1
|
Noorbakhsh Varnosfaderani SM, Sadat Haeri M, Arian AS, Yousefi Rad A, Yazdanpour M, Mojahedian F, Yaghoubzad-Maleki M, Zalpoor H, Baziyar P, Nabi-Afjadi M. Fighting against amyotrophic lateral sclerosis (ALS) with flavonoids: a computational approach to inhibit superoxide dismutase (SOD1) mutant aggregation. J Biomol Struct Dyn 2025; 43:419-436. [PMID: 37975411 DOI: 10.1080/07391102.2023.2281641] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/04/2023] [Indexed: 11/19/2023]
Abstract
Protein aggregation is a biological process that occurs when proteins misfold. Misfolding and aggregation of human superoxide dismutase (hSOD1) cause a neurodegenerative disease called amyotrophic lateral sclerosis (ALS). Among the mutations occurring, targeting the E21K mutation could be a good choice to understand the pathological mechanism of SOD1 in ALS, whereof it significantly reduces life hopefulness in patients. Naturally occurring polyphenolic flavonoids have been suggested as a way to alleviate the amyloidogenic behavior of proteins. In this study, computational tools were used to identify promising flavonoid compounds that effectively inhibit the pathogenic behavior of the E21K mutant. Initial screening identified Pelargonidin, Curcumin, and Silybin as promising leads. Molecular dynamics (MD) simulations showed that the binding of flavonoids to the mutated SOD1 caused changes in the protein stability, hydrophobicity, flexibility, and restoration of lost hydrogen bonds. Secondary structure analysis indicated that the protein destabilization and the increased propensity of β-sheet caused by the mutation were restored to the wild-type state upon binding of flavonoids. Free energy landscape (FEL) analysis was also used to differentiate aggregation, and results showed that Silybin followed by Pelargonidin had the most therapeutic efficacy against the E21K mutant SOD1. Therefore, these flavonoids hold great potential as highly effective inhibitors in mitigating ALS's fatal and insuperable effects.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Melika Sadat Haeri
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ali Sam Arian
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Yousefi Rad
- Department of Biochemistry, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
| | - Mohammad Yazdanpour
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Mojahedian
- Department of Biochemistry, Faculty of Biological Sciences, University of Tarbiat Modares, Tehran, Iran
| | - Mohammad Yaghoubzad-Maleki
- Division of Biochemistry, Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Hamidreza Zalpoor
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Payam Baziyar
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
| | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, University of Tarbiat Modares, Tehran, Iran
| |
Collapse
|
2
|
Yu X, Chen M, Wu J, Song R. Research progress of SIRTs activator resveratrol and its derivatives in autoimmune diseases. Front Immunol 2024; 15:1390907. [PMID: 38962006 PMCID: PMC11219927 DOI: 10.3389/fimmu.2024.1390907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 06/06/2024] [Indexed: 07/05/2024] Open
Abstract
Autoimmune diseases (AID) have emerged as prominent contributors to disability and mortality worldwide, characterized by intricate pathogenic mechanisms involving genetic, environmental, and autoimmune factors. In response to this challenge, a growing body of research in recent years has delved into genetic modifications, yielding valuable insights into AID prevention and treatment. Sirtuins (SIRTs) constitute a class of NAD-dependent histone deacetylases that orchestrate deacetylation processes, wielding significant regulatory influence over cellular metabolism, oxidative stress, immune response, apoptosis, and aging through epigenetic modifications. Resveratrol, the pioneering activator of the SIRTs family, and its derivatives have captured global scholarly interest. In the context of AID, these compounds hold promise for therapeutic intervention by modulating the SIRTs pathway, impacting immune cell functionality, suppressing the release of inflammatory mediators, and mitigating tissue damage. This review endeavors to explore the potential of resveratrol and its derivatives in AID treatment, elucidating their mechanisms of action and providing a comprehensive analysis of current research advancements and obstacles. Through a thorough examination of existing literature, our objective is to advocate for the utilization of resveratrol and its derivatives in AID treatment while offering crucial insights for the formulation of innovative therapeutic approaches.
Collapse
Affiliation(s)
- Xiaolong Yu
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China
- The Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, China
| | - Mingkai Chen
- Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China
| | - Jiabiao Wu
- Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China
| | - Ruixiao Song
- Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China
- The Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, China
| |
Collapse
|
3
|
Lu F, Wang J, Song M, Dai X. The Inhibitory Effect of Resveratrol from Reynoutria japonica on MNV-1, a Human Norovirus Surrogate. FOOD AND ENVIRONMENTAL VIROLOGY 2024; 16:241-252. [PMID: 38570420 DOI: 10.1007/s12560-024-09592-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/20/2024] [Indexed: 04/05/2024]
Abstract
As a natural nonflavonoid polyphenol compound, resveratrol is the main functional component of Reynoutria japonica and has anti-inflammatory, antioxidant, antiviral, and other physiological activities. In this study, the effect of resveratrol on the viability of RAW264.7 cells was examined, and murine norovirus (MNV-1) was used as a surrogate for human norovirus to evaluate the inhibitory effect of resveratrol. The concentrations of resveratrol resulting in 50% cytotoxicity (CC50) for RAW264.7 cells were 21.32 and 24.97 μg/mL after 24 and 48 h of incubation, respectively, and resveratrol at a concentration lower than the half-effective inhibitory concentration (EC50) could not damage cell DNA. The EC50 of resveratrol on MNV-1 in infected RAW264.7 cells was determined to equal 5.496 μg/mL. After RAW264.7 cells, virus, and a fresh mixture of virus and RAW264.7 cells were treated with resveratrol solution for 1 h (denoted cell pre-treatment, virus pre-treatment, and mixture coprocessing), the RAW264.7 cells obtained after cell pre-treatment exhibited lower virus infection, and MNV-1 obtained after virus pre-treatment and mixture coprocessing showed a decreased infectious capacity. The inhibition ratio of resveratrol on MNV-1 did not significantly differ between the treatments at 4 and 25 °C or among the various pH values except for the lower acidic condition (pH 2). TEM revealed significant changes in the morphology of MNV-1 after treatment with resveratrol, and molecular docking indicated that resveratrol strongly binds to the viral capsid protein of MNV-1. In addition, resveratrol regulated the expression of cytokine that protects against MNV-1 infection. Therefore, at a lower concentration, resveratrol, a natural component from Reynoutria japonica, exerts an inhibitory effect on MNV-1 growth and could be used as a safe additive in food products to improve the nutritional status and control norovirus.
Collapse
Affiliation(s)
- Fangyuan Lu
- School of Life Sciences, China Jiliang University, Hangzhou, 310018, China
| | - Jianfeng Wang
- Hangzhou Original Seed Farm, Hangzhou, 310045, China
| | - Meie Song
- Rural Revitalization Promotion Center of Zhejiang Province, Hangzhou, 310029, China
| | - Xianjun Dai
- School of Life Sciences, China Jiliang University, Hangzhou, 310018, China.
| |
Collapse
|
4
|
Mohammadi S, Moghadam MD, Nasiriasl M, Akhzari M, Barazesh M. Insights into the Therapeutic and Pharmacological Properties of Resveratrol as a Nutraceutical Antioxidant Polyphenol in Health Promotion and Disease Prevention. Curr Rev Clin Exp Pharmacol 2024; 19:327-354. [PMID: 38192151 DOI: 10.2174/0127724328268507231218051058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 01/10/2024]
Abstract
Resveratrol (3, 5, 4'-trihydroxystilbene) is a polyphenolic derivative with herbal origin. It has attracted considerable attention in recent decades. Many studies have revealed the benefits of Resveratrol over several human disease models, including heart and neurological diseases, nephroprotective, immune regulation, antidiabetic, anti-obesity, age-related diseases, antiviral, and anticancer in experimental and clinical conditions. Recently, the antioxidant and anti-inflammatory activities of Resveratrol have been observed, and it has been shown that Resveratrol reduces inflammatory biomarkers, such as tissue degradation factor, cyclooxygenase 2, nitric oxide synthase, and interleukins. All of these activities appear to be dependent on its structural properties, such as the number and position of the hydroxyl group, which regulates oxidative stress, cell death, and inflammation. Resveratrol is well tolerated and safe even at higher pharmacological doses and desirably affects cardiovascular, neurological, and diabetic diseases. Consequently, it is plausible that Resveratrol can be regarded as a beneficial nutritional additive and a complementary drug, particularly for therapeutic applications. The present review provides an overview of currently available investigations on preventive and therapeutic characteristics and the main molecular mechanisms of Resveratrol and its potent derivatives in various diseases. Thus, this review would enhance knowledge and information about Resveratrol and encourage researchers worldwide to consider it as a pharmaceutical drug to struggle with future health crises against different human disorders.
Collapse
Affiliation(s)
- Shiva Mohammadi
- Department of Medical Biotechnology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Maryam Dalaei Moghadam
- Razi Herbal Medicines Research Center, Department of Endodontic, Faculty of Dentistry, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Maryam Nasiriasl
- Radiology Department, Fasa University of Medical Sciences, Fasa, Iran
| | - Morteza Akhzari
- School of Nursing, Larestan University of Medical Sciences, Larestan, Iran
| | - Mahdi Barazesh
- School of Paramedical Sciences, Gerash University of Medical Sciences, Gerash, Iran
| |
Collapse
|
5
|
Kumar S, Sinha N, Kodidela S, Godse S, Singla B, Singh UP, Bhat HK. Resveratrol and its analogs suppress HIV replication, oxidative stress, and inflammation in macrophages. NEUROIMMUNE PHARMACOLOGY AND THERAPEUTICS 2023; 2:365-374. [PMID: 38058997 PMCID: PMC10696571 DOI: 10.1515/nipt-2023-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/02/2023] [Indexed: 12/08/2023]
Abstract
Objectives HIV suppression in brain viral reservoirs, especially macrophages, and microglia is critical to suppress HIV neuropathogenesis and subsequently HIV-associated neurocognitive disorders (HAND). Since most antiretroviral therapy (ART) drugs do not achieve optimal therapeutic concentrations in the brain and can cause neurotoxicity, an alternative/adjuvant therapy is needed to suppress HIV neuropathogenesis. In this study, our objectives were to examine the anti-HIV, antioxidant, and anti-inflammatory potential of resveratrol (RES) and its synthetic analogs 4-(E)-{(p-tolylimino)-methylbenzene-1,2-diol} (TIMBD) and 4-(E)-{(4-hydroxyphenylimino)-methylbenzene,1,2-diol} (HPIMBD) in HIV-infected macrophages. Methods We used HIV replication (viral load), oxidative stress (reactive oxygen species and antioxidant enzymes), and inflammatory response (pro- and anti-inflammatory cytokines/chemokines) assays to achieve the objectives of the study. Results Our results showed that RES and its analogs HPIMBD and TIMBD at 25 µM concentration significantly decrease HIV replication in both primary monocyte-derived macrophages and U1-differentiated macrophages. Moreover, RES and its analogs do not induce any cytotoxicity for up to 3 days in these cells. Further, treatment with RES and TIMBD (25 µM) also reduced the levels of reactive oxygen species without affecting the expression of antioxidant enzymes, SOD1, and catalase in U1 macrophages. Besides, RES and HPIMBD treatment inhibited the proinflammatory cytokines and chemokines in U1 macrophages, which was associated with decreased levels of anti-inflammatory cytokines. Importantly, our western blot experiments show that RES also decreases cellular proinflammatory cytokine IL-1β, which is usually elevated in both myeloid and neuronal cells upon HIV infection. Conclusions Taken together, our results suggest that RES and/or its analogs are important adjuvants that may be used not only to suppress HIV but also oxidative stress and inflammation in brain viral reservoirs.
Collapse
Affiliation(s)
- Santosh Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Namita Sinha
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Sunitha Kodidela
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Sandip Godse
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Bhupesh Singla
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Udai P. Singh
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Hari K. Bhat
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas-City, Kansas City, MO, USA
| |
Collapse
|
6
|
Szymkowiak I, Kucinska M, Murias M. Between the Devil and the Deep Blue Sea-Resveratrol, Sulfotransferases and Sulfatases-A Long and Turbulent Journey from Intestinal Absorption to Target Cells. Molecules 2023; 28:molecules28083297. [PMID: 37110530 PMCID: PMC10140952 DOI: 10.3390/molecules28083297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
For nearly 30 years, resveratrol has attracted the scientific community's interest. This has happened thanks to the so-called French paradox, that is, the paradoxically low mortality from cardiovascular causes in the French population despite a diet rich in saturated fat. This phenomenon has been linked to the consumption of red wine, which contains a relatively high level of resveratrol. Currently, resveratrol is valued for its versatile, beneficial properties. Apart from its anti-atherosclerotic activity, resveratrol's antioxidant and antitumor properties deserve attention. It was shown that resveratrol inhibits tumour growth at all three stages: initiation, promotion, and progression. Moreover, resveratrol delays the ageing process and has anti-inflammatory, antiviral, antibacterial, and phytoestrogenic properties. These favorable biological properties have been demonstrated in vitro and in vivo in animal and human models. Since the beginning of the research on resveratrol, its low bioavailability, mainly due to its rapid metabolism, especially the first-pass effect that leaves almost no free resveratrol in the peripheral circulation, has been indicated as a drawback that has hindered its use. The elucidation of such issues as pharmacokinetics, stability, and the biological activity of resveratrol metabolites is therefore crucial for understanding the biological activity of resveratrol. Second-phase metabolism enzymes are mainly involved in RSV metabolism, e.g., UDP-glucuronyl transferases and sulfotransferases. In the present paper, we took a closer look at the available data on the activity of resveratrol sulfate metabolites and the role of sulfatases in releasing active resveratrol in target cells.
Collapse
Affiliation(s)
- Izabela Szymkowiak
- Curtis Health Caps S.A., ul. Batorowska 52, 62-081 Przeźmierowo, Poland
- Department of Toxicology, Poznan University of Medical Sciences, ul. Dojazd 30, 60-631 Poznan, Poland
| | - Malgorzata Kucinska
- Department of Toxicology, Poznan University of Medical Sciences, ul. Dojazd 30, 60-631 Poznan, Poland
| | - Marek Murias
- Department of Toxicology, Poznan University of Medical Sciences, ul. Dojazd 30, 60-631 Poznan, Poland
- Center for Advanced Technology, Adam Mickiewicz University in Poznan, ul. Uniwersytetu Poznańskiego, 61-614 Poznan, Poland
| |
Collapse
|
7
|
Harwansh RK, Yadav P, Deshmukh R. Current Insight into Novel Delivery Approaches of Resveratrol for Improving Therapeutic Efficacy and Bioavailability with its Clinical Updates. Curr Pharm Des 2023; 29:2921-2939. [PMID: 38053352 DOI: 10.2174/0113816128282713231129094715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/22/2023] [Accepted: 11/02/2023] [Indexed: 12/07/2023]
Abstract
Resveratrol (RSV) is a polyphenolic phytoalexin, and belongs to the stilbene family. RSV has several therapeutic activities such as cardioprotective, anticancer, and antioxidant. Apart from its therapeutic benefits, its pharmacological uses are limited due to low solubility, poor bioavailability, and short biological halflife. A researcher continuously focuses on overcoming the limitations of RSV through nanotechnology platforms to get the optimum health benefits. In this context, nanocarriers are pioneering to overcome these drawbacks. Nanocarriers possess high drug loading capacity, thermal stability, low production cost, longer shelflife, etc. Fortunately, scientists were proficient in delivering resveratrol-based nanocarriers in the present scenario. Nanocarriers can deliver drugs to the target sites without compromising the bioavailability. Thus, this review highlights how the latest nanocarrier systems overcome the shortcomings of RSV, which will be good for improving therapeutic efficacy and bioavailability. Moreover, recent updates on resveratrol-based novel formulations and their clinical trials have been addressed to manage several health-related problems.
Collapse
Affiliation(s)
- Ranjit K Harwansh
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, India
| | - Paras Yadav
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, India
| | - Rohitas Deshmukh
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, India
| |
Collapse
|
8
|
Sheweita SA, El-Masry YM, Zaghloul TI, Mostafa SK, Elgindy NA. Preclinical studies on melanogenesis proteins using a resveratrol-nanoformula as a skin whitener. Int J Biol Macromol 2022; 223:870-881. [PMID: 36370858 DOI: 10.1016/j.ijbiomac.2022.11.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/10/2022]
Abstract
A naturally occurring polyphenol called trans-resveratrol has received a lot of attention due to its possible health advantages for humans. The low solubility of trans-resveratrol and its isomerization upon UV exposure strongly limit its application as a skin-whitening agent. In the present study, to increase trans-resveratrol solubility, a new nanoformula was created by combining hydrophilic surfactants and oils. Trans-Resveratrol nanoformula has been prepared, characterized, and applied as a skin-whitening agent on the dorsal skin of Guinea pigs. The optimized trans-resveratrol nanoformula with a particle size of 63.49 nm displayed a single peak and a polydispersity index [0.36 ± 0.02]. In addition, the zeta potential of the optimized formula was -30.4 mV, confirming the high stability of this nanoformula. The melanin contents in the trans-resveratrol nanoformula-treated group were substantially lower than those of the control and the blank nanoformula-treated groups after staining of the dorsal skins [black areas] of guinea pigs with Fontana Mountain dye. The pigmentation index in the control, blank nanoformula, and optimized trans-resveratrol nanoformula were 329.4 ± 36.9, 335.8 ± 71.4, and 124.8 ± 19.6 respectively. Confirming this finding, immunohistochemistry analysis of skin tissues revealed that the expressions of melanogenesis-regulating proteins such as tyrosinase and microphthalmia-associated transcription factor were down-regulated. The safety of topical application of trans-resveratrol nanoformula was validated by no changes in free radical levels and oxidative stress markers proteins in the livers and kidneys of guinea pigs at the end of the experiment. Conclusions: A novel trans-resveratrol nanoformula as well as the mechanism whereby it promotes skin whitening effects were presented. Furthermore, the study illustrated that trans-resveratrol nanoformula is safe, non-toxic, and can be applied for skin whitening, although more research on human skin is needed.
Collapse
Affiliation(s)
- Salah A Sheweita
- Department of Clinical Biochemistry, Faculty of Medicine, King Khalid University, Abha, KSA; Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria 21526, Egypt.
| | - Yassin M El-Masry
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria 21526, Egypt
| | - Taha I Zaghloul
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria 21526, Egypt
| | - Shaimaa K Mostafa
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Delta University for Science and Technology, Gamesa, Mansoura, Egypt
| | - Nazik A Elgindy
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Egypt
| |
Collapse
|
9
|
Xu J, Liu J, Mi Y, Zhao T, Mu D, Meng Q, Wang F, Li N, Hou Y. Triad3A-Dependent TLR4 Ubiquitination and Degradation Contributes to the Anti-Inflammatory Effects of Pterostilbene on Vascular Dementia. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5896-5910. [PMID: 35532888 DOI: 10.1021/acs.jafc.2c01219] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Pterostilbene, a methylated stilbene derived from many plant foods, has significant anti-inflammatory activity. Meanwhile, vascular dementia (VaD) is the second most common subtype of dementia, in which inflammation is one of the major pathogenic contributors. However, the protective effect of pterostilbene on VaD is not well understood. In this work, we investigated the effect of pterostilbene on VaD and explored its underlying mechanisms using in vivo and in vitro models. Y-maze and Morris water maze tests showed pterostilbene-attenuated cognitive impairment in mice with bilateral common carotid artery occlusion (BCCAO). The hippocampal neuronal death and microglial activation in BCCAO mice were also reduced by pterostilbene treatment. Further, pterostilbene inhibited the expression of TLR4 and downstream inflammatory cytokines in these mice, with similar results observed in an oxygen-glucose deprivation and reperfusion (OGD/R) BV-2 cell model. In addition, its anti-inflammatory effect on OGD/R BV-2 cells was partially blocked by TLR4 overexpression. Moreover, Triad3A-TLR4 interactions were increased by pterostilbene following enhanced ubiquitination and degradation of TLR4, and the inhibitory effect of pterostilbene on inflammation was blocked by Triad3A knockdown in OGD/R-stimulated BV-2 cells. Together, these results reveal that pterostilbene could reduce vascular cognitive impairment and that Triad3A-mediated TLR4 degradation might be the key target.
Collapse
Affiliation(s)
- Jikai Xu
- College of Life and Health Sciences, Northeastern University, Shenyang 110004, China
- Key Laboratory of Data Analytics and Optimization for Smart Industry, Northeastern University, Ministry of Education, Shenyang 110004, China
| | - Jingyu Liu
- College of Life and Health Sciences, Northeastern University, Shenyang 110004, China
- Key Laboratory of Data Analytics and Optimization for Smart Industry, Northeastern University, Ministry of Education, Shenyang 110004, China
| | - Yan Mi
- College of Life and Health Sciences, Northeastern University, Shenyang 110004, China
- Key Laboratory of Data Analytics and Optimization for Smart Industry, Northeastern University, Ministry of Education, Shenyang 110004, China
| | - Ting Zhao
- College of Life and Health Sciences, Northeastern University, Shenyang 110004, China
| | - Danyang Mu
- College of Life and Health Sciences, Northeastern University, Shenyang 110004, China
| | - Qingqi Meng
- College of Life and Health Sciences, Northeastern University, Shenyang 110004, China
| | - Feng Wang
- College of Life and Health Sciences, Northeastern University, Shenyang 110004, China
| | - Ning Li
- School of Traditional Chinese Materia Medica, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang 110004, China
| | - Yue Hou
- College of Life and Health Sciences, Northeastern University, Shenyang 110004, China
- Key Laboratory of Data Analytics and Optimization for Smart Industry, Northeastern University, Ministry of Education, Shenyang 110004, China
| |
Collapse
|
10
|
Chopra H, Bibi S, Islam F, Ahmad SU, Olawale OA, Alhumaydhi FA, Marzouki R, Baig AA, Emran TB. Emerging Trends in the Delivery of Resveratrol by Nanostructures: Applications of Nanotechnology in Life Sciences. JOURNAL OF NANOMATERIALS 2022; 2022:1-17. [DOI: 10.1155/2022/3083728] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Resveratrol (RES) is a stilbene group of natural polyphenolic compounds in trees, peanuts, and grapes. RES is revealed with anticancer, antioxidant, anti-inflammatory, and cardioprotective effects. Though it is proven with prominent therapeutic activity, low aqueous solubility, poor bioavailability, and short half-life had hindered its use to exploit the potential. Also, the first-pass metabolism and undergoing enterohepatic recirculation are obscure in the minds of researchers for their in vitro studies. Many approaches have been investigated and shown promising results in manipulating their physicochemical properties to break this barrier. Nanocarriers are one of them to reduce the first-pass metabolism and to overcome other hurdles. This article reviews and highlights such encapsulation technologies. Nanoencapsulated RES improves in vitro antioxidant effect, and this review also highlights the new strategies and the concept behind how resveratrol can be handled and implemented with better therapeutic efficacy.
Collapse
Affiliation(s)
- Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India
| | - Shabana Bibi
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, 650091 Yunnan, China
- The International Joint Research Center for Sustainable Utilization of Cordyceps Bioresources in China and Southeast Asia, Yunnan University, Kunming, 650091 Yunnan, China
| | - Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Syed Umair Ahmad
- Department of Bioinformatics, Hazara University, Mansehra, Pakistan
| | | | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia
| | - Riadh Marzouki
- Chemistry Department, College of Science, King Khalid University, Abha 61413, Saudi Arabia
- Chemistry Department, Faculty of Sciences of Sfax, University of Sfax, Tunisia
| | - Atif Amin Baig
- Unit of Biochemistry, Faculty of Medicine, University Sultan Zainal Abidin, Kuala Terengganu 20400, Malaysia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| |
Collapse
|
11
|
SINGH G. Resveratrol Delivery <i>via</i> Gene Therapy: Entering the Modern Era. Turk J Pharm Sci 2022; 19:104-109. [DOI: 10.4274/tjps.galenos.2020.89577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
12
|
Aloisio C, Shah AV, Longhi M, Serajuddin ATM. Development of self-microemulsifying lipid-based formulations of trans-resveratrol by systematically constructing lipid-surfactant-water phase diagrams using long-chain lipids. Drug Dev Ind Pharm 2021; 47:897-907. [PMID: 34033503 DOI: 10.1080/03639045.2021.1934866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The aim of this work was to develop self-microemulsifying lipid-based formulations of trans-resveratrol in cod liver oil, a long chain lipid, to increase its solubility, dissolution rate and oral bioavailability. Ternary phase diagrams of cod liver oil with surfactant and water as well as pseudo-ternary phase diagrams of the same by mixing cod liver oil (triglyceride) with glycerol monooleate (monoglyeride) were constructed to identify regions where microemulsions were formed. Kolliphor RH 40, Tween 80 and their 1:1-mixtures were evaluated as surfactants. No organic cosolvents were added. It was observed that cod liver oil alone did not form microemulsion with any of the surfactants used, and a 1:1 mixture of cod liver oil and glycerol monooleate was necessary to enable the formation of microemulsion. Among the surfactants, Kolliphor RH 40 provided the maximum microemulsification effect. Several formulations containing 6:4, 1:1, and 4:6 w/w ratios of lipid to surfactant using the 1:1 mixture of cod liver oil and glycerol monooleate as lipid components and Kolliphor RH 40 or its mixture with Tween 80 as surfactants were identified, and trans-resveratrol solubility in these formulations were determined. Drug concentrations used in the formulations were 80% of saturation solubility, and no organic cosolvents were used in any formulations to increase drug solubility or enable emulsification. In vitro dispersion testing in 250 mL of 0.01 N HCl (pH 2) according to the USP method 2 at 50 RPM showed that the formulations rapidly dispersed in aqueous media forming microemulsions and there was no drug precipitation.
Collapse
Affiliation(s)
- Carolina Aloisio
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA.,Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. Ciudad Universitaria, Córdoba, Argentina
| | - Ankita V Shah
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA.,Freund-Vector Corporation, Marion, IA, USA
| | - Marcela Longhi
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. Ciudad Universitaria, Córdoba, Argentina
| | - Abu T M Serajuddin
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA
| |
Collapse
|
13
|
Resveratrol Production in Yeast Hosts: Current Status and Perspectives. Biomolecules 2021; 11:biom11060830. [PMID: 34199540 PMCID: PMC8226833 DOI: 10.3390/biom11060830] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/29/2021] [Accepted: 05/30/2021] [Indexed: 12/14/2022] Open
Abstract
Resveratrol is a plant secondary metabolite known for its therapeutic applications as an antioxidant, anti-cancer, anti-inflammatory, anti-aging, cardio-protective, and neuroprotective agent. Topical formulas of resveratrol are also used for skin disease management and in cosmetic industries. Due to its importance, high resveratrol production is urgently required. Since the last decade, intensive efforts have been devoted to obtaining resveratrol from microorganisms by pathway and metabolic engineering. Yeasts were proven to be excellent host candidates for resveratrol production. In addition to the similar intracellular compartments between yeasts and plants, yeasts exhibit the ability to express genes coding for plant-derived enzymes and to perform post-translational modification. Therefore, this review summarizes the attempts to use yeasts as a platform for resveratrol synthesis as the next promising route in producing high titers of resveratrol from genetically engineered strains.
Collapse
|
14
|
Behl T, Rocchetti G, Chadha S, Zengin G, Bungau S, Kumar A, Mehta V, Uddin MS, Khullar G, Setia D, Arora S, Sinan KI, Ak G, Putnik P, Gallo M, Montesano D. Phytochemicals from Plant Foods as Potential Source of Antiviral Agents: An Overview. Pharmaceuticals (Basel) 2021; 14:381. [PMID: 33921724 PMCID: PMC8073840 DOI: 10.3390/ph14040381] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/13/2021] [Accepted: 04/17/2021] [Indexed: 12/11/2022] Open
Abstract
To date, the leading causes of mortality and morbidity worldwide include viral infections, such as Ebola, influenza virus, acquired immunodeficiency syndrome (AIDS), severe acute respiratory syndrome (SARS) and recently COVID-19 disease, caused by the SARS-CoV-2 virus. Currently, we can count on a narrow range of antiviral drugs, especially older generation ones like ribavirin and interferon which are effective against viruses in vitro but can often be ineffective in patients. In addition to these, we have antiviral agents for the treatment of herpes virus, influenza virus, HIV and hepatitis virus. Recently, drugs used in the past especially against ebolavirus, such as remdesivir and favipiravir, have been considered for the treatment of COVID-19 disease. However, even if these drugs represent important tools against viral diseases, they are certainly not sufficient to defend us from the multitude of viruses present in the environment. This represents a huge problem, especially considering the unprecedented global threat due to the advancement of COVID-19, which represents a potential risk to the health and life of millions of people. The demand, therefore, for new and effective antiviral drugs is very high. This review focuses on three fundamental points: (1) presents the main threats to human health, reviewing the most widespread viral diseases in the world, thus describing the scenario caused by the disease in question each time and evaluating the specific therapeutic remedies currently available. (2) It comprehensively describes main phytochemical classes, in particular from plant foods, with proven antiviral activities, the viruses potentially treated with the described phytochemicals. (3) Consideration of the various applications of drug delivery systems in order to improve the bioavailability of these compounds or extracts. A PRISMA flow diagram was used for the inclusion of the works. Taking into consideration the recent dramatic events caused by COVID-19 pandemic, the cry of alarm that denounces critical need for new antiviral drugs is extremely strong. For these reasons, a continuous systematic exploration of plant foods and their phytochemicals is necessary for the development of new antiviral agents capable of saving lives and improving their well-being.
Collapse
Affiliation(s)
- Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (S.C.); (A.K.); (G.K.); (D.S.); (S.A.)
| | - Gabriele Rocchetti
- Department for Sustainable Food Process, University Cattolica del Sacro Cuore, 29122 Piacenza, Italy;
| | - Swati Chadha
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (S.C.); (A.K.); (G.K.); (D.S.); (S.A.)
| | - Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University Campus, Konya 42130, Turkey; (G.Z.); (K.I.S.); (G.A.)
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania;
| | - Arun Kumar
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (S.C.); (A.K.); (G.K.); (D.S.); (S.A.)
| | - Vineet Mehta
- Department of Pharmacology, Government College of Pharmacy, Rohru, Distt. Shimla, Himachal Pradesh 171207, India;
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka 1213, Bangladesh;
- Pharmakon Neuroscience Research Network, Dhaka 1207, Bangladesh
| | - Gaurav Khullar
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (S.C.); (A.K.); (G.K.); (D.S.); (S.A.)
| | - Dhruv Setia
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (S.C.); (A.K.); (G.K.); (D.S.); (S.A.)
| | - Sandeep Arora
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (S.C.); (A.K.); (G.K.); (D.S.); (S.A.)
| | - Kouadio Ibrahime Sinan
- Department of Biology, Faculty of Science, Selcuk University Campus, Konya 42130, Turkey; (G.Z.); (K.I.S.); (G.A.)
| | - Gunes Ak
- Department of Biology, Faculty of Science, Selcuk University Campus, Konya 42130, Turkey; (G.Z.); (K.I.S.); (G.A.)
| | - Predrag Putnik
- Department of Food Technology, University North, 48000 Koprivnica, Croatia;
| | - Monica Gallo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini, 5, 80131 Naples, Italy
| | - Domenico Montesano
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
15
|
Abedini E, Khodadadi E, Zeinalzadeh E, Moaddab SR, Asgharzadeh M, Mehramouz B, Dao S, Samadi Kafil H. A Comprehensive Study on the Antimicrobial Properties of Resveratrol as an Alternative Therapy. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:8866311. [PMID: 33815561 PMCID: PMC7987421 DOI: 10.1155/2021/8866311] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 02/16/2021] [Accepted: 03/10/2021] [Indexed: 12/15/2022]
Abstract
Resveratrol is a polyphenolic antioxidant whose possible health benefits include anticarcinogenic, antiaging, and antimicrobial properties that have gained significant attention. The compound is well accepted by individuals and has been commonly used as a nutraceutical in recent decades. Its widespread usage makes it essential to study as a single agent as well as in combination with traditional prescription antibiotics as regards to antimicrobial properties. Resveratrol demonstrates the action of antimicrobials against a remarkable bacterial diversity, viruses, and fungus. This report explains resveratrol as an all-natural antimicrobial representative. It may modify the bacterial virulence qualities resulting in decreased toxic substance production, biofilm inhibition, motility reduction, and quorum sensing disturbance. Moreover, in conjunction with standard antibiotics, resveratrol improves aminoglycoside efficacy versus Staphylococcus aureus, while it antagonizes the deadly function of fluoroquinolones against S. aureus and also Escherichia coli. The present study aimed to thoroughly review and study the antimicrobial potency of resveratrol, expected to help researchers pave the way for solving antimicrobial resistance.
Collapse
Affiliation(s)
- Ehsan Abedini
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ehsaneh Khodadadi
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Zeinalzadeh
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyyed Reza Moaddab
- Pharmaceutical Nanotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Asgharzadeh
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahareh Mehramouz
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sounkalo Dao
- Faculté de Médecine, de Pharmacie et d'Odonto-Stomatologie (FMPOS), University of Bamako, Bamako, Mali
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
16
|
Singh G. Resveratrol: nanocarrier-based delivery systems to enhance its therapeutic potential. Nanomedicine (Lond) 2020; 15:2801-2817. [PMID: 33191840 DOI: 10.2217/nnm-2020-0289] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Resveratrol (3,5,4'-trihydroxystilbene) is a polyphenolic compound existing in trees, peanuts and grapes and exhibits a broad spectrum of promising therapeutic activities, but it is unclear whether this entity targets the sites of action after oral administration. In vivo applicability of resveratrol has limited success so far, mainly due to its incompetent systemic delivery resulting from its low water solubility, poor bioavailability and short biological half-life. First-pass metabolism and presence of enterohepatic recirculation create doubt on the biological application of high doses typically used for in vitro trials. To augment bioavailability, absorption and uptake of resveratrol by cellular internalization, countless approaches have been implemented which involve the use of nanocarriers. Nanocarriers are a well-known delivery system used to reduce first-pass hepatic metabolism, overcome enterohepatic recirculation and accelerate the absorption of drugs via lymphatic pathways.
Collapse
|
17
|
Pterostilbene Sensitizes Cisplatin-Resistant Human Bladder Cancer Cells with Oncogenic HRAS. Cancers (Basel) 2020; 12:cancers12102869. [PMID: 33036162 PMCID: PMC7650649 DOI: 10.3390/cancers12102869] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/26/2020] [Accepted: 10/02/2020] [Indexed: 12/28/2022] Open
Abstract
Simple Summary RAS oncoproteins are considered undruggable cancer targets. Nearly 15% of cases of bladder cancer have a mutation of HRAS. The active HRAS contributes to the tumor progression and the risk of recurrence. Using our novel gene expression screening platform, pterostilbene was identified to sensitize cisplatin-resistant bladder cancer cells with HRAS alterations via RAS-related autophagy and cell senescence pathways, suggesting a potentially chemotherapeutic role of pterostilbene for cisplatin treatment of human bladder cancer with oncogenic HRAS. Pterostilbene is a safe and readily available food ingredient in edible plants worldwide. Exploiting the principle of combination therapy on pterostilbene-enhanced biosensitivity to identify undruggable molecular targets for cancer therapy may have a great possibility to overcome the cisplatin resistance of bladder cancer. Our data make HRAS a good candidate for modulation by pterostilbene for targeted cancer therapy in combination with conventional chemotherapeutic agents cisplatin plus gemcitabine. Abstract Analysis of various public databases revealed that HRAS gene mutation frequency and mRNA expression are higher in bladder urothelial carcinoma. Further analysis revealed the roles of oncogenic HRAS, autophagy, and cell senescence signaling in bladder cancer cells sensitized to the anticancer drug cisplatin using the phytochemical pterostilbene. A T24 cell line with the oncogenic HRAS was chosen for further experiments. Indeed, coadministration of pterostilbene increased stronger cytotoxicity on T24 cells compared to HRAS wild-type E7 cells, which was paralleled by neither elevated apoptosis nor induced cell cycle arrest, but rather a marked elevation of autophagy and cell senescence in T24 cells. Pterostilbene-induced autophagy in T24 cells was paralleled by inhibition of class I PI3K/mTOR/p70S6K as well as activation of MEK/ERK (a RAS target) and class III PI3K pathways. Pterostilbene-induced cell senescence on T24 cells was paralleled by increased pan-RAS and decreased phospho-RB expression. Coadministration of PI3K class III inhibitor 3-methyladenine or MEK inhibitor U0126 suppressed pterostilbene-induced autophagy and reversed pterostilbene-enhanced cytotoxicity, but did not affect pterostilbene-elevated cell senescence in T24 cells. Animal study data confirmed that pterostilbene enhanced cytotoxicity of cisplatin plus gemcitabine. These results suggest a therapeutic application of pterostilbene in cisplatin-resistant bladder cancer with oncogenic HRAS.
Collapse
|
18
|
Gugleva V, Zasheva S, Hristova M, Andonova V. Topical use of resveratrol: technological aspects. PHARMACIA 2020. [DOI: 10.3897/pharmacia.67.e48472] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Resveratrol is a natural polyphenolic phytoalexin found in grapes, berry skins, roots of Japanese knotweed and is reputed as an excellent antioxidant, anti-inflammatory, neuro- and cardio- protective agent. Resveratrol has also beneficial effects in therapy of different skin conditions such as acne, exfoliative eczema, psoriasis and is known to provide a protection against ultraviolet radiation-mediated oxidative stress. However, its low oral bioavailability and short biological half- life compromise its beneficial therapeutic effects; therefore, its topical application is a practical approach in the treatment of various cutaneous disorders. Challenges associated with the development of topical resveratrol drug delivery systems and dosage forms include its low aqueous solubility as well as its poor UV-, pH- and temperature-dependent stability. The purpose of this article is to discuss the mechanism of action, therapeutic effect and physicochemical properties of resveratrol and to present recent technological approaches designed to improve its stability, bioavailability and therapeutic efficiency.
Collapse
|
19
|
Bano S, Ahmed F, Khan F, Chaudhary SC, Samim M. Enhancement of the cancer inhibitory effect of the bioactive food component resveratrol by nanoparticle based delivery. Food Funct 2020; 11:3213-3226. [PMID: 32215382 DOI: 10.1039/c9fo02445j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Naturally occurring bioactive food components such as dietary polyphenols have shown many beneficial biological activities due to their good antioxidant properties. Among them significant attention has been given to resveratrol (RV) in recent years as it plays a promising role in cancer prevention. It has demonstrated anti-proliferative effects, as well as the ability to inhibit the initiation and progression of induced cancer in a wide variety of tumor models. However, the benefits of its therapeutic effects were found to be limited due to its poor pharmacokinetic properties such as poor aqueous solubility, instability and extensive first pass metabolism. To overcome these limitations, the present study aimed to synthesize thermosensitive copolymeric nanoparticle encapsulated formulations of resveratrol-nanoresveratrol (NRV) and evaluate their in vitro anticancer activity and inhibitory effect on 12-O-tetradecanoylphorbol-13-acetate (TPA)-promoted skin inflammation and tumorigenesis in Swiss albino mice. For this purpose PNIPAAM-PEG based thermosensitive copolymeric nanoparticles were synthesized followed by the encapsulation of RV in their hydrophobic core. This enhanced the therapeutic bioavailability of resveratrol. Nanoresveratrol demonstrated stronger antioxidant activity and comparable anticancer efficacy to free resveratrol. Nanoparticles were characterized by IR, NMR, DLS and TEM. The best results were obtained with NRV at significantly lower doses. NRV demonstrated better in vitro anticancer activity against melanoma cell line B16. It showed comparable reduction of TPA induced skin edema, hyperplasia and oxidative stress response. In the promotion phase, a significant reduction was found in tumor incidence and tumor burden in mice pre-treated with NRV. Moreover, at all doses NRV altered Bax and Bcl2 expressions which lead to the induction of apoptosis.
Collapse
Affiliation(s)
- Sameena Bano
- Department of Chemistry, School of Chemical and life Sciences, Jamia Hamdard (Hamdard University), New Delhi, India.
| | | | | | | | | |
Collapse
|
20
|
Kuk DH, Ha ES, Ha DH, Sim WY, Lee SK, Jeong JS, Kim JS, Baek IH, Park H, Choi DH, Yoo JW, Jeong SH, Hwang SJ, Kim MS. Development of a Resveratrol Nanosuspension Using the Antisolvent Precipitation Method without Solvent Removal, Based on a Quality by Design (QbD) Approach. Pharmaceutics 2019; 11:E688. [PMID: 31861173 PMCID: PMC6955680 DOI: 10.3390/pharmaceutics11120688] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/11/2019] [Accepted: 12/16/2019] [Indexed: 01/17/2023] Open
Abstract
The purpose of this study was to develop a resveratrol nanosuspension with enhanced oral bioavailability, based on an understanding of the formulation and process parameters of nanosuspensions and using a quality by design (QbD) approach. Particularly, the antisolvent method, which requires no solvent removal and no heating, is newly applied to prepare resveratrol nanosuspension. To ensure the quality of the resveratrol nanosuspensions, a quality target product profile (QTPP) was defined. The particle size (z-average, d90), zeta potential, and drug content parameters affecting the QTPP were selected as critical quality attributes (CQAs). The optimum composition obtained using a 3-factor, 3-level Box-Behnken design was as follows: polyvinylpyrrolidone vinyl acetate (10 mg/mL), polyvinylpyrrolidone K12 (5 mg/mL), sodium lauryl sulfate (1 mg/mL), and diethylene glycol monoethyl ether (DEGEE, 5% v/v) at a resveratrol concentration of 5 mg/mL. The initial particle size (z-average) was 46.3 nm and the zeta potential was -38.02 mV. The robustness of the antisolvent process using the optimized composition conditions was ensured by a full factorial design. The dissolution rate of the optimized resveratrol nanosuspension was significantly greater than that of the resveratrol raw material. An in vivo pharmacokinetic study in rats showed that the area under the plasma concentration versus time curve (AUC0-12h) and the maximum plasma concentration (Cmax) respectively, than those of the resveratrol raw material. Therefore, the prepara values of the resveratrol nanosuspension were approximately 1.6- and 5.7-fold higher,tion of a resveratrol nanosuspension using the QbD approach may be an effective strategy for the development of a new dosage form of resveratrol, with enhanced oral bioavailability.
Collapse
Affiliation(s)
- Do-Hoon Kuk
- College of Pharmacy, Pusan National University, 63 Busandaehak-ro, Geumjeong-gu, Busan 46241, Korea; (D.-H.K.); (E.-S.H.); (D.-H.H.); (W.-Y.S.); (S.-K.L.); (J.-S.J.); (J.-W.Y.)
| | - Eun-Sol Ha
- College of Pharmacy, Pusan National University, 63 Busandaehak-ro, Geumjeong-gu, Busan 46241, Korea; (D.-H.K.); (E.-S.H.); (D.-H.H.); (W.-Y.S.); (S.-K.L.); (J.-S.J.); (J.-W.Y.)
| | - Dong-Hyun Ha
- College of Pharmacy, Pusan National University, 63 Busandaehak-ro, Geumjeong-gu, Busan 46241, Korea; (D.-H.K.); (E.-S.H.); (D.-H.H.); (W.-Y.S.); (S.-K.L.); (J.-S.J.); (J.-W.Y.)
| | - Woo-Yong Sim
- College of Pharmacy, Pusan National University, 63 Busandaehak-ro, Geumjeong-gu, Busan 46241, Korea; (D.-H.K.); (E.-S.H.); (D.-H.H.); (W.-Y.S.); (S.-K.L.); (J.-S.J.); (J.-W.Y.)
| | - Seon-Kwang Lee
- College of Pharmacy, Pusan National University, 63 Busandaehak-ro, Geumjeong-gu, Busan 46241, Korea; (D.-H.K.); (E.-S.H.); (D.-H.H.); (W.-Y.S.); (S.-K.L.); (J.-S.J.); (J.-W.Y.)
| | - Ji-Su Jeong
- College of Pharmacy, Pusan National University, 63 Busandaehak-ro, Geumjeong-gu, Busan 46241, Korea; (D.-H.K.); (E.-S.H.); (D.-H.H.); (W.-Y.S.); (S.-K.L.); (J.-S.J.); (J.-W.Y.)
| | - Jeong-Soo Kim
- Dong-A ST Co. Ltd., Giheung-gu, Yongin, Gyeonggi 446-905, Korea;
| | - In-hwan Baek
- College of Pharmacy, Kyungsung University, 309, Suyeong-ro, Nam-gu, Busan 48434, Korea;
| | - Heejun Park
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA;
| | - Du Hyung Choi
- Department of Pharmaceutical Engineering, Inje University, Gyeongnam 621-749, Korea;
| | - Jin-Wook Yoo
- College of Pharmacy, Pusan National University, 63 Busandaehak-ro, Geumjeong-gu, Busan 46241, Korea; (D.-H.K.); (E.-S.H.); (D.-H.H.); (W.-Y.S.); (S.-K.L.); (J.-S.J.); (J.-W.Y.)
| | | | - Sung-Joo Hwang
- College of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Korea;
| | - Min-Soo Kim
- College of Pharmacy, Pusan National University, 63 Busandaehak-ro, Geumjeong-gu, Busan 46241, Korea; (D.-H.K.); (E.-S.H.); (D.-H.H.); (W.-Y.S.); (S.-K.L.); (J.-S.J.); (J.-W.Y.)
| |
Collapse
|
21
|
Development of solid self-emulsifying drug delivery systems (SEDDS) to improve the solubility of resveratrol. Ther Deliv 2019; 10:626-641. [DOI: 10.4155/tde-2019-0054] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim: A solid self-emulsifying drug delivery systems was developed by using the spray-drying technique, to improve the solubility of resveratrol (RES). Materials & methods: Cod liver oil and three surfactant system were tested: soy phosphatidylcholine (SPC)/Eumulgin® HRE-40 (EU)/Sodium oleate (system A); SPC/Tween®80 (TW) /Sodium oleate (system B) and SPC/EU/TW (system C). Results: The greatest incorporation was obtained with system C (21.26 mg/ml). Solid self-emulsifying drug delivery systems with the highest yield were obtained with colloidal silicon dioxide (CSD) (80.12%), and CSD sodium croscarmelose 9:1 and 5:5. RES dissolution attained 100% at 45 min with CSD:CS 5:5. Discussion: The surface modification to hydrophilic by CSD:sodium croscarmellose reduced the cohesive force among drug particles. Conclusion: The developed systems are a good approximation for the design of strategies that could allow increasing the oral bioavailability of RES.
Collapse
|
22
|
Resveratrol-loaded nanoemulsion gel system to ameliorate UV-induced oxidative skin damage: from in vitro to in vivo investigation of antioxidant activity enhancement. Arch Dermatol Res 2019; 311:773-793. [PMID: 31432208 DOI: 10.1007/s00403-019-01964-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/25/2019] [Accepted: 06/15/2019] [Indexed: 12/18/2022]
Abstract
In the present study resveratrol nanoemulsion gel was developed and optimized with the aim of enhancing the permeability and antioxidant activity against ultraviolet (UV)-induced oxidative skin damage. Droplet size, polydispersity index, drug permeation flux, permeability coefficient and drug deposition in skin of resveratrol-loaded nanoemulsion were found to be 65.00 ± 5.00 nm, 0.171 ± 0.082, 144.50 μg/cm2/h, 2.90 × 10-2 cm/h and 45.65 ± 4.76%, respectively, whereas drug permeation flux, permeability coefficient and drug deposition in skin from nanoemulsion gel were found to be 107.70 μg/cm2/h, 2.06 × 10-2 cm/h and 62.65 ± 4.98%, respectively. Confocal studies depicted deeper penetration of resveratrol from nanoemulsion gel. Differential scanning calorimetry and Fourier-transform infrared spectrophotometer studies confirmed that nanoemulsion gel enhanced fluidization of stratum corneum lipids and conformational disruption of lipid bilayer, thereby enhancing skin permeation of resveratrol. Histopathology study of skin revealed that resveratrol-loaded nanoemulsion gel inhibited UV-induced spongosis, edema and epidermal hyperplasia response. Levels of glutathione, superoxide dismutase, catalase and protein carbonyl in the skin of UV-irradiated rats were significantly (p < 0.01) improved in the skin of animals treated with nanoemulsion gel. Experimental results suggested that nanoemulsion gel could be explored as a promising carrier for topical delivery of resveratrol for prevention of UV-induced oxidative skin damage owing to its enhanced permeability and retention effect.
Collapse
|
23
|
Salem HF, Kharshoum RM, Abou-Taleb HA, Naguib DM. Nanosized Transferosome-Based Intranasal In Situ Gel for Brain Targeting of Resveratrol: Formulation, Optimization, In Vitro Evaluation, and In Vivo Pharmacokinetic Study. AAPS PharmSciTech 2019; 20:181. [PMID: 31049748 DOI: 10.1208/s12249-019-1353-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 02/26/2019] [Indexed: 12/30/2022] Open
Abstract
Resveratrol (RES) is a potent antioxidant used for the management of several central nervous system diseases. RES bioavailability is less than 1 owing to its low solubility and extensive intestinal and hepatic metabolism. The aim of the study was to enhance RES bioavailability through developing intranasal transferosomal mucoadhesive gel. Reverse evaporation-vortexing sonication method was employed to prepare RES-loaded transferosomes. Transferosomes were developed via 34 definitive screening design, using soya lecithin, permeation enhancers, and surfactants. The optimized formula displayed spherical shape with vesicle size of 83.79 ± 2.54 nm and entrapment efficiency (EE%) of 72.58 ± 4.51%. Mucoadhesive gels were prepared and evaluated, then optimized RES transferosomes were incorporated into the selected gel and characterized using FTIR spectroscopy, in vitro release, and ex vivo permeation study. Histopathological examination of nasal mucosa and in vivo pharmacokinetic study were conducted. In vitro drug release from transferosomal gel was 65.87 ± 2.12% and ex vivo permeation was 75.95 ± 3.19%. Histopathological study confirmed the safety of the optimized formula. The Cmax of RES in the optimized RES trans-gel was 2.15 times higher than the oral RES suspension and AUC(0-∞) increased by 22.5 times. The optimized RES trans-gel developed intranasal safety and bioavailability enhancement through passing hepatic and intestinal metabolism.
Collapse
|
24
|
Huang XT, Li X, Xie ML, Huang Z, Huang YX, Wu GX, Peng ZR, Sun YN, Ming QL, Liu YX, Chen JP, Xu SN. Resveratrol: Review on its discovery, anti-leukemia effects and pharmacokinetics. Chem Biol Interact 2019; 306:29-38. [PMID: 30954463 DOI: 10.1016/j.cbi.2019.04.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/21/2019] [Accepted: 04/01/2019] [Indexed: 12/27/2022]
Abstract
Resveratrol, found in variety of plants, is a natural stilbene structure polyphenol. It has various pharmacological effects, such as antioxidation, anti-aging, anti-inflammation, anti-cancer, antiobesity, anti-diabetes, cardioprotection, neuroprotection. Recently, anti-leukemia activities of resveratrol has been studied extensively via its effects on a variety of biological processes involving cell proliferation, apoptosis, autophagy. Current treatments of leukemia mainly rely on intensive chemotherapy or hematopoietic stem cell transplantation, however, these treatments are still with poor survival and high treatment-related mortality. Therefore, it is extremely needed to find relatively non-toxic medicines with minimal side effects but sufficient therapeutic efficacy. Resveratrol is one such potential candidate owing to its reported anti-leukemia effect. In this review, we summarized resveratrol's discovery, sources and isolation methods, administration methods, effects in different types of leukemia, pharmacokinetics and toxicities, aiming to exploit resveratrol as a potential drug candidate for anti-leukemia.
Collapse
Affiliation(s)
- Xiang-Tao Huang
- Center of Hematology, Key Laboratory of Tumor Immunotherapy of Chongqing, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Xi Li
- Center of Hematology, Key Laboratory of Tumor Immunotherapy of Chongqing, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Ming-Ling Xie
- Center of Hematology, Key Laboratory of Tumor Immunotherapy of Chongqing, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Zhen Huang
- Center of Hematology, Key Laboratory of Tumor Immunotherapy of Chongqing, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Yong-Xiu Huang
- Center of Hematology, Key Laboratory of Tumor Immunotherapy of Chongqing, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Gui-Xian Wu
- Center of Hematology, Key Laboratory of Tumor Immunotherapy of Chongqing, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Zhi-Rong Peng
- Center of Hematology, Key Laboratory of Tumor Immunotherapy of Chongqing, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Yan-Ni Sun
- Center of Hematology, Key Laboratory of Tumor Immunotherapy of Chongqing, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Qian-Liang Ming
- College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Yan-Xia Liu
- College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Jie-Ping Chen
- Center of Hematology, Key Laboratory of Tumor Immunotherapy of Chongqing, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China.
| | - Shuang-Nian Xu
- Center of Hematology, Key Laboratory of Tumor Immunotherapy of Chongqing, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China.
| |
Collapse
|
25
|
Huang S, Gu J, Ye J, Fang B, Wan S, Wang C, Ashraf U, Li Q, Wang X, Shao L, Song Y, Zheng X, Cao F, Cao S. Benzoxazine monomer derived carbon dots as a broad-spectrum agent to block viral infectivity. J Colloid Interface Sci 2019; 542:198-206. [PMID: 30739009 DOI: 10.1016/j.jcis.2019.02.010] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/30/2019] [Accepted: 02/03/2019] [Indexed: 11/15/2022]
Abstract
Multiple viruses can cause infection and death of millions annually. Of these, flaviviruses are found to be highly prevalent in recent years with no distinctive antiviral therapies. Therefore, there is a desperate need for broad-spectrum antiviral drugs that can be active against a large number of existing and emerging viruses. Herein, we prepared a kind of benzoxazine monomer derived carbon dots (BZM-CDs) and demonstrated their infection-blocking ability against life-threatening flaviviruses (Japanese encephalitis, Zika, and dengue viruses) and non-enveloped viruses (porcine parvovirus and adenovirus-associated virus). It was found that BZM-CDs could directly bind to the surface of the virion, and eventually the first step of virus-cell interaction was impeded. The developed nanoparticles are active against both flaviviruses and non-enveloped viruses in vitro. Thus, the application of BZM-CDs may constitute an intriguing broad-spectrum approach to rein in viral infections.
Collapse
Affiliation(s)
- Shaomei Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Jiangjiang Gu
- College of Science, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China.
| | - Jing Ye
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Bin Fang
- College of Science, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Shengfeng Wan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Caoyu Wang
- College of Science, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Usama Ashraf
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Qi Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Xugang Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Lin Shao
- Wuhan Brain VTA Technology Co. Ltd., Wuhan, Hubei 430070, PR China
| | - Yunfeng Song
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Xinsheng Zheng
- College of Science, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Feifei Cao
- College of Science, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Shengbo Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China.
| |
Collapse
|
26
|
Lv X, Cong Z, Liu Z, Ma X, Xu M, Tian Y, Zhang X, Xu B, Zhang J, Tang Z. Improvement of the solubility, photostability, antioxidant activity and UVB photoprotection of trans-resveratrol by essential oil based microemulsions for topical application. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.10.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
27
|
Nematallah KA, Ayoub NA, Abdelsattar E, Meselhy MR, Elmazar MM, El-Khatib AH, Linscheid MW, Hathout RM, Godugu K, Adel A, Mousa SA. Polyphenols LC-MS2 profile of Ajwa date fruit (Phoenix dactylifera L.) and their microemulsion: Potential impact on hepatic fibrosis. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.08.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
28
|
Tosato MG, Maya Girón JV, Martin AA, Krishna Tippavajhala V, Fernández Lorenzo de Mele M, Dicelio L. Comparative study of transdermal drug delivery systems of resveratrol: High efficiency of deformable liposomes. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 90:356-364. [DOI: 10.1016/j.msec.2018.04.073] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 04/12/2018] [Accepted: 04/25/2018] [Indexed: 11/25/2022]
|
29
|
Popescu M, Bogdan C, Pintea A, Rugină D, Ionescu C. Antiangiogenic cytokines as potential new therapeutic targets for resveratrol in diabetic retinopathy. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:1985-1996. [PMID: 30013318 PMCID: PMC6037275 DOI: 10.2147/dddt.s156941] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Diabetes mellitus (DM) affects >350 million people worldwide. With many complications that can reduce the patient’s quality of life, vision loss is one of the most debilitating disorders it can cause. Active research in the field of diabetes includes microvascular complications in diabetic retinopathy (DR). Disturbances in the balance of pro-angiogenesis and anti-angiogenesis factors can lead to the progression of DR. The retinal pigment epithelium (RPE) is the outermost layer of the retina, and it is essential in maintaining the visual function. The RPE produces and secretes growth factors as well as protective agents which maintain structural integrity of the retina. Small natural molecules, such as resveratrol, may influence neurotrophic factors of the retina. The pigment epithelium-derived factor (PEDF) and thrombospondin-1 (TSP-1) are secreted by RPE cells. These two proteins inhibit angiogenesis and inflammation in RPE cells. An alteration of their production contributes to various eye diseases. There is a critical balance between two important factors secreted on opposite sides of the RPE: at the basal side, vascular endothelial growth factor (VEGF; acts on the choroidal endothelium) and, on the apical side, PEDF (acts on neurons and photoreceptors). Resveratrol inhibits VEGF expression in human adult RPE cells and limits the development of proliferative vitreoretinopathy, by attenuating transforming growth factor-β2-induced wound closure and cell migration. Possible new mechanisms could include PEDF and TSP-1 expression alterations under physiological and pathological conditions. Resveratrol is currently of interest due to its capacity to influence the cell’s secretory activity. Some limitations arise from its low bioavailability. Several drug delivery systems are currently tested, promising to improve tissue concentrations. This article reviews biological pathways involved in the pathogenesis of DR that could be influenced by resveratrol. A study of these pathways could identify new potential targets for the reduction of diabetic complications.
Collapse
Affiliation(s)
- Mihaela Popescu
- Department of Biochemistry, University of Medicine and Pharmacy "Iuliu Haţieganu", Cluj-Napoca, Romania
| | - Cătălina Bogdan
- Department of Dermopharmacy and Cosmetics, University of Medicine and Pharmacy "Iuliu Haţieganu", Cluj-Napoca, Romania,
| | - Adela Pintea
- Department of Biochemistry, University of Agriculture Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Dumitriţa Rugină
- Department of Biochemistry, University of Agriculture Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Corina Ionescu
- Department of Biochemistry, University of Medicine and Pharmacy "Iuliu Haţieganu", Cluj-Napoca, Romania
| |
Collapse
|
30
|
Abstract
BACKGROUND Minimal Hepatic Encephalopathy (MHE) is characterized by an impairment of social interaction, emotional behavior, sleep disorders, physical and mental symptoms, and diminished Quality of Life (QoL). The aim of our study is evaluating the potential liver health promoting a perspective of Resveratrol (RV) activities and evaluate whether RV treatment may improve health related quality of life (HRQL) and reduce depression and anxiety in patients with MHE. METHODS We evaluated depression using the Beck Depression Inventory test, anxiety with State-trait anxiety inventory test, quality of life through SF-36 test, and ammonia serum levels in 70 MHE patients that were randomized into two groups. RESULTS In the comparison between RV group and placebo group we observed a decrease in Back Depression Inventory (BDI) (p < 0.001), in State-trait anxiety inventory (STAI) (p < 0.001), and improve in physical function (p < 0.001), in role physical (p < 0.05), in body pain (p < 0.05), in general health (p < 0.001), in vitality (p < 0.05), and in social function (p < 0.001). CONCLUSIONS Resveratrol showed efficacy in the treatment of depression, anxiety, and ammonia serum levels, and improved the quality of life Of MHE patients.
Collapse
|
31
|
Therapeutic Versatility of Resveratrol Derivatives. Nutrients 2017; 9:nu9111188. [PMID: 29109374 PMCID: PMC5707660 DOI: 10.3390/nu9111188] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 09/26/2017] [Accepted: 10/25/2017] [Indexed: 12/13/2022] Open
Abstract
Resveratrol, a natural phytoalexin, exhibits a remarkable range of biological activities, such as anticancer, cardioprotective, neuroprotective and antioxidant properties. However, the therapeutic application of resveratrol was encumbered for its low bioavailability. Therefore, many researchers focused on designing and synthesizing the derivatives of resveratrol to enhance the bioavailability and the pharmacological activity of resveratrol. During the past decades, a large number of natural and synthetic resveratrol derivatives were extensively studied, and the methoxylated, hydroxylated and halogenated derivatives of resveratrol received particular more attention for their beneficial bioactivity. So, in this review, we will summarize the chemical structure and the therapeutic versatility of resveratrol derivatives, and thus provide the related structure activity relationship reference for their practical applications.
Collapse
|
32
|
Uberti F, Morsanuto V, Aprile S, Ghirlanda S, Stoppa I, Cochis A, Grosa G, Rimondini L, Molinari C. Biological effects of combined resveratrol and vitamin D3 on ovarian tissue. J Ovarian Res 2017; 10:61. [PMID: 28915830 PMCID: PMC5602920 DOI: 10.1186/s13048-017-0357-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 09/05/2017] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Resveratrol (3,5,4'-trihydroxy-trans-stilbene) is a natural antioxidant polyphenol able to exert a wide range of biological effect on several tissues. Despite its important beneficial properties, it has a low water solubility, which limits its therapeutic applications in humans. Resveratrol also acts as a phytoestrogen that modulates estrogen receptor (ER)-mediated transcription. In addition, it has been shown that ovarian tissues benefit greatly from vitamin D3, which exerts its beneficial effects through VDR receptors. The aim was to evaluate the cooperative effects of resveratrol combined with vitamin D3 on ovarian cells and tissues and some other organs as well. Moreover, the modulation of specific intracellular pathways involving ER and VDR receptors has been studied. METHODS The experiments were performed both in vitro and in vivo, to analyze cell viability, radical oxygen species production, signal transductions through Western Blot, and resveratrol quantification by HPLC. RESULTS Cell viability, radical oxygen species production, and intracellular pathways have been studied on CHO-K1 cells. Also, the relative mechanism activated following oral intake in female Wistar rats as animal model was investigated, evaluating bioavailability, biodistribution and signal transduction in heart, kidney, liver and ovarian tissues. Both in in vitro and in vivo experiments, resveratrol exerts more evident effects when administered in combination with vitD in ovarian cells, showing a common biphasic cooperative effect: The role of vitamin D3 in maintaining and supporting the biological activity of resveratrol has been clearly observed. Moreover, resveratrol plus vitamin D3 blood concentrations showed a biphasic absorption rate. CONCLUSIONS Such results could be used as a fundamental data for the development of new therapies for gynecological conditions, such as hot-flashes.
Collapse
Affiliation(s)
- Francesca Uberti
- Physiology Laboratory, Department of Translational Medicine, UPO, Via Solaroli, 17 28100 Novara, Italy
| | - Vera Morsanuto
- Physiology Laboratory, Department of Translational Medicine, UPO, Via Solaroli, 17 28100 Novara, Italy
| | - Silvio Aprile
- Department of Pharmaceutical Sciences and Drug and Food Biotechnology Center, UPO, Novara, Italy
| | - Sabrina Ghirlanda
- Physiology Laboratory, Department of Translational Medicine, UPO, Via Solaroli, 17 28100 Novara, Italy
| | - Ian Stoppa
- Physiology Laboratory, Department of Translational Medicine, UPO, Via Solaroli, 17 28100 Novara, Italy
| | - Andrea Cochis
- Department of Health Sciences, Medical School, UPO, Novara, Italy
| | - Giorgio Grosa
- Department of Pharmaceutical Sciences and Drug and Food Biotechnology Center, UPO, Novara, Italy
| | - Lia Rimondini
- Department of Health Sciences, Medical School, UPO, Novara, Italy
| | - Claudio Molinari
- Physiology Laboratory, Department of Translational Medicine, UPO, Via Solaroli, 17 28100 Novara, Italy
| |
Collapse
|
33
|
Aziz SW, Aziz MH. Protective molecular mechanisms of resveratrol in UVR-induced Skin carcinogenesis. PHOTODERMATOLOGY PHOTOIMMUNOLOGY & PHOTOMEDICINE 2017; 34:35-41. [DOI: 10.1111/phpp.12336] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/26/2017] [Indexed: 01/11/2023]
Affiliation(s)
- Saba W. Aziz
- Department of Internal Medicine; Division of Endocrinology; James H. Quillen College of Medicine; East Tennessee State University; Johnson City TN USA
| | - Moammir H. Aziz
- Department of Biomedical Sciences; James H. Quillen College of Medicine; East Tennessee State University; Johnson City TN USA
| |
Collapse
|
34
|
Xiong D, Lu S, Wu J, Liang C, Wang W, Wang W, Jin JM, Tang SY. Improving key enzyme activity in phenylpropanoid pathway with a designed biosensor. Metab Eng 2017; 40:115-123. [DOI: 10.1016/j.ymben.2017.01.006] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/09/2016] [Accepted: 01/18/2017] [Indexed: 01/02/2023]
|
35
|
Sinonasal Delivery of Resveratrol via Mucoadhesive Nanostructured Microparticles in a Nasal Polyp Mouse Model. Sci Rep 2017; 7:40249. [PMID: 28071713 PMCID: PMC5223156 DOI: 10.1038/srep40249] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 12/05/2016] [Indexed: 02/06/2023] Open
Abstract
Resveratrol (RSV) has been shown to effectively suppress chronic rhinosinusitis with nasal polyps in a mouse model; however, when locally administered to the sinonasal cavity, bolus RSV is limited by low drug bioavailability owing to its low aqueous solubility and relatively rapid clearance from the administration site. To address this limitation, we propose mucoadhesive nanostructured microparticles (PLGA/PEG NM) as a potential carrier for the sinonasal delivery of RSV. In this study, PLGA/PEG NM released RSV in a sustained manner. Owing to the enlarged specific surface area of the nanostructures, PLGA/PEG NM had synergistically enhanced mucoadhesiveness and thus showed improved in vivo retention properties in the sinonasal cavity. Therefore, when tested in a mouse nasal polyp model, PLGA/PEG NM mitigated polyp formation and restored epithelial integrity better than the control treatments. The therapeutic effect was similar at half the dose of PLGA/PEG NM, suggesting improved local bioavailability of RSV in the sinonasal cavity.
Collapse
|
36
|
|
37
|
Hai L, He D, He X, Wang K, Yang X, Liu J, Cheng H, Huang X, Shangguan J. Facile fabrication of a resveratrol loaded phospholipid@reduced graphene oxide nanoassembly for targeted and near-infrared laser-triggered chemo/photothermal synergistic therapy of cancer in vivo. J Mater Chem B 2017; 5:5783-5792. [DOI: 10.1039/c7tb01600j] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A resveratrol-loaded phospholipid coated reduced graphene oxide was prepared using a sonication method.
Collapse
Affiliation(s)
- Luo Hai
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Biology
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- College of Chemistry and Chemical Engineering
- Hunan University
| | - Dinggeng He
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Biology
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- College of Chemistry and Chemical Engineering
- Hunan University
| | - Xiaoxiao He
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Biology
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- College of Chemistry and Chemical Engineering
- Hunan University
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Biology
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- College of Chemistry and Chemical Engineering
- Hunan University
| | - Xue Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Biology
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- College of Chemistry and Chemical Engineering
- Hunan University
| | - Jinquan Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Biology
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- College of Chemistry and Chemical Engineering
- Hunan University
| | - Hong Cheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Biology
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- College of Chemistry and Chemical Engineering
- Hunan University
| | - Xiaoqin Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Biology
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- College of Chemistry and Chemical Engineering
- Hunan University
| | - Jingfang Shangguan
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Biology
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- College of Chemistry and Chemical Engineering
- Hunan University
| |
Collapse
|
38
|
Nayak D, Boxi A, Ashe S, Thathapudi NC, Nayak B. Stavudine loaded gelatin liposomes for HIV therapy: Preparation, characterization and in vitro cytotoxic evaluation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 73:406-416. [PMID: 28183626 DOI: 10.1016/j.msec.2016.12.073] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 12/13/2016] [Accepted: 12/14/2016] [Indexed: 01/19/2023]
Abstract
Despite continuous research and availability of 25 different active compounds for treating chronic HIV-1 infection, there is no absolute cure for this deadly disease. Primarily, the residual viremia remains hidden in latently infected reservoir sites and persistently release the viral RNA into the blood stream. The study proposes the dual utilization of the prepared stavudine-containing nanoformulations to control the residual viremia as well as target the reservoir sites. Gelatin nanoformulations containing very low dosage of stavudine were prepared through classical desolvation process and were later loaded in soya lecithin-liposomes. The nanoformulations were characterized through dynamic light scattering (DLS), Transmission electron microscopy (TEM), X-ray diffraction (XRD) and ATR-FTIR. All the formulations were in nano regime with high hemocompatibility and exhibited dose-dependent cytotoxicity towards Raw 264.7 macrophages. Among the various formulations, SG-3 (Stavudine-Gelatin Nanoformulation sample 3) and SG-LP-3 (Stavudine-Gelatin Nano-Liposome formulation sample 3) showed the best results in terms of yield, size, charge, encapsulation efficiency, hemocompatibility and % cell viability. For the first time, liposomal delivery of antiretroviral drugs using nanocarriers has been demonstrated using very low dosage (lower than the recommended WHO dosage) showing the prominent linear release of stavudine for up to 12h which would reduce the circulatory viremia as well as reach the sanctuary reservoir sites due to their nanosize. This method of liposomal delivery of antiretroviral drugs in very low concentrations using nanocarriers could provide a novel therapeutic alternative to target HIV reservoir sites.
Collapse
Affiliation(s)
- Debasis Nayak
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology Rourkela 769008, Odisha, India
| | - Ankita Boxi
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology Rourkela 769008, Odisha, India
| | - Sarbani Ashe
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology Rourkela 769008, Odisha, India
| | - Neethi Chandra Thathapudi
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology Rourkela 769008, Odisha, India
| | - Bismita Nayak
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology Rourkela 769008, Odisha, India.
| |
Collapse
|
39
|
Ramalingam P, Ko YT. Validated LC–MS/MS method for simultaneous quantification of resveratrol levels in mouse plasma and brain and its application to pharmacokinetic and brain distribution studies. J Pharm Biomed Anal 2016; 119:71-5. [DOI: 10.1016/j.jpba.2015.11.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 11/10/2015] [Accepted: 11/19/2015] [Indexed: 12/13/2022]
|
40
|
Ramalingam P, Ko YT. Improved oral delivery of resveratrol from N-trimethyl chitosan-g-palmitic acid surface-modified solid lipid nanoparticles. Colloids Surf B Biointerfaces 2015; 139:52-61. [PMID: 26700233 DOI: 10.1016/j.colsurfb.2015.11.050] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 11/24/2015] [Accepted: 11/25/2015] [Indexed: 12/18/2022]
Abstract
Despite the therapeutic effects of resveratrol, its clinical application is restricted by its poor oral bioavailability, low water solubility, and instability. Solid lipid nanoparticles (SLNs)-based drug delivery systems have been shown to provide excellent support for the delivery of hydrophobic drugs. The poor stability and burst release behavior in stomach acidic pH conditions of SLNs result in increased aggregation of the particles in the gastrointestinal environment, limiting the success of these particles as an oral delivery system for hydrophobic drugs. N-trimethyl chitosan (TMC) graft palmitic acid (PA) (TMC-g-PA) mucoadhesive copolymer was hypothesized to be a promising candidate for the surface modification of PA-decorated resveratrol-loaded SLNs to stabilize SLNs and circumvent all the above mentioned obstacles. TMC and TMC-g-PA copolymers were therefore synthesized and characterized by (1)H-nuclear magnetic resonance ((1)H NMR) and Fourier-transformed infra-red (FT-IR) spectroscopy. Resveratrol-loaded SLNs (SLRNs) that comprised Precirol ATO 5, PA, Gelucire 50/13, Tween 80, and resveratrol as well as TMC-g-PA SLRNs were formulated and characterized in terms of physicochemical properties, stability, cytotoxicity, and in vitro and in vivo effects. The in vitro release studies of TMC-g-PA SLRNs demonstrated negligible release of resveratrol in simulated gastric and sustained release in simulated intestinal conditions and the relative bioavailability of resveratrol was furthermore found to be 3.8-fold higher from TMC-g-PA SLRNs than that from resveratrol suspension. Overall, the findings reported here indicate that TMC-g-PA SLRNs represent a potential oral drug delivery system for resveratrol.
Collapse
Affiliation(s)
| | - Young Tag Ko
- College of Pharmacy, Gachon University, Incheon 406-799, South Korea.
| |
Collapse
|
41
|
Jøraholmen MW, Škalko-Basnet N, Acharya G, Basnet P. Resveratrol-loaded liposomes for topical treatment of the vaginal inflammation and infections. Eur J Pharm Sci 2015; 79:112-21. [PMID: 26360840 DOI: 10.1016/j.ejps.2015.09.007] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 08/28/2015] [Accepted: 09/02/2015] [Indexed: 12/18/2022]
Abstract
Resveratrol (RES), chemically known as 3,5,4'-trihydroxy-trans-stilbene, is a promising multi-targeted anti-oxidative and anti-inflammatory natural polyphenol. Preclinical studies showed its biological activities against the pathogens of sexually transmitted diseases causing vaginal inflammation and infections. Due to its low solubility and poor bioavailability, the optimal therapeutic uses are limited. Therefore, a clinically acceptable topical vaginal formulation of RES exhibiting optimal therapeutic effects is highly desirable. For this purpose, we prepared and optimized chitosan-coated liposomes with RES. The coated vesicles (mean diameter 200nm) entrapped up to 77% of RES, a sufficient load to assure required therapeutic outcome. In vitro drug release study showed the ability of liposomes to provide sustained release of RES. In vitro anti-oxidative activities of RES, namely DPPH and ABTS(•+) radicals scavenging assays, confirmed RES to be as potent as standard anti-oxidants, vitamins C and E. The anti-oxidative activities of RES and its corresponding liposomal formulation were also compared by measuring enhanced superoxide dismutase (SOD) activities in lipopolysaccharide (LPS)-induced J774A.1 cells. In vitro anti-inflammatory activities were compared by measuring nitric oxide (NO), tumor necrosis factor (TNF)-α and interleukin (IL)-1β production in LPS-induced J774A.1 cells. Liposomal RES was found to exhibit stronger anti-oxidative and anti-inflammatory activities than RES solution.
Collapse
Affiliation(s)
- May Wenche Jøraholmen
- Drug Transport and Delivery Research Group, Department of Pharmacy, Faculty of Health Sciences, Tromsø, Norway.
| | - Nataša Škalko-Basnet
- Drug Transport and Delivery Research Group, Department of Pharmacy, Faculty of Health Sciences, Tromsø, Norway.
| | - Ganesh Acharya
- Department of Obstetrics and Gynecology, University Hospital of North Norway, Tromsø, Norway; Women's Health and Perinatology Research Group, Department of Clinical Medicine, Tromsø, Norway.
| | - Purusotam Basnet
- Department of Obstetrics and Gynecology, University Hospital of North Norway, Tromsø, Norway; Women's Health and Perinatology Research Group, Department of Clinical Medicine, Tromsø, Norway.
| |
Collapse
|
42
|
Siddiqui IA, Sanna V, Ahmad N, Sechi M, Mukhtar H. Resveratrol nanoformulation for cancer prevention and therapy. Ann N Y Acad Sci 2015; 1348:20-31. [DOI: 10.1111/nyas.12811] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 05/13/2015] [Accepted: 05/18/2015] [Indexed: 12/17/2022]
Affiliation(s)
- Imtiaz A. Siddiqui
- School of Medicine and Public Health, Department of Dermatology; University of Wisconsin-Madison; Madison Wisconsin
| | - Vanna Sanna
- Department of Chemistry and Pharmacy, Laboratory of Nanomedicine; University of Sassari; Sassari Italy
| | - Nihal Ahmad
- School of Medicine and Public Health, Department of Dermatology; University of Wisconsin-Madison; Madison Wisconsin
| | - Mario Sechi
- Department of Chemistry and Pharmacy, Laboratory of Nanomedicine; University of Sassari; Sassari Italy
| | - Hasan Mukhtar
- School of Medicine and Public Health, Department of Dermatology; University of Wisconsin-Madison; Madison Wisconsin
| |
Collapse
|
43
|
Penalva R, Esparza I, Larraneta E, González-Navarro CJ, Gamazo C, Irache JM. Zein-Based Nanoparticles Improve the Oral Bioavailability of Resveratrol and Its Anti-inflammatory Effects in a Mouse Model of Endotoxic Shock. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:5603-5611. [PMID: 26027429 DOI: 10.1021/jf505694e] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Resveratrol offers pleiotropic health benefits including a reported ability to inhibit lipopolysaccharide (LPS)-induced cytokine production. The aim of this work was to prepare, characterize, and evaluate a resveratrol nanoparticulate formulation based on zein. For this purpose, the oral bioavailability of the encapsulated polyphenol as well as its anti-inflammatory effects in a mouse model of endotoxic shock was studied. The resveratrol-loaded nanoparticles displayed a mean size of 307 ± 3 nm, with a negative zeta potential (-51.1 ± 1.55 mV), and a polyphenol loading of 80.2 ± 3.26 μg/mg. In vitro, the release of resveratrol from the nanoparticles was found to be pH independent and adjusted well to the Peppas-Sahlin kinetic model, suggesting a mechanism based on the combination of diffusion and erosion of the nanoparticle matrix. Pharmacokinetic studies demonstrated that zein-based nanoparticles provided high and prolonged plasma levels of the polyphenol for at least 48 h. The oral bioavailability of resveratrol when administered in these nanoparticles increased up to 50% (19.2-fold higher than for the control solution of the polyphenol). Furthermore, nanoparticles administered daily for 7 days at 15 mg/kg were able to diminish the endotoxic symptoms induced in mice by the intraperitoneal administration of LPS (i.e., hypothermia, piloerection, and stillness). In addition, serum tumor necrosis factor-alpha (TNF-α) levels were slightly lower (approximately 15%) than those observed in the control.
Collapse
Affiliation(s)
- Rebeca Penalva
- †Department of Pharmacy and Pharmaceutical Technology, ‡Department of Microbiology, and #Centre for Nutrition Research, University of Navarra, 31080 Pamplona, Spain
| | - Irene Esparza
- †Department of Pharmacy and Pharmaceutical Technology, ‡Department of Microbiology, and #Centre for Nutrition Research, University of Navarra, 31080 Pamplona, Spain
| | - Eneko Larraneta
- †Department of Pharmacy and Pharmaceutical Technology, ‡Department of Microbiology, and #Centre for Nutrition Research, University of Navarra, 31080 Pamplona, Spain
| | - Carlos J González-Navarro
- †Department of Pharmacy and Pharmaceutical Technology, ‡Department of Microbiology, and #Centre for Nutrition Research, University of Navarra, 31080 Pamplona, Spain
| | - Carlos Gamazo
- †Department of Pharmacy and Pharmaceutical Technology, ‡Department of Microbiology, and #Centre for Nutrition Research, University of Navarra, 31080 Pamplona, Spain
| | - Juan M Irache
- †Department of Pharmacy and Pharmaceutical Technology, ‡Department of Microbiology, and #Centre for Nutrition Research, University of Navarra, 31080 Pamplona, Spain
| |
Collapse
|
44
|
Han YS, Quashie PK, Mesplède T, Xu H, Quan Y, Jaeger W, Szekeres T, Wainberg MA. A resveratrol analog termed 3,3',4,4',5,5'-hexahydroxy-trans-stilbene is a potent HIV-1 inhibitor. J Med Virol 2015; 87:2054-60. [PMID: 25989218 DOI: 10.1002/jmv.24271] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2015] [Indexed: 02/04/2023]
Abstract
HIV resistance to current anti-HIV drugs and drug toxicity have created a need for new anti-HIV agents. We have examined and characterized a synthetic resveratrol analog, termed 3,3',4,4',5,5'-hexahydroxy-trans-stilbene (M8), for potential anti-HIV activity. Here, we demonstrate that M8 possesses potent anti-HIV activity against several HIV variants with EC50 values in the low μM range. M8 was shown to act at a very early step of HIV entry prior to fusion to host cells. These results demonstrate that this novel resveratrol derivative possesses potent anti-HIV-1 activity and may have a mechanism of action that is different from current anti-HIV-1 drugs including entry inhibitors. Further structure-guided design might lead to the development of newer improved resveratrol derivatives that could have value either in therapy or as microbicides to prevent the sexual transmission of HIV-1.
Collapse
Affiliation(s)
- Ying-Shan Han
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Peter K Quashie
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Thibault Mesplède
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Hongtao Xu
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Yudong Quan
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Walter Jaeger
- Department of Clinical Pharmacy and Diagnostics, University of Vienna, Vienna, Austria
| | - Thomas Szekeres
- Clinical Institute for Medical and Chemical Laboratory Diagnostics, Medical University of Vienna, Vienna, Austria
| | - Mark A Wainberg
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| |
Collapse
|
45
|
Mustafa S, Pai RS, Singh G, Kusum Devi V. Nanocarrier-based interventions for the management of MDR/XDR-TB. J Drug Target 2015; 23:287-304. [PMID: 25766078 DOI: 10.3109/1061186x.2015.1009076] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Emergence of multidrug-resistant TB (MDR-TB) and extensively drug-resistant TB over the past decade presents an unprecedented public health challenge to which countries of concern are responding far too slowly. Global Tuberculosis Report 2014 marks the 20th anniversary of the Global Project on Anti-Tuberculosis Drug Resistance Surveillance, indicating the highest global level of drug-resistance ever recorded detection of 97 000 patients with MDR-TB resulting in 170 000 deaths in 2013. Treatment of MDR-TB is expensive, complex, prolonged (18-24 months) and associated with a higher incidence of adverse events. In this context, nanocarrier delivery systems (NDSs) efficiently encapsulating considerable amounts of second-line anti tubercular drugs ((s)ATDs), eliciting controlled, sustained and more profound effect to trounce the need to administer (s)ATDs at high and frequent doses, would assist in improving patient compliance and avoid hepatotoxicity and/or nephrotoxicity/ocular toxicity/ototoxicity associated with the prevalent (s)ATDs. Besides, NDSs are also known to inhibit the P-glycoprotein efflux, reduce metabolism by gut cytochrome P-450 enzymes and circumnavigate the hepatic first-pass effect, facilitating absorption of drugs via intestinal lymphatic pathways. This review first provides a holistic account on MDR-TB and discusses the molecular basis of Mycobacterium tuberculosis resistance to anti-tubercular drugs. It also provides an updated bird's eye view on current treatment strategies and laboratory diagnostic test for MDR-TB. Furthermore, a relatively pithy view on patent studies on second-line chemotherapy using NDSs will be discussed.
Collapse
Affiliation(s)
- Sanaul Mustafa
- Department of Pharmaceutics, Al-Ameen College of Pharmacy , Bangalore, Karnataka , India
| | | | | | | |
Collapse
|
46
|
Abstract
Resveratrol (RSV), naturally found in plants, is known to have health benefits and has been proposed as a potential anticancer and cardioprotective drug. However, due to its molecular structure, it undergoes rapid metabolism in the body resulting in low bioavailability. Novel polymeric methoxy-poly(ethylene glycol)-block-poly(ε-caprolactone) (mPEG-PCL) RSV conjugates with varying PCL chain lengths have been synthesised and formulated into micelles and/or nanoparticles for preliminaryin vitrostability studies. RSV conjugated with mPEG2000-PCL9500 was found to have improved solubility and stability of RSV as compared to RSV alone. The length of the PCL chain was found to affect the micelle formation, hence the stability in physiological buffers and rat plasma.
Collapse
|
47
|
Dawn of antioxidants and immune modulators to stop HIV-progression and boost the immune system in HIV/AIDS patients: An updated comprehensive and critical review. Pharmacol Rep 2014; 67:600-5. [PMID: 25933975 DOI: 10.1016/j.pharep.2014.12.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 12/05/2014] [Accepted: 12/08/2014] [Indexed: 12/16/2022]
Abstract
In the last two decades, human immunodeficiency virus (HIV), the retrovirus responsible for the acquired immunodeficiency syndrome (AIDS), is one of the leading causes of morbidity and mortality, worldwide. Providing the optimum management of HIV/AIDS is a major challenge in the 21st century. Since, HIV-infected persons have an extended lifespan due to the development of effective antiretroviral therapies, malnutrition is becoming central factors of long-term survivors. The nutrition status of AIDS patients has a significant influence on the maintenance and optimal effectiveness of the immune system. Micronutrient therapy in combination with allopathic treatments can extend and improve the quality and quantity of life in individuals infected with HIV/AIDS. HIV infection is thought to lead to augmented oxidative stress which may in turn lead to faster development of HIV disease. Hence, antioxidants might have a significant role in the treatment of HIV/AIDS. An additional approach to treating HIV infection is fortifying the immune response of infected people. Immune modulators help to activate and boost the normal immune function. The present review first describes the boon of antioxidants (especially Vitamin A) and immune modulators (cytolin, resveratrol, murabutide, setarud, tucaresol, AVR118, Immunitin (HE2000), reticulose, and interleukin-7) in the treatment of HIV/AIDS. Then, providing a comparatively succinct outline on updated patents study on antioxidants and immune modulators to treat HIV/AIDS will be discussed.
Collapse
|
48
|
Smoliga JM, Blanchard O. Enhancing the delivery of resveratrol in humans: if low bioavailability is the problem, what is the solution? Molecules 2014; 19:17154-72. [PMID: 25347459 PMCID: PMC6270951 DOI: 10.3390/molecules191117154] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 10/21/2014] [Accepted: 10/21/2014] [Indexed: 02/06/2023] Open
Abstract
Resveratrol has emerged as a leading candidate for improving healthspan through potentially slowing the aging process and preventing chronic diseases. The poor bioavailability of resveratrol in humans has been a major concern for translating basic science findings into clinical utility. Although a number of positive findings have emerged from human clinical trials, there remain many conflicting results, which may partially be attributed to the dosing protocols used. A number of theoretical solutions have been developed to improve the bioavailability of resveratrol, including consumption with various foods, micronized powders, combining it with additional phytochemicals, controlled release devices, and nanotechnological formulations. While laboratory models indicate these approaches all have potential to improve bioavailability of resveratrol and optimize its clinical utility, there is surprisingly very little data regarding the bioavailability of resveratrol in humans. If bioavailability is indeed a limitation in the clinical utility of resveratrol, there is a need to further explore methods to optimize bioavailability in humans. This review summarizes the current bioavailability data, focusing on data from humans, and provides suggested directions for future research in this realm.
Collapse
Affiliation(s)
- James M Smoliga
- Department of Physical Therapy, School of Health Sciences, High Point University, High Point, NC 27262, USA.
| | | |
Collapse
|
49
|
Singh G, Pai RS. In vitroandin vivoperformance of supersaturable self-nanoemulsifying system oftrans-resveratrol. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2014; 44:510-6. [DOI: 10.3109/21691401.2014.966192] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|