restored hepatic vasculature in Slc35a1-deficient mice. CONCLUSIONS Our findings suggest that sialylation of LSECs is critical for maintaining hepatic vascular development and lipid homeostasis. Targeting VEGFR2 signaling may be a new strategy to prevent liver disorders associated with abnormal vasculature and lipid deposition.
Collapse
Affiliation(s)
- Bin Zuo
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Key Laboratory of Thrombosis and Hemostasis of National Health Commission, The First Affiliated Hospital of Soochow University, Suzhou, China; Engineering Center of Hematological Disease of Ministry of Education, Cyrus Tang Hematology Center, Soochow University, Suzhou, China
| | - Fei Yang
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Key Laboratory of Thrombosis and Hemostasis of National Health Commission, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Lulu Huang
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Key Laboratory of Thrombosis and Hemostasis of National Health Commission, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jingjing Han
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Key Laboratory of Thrombosis and Hemostasis of National Health Commission, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Tianyi Li
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Key Laboratory of Thrombosis and Hemostasis of National Health Commission, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhenni Ma
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Key Laboratory of Thrombosis and Hemostasis of National Health Commission, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Lijuan Cao
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Key Laboratory of Thrombosis and Hemostasis of National Health Commission, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yun Li
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Key Laboratory of Thrombosis and Hemostasis of National Health Commission, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xia Bai
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Key Laboratory of Thrombosis and Hemostasis of National Health Commission, The First Affiliated Hospital of Soochow University, Suzhou, China; Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China; State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Miao Jiang
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Key Laboratory of Thrombosis and Hemostasis of National Health Commission, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yang He
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Key Laboratory of Thrombosis and Hemostasis of National Health Commission, The First Affiliated Hospital of Soochow University, Suzhou, China; Engineering Center of Hematological Disease of Ministry of Education, Cyrus Tang Hematology Center, Soochow University, Suzhou, China; Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.
| | - Lijun Xia
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Key Laboratory of Thrombosis and Hemostasis of National Health Commission, The First Affiliated Hospital of Soochow University, Suzhou, China; Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China; Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma.
| |
Collapse
|
27
|
Gao J, Zuo B, He Y. Liver sinusoidal endothelial cells as potential drivers of liver fibrosis (Review). Mol Med Rep 2024; 29:40. [PMID: 38240102 PMCID: PMC10828992 DOI: 10.3892/mmr.2024.13164] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/18/2023] [Indexed: 01/23/2024] Open
Abstract
Liver fibrosis due to viral or metabolic chronic liver diseases is a major challenge of global health. It is a critical pre‑stage condition of severe hepatopathy, characterized by excessive accumulation of extracellular matrix components and ongoing chronic inflammation. To date, early prevention of liver fibrosis remains challenging. As the most abundant non‑parenchymal hepatic cell population, liver sinusoidal endothelial cells (LSECs) are stabilizers that maintain the intrahepatic environment. Notably, LSECs dysfunction appears to be implicated in the progression of liver fibrosis via numerous mechanisms. Following sustained liver injury, they lose their fenestrae (cytoplasmic pores) and change their crosstalk with other cellular interactions in the hepatic blood environment. LSEC‑targeted therapy has shown promising effects on fibrosis resolution, opening up new opportunities for anti‑fibrotic therapy. In light of this, the present study summarized changes in LSECs during liver fibrosis and their interactions with hepatic milieu, as well as possible therapeutic approaches that specially target LSECs.
Collapse
Affiliation(s)
- Jiaqin Gao
- National Health Commission Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
- Ministry of Education Engineering Center of Hematological Disease, Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Bin Zuo
- National Health Commission Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
- Ministry of Education Engineering Center of Hematological Disease, Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Yang He
- National Health Commission Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
28
|
Liu J, Zhang Q, Wong YK, Luo P, Chen J, Xie L, Chen J, He X, Shi F, Gong P, Liu X, Wang J. Single-Cell Transcriptomics Reveals the Ameliorative Effect of Oridonin on Septic Liver Injury. Adv Biol (Weinh) 2024; 8:e2300542. [PMID: 38408269 DOI: 10.1002/adbi.202300542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/23/2023] [Indexed: 02/28/2024]
Abstract
Sepsis is a life-threatening syndrome leading to hemodynamic instability and potential organ dysfunction. Oridonin, commonly used in Traditional Chinese Medicine (TCM), exhibits significant anti-inflammation activity. To explore the protective mechanisms of oridonin against the pathophysiological changes, the authors conducted single-cell transcriptome (scRNA-seq) analysis on septic liver models induced by cecal ligation and puncture (CLP). They obtained a total of 63,486 cells, distributed across 11 major cell clusters, and concentrated their analysis on four specific clusters (hepatocytes/Heps, macrophages, endothelial/Endos and T/NK) based on their changes in proportion during sepsis and under oridonin treatment. Firstly, biological changes in Hep, which are related to metabolic dysregulation and pro-inflammatory signaling, are observed during sepsis. Secondly, they uncovered the dynamic profiles of macrophage's phenotype, indicating that a substantial number of macrophages exhibited a M1-skewed phenotype associated with pro-inflammatory characteristics in septic model. Thirdly, they detected an upregulation of both inflammatory cytokines and transcriptomic factor Nfkb1 expression within Endo, along with slight capillarization during sepsis. Moreover, excessive accumulation of cytotoxic NK led to an immune imbalance. Though, oridonin ameliorated inflammatory-related responses and improved the liver dysfunction in septic mice. This study provides fundamental evidence of the protective effects of oridonin against sepsis-induced cytokine storm.
Collapse
Affiliation(s)
- Jing Liu
- Department of Critical Medicine, Shenzhen Institute of Respiratory Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medicine College of Jinan University, Shenzhen, Guangdong, 518020, China
| | - Qian Zhang
- School of Traditional Chinese Medicine and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Yin Kwan Wong
- Department of Critical Medicine, Shenzhen Institute of Respiratory Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medicine College of Jinan University, Shenzhen, Guangdong, 518020, China
| | - Piao Luo
- School of Traditional Chinese Medicine and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Junhui Chen
- Department of Critical Medicine, Shenzhen Institute of Respiratory Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medicine College of Jinan University, Shenzhen, Guangdong, 518020, China
| | - Lulin Xie
- Department of Critical Medicine, Shenzhen Institute of Respiratory Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medicine College of Jinan University, Shenzhen, Guangdong, 518020, China
| | - Jiayun Chen
- School of Traditional Chinese Medicine and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xueling He
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Fei Shi
- Department of Infectious Disease, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, 518020, China
| | - Ping Gong
- Department of Emergency, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, 518020, China
| | - Xueyan Liu
- Department of Critical Medicine, Shenzhen Institute of Respiratory Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medicine College of Jinan University, Shenzhen, Guangdong, 518020, China
| | - Jigang Wang
- Department of Critical Medicine, Shenzhen Institute of Respiratory Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medicine College of Jinan University, Shenzhen, Guangdong, 518020, China
- School of Traditional Chinese Medicine and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| |
Collapse
|
29
|
Rocque B, Guion K, Singh P, Bangerth S, Pickard L, Bhattacharjee J, Eguizabal S, Weaver C, Chopra S, Zhou S, Kohli R, Sher L, Akbari O, Ekser B, Emamaullee JA. Technical optimization of spatially resolved single-cell transcriptomic datasets to study clinical liver disease. Sci Rep 2024; 14:3612. [PMID: 38351241 PMCID: PMC10864257 DOI: 10.1038/s41598-024-53993-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 02/07/2024] [Indexed: 02/16/2024] Open
Abstract
Single cell and spatially resolved 'omic' techniques have enabled deep characterization of clinical pathologies that remain poorly understood, providing unprecedented insights into molecular mechanisms of disease. However, transcriptomic platforms are costly, limiting sample size, which increases the possibility of pre-analytical variables such as tissue processing and storage procedures impacting RNA quality and downstream analyses. Furthermore, spatial transcriptomics have not yet reached single cell resolution, leading to the development of multiple deconvolution methods to predict individual cell types within each transcriptome 'spot' on tissue sections. In this study, we performed spatial transcriptomics and single nucleus RNA sequencing (snRNAseq) on matched specimens from patients with either histologically normal or advanced fibrosis to establish important aspects of tissue handling, data processing, and downstream analyses of biobanked liver samples. We observed that tissue preservation technique impacts transcriptomic data, especially in fibrotic liver. Single cell mapping of the spatial transcriptome using paired snRNAseq data generated a spatially resolved, single cell dataset with 24 unique liver cell phenotypes. We determined that cell-cell interactions predicted using ligand-receptor analysis of snRNAseq data poorly correlated with cellular relationships identified using spatial transcriptomics. Our study provides a framework for generating spatially resolved, single cell datasets to study gene expression and cell-cell interactions in biobanked clinical samples with advanced liver disease.
Collapse
Affiliation(s)
- Brittany Rocque
- Division of Abdominal Organ Transplantation and Hepatobiliary Surgery, Department of Surgery, Keck School of Medicine, University of Southern California, 1510 San Pablo Street, Suite 412, Los Angeles, CA, 90033, USA
| | - Kate Guion
- Division of Abdominal Organ Transplantation and Hepatobiliary Surgery, Department of Surgery, Keck School of Medicine, University of Southern California, 1510 San Pablo Street, Suite 412, Los Angeles, CA, 90033, USA
| | - Pranay Singh
- Division of Abdominal Organ Transplantation and Hepatobiliary Surgery, Department of Surgery, Keck School of Medicine, University of Southern California, 1510 San Pablo Street, Suite 412, Los Angeles, CA, 90033, USA
| | - Sarah Bangerth
- Division of Abdominal Organ Transplantation and Hepatobiliary Surgery, Department of Surgery, Keck School of Medicine, University of Southern California, 1510 San Pablo Street, Suite 412, Los Angeles, CA, 90033, USA
| | - Lauren Pickard
- Division of Abdominal Organ Transplantation and Hepatobiliary Surgery, Department of Surgery, Keck School of Medicine, University of Southern California, 1510 San Pablo Street, Suite 412, Los Angeles, CA, 90033, USA
| | - Jashdeep Bhattacharjee
- Division of Gastroenterology, Hepatology and Nutrition, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Sofia Eguizabal
- Division of Abdominal Organ Transplantation and Hepatobiliary Surgery, Department of Surgery, Keck School of Medicine, University of Southern California, 1510 San Pablo Street, Suite 412, Los Angeles, CA, 90033, USA
| | - Carly Weaver
- Division of Abdominal Organ Transplantation, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Shefali Chopra
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Shengmei Zhou
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California Los Angeles, Los Angeles, CA, USA
| | - Rohit Kohli
- Division of Gastroenterology, Hepatology and Nutrition, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Linda Sher
- Division of Abdominal Organ Transplantation and Hepatobiliary Surgery, Department of Surgery, Keck School of Medicine, University of Southern California, 1510 San Pablo Street, Suite 412, Los Angeles, CA, 90033, USA
| | - Omid Akbari
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Burcin Ekser
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Juliet A Emamaullee
- Division of Abdominal Organ Transplantation and Hepatobiliary Surgery, Department of Surgery, Keck School of Medicine, University of Southern California, 1510 San Pablo Street, Suite 412, Los Angeles, CA, 90033, USA.
- Division of Abdominal Organ Transplantation, Children's Hospital Los Angeles, Los Angeles, CA, USA.
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
30
|
Samrit T, Osotprasit S, Chaiwichien A, Suksomboon P, Chansap S, Athipornchai A, Changklungmoa N, Kueakhai P. Cold-Pressed Sacha Inchi Oil: High in Omega-3 and Prevents Fat Accumulation in the Liver. Pharmaceuticals (Basel) 2024; 17:220. [PMID: 38399435 PMCID: PMC10892392 DOI: 10.3390/ph17020220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/01/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024] Open
Abstract
The ability of oil supplementation to inhibit various metabolic syndromes has been recognized. However, there are currently no studies determining the effects of oil supplements on healthy conditions. Plukenetia volubilis L., also known as Sacha inchi, is a seed rich in essential unsaturated fatty acids that improves metabolic syndrome diseases, such as obesity and nonalcoholic fatty liver. However, the health benefits and effects of Sacha inchi oil (SIO) supplementation remain unclear. This study aims to evaluate the chemical effects and properties of Sacha inchi oil. The results of the chemical compound analysis showed that Sacha inchi is an abundant source of ω-3 fatty acids, with a content of 44.73%, and exhibits scavenging activity of 240.53 ± 11.74 and 272.41 ± 6.95 µg Trolox/g, determined via DPPH and ABTS assays, respectively, while both olive and lard oils exhibited lower scavenging activities compared with Sacha inchi. Regarding liver histology, rats given Sacha inchi supplements showed lower TG accumulation and fat droplet distribution in the liver than those given lard supplements, with fat areas of approximately 14.19 ± 6.49% and 8.15 ± 2.40%, respectively. In conclusion, our findings suggest that Sacha inchi oil is a plant source of ω-3 fatty acids and antioxidants and does not induce fatty liver and pathology in the kidney, pancreas, and spleen. Therefore, it has the potential to be used as a dietary supplement to improve metabolic syndrome diseases.
Collapse
Affiliation(s)
- Tepparit Samrit
- Food Bioactive Compounds Research Unit, Faculty of Allied Health Sciences, Burapha University, Long-Hard Bangsaen Road, Saen Sook Sub-District, Mueang District, Chonburi 20131, Thailand; (T.S.); (S.O.); (A.C.); (P.S.); (S.C.); (N.C.)
| | - Supawadee Osotprasit
- Food Bioactive Compounds Research Unit, Faculty of Allied Health Sciences, Burapha University, Long-Hard Bangsaen Road, Saen Sook Sub-District, Mueang District, Chonburi 20131, Thailand; (T.S.); (S.O.); (A.C.); (P.S.); (S.C.); (N.C.)
| | - Athit Chaiwichien
- Food Bioactive Compounds Research Unit, Faculty of Allied Health Sciences, Burapha University, Long-Hard Bangsaen Road, Saen Sook Sub-District, Mueang District, Chonburi 20131, Thailand; (T.S.); (S.O.); (A.C.); (P.S.); (S.C.); (N.C.)
| | - Phawiya Suksomboon
- Food Bioactive Compounds Research Unit, Faculty of Allied Health Sciences, Burapha University, Long-Hard Bangsaen Road, Saen Sook Sub-District, Mueang District, Chonburi 20131, Thailand; (T.S.); (S.O.); (A.C.); (P.S.); (S.C.); (N.C.)
| | - Supanan Chansap
- Food Bioactive Compounds Research Unit, Faculty of Allied Health Sciences, Burapha University, Long-Hard Bangsaen Road, Saen Sook Sub-District, Mueang District, Chonburi 20131, Thailand; (T.S.); (S.O.); (A.C.); (P.S.); (S.C.); (N.C.)
| | - Anan Athipornchai
- Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Burapha University, Chonburi 20131, Thailand;
| | - Narin Changklungmoa
- Food Bioactive Compounds Research Unit, Faculty of Allied Health Sciences, Burapha University, Long-Hard Bangsaen Road, Saen Sook Sub-District, Mueang District, Chonburi 20131, Thailand; (T.S.); (S.O.); (A.C.); (P.S.); (S.C.); (N.C.)
| | - Pornanan Kueakhai
- Food Bioactive Compounds Research Unit, Faculty of Allied Health Sciences, Burapha University, Long-Hard Bangsaen Road, Saen Sook Sub-District, Mueang District, Chonburi 20131, Thailand; (T.S.); (S.O.); (A.C.); (P.S.); (S.C.); (N.C.)
| |
Collapse
|
31
|
Kovner AV, Kapushchak YK, Zaparina O, Mordvinov VA, Pakharukova MY. Hepatic vascular changes associated with Opisthorchis felineus infection in Syrian hamsters and humans. Acta Trop 2024; 250:107100. [PMID: 38101765 DOI: 10.1016/j.actatropica.2023.107100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/27/2023] [Accepted: 12/12/2023] [Indexed: 12/17/2023]
Abstract
The liver fluke Opisthorchis felineus is a foodborne zoonotic pathogen endemic to Russia, Kazakhstan, and several European countries. The adult flukes affect the hepatobiliary system of piscivorous mammals and humans, thereby causing numerous complications, including liver fibrosis. Detailing the mechanisms of progression of the fibrotic complications is a hot topic in the field of research on opisthorchiasis pathogenesis. Pathologic angiogenesis appears to be associated with the fibrogenic progression due to active participation in the recruitment of inflammatory cells and many factors involved in the modulation of the extracellular matrix. The aim of the study was to evaluate neoangiogenesis and amyloid deposits in liver tissues of model animals and patients with confirmed chronic opisthorchiasis. In addition, we assessed a possible correlation of neoangiogenesis with liver fibrosis. We found a significant increase in the number of newly formed vessels and amyloid deposits in the liver of people with chronic opisthorchiasis compared to that of uninfected ones. Thus, for the first time we have demonstrated neoangiogenesis and amyloid deposits during O. felineus infection in a Mesocricetus auratus model. Regression analysis showed that CD34+ newly formed vessels correlate with fibrosis severity in the course of the infection. Our results indicate the potential contribution of angiogenesis to the progression of liver fibrosis, associated with O. felineus infection.
Collapse
Affiliation(s)
- Anna V Kovner
- Institute of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), 10 Ak. Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Yaroslav K Kapushchak
- Institute of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), 10 Ak. Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Oxana Zaparina
- Institute of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), 10 Ak. Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Viatcheslav A Mordvinov
- Institute of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), 10 Ak. Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Maria Y Pakharukova
- Institute of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), 10 Ak. Lavrentiev Ave., Novosibirsk 630090, Russia; Department of Natural Sciences, Novosibirsk State University, 2 Pirogova Str., Novosibirsk 630090, Russia; Institute of Molecular Biology and Biophysics, Siberian Branch of Russian Academy of Medical Sciences, 2 Ak. Timakova Str., Novosibirsk, 630117, Russia
| |
Collapse
|
32
|
Fernández-Iglesias A, Gracia-Sancho J. Role of liver sinusoidal endothelial cells in the diagnosis and treatment of liver diseases. SINUSOIDAL CELLS IN LIVER DISEASES 2024:467-481. [DOI: 10.1016/b978-0-323-95262-0.00023-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
33
|
Bravo González-Blas C, Matetovici I, Hillen H, Taskiran II, Vandepoel R, Christiaens V, Sansores-García L, Verboven E, Hulselmans G, Poovathingal S, Demeulemeester J, Psatha N, Mauduit D, Halder G, Aerts S. Single-cell spatial multi-omics and deep learning dissect enhancer-driven gene regulatory networks in liver zonation. Nat Cell Biol 2024; 26:153-167. [PMID: 38182825 PMCID: PMC10791584 DOI: 10.1038/s41556-023-01316-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 11/15/2023] [Indexed: 01/07/2024]
Abstract
In the mammalian liver, hepatocytes exhibit diverse metabolic and functional profiles based on their location within the liver lobule. However, it is unclear whether this spatial variation, called zonation, is governed by a well-defined gene regulatory code. Here, using a combination of single-cell multiomics, spatial omics, massively parallel reporter assays and deep learning, we mapped enhancer-gene regulatory networks across mouse liver cell types. We found that zonation affects gene expression and chromatin accessibility in hepatocytes, among other cell types. These states are driven by the repressors TCF7L1 and TBX3, alongside other core hepatocyte transcription factors, such as HNF4A, CEBPA, FOXA1 and ONECUT1. To examine the architecture of the enhancers driving these cell states, we trained a hierarchical deep learning model called DeepLiver. Our study provides a multimodal understanding of the regulatory code underlying hepatocyte identity and their zonation state that can be used to engineer enhancers with specific activity levels and zonation patterns.
Collapse
Affiliation(s)
- Carmen Bravo González-Blas
- VIB Center for Brain & Disease Research, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Irina Matetovici
- VIB Center for Brain & Disease Research, Leuven, Belgium
- VIB Center for AI and Computational Biology (VIB.AI), Leuven, Belgium
- VIB Tech Watch, VIB Headquarters, Ghent, Belgium
| | - Hanne Hillen
- VIB Center for Cancer Biology, Leuven, Belgium
- Department of Oncology, KU Leuven, Leuven, Belgium
| | - Ibrahim Ihsan Taskiran
- VIB Center for Brain & Disease Research, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- VIB Center for AI and Computational Biology (VIB.AI), Leuven, Belgium
| | - Roel Vandepoel
- VIB Center for Brain & Disease Research, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- VIB Center for AI and Computational Biology (VIB.AI), Leuven, Belgium
| | - Valerie Christiaens
- VIB Center for Brain & Disease Research, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- VIB Center for AI and Computational Biology (VIB.AI), Leuven, Belgium
| | - Leticia Sansores-García
- VIB Center for Cancer Biology, Leuven, Belgium
- Department of Oncology, KU Leuven, Leuven, Belgium
| | - Elisabeth Verboven
- VIB Center for Cancer Biology, Leuven, Belgium
- Department of Oncology, KU Leuven, Leuven, Belgium
| | - Gert Hulselmans
- VIB Center for Brain & Disease Research, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- VIB Center for AI and Computational Biology (VIB.AI), Leuven, Belgium
| | | | - Jonas Demeulemeester
- VIB Center for Brain & Disease Research, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Nikoleta Psatha
- VIB Center for Brain & Disease Research, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - David Mauduit
- VIB Center for Brain & Disease Research, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- VIB Center for AI and Computational Biology (VIB.AI), Leuven, Belgium
| | - Georg Halder
- VIB Center for Cancer Biology, Leuven, Belgium
- Department of Oncology, KU Leuven, Leuven, Belgium
| | - Stein Aerts
- VIB Center for Brain & Disease Research, Leuven, Belgium.
- Department of Human Genetics, KU Leuven, Leuven, Belgium.
- VIB Center for AI and Computational Biology (VIB.AI), Leuven, Belgium.
| |
Collapse
|
34
|
Mitani S, Onodera Y, Hosoda C, Takabayashi Y, Sakata A, Shima M, Tatsumi K. Generation of functional liver sinusoidal endothelial-like cells from human bone marrow-derived mesenchymal stem cells. Regen Ther 2023; 24:274-281. [PMID: 37575681 PMCID: PMC10412721 DOI: 10.1016/j.reth.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/15/2023] [Accepted: 07/24/2023] [Indexed: 08/15/2023] Open
Abstract
Introduction Liver sinusoidal endothelial cells (LSECs) are specialized vascular endothelial cells that play an important role in the maintenance of biological homeostasis. However, the lack of versatile human LSECs has hindered research on LSECs and development of medical technologies for liver diseases including hemophilia A. In this study, we developed a technique to induce LSEC differentiation from human bone marrow-derived mesenchymal stem cells (BM-MSCs). Methods To induce LSECs from human BM-MSCs, cytokines and chemical compounds associated with signaling implicated in LSEC differentiation and liver development were screened. Then LSEC-related genes and proteins expression in the differentiated cells were analyzed by qPCR and flow cytometry analysis, respectively. LSEC-related functions of the differentiated cells were also examined. Results We found that the gene expression of LSEC markers, such as LYVE1, was considerably increased by culturing human BM-MSCs with bone morphogenetic protein 4, fibroblast growth factor 8b, transforming growth factor-β signal inhibitor, and cyclic AMP. Furthermore, the differentiated cells expressed LSEC marker proteins and clearly demonstrated LSEC-specific functions, such as the uptake of hyaluronic acid. Conclusions Our result indicate that the functional LSEC-like cells were successfully generated from human BM-MSCs using our established protocol.
Collapse
Affiliation(s)
- Seiji Mitani
- Advanced Medical Science of Thrombosis and Hemostasis, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Yu Onodera
- Advanced Medical Science of Thrombosis and Hemostasis, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Chihiro Hosoda
- Advanced Medical Science of Thrombosis and Hemostasis, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Yoko Takabayashi
- Advanced Medical Science of Thrombosis and Hemostasis, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Asuka Sakata
- Medicinal Biology of Thrombosis and Hemostasis, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Midori Shima
- Medicinal Biology of Thrombosis and Hemostasis, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Kohei Tatsumi
- Advanced Medical Science of Thrombosis and Hemostasis, Nara Medical University, Kashihara, Nara 634-8521, Japan
- Medicinal Biology of Thrombosis and Hemostasis, Nara Medical University, Kashihara, Nara 634-8521, Japan
| |
Collapse
|
35
|
Cleuren A, Molema G. Organotypic heterogeneity in microvascular endothelial cell responses in sepsis-a molecular treasure trove and pharmacological Gordian knot. Front Med (Lausanne) 2023; 10:1252021. [PMID: 38020105 PMCID: PMC10665520 DOI: 10.3389/fmed.2023.1252021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
In the last decades, it has become evident that endothelial cells (ECs) in the microvasculature play an important role in the pathophysiology of sepsis-associated multiple organ dysfunction syndrome (MODS). Studies on how ECs orchestrate leukocyte recruitment, control microvascular integrity and permeability, and regulate the haemostatic balance have provided a wealth of knowledge and potential molecular targets that could be considered for pharmacological intervention in sepsis. Yet, this information has not been translated into effective treatments. As MODS affects specific vascular beds, (organotypic) endothelial heterogeneity may be an important contributing factor to this lack of success. On the other hand, given the involvement of ECs in sepsis, this heterogeneity could also be leveraged for therapeutic gain to target specific sites of the vasculature given its full accessibility to drugs. In this review, we describe current knowledge that defines heterogeneity of organ-specific microvascular ECs at the molecular level and elaborate on studies that have reported EC responses across organ systems in sepsis patients and animal models of sepsis. We discuss hypothesis-driven, single-molecule studies that have formed the basis of our understanding of endothelial cell engagement in sepsis pathophysiology, and include recent studies employing high-throughput technologies. The latter deliver comprehensive data sets to describe molecular signatures for organotypic ECs that could lead to new hypotheses and form the foundation for rational pharmacological intervention and biomarker panel development. Particularly results from single cell RNA sequencing and spatial transcriptomics studies are eagerly awaited as they are expected to unveil the full spatiotemporal signature of EC responses to sepsis. With increasing awareness of the existence of distinct sepsis subphenotypes, and the need to develop new drug regimen and companion diagnostics, a better understanding of the molecular pathways exploited by ECs in sepsis pathophysiology will be a cornerstone to halt the detrimental processes that lead to MODS.
Collapse
Affiliation(s)
- Audrey Cleuren
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Grietje Molema
- Department Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
36
|
Antwi MB, Dumitriu G, Simón-Santamaria J, Romano JS, Li R, Smedsrød B, Vik A, Eskild W, Sørensen KK. Liver sinusoidal endothelial cells show reduced scavenger function and downregulation of Fc gamma receptor IIb, yet maintain a preserved fenestration in the Glmpgt/gt mouse model of slowly progressing liver fibrosis. PLoS One 2023; 18:e0293526. [PMID: 37910485 PMCID: PMC10619817 DOI: 10.1371/journal.pone.0293526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 10/16/2023] [Indexed: 11/03/2023] Open
Abstract
Liver sinusoidal endothelial cells (LSECs) are fenestrated endothelial cells with a unique, high endocytic clearance capacity for blood-borne waste macromolecules and colloids. This LSEC scavenger function has been insufficiently characterized in liver disease. The Glmpgt/gt mouse lacks expression of a subunit of the MFSD1/GLMP lysosomal membrane protein transporter complex, is born normal, but soon develops chronic, mild hepatocyte injury, leading to slowly progressing periportal liver fibrosis, and splenomegaly. This study examined how LSEC scavenger function and morphology are affected in the Glmpgt/gt model. FITC-labelled formaldehyde-treated serum albumin (FITC-FSA), a model ligand for LSEC scavenger receptors was administered intravenously into Glmpgt/gt mice, aged 4 months (peak of liver inflammation), 9-10 month, and age-matched Glmpwt/wt mice. Organs were harvested for light and electron microscopy, quantitative image analysis of ligand uptake, collagen accumulation, LSEC ultrastructure, and endocytosis receptor expression (also examined by qPCR and western blot). In both age groups, the Glmpgt/gt mice showed multifocal liver injury and fibrosis. The uptake of FITC-FSA in LSECs was significantly reduced in Glmpgt/gt compared to wild-type mice. Expression of LSEC receptors stabilin-1 (Stab1), and mannose receptor (Mcr1) was almost similar in liver of Glmpgt/gt mice and age-matched controls. At the same time, immunostaining revealed differences in the stabilin-1 expression pattern in sinusoids and accumulation of stabilin-1-positive macrophages in Glmpgt/gt liver. FcγRIIb (Fcgr2b), which mediates LSEC endocytosis of soluble immune complexes was widely and significantly downregulated in Glmpgt/gt liver. Despite increased collagen in space of Disse, LSECs of Glmpgt/gt mice showed well-preserved fenestrae organized in sieve plates but the frequency of holes >400 nm in diameter was increased, especially in areas with hepatocyte damage. In both genotypes, FITC-FSA also distributed to endothelial cells of spleen and bone marrow sinusoids, suggesting that these locations may function as possible compensatory sites of clearance of blood-borne scavenger receptor ligands in liver fibrosis.
Collapse
Affiliation(s)
- Milton Boaheng Antwi
- Department of Medical Biology, UiT-The Arctic University of Norway, Tromsø, Norway
- Section of Haematology, University Hospital of North Norway, Tromsø, Norway
| | - Gianina Dumitriu
- Department of Medical Biology, UiT-The Arctic University of Norway, Tromsø, Norway
| | | | | | - Ruomei Li
- Department of Medical Biology, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Bård Smedsrød
- Department of Medical Biology, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Anders Vik
- Section of Haematology, University Hospital of North Norway, Tromsø, Norway
- Department of Clinical Medicine, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Winnie Eskild
- Department of Biosciences, University of Oslo, Oslo, Norway
| | | |
Collapse
|
37
|
Jeong J, Tanaka M, Yang Y, Arefyev N, DiRito J, Tietjen G, Zhang X, McConnell MJ, Utsumi T, Iwakiri Y. An optimized visualization and quantitative protocol for in-depth evaluation of lymphatic vessel architecture in the liver. Am J Physiol Gastrointest Liver Physiol 2023; 325:G379-G390. [PMID: 37605828 PMCID: PMC10887843 DOI: 10.1152/ajpgi.00139.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/11/2023] [Accepted: 08/11/2023] [Indexed: 08/23/2023]
Abstract
The liver lymphatic system is essential for maintaining tissue fluid balance and immune function. The detailed structure of lymphatic vessels (LVs) in the liver remains to be fully demonstrated. The aim of this study is to reveal LV structures in normal and diseased livers by developing a tissue-clearing and coimmunolabeling protocol optimized for the tissue size and the processing time for three-dimensional (3-D) visualization and quantification of LVs in the liver. We showed that our optimized protocol enables in-depth exploration of lymphatic networks in the liver, consisting of LVs along the portal tract (deep lymphatic system) and within the collagenous Glisson's capsule (superficial lymphatic system) in different species. With this protocol, we have shown 3-D LVs configurations in relation to blood vessels and bile ducts in cholestatic mouse livers, in which LVs were highly dilated and predominantly found around highly proliferating bile ducts and peribiliary vascular plexuses in the portal tract. We also established a quantification method using a 3-D volume-rendering approach. We observed a 1.6-fold (P < 0.05) increase in the average diameter of LVs and a 2.4-fold increase (P < 0.05) in the average branch number of LVs in cholestatic/fibrotic livers compared with control livers. Furthermore, cholestatic/fibrotic livers showed a 4.3-fold increase (P < 0.05) in total volume of LVs compared with control livers. Our optimized protocol and quantification method demonstrate an efficient and simple liver tissue-clearing procedure that allows the comprehensive analysis of liver lymphatic system.NEW & NOTEWORTHY This article showed a comprehensive 3-D-structural analysis of liver lymphatic vessel (LV) in normal and diseased livers in relation to blood vessels and bile ducts. In addition to the LVs highly localized at the portal tract, we revealed capsular LVs in mouse, rat, and human livers. In cholestatic livers, LVs are significantly increased and dilated compared with normal livers. Our optimized protocol provides detailed spatial information for LVs remodeling in normal and pathological conditions.
Collapse
Affiliation(s)
- Jain Jeong
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut, United States
| | - Masatake Tanaka
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut, United States
- Division of Pathophysiology, Medical Institute of Bioregulation and Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yilin Yang
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut, United States
| | - Nikolai Arefyev
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut, United States
| | - Jenna DiRito
- Department of Surgery, Section of Organ Transplantation and Immunology, Yale University School of Medicine, New Haven, Connecticut, United States
| | - Gregory Tietjen
- Department of Surgery, Section of Organ Transplantation and Immunology, Yale University School of Medicine, New Haven, Connecticut, United States
| | - Xuchen Zhang
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, United States
| | - Matthew J McConnell
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut, United States
| | - Teruo Utsumi
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut, United States
| | - Yasuko Iwakiri
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut, United States
| |
Collapse
|
38
|
Velliou RI, Legaki AI, Nikolakopoulou P, Vlachogiannis NI, Chatzigeorgiou A. Liver endothelial cells in NAFLD and transition to NASH and HCC. Cell Mol Life Sci 2023; 80:314. [PMID: 37798474 PMCID: PMC11072568 DOI: 10.1007/s00018-023-04966-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/04/2023] [Accepted: 09/15/2023] [Indexed: 10/07/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is considered as the hepatic manifestation of metabolic syndrome, which is characterised by obesity, insulin resistance, hypercholesterolemia and hypertension. NAFLD is the most frequent liver disease worldwide and more than 10% of NAFLD patients progress to the inflammatory and fibrotic stage of non-alcoholic steatohepatitis (NASH), which can lead to end-stage liver disease including hepatocellular carcinoma (HCC), the most frequent primary malignant liver tumor. Liver sinusoidal endothelial cells (LSEC) are strategically positioned at the interface between blood and hepatic parenchyma. LSECs are highly specialized cells, characterised by the presence of transcellular pores, called fenestrae, and exhibit anti-inflammatory and anti-fibrotic characteristics under physiological conditions. However, during NAFLD development they undergo capillarisation and acquire a phenotype similar to vascular endothelial cells, actively promoting all pathophysiological aspects of NAFLD, including steatosis, inflammation, and fibrosis. LSEC dysfunction is critical for the progression to NASH and HCC while restoring LSEC homeostasis appears to be a promising approach to prevent NAFLD progression and its complications and even reverse tissue damage. In this review we present current information on the role of LSEC throughout the progressive phases of NAFLD, summarising in vitro and in vivo experimental evidence and data from human studies.
Collapse
Affiliation(s)
- Rallia-Iliana Velliou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527, Athens, Greece
| | - Aigli-Ioanna Legaki
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527, Athens, Greece
| | - Polyxeni Nikolakopoulou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527, Athens, Greece
| | - Nikolaos I Vlachogiannis
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527, Athens, Greece
| | - Antonios Chatzigeorgiou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527, Athens, Greece.
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.
| |
Collapse
|
39
|
Sharma S, Le Guillou D, Chen JY. Cellular stress in the pathogenesis of nonalcoholic steatohepatitis and liver fibrosis. Nat Rev Gastroenterol Hepatol 2023; 20:662-678. [PMID: 37679454 DOI: 10.1038/s41575-023-00832-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/26/2023] [Indexed: 09/09/2023]
Abstract
The burden of chronic liver disease is rising substantially worldwide. Fibrosis, characterized by excessive deposition of extracellular matrix proteins, is the common pathway leading to cirrhosis, and limited treatment options are available. There is increasing evidence suggesting the role of cellular stress responses contributing to fibrogenesis. This Review provides an overview of studies that analyse the role of cellular stress in different cell types involved in fibrogenesis, including hepatocytes, hepatic stellate cells, liver sinusoidal endothelial cells and macrophages.
Collapse
Affiliation(s)
- Sachin Sharma
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- The Liver Center, University of California, San Francisco, San Francisco, CA, USA
| | - Dounia Le Guillou
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- The Liver Center, University of California, San Francisco, San Francisco, CA, USA
| | - Jennifer Y Chen
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.
- The Liver Center, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
40
|
Peiseler M, Araujo David B, Zindel J, Surewaard BGJ, Lee WY, Heymann F, Nusse Y, Castanheira FVS, Shim R, Guillot A, Bruneau A, Atif J, Perciani C, Ohland C, Ganguli Mukherjee P, Niehrs A, Thuenauer R, Altfeld M, Amrein M, Liu Z, Gordon PMK, McCoy K, Deniset J, MacParland S, Ginhoux F, Tacke F, Kubes P. Kupffer cell-like syncytia replenish resident macrophage function in the fibrotic liver. Science 2023; 381:eabq5202. [PMID: 37676943 DOI: 10.1126/science.abq5202] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/13/2023] [Indexed: 09/09/2023]
Abstract
Kupffer cells (KCs) are localized in liver sinusoids but extend pseudopods to parenchymal cells to maintain their identity and serve as the body's central bacterial filter. Liver cirrhosis drastically alters vascular architecture, but how KCs adapt is unclear. We used a mouse model of liver fibrosis and human tissue to examine immune adaptation. Fibrosis forced KCs to lose contact with parenchymal cells, down-regulating "KC identity," which rendered them incapable of clearing bacteria. Commensals stimulated the recruitment of monocytes through CD44 to a spatially distinct vascular compartment. There, recruited monocytes formed large aggregates of multinucleated cells (syncytia) that expressed phenotypical KC markers and displayed enhanced bacterial capture ability. Syncytia formed via CD36 and were observed in human cirrhosis as a possible antimicrobial defense that evolved with fibrosis.
Collapse
Affiliation(s)
- Moritz Peiseler
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow Klinikum and Campus Charité Mitte, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Bruna Araujo David
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Joel Zindel
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Visceral Surgery and Medicine, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Bas G J Surewaard
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Woo-Yong Lee
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Felix Heymann
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Ysbrand Nusse
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Fernanda V S Castanheira
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Raymond Shim
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Adrien Guillot
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Alix Bruneau
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Jawairia Atif
- Ajmera Transplant Centre, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Catia Perciani
- Ajmera Transplant Centre, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Christina Ohland
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | | | - Annika Niehrs
- Leibniz Institute of Virology (LIV), Hamburg, Germany
| | | | | | - Mathias Amrein
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
| | - Zhaoyuan Liu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Paul M K Gordon
- Centre for Health Genomics and Informatics, University of Calgary, Calgary, Alberta, Canada
| | - Kathy McCoy
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Justin Deniset
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Cardiac Sciences, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Sonya MacParland
- Ajmera Transplant Centre, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Gustave Roussy Cancer Campus, INSERM U1015, Villejuif, France
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Paul Kubes
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
41
|
Rocque B, Guion K, Singh P, Bangerth S, Pickard L, Bhattacharjee J, Eguizabal S, Weaver C, Chopra S, Zhou S, Kohli R, Sher L, Ekser B, Emamaullee JA. Technical optimization of spatially resolved single-cell transcriptomic datasets to study clinical liver disease. RESEARCH SQUARE 2023:rs.3.rs-3307940. [PMID: 37720049 PMCID: PMC10503835 DOI: 10.21203/rs.3.rs-3307940/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Single cell and spatially resolved 'omic' techniques have enabled deep characterization of clinical pathologies that remain poorly understood, providing unprecedented insights into molecular mechanisms of disease. However, transcriptomic platforms are costly, limiting sample size, which increases the possibility of pre-analytical variables such as tissue processing and storage procedures impacting RNA quality and downstream analyses. Furthermore, spatial transcriptomics have not yet reached single cell resolution, leading to the development of multiple deconvolution methods to predict individual cell types within each transcriptome 'spot' on tissue sections. In this study, we performed spatial transcriptomics and single nucleus RNA sequencing (snRNASeq) on matched specimens from patients with either histologically normal or advanced fibrosis to establish important aspects of tissue handling, data processing, and downstream analyses of biobanked liver samples. We observed that tissue preservation technique impacts transcriptomic data, especially in fibrotic liver. Deconvolution of the spatial transcriptome using paired snRNASeq data generated a spatially resolved, single cell dataset with 24 unique liver cell phenotypes. We determined that cell-cell interactions predicted using ligand-receptor analysis of snRNASeq data poorly correlated with celullar relationships identified using spatial transcriptomics. Our study provides a framework for generating spatially resolved, single cell datasets to study gene expression and cell-cell interactions in biobanked clinical samples with advanced liver disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Shengmei Zhou
- Children's Hospital Los Angeles, University of Southern California Los Angeles
| | | | | | - Burcin Ekser
- Indiana University School of Medicine, Indiana University
| | | |
Collapse
|
42
|
Kondo R, Iwakiri Y, Kage M, Yano H. Endotheliopathy of liver sinusoidal endothelial cells in liver disease. Pathol Int 2023; 73:381-393. [PMID: 37589433 DOI: 10.1111/pin.13361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 07/27/2023] [Indexed: 08/18/2023]
Abstract
Liver is the largest solid organ in the abdominal cavity, with sinusoid occupying about half of its volume. Under liver disease, hemodynamics in the liver tissue dynamically change, resulting in injury to liver sinusoidal endothelial cells (LSECs). We discuss the injury of LSECs in liver diseases in this article. Generally, in noninflamed tissues, vascular endothelial cells maintain quiescence of circulating leukocytes, and unnecessary blood clotting is inhibited by multiple antithrombotic factors produced by the endothelial cells. In the setting of inflammation, injured endothelial cells lose these functions, defined as inflammatory endotheliopathy. In chronic hepatitis C, inflammatory endotheliopathy in LSECs contributes to platelet accumulation in the liver tissue, and the improvement of thrombocytopenia by splenectomy is attenuated in cases with severe hepatic inflammation. In COVID-19, LSEC endotheliopathy induced by interleukin (IL)-6 trans-signaling promotes neutrophil accumulation and platelet microthrombosis in the liver sinusoids, resulting in liver injury. IL-6 trans-signaling promotes the expression of intercellular adhesion molecule-1, chemokine (C-X-C motif) ligand (CXCL1), and CXCL2, which are the neutrophil chemotactic mediators, and P-selectin, E-selectin, and von Willebrand factor, which are involved in platelet adhesion to endothelial cells, in LSECs. Restoring LSECs function is important for ameliorating liver injury. Prevention of endotheliopathy is a potential therapeutic strategy in liver disease.
Collapse
Affiliation(s)
- Reiichiro Kondo
- Department of Pathology, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Yasuko Iwakiri
- Section of Digestive Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Masayoshi Kage
- Department of Medical Engineering, Junshin Gakuen University, Fukuoka, Japan
| | - Hirohisa Yano
- Department of Pathology, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| |
Collapse
|
43
|
Zheng L, Wu J, Hu H, Cao H, Xu N, Chen K, Wen B, Wang H, Yuan H, Xie L, Jiang Y, Li Z, Liang C, Yuan J, Li Z, Yuan X, Xiao W, Wang J. Single-cell RNA transcriptome landscape of murine liver following systemic administration of mesoporous silica nanoparticles. J Control Release 2023; 361:427-442. [PMID: 37487929 DOI: 10.1016/j.jconrel.2023.07.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/28/2023] [Accepted: 07/22/2023] [Indexed: 07/26/2023]
Abstract
Due to the unique physicochemical properties, mesoporous silica nanoparticles (MONs) have been widely utilized in biomedical fields for drug delivery, gene therapy, disease diagnosis and imaging. With the extensive applications and large-scale production of MONs, the potential effects of MONs on human health are gaining increased attention. To better understand the cellular and molecular mechanisms underlying the effects of MONs on the mouse liver, we profiled the transcriptome of 63,783 single cells from mouse livers following weekly intravenous administration of MONs for 2 weeks. The results showed that the proportion of endothelial cells and CD4+ T cells was increased, whereas that of Kupffer cells was decreased, in a dose-dependent manner after MONs treatment in the mouse liver. We also observed that the proportion of inflammation-related Kupffer cell subtype and wound healing-related hepatocyte subtype were elevated, but the number of hepatocytes with detoxification characteristics was reduced after MONs treatment. The cell-cell communication network revealed that there was more crosstalk between cholangiocytes and Kupffer cells, liver capsular macrophages, hepatic stellate cells, and endothelial cells following MONs treatment. Furthermore, we identified key ligand-receptor pairs between crucial subtypes after MONs treatment that are known to promote liver fibrosis. Collectively, our study explored the effects of MONs on mouse liver at a single-cell level and provides comprehensive information on the potential hepatotoxicity of MONs.
Collapse
Affiliation(s)
- Liuhai Zheng
- Department of Breast Surgery, Department of General Surgery, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China; Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, Guangdong 510632, China
| | - Jiangpeng Wu
- Department of Breast Surgery, Department of General Surgery, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China
| | - Hong Hu
- Department of Breast Surgery, Department of General Surgery, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China
| | - Hua Cao
- Department of Oncology, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China
| | - Nan Xu
- Division of Thyroid surgery, Department of General Surgery, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China
| | - Kun Chen
- Department of Breast Surgery, Department of General Surgery, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China
| | - Bowen Wen
- College of Natural Resources and Environment, South China Agricultural University, 483 Wushan Road, Guangzhou, Guangdong 510642, China
| | - Huifang Wang
- Department of Breast Surgery, Department of General Surgery, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China; Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, Guangdong 510632, China
| | - Haitao Yuan
- Department of Breast Surgery, Department of General Surgery, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China; Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, Guangdong 510632, China
| | - Lulin Xie
- Department of Breast Surgery, Department of General Surgery, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China
| | - Yuke Jiang
- Department of Breast Surgery, Department of General Surgery, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China
| | - Zhifen Li
- School of Chemistry and Chemical Engineering, Shanxi Datong University, Xing Yun Street, Pingcheng District, Datong, Shanxi Province 037009, PR China
| | - Cailing Liang
- Department of Breast Surgery, Department of General Surgery, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China
| | - Jimin Yuan
- Department of Breast Surgery, Department of General Surgery, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China
| | - Zhijie Li
- Department of Breast Surgery, Department of General Surgery, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China.
| | - Xiaopeng Yuan
- Department of Laboratory Medicine, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| | - Wei Xiao
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China.
| | - Jigang Wang
- Department of Breast Surgery, Department of General Surgery, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China.
| |
Collapse
|
44
|
Rahmawati FN, Iba T, Naito H, Shimizu S, Konishi H, Jia W, Takakura N. Single-cell sequencing reveals the existence of fetal vascular endothelial stem cell-like cells in mouse liver. Stem Cell Res Ther 2023; 14:227. [PMID: 37649114 PMCID: PMC10468894 DOI: 10.1186/s13287-023-03460-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND A resident vascular endothelial stem cell (VESC) population expressing CD157 and CD200 has been identified recently in the adult mouse. However, the origin of this population and how it develops has not been characterized, nor has it been determined whether VESC-like cells are present during the perinatal period. Here, we investigated the presence of perinatal VESC-like cells and their relationship with the adult VESC-like cell population. METHODS We applied single-cell RNA sequencing of endothelial cells (ECs) from embryonic day (E) 14, E18, postnatal day (P) 7, P14, and week (W) 8 liver and investigated transcriptomic changes during liver EC development. We performed flow cytometry, immunofluorescence, colony formation assays, and transplantation assays to validate the presence of and to assess the function of CD157+ and CD200+ ECs in the perinatal period. RESULTS We identified CD200- expressing VESC-like cells in the perinatal period. These cells formed colonies in vitro and had high proliferative ability. The RNA velocity tool and transplantation assay results indicated that the projected fate of this population was toward adult VESC-like cells expressing CD157 and CD200 1 week after birth. CONCLUSION Our study provides a comprehensive atlas of liver EC development and documents VESC-like cell lineage commitment at single-cell resolution.
Collapse
Affiliation(s)
- Fitriana N Rahmawati
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Tomohiro Iba
- Department of Physiology, School of Medicine, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Hisamichi Naito
- Department of Physiology, School of Medicine, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Shota Shimizu
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Hirotaka Konishi
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Weizhen Jia
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Nobuyuki Takakura
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan.
- Immunology Frontier Research Center, Osaka University, Suita, Japan.
- Center for Infectious Disease Education and Research, Osaka University, Suita, Japan.
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Japan.
| |
Collapse
|
45
|
Jose A, Elwing JM, Kawut SM, Pauciulo MW, Sherman KE, Nichols WC, Fallon MB, McCormack FX. Human liver single nuclear RNA sequencing implicates BMPR2, GDF15, arginine, and estrogen in portopulmonary hypertension. Commun Biol 2023; 6:826. [PMID: 37558836 PMCID: PMC10412637 DOI: 10.1038/s42003-023-05193-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/31/2023] [Indexed: 08/11/2023] Open
Abstract
Portopulmonary hypertension (PoPH) is a type of pulmonary vascular disease due to portal hypertension that exhibits high morbidity and mortality. The mechanisms driving disease are unknown, and transcriptional characteristics unique to the PoPH liver remain unexplored. Here, we apply single nuclear RNA sequencing to compare cirrhotic livers from patients with and without PoPH. We identify characteristics unique to PoPH in cells surrounding the central hepatic vein, including increased growth differentiation factor signaling, enrichment of the arginine biosynthesis pathway, and differential expression of the bone morphogenic protein type II receptor and estrogen receptor type I genes. These results provide insight into the transcriptomic characteristics of the PoPH liver and mechanisms by which PoPH cellular dysfunction might contribute to pulmonary vascular remodeling.
Collapse
Affiliation(s)
- Arun Jose
- Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Jean M Elwing
- Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Steven M Kawut
- Department of Medicine, Perelman School at the University of Pennsylvania, Philadelphia, PA, USA
| | - Michael W Pauciulo
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Kenneth E Sherman
- Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - William C Nichols
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | | | - Francis X McCormack
- Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
46
|
McConnell MJ, Kostallari E, Ibrahim SH, Iwakiri Y. The evolving role of liver sinusoidal endothelial cells in liver health and disease. Hepatology 2023; 78:649-669. [PMID: 36626620 PMCID: PMC10315420 DOI: 10.1097/hep.0000000000000207] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/25/2022] [Indexed: 01/12/2023]
Abstract
LSECs are a unique population of endothelial cells within the liver and are recognized as key regulators of liver homeostasis. LSECs also play a key role in liver disease, as dysregulation of their quiescent phenotype promotes pathological processes within the liver including inflammation, microvascular thrombosis, fibrosis, and portal hypertension. Recent technical advances in single-cell analysis have characterized distinct subpopulations of the LSECs themselves with a high resolution and defined their gene expression profile and phenotype, broadening our understanding of their mechanistic role in liver biology. This article will review 4 broad advances in our understanding of LSEC biology in general: (1) LSEC heterogeneity, (2) LSEC aging and senescence, (3) LSEC role in liver regeneration, and (4) LSEC role in liver inflammation and will then review the role of LSECs in various liver pathologies including fibrosis, DILI, alcohol-associated liver disease, NASH, viral hepatitis, liver transplant rejection, and ischemia reperfusion injury. The review will conclude with a discussion of gaps in knowledge and areas for future research.
Collapse
Affiliation(s)
- Matthew J. McConnell
- Section of Digestive Disease, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | | | - Samar H. Ibrahim
- Division of Gastroenterology, Mayo Clinic, Rochester, MN
- Division of Pediatric Gastroenterology, Mayo Clinic, Rochester, MN
| | - Yasuko Iwakiri
- Section of Digestive Disease, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
47
|
Lurje I, Gaisa NT, Weiskirchen R, Tacke F. Mechanisms of organ fibrosis: Emerging concepts and implications for novel treatment strategies. Mol Aspects Med 2023; 92:101191. [PMID: 37236017 DOI: 10.1016/j.mam.2023.101191] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023]
Abstract
Fibrosis, or tissue scarring, develops as a pathological deviation from the physiological wound healing response and can occur in various organs such as the heart, lung, liver, kidney, skin, and bone marrow. Organ fibrosis significantly contributes to global morbidity and mortality. A broad spectrum of etiologies can cause fibrosis, including acute and chronic ischemia, hypertension, chronic viral infection (e.g., viral hepatitis), environmental exposure (e.g., pneumoconiosis, alcohol, nutrition, smoking) and genetic diseases (e.g., cystic fibrosis, alpha-1-antitrypsin deficiency). Common mechanisms across organs and disease etiologies involve a sustained injury to parenchymal cells that triggers a wound healing response, which becomes deregulated in the disease process. A transformation of resting fibroblasts into myofibroblasts with excessive extracellular matrix production constitutes the hallmark of disease, however, multiple other cell types such as immune cells, predominantly monocytes/macrophages, endothelial cells, and parenchymal cells form a complex network of profibrotic cellular crosstalk. Across organs, leading mediators include growth factors like transforming growth factor-β and platelet-derived growth factor, cytokines like interleukin-10, interleukin-13, interleukin-17, and danger-associated molecular patterns. More recently, insights into fibrosis regression and resolution of chronic conditions have deepened our understanding of beneficial, protective effects of immune cells, soluble mediators and intracellular signaling. Further in-depth insights into the mechanisms of fibrogenesis can provide the rationale for therapeutic interventions and the development of targeted antifibrotic agents. This review gives insight into shared responses and cellular mechanisms across organs and etiologies, aiming to paint a comprehensive picture of fibrotic diseases in both experimental settings and in human pathology.
Collapse
Affiliation(s)
- Isabella Lurje
- Department of Hepatology and Gastroenterology, Campus Charité Mitte and Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Nadine T Gaisa
- Institute of Pathology, University Hospital RWTH Aachen, Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, Aachen, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Campus Charité Mitte and Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
48
|
Cooper SA, Kostallari E, Shah VH. Angiocrine Signaling in Sinusoidal Health and Disease. Semin Liver Dis 2023; 43:245-257. [PMID: 37442155 PMCID: PMC10798369 DOI: 10.1055/a-2128-5907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
Liver sinusoidal endothelial cells (LSECs) are key players in maintaining hepatic homeostasis. They also play crucial roles during liver injury by communicating with liver cell types as well as immune cells and promoting portal hypertension, fibrosis, and inflammation. Cutting-edge technology, such as single cell and spatial transcriptomics, have revealed the existence of distinct LSEC subpopulations with a clear zonation in the liver. The signals released by LSECs are commonly called "angiocrine signaling." In this review, we summarize the role of angiocrine signaling in health and disease, including zonation in healthy liver, regeneration, fibrosis, portal hypertension, nonalcoholic fatty liver disease, alcohol-associated liver disease, aging, drug-induced liver injury, and ischemia/reperfusion, as well as potential therapeutic advances. In conclusion, sinusoidal endotheliopathy is recognized in liver disease and promising preclinical studies are paving the path toward LSEC-specific pharmacotherapies.
Collapse
Affiliation(s)
- Shawna A. Cooper
- Biochemistry and Molecular Biology Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, Minnesota
| | - Enis Kostallari
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Vijay H. Shah
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
49
|
Muturi HT, Ghadieh HE, Abdolahipour R, Stankus HL, Belew GD, Liu JK, Jahromi MS, Lee AD, Singer BB, Angeli-Pahim I, Sehrawat TS, Malhi H, Verhulst S, van Grunsven LA, Zarrinpar A, Duarte S, Najjar SM. Loss of CEACAM1 in endothelial cells causes hepatic fibrosis. Metabolism 2023; 144:155562. [PMID: 37088122 PMCID: PMC10330196 DOI: 10.1016/j.metabol.2023.155562] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/29/2023] [Accepted: 04/17/2023] [Indexed: 04/25/2023]
Abstract
OBJECTIVES Hepatocytic CEACAM1 plays a critical role in NASH pathogenesis, as bolstered by the development of insulin resistance, visceral obesity, steatohepatitis and fibrosis in mice with global Ceacam1 (Cc1) deletion. In contrast, VECadCre+Cc1fl/fl mice with endothelial loss of Cc1 manifested insulin sensitivity with no visceral obesity despite elevated NF-κB signaling and increased systemic inflammation. We herein investigated whether VECadCre+Cc1fl/fl male mice develop hepatic fibrosis and whether this is mediated by increased production of endothelin1 (ET1), a transcriptional NF-κB target. METHODS VECadCre+Et1.Cc1fl/fl mice with combined endothelial loss of Cc1/Et1 genes were generated. Histological and immunohistochemical analyses were conducted on their livers and on liver tissue biopsies from adult patients undergoing bariatric surgery or from patients with NASH diagnosis receiving liver transplant. RESULTS Hepatic fibrosis and inflammatory infiltration developed in VECadCre+Cc1fl/fl liver parenchyma. This was preceded by increased ET1 production and reversed with combined endothelial loss of Et1. Conditioned media from VECadCre+Cc1fl/fl, but not VECadCre+Et1.Cc1fl/fl primary liver endothelial cells activated wild-type hepatic stellate cells; a process inhibited by bosentan, an ETAR/ETBR dual antagonist. Consistently, immunohistochemical analysis of liver biopsies from patients with NASH showed a decline in endothelial CEACAM1 in parallel with increased plasma endothelin1 levels and progression of hepatic fibrosis stage. CONCLUSIONS The data demonstrated that endothelial CEACAM1 plays a key role in preventing hepatic fibrogenesis by reducing autocrine endothelin1 production.
Collapse
Affiliation(s)
- Harrison T Muturi
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Hilda E Ghadieh
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA; Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Balamand, Al-Koura, Lebanon
| | - Raziyeh Abdolahipour
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Hannah L Stankus
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Getachew Debas Belew
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - James K Liu
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Marziyeh Salehi Jahromi
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Abraham D Lee
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA; Department of Exercise and Rehabilitation Sciences, College of Health and Human Services, University of Toledo, Toledo, OH, USA
| | - Bernhard B Singer
- Institute of Anatomy, Medical Faculty, University of Duisburg-Essen, Hufelandstrasse 55, Essen 45147, Germany
| | - Isabella Angeli-Pahim
- Department of Surgery, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Tejasav S Sehrawat
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Harmeet Malhi
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Stefaan Verhulst
- Liver Cell Biology Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Leo A van Grunsven
- Liver Cell Biology Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ali Zarrinpar
- Department of Surgery, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Sergio Duarte
- Department of Surgery, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Sonia M Najjar
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA; Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA; Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA.
| |
Collapse
|
50
|
Kang HM, Lee JH. Spatial Single-Cell Technologies for Exploring Gastrointestinal Tissue Transcriptome. Compr Physiol 2023; 13:4709-4718. [PMID: 37358516 PMCID: PMC10386894 DOI: 10.1002/cphy.c210053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
In the gastrointestinal (GI) system, like in other organ systems, the histological structure is a key determinant of physiological function. Tissues form multiple layers in the GI tract to perform their specialized functions in secretion, absorption, and motility. Even at the single layer, the heterogeneous cell population performs a diverse range of digestive or regulatory functions. Although many details of such functions at the histological and cell biological levels were revealed by traditional methods such as cell sorting, isolation, and culture, as well as histological methods such as immunostaining and RNA in situ hybridization, recent advances in spatial single-cell technologies could further contribute to our understanding of the molecular makeup of GI histological structures by providing a genome-wide overview of how different genes are expressed across individual cells and tissue layers. The current minireview summarizes recent advances in the spatial transcriptomics field and discusses how such technologies can promote our understanding of GI physiology. © 2023 American Physiological Society. Compr Physiol 13:4709-4718, 2023.
Collapse
Affiliation(s)
- Hyun Min Kang
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
| | - Jun Hee Lee
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|