1
|
Romani C, Gagni P, Di Pietro ME, Sani M, Sponchioni M, Volonterio A. Fine-Tuned "Click" Functionalization of PAMAM Dendrimers with a Linear Fluorinated Guanidino Linker: Synthesis, Characterization, and Applications. Bioconjug Chem 2025; 36:66-79. [PMID: 39537237 DOI: 10.1021/acs.bioconjchem.4c00434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
This study presents the synthesis, characterization, and application of multifunctional PAMAM G2 and G4 dendrimers decorated with a linear fluorinated guanidino linker designed to improve gene delivery efficiency while minimizing cytotoxicity. For the first time, we were able to fine-tune the degree of grafting (DG) during the functionalization process through efficient "click" Michael addition, achieving the synthesis of a collection of six PAMAM conjugates that showed a significant enhancement in transfection efficiency (TE), surpassing the performance of traditional nonviral vectors. The incorporation of fluorinated moieties not only facilitated better deoxyribonucleic acid (DNA) condensation and TE but also introduced potential applications in 19F magnetic resonance imaging thanks to the sharp and intense fluorine nuclear magnetic resonance signals and favorable relaxation parameters. The new dendrimer conjugates demonstrated a promising balance between low cytotoxicity and high TE, with the low-generation PAMAM G2 with lower DG being the best-performing conjugate, making them strong candidates for further development in gene therapy. These findings highlight the potential of these multifunctional PAMAM dendrimers as efficient, nontoxic, and trackable gene delivery vectors.
Collapse
Affiliation(s)
- Carola Romani
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, via Mancinelli 7, 20131 Milan, Italy
| | - Paola Gagni
- Consiglio Nazionale delle Ricerche, Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" (SCITEC), Via Mario Bianco 9, 20131 Milan, Italy
| | - Maria Enrica Di Pietro
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, via Mancinelli 7, 20131 Milan, Italy
| | - Monica Sani
- Consiglio Nazionale delle Ricerche, Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" (SCITEC), Via Mario Bianco 9, 20131 Milan, Italy
| | - Mattia Sponchioni
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, via Mancinelli 7, 20131 Milan, Italy
| | - Alessandro Volonterio
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, via Mancinelli 7, 20131 Milan, Italy
- Consiglio Nazionale delle Ricerche, Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" (SCITEC), Via Mario Bianco 9, 20131 Milan, Italy
| |
Collapse
|
2
|
Volf N, Vuerich R, Colliva A, Volpe MC, Marengon M, Zentilin L, Giacca M, Ring NAR, Vodret S, Braga L, Zacchigna S. Endothelial-to-mesenchymal transition enhances permissiveness to AAV vectors in cardiac endothelial cells. Mol Ther 2024; 32:3808-3814. [PMID: 39175195 PMCID: PMC11573677 DOI: 10.1016/j.ymthe.2024.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/08/2024] [Accepted: 08/16/2024] [Indexed: 08/24/2024] Open
Abstract
A major obstacle in inducing therapeutic angiogenesis in the heart is inefficient gene transfer to endothelial cells (ECs). Here, we identify compounds able to enhance the permissiveness of cardiac ECs to adeno-associated virus (AAV) vectors, which stand as ideal tools for in vivo gene delivery. We screened a library of >1,500 US Food and Drug Administration (FDA)-approved drugs, in combination with AAV vectors, in cardiac ECs. Among the top drugs increasing AAV-mediated transduction, we found vatalanib, an inhibitor of multiple tyrosine kinase receptors. The increased AAV transduction efficiency by vatalanib was paralleled by induction of the endothelial-to-mesenchymal transition, as documented by decreased endothelial and increased mesenchymal marker expression. Induction of the endothelial-to-mesenchymal transition by other strategies similarly increased EC permissiveness to AAV vectors. In vivo injection of AAV vectors in the heart after myocardial infarction resulted in the selective transduction of cells undergoing the endothelial-to-mesenchymal transition, which is known to happen transiently after cardiac ischemia. Collectively, these results point to the endothelial-to-mesenchymal transition as a mechanism for improving AAV transduction in cardiac ECs, with implications for both basic research and the induction of therapeutic angiogenesis in the heart.
Collapse
Affiliation(s)
- Nina Volf
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Roman Vuerich
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy; Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Andrea Colliva
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Maria Concetta Volpe
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy; Functional Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Margherita Marengon
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Lorena Zentilin
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Mauro Giacca
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy; Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Nadja Anneliese Ruth Ring
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Simone Vodret
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Luca Braga
- Functional Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Serena Zacchigna
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy; Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy.
| |
Collapse
|
3
|
Stancheva R, Haladjova E, Petrova M, Ugrinova I, Dimitrov I, Rangelov S. Polypiperazine-Based Micelles of Mixed Composition for Gene Delivery. Polymers (Basel) 2024; 16:3100. [PMID: 39518308 PMCID: PMC11548379 DOI: 10.3390/polym16213100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
We introduce a novel concept in nucleic acid delivery based on the use of mixed polymeric micelles (MPMs) as platforms for the preparation of micelleplexes with DNA. MPMs were prepared by the co-assembly of a cationic copolymer, poly(1-(4-methylpiperazin-1-yl)-propenone)-b-poly(d,l-lactide), and nonionic poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) block copolymers. We hypothesize that by introducing nonionic entities incorporated into the mixed co-assembled structures, the mode and strength of DNA binding and DNA accessibility and release could be modulated. The systems were characterized in terms of size, surface potential, buffering capacity, and binding ability to investigate the influence of composition, in particular, the poly(ethylene oxide) chain length on the properties and structure of the MPMs. Endo-lysosomal conditions were simulated to follow the changes in fundamental parameters and behavior of the micelleplexes. The results were interpreted as reflecting the specific structure and composition of the corona and localization of DNA in the corona, predetermined by the poly(ethylene oxide) chain length. A favorable effect of the introduction of the nonionic block copolymer component in the MPMs and micelleplexes thereof was the enhancement of biocompatibility. The slight reduction of the transfection efficiency of the MPM-based micelleplexes compared to that of the single-component polymer micelles was attributed to the premature release of DNA from the MPM-based micelleplexes in the endo-lysosomal compartments.
Collapse
Affiliation(s)
- Rumena Stancheva
- Institute of Polymers, Bulgarian Academy of Sciences, “Akad. G. Bonchev” St., Bl. 103-A, 1113 Sofia, Bulgaria; (R.S.); (I.D.)
| | - Emi Haladjova
- Institute of Polymers, Bulgarian Academy of Sciences, “Akad. G. Bonchev” St., Bl. 103-A, 1113 Sofia, Bulgaria; (R.S.); (I.D.)
| | - Maria Petrova
- Institute of Molecular Biology, Bulgarian Academy of Sciences, “Akad. G. Bonchev” St., Bl. 21, 1113 Sofia, Bulgaria; (M.P.); (I.U.)
| | - Iva Ugrinova
- Institute of Molecular Biology, Bulgarian Academy of Sciences, “Akad. G. Bonchev” St., Bl. 21, 1113 Sofia, Bulgaria; (M.P.); (I.U.)
| | - Ivaylo Dimitrov
- Institute of Polymers, Bulgarian Academy of Sciences, “Akad. G. Bonchev” St., Bl. 103-A, 1113 Sofia, Bulgaria; (R.S.); (I.D.)
| | - Stanislav Rangelov
- Institute of Polymers, Bulgarian Academy of Sciences, “Akad. G. Bonchev” St., Bl. 103-A, 1113 Sofia, Bulgaria; (R.S.); (I.D.)
| |
Collapse
|
4
|
Sautrey G. An Update on Theoretical and Metrological Aspects of the Surface Hydrophobicity of Virus and Virus-Like Particles. Adv Biol (Weinh) 2024:e2400221. [PMID: 39435562 DOI: 10.1002/adbi.202400221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 10/08/2024] [Indexed: 10/23/2024]
Abstract
Viruses are biological entities embodied in protein-based nanoparticles devoid of metabolic activity. Hence, the colloidal, interfacial, and chemical reactivity of virus particles (VPs) profoundly affects the fate of natural and artificial viruses in biotic or abiotic aqueous systems. These rely on the physical chemistry at the outer surface of VPs. In other words, whether wild or synthetic VPs and regardless of the scientific fields involved, taming viruses implies thus managing the physical chemistry at the VP external surface. The surface hydrophobicity (SH) of VPs is a critical feature that must be looked at. Still, the literature dealing with nanoscale hydrophobic domains at the proteinaceous surface of VPs underlying their global SH is like a fragmented puzzle. This article provides an overview of the topic from the perspective of modern protein biophysics for updating the classic physicochemical picture of outer VP/water interfaces hitherto accepted. Patterns of non-polar and "false-polar" patches, expressing variable hydrophobic degrees according to neighboring polar patches, are now drawn. The extensive discussion of reviewed data generates such fresh ideas to explore in the coming years for better modeling the SH of wild virions or engineered virus-based nanoparticles, paving the way for new directions in fundamental virology and virus-based chemistry.
Collapse
Affiliation(s)
- Guillaume Sautrey
- LCPME UMR 7564 Université de Lorraine - CNRS, 405 rue de Vandoeuvre, Villers-lès-Nancy, 54600, France
| |
Collapse
|
5
|
Visan AI, Negut I. Development and Applications of PLGA Hydrogels for Sustained Delivery of Therapeutic Agents. Gels 2024; 10:497. [PMID: 39195026 DOI: 10.3390/gels10080497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/29/2024] Open
Abstract
Poly(lactic-co-glycolic acid) (PLGA) hydrogels are highly utilized in biomedical research due to their biocompatibility, biodegradability, and other versatile properties. This review comprehensively explores their synthesis, properties, sustained release mechanisms, and applications in drug delivery. The introduction underscores the significance of PLGA hydrogels in addressing challenges like short half-lives and systemic toxicity in conventional drug formulations. Synthesis methods, including emulsion solvent evaporation, solvent casting, electrospinning, thermal gelation, and photopolymerization, are described in detail and their role in tailoring hydrogel properties for specific applications is highlighted. Sustained release mechanisms-such as diffusion-controlled, degradation-controlled, swelling-controlled, and combined systems-are analyzed alongside key kinetic models (zero-order, first-order, Higuchi, and Peppas models) for designing controlled drug delivery systems. Applications of PLGA hydrogels in drug delivery are discussed, highlighting their effectiveness in localized and sustained chemotherapy for cancer, as well as in the delivery of antibiotics and antimicrobials to combat infections. Challenges and future prospects in PLGA hydrogel research are discussed, with a focus on improving drug loading efficiency, improving release control mechanisms, and promoting clinical translation. In summary, PLGA hydrogels provide a promising platform for the sustained delivery of therapeutic agents and meet diverse biomedical requirements. Future advancements in materials science and biomedical engineering are anticipated to further optimize their efficacy and applicability in clinical settings. This review consolidates the current understanding and outlines future research directions for PLGA hydrogels, emphasizing their potential to revolutionize therapeutic delivery and improve patient outcomes.
Collapse
Affiliation(s)
- Anita Ioana Visan
- National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania
| | - Irina Negut
- National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania
| |
Collapse
|
6
|
Bak S, Kim KS, Na K. Human adipose-derived stem cells genetically programmed to induce necroptosis for cancer immunotherapy. Cancer Gene Ther 2024; 31:995-1006. [PMID: 38858535 DOI: 10.1038/s41417-024-00794-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/23/2024] [Accepted: 05/29/2024] [Indexed: 06/12/2024]
Abstract
Herein, we present human adipose-derived stem cells (ADSCs) inserted with the receptor-interacting protein kinase-3 (RIP3) gene (RP@ADSCs), which induces cell necroptosis, for tumor immunotherapy. Necroptosis has characteristics of both apoptosis, such as programmed cell death, and necrosis, such as swelling and plasma membrane rupture, during which damage-related molecular patterns are released, triggering an immune response. Therefore, necroptosis has the potential to be used as an effective anticancer immunotherapy. RP@ADSCs were programmed to necroptosis after a particular time after being injected in vivo, and various pro-inflammatory cytokines secreted during the stem cell death process stimulated the immune system, showing local and sustained anticancer effects. It was confirmed that RIP3 protein expression increased in ADSCs after RP transfection. RP@ADSCs continued to induce ADSCs death for 7 days, and various pro-inflammatory cytokines were secreted through ADSCs death. The efficacy of RP@ADSCs-mediated immunotherapy was evaluated in mouse models bearing GL-26 (glioblastoma) and K1735 (melanoma), and it was found that RP resulted in an increase in the population of long-term cytotoxic T cells and a decrease in the population of regulatory T cells. This shows that RP@ADSCs have potential and applicability as an excellent anticancer immunotherapy agent in clinical practice.
Collapse
Affiliation(s)
- Soyeon Bak
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea
| | - Kyoung Sub Kim
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea
| | - Kun Na
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea.
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea.
| |
Collapse
|
7
|
Luo R, Le H, Wu Q, Gong C. Nanoplatform-Based In Vivo Gene Delivery Systems for Cancer Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2312153. [PMID: 38441386 DOI: 10.1002/smll.202312153] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/05/2024] [Indexed: 07/26/2024]
Abstract
Gene therapy uses modern molecular biology methods to repair disease-causing genes. As a burgeoning therapeutic, it has been widely applied for cancer therapy. Since 1989, there have been numerous clinical gene therapy cases worldwide. However, a few are successful. The main challenge of clinical gene therapy is the lack of efficient and safe vectors. Although viral vectors show high transfection efficiency, their application is still limited by immune rejection and packaging capacity. Therefore, the development of non-viral vectors is overwhelming. Nanoplatform-based non-viral vectors become a hotspot in gene therapy. The reasons are mainly as follows. 1) Non-viral vectors can be engineered to be uptaken by specific types of cells or tissues, providing effective targeting capability. 2) Non-viral vectors can protect goods that need to be delivered from degradation. 3) Nanoparticles can transport large-sized cargo such as CRISPR/Cas9 plasmids and nucleoprotein complexes. 4) Nanoparticles are highly biosafe, and they are not mutagenic in themselves compared to viral vectors. 5) Nanoparticles are easy to scale preparation, which is conducive to clinical conversion and application. Here, an overview of the categories of nanoplatform-based non-viral gene vectors, the limitations on their development, and their applications in cancer therapy.
Collapse
Affiliation(s)
- Rui Luo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hao Le
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qinjie Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Changyang Gong
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
8
|
Moaveni AK, Amiri M, Shademan B, Farhadi A, Behroozi J, Nourazarian A. Advances and challenges in gene therapy strategies for pediatric cancer: a comprehensive update. Front Mol Biosci 2024; 11:1382190. [PMID: 38836106 PMCID: PMC11149429 DOI: 10.3389/fmolb.2024.1382190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/27/2024] [Indexed: 06/06/2024] Open
Abstract
Pediatric cancers represent a tragic but also promising area for gene therapy. Although conventional treatments have improved survival rates, there is still a need for targeted and less toxic interventions. This article critically analyzes recent advances in gene therapy for pediatric malignancies and discusses the challenges that remain. We explore the innovative vectors and delivery systems that have emerged, such as adeno-associated viruses and non-viral platforms, which show promise in addressing the unique pathophysiology of pediatric tumors. Specifically, we examine the field of chimeric antigen receptor (CAR) T-cell therapies and their adaptation for solid tumors, which historically have been more challenging to treat than hematologic malignancies. We also discuss the genetic and epigenetic complexities inherent to pediatric cancers, such as tumor heterogeneity and the dynamic tumor microenvironment, which pose significant hurdles for gene therapy. Ethical considerations specific to pediatric populations, including consent and long-term follow-up, are also analyzed. Additionally, we scrutinize the translation of research from preclinical models that often fail to mimic pediatric cancer biology to the regulatory landscapes that can either support or hinder innovation. In summary, this article provides an up-to-date overview of gene therapy in pediatric oncology, highlighting both the rapid scientific progress and the substantial obstacles that need to be addressed. Through this lens, we propose a roadmap for future research that prioritizes the safety, efficacy, and complex ethical considerations involved in treating pediatric patients. Our ultimate goal is to move from incremental advancements to transformative therapies.
Collapse
Affiliation(s)
- Amir Kian Moaveni
- Pediatric Urology and Regenerative Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Amiri
- Pediatric Urology and Regenerative Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Behrouz Shademan
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arezoo Farhadi
- Department of Genetics and Molecular Medicine, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Javad Behroozi
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Alireza Nourazarian
- Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy, Iran
| |
Collapse
|
9
|
Pawar S, Pingale P, Garkal A, Osmani RAM, Gajbhiye K, Kulkarni M, Pardeshi K, Mehta T, Rajput A. Unlocking the potential of nanocarrier-mediated mRNA delivery across diverse biomedical frontiers: A comprehensive review. Int J Biol Macromol 2024; 267:131139. [PMID: 38615863 DOI: 10.1016/j.ijbiomac.2024.131139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/23/2024] [Accepted: 03/23/2024] [Indexed: 04/16/2024]
Abstract
Messenger RNA (mRNA) has gained marvelous attention for managing and preventing various conditions like cancer, Alzheimer's, infectious diseases, etc. Due to the quick development and success of the COVID-19 mRNA-based vaccines, mRNA has recently grown in prominence. A lot of products are in clinical trials and some are already FDA-approved. However, still improvements in line of optimizing stability and delivery, reducing immunogenicity, increasing efficiency, expanding therapeutic applications, scalability and manufacturing, and long-term safety monitoring are needed. The delivery of mRNA via a nanocarrier system gives a synergistic outcome for managing chronic and complicated conditions. The modified nanocarrier-loaded mRNA has excellent potential as a therapeutic strategy. This emerging platform covers a wide range of diseases, recently, several clinical studies are ongoing and numerous publications are coming out every year. Still, many unexplained physical, biological, and technical problems of mRNA for safer human consumption. These complications were addressed with various nanocarrier formulations. This review systematically summarizes the solved problems and applications of nanocarrier-based mRNA delivery. The modified nanocarrier mRNA meaningfully improved mRNA stability and abridged its immunogenicity issues. Furthermore, several strategies were discussed that can be an effective solution in the future for managing complicated diseases.
Collapse
Affiliation(s)
- Smita Pawar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N.P. Marg, Matunga (E), Mumbai 400019, Maharashtra, India
| | - Prashant Pingale
- Department of Pharmaceutics, GES's Sir Dr. M. S. Gosavi College of Pharmaceutical Education and Research, Nashik 422005, Maharashtra, India
| | - Atul Garkal
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India; Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Riyaz Ali M Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Kavita Gajbhiye
- Department of Pharmaceutics, Bharti Vidyapeeth Deemed University, Poona College of Pharmacy, Erandwane, Pune 411038, Maharashtra, India
| | - Madhur Kulkarni
- SCES's Indira College of Pharmacy, New Pune Mumbai Highway, Tathwade 411033, Pune, Maharashtra, India
| | - Krutika Pardeshi
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Sandip University, Nashik 422213, Maharashtra, India
| | - Tejal Mehta
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India
| | - Amarjitsing Rajput
- Department of Pharmaceutics, Bharti Vidyapeeth Deemed University, Poona College of Pharmacy, Erandwane, Pune 411038, Maharashtra, India.
| |
Collapse
|
10
|
VanKeulen-Miller R, Fenton OS. Messenger RNA Therapy for Female Reproductive Health. Mol Pharm 2024; 21:393-409. [PMID: 38189262 DOI: 10.1021/acs.molpharmaceut.3c00803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Female reproductive health has traditionally been an underrepresented area of research in the drug delivery sciences. This disparity is also seen in the emerging field of mRNA therapeutics, a class of medicines that promises to treat and prevent disease by upregulating protein expression in the body. Here, we review advances in mRNA therapies through the lens of improving female reproductive health. Specifically, we begin our review by discussing the fundamental structure and biochemical modifications associated with mRNA-based drugs. Then, we discuss various packaging technologies, including lipid nanoparticles, that can be utilized to protect and transport mRNA drugs to target cells in the body. Last, we conclude our review by discussing the usage of mRNA therapy for addressing pregnancy-related health and vaccination against sexually transmitted diseases in women. Of note, we also highlight relevant clinical trials using mRNA for female reproductive health while also providing their corresponding National Clinical Trial identifiers. In undertaking this review, our aim is to provide a fundamental background understanding of mRNA therapy and its usage to specifically address female health issues with an overarching goal of providing information toward addressing gender disparity in certain aspects of health research.
Collapse
Affiliation(s)
- Rachel VanKeulen-Miller
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Owen S Fenton
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
11
|
Gao X, Dong D, Zhang C, Deng Y, Ding J, Niu S, Tan S, Sun L. Chitosan-Functionalized Poly(β-Amino Ester) Hybrid System for Gene Delivery in Vaginal Mucosal Epithelial Cells. Pharmaceutics 2024; 16:154. [PMID: 38276521 PMCID: PMC10818660 DOI: 10.3390/pharmaceutics16010154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Gene therapy displays great promise in the treatment of cervical cancer. The occurrence of cervical cancer is highly related to persistent human papilloma virus (HPV) infection. The HPV oncogene can be cleaved via gene editing technology to eliminate carcinogenic elements. However, the successful application of the gene therapy method depends on effective gene delivery into the vagina. To improve mucosal penetration and adhesion ability, quaternized chitosan was introduced into the poly(β-amino ester) (PBAE) gene-delivery system in the form of quaternized chitosan-g-PBAE (QCP). At a mass ratio of PBAE:QCP of 2:1, the polymers exhibited the highest green fluorescent protein (GFP) transfection efficiency in HEK293T and ME180 cells, which was 1.1 and 5.4 times higher than that of PEI 25 kD. At this mass ratio, PBAE-QCP effectively compressed the GFP into spherical polyplex nanoparticles (PQ-GFP NPs) with a diameter of 255.5 nm. In vivo results indicated that owing to the mucopenetration and adhesion capability of quaternized CS, the GFP transfection efficiency of the PBAE-QCP hybrid system was considerably higher than those of PBAE and PEI 25 kD in the vaginal epithelial cells of Sprague-Dawley rats. Furthermore, the new system demonstrated low toxicity and good safety, laying an effective foundation for its further application in gene therapy.
Collapse
Affiliation(s)
- Xueqin Gao
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China;
| | - Dirong Dong
- Department of Obstetrics and Gynecology, Zhongnan Hospital, Wuhan University, Wuhan 430062, China;
| | - Chong Zhang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (C.Z.); (Y.D.); (J.D.); (S.N.)
- Health Bureau of Luannan Country, Tangshan 063599, China
| | - Yuxing Deng
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (C.Z.); (Y.D.); (J.D.); (S.N.)
| | - Jiahui Ding
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (C.Z.); (Y.D.); (J.D.); (S.N.)
| | - Shiqi Niu
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (C.Z.); (Y.D.); (J.D.); (S.N.)
| | - Songwei Tan
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (C.Z.); (Y.D.); (J.D.); (S.N.)
| | - Lili Sun
- Department of Obstetrics and Gynecology, Zhongnan Hospital, Wuhan University, Wuhan 430062, China;
| |
Collapse
|
12
|
Kola NS, Patel D, Thakur A. RNA-Based Vaccines and Therapeutics Against Intracellular Pathogens. Methods Mol Biol 2024; 2813:321-370. [PMID: 38888787 DOI: 10.1007/978-1-0716-3890-3_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
RNA-based vaccines have sparked a paradigm shift in the treatment and prevention of diseases by nucleic acid medicines. There has been a notable surge in the development of nucleic acid therapeutics and vaccines following the global approval of the two messenger RNA-based COVID-19 vaccines. This growth is fueled by the exploration of numerous RNA products in preclinical stages, offering several advantages over conventional methods, i.e., safety, efficacy, scalability, and cost-effectiveness. In this chapter, we provide an overview of various types of RNA and their mechanisms of action for stimulating immune responses and inducing therapeutic effects. Furthermore, this chapter delves into the varying delivery systems, particularly emphasizing the use of nanoparticles to deliver RNA. The choice of delivery system is an intricate process involved in developing nucleic acid medicines that significantly enhances their stability, biocompatibility, and site-specificity. Additionally, this chapter sheds light on the current landscape of clinical trials of RNA therapeutics and vaccines against intracellular pathogens.
Collapse
Affiliation(s)
- Naga Suresh Kola
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada
| | - Dhruv Patel
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada
| | - Aneesh Thakur
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
13
|
Zhai Z, Cui T, Chen J, Mao X, Zhang T. Advancements in engineered mesenchymal stem cell exosomes for chronic lung disease treatment. J Transl Med 2023; 21:895. [PMID: 38071321 PMCID: PMC10709966 DOI: 10.1186/s12967-023-04729-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023] Open
Abstract
Chronic lung diseases include an array of conditions that impact airways and lung structures, leading to considerable societal burdens. Mesenchymal stem cells (MSCs) and their exosomes (MSC-exos) can be used for cell therapy and exhibit a diverse spectrum of anti-inflammatory, antifibrotic, and immunomodulatory properties. Engineered MSC-exos possesses enhanced capabilities for targeted drug delivery, resulting in more potent targeting effects. Through various engineering modifications, these exosomes can exert many biological effects, resulting in specific therapeutic outcomes for many diseases. Moreover, engineered stem cell exosomes may exhibit an increased capacity to traverse physiological barriers and infiltrate protected lesions, thereby exerting their therapeutic effects. These characteristics render them a promising therapeutic agent for chronic pulmonary diseases. This article discusses and reviews the strategies and mechanisms of engineered MSC-exos in the treatment of chronic respiratory diseases based on many studies to provide new solutions for these diseases.
Collapse
Affiliation(s)
- Zhengyao Zhai
- The First School of Medicine, School of Information and Engineering, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Tairong Cui
- The First School of Medicine, School of Information and Engineering, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Jialiang Chen
- The First School of Medicine, School of Information and Engineering, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Xulong Mao
- Key Laboratory of Heart and Lung, Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| | - Ting Zhang
- Department of Rheumatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| |
Collapse
|
14
|
Shi LX, Liu XR, Zhou LY, Zhu ZQ, Yuan Q, Zou T. Nanocarriers for gene delivery to the cardiovascular system. Biomater Sci 2023; 11:7709-7729. [PMID: 37877418 DOI: 10.1039/d3bm01275a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Cardiovascular diseases have posed a great threat to human health. Fortunately, gene therapy holds great promise in the fight against cardiovascular disease (CVD). In gene therapy, it is necessary to select the appropriate carriers to deliver the genes to the target cells of the target organs. There are usually two types of carriers, viral carriers and non-viral carriers. However, problems such as high immunogenicity, inflammatory response, and limited loading capacity have arisen with the use of viral carriers. Therefore, scholars turned their attention to non-viral carriers. Among them, nanocarriers are highly valued because of their easy modification, targeting, and low toxicity. Despite the many successes of gene therapy in the treatment of human diseases, it is worth noting that there are still many problems to be solved in the field of gene therapy for the treatment of cardiovascular diseases. In this review, we give a brief introduction to the common nanocarriers and several common cardiovascular diseases (arteriosclerosis, myocardial infarction, myocardial hypertrophy). On this basis, the application of gene delivery nanocarriers in the treatment of these diseases is introduced in detail.
Collapse
Affiliation(s)
- Ling-Xin Shi
- State Key Laboratory of Refractories and Metallurgy, Key Laboratory of Coal Conversion & New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
| | - Xiu-Ran Liu
- State Key Laboratory of Refractories and Metallurgy, Key Laboratory of Coal Conversion & New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
| | - Ling-Yue Zhou
- State Key Laboratory of Refractories and Metallurgy, Key Laboratory of Coal Conversion & New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
| | - Zi-Qi Zhu
- State Key Laboratory of Refractories and Metallurgy, Key Laboratory of Coal Conversion & New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
| | - Qiong Yuan
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University and Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research and Institute of Metabolic Diseases, Southwest Medical University, Luzhou 646000, China
| | - Tao Zou
- State Key Laboratory of Refractories and Metallurgy, Key Laboratory of Coal Conversion & New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
| |
Collapse
|
15
|
Nayak V, Patra S, Singh KR, Ganguly B, Kumar DN, Panda D, Maurya GK, Singh J, Majhi S, Sharma R, Pandey SS, Singh RP, Kerry RG. Advancement in precision diagnosis and therapeutic for triple-negative breast cancer: Harnessing diagnostic potential of CRISPR-cas & engineered CAR T-cells mediated therapeutics. ENVIRONMENTAL RESEARCH 2023; 235:116573. [PMID: 37437865 DOI: 10.1016/j.envres.2023.116573] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/29/2023] [Accepted: 07/06/2023] [Indexed: 07/14/2023]
Abstract
Cancer is characterized by uncontrolled cell growth, disrupted regulatory pathways, and the accumulation of genetic mutations. These mutations across different types of cancer lead to disruptions in signaling pathways and alterations in protein expression related to cellular growth and proliferation. This review highlights the AKT signaling cascade and the retinoblastoma protein (pRb) regulating cascade as promising for novel nanotheranostic interventions. Through synergizing state-of-the-art gene editing tools like the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas system with nanomaterials and targeting AKT, there is potential to enhance cancer diagnostics significantly. Furthermore, the integration of modified CAR-T cells into multifunctional nanodelivery systems offers a promising approach for targeted cancer inhibition, including the eradication of cancer stem cells (CSCs). Within the context of highly aggressive and metastatic Triple-negative Breast Cancer (TNBC), this review specifically focuses on devising innovative nanotheranostics. For both pre-clinical and post-clinical TNBC detection, the utilization of the CRISPR-Cas system, guided by RNA (gRNA) and coupled with a fluorescent reporter specifically designed to detect TNBC's mutated sequence, could be promising. Additionally, a cutting-edge approach involving the engineering of TNBC-specific iCAR and syn-Notch CAR T-cells, combined with the co-delivery of a hybrid polymeric nano-liposome encapsulating a conditionally replicative adenoviral vector (CRAdV) against CSCs, could present an intriguing intervention strategy. This review thus paves the way for exciting advancements in the field of nanotheranostics for the treatment of TNBC and beyond.
Collapse
Affiliation(s)
- Vinayak Nayak
- Indian Council of Agricultural Research- National Institute on Foot and Mouth Disease- International Center for Foot and Mouth Disease, Bhubaneswar, Odisha, India
| | - Sushmita Patra
- Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi-Mumbai 410210, India
| | - Kshitij Rb Singh
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu, Kitakyushu, Japan.
| | - Bristy Ganguly
- Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, India
| | - Das Nishant Kumar
- PG Department of Biotechnology, Utkal University, Bhubaneswar, Odisha, India
| | - Deepak Panda
- PG Department of Biotechnology, Utkal University, Bhubaneswar, Odisha, India
| | - Ganesh Kumar Maurya
- Zoology Section, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Jay Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Sanatan Majhi
- PG Department of Biotechnology, Utkal University, Bhubaneswar, Odisha, India
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Shyam S Pandey
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu, Kitakyushu, Japan.
| | - Ravindra Pratap Singh
- Department of Biotechnology, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, India.
| | - Rout George Kerry
- PG Department of Biotechnology, Utkal University, Bhubaneswar, Odisha, India.
| |
Collapse
|
16
|
Dyagala S, Paul M, Aswal VK, Biswas S, Saha SK. Compaction of Calf Thymus DNA by a Potential One-Head-Two-Tail Surfactant: Properties of Nanomaterials and Biological Testing for Gene Delivery. ACS APPLIED BIO MATERIALS 2023; 6:3848-3862. [PMID: 37647161 DOI: 10.1021/acsabm.3c00470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
A one-head-two-tail cationic surfactant, Dilauryldimethylammonium bromide (DDAB) has shown a great extent of calf thymus DNA (ct-DNA) compaction being adsorbed on the surfaces of negatively charged SiO2 nanoparticles (NPs). DDAB molecules show high adsorption efficiency and induce many positive surface charges per-unit surface area of the SiO2 NPs compared to cationic Gemini (12-6-12) and conventional (DTAB) surfactants in an aqueous medium at pH 7.4, as evident from zeta potential and EDAX data. Transmission electron microscopy and field emission scanning electron microscopy images, along with ethidium bromide exclusion assay and DLS data support the compaction of ct-DNA. Fluorescence microscopic images show that in the presence of SiO2 NPs, DDAB can perform 50% compaction of ct-DNA at a concentration ∼58% and ∼99% lower than that of 12-6-12 and DTAB, respectively. Better ct-DNA compaction by DDAB is evident compared to other Gemini surfactants (12-4-12 and 12-8-12) as well reported before. Time-correlated single photon counting fluorescence intensity decay measurements of a probe DAPI in ct-DNA have revealed the average lifetime value that is decreased by ∼61% at 2.5 μM of DDAB in the presence of SiO2 NPs as compared to a decrease by only ∼29% in its absence, supporting NPs-induced stronger surfactant binding with ct-DNA. Fluorescence lifetime data have also demonstrated the crowding effect of NPs. At 2.5 μM of DDAB, both fast and slow rotational relaxation components of DAPI contribute almost equally to depolarization with the absence of NPs; however, with the presence of NPs, ∼96% weightage of the anisotropy decay is for the fast component. The present DDAB-SiO2 NPs combination has proved to be an excellent gene delivery system based on the cell viability in the mouse mammary gland adenocarcinoma cells (4T1) and human embryonic kidney (HEK) 293 cell lines, and in vitro and in vivo studies.
Collapse
Affiliation(s)
- Shalini Dyagala
- Department of Chemistry, Birla Institute of Technology & Science (BITS) Pilani, Hyderabad Campus, Hyderabad, Telangana 500078, India
| | - Milan Paul
- Department of Pharmacy, Birla Institute of Technology & Science (BITS) Pilani, Hyderabad Campus, Hyderabad, Telangana 500078, India
| | - Vinod Kumar Aswal
- Solid State Physics Division, Bhabha Atomic Research Centre (BARC), Trombay, Mumbai, Maharashtra 400085, India
| | - Swati Biswas
- Department of Pharmacy, Birla Institute of Technology & Science (BITS) Pilani, Hyderabad Campus, Hyderabad, Telangana 500078, India
| | - Subit Kumar Saha
- Department of Chemistry, Birla Institute of Technology & Science (BITS) Pilani, Hyderabad Campus, Hyderabad, Telangana 500078, India
| |
Collapse
|
17
|
Bastin G, Gantzer C, Schvoerer E, Sautrey G. The presence of RNA cargo is suspected to modify the surface hydrophobicity of the MS2 phage. Virology 2023; 585:139-144. [PMID: 37343460 DOI: 10.1016/j.virol.2023.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/02/2023] [Accepted: 06/07/2023] [Indexed: 06/23/2023]
Abstract
The surface hydrophobicity of native or engineered non-enveloped viruses and virus-like particles (VLPs) is a key parameter regulating their fate in living and artificial aqueous systems. Its modulation is mainly depending on the structure and environment of particles. Nevertheless, unexplained variations have been reported between structurally similar viruses and with pH. This indicates that some modulating factors of their hydrophobicity remain to be identified. Herein we investigate the potential involvement of RNA cargo in the MS2 phage used as non-enveloped RNA virus model, by examining the SDS-induced electrophoretic mobility shift (SEMS) determined for native MS2 virions and corresponding RNA-free VLPs at various pH. Interestingly, the SEMS of VLPs was larger and more variable from pH 5 to 9 compared to native virions. These observations are discussed in term of RNA-dependent changes in surface hydrophobicity, suggesting that RNA cargo may be a major modulator/regulator of this viral parameter.
Collapse
Affiliation(s)
| | | | - Evelyne Schvoerer
- Université de Lorraine, CNRS, LCPME, F-54000, Nancy, France; Laboratoire de Virologie - Microbiologie, Hôpital Universitaire de Nancy, F-54500, Vandœuvre-lès-Nancy, France.
| | | |
Collapse
|
18
|
Bayraktar E, Bayraktar R, Oztatlici H, Lopez-Berestein G, Amero P, Rodriguez-Aguayo C. Targeting miRNAs and Other Non-Coding RNAs as a Therapeutic Approach: An Update. Noncoding RNA 2023; 9:27. [PMID: 37104009 PMCID: PMC10145226 DOI: 10.3390/ncrna9020027] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/29/2023] [Accepted: 04/07/2023] [Indexed: 04/28/2023] Open
Abstract
Since the discovery of the first microRNAs (miRNAs, miRs), the understanding of miRNA biology has expanded substantially. miRNAs are involved and described as master regulators of the major hallmarks of cancer, including cell differentiation, proliferation, survival, the cell cycle, invasion, and metastasis. Experimental data indicate that cancer phenotypes can be modified by targeting miRNA expression, and because miRNAs act as tumor suppressors or oncogenes (oncomiRs), they have emerged as attractive tools and, more importantly, as a new class of targets for drug development in cancer therapeutics. With the use of miRNA mimics or molecules targeting miRNAs (i.e., small-molecule inhibitors such as anti-miRS), these therapeutics have shown promise in preclinical settings. Some miRNA-targeted therapeutics have been extended to clinical development, such as the mimic of miRNA-34 for treating cancer. Here, we discuss insights into the role of miRNAs and other non-coding RNAs in tumorigenesis and resistance and summarize some recent successful systemic delivery approaches and recent developments in miRNAs as targets for anticancer drug development. Furthermore, we provide a comprehensive overview of mimics and inhibitors that are in clinical trials and finally a list of clinical trials based on miRNAs.
Collapse
Affiliation(s)
- Emine Bayraktar
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Recep Bayraktar
- UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hulya Oztatlici
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Histology and Embryology, Gaziantep University, Gaziantep 27310, Turkey
| | - Gabriel Lopez-Berestein
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Paola Amero
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Cristian Rodriguez-Aguayo
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
19
|
Harmening N, Johnen S, Izsvák Z, Ivics Z, Kropp M, Bascuas T, Walter P, Kreis A, Pajic B, Thumann G. Enhanced Biosafety of the Sleeping Beauty Transposon System by Using mRNA as Source of Transposase to Efficiently and Stably Transfect Retinal Pigment Epithelial Cells. Biomolecules 2023; 13:biom13040658. [PMID: 37189405 DOI: 10.3390/biom13040658] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 05/17/2023] Open
Abstract
Neovascular age-related macular degeneration (nvAMD) is characterized by choroidal neovascularization (CNV), which leads to retinal pigment epithelial (RPE) cell and photoreceptor degeneration and blindness if untreated. Since blood vessel growth is mediated by endothelial cell growth factors, including vascular endothelial growth factor (VEGF), treatment consists of repeated, often monthly, intravitreal injections of anti-angiogenic biopharmaceuticals. Frequent injections are costly and present logistic difficulties; therefore, our laboratories are developing a cell-based gene therapy based on autologous RPE cells transfected ex vivo with the pigment epithelium derived factor (PEDF), which is the most potent natural antagonist of VEGF. Gene delivery and long-term expression of the transgene are enabled by the use of the non-viral Sleeping Beauty (SB100X) transposon system that is introduced into the cells by electroporation. The transposase may have a cytotoxic effect and a low risk of remobilization of the transposon if supplied in the form of DNA. Here, we investigated the use of the SB100X transposase delivered as mRNA and showed that ARPE-19 cells as well as primary human RPE cells were successfully transfected with the Venus or the PEDF gene, followed by stable transgene expression. In human RPE cells, secretion of recombinant PEDF could be detected in cell culture up to one year. Non-viral ex vivo transfection using SB100X-mRNA in combination with electroporation increases the biosafety of our gene therapeutic approach to treat nvAMD while ensuring high transfection efficiency and long-term transgene expression in RPE cells.
Collapse
Affiliation(s)
- Nina Harmening
- Experimental Ophthalmology, University of Geneva, 1205 Geneva, Switzerland
- Department of Ophthalmology, University Hospitals of Geneva, 1205 Geneva, Switzerland
| | - Sandra Johnen
- Department of Ophthalmology, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Zsuzsanna Izsvák
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Zoltan Ivics
- Division of Medical Biotechnology, Paul-Ehrlich-Institute, 63225 Langen, Germany
| | - Martina Kropp
- Experimental Ophthalmology, University of Geneva, 1205 Geneva, Switzerland
- Department of Ophthalmology, University Hospitals of Geneva, 1205 Geneva, Switzerland
| | - Thais Bascuas
- Experimental Ophthalmology, University of Geneva, 1205 Geneva, Switzerland
- Department of Ophthalmology, University Hospitals of Geneva, 1205 Geneva, Switzerland
| | - Peter Walter
- Department of Ophthalmology, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Andreas Kreis
- Experimental Ophthalmology, University of Geneva, 1205 Geneva, Switzerland
- Department of Ophthalmology, University Hospitals of Geneva, 1205 Geneva, Switzerland
| | - Bojan Pajic
- Experimental Ophthalmology, University of Geneva, 1205 Geneva, Switzerland
- Department of Ophthalmology, University Hospitals of Geneva, 1205 Geneva, Switzerland
- Eye Clinic ORASIS, Swiss Eye Research Foundation, 5734 Reinach, Switzerland
- Faculty of Sciences, Department of Physics, University of Novi Sad, Trg Dositeja Obradovica 4, 21000 Novi Sad, Serbia
- Faculty of Medicine of the Military Medical Academy, University of Defense, 11000 Belgrade, Serbia
| | - Gabriele Thumann
- Experimental Ophthalmology, University of Geneva, 1205 Geneva, Switzerland
- Department of Ophthalmology, University Hospitals of Geneva, 1205 Geneva, Switzerland
| |
Collapse
|
20
|
Hosseinkhani H, Domb AJ, Sharifzadeh G, Nahum V. Gene Therapy for Regenerative Medicine. Pharmaceutics 2023; 15:856. [PMID: 36986717 PMCID: PMC10057434 DOI: 10.3390/pharmaceutics15030856] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
The development of biological methods over the past decade has stimulated great interest in the possibility to regenerate human tissues. Advances in stem cell research, gene therapy, and tissue engineering have accelerated the technology in tissue and organ regeneration. However, despite significant progress in this area, there are still several technical issues that must be addressed, especially in the clinical use of gene therapy. The aims of gene therapy include utilising cells to produce a suitable protein, silencing over-producing proteins, and genetically modifying and repairing cell functions that may affect disease conditions. While most current gene therapy clinical trials are based on cell- and viral-mediated approaches, non-viral gene transfection agents are emerging as potentially safe and effective in the treatment of a wide variety of genetic and acquired diseases. Gene therapy based on viral vectors may induce pathogenicity and immunogenicity. Therefore, significant efforts are being invested in non-viral vectors to enhance their efficiency to a level comparable to the viral vector. Non-viral technologies consist of plasmid-based expression systems containing a gene encoding, a therapeutic protein, and synthetic gene delivery systems. One possible approach to enhance non-viral vector ability or to be an alternative to viral vectors would be to use tissue engineering technology for regenerative medicine therapy. This review provides a critical view of gene therapy with a major focus on the development of regenerative medicine technologies to control the in vivo location and function of administered genes.
Collapse
Affiliation(s)
- Hossein Hosseinkhani
- Innovation Center for Advanced Technology, Matrix, Inc., New York, NY 10019, USA
| | - Abraham J. Domb
- The Center for Nanoscience and Nanotechnology, Alex Grass Center for Drug Design and Synthesis and Cannabinoids Research, School of Pharmacy, Faculty of Medicine, Institute of Drug Research, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Ghorbanali Sharifzadeh
- Department of Polymer Engineering, School of Chemical Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
| | - Victoria Nahum
- The Center for Nanoscience and Nanotechnology, Alex Grass Center for Drug Design and Synthesis and Cannabinoids Research, School of Pharmacy, Faculty of Medicine, Institute of Drug Research, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| |
Collapse
|
21
|
Swingle KL, Safford HC, Geisler HC, Hamilton AG, Thatte AS, Billingsley MM, Joseph RA, Mrksich K, Padilla MS, Ghalsasi AA, Alameh MG, Weissman D, Mitchell MJ. Ionizable Lipid Nanoparticles for In Vivo mRNA Delivery to the Placenta during Pregnancy. J Am Chem Soc 2023; 145:4691-4706. [PMID: 36789893 PMCID: PMC9992266 DOI: 10.1021/jacs.2c12893] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Ionizable lipid nanoparticles (LNPs) are the most clinically advanced nonviral platform for mRNA delivery. While they have been explored for applications including vaccines and gene editing, LNPs have not been investigated for placental insufficiency during pregnancy. Placental insufficiency is caused by inadequate blood flow in the placenta, which results in increased maternal blood pressure and restricted fetal growth. Therefore, improving vasodilation in the placenta can benefit both maternal and fetal health. Here, we engineered ionizable LNPs for mRNA delivery to the placenta with applications in mediating placental vasodilation. We designed a library of ionizable lipids to formulate LNPs for mRNA delivery to placental cells and identified a lead LNP that enables in vivo mRNA delivery to trophoblasts, endothelial cells, and immune cells in the placenta. Delivery of this top LNP formulation encapsulated with VEGF-A mRNA engendered placental vasodilation, demonstrating the potential of mRNA LNPs for protein replacement therapy during pregnancy to treat placental disorders.
Collapse
Affiliation(s)
- Kelsey L Swingle
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Hannah C Safford
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Hannah C Geisler
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Alex G Hamilton
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Ajay S Thatte
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Margaret M Billingsley
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Ryann A Joseph
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Kaitlin Mrksich
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Marshall S Padilla
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Aditi A Ghalsasi
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Mohamad-Gabriel Alameh
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.,Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Drew Weissman
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.,Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.,Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.,Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.,Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
22
|
Wang W, An X, Yan K, Li Q. Construction and Application of Orthogonal T7 Expression System in Eukaryote: An Overview. Adv Biol (Weinh) 2023; 7:e2200218. [PMID: 36464626 DOI: 10.1002/adbi.202200218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/17/2022] [Indexed: 12/12/2022]
Abstract
The T7 system is an orthogonal transcription-system, which is characterized by simplicity, higher efficiency, and higher processivity, and it is used for protein or mRNA synthesis in various biological-systems. In comparison with prokaryotes, the construction of the T7 expression system is still on-going in eukaryotes, but it shows greatly applicable prospects. In the present paper, development of T7 expression system construction in eukaryotes is reviewed, including its construction in animal (mammalian cells, trypanosomatid protozoa, Xenopus oocytes, zebrafish), plant, and microorganism and its application in vaccine production and gene therapy. In addition, the innate challenges of T7 expression system construction in eukaryote and its potential application in vaccine production and gene therapy are discussed.
Collapse
Affiliation(s)
- Wenya Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xiaoyan An
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Kun Yan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Qiang Li
- Key Laboratory for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
23
|
Li X, Qi H, Cui W, Wang Z, Fu X, Li T, Ma H, Yang Y, Yu T. Recent advances in targeted delivery of non-coding RNA-based therapeutics for atherosclerosis. Mol Ther 2022; 30:3118-3132. [PMID: 35918894 PMCID: PMC9552813 DOI: 10.1016/j.ymthe.2022.07.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/28/2022] [Accepted: 07/30/2022] [Indexed: 10/16/2022] Open
Abstract
Cardiovascular disease (CVD) has overtaken infectious illnesses as the leading cause of mortality and disability worldwide. The pathology that underpins CVD is atherosclerosis, characterized by chronic inflammation caused by the accumulation of plaques in the arteries. As our knowledge about the microenvironment of blood vessel walls deepens, there is an opportunity to fine-tune treatments to target the mechanisms driving atherosclerosis more directly. The application of non-coding RNAs (ncRNAs) as biomarkers or intervention targets is increasing. Although these ncRNAs play an important role in driving atherosclerosis and vascular dysfunction, the cellular and extracellular environments pose a challenge for targeted transmission and therapeutic regulation of ncRNAs. Specificity, delivery, and tolerance have hampered the clinical translation of ncRNA-based therapeutics. Nanomedicine is an emerging field that uses nanotechnology for targeted drug delivery and advanced imaging. Recently, nanoscale carriers have shown promising results and have introduced new possibilities for nucleic acid targeted drug delivery, particularly for atherosclerosis. In this review, we discuss the latest developments in nanoparticles to aid ncRNA-based drug development, particularly miRNA, and we analyze the current challenges in ncRNA targeted delivery. In particular, we highlight the emergence of various kinds of nanotherapeutic approaches based on ncRNAs, which can improve treatment options for atherosclerosis.
Collapse
Affiliation(s)
- Xiaoxin Li
- Center for Regenerative Medicine, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao 266021, People's Republic of China
| | - Hongzhao Qi
- Center for Regenerative Medicine, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao 266021, People's Republic of China
| | - Weigang Cui
- Department of Cardiology, People's Hospital of Rizhao, No. 126 Taian Road, Rizhao 276827, People's Republic of China
| | - Zhibin Wang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao 266000, China
| | - Xiuxiu Fu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao 266000, China
| | - Tianxiang Li
- Center for Regenerative Medicine, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao 266021, People's Republic of China
| | - Huibo Ma
- Department of Vascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yanyan Yang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao 266021, People's Republic of China.
| | - Tao Yu
- Center for Regenerative Medicine, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao 266021, People's Republic of China; Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao 266000, China.
| |
Collapse
|
24
|
Cuypers A, Truong ACK, Becker LM, Saavedra-García P, Carmeliet P. Tumor vessel co-option: The past & the future. Front Oncol 2022; 12:965277. [PMID: 36119528 PMCID: PMC9472251 DOI: 10.3389/fonc.2022.965277] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/04/2022] [Indexed: 12/11/2022] Open
Abstract
Tumor vessel co-option (VCO) is a non-angiogenic vascularization mechanism that is a possible cause of resistance to anti-angiogenic therapy (AAT). Multiple tumors are hypothesized to primarily rely on growth factor signaling-induced sprouting angiogenesis, which is often inhibited during AAT. During VCO however, tumors invade healthy tissues by hijacking pre-existing blood vessels of the host organ to secure their blood and nutrient supply. Although VCO has been described in the context of AAT resistance, the molecular mechanisms underlying this process and the profile and characteristics of co-opted vascular cell types (endothelial cells (ECs) and pericytes) remain poorly understood, resulting in the lack of therapeutic strategies to inhibit VCO (and to overcome AAT resistance). In the past few years, novel next-generation technologies (such as single-cell RNA sequencing) have emerged and revolutionized the way of analyzing and understanding cancer biology. While most studies utilizing single-cell RNA sequencing with focus on cancer vascularization have centered around ECs during sprouting angiogenesis, we propose that this and other novel technologies can be used in future investigations to shed light on tumor EC biology during VCO. In this review, we summarize the molecular mechanisms driving VCO known to date and introduce the models used to study this phenomenon to date. We highlight VCO studies that recently emerged using sequencing approaches and propose how these and other novel state-of-the-art methods can be used in the future to further explore ECs and other cell types in the VCO process and to identify potential vulnerabilities in tumors relying on VCO. A better understanding of VCO by using novel approaches could provide new answers to the many open questions, and thus pave the way to develop new strategies to control and target tumor vascularization.
Collapse
Affiliation(s)
- Anne Cuypers
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology (CCB), Vlaams Instituut voor Biotechnologie (VIB) and Department of Oncology, Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
| | - Anh-Co Khanh Truong
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology (CCB), Vlaams Instituut voor Biotechnologie (VIB) and Department of Oncology, Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
| | - Lisa M. Becker
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology (CCB), Vlaams Instituut voor Biotechnologie (VIB) and Department of Oncology, Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
| | - Paula Saavedra-García
- Laboratory of Angiogenesis and Vascular Heterogeneity, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology (CCB), Vlaams Instituut voor Biotechnologie (VIB) and Department of Oncology, Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Heterogeneity, Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| |
Collapse
|
25
|
Hao M, Zhang L, Chen P. Membrane Internalization Mechanisms and Design Strategies of Arginine-Rich Cell-Penetrating Peptides. Int J Mol Sci 2022; 23:ijms23169038. [PMID: 36012300 PMCID: PMC9409441 DOI: 10.3390/ijms23169038] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/05/2022] [Accepted: 08/05/2022] [Indexed: 11/29/2022] Open
Abstract
Cell-penetrating peptides (CPPs) have been discovered to deliver chemical drugs, nucleic acids, and macromolecules to permeate cell membranes, creating a novel route for exogenous substances to enter cells. Up until now, various sequence structures and fundamental action mechanisms of CPPs have been established. Among them, arginine-rich peptides with unique cell penetration properties have attracted substantial scientific attention. Due to the positively charged essential amino acids of the arginine-rich peptides, they can interact with negatively charged drug molecules and cell membranes through non-covalent interaction, including electrostatic interactions. Significantly, the sequence design and the penetrating mechanisms are critical. In this brief synopsis, we summarize the transmembrane processes and mechanisms of arginine-rich peptides; and outline the relationship between the function of arginine-rich peptides and the number of arginine residues, arginine optical isomers, primary sequence, secondary and ternary structures, etc. Taking advantage of the penetration ability, biomedical applications of arginine-rich peptides have been refreshed, including drug/RNA delivery systems, biosensors, and blood-brain barrier (BBB) penetration. Understanding the membrane internalization mechanisms and design strategies of CPPs will expand their potential applications in clinical trials.
Collapse
Affiliation(s)
- Minglu Hao
- Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Lei Zhang
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L3G1, Canada
- Correspondence: (L.Z.); (P.C.)
| | - Pu Chen
- Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L3G1, Canada
- Correspondence: (L.Z.); (P.C.)
| |
Collapse
|
26
|
Cao D, Song Q, Li J, Chard Dunmall LS, Jiang Y, Qin B, Wang J, Guo H, Cheng Z, Wang Z, Lemoine NR, Lu S, Wang Y. Redirecting anti-Vaccinia virus T cell immunity for cancer treatment by AAV-mediated delivery of the VV B8R gene. Mol Ther Oncolytics 2022; 25:264-275. [PMID: 35615262 PMCID: PMC9114156 DOI: 10.1016/j.omto.2022.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 04/21/2022] [Indexed: 11/28/2022] Open
Abstract
Immunotherapies, such as immune checkpoint inhibitors (ICIs) and chimeric antigen receptor-T (CAR-T) cells, are only efficient in a small proportion of tumor patients. One of the major reasons for this is the lack of immune cell infiltration and activation in the tumor microenvironment (TME). Recent research reported that abundant bystander CD8+ T cells targeting viral antigens exist in tumor infiltrates and that virus-specific memory T cells could be recalled to kill tumor cells. Therefore, virus-specific memory T cells may be effective candidates for tumor immunotherapy. In this study, we established subcutaneous tumor mice models that were pre-immunized with Vaccinia virus (VV) and confirmed that tumor cells with ectopic expression of the viral B8R protein could be recognized and killed by memory T cells. To create a therapeutic delivery system, we designed a recombinant adeno-associated virus (rAAV) with a modified tumor-specific promoter and used it to deliver VV B8R to tumor cells. We observed that rAAV gene therapy can retard tumor growth in VV pre-immunized mice. In summary, our study demonstrates that rAAV containing a tumor-specific promoter to restrict VV B8R gene expression to tumor cells is a potential therapeutic agent for cancer treatment in VV pre-immunized or VV-treated mice bearing tumors.
Collapse
Affiliation(s)
- Dujuan Cao
- National Center for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Qianqian Song
- National Center for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Junqi Li
- National Center for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Louisa S. Chard Dunmall
- Centre for Cancer Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Yuanyuan Jiang
- National Center for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Bin Qin
- National Center for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jianyao Wang
- National Center for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Haoran Guo
- National Center for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhenguo Cheng
- National Center for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhimin Wang
- National Center for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Nicholas R. Lemoine
- National Center for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- Centre for Cancer Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Shuangshuang Lu
- National Center for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yaohe Wang
- National Center for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- Centre for Cancer Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK
| |
Collapse
|
27
|
Reshetnikov VV, Chirinskaite AV, Sopova JV, Ivanov RA, Leonova EI. Cas-Based Systems for RNA Editing in Gene Therapy of Monogenic Diseases: In Vitro and in Vivo Application and Translational Potential. Front Cell Dev Biol 2022; 10:903812. [PMID: 35784464 PMCID: PMC9245891 DOI: 10.3389/fcell.2022.903812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/05/2022] [Indexed: 12/12/2022] Open
Abstract
Rare genetic diseases reduce quality of life and can significantly shorten the lifespan. There are few effective treatment options for these diseases, and existing therapeutic strategies often represent only supportive or palliative care. Therefore, designing genetic-engineering technologies for the treatment of genetic diseases is urgently needed. Rapid advances in genetic editing technologies based on programmable nucleases and in the engineering of gene delivery systems have made it possible to conduct several dozen successful clinical trials; however, the risk of numerous side effects caused by off-target double-strand breaks limits the use of these technologies in the clinic. Development of adenine-to-inosine (A-to-I) and cytosine-to-uracil (C-to-U) RNA-editing systems based on dCas13 enables editing at the transcriptional level without double-strand breaks in DNA. In this review, we discuss recent progress in the application of these technologies in in vitro and in vivo experiments. The main strategies for improving RNA-editing tools by increasing their efficiency and specificity are described as well. These data allow us to outline the prospects of base-editing systems for clinical application.
Collapse
Affiliation(s)
- Vasiliy V. Reshetnikov
- Department of Biotechnology, Sirius University of Science and Technology, Sochi, Russia
- Department of Molecular Genetics, Institute of Cytology and Genetics, Novosibirsk, Russia
| | - Angelina V. Chirinskaite
- Center of Transgenesis and Genome Editing, St. Petersburg State University, St. Petersburg, Russia
| | - Julia V. Sopova
- Center of Transgenesis and Genome Editing, St. Petersburg State University, St. Petersburg, Russia
- Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg, Russia
| | - Roman A. Ivanov
- Department of Biotechnology, Sirius University of Science and Technology, Sochi, Russia
| | - Elena I. Leonova
- Center of Transgenesis and Genome Editing, St. Petersburg State University, St. Petersburg, Russia
- Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia
| |
Collapse
|
28
|
Colomb-Delsuc M, Raim R, Fiedler C, Reuberger S, Lengler J, Nordström R, Ryner M, Folea IM, Kraus B, Hernandez Bort JA, Sintorn IM. Assessment of the percentage of full recombinant adeno-associated virus particles in a gene therapy drug using CryoTEM. PLoS One 2022; 17:e0269139. [PMID: 35657790 PMCID: PMC9165851 DOI: 10.1371/journal.pone.0269139] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/16/2022] [Indexed: 11/18/2022] Open
Abstract
In spite of continuous development of gene therapy vectors with thousands of drug candidates in clinical drug trials there are only a small number approved on the market today stressing the need to have characterization methods to assist in the validation of the drug development process. The level of packaging of the vector capsids appears to play a critical role in immunogenicity, hence an objective quantitative method assessing the content of particles containing a genome is an essential quality measurement. As transmission electron microscopy (TEM) allows direct visualization of the particles present in a specimen, it naturally seems as the most intuitive method of choice for characterizing recombinant adeno-associated virus (rAAV) particle packaging. Negative stain TEM (nsTEM) is an established characterization method for analysing the packaging of viral vectors. It has however shown limitations in terms of reliability. To overcome this drawback, we propose an analytical method based on CryoTEM that unambiguously and robustly determines the percentage of filled particles in an rAAV sample. In addition, we show that at a fixed number of vector particles the portion of filled particles correlates well with the potency of the drug. The method has been validated according to the ICH Q2 (R1) guidelines and the components investigated during the validation are presented in this study. The reliability of nsTEM as a method for the assessment of filled particles is also investigated along with a discussion about the origin of the observed variability of this method.
Collapse
Affiliation(s)
| | - Roman Raim
- Baxalta Innovations GmbH, A Part of Takeda Companies, Orth an der Donau, Austria
| | - Christian Fiedler
- Baxalta Innovations GmbH, A Part of Takeda Companies, Orth an der Donau, Austria
| | - Stefan Reuberger
- Baxalta Innovations GmbH, A Part of Takeda Companies, Orth an der Donau, Austria
| | - Johannes Lengler
- Baxalta Innovations GmbH, A Part of Takeda Companies, Orth an der Donau, Austria
| | | | | | | | - Barbara Kraus
- Baxalta Innovations GmbH, A Part of Takeda Companies, Orth an der Donau, Austria
| | | | - Ida-Maria Sintorn
- Vironova AB, Stockholm, Sweden
- Department of Information Technology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
29
|
Białkowska K, Komorowski P, Gomez-Ramirez R, de la Mata FJ, Bryszewska M, Miłowska K. Interaction of Cationic Carbosilane Dendrimers and Their siRNA Complexes with MCF-7 Cells Cultured in 3D Spheroids. Cells 2022; 11:cells11101697. [PMID: 35626734 PMCID: PMC9140188 DOI: 10.3390/cells11101697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 02/01/2023] Open
Abstract
Cationic dendrimers are effective carriers for the delivery of siRNA into cells; they can penetrate cell membranes and protect nucleic acids against RNase degradation. Two types of dendrimers (CBD-1 and CBD-2) and their complexes with pro-apoptotic siRNA (Mcl-1 and Bcl-2) were tested on MCF-7 cells cultured as spheroids. Cytotoxicity of dendrimers and dendriplexes was measured using the live–dead test and Annexin V-FITC Apoptosis Detection Kit (flow cytometry). Uptake of dendriplexes was examined using flow cytometry and confocal microscopy. The live–dead test showed that for cells in 3D, CBD-2 is more toxic than CBD-1, contrasting with the data for 2D cultures. Attaching siRNA to a dendrimer molecule did not lead to increased cytotoxic effect in cells, either after 24 or 48 h. Measurements of apoptosis did not show a high increase in the level of the apoptosis marker after 24 h exposure of spheroids to CBD-2 and its dendriplexes. Measurements of the internalization of dendriplexes and microscopy images confirmed that the dendriplexes were transported into cells of the spheroids. Flow cytometry analysis of internalization indicated that CBD-2 transported siRNAs more effectively than CBD-1. Cytotoxic effects were visible after incubation with 3 doses of complexes for CBD-1 and both siRNAs.
Collapse
Affiliation(s)
- Kamila Białkowska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland; (M.B.); (K.M.)
- Molecular and Nanostructural Biophysics Laboratory, “Bionanopark” Ldt., 114/116 Dubois St., 93-465 Lodz, Poland;
- Correspondence:
| | - Piotr Komorowski
- Molecular and Nanostructural Biophysics Laboratory, “Bionanopark” Ldt., 114/116 Dubois St., 93-465 Lodz, Poland;
- Department of Biophysics, Institute of Materials Science, Lodz University of Technology, 1/15 Stefanowskiego St., 90-924 Lodz, Poland
| | - Rafael Gomez-Ramirez
- Department of Organic and Inorganic Chemistry, IQAR, University of Alcalá, 28805 Madrid, Spain; (R.G.-R.); (F.J.d.l.M.)
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
- Ramón y Cajal Health Research Institute (IRYCIS), 28034 Madrid, Spain
| | - Francisco Javier de la Mata
- Department of Organic and Inorganic Chemistry, IQAR, University of Alcalá, 28805 Madrid, Spain; (R.G.-R.); (F.J.d.l.M.)
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
- Ramón y Cajal Health Research Institute (IRYCIS), 28034 Madrid, Spain
| | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland; (M.B.); (K.M.)
| | - Katarzyna Miłowska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland; (M.B.); (K.M.)
| |
Collapse
|
30
|
Barela Hudgell MA, Smith LC. Lipofection mediated transfection fails for sea urchin coelomocytes. PLoS One 2022; 17:e0267911. [PMID: 35522665 PMCID: PMC9075664 DOI: 10.1371/journal.pone.0267911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/19/2022] [Indexed: 11/19/2022] Open
Abstract
Molecular cloning, gene manipulation, gene expression, protein function, and gene regulation all depend on the introduction of nucleic acids into target cells. Multiple methods have been developed to facilitate such delivery including instrument based microinjection and electroporation, biological methods such as transduction, and chemical methods such as calcium phosphate precipitation, cationic polymers, and lipid based transfection, also known as lipofection. Here we report attempts to lipofect sea urchin coelomocytes using DOTAP lipofection reagent packaged with a range of molecules including fluorochromes, in addition to expression constructs, amplicons, and RNA encoding GFP. DOTAP has low cytotoxicity for coelomocytes, however, lipofection of a variety of molecules fails to produce any signature of success based on results from fluorescence microscopy and flow cytometry. While these results are negative, it is important to report failed attempts so that others conducting similar research do not repeat these approaches. Failure may be the outcome of elevated ionic strength of the coelomocyte culture medium, uptake and degradation of lipoplexes in the endosomal-lysosomal system, failure of the nucleic acids to escape the endosomal vesicles and enter the cytoplasm, and difficulties in lipofecting primary cultures of phagocytic cells. We encourage others to build on this report by using our information to optimize lipofection with a range of other approaches to work towards establishing a successful method of transfecting adult cells from marine invertebrates.
Collapse
Affiliation(s)
- Megan A. Barela Hudgell
- Department of Biological Sciences, George Washington University, Washington, DC, United States of America
| | - L. Courtney Smith
- Department of Biological Sciences, George Washington University, Washington, DC, United States of America
| |
Collapse
|
31
|
Cho SK, Lee RT, Hwang YH, Kwon YJ. Chemically Tuned Intracellular Gene Delivery by Core-Shell Nanoparticles: Effects of Proton Buffering, Acid Degradability, and Membrane Disruption. ChemMedChem 2022; 17:e202100718. [PMID: 35060681 PMCID: PMC9779904 DOI: 10.1002/cmdc.202100718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/18/2022] [Indexed: 12/25/2022]
Abstract
Nanoparticles consisting of a condensed nucleic acid core surrounded by protective layers which aid to overcome extracellular and intracellular hurdles to gene delivery (i. e., core-shell nanoparticles, CSNPs) synthetically mimic viruses. The outer shells shield the core and are particularly designed to enable facilitated release of the gene payload into the cytoplasm, the major limiting step in intracellular gene delivery. The hypothetical proton sponge effect and degradability in response to a stimulus (i. e., mildly acidic pH in the endosome) are two prevailing, although contested, principles in designing effective carriers for intracellular gene delivery via endosomal escape. Utilizing the highly flexible chemical-tuning of the polymeric shell via surface-initiated photo-polymerization of the various monomers at different molecular ratios, the effects of proton buffering capacity, acid-degradability, and endosomal membrane-lysis property on intracellular delivery of plasmid DNA by CSNPs were investigated. This study demonstrated the equivalently critical roles of proton buffering and acid-degradability in achieving efficient intracellular gene delivery, independent of cellular uptake. Extended proton buffering resulted in further improved transfection as long as the core structure was not compromised. The results of the study present a promising synthetic strategy to the development of an efficient, chemically-tunable gene delivery carrier.
Collapse
Affiliation(s)
- Soo Kyung Cho
- Crystal Bank PNU, Pusan National University, 2222 Nano Building, Samnangjin-ro, Miryang, Gyeongsangnam-do 50463 (Republic of Korea)
| | - Rebecca T. Lee
- Department of Biomedical Engineering and Medical Scientist Training Program, University of California, Irvine, B200 Sprague Hall, Irvine, CA 92697-3958 (USA)
| | - Yoon-Hwae Hwang
- Department of Nano Energy Engineering, Pusan National University, Pusandaehak-ro 63 beon-gil 2, Jangjeon-dong, Geumjung-gu, Busan 46241 (Republic of Korea)
| | - Young Jik Kwon
- Departments of Pharmaceutical Science, Chemical and Biomolecular Engineering, Biomedical Engineering, and Molecular Biology and Biochemistry University of California, Irvine, 132 Sprague Hall, Irvine, CA 92697-3958 (USA)
| |
Collapse
|
32
|
Kara G, Calin GA, Ozpolat B. RNAi-based therapeutics and tumor targeted delivery in cancer. Adv Drug Deliv Rev 2022; 182:114113. [PMID: 35063535 DOI: 10.1016/j.addr.2022.114113] [Citation(s) in RCA: 177] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/15/2021] [Accepted: 01/12/2022] [Indexed: 02/08/2023]
Abstract
Over the past decade, non-coding RNA-based therapeutics have proven as a great potential for the development of targeted therapies for cancer and other diseases. The discovery of the critical function of microRNAs (miRNAs) has generated great excitement in developing miRNA-based therapies. The dysregulation of miRNAs contributes to the pathogenesis of various human diseases and cancers by modulating genes that are involved in critical cellular processes, including cell proliferation, differentiation, apoptosis, angiogenesis, metastasis, drug resistance, and tumorigenesis. miRNA (miRNA mimic, anti-miRNA/antagomir) and small interfering RNA (siRNA) can inhibit the expression of any cancer-related genes/mRNAs with high specificity through RNA interference (RNAi), thus representing a remarkable therapeutic tool for targeted therapies and precision medicine. siRNA and miRNA-based therapies have entered clinical trials and recently three novel siRNA-based therapeutics were approved by the Food and Drug Administration (FDA), indicating the beginning of a new era of targeted therapeutics. The successful clinical applications of miRNA and siRNA therapeutics rely on safe and effective nanodelivery strategies for targeting tumor cells or tumor microenvironment. For this purpose, promising nanodelivery/nanoparticle-based approaches have been developed using a variety of molecules for systemic administration and improved tumor targeted delivery with reduced side effects. In this review, we present an overview of RNAi-based therapeutics, the major pharmaceutical challenges, and the perspectives for the development of promising delivery systems for clinical translation. We also highlight the passive and active tumor targeting nanodelivery strategies and primarily focus on the current applications of nanoparticle-based delivery formulations for tumor targeted RNAi molecules and their recent advances in clinical trials in human cancers.
Collapse
Affiliation(s)
- Goknur Kara
- Department of Experimental Therapeutics, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Chemistry, Biochemistry Division, Ordu University, Ordu, Turkey
| | - George A Calin
- Department of Translational Molecular Pathology, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA; Center for RNA Interference and Non-Coding RNA, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Bulent Ozpolat
- Department of Experimental Therapeutics, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA; Center for RNA Interference and Non-Coding RNA, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
33
|
Gan C, Cheng R, Cai K, Wang X, Xie C, Xu T, Yuan C. Interaction of calf thymus DNA and glucose-based gemini cationic surfactants with different spacer length: A spectroscopy and DLS study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 267:120606. [PMID: 34802935 DOI: 10.1016/j.saa.2021.120606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 11/01/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
The interactions between calf thymus DNA and a series of glucose-based cationic gemini surfactants 1a-1c with different spacer length, n = 4, 6 and 8, were studied by UV absorption, fluorescence spectroscopy, circular dichroism, FT-IR, dynamic light scattering and zeta potential measurements. The results showed that all the surfactants could interact with DNA efficiently. On addition of increasing concentration of the surfactants, UV absorption hypochromicity with insignificant blue shift were observed, until the DNA signal disappeared. The surfactant 1c was more efficient in the reduction of absorption intensity of DNA. According to the fluorescence quenching experiments by ethidium bromide exclusion, 1c exhibited the highest binding properties, with the binding constant at 3.25 × 108 L·mol-1. The spectroscopy study indicated that the surfactants bound with the DNA by a non-intercalative mode, mainly electrostatic interaction between the positively charged headgroups of the surfactants and negatively charged phosphate groups of DNA at low concentration, and the hydrophobic interaction among the alkyl chains at high concentration. The conformation of DNA during the interaction process could be kept B-form of DNA. For 1c, the DNA molecules can be compacted to about 103 nm in hydrodynamic diameter at 0.2 mM, while the minimum sizes of DNA were 140 nm and 133 nm, respectively, in the presence of 1a and 1b. The impact of the cationic gemini surfactants on the DNA compaction and condensation would shed light on their potential applications in gene delivery.
Collapse
Affiliation(s)
- Changsheng Gan
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China.
| | - Rong Cheng
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Kunliang Cai
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Xiaonan Wang
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Chenkun Xie
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Tiantian Xu
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Chuanxun Yuan
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| |
Collapse
|
34
|
Kim H, Solak K, Han Y, Cho YW, Koo KM, Kim CD, Luo Z, Son H, Kim HR, Mavi A, Kim TH. Electrically controlled mRNA delivery using a polypyrrole-graphene oxide hybrid film to promote osteogenic differentiation of human mesenchymal stem cells. NANO RESEARCH 2022; 15:9253-9263. [PMID: 35911478 PMCID: PMC9308036 DOI: 10.1007/s12274-022-4613-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 05/03/2023]
Abstract
UNLABELLED Direct messenger ribonucleic acid (mRNA) delivery to target cells or tissues has revolutionized the field of biotechnology. However, the applicability of regenerative medicine is limited by the technical difficulties of various mRNA-loaded nanocarriers. Herein, we report a new conductive hybrid film that could guide osteogenic differentiation of human adipose-derived mesenchymal stem cells (hADMSCs) via electrically controlled mRNA delivery. To find optimal electrical conductivity and mRNA-loading capacity, the polypyrrole-graphene oxide (PPy-GO) hybrid film was electropolymerized on indium tin oxide substrates. We found that the fluorescein sodium salt, a molecule partially mimicking the physical and chemical properties of mRNAs, can be effectively absorbed and released by electrical stimulation (ES). The hADMSCs cultivated on the PPy-GO hybrid film loaded with pre-osteogenic mRNAs showed the highest osteogenic differentiation under electrical stimulation. This platform can load various types of RNAs thus highly promising as a new nucleic acid delivery tool for the development of stem cell-based therapeutics. ELECTRONIC SUPPLEMENTARY MATERIAL Supplementary material (electrochemical and FT-IR analysis on the film, additional SEM, AFM and C-AFM images of the film, optical and fluorescence images of cells, and the primers used for RT-qPCR analysis) is available in the online version of this article at 10.1007/s12274-022-4613-y.
Collapse
Affiliation(s)
- Huijung Kim
- School of Integrative Engineering, Chung-Ang University, 84 Heukseuk-ro, Dongjak-gu, Seoul, 06974 Republic of Korea
| | - Kübra Solak
- Department of Nanoscience and Nanoengineering, Graduate School of Natural and Applied Sciences, Atatürk University, Erzurum, 25240 Turkey
| | - Yoojoong Han
- School of Integrative Engineering, Chung-Ang University, 84 Heukseuk-ro, Dongjak-gu, Seoul, 06974 Republic of Korea
| | - Yeon-Woo Cho
- School of Integrative Engineering, Chung-Ang University, 84 Heukseuk-ro, Dongjak-gu, Seoul, 06974 Republic of Korea
| | - Kyeong-Mo Koo
- School of Integrative Engineering, Chung-Ang University, 84 Heukseuk-ro, Dongjak-gu, Seoul, 06974 Republic of Korea
| | - Chang-Dae Kim
- School of Integrative Engineering, Chung-Ang University, 84 Heukseuk-ro, Dongjak-gu, Seoul, 06974 Republic of Korea
| | - Zhengtang Luo
- Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Kowloon, Hong Kong, 999077 China
| | - Hyungbin Son
- School of Integrative Engineering, Chung-Ang University, 84 Heukseuk-ro, Dongjak-gu, Seoul, 06974 Republic of Korea
| | - Hyung-Ryong Kim
- Department of Pharmacology, College of Dentistry, Jeonbuk National University, Jeonju, 54896 Republic of Korea
| | - Ahmet Mavi
- Department of Nanoscience and Nanoengineering, Institute of Science, Atatürk University, Erzurum, 25240 Turkey
- Department of Mathematics and Science Education, Education Faculty of Kazim Karabekir, Atatürk University, Erzurum, 25240 Turkey
| | - Tae-Hyung Kim
- School of Integrative Engineering, Chung-Ang University, 84 Heukseuk-ro, Dongjak-gu, Seoul, 06974 Republic of Korea
| |
Collapse
|
35
|
Development and clinical translation of ex vivo gene therapy. Comput Struct Biotechnol J 2022; 20:2986-3003. [PMID: 35782737 PMCID: PMC9218169 DOI: 10.1016/j.csbj.2022.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/07/2022] [Accepted: 06/07/2022] [Indexed: 11/27/2022] Open
Abstract
Retroviral gene therapy has emerged as a promising therapeutic modality for multiple inherited and acquired human diseases. The capability of delivering curative treatment or mediating therapeutic benefits for a long-term period following a single application fundamentally distinguishes this medical intervention from traditional medicine and various lentiviral/γ-retroviral vector-mediated gene therapy products have been approved for clinical use. Continued advances in retroviral vector engineering, genomic editing, synthetic biology and immunology will broaden the medical applications of gene therapy and improve the efficacy and safety of the treatments based on genetic correction and alteration. This review will summarize the advent and clinical translation of ex vivo gene therapy, with the focus on the milestones during the exploitation of genetically engineered hematopoietic stem cells (HSCs) tackling a variety of pathological conditions which led to marketing approval. Finally, current statue and future prospects of gene editing as an alternative therapeutic approach are also discussed.
Collapse
|
36
|
Delivery of DNA into Human Cells by Functionalized Lignin Nanoparticles. MATERIALS 2022; 15:ma15010303. [PMID: 35009448 PMCID: PMC8745861 DOI: 10.3390/ma15010303] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/20/2021] [Accepted: 12/27/2021] [Indexed: 12/29/2022]
Abstract
Lignin is an aromatic plant cell wall polymer that is generated in large quantities as a low-value by-product by the pulp and paper industry and by biorefineries that produce renewable fuels and chemicals from plant biomass. Lignin structure varies among plant species and as a function of the method used for its extraction from plant biomass. We first explored the impact of this variation on the physico-chemical properties of lignin nanoparticles (LNPs) produced via a solvent exchange procedure and then examined whether LNPs produced from industrial sources of lignin could be used as delivery vehicles for DNA. Spherical LNPs were formed from birch and wheat BioLignin™ and from poplar thioglycolic acid lignin after dissolving the lignin in tetrahydrofuran (THF) and dialyzing it against water. Dynamic light scattering indicated that the diameter of these LNPs was dependent on the initial concentration of the lignin, while electrophoretic light scattering indicated that the LNPs had a negative zeta potential, which became less negative as the diameter increased. The dynamics of LNP formation as a function of the initial lignin concentration varied as a function of the source of the lignin, as did the absolute value of the zeta potential. After coating the LNPs with cationic poly-l-lysine, an electrophoretic mobility shift assay indicated that DNA could adsorb to LNPs. Upon transfection of human A549 lung carcinoma basal epithelial cells with functionalized LNPs carrying plasmid DNA encoding the enhanced green fluorescent protein (eGFP), green foci were observed under the microscope, and the presence of eGFP in the transfected cells was confirmed by ELISA. The low cytotoxicity of these LNPs and the ability to tailor diameter and zeta potential make these LNPs of interest for future gene therapy applications.
Collapse
|
37
|
Cai B, Gong Y, Wang Z, Wang L, Chen W. Microneedle arrays integrated with living organisms for smart biomedical applications. Theranostics 2021; 11:10012-10029. [PMID: 34815801 PMCID: PMC8581439 DOI: 10.7150/thno.66478] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/02/2021] [Indexed: 02/06/2023] Open
Abstract
Various living organisms have proven to influence human health significantly, either in a commensal or pathogenic manner. Harnessing the creatures may remarkably improve human healthcare and cure the intractable illness that is challenged using traditional drugs or surgical approaches. However, issues including limited biocompatibility, poor biosafety, inconvenience for personal handling, and low patient compliance greatly hinder the biomedical and clinical applications of living organisms when adopting them for disease treatment. Microneedle arrays (MNAs), emerging as a promising candidate of biomedical devices with the functional diversity and minimal invasion, have exhibited great potential in the treatment of a broad spectrum of diseases, which is expected to improve organism-based therapies. In this review, we systemically summarize the technologies employed for the integration of MNAs with specific living organisms including diverse viruses, bacteria, mammal cells and so on. Moreover, their applications such as vaccination, anti-infection, tumor therapy and tissue repairing are well illustrated. Challenges faced by current strategies, and the perspectives of integrating more living organisms, adopting smarter materials, and developing more advanced technologies in MNAs for future personalized and point-of-care medicine, are also discussed. It is believed that the combination of living organisms with functional MNAs would hold great promise in the near future due to the advantages of both biological and artificial species.
Collapse
Affiliation(s)
- Bo Cai
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yusheng Gong
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zheng Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lin Wang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wei Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
38
|
Guerrero-Rodríguez J, Cárdenas-Vargas A, Gutierrez-Silerio G, Sobrevilla-Navarro A, Bastidas-Ramírez B, Hernández-Ortega L, Gurrola-Díaz C, Gasca-Lozano L, Armendáriz-Borunda J, Salazar-Montes A. Delivery of Anti-IFNAR1 shRNA to Hepatic Cells Decreases IFNAR1 Gene Expression and Improves Adenoviral Transduction and Transgene Expression. Mol Biotechnol 2021; 64:413-423. [PMID: 34687024 DOI: 10.1007/s12033-021-00408-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 09/21/2021] [Indexed: 11/26/2022]
Abstract
Chronic liver injury leads to advanced fibrosis, cirrhosis, and hepatocellular carcinoma. Genetical cell treatment related to the use of adenovirus (Ads) has proven to be beneficial and efficient in the recovery of hepatic diseases. Nevertheless, they are highly immunogenic and trigger an immune response where interferons type 1 (IFN-I) play a very important role. Three shRNAs against the Interferon-1 receptor (IFNAR1) were designed and cloned in pENTR/U6 plasmid and amplified in DH5α cells. Huh7 cells were transfected with these plasmids in the presence or absence of 1 × 109 viral particles/ml of adenovirus containing the green fluorescent protein gene used as a reporter. Transfection with the shRNA plasmids partially inhibited the IFNAR1 expression. This inhibition substantially decreased antiviral response, demonstrated by the decrease of IFNAR1, IFN-α, and TNF-α gene expression, and the decrease at protein levels of IFNAR1, Protein kinase RNA-activated (PKR), and phosphorylated STAT1, allowing higher adenoviral transduction and transgene expression. Interestingly it was seen shRNA inhibited macrophage activation. These results suggest that the inhibition of the IFN-I pathway could be a strategy to minimize the immune response against Adenoviral vectors allowing higher Adenovirus transduction extending the transgene expression.
Collapse
Affiliation(s)
- J Guerrero-Rodríguez
- Instituto de Investigación en Enfermedades Crónico-Degenerativas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Col. Independencia, C.P. 44340, Guadalajara, Jalisco, Mexico
| | - A Cárdenas-Vargas
- Universidad Autónoma de Zacatecas, Jardín Juárez #147, Centro Histórico, C.P. 98000, Zacatecas, Zacatecas, Mexico
| | - G Gutierrez-Silerio
- Instituto de Investigación en Enfermedades Crónico-Degenerativas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Col. Independencia, C.P. 44340, Guadalajara, Jalisco, Mexico
| | - A Sobrevilla-Navarro
- Centro Universitario de Tonalá, Universidad de Guadalajara, Av. Nuevo Periférico No. 555 Ejido San José Tateposco, C.P. 45425, Tonalá, Jalisco, Mexico
| | - B Bastidas-Ramírez
- Instituto de Investigación en Enfermedades Crónico-Degenerativas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Col. Independencia, C.P. 44340, Guadalajara, Jalisco, Mexico
| | - L Hernández-Ortega
- Centro Universitario de Tonalá, Universidad de Guadalajara, Av. Nuevo Periférico No. 555 Ejido San José Tateposco, C.P. 45425, Tonalá, Jalisco, Mexico
| | - C Gurrola-Díaz
- Instituto de Investigación en Enfermedades Crónico-Degenerativas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Col. Independencia, C.P. 44340, Guadalajara, Jalisco, Mexico
| | - L Gasca-Lozano
- Instituto de Investigación en Enfermedades Crónico-Degenerativas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Col. Independencia, C.P. 44340, Guadalajara, Jalisco, Mexico
| | - J Armendáriz-Borunda
- Instituto de Biología Molecular en Medicina y Terapia Génica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Col. Independencia, C.P. 44340, Guadalajara, Jalisco, Mexico
| | - A Salazar-Montes
- Instituto de Investigación en Enfermedades Crónico-Degenerativas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Col. Independencia, C.P. 44340, Guadalajara, Jalisco, Mexico.
| |
Collapse
|
39
|
Liu Q, Shaukat A, Kyllönen D, Kostiainen MA. Polyelectrolyte Encapsulation and Confinement within Protein Cage-Inspired Nanocompartments. Pharmaceutics 2021; 13:1551. [PMID: 34683843 PMCID: PMC8537137 DOI: 10.3390/pharmaceutics13101551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 12/17/2022] Open
Abstract
Protein cages are nanocompartments with a well-defined structure and monodisperse size. They are composed of several individual subunits and can be categorized as viral and non-viral protein cages. Native viral cages often exhibit a cationic interior, which binds the anionic nucleic acid genome through electrostatic interactions leading to efficient encapsulation. Non-viral cages can carry various cargo, ranging from small molecules to inorganic nanoparticles. Both cage types can be functionalized at targeted locations through genetic engineering or chemical modification to entrap materials through interactions that are inaccessible to wild-type cages. Moreover, the limited number of constitutional subunits ease the modification efforts, because a single modification on the subunit can lead to multiple functional sites on the cage surface. Increasing efforts have also been dedicated to the assembly of protein cage-mimicking structures or templated protein coatings. This review focuses on native and modified protein cages that have been used to encapsulate and package polyelectrolyte cargos and on the electrostatic interactions that are the driving force for the assembly of such structures. Selective encapsulation can protect the payload from the surroundings, shield the potential toxicity or even enhance the intended performance of the payload, which is appealing in drug or gene delivery and imaging.
Collapse
Affiliation(s)
- Qing Liu
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, 00076 Aalto, Finland; (Q.L.); (A.S.); (D.K.)
| | - Ahmed Shaukat
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, 00076 Aalto, Finland; (Q.L.); (A.S.); (D.K.)
| | - Daniella Kyllönen
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, 00076 Aalto, Finland; (Q.L.); (A.S.); (D.K.)
| | - Mauri A. Kostiainen
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, 00076 Aalto, Finland; (Q.L.); (A.S.); (D.K.)
- HYBER Center, Department of Applied Physics, Aalto University, 00076 Aalto, Finland
| |
Collapse
|
40
|
Białkowska K, Miłowska K, Michlewska S, Sokołowska P, Komorowski P, Lozano-Cruz T, Gomez-Ramirez R, de la Mata FJ, Bryszewska M. Interaction of Cationic Carbosilane Dendrimers and Their siRNA Complexes with MCF-7 Cells. Int J Mol Sci 2021; 22:ijms22137097. [PMID: 34281151 PMCID: PMC8269323 DOI: 10.3390/ijms22137097] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 06/28/2021] [Accepted: 06/28/2021] [Indexed: 12/14/2022] Open
Abstract
The application of siRNA in gene therapy is mainly limited because of the problems with its transport into cells. Utilization of cationic dendrimers as siRNA carriers seems to be a promising solution in overcoming these issues, due to their positive charge and ability to penetrate cell membranes. The following two types of carbosilane dendrimers were examined: CBD-1 and CBD-2. Dendrimers were complexed with pro-apoptotic siRNA (Mcl-1 and Bcl-2) and the complexes were characterized by measuring their zeta potential, circular dichroism and fluorescence of ethidium bromide associated with dendrimers. CBD-2/siRNA complexes were also examined by agarose gel electrophoresis. Both dendrimers form complexes with siRNA. Moreover, the cellular uptake and influence on the cell viability of the dendrimers and dendriplexes were evaluated using microscopic methods and XTT assay on MCF-7 cells. Microscopy showed that both dendrimers can transport siRNA into cells; however, a cytotoxicity assay showed differences in the toxicity of these dendrimers.
Collapse
Affiliation(s)
- Kamila Białkowska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland; (K.M.); (M.B.)
- Molecular and Nanostructural Biophysics Laboratory, “Bionanopark” Ldt., 114/116 Dubois St., 93-465 Lodz, Poland; (P.S.); (P.K.)
- Correspondence:
| | - Katarzyna Miłowska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland; (K.M.); (M.B.)
| | - Sylwia Michlewska
- Laboratory of Microscopic Imaging and Specialized Biological Techniques, Faculty of Biology and Environmental Protection, University of Lodz, Banacha12/16, 90-237 Lodz, Poland;
| | - Paulina Sokołowska
- Molecular and Nanostructural Biophysics Laboratory, “Bionanopark” Ldt., 114/116 Dubois St., 93-465 Lodz, Poland; (P.S.); (P.K.)
- Department of Pharmacology and Toxicology, Medical University of Lodz, Żeligowskiego St. 7/9, 90-752 Lodz, Poland
| | - Piotr Komorowski
- Molecular and Nanostructural Biophysics Laboratory, “Bionanopark” Ldt., 114/116 Dubois St., 93-465 Lodz, Poland; (P.S.); (P.K.)
- Department of Biophysics, Institute of Materials Science, Lodz University of Technology, 1/15 Stefanowskiego St., 90-924 Lodz, Poland
| | - Tania Lozano-Cruz
- Department of Organic and Inorganic Chemistry, IQAR, University of Alcalá, 28805 Madrid, Spain; (T.L.-C.); (R.G.-R.); (F.J.d.l.M.)
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Rafael Gomez-Ramirez
- Department of Organic and Inorganic Chemistry, IQAR, University of Alcalá, 28805 Madrid, Spain; (T.L.-C.); (R.G.-R.); (F.J.d.l.M.)
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Francisco Javier de la Mata
- Department of Organic and Inorganic Chemistry, IQAR, University of Alcalá, 28805 Madrid, Spain; (T.L.-C.); (R.G.-R.); (F.J.d.l.M.)
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland; (K.M.); (M.B.)
| |
Collapse
|
41
|
Gatina DZ, Garanina EE, Zhuravleva MN, Synbulatova GE, Mullakhmetova AF, Solovyeva VV, Kiyasov AP, Rutland CS, Rizvanov AA, Salafutdinov II. Proangiogenic Effect of 2A-Peptide Based Multicistronic Recombinant Constructs Encoding VEGF and FGF2 Growth Factors. Int J Mol Sci 2021; 22:ijms22115922. [PMID: 34072943 PMCID: PMC8198600 DOI: 10.3390/ijms22115922] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 12/16/2022] Open
Abstract
Coronary artery disease remains one of the primary healthcare problems due to the high cost of treatment, increased number of patients, poor clinical outcomes, and lack of effective therapy. Though pharmacological and surgical treatments positively affect symptoms and arrest the disease progression, they generally exhibit a limited effect on the disease outcome. The development of alternative therapeutic approaches towards ischemic disease treatment, especially of decompensated forms, is therefore relevant. Therapeutic angiogenesis, stimulated by various cytokines, chemokines, and growth factors, provides the possibility of restoring functional blood flow in ischemic tissues, thereby ensuring the regeneration of the damaged area. In the current study, based on the clinically approved plasmid vector pVax1, multigenic constructs were developed encoding vascular endothelial growth factor (VEGF), fibroblast growth factors (FGF2), and the DsRed fluorescent protein, integrated via picornaviruses' furin-2A peptide sequences. In vitro experiments demonstrated that genetically modified cells with engineered plasmid constructs expressed the target proteins. Overexpression of VEGF and FGF2 resulted in increased levels of the recombinant proteins. Concomitantly, these did not lead to a significant shift in the general secretory profile of modified HEK293T cells. Simultaneously, the secretome of genetically modified cells showed significant stimulating effects on the formation of capillary-like structures by HUVEC (endothelial cells) in vitro. Our results revealed that when the multicistronic multigene vectors encoding 2A peptide sequences are created, transient transgene co-expression is ensured. The results obtained indicated the mutual synergistic effects of the growth factors VEGF and FGF2 on the proliferation of endothelial cells in vitro. Thus, recombinant multicistronic multigenic constructs might serve as a promising approach for establishing safe and effective systems to treat ischemic diseases.
Collapse
Affiliation(s)
- Dilara Z. Gatina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (D.Z.G.); (E.E.G.); (M.N.Z.); (G.E.S.); (A.F.M.); (V.V.S.); (A.P.K.)
| | - Ekaterina E. Garanina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (D.Z.G.); (E.E.G.); (M.N.Z.); (G.E.S.); (A.F.M.); (V.V.S.); (A.P.K.)
| | - Margarita N. Zhuravleva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (D.Z.G.); (E.E.G.); (M.N.Z.); (G.E.S.); (A.F.M.); (V.V.S.); (A.P.K.)
| | - Gulnaz E. Synbulatova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (D.Z.G.); (E.E.G.); (M.N.Z.); (G.E.S.); (A.F.M.); (V.V.S.); (A.P.K.)
| | - Adelya F. Mullakhmetova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (D.Z.G.); (E.E.G.); (M.N.Z.); (G.E.S.); (A.F.M.); (V.V.S.); (A.P.K.)
| | - Valeriya V. Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (D.Z.G.); (E.E.G.); (M.N.Z.); (G.E.S.); (A.F.M.); (V.V.S.); (A.P.K.)
| | - Andrey P. Kiyasov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (D.Z.G.); (E.E.G.); (M.N.Z.); (G.E.S.); (A.F.M.); (V.V.S.); (A.P.K.)
| | - Catrin S. Rutland
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham LE12 5RD, UK;
| | - Albert A. Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (D.Z.G.); (E.E.G.); (M.N.Z.); (G.E.S.); (A.F.M.); (V.V.S.); (A.P.K.)
- Correspondence: (A.A.R.); (I.I.S.)
| | - Ilnur I. Salafutdinov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (D.Z.G.); (E.E.G.); (M.N.Z.); (G.E.S.); (A.F.M.); (V.V.S.); (A.P.K.)
- Correspondence: (A.A.R.); (I.I.S.)
| |
Collapse
|
42
|
Holl NJ, Lee HJ, Huang YW. Evolutionary Timeline of Genetic Delivery and Gene Therapy. Curr Gene Ther 2021; 21:89-111. [PMID: 33292120 DOI: 10.2174/1566523220666201208092517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/17/2020] [Accepted: 11/22/2020] [Indexed: 11/22/2022]
Abstract
There are more than 3,500 genes that are being linked to hereditary diseases or correlated with an elevated risk of certain illnesses. As an alternative to conventional treatments with small molecule drugs, gene therapy has arisen as an effective treatment with the potential to not just alleviate disease conditions but also cure them completely. In order for these treatment regimens to work, genes or editing tools intended to correct diseased genetic material must be efficiently delivered to target sites. There have been many techniques developed to achieve such a goal. In this article, we systematically review a variety of gene delivery and therapy methods that include physical methods, chemical and biochemical methods, viral methods, and genome editing. We discuss their historical discovery, mechanisms, advantages, limitations, safety, and perspectives.
Collapse
Affiliation(s)
- Natalie J Holl
- Department of Biological Sciences, College of Arts, Sciences, and Business, Missouri University of Science and Technology, Rolla, MO 65409, United States
| | - Han-Jung Lee
- Department of Natural Resources and Environmental Studies, College of Environmental Studies, National Dong Hwa University, Hualien 974301, Taiwan
| | - Yue-Wern Huang
- Department of Biological Sciences, College of Arts, Sciences, and Business, Missouri University of Science and Technology, Rolla, MO 65409, United States
| |
Collapse
|
43
|
Morshedi Rad D, Alsadat Rad M, Razavi Bazaz S, Kashaninejad N, Jin D, Ebrahimi Warkiani M. A Comprehensive Review on Intracellular Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005363. [PMID: 33594744 DOI: 10.1002/adma.202005363] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/22/2020] [Indexed: 05/22/2023]
Abstract
Intracellular delivery is considered an indispensable process for various studies, ranging from medical applications (cell-based therapy) to fundamental (genome-editing) and industrial (biomanufacture) approaches. Conventional macroscale delivery systems critically suffer from such issues as low cell viability, cytotoxicity, and inconsistent material delivery, which have opened up an interest in the development of more efficient intracellular delivery systems. In line with the advances in microfluidics and nanotechnology, intracellular delivery based on micro- and nanoengineered platforms has progressed rapidly and held great promises owing to their unique features. These approaches have been advanced to introduce a smorgasbord of diverse cargoes into various cell types with the maximum efficiency and the highest precision. This review differentiates macro-, micro-, and nanoengineered approaches for intracellular delivery. The macroengineered delivery platforms are first summarized and then each method is categorized based on whether it employs a carrier- or membrane-disruption-mediated mechanism to load cargoes inside the cells. Second, particular emphasis is placed on the micro- and nanoengineered advances in the delivery of biomolecules inside the cells. Furthermore, the applications and challenges of the established and emerging delivery approaches are summarized. The topic is concluded by evaluating the future perspective of intracellular delivery toward the micro- and nanoengineered approaches.
Collapse
Affiliation(s)
- Dorsa Morshedi Rad
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Maryam Alsadat Rad
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Sajad Razavi Bazaz
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Navid Kashaninejad
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Dayong Jin
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Majid Ebrahimi Warkiani
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute of Molecular Medicine, Sechenov University, Moscow, 119991, Russia
| |
Collapse
|
44
|
Clua A, Fàbrega C, García-Chica J, Grijalvo S, Eritja R. Parallel G-quadruplex Structures Increase Cellular Uptake and Cytotoxicity of 5-Fluoro-2'-deoxyuridine Oligomers in 5-Fluorouracil Resistant Cells. Molecules 2021; 26:molecules26061741. [PMID: 33804620 PMCID: PMC8003610 DOI: 10.3390/molecules26061741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 12/13/2022] Open
Abstract
Fluoropyrimidines, such as 5-fluorouracil (5-FU) and related prodrugs have been considered first-line chemotherapy agents for the treatment of colorectal cancer. However, poor specificity and tumor cell resistance remain major limiting bottlenecks. G-quadruplexes, have been suggested as preferred nanostructures for enhancing cellular uptake mediated by G-quadruplex binding proteins which are abundant at the membranes of some tumor cells. In the current study, we propose a new strategy to deliver 5-fluoro-2′-deoxyuridine (5-FdU) monophosphate, the main active drug from 5-FU derivatives that may circumvent the cellular mechanisms of FU-resistant cancer cells. Two G-quadruplexes delivery systems containing four and six G-tetrads ((TG4T) and (TG6T)) linked to a FdU oligonucleotide were synthesized. Biophysical studies show that the G-quadruplex parallel structures are not affected by the incorporation of the 5 units of FdU at the 5’-end. Internalization studies confirmed the ability of such G-quadruplex nanostructures to facilitate the transport of the FdU pentamer and increase its cytotoxic effect relative to conventional FU drug in FU-resistant colorectal cancer cells. These results suggest that FdU oligomers linked to G-quadruplex parallel sequences may be a promising strategy to deliver fluoropyrimidines to cancer cells.
Collapse
Affiliation(s)
- Anna Clua
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), ) Jordi Girona 18-26, E-08034 Barcelona, Spain; (A.C.); (C.F.); (J.G.-C.); (S.G.)
- Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - Carme Fàbrega
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), ) Jordi Girona 18-26, E-08034 Barcelona, Spain; (A.C.); (C.F.); (J.G.-C.); (S.G.)
- Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - Jesús García-Chica
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), ) Jordi Girona 18-26, E-08034 Barcelona, Spain; (A.C.); (C.F.); (J.G.-C.); (S.G.)
| | - Santiago Grijalvo
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), ) Jordi Girona 18-26, E-08034 Barcelona, Spain; (A.C.); (C.F.); (J.G.-C.); (S.G.)
- Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - Ramon Eritja
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), ) Jordi Girona 18-26, E-08034 Barcelona, Spain; (A.C.); (C.F.); (J.G.-C.); (S.G.)
- Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26, E-08034 Barcelona, Spain
- Correspondence: ; Tel.: +34-934-006-145
| |
Collapse
|
45
|
Zheng Y, Luo Y, Chen X, Li H, Huang B, Zhou B, Zhu L, Kang X, Geng W. The role of mRNA in the development, diagnosis, treatment and prognosis of neural tumors. Mol Cancer 2021; 20:49. [PMID: 33673851 PMCID: PMC7934508 DOI: 10.1186/s12943-021-01341-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/23/2021] [Indexed: 12/24/2022] Open
Abstract
Neural tumors can generally be divided into central nervous system tumors and peripheral nervous tumors. Because this type of tumor is located in the nerve, even benign tumors are often difficult to remove by surgery. In addition, the majority of neural tumors are malignant, and it is particular the same for the central nervous system tumors. Even treated with the means such as chemotherapy and radiotherapy, they are also difficult to completely cure. In recent years, an increasingly number of studies have focused on the use of mRNA to treat tumors, representing an emerging gene therapy. The use of mRNA can use the expression of some functional proteins for the treatment of genetic disorders or tissue repair, and it can also be applied to immunotherapy through the expression of antigens, antibodies or receptors. Therefore, although these therapies are not fully-fledged enough, they have a broad research prospect. In addition, there are many ways to treat tumors using mRNA vaccines and exosomes carrying mRNA, which have drawn much attention. In this study, we reviewed the current research on the role of mRNA in the development, diagnosis, treatment and prognosis of neural tumors, and examine the future research prospects of mRNA in neural tumors and the opportunities and challenges that will arise in the future application of clinical treatment.
Collapse
Affiliation(s)
- Yiyang Zheng
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China.,School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | - Yanyan Luo
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | - Xixi Chen
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | - Huiting Li
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | - Baojun Huang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | - Baofeng Zhou
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | - Liqing Zhu
- Department of clinical laboratory, Wenzhou Medical University, Wenzhou, 325000, People's Republic of China.
| | - Xianhui Kang
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Wujun Geng
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China.
| |
Collapse
|
46
|
Leikas AJ, Laham-Karam N, Agtereek E, Peltonen HM, Selander T, Korpisalo P, Holappa L, Hartikainen JEK, Heikura T, Ylä-Herttuala S. Efficacy and Safety of Clinical-Grade Human Vascular Endothelial Growth Factor-D ΔNΔC Gene Therapy Containing Residual Replication-Competent Adenoviruses. Hum Gene Ther 2021; 32:761-770. [PMID: 33371775 DOI: 10.1089/hum.2020.299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Biological bypass through induced angiogenesis by vascular endothelial growth factor D (VEGF-D) gene therapy (GT) is a new concept for the treatment of cardiac ischemia. Serotype 5 adenoviruses are used in the clinical trials for transferring the VEGF-D cDNA into the ischemic myocardium. However, the presence of replication-competent vectors in the adenovirus products is a widely recognized problem that may pose a potential safety risk to the treated patients. We compared three different VEGF-D GT production lots containing different levels of replication-competent adenoviruses (RCA) tested in 3 × 1010 viral particles (vp): <10 RCA (VEGF-D L-RCA1), 10-100 RCA (VEGF-D H-RCA2), and 100-200 RCA (VEGF-D H-RCA3), as measured by a novel droplet digital polymerase chain reaction (PCR) RCA assay in a preclinical rabbit model (n = 21). β-galactosidase encoding nonclinical-grade preparation was used as a nonangiogenic control. Each preparation was injected into the right semimembranosus muscle using dose of 1 × 1011 vp. Efficacy of the products was tested by the combination of contrast pulse sequencing ultrasound and modified Miles assay as well as quantifying the total cross-sectional area of capillaries. Safety, immunogenicity, toxicity, biodistribution, and shedding were assessed by general histology, serial measurements of C-reactive protein, white blood cell count and body temperature as well as using quantitative real-time PCR with primers targeted to the VEGF-D and replication-permitting E1 sequences. We found no significant differences in the efficacy or safety between the study groups. Most importantly, no detectable presence of RCA-specific E1 sequence was found in any samples tested, indicating that no detectable vector replication took place in vivo. We conclude that relatively low levels of RCA in adenoviral GT products may not be as important major safety issue as previously anticipated.
Collapse
Affiliation(s)
- Aleksi J Leikas
- Heart Center, Kuopio University Hospital, Kuopio, Finland.,A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.,Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland
| | - Nihay Laham-Karam
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Eline Agtereek
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | | | - Tuomas Selander
- Science Service Center, Kuopio University Hospital, Kuopio, Finland
| | - Petra Korpisalo
- Heart Center, Kuopio University Hospital, Kuopio, Finland.,Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland
| | - Lari Holappa
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Juha E K Hartikainen
- Heart Center, Kuopio University Hospital, Kuopio, Finland.,Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland
| | - Tommi Heikura
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Seppo Ylä-Herttuala
- Heart Center, Kuopio University Hospital, Kuopio, Finland.,A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.,Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
47
|
Hervás-Salcedo R, Fernández-García M, Hernando-Rodríguez M, Quintana-Bustamante O, Segovia JC, Alvarez-Silva M, García-Arranz M, Minguez P, Del Pozo V, de Alba MR, García-Olmo D, Ayuso C, Lamana ML, Bueren JA, Yañez RM. Enhanced anti-inflammatory effects of mesenchymal stromal cells mediated by the transient ectopic expression of CXCR4 and IL10. Stem Cell Res Ther 2021; 12:124. [PMID: 33579367 PMCID: PMC7881581 DOI: 10.1186/s13287-021-02193-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 01/26/2021] [Indexed: 12/13/2022] Open
Abstract
Background Mesenchymal stromal cells (MSCs) constitute one of the cell types most frequently used in cell therapy. Although several studies have shown the efficacy of these cells to modulate inflammation in different animal models, the results obtained in human clinical trials have been more modest. Here, we aimed at improving the therapeutic properties of MSCs by inducing a transient expression of two molecules that could enhance two different properties of these cells. With the purpose of improving MSC migration towards inflamed sites, we induced a transient expression of the C-X-C chemokine receptor type 4 (CXCR4). Additionally, to augment the anti-inflammatory properties of MSCs, a transient expression of the anti-inflammatory cytokine, interleukin 10 (IL10), was also induced. Methods Human adipose tissue-derived MSCs were transfected with messenger RNAs carrying the codon-optimized versions of CXCR4 and/or IL10. mRNA-transfected MSCs were then studied, first to evaluate whether the characteristic phenotype of MSCs was modified. Additionally, in vitro and also in vivo studies in an LPS-induced inflamed pad model were conducted to evaluate the impact associated to the transient expression of CXCR4 and/or IL10 in MSCs. Results Transfection of MSCs with CXCR4 and/or IL10 mRNAs induced a transient expression of these molecules without modifying the characteristic phenotype of MSCs. In vitro studies then revealed that the ectopic expression of CXCR4 significantly enhanced the migration of MSCs towards SDF-1, while an increased immunosuppression was associated with the ectopic expression of IL10. Finally, in vivo experiments showed that the co-expression of CXCR4 and IL10 increased the homing of MSCs into inflamed pads and induced an enhanced anti-inflammatory effect, compared to wild-type MSCs. Conclusions Our results demonstrate that the transient co-expression of CXCR4 and IL10 enhances the therapeutic potential of MSCs in a local inflammation mouse model, suggesting that these mRNA-modified cells may constitute a new step in the development of more efficient cell therapies for the treatment of inflammatory diseases. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02193-0.
Collapse
Affiliation(s)
- Rosario Hervás-Salcedo
- Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Av. Complutense 40, 28040, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.,Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - María Fernández-García
- Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Av. Complutense 40, 28040, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.,Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Miriam Hernando-Rodríguez
- Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Av. Complutense 40, 28040, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.,Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Oscar Quintana-Bustamante
- Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Av. Complutense 40, 28040, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.,Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Jose-Carlos Segovia
- Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Av. Complutense 40, 28040, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.,Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Marcio Alvarez-Silva
- Stem Cell and Bioengineering Laboratory, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Mariano García-Arranz
- Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Pablo Minguez
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.,Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Victoria Del Pozo
- Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | | | - Damián García-Olmo
- Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Carmen Ayuso
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.,Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - María Luisa Lamana
- Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Av. Complutense 40, 28040, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.,Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Juan A Bueren
- Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Av. Complutense 40, 28040, Madrid, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain. .,Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain.
| | - Rosa María Yañez
- Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Av. Complutense 40, 28040, Madrid, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain. .,Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain.
| |
Collapse
|
48
|
Wu Y, Li J, Shin HJ. Self-assembled Viral Nanoparticles as Targeted Anticancer Vehicles. BIOTECHNOL BIOPROC E 2021; 26:25-38. [PMID: 33584104 PMCID: PMC7872722 DOI: 10.1007/s12257-020-0383-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 12/31/2022]
Abstract
Viral nanoparticles (VNPs) comprise a variety of mammalian viruses, plant viruses, and bacteriophages, that have been adopted as building blocks and supra-molecular templates in nanotechnology. VNPs demonstrate the dynamic, monodisperse, polyvalent, and symmetrical architectures which represent examples of such biological templates. These programmable scaffolds have been exploited for genetic and chemical manipulation for displaying of targeted moieties together with encapsulation of various payloads for diagnosis or therapeutic intervention. The drug delivery system based on VNPs offer diverse advantages over synthetic nanoparticles, including biocompatibility, biodegradability, water solubility, and high uptake capability. Here we summarize the recent progress of VNPs especially as targeted anticancer vehicles from the encapsulation and surface modification mechanisms, involved viruses and VNPs, to their application potentials.
Collapse
Affiliation(s)
- Yuanzheng Wu
- Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Applied Microbiology, Jinan, 250103 China
| | - Jishun Li
- Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Applied Microbiology, Jinan, 250103 China
| | - Hyun-Jae Shin
- Department of Biochemical and Polymer Engineering, Chosun University, Gwangju, 61452 Korea
| |
Collapse
|
49
|
Pędziwiatr-Werbicka E, Gorzkiewicz M, Michlewska S, Ionov M, Shcharbin D, Klajnert-Maculewicz B, Peña-González CE, Sánchez-Nieves J, Gómez R, de la Mata FJ, Bryszewska M. Evaluation of dendronized gold nanoparticles as siRNAs carriers into cancer cells. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114726] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
50
|
Palanki R, Peranteau WH, Mitchell MJ. Delivery technologies for in utero gene therapy. Adv Drug Deliv Rev 2021; 169:51-62. [PMID: 33181188 PMCID: PMC7855052 DOI: 10.1016/j.addr.2020.11.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/13/2020] [Accepted: 11/04/2020] [Indexed: 12/19/2022]
Abstract
Advances in prenatal imaging, molecular diagnostic tools, and genetic screening have unlocked the possibility to treat congenital diseases in utero prior to the onset of clinical symptoms. While fetal surgery and in utero stem cell transplantation can be harnessed to treat specific structural birth defects and congenital hematological disorders, respectively, in utero gene therapy allows for phenotype correction of a wide range of genetic disorders within the womb. However, key challenges to realizing the broad potential of in utero gene therapy are biocompatibility and efficiency of intracellular delivery of transgenes. In this review, we outline the unique considerations to delivery of in utero gene therapy components and highlight advances in viral and non-viral delivery platforms that meet these challenges. We also discuss specialized delivery technologies for in utero gene editing and provide future directions to engineer novel delivery modalities for clinical translation of this promising therapeutic approach.
Collapse
Affiliation(s)
- Rohan Palanki
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - William H Peranteau
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; The Center for Fetal Research, Division of General, Thoracic and Fetal Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|